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. Het streven naar een gelijkwaardige nauwkeurigheid in de beschrijving van aérodynamica en elastome-
chanica geeft binnen het vakgebied van aéro-elasticiteit aanleiding tot het gebruik van niet gelijkwaardige
oplossingsmethoden en/of niet vergelijkbare rekenroosters.
In aeroelasticity, comparable accuracy requirements for aerodynamic and structural features leads, in most
cases, to different solution methods and/or mesh densities.

. De conclusie van Lee [1], dat het bewegen van een schok tijdens buffet wordt veroorzaakt door Kutta-golven
die tegen de stroming in bewegen, mag niet getrokken worden.

The conclusion of Lee [1], that the shock motion in a buffet condition is caused by Kutta waves moving
upstream, is not correct.

[1] B.H.K. Lee. Transonic buffet on a supercritical aerofoil. Aeronautical Journal, 22(5):143-152, 1990.

. Voor het uitvoeren van numerieke a€ro-elastische simulaties ligt het gebruik van impliciete methoden meer
voor de hand dan het gebruik van expliciete methoden.

In computational aeroelastic simulations the application of implicit methods is more appropriate than the
use of explicit methods.

. Het succes van numerieke aéro-elastische simulaties wordt niet alleen bepaald door de kwaliteit van de
aérodynamische en elastomechanische oplosmethoden. Het hangt net zo veel af van het vakmanschap van
de aéro-elasticus om gegevens aangereikt door aérodynamici and constructeurs samen te voegen.

The success of computational aeroelastic simulations is not determined by the quality of the aerodynamic
and structural dynamic tools only. It depends just as much on the skill of the aeroelastician in the merging
the data supplied by aerodynamic and structural engineers.

. Relaxatie van instationaire residuen [1] en "subcycling’ [2] in tijdsimulatie waren ontwikkeld met het doel de
numerieke aéro-elastische simulatie met grote tijdstappen te kunnen doen. De relaxatie van instationaire
residuen is beter dan de 'subcycling’ omdat de eerste numerieke stabiliteit garandeert terwijl de laatste juist
numerieke instabiliteit veroorzaakt.
Relaxation of unsteady residuals 1] and subcyling [2] in time accurate simulations are developed for the
same goal, namely to have a CAS method capable of using large time steps. The relaxation of the un-
steady residual is better than the subcyling because the first ensures numerical stability whereas the latter
introduces numerical instability.
[1] J.J. Alonso, L. Martinelli and A. Jameson. Multigrid Unsteady Navier-Stokes calculations with
aeroelastic applications. AIAA paper 95-0048.
[21 C. Farhat and Lesoinne. On the accuracy, stability and performance of the solution of three-
dimensional nonlinear transient aeroelastic problems by partitioned procedures. AIAA paper 96-1388.

. De grootte van de tijdstap voor tijdsintegratie van een instationair aérodynamisch probleem is bepaald door
voortplantingsverschijnselen van golven. Een gelijkwaardige eis voor de elastomechanica is bepaald door de
hoogste eigenfrequentie van de constructie. In de aéro-elasticiteit komen deze verschillende eisen toch uit
op dezelfde tijdstapgrootte.

The time step size requirement for temporal integration of an unsteady aerodynamic problem is defined by
wave propagation phenomena. The corresponding requirement for a structural dynamic problem is deter-
mined by the highest natural frequency of the structure. However, in aeroelasticity these two requirements

result in the same time step size since the waves in the fluid are primarily generated by the vibration of the
structure.

. Men leert veel door het maken van fouten; het is evenwel de kunst om nuttige fouten te maken omdat men
daarvan het meeste leert.




10.

One learns a lot from making mistakes; however the art is how to make useful mistakes since one learns
most from these useful mistakes.

. De enige stomme vraag is de vraag die niet gesteld wordt.

The only stupid question is the unasked one.
Aanhaling uit NET2-HOWTO (netwerk manual van Linux besturing system)

. In Indonesié is de naam "Kantor Hukum” ('Court of Law') meer gepast dan de huidige naam "Kantor

Pengadilan” ("Court of Justice’).
In Indonesia the name "Kantor Hukum" (Court of Law) is more appropriate than the current name " Kantor
Pengadilan” (Court of Justice).

Het onmiskenbare verschil tussen het Indonesische en Nederlandse klimaat komt op Indonesische nieuwkomers
anders over dan op de Indonesiérs die al langer in Nederland wonen. De eersten zullen direct het verschi

opmerken tussen de twee seizoenen in Indonesié en de vier seizoenen in Nederland. De anderen zullen

echter beweren dat het in Indonesié een half jaar regent en in Nederland het hele jaar door.

The undeniable difference between the Indonesian and Dutch climate leads to different opinions at Indone-

sian new-comers and Indonesians who have lived longer in The Netherlands. The first group distinguishes
two seasons in Indonesia and four seasons in The Netherlands. The second group will state that it rains
half a year in Indonesia but all year round in The Netherlands.
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CHAPTER 1

INTRODUCTION

The danger of unstable dynamic or static deformations of aircraft structures in an
airflow has been recognized since the early days of powered flight. An illustrative
example of the result of such an instability phenomenon can be seen in figure 1.1,
which shows a wind tunnel model of a Fokker .28 transport aircraft. This model was
used in a series of exploratory tests at the National Aerospace Laboratory (NLR),
Amsterdam, The Netherlands [180]. At a certain test condition!, the T-tail of the
model vibrated with a growing amplitude until the structure could not withstand
the load and broke. Figure 1.1 shows the disastrous result after the test. This kind

Figure 1.1: Structural failure of the T-tail of a Fokker F.28 wind tunnel model. The inset
shows the model before the experiment (courtesy of NLR, Amsterdam)

of instability, called flutter, certainly may not occur during the service life of an
aircraft. Airworthiness regulations deliver the requirements which have to be met

't should be emphasized that the model did not represent the full-scale vibration characteristics
for this flow condition.
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in the design of the aircraft to guarantee freedom of flutter.

In the past years the awareness of this instability phenomenon, which is caused
by the interaction between the airflow and the structure, has increased mainly due to
two reasons: first, the advanced design approach striving for a lighter aircraft, which
leads to a more flexible structure, and second, the higher flight speeds deep into the
transonic speed regime. The complex nature of transonic flow interacting with the
flexible aircraft structure presents a special problem. Figure 1.2 shows results of wind
tunnel flutter tests at the NLR, Amsterdam obtained during the so-called SKV-5
program [184]. The test article was a semispan model of a supercritical wing of a

300 7

. support
TRANSITION FIXED TN torsionsl spring
PoF AT005C A— shaker (2)
Y\, wind-tunnel wally
(kPa) fum table,
t
200 1 fusel-age
labyrinth
wing
9 pressure orrifices (12)
accelerometer (2)
variable tip mass
1004
«{ MODE 2
90
fr (H2)
180
0 2.05 0.85 -0.35
- —— , +{ MODE 1
0. 00 070 M, _ 080
’ [ FLOW SEPARATION
O WNSET
ol . ' ™\, -0.35
060 070\ \ o080
i .. ... 205 085
-0.1% ’ ‘

Figure 1.2: Transonic flutter dip phenomenon occurring in the SKV-5 test program. Results
for «=-0.35, 0.85 and 2.05 deg.

transport aircraft. The main elements of the test setup are shown in the upper right
figure. The curves in the upper left diagram represent the flutter dynamic pressure
at three angles of attack, plotted against the freestream Mach number. The flutter
dynamic pressures exhibit a distinct reduction at high subsonic Mach numbers. This
phenomenon is called the transonic dip. Increasing the angle of attack shifts the dip
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to lower Mach numbers. At the highest angle of attack, where viscous effects are
most significant, the flutter dynamic pressure experiences another dip at a higher
Mach number. Note the change in the flutter mode from the first dip to the second
dip, as indicated by the increase of the flutter frequency from a low value close to
the first wing bending frequency to a higher value close to the frequency of the
second mode (wing rotation around pitch axis). This second dip turned out to be
caused by flow separation [184], as indicated by the trailing edge pressure shown
in the lowest diagram. Flutter boundaries of a full-scale aircraft flying at transonic
flight speeds generally show transonic flutter dips as well, which has been confirmed
by calculation many times. These dips form the most critical part of the flutter
boundary and should therefore be carefully considered in the aircraft design stage.

This thesis describes a study of aircraft flutter at transonic flight by means
of computational aeroelastic simulation. This introductory chapter presents some
notions of the aeroelasticity of aircraft as well as the background and the scope of
the study.

1.1 AEROELASTICITY OF AIRCRAFT

1.1.1 NOTIONS AND DEFINITIONS

Aeroelasticity is a discipline focusing on the class of fluid-structure interaction prob-
lems dealing with the deformations of elastomechanic bodies in an airflow. The flow
and the structure are coupled in a closed loop system. The deformations interact
with the flow through a change of the interface, i.e. the surface of the body, lead-
ing to a change of the aerodynamic loads exerted by the flow on the body, which
contribute to the deformations. So, in an aeroelastic system the aerodynamic loads
induced by the deformations are considered as part of the system and not as an
independent excitation of the structure. In this interaction mainly the most flexible
parts of the aircraft structure are involved, like the wings, tail surfaces and canard.
Besides the deformation-induced aerodynamic loads other aerodynamic loads are
active in general, which do not depend on the deformations. Well-known examples
of such loads are those due to atmospheric disturbances (gust) and flow separation
at wing stall. The latter is known as the buffeting problem, see e.g.Nixon [119].
The flow and the structure form an aeroelastic system of which the properties are
characterized by its stability (static or dynamic) and its response to an excitation.
The important aerodynamic parameters in analyzing the stability of an aeroelastic
system are Mach number, M,,, Reynolds number, Re.,, and dynamic pressure, gso,
where the subscript oo refers to undisturbed flow conditions. At a certain Mach
number and Reynolds number an increase of the dynamic pressure may lead to
deformations of the aircraft structure which become unstable. If the deformations
have an almost static character, the instability is called divergence, and when they
are of an oscillatory nature the instability is called flutter. The speed of the first
occurrence of flutter or divergence is called flutter or divergence speed, respectively.
The present study concentrates on the dynamic aeroelasticity in the transonic
flight regime, i.e. at conditions where the flow is characterized by a mixed subsonic-
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supersonic flow and is dominated by the physics of both types of flows [13]. This flow
condition occurs at high subsonic up to low supersonic speeds. Experience shows
that transonic flow usually presents the most critical flutter problems.

1.1.2 FLUTTER CALCULATIONS IN AIRCRAFT DESIGN

Figure 1.3 shows a typical procedure of the aeroelastic certification in an aircraft
design process [185]. Without discussing the activities in detail, the role of flutter
calculations and the associated development of analytical models is noticed, which
proceeds through all stages of the design process. The results of these calculations

Scated mode!
flexibility ma

Figure 1.3: Flutter calculations during an aircraft design process, after [185]

A T e : B SR o i T ISHER
provide support to the preparation of the expensive wind tunnel and flight flutter
tests. The final results obtained by using the most updated analytical models in
combination with the flight flutter test results provide the evidence for the flutter
certification.

Advancing through the design stages implies the obvious needs of increasingly
accurate data, analytical models and calculation methods for the flutter analysis.
Usually also the number of required flutter calculations increases. The majority
of these calculations is performed using standard methods, e.g. the aeroelastic
module of the finite element analysis program MSC-NASTRANYY. The structural
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and aerodynamic models in these standard methods have been reduced usually to a
very minimum. Although acceptable in the first stages of the design process, these
models often fall short in the final stage, and sometimes also earlier when special
aeroelastic characteristics have to be investigated. For this situation the need to
apply more accurate aerodynamic models is quite obvious. However, to maintain
efficiency in the design process, it is of utmost importance to consider continuously
the balance between the required accuracy and the acceptability in the design office
in terms of cost and turn-around times.

1.1.3 TRANSONIC FLOW EFFECTS

For subsonic flow, at speeds up to M,,~0.70, a relatively simple linear aerodynamic
model, based on the classical lifting surface theory, is practiced. At this condition the
aerodynamic forces respond linearly to the structural deflections and the influence
of the mean steady flow, caused by the angle of attack and thickness and camber of
the lifting surfaces on the unsteady flow can be neglected.

At transonic speeds, however, the assumption underlying this linear model is vio-
lated for several reasons: the interference between the steady flow and the unsteady
flow is significant and can not be neglected [167, 184], the relationship between the
aerodynamic forces and the structural deflections has become essentially nonlinear
[47, 48], and in certain cases viscosity plays a vital role [89, 184]. In the following
this is explained further.

The obvious situation in transonic flow is the mixed subsonic-supersonic flow.
The immediate consequence is that disturbances in the flow, generated by the struc-
tural motion, are prevented to travel upstream in the supersonic flow regions and
retarded in the (high) subsonic flow regions, leading to a substantial increase of the
phase lag between the aerodynamic loading and the structural motion. When the
supersonic flow region is terminated by a shock wave another consequence arises:
the oscillating shock creates a shock pulse acting on the aircraft structure which
may excite certain vibration modes. A thorough description of the phase lag and
the shock pulse effects was given by Tijdeman [167].

The phenomena mentioned above are the cause of the aforementioned transonic
dip shown already in figure 1.2. As pointed out in [184], which describes an extensive
investigation of transonic flutter of an advanced transport wing, an analysis using a
linear model would lead to a dangerous nonconservative prediction. This is the main
reason which makes the transonic flutter characteristic as one of the most critical
issues in the design of a transonic aircraft.

Concerning the effect of viscosity in transonic flow, a shock wave thickens the
downstream boundary layer and in some cases may induce flow separation. In the
case where the shock on the upper wing surface is weak and the flow is still mainly
attached, the boundary layer will cffect a decambering of the wing which reduces
the unsteady aerodynamic loading. For a relatively thin wing a good approximation
can still be provided by an inviscid flow model. For high performance wings of
modern transport aircraft an inviscid flow model usually lcads to a too conservative
prediction of the flutter speed. In the case where the shock wave induces a large
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region of flow separation, which dominates the aerodynamic loading behavior, the
resulting instability is usually called buffeting flutter or buzz [119]. Buffeting flutter
often constitutes the operational limit of aircraft.

Modern transonic aircraft are usually designed to fly quite close to the buffet
boundary to gain performance. Due to atmospheric turbulence or pilot input, the
aircraft angle of attack can increase momentarily inducing a (partly) separated flow
condition. The problems of aeroelastic stability and response under these circum-
stances belong also to the aeroelastic discipline.

1.2 PROGRESS IN AEROELASTIC ANALYSIS

In the field of aeroelasticity of aircraft it is generally accepted that the level of
structural deflections allows the assumption of a linear relationship between these
deflections and the inertial, damping and stiffness forces in the structure. This sim-
plifies the application of structural models substantially. However, it is clear from
the preceding section that such an assumption is not always appropriate for the
aerodynamic forces, especially in transonic flow. Therefore, research activities in
the computational aeroelasticity in the past years focused mainly on the develop-
ment of unsteady aerodynamic models with various levels of sophistication. These
developments are well-documented, e.g. in the proceedings of the AGARD Struc-
tures and Materials Panel (SMP) specialists’ meetings (2, 5, 6, 7] and of the Forums
on Aeroelasticity and Structural Dynamics [15, 45, 150]. This section presents a
concise review of the progress of aeroelastic analysis and focuses on flutter calcu-
lations since it constitutes the major portion of aeroelastic analysis in industrial
practice.

Almost all flutter calculation methods are based on the assumption that each
vibratory motion can be described by a series of predefined vibration modes, or-
thogonal or not. Each vibration mode is considered as an independent degree of
freedom. The methods can be categorized into two types: frequency domain and
time domain methods. In the frequency domain approach the further assumptions
are that the equations of motion can be linearized and that use can be made of un-
steady aerodynamic forces valid for harmonic motions. These assumptions enable
the formulation of a complex eigenvalue problem, of which each eigenvalue can be
associated with the frequency and the damping of an eigenmode. The flutter speed
is defined as the speed at which the damping is zero. The flutter calculations are
carried -out for a mainly large number. of flight speeds:end. altitudes. . Well-known
methods in this category are the classical k- or U-g-method [33], the p-k-method
[73] and the modern methods in which the unsteady aerodynamic forces are ap-
proximated by rational functions of a Laplace variable {146]. In the time domain
approach an initial condition is prescribed and the equations of motion-linear or
not-are solved by numerical integration for various values of the flight speed and al-
titude. The resulting time traces are analyzed to obtain the frequency and damping
of the responses. The flutter speed is then obtained by extrapolation or interpola-
tion of the flight speed to the speed where the damping is zero. In this approach less
assumptions are made than in the frequency domain approach. The consequence is
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that the approach has been strongly computerized. For this reason the time domain
approach is often referred to as computational aeroelastic simulation (CAS).

As stated above, for a frequency domain flutter calculation, unsteady aerody-
namic data for harmonic oscillations are required. In the early days these data were
calculated using a two-dimensional flow method, applied in a stripwise manner for
each wing span station. Closed form solutions of the two-dimensional linearized
potential-flow equation are available, see e.g. [33]. The solution for the flow about
three-dimensional isolated wings was made possible by the advent of computing
power. Two well-known methods which are based on the numerical solution of an
integral equation are the kernel function method [98] and the doublet lattice method
[9]. These methods were further developed for handling more complex geometries,
like interfering surfaces and wings with control surfaces [168] and wing-body config-
urations [144, 148]. Nowadays, the doublet lattice-method is still considered as the
principal tool by the industry [36, 59]. However, the employment of the underlying
linearized potential-flow equation limits the method to pure subsonic or supersonic
flows.

To handle transonic flows the transonic small perturbation (TSP) equation for
the velocity potential has to be employed as a minimum. Since the TSP equation
is nonlinear several ways have been proposed to proceed in the flutter calculations:

1. Prescribe a harmonic motion of the structure with frequency w and assume
the solution to be ¢(z,t) = ¢g(x) + ¢1(x)e™t + d2(z)e®™ + ... Assuming
that the unsteady perturbations are small the TSP equation can be solved
subsequently for ¢¢(x), ¢1(do, ) and so on. This procedure is called time-
linearization. The calculation of the unsteady aerodynamic forces is limited
to solving ¢g and ¢, see e.g. [176];

2. Solve the equation in the time domain for a prescribed motion, harmonic, pulse
or diverging, and extract the frequency domain data. For the input of harmonic
motion and pulse motion the frequency domain data are obtained from the
Fourier transform of the aerodynamic forces divided by the Fourier transform
of the input motion [30, 92]. In case of a diverging motion several data arc
first fitted using a Padé approximation technique and assuming analytical
continuation of the aerodynamic forces the result can be used to calculate the
data in the frequency domain, see {78, 131];

3. Solve the unsteady flow equations and structural dynamic equations simulta-
neously in the time domain |51, 52].

The results of the first two techniques can be directly applied in the linear frequency
domain flutter calculation methods. It should be noted that the aeroelastic simu-
lation of the third technique provides the possibility to appropriately handle the
nonlinearity in the aeroelastic system.

The development of methods for solving the unsteady TSP cquations was pio-
neered by NASA [19]. The solution technique is completely different from that of
the integral equation method, as it employs finite differences, in other words it is
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a method belonging to the field of computational fluid dynamics (CFD). Both the
frequency domain approach [77, 92, 176] and the time domain approach [25] for the
TSP equation were developed afterwards to handle more complex configurations and
also to include effects of viscosity through coupling with a boundary-layer equation.
Currently, this method is considered by industry to be the state-of-the-art of compu-
tational unsteady aerodynamics (CUA) [36]. Methods with a higher-level of physical
modeling, viz. full-potential (FP) equation, Euler equations and Navier-Stokes (NS)
equations, are still considered as methods of the future.

The aeroelastic analysis using an unsteady aerodynamic model which is of higher
level than TSP usually takes at once the direction of an aeroelastic simulation tech-
nique, e.g.[25, 29, 66, 85, 178]. This is mainly due to the following two reasons:
first, a proper modeling of the nonlinearity requires a time-marching approach, and
second, the technique is just a straightforward extension of current Euler/Navier-
Stokes methods for steady flows. There are, however, a few exceptions: Isogai
(88] and Hounjet and Meijer [82] for FP and M. Lesoinne and C. Farhat [106] and
Mortchelewicz [114] for the Euler equations, who applied the frequency domain ap-
proach through time linearization. A further review of CAS methods employing the
Euler/Navier-Stokes equations is presented in the next chapter. In the following
paragraphs the status of CAS methods is discussed in view of their significance as
practical tools in the flutter certification of aircraft.

The development of CUA methods for aeroelastic applications was summarized in
the review papers of Edwards and Malone [53] and Férsching [59]. Many complicated
flow problems can now be solved using the Euler or Navier-Stokes equations: the
effect of the mean flow on the flutter speed, the limit cycle oscillations of an airfoil,
control surface buzz, dynamic stall, shock stall, etc. However, the survey paper
of Edwards and Malone [53] also shows that the aeroelastic application lags far
behind the development of unsteady aerodynamic methods. Moreover, most of
these aeroelastic applications employed potential-flow methods (particularly TSP)
and only a very few of the aeroelastic applications were carried out by industry. The
status presented three years later by Forsching in [59], depicted in figure 1.4, shows
practically the same situation.

Figure 1.4 makes clear that in 1995 CAS methods employing higher-level flow
models were mostly in the development/research stage. Although an almost simi-
lar conclusion was reported in the technical evaluation of the 1997 AGARD SMP
specialists’ meeting [96], there is actually some obvious progress in the application

-of advanced CUA/CAS methods in industry. Baker: {17} applied & CFD-method
indirectly, namely as correction for the classical linear flutter calculation. Franzen
et al. [60] applied Euler/Navier-Stokes methods for checking the discrepancy be-
tween the results of flight tests and linear flutter calculations. Further, Henshaw
et al. [75] pointed out the strong relationship between the extent of the modeling
and analysis effort and the cost savings through reduced flight testing and reduced
risk of redesign. Most importantly, they mentioned the justification of spending
cost for advanced CAS methods with a reward of greater savings of the wind tunnel
and flight flutter tests. Thus, although for routine applications aeroelasticians still
use the potential-flow model [7, 59, 96], the need for higher-level low models in the
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industry exists, because during the design process specific conditions often occur
for which the application of potential-flow methods would lead to doubtful results,
while wind tunnel tests are very expensive and offer limited alternatives.

Currently the application of CAS in the industry is still limited. The causes
pointed out by Lacabanne and Zwaan [96] are the high computing cost, the signif-
icant implementation effort and the need for sufficient validation of the methods.
Burt [36] indicated that the first cause is the most important one with the comput-
ing time as the major part. In addition, preprocessing (grid generation) contributes
substantially to the cost and effort related to the applications of Euler/Navier-Stokes
methods. He also offered a view on industrially-accepted CUA methods, which rests
heavily on the available steady flow CFD methods to be extended/modified for un-
steady flow applications. This is perhaps the most feasible way in view of the startup
costs, but this approach certainly requires substantial CFD expertise which may not
or insufficiently be available for CAS design tasks. or may not be effective in taking
account of typical aeroelastic requirements. Experience has learned that in such
cases the availability of special CUA/CAS facilities provide a viable way out. It is
the author’s opinion that the CUA/CAS method proposed in the following chapters
has a potential of such a facility.

Concerning the problem of long computing times one can argue that relief can
be found in the implementation of CAS/CUA on supercomputers of parallel vector
processors (PVP), which currently have enormous computing power. However, the
question remains whether industry can afford the use of these PVP supercomputers.
Actually the price/performance of the supercomputer has reduced noticeably by the
introduction of the massively parallel processor (MPP) supercomputers. This type
of supercomputers usually utilizes a large number of commodity processors instead
of a small number of expensive vector processors. Meanwhile the computing power of
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relatively cheap workstations and personal computers, which are presumably avail-
able in large numbers in industry, is also considerably improved. The power of MPP
machines and that of the cheap computers can be harnessed by introducing parallel
computation methodology into the CUA/CAS methods. The development of the
CUA/CAS method proposed here has taken due account of this methodology.

1.3 BACKGROUND OF THE STUDY

Summarizing the preceding discussion, the background and motivation of the present
study can be formulated as follows:

1. There exists a need in industry for affordable CAS methods employing high-
level aerodynamic models as complementary tools to linear methods in order
to support the flutter clearance during the design of a transonic aircraft;

2. So far, the developments in CUA and CAS have mainly concentrated on im-
proving the flow modeling without adequate consideration of industrial accept-
ability of the methods, in terms of accuracy, robustness, turn-around times
and hardware facilities. This has contributed to the reluctance of industry to
employ high-level unsteady aerodynamic modeling;

3. The most important aspect therein is the high computational cost, with the
required computing times of the simulations as the major component;

4. The availability of MPP machines and also clusters of workstations promise
an enormous computing power at reasonable price.

1.4 OBJECTIVES AND SCOPE OF THE STUDY

The present study is a search for opportunities to make higher-level flow modeling
(i.e. the Euler and Navier-Stokes equations) in CUA and CAS more attractive for
aeroelastic applications, especially in industry. The interest in such opportunities is
expanding at several places (see e.g.[96]). In The Netherlands this type of work was
started already at the NLR, Amsterdam, on the basis of FP flow modeling [80, 81].
The present study makes use of this development and focuses on the introduction
of a higher-level flow modeling. The scope of the present study is:

.. .1..Pevelopment of a two-dimensional CUA method for solving the Euler/Navier-
Stokes equations based on CAS requirements. Besides its applicability to
two-dimensional configurations, the objective of this part of the study is to
investigate the feasibility of extension to three-dimensional configurations;

2. Development of a CAS method using the developed CUA method. In this part
of the work an appropriate structural model is selected and coupling methods
between the aerodynamic and the structural models are developed;

3. Application of the method to two-dimensional unsteady aerodynamic phenom-
ena in transonic flow and aeroelastic simulations.;
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4. Extension of the two-dimensional flow method to a three-dimensional flow
method. This method is intended for applications to simple isolated wings
and to wing-body configurations. The most important step to make comput-
ing times affordable is the application of a parallel computational method to
distribute the work to many processors. The implementation of the method
should be portable to a variety of platforms;

5. Applications of the three-dimensional method to realistic configurations.

Representative results of the present investigation were reported at several confer-
ences and in a scientific journal [111, 132, 133, 134, 135, 136).

1.5 OUTLINE OF THE THESIS

The thesis is organized as follows: Chapter 2 presents a review and a discussion of
CAS methods employing Euler/Navier-Stokes equations. CUA methods for solving
the unsteady Euler/Navier-Stokes equations are also briefly reviewed. Further, in
this chapter the requirements for the solution method from the point of view of
aeroelasticians are discussed. Lastly, the governing equations and boundary condi-
tions are introduced.

Chapter 3 presents an extensive study on numerically solving the two-dimensional
unsteady Euler/Navier-Stokes equations on a deforming mesh. Many aspects are
discussed: the deforming mesh, the temporal integration, inviscid flux discretiza-
tion, solution of the set of linear equations and the results of some test cases to
demonstrate the applicability of the method.

In chapter 4 the method is applied to investigate the unsteady flow phenomena
occurring in the flow field around oscillating airfoils. Both attached and separated
flow conditions are considered and computational results are compared to available
data from experiments. A study concerning the flow characteristics is also presented.

Chapter 5 discusses a method of applying the CUA method developed in chap-
ter 3 for aeroelastic analysis. The structural model, coupling procedures and the
solution of the coupled equations are discussed. Validation test cases and other
applications of the method are also presented.

Chapter 6 presents a three-dimensional CUA and CAS method based on the
studies described in the previous chapters. An important provision in the three-
dimensional flow method which is not present in the two-dimensional flow method
is the parallelization. Some applications are presented ranging from a simple isolated
wing to a more realistic configuration.

Finally Chapter 7 summarizes the capability of the CUA/CAS methods devel-
oped in this study, presents concluding remarks and offers recommendations for
further studies.
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CHAPTER 2

COMPUTATIONAL AEROELASTIC
SIMULATIONS

The development of CAS methods follows mainly the progress of CUA methods
because a CUA method can be considered as a prerequisite for a successful CAS
method. The development of CUA methods has been one of the major research
topics in aeroelasticity as well as in CFD in general. In the following sections some
aspects of discretization in CAS are discussed, then a concise review of current
CUA and CAS methods is presented. This review focuses on methods employing
the Euler/Navier-Stokes equations. After presenting the general approach taken for
the present study, the governing equations are described in the last section.

2.1 DISCRETIZATION ASPECTS OF CAS METHOD

Established methods to describe the motion of particles which constitute the con-
tinuum of either the structure or the fluid are the Lagrangian and the Eulerian
description methods. In the Lagrangian or material description the observation
point is attached to a specific particle and one observes the state of that particle
during its motion. This method is mainly applied in the structural dynamics where
the motion of each particle takes place in a neighborhood of the point where the
motion started. In the Eulerian or spatial description the observation point is fixed
in space and particles are passing this point. One observes not only the state of
motion of each passing particle but also its convective change (flux). This method
is preferred in fluid dynamics where the motions of particles are usually large and
the convective changes dominate in the motions. In certain situations, like the one
discussed hereafter, a generalized description, called the mixed/arbitrary/hybrid
Lagrangian-Eulerian description (abbreviated to ALE), is needed. In the arbitrary
Lagrangian-Eulerian description one observes the state and the flux of particles
passing the observation point of which its time-dependent position can be defined
independently of the motion of the particles.

In an aeroelastic simulation system both structural and aerodynamic parts are
involved, interfaced by the surface of the structure. Since the deformation of the
structure is assumed to be relatively small, the common Lagrangian approach can
be applied for the discretization of the structural part. For the aerodynamic part the
boundary of the domain in which the aerodynamic problem is solved has to adapt

13
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itself to the continuously changing fluid-structure interface, caused by the deforma-
tion of the structure. Consequently, the boundary of the mesh in the aerodynamic
domain is defined by the state of the structure. In the approach where the mesh
in the field deforms according to the deformation of the mesh boundary, a method
based on the ALE description has to be applied for the aerodynamic part!. Another
approach, which is valid for small displacements of the interface, is the linearization
of the boundary condition of the aerodynamic equations around the mean position
of the interface. Thus, the boundary condition is applied at the mean position of
the interface, so that the adaption of the aerodynamic domain is not necessary and
the common Eulerian approach may be applied for the aerodynamic part.

At the interface, the surface of the structure, an interchange of data takes place.
The structural part defines the position and velocity of the boundary of the aero-
dynamic mesh and the aerodynamic part provides the load to the structural part.
Two important aspects concerning the transfer of the data can be identified: the
spatial/geometrical aspect and the temporal aspect. The spatial/geometrical aspect
concerns the compatibility of the geometrical representation of the interface by the
structural and the aerodynamic part. An incompatibility can be easily caused by
the employment of different discretization methods for the two domains and/or the
different requirements upon the mesh density for the two domains to reach a com-
parable accuracy. In this case a correct transfer of data has to imply a conserved
transfer of work. This aspect will be elaborated further in section 2.5.1. The tem-
poral aspect of the transfer of the data concerns the availability of the data at a
certain time during the simulation. This aspect is not trivial since the states of the
two domains depend on each other. The following section discusses this aspect in
more detail, reviews the available methods in the literature and presents the current
approach.

2.2 TEMPORAL INTEGRATION ASPECTS OF CAS,
AERO-STRUCTURAL COUPLING

The interdependency/coupling between the aerodynamic part and the structural
part in a CAS system is illustrated in figure 2.1. In order to solve the structural
equations to obtain the structural state, and subsequently the state of the interface,
the aerodynamic loading on the interface is needed. Meanwhile the aerodynamic
loading on the interface can only be calculated from the aerodynamic state when

- the state of the interface is known and the mesh has been generated. This coupling
constitutes the main problem in the temporal integration of a CAS system. In the
sequel the manner in which this dependency is treated is called the aero-structural
coupling procedure.

Various methods were proposed to solve this problem. Bendiksen [27, 28] applied
the explicit Runge-Kutta (RK) method to both the structural and aerodynamic
equations. The application of an explicit method implies that the updates of the
structural and the aerodynamic states depend on the states at the previous time,

'In the field of structures, there are similar situations where application of ALE is a necessity.
An example is the analysis of a metal-forming process, see e.g. Atzema and Huétink [16]
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which is a very convenient situation. Since the aerodynamic and the structural
equations are treated in the same manner and their solutions proceed at the same
pace in time, the method is called a fully coupled method. This method is probably
the ideal way from the point of view of physical modeling. The main drawback
is the small time step which has to be taken due to stability limits of the explicit
method. This also has repercussions for the aerodynamic mesh to be regenerated or
deformed and subsequently the calculation of the mesh metrics. The turn-around
time of this method might therefore be prohibitive for practical problems.

A fully coupled method using an implicit temporal integration method, which
allows larger time steps, needs an iterative scheme to solve the coupled equations si-
multaneously. The itcration scheme may be of an explicit type, using dual time step-
ping, e.g. in Alonso and Jameson [10], or an implicit type, e.g. in Weeratunga and
Pramono {172]. An implicit type iteration is rather difficult to construct since the
gradient matrix has an unfavorable form, which might also lead to ill-conditioning,
see Farhat and Lesoinne [58]. Therefore in [172] an explicit treatment of the fluid-
structure coupling during the iteration is applied. Both types of iteration schemes
need certainly mesh updates during the iterations within each time step. Since mesh
updating, and the subsequent metrics calculation, is expensive in term of CPU time,
this reduces the advantage of these implicit fully coupled methods.

The so-called loose aero-structural coupling method (also known as staggered
or partitioned method) in Edwards et al. [52], and [58] is more widely accepted
due to the clear separation of the solution of the aerodynamic and the structural
equations. The method proceeds by extrapolation of either the fluid state, called
aerodynamic extrapolation method, or the structural state. called structural extrap-
olation method, to be used as an input for the other field. An advantage of this
method is that a limited number of meshes have to be regenerated or deformed




16 Chapter 2. Computational Aeroelastic Simulations

within each time step. An important consideration in introducing mesh updates
during the subiteration is whether having n updates in the subiteration with time
step Ar is more efficient than just one update with time step A7/n at a comparable
accuracy. Another important advantage of this method is that it is suited for most
of the methods developed for the flow and structural parts. Thus, it can benefit by
the existence of efficient solution methods, corresponding software and experiences
in each of the parts of CAS.

Various loose aero-structural coupling strategies for two-dimensional configura-
tions are discussed in chapter 5. One of these strategies will also be applied to
three-dimensional configurations.

2.3 LITERATURE SURVEY

2.3.1 REVIEW OF UNSTEADY EULER/NAVIER-STOKES METHODS

From the class of Lax-Wendroff methods (methods with a combined space-time
discretization) the MacCormack method {107] is the most popular one for solving
the Euler/Navier-Stokes equations. The combined space-time discretization, which
provides a natural numerical stabilization for the class of Lax-Wendroff methods, is
efficiently applied in the MacCormack method by using a time splitting.

Next to the MacCormack method, the most important pioneering methods for
solving the Euler/Navier-Stokes equations for practical flow problems are without
doubt the methods based on the central difference scheme related to the implicit
approximate factorization (AF) method of Beam and Warming [26] and the explicit
multi-stage RK method of Jameson et al. [91]. Many codes in use today are based
on these methods.

For steady flow problems the application of an explicit RK method appears to
be much more popular than the use of an implicit AF method. This is due to
the simplicity of the explicit RK method compared to the implicit AF method.
Although in its original form the method is not efficient due to its low numerical
stability limit, when acceleration techniques are applied it can still compete with the
implicit AF method. For unsteady flow problems, however, the explicit RK method
is less popular because of its strict numerical stability limitation which in terms of a
Courant number is of O(10) (five-stage RK with implicit residual smoothing). Unlike
steady flow calculations where for faster convergence the time step can be defined
locally, i.e.. proportional to the. local. speed. of the waves, .unsieady flow simulations
require a uniform time step to be used in the whole field. This time step, called global
time step, is determined by the computational cell with the highest local Courant
number. Examples of unsteady flow methods with a deforming mesh capability
which employ the explicit RK method are given by Bendiksen and Kousen [29),
Bendiksen and Hwang (28], Damodaran [40] and Gaitonde and Fiddes [61]. Note
that an explicit method is mostly applied when unstructured meshes are employed.
In such a case it is difficult to construct an implicit method.

Many papers on steady flow problems confirm that the implicit AF method has
proven to be a very efficient method. It is highly vectorizable or parallelizable due to
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the splitting which brings independence between the equations in each dimensional
direction or mesh lines. Application of the central-difference method with an implicit
AF method for an unsteady moving mesh problem was already initiated by Steger
and Warming [160]. For unsteady flow applications, although linear analysis suggests
unconditional stability, the implicit AF method is known to have a severe time step
limitation due to the factorization error. The maximum global time step that can
be employed in time-accurate two-dimensional flow simulations corresponds to a
Courant number of @(500). For the three-dimensional flow case, where simple linear
analysis indicates unconditional instability, this limitation is even more severe. This
makes the implicit AF method to have poor efficiency for unsteady flow problems.
Nevertheless, many well-known unsteady flow methods are based on this technique,
examples are ENSAERO ([68], CFL3D [12] and the Navier-Stokes method of NAL
[116].

For upwind methods there are more possibilities for approximately factorizing the
Jacobian matrix, see Pulliam [138]. The most successful factorization for unsteady
flow applications uses the sign of eigenvalues of the Jacobian of the flux, the so-called
two-factor scheme. For three-dimensional flow, unlike the AF method, the two-
factor scheme retains its stability property. The drawback of the two-factor scheme
is its sequential character when the equation is solved by sweeping in a natural
order. A vectorizable ordering can be constructed but the resulting scheme becomes
quite complicated. This is one of the reasons that many upwind methods still
apply the implicit AF method based on the dimensional direction factorization {two-
factor in two-dimensional and three-factor in three-dimensional flow). The stability
boundary of an upwind method applying implicit AF is not significantly different
from its central difference counterpart. The methods of Rumsey and Anderson
[151} and Lee-Rausch and Batina [102] belong to this category. Guruswamy [68]
showed that an improvement of the stability boundary of an AF method is achieved
by applying a hybrid of directional and eigenvalue-sign factorizations, called lower-
upper alternating direction implicit (LU-ADI). Although the work in each time step
increases, a better overall efficiency is achieved due to the possibility to use a larger
time step.

Facilitated by the possibility of constructing a positive and diagonally dominant
Jacobian matrix by using an upwind method, some authors take a different ap-
proach in solving the Euler/Navier-Stokes equations, namely by using relaxation.
This approach has been traditionally applied in methods for solving the potential
flow equation, i.e. TSP and FP. A relaxation approach is not sensitive to the time
step limitation. Steady flow problems, which were traditionally modeled using the
unsteady form of the Euler/Navier-Stokes equations and solved using a time march-
ing approach, can be solved directly using a relaxation method applied to the steady
form of the Euler/Navier-Stokes equations. Examples of this approach are presented
by Dick [46], Eberle [49], Koren [94], Spekreijse {158], Thomas et al. {164], Venkatakr-
ishnan [171] . Surprisingly, there are only a few applications of this procedure for
unsteady flow cases involving deforming meshes. Two possible explanations are: the
belief that the nonlinear nature of transonic flow problems can not be represented
by methods employing a large time step and the notorious complexity of the im-
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plicit method. The work of Brenneis and Eberle [35] is an example of this approach,
where a point Gauss-Seidel (PGS) iteration scheme is employed to drive the residual
of the unsteady flow equations to zero, i.e. the time derivative (first-order accurate)
is included in the residual. This method is actually an extension of a steady flow
method for solving the Euler equations, see [49)].

A paper which constitutes an important development in unsteady flow methods
was presented by Jameson [90], namely an efficient application of an explicit RK
scheme for unsteady flow problems. A pseudo-time was introduced to redefine the
unsteady flow problem into a steady flow problem, with the physical time derivative
included in the discretized equations. The method is called the dual time-stepping
method. A decisive advantage is that acceleration methods, which were traditionally
developed for steady flows, i.e. the local time stepping, the implicit residual smooth-
ing and the multigrid method, can now be utilized for unsteady flow applications.
This is the main feature of Jameson’s method, since without acceleration techniques
the explicit method can not compete with the implicit method in terms of efficiency.
Following the popularity of the explicit RK method for steady flow applications this
method also became very popular. In a short time after its introduction in 1991 the
method was adopted by many authors and became more or less a standard method
to transform a steady flow solver into an unsteady flow method. The discussion
concerning the application of either explicit or implicit methods for unsteady flow
calculations, which was in favor of implicit methods, became once more open.

Concerning the upwind flux modeling for two- and three-dimensional flow prob-
lems, the most common method to date is the application of a one-dimensional split-
ting method to the inviscid flux normal to the cell face. This makes the method,
the so-called quasi-one-dimensional splitting method, to depend on the orientation
of the mesh. Recently, several modern upwind methods of a real multi-dimensional
character have been developed to solve the Euler/Navier-Stokes equations, see e.g.
Hussaini et al. {84], Struijs et al. [162]. A multi-dimensional upwind method has a
mesh-independent character, which is ideal for an unstructured mesh method. Most
of the multi-dimensional upwind methods are in the development state and still
have to mature with respect to their accuracy and robustness, see Paillere et al.
[126], Zhang et al. [182]. So far, multi-dimensional splitting has not been applied to
unsteady flow problems with moving boundaries.

2. 3 2 REVIEW OF COMPUTATIONAL AEROELASTIC SIMULATION

UMetHops e

The application of the two-dimensional Euler equations for aeroelastic analysis in
transonic flow was initiated by Bendiksen and Kousen [29] with a modified explicit
RK method of Jameson et al. [91]. The aero-structural coupling employs an aerody-
namic extrapolation method. The method was used to study nonlinear aeroelasticity
in transonic flow by Kousen and Bendiksen [95], which showed the possible occur-
rence of limit-cycle oscillations (LCO). Later, Bendiksen [27] improved the aero-
structural coupling into a fully coupled one using the explicit RK method. Wu et al.
[178] presented results for two-dimensional configurations using the Navier-Stokes
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equations in the aerodynamics. The solution method applies Jameson’s central dif-
ference scheme and the implicit AF method with the aerodynamic extrapolation
coupling procedure. Time-marching aeroelastic solutions were given for an NACA
0012 airfoil near stall conditions.

The recent paper of Alonso and Jameson [10] pays attention to the efficiency in
the time-marching aeroelastic solution method by applying an implicit method with
an explicit subiteration scheme based on the work of Jameson [90]. The structural
state is updated during the subiteration to obtain a full convergence of the aeroelastic
equations. They show results of aeroelastic simulations with the Euler equations
using relatively large time steps with an adequate temporal accuracy and conclude
that the method has gained efficiency in time-marching aeroelastic analyses through
its ability to march with large time steps. Later on Alonso et al. [11] also presented
some time-marching aeroelastic results using the laminar Navier-Stokes flow model.

The three-dimensional CAS method using the Euler/Navier-Stokes aerodynamics
was pioneered by Guruswamy [65, 66]. The method utilized a central difference
scheme and implicit AF and LU-ADI methods for the aerodynamic part. The aero-
structural coupling of the method was an aerodynamic extrapolation method. The
aeroelastic equations were integrated in time using a linear acceleration method,
The mesh was adapted to the motion of the surface using a shearing technique. The
method, called ENSAERO, was later improved by the introduction of an upwind
method by Obayashi et al. [122].

Recently, numerous authors have presented three-dimensional CAS methods em-
ploying the Euler/Navier-Stokes equations, e.g. by Batina [24] and Rausch et al.
[141] with the Euler equations on unstructured meshes, by Bendiksen and Hwang
(28], Farhat and Lesoinne (58] and Robinson et al. [143] with the Euler equations on
structured meshes and by Guruswamy [66] and Lee-Rausch and Batina [102] with
the Navier-Stokes equations on structured meshes. The flow considered in these
papers is mostly transonic attached flow. Strongly nonlinear cases are considered
by Nakamichi et al. [117] for separated flow resulting in LCO, and Guruswamy [67]
for vortex flow.

The aero-structural coupling procedures applied in these papers are mostly the
aerodynamic extrapolation method. The exceptions are [28] where a fully coupled
method with an explicit RK temporal integration is used like in [27], and [58] where

- aerodynamic as well as structural extrapolation methods are used. The tempo-

ral integration methods for the loose aero-structural coupling scheme varies from
the Newmark-3 method [58], the linear acceleration method [66, 67], the Wilson-f
method [117} and the transition matrix method [102, 141, 143].

Most of these papers which present loose aero-structural coupling methods in
combination with aerodynamic extrapolation report that the numerical stability
boundary of the methods applied for the aerodynamic part determines the time step
for the whole aeroelastic simulation. Since larger time steps are desired for efficiency
reasons, Farhat and Lesoinne [58] applied the so-called subcycling in which the
structural part is updated only after a number of aerodynamic steps. For example,
an n-subcycling means that the time step size of the aerodynamic part is 1/n of
the aeroelastic or structural time step size. Unfortunately, subcyceling is reported to
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introduce numerical instability when 7 is too large, see e.g. [58] and Grisval et al.
[64].

The deforming mesh algorithm applied in these references, in general, may be
categorized into two groups: the algebraic method and the spring analogy method.
In the algebraic method of Guruswamy [66, 67], Nakamichi et al. [117] the mesh is
sheared in one direction (usually the normal, {, direction) to follow the deformation
of the structure. As reported in [117] this method fails to produce a mesh with
adequate quality when the deformation is relatively large. To overcome this problem,
in [117] a new mesh is generated using an online algebraic mesh generator each time
the deformation reaches a certain level. The spring analogy was first introduced by
Batina [24] to model the mesh deformation. Originally the method was employed
for a mesh adaption by Nakahashi and Deiwert [115]. The mesh segments are
represented by a spring system which reacts to the deformation on the boundary
of the mesh. This technique is very general in terms of its capability to follow the
motion of the interface and its applicability to both structured [24] or unstructured
(58, 141] meshes.

2.3.3 GENERAL DIRECTIVES IN DEVELOPING CAS METHODS

Several important issues have now been identified from the past research in the field
of CUA/CAS. Based on these issues the following general directives for the present
study in developing a CAS method are summarized:

e The loose aero-structural coupling method has been used successfully in two-
dimensional and three-dimensional CAS and is applied in the present study.
This method offers the possibility to consider the approaches for the aerody-
namic and structural parts relatively independently. The aerodynamic extrap-
olation method, required for a loose aero-structural coupling method, appears
to be well explored whereas the structural extrapolation method has been less
applied. Thus both extrapolation methods should be explored;

e Numerical stability, which allows the time step to be determined by the flow
physics, is important in order to achieve overall efficiency. This is confirmed
in {10, 65, 90]. Therefore, also in the present study the numerical methods
to be applied for solving the aerodynamic and structural equations should be
stable enough to allow the time step to be determined by flow physics. Two
possible methods for the aerodynamic part have been identified:’ the diral-time
stepping method of [90] and the relaxation method,;

e Subcycling, as a technique to allow large time steps for the aeroelastic simu-
lation, introduces a numerical instability when the aerodynamic time step is
too small compared to the structural time step [58, 64]. This approach should
not be applied,;

e The spring analogy method for deforming the mesh offers generality in han-
dling the motion of the structure. This method should be applied here;
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e Most methods presented in the literature thus far employ relatively small time
steps. The applicability of some procedures of their CAS, i.e. the loose aero-
structural coupling method and the mesh deformation method, has still to be
investigated for simulations employing large time steps which are determined
solely by the physics.

2.4 EQUATIONS OF MOTION OF AN AEROELASTIC SYSTEM

In general the equations of motion of the aeroelastic system can be represented by:
Mz + Cz + Kz = ¢uSC a(My, Reoo, T, T), (2.1)

where M, C and K are the mass matrix, structural damping matrix and stiff-
ness matrix, respectively. @ is the vector of the physical displacements, g is the
freestream dynamic pressure, S is the reference area and C4 is the aerodynamic
force coefficient. In aeroelasticity usually the high-frequency vibration modes are
hardly important and are therefore omitted in the analysis. To take advantage of
this, the motion of the structure is represented by a finite number of modes obtained
from solving:

Mz + Kz =0. (2.2)

By assuming the solution to be z(t) = ¢e™!, a standard eigenvalue problem is
obtained which can be solved for the natural mode shapes ¢; and their natural
frequencies w;. The resulting mode shapes are normalized with respect to the mass
matrix:

'Mp=1, ¢'Ko =uw. (2.3)

Substituting = ¢q into equation (2.1), using equation (2.3) and assuming a diag-
onal damping (e.g. proportional damping), results in the following set of equations:

G + 20wy + Wi = oo SQuy © = 1N, (2.4)

where (; is the mode damping and @; is the i-th dimensionless generalized aerody-
namic force (GAF) defined as:

Q=3 /S pé - mdsS. (25)

N is the number of normal modes which are retained in the simulation. Most of the
time N is much smaller than the number of degrees of freedom employed in solving
equation (2.2).

2.5 UNSTEADY AERODYNAMICS FOR AEROELASTIC APPLICATIONS

In this section some aspects of unsteady aerodynamics for CAS applications are
presented. First the requirements upon accuracy and capability of CUA methods for
CAS applications are discussed. The governing equations employed for the present
study are also presented.
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2.5.1 AEROELASTIC REQUIREMENTS

SPATIAL ACCURACY The interaction between the fluid and the structure occurs at
the solid surface. In practice the parameters acting in the aero-structural coupling
may differ according to the type of solution method. For example, the loading on the
structure can be expressed directly in the form of pressures and viscous stresses [27]
or in the form of forces [58]. In the present approach, where a modal decomposition of
the structural part is applied, the load parameters are the GAFs, defined by equation
(2.5). The total of GAFs represents the work of the fluid performed on the structure.
To obtain accurate values of the generalized forces, an accurate prediction of the
pressure is essential at the locations with large structural displacements normal
to the surface. This implies that the computational mesh should be generated
according to this requirement. It should be noted that the accuracy requirement
for the GAFs should also take into account the physical uncertainties involved in
the structural modeling. Table 2.1, presented by Zwaan [186], about the order of
accuracy of the components in equation (2.1) considered from a practical point of
view, makes clear that a somewhat relaxed accuracy requirement is acceptable. The

force order accuracy remarks
Mz Kz 1 + 0.05
Cz 0.05 =+ 0.01 available after GVT

4005C a(Moo, Reoo, @, &) 0.20 £+ 0.05  assuming balanced accuracy

Table 2.1: Accuracy of the components of aeroelastic equation of motion, from a practical
point of view [186]

accuracy of the aerodynamic forces is assumed to be in balance with that of the
structural forces (inertial, damping and stiffness). From table 2.1 then, it can be
concluded that the required accuracy of the aerodynamic force is +25%. This level of
required accuracy is relatively low compared to that needed in steady aerodynamic
problems, which is dictated mainly by the prediction of lift and drag forces. The
values presented in table 2.1 are of course not universal and their significance is only
to make clear that pursuing increased accuracy in the aerodynamics of CAS should
not be an isolated goal.

TEMPORAL ACCURACY AND NUMERICAL STABILITY The important issues re-

- Jated to temporal accuracy are: the time scales involved in the simulations, the time
step size, the order of accuracy and the numerical stability boundary of the temporal
integration method. By specifying the number of time steps per cycle the time step
can be related to the frequency as:

2r
whm — 2.6
AT* Ny (26)
where w* is the characteristic frequency of the problem, A7* is the characteristic
time step of the problem and 7y is the number of time steps per cycle. As stated in
the general directives, section 2.3.3, the time step size should be determined solely
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by the physics, i.e. the frequency scales involved in the aeroelastic simulation. In
the following these frequency scales will be discussed and the requirements, in terms
of accuracy and numerical stability, upon the temporal integration method for the
flow equations will be defined. The frequency parameter that is commonly used in
unsteady aerodynamics is the so-called reduced frequency, defined as:

wb

k= U (2.7)
The structural motions involved in aeroelastic analyses are restricted to a num-
ber of natural vibration modes (see section 2.4). The specification of the highest
frequency of the natural vibration modes is based on experience, defined here as w,.
Because of the truncation of the number of vibration modes, the structure may be
considered as a low-pass filter to the aerodynamic input signals. Aliasing of higher
frequency signals will be disturbing only if the aliased frequencies coincide with
physically present natural frequencies. This situation is not expected in practice, so
it may be concluded that the highest reduced frequency of interest for the unsteady
aerodynamics is k, = wy¢/U. From an accuracy point of view k, is of interest since
the temporal integration method for the flow equations has to be able to capture

the flow behavior only up to this reduced frequency:

k < k. (2.8)

Note that flow behavior with a characteristic frequency k& < k, will be more accu-
rately resolved since it is sampled with more time steps per cycle.

The numerical stability of a temporal integration method is usually expressed in
terms of the Courant number, also called the CFL number, which can be related to
the reduced frequency as:

¢ 2m

cFL= S T
Az kneye’

(2.9)

where ¢ is the local convection speed and Ax is a typical measure of the mesh
size. The requirement to ensure numerical stability everywhere in the aerodynamic
domain is:

CFL < CFlyap, (2.10)

where the value of CFlg,, depends on the type of temporal integration method.

In a typical aeroelastic case the relation between CFL (related to numerical sta-
bility) and k (related to physics) for several values of ney. is shown in figure 2.2. The
curves showing the accuracy limit of the first and second order temporal integration
method are concluded from various results in the literature. Setting the frequency
scale based on physics to be k, ~0.20, the various temporal integration method can
now be associated with different requirements upon 7y to be used. Explicit meth-
ods usually have a stability limit in terms of CFL number of O(1) which require
Neye=(107). Traditional implicit AF methods, like that of Beam and Warming
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CFL

time step defined b
accuracy

region of interest for aeroelasticity

10* lower agcuracy limit of O(At?) methods
At = O(10)/cycle
lower accufacy limit of O(At) methods
AF 10

At = O(10%) /cycle

IRS
Explicit 10°
At = O(10%) /cycle
0.20 030 k = l—“j’ﬁ
time step defined by ~ k, oo

numerical stability

Figure 2.2: Relation of CFL number to the reduced frequency of a specific problem for various
numbers of time steps per cycle

(26], require ne,c=(103), see e.g. [68]. Experience has shown that an accurate
integration of the structural equations needs a number of time steps per cycle of
O(10), see Hounjet and Eussen [80]. Requiring also 7y for the aerodynamic part
to be of (O(10) defines the requirement upon CFL to be (9(104). In practice more
difficult situations occur in which the highest frequency of interest for a certain case
is lower than &, leading to even higher value of CFL. For example a typical transonic
aeroelastic case characterized by relatively low frequencies, say k£ = 0.10, a medium
sized mesh and a high subsonic Mach number, the CFL number in the unsteady
aerodynamic calculation can easily exceed (9(104)‘ In general, the region of interest
" starts already at k=0, so that it may be concluded that a method has to be applied
which is not sensitive to a CFL restriction.

Brenneis and Eberle [35] showed that an implicit temporal integration method of
first-order accuracy required nyc of @(100) to simulate a typical aeroelastic problem
in transonic flow. Therefore, to use time steps of O(10) per cycle, at least a second-
order accurate temporal integration method has to be applied.

2.5.2 GOVERNING EQUATIONS

The equations governing the fluid flow are derived from the fundamental principles
in mechanics, namely mass and energy are conserved and the fluid motion satisfies
Newton’s second law. The application of these principles to fluid flows can be carried
out in several ways. The issues relevant to a numerical method are related to the
flow physics of the problem and to the method of solution.

Due to the ability to automatically determine discontinuities in the flow field, a
shock-capturing method is more convenient in practice than a shock-fitting method
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for the present problem of flows with shock structures that are a priori unknown, or
varying in time. This means that the governing equations have to be considered in
a conservation form.

COMPRESSIBLE Viscous FLow

The Navier-Stokes equations are the most general set of equations representing com-
pressible viscous fluid flow. Originally the designation 'Navier-Stokes equations’ was
attributed to the momentum equation for viscous incompressible flow, but it has
become common, especially in the CFD field, to use this designation for the whole
system of equations including the conservation of mass and energy. Supplemented
by constitutive laws and thermodynamic equations of the state describing the na-
ture of the fluid, the Navier-Stokes equations completely define the characteristics
of compressible viscous flows. In practice, however, the so-called Direct Numerical
Simulation (DNS) methods have an important limitation for application to turbu-
lent flow. The time and length scales of turbulence range from almost a molecular
motion up to the motion of relatively large vortices (eddies). To capture all these
turbulent flow phenomena the spatial and temporal discretizations have to be ex-
tremely fine. A less computationally demanding approach (the approximation next
to DNS) is the Large Eddy Simulation (LES) which takes into account the large
eddies only. The effect of the eddies which are smaller than those captured by the
spatial grid is represented by a sub-grid scale model. Even with this sub-grid scale
model a large number of grid points is still needed. For most practical problems in
aerodynamics the practical use of these two methods is not feasible as yet due to
the limited capacity of the available computers, at least at this moment and in the
near future.

A straightforward approach for describing turbulent flows is representing the
flow variables as the sum of quantities averaged over a certain representative pe-
riod of time and their fluctuations around this averaged state. The representative
period must be long enough compared to that of the turbulent fluctuation, but
relatively small compared to the time scale of the unsteady flow phenomena of in-
terest. The equations resulting from substituting this decomposition into the Navier-
Stokes equations and subsequently time averaging the equations are referred to as
the Reynolds-Averaged Navier-Stokes (RANS) equations for the averaged quanti-
ties. The terms in the averaged equations originating from the averaging process
of the nonlinear terms need additional relations to close the mathematical model.
These relations constitute the so-called turbulence model. Turbulence models are
usually developed from theoretical considerations supplemented with empirical re-
lations. Their forms vary from algebraic relations between the turbulence variables
and the averaged flow quantities up to a turbulence model involving one or more
partial differential equations.

Both the integral form and differential form of the governing equations are used
in the present study. First the governing equations in the integral form are presented.
The integral form is more fundamental than the differential form since discontinuities
may exist in the field where the solution would not be differentiable. Solutions of
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the integral form of the governing equations which are not differentiable are called
weak solutions. The differential form of the governing equations is then obtained
from the integral form.

The Navier-Stokes equations consist of two scalar equations and one vector equa-
tion. The first scalar equation expresses the conservation of mass for the fluid flow
in a moving finite control volume Q with 6 as the boundary,

%/Q//pdmgp(u—ré)'ndﬁo, (2.11)

where p is the density of the fluid, u = [u,v,w]T is the flow velocity vector and
& = [2,9,#]7 is the the surface velocity vector at the boundary 6Q of the control
volume 2. The vector equation expresses conservation of momentum and is obtained
by applying Newton’s second law to a moving finite control volume,

—gt—/ﬂf/pudV-i-i/pu(u—:i)-ndS:—a/n/pndS+a/Q/T-ndS (2.12)

where p is the pressure and 7 is the viscous stress tensor acting at the boundary
of the control volume. Body forces, such as gravitational or electromagnetic forces,
are not considered. Finally, conservation of energy, as stated by the first law of
thermodynamics, applied to a moving finite control volume leads to:

%/Q//pEdV+a/Q/pE(u—:b)'ndS=—L/puAnd.SW—
b/g/(r-u)-ndS-ﬁ/ﬂ/q-ndS. (2.13)

Here E is the specific total energy (E = e + k), e is the specific internal energy,
k = 3(u® + v® + w?) is the specific kinetic energy and q is the heat flux vector,
volumetric heat sources are not considered.

This system of equations still needs supplementary relationships as there are now
more variables, i.e. p, u, E, p, T and ¢, than the number of equations, i.e. five.
For a gas of a fixed composition the thermodynamic state principle states that the
complete thermodynamic state is determined by two variables. The other thermo-
dynamic variables then follow from so-called equations of state. For air at normal
temperature and pressure; the perfect gas relation defines the relation between the
thermodynamic properties of the flow as the following thermal equations of state:

p=pRT, (2.14)

where 7 is the absolute temperature and R is the gas constant. In the international
unit system (SI) R=0.287 kJ/kgK. For a callorically perfect gas the internal energy
and enthalpy are unique functions of temperature, i.e.:

e= ¢, T

he or (2.15)
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where h is the enthalpy, ¢, and ¢, are the specific heat at constant volume and the
specific heat at constant pressure, respectively. Both ¢, and ¢, are constant and
thus internal energy and enthalpy are linear functions of temperature. Using these
relations, the pressure is obtained as:

p=(y—1)pe, (2.16)

where v = ¢,/c, is the ratio of the specific heats.
The constitutive equation for heat conduction is the Fourier law:

q=-—«kVT, (2.17)

with x as the coefficient of thermal conductivity of the gas. For a callorically perfect
gas equation (2.17) can be expressed as:

TH
q=-5 Ve (2.18)
Here p is the coefficient of viscosity and Pr is the Prandtl number defined as Pr =
pscp/k. The Prandtl number can be interpreted as the ratio of the diffusivity of the
momentum and the diffusivity of the heat. If Pr < 1 the thermal boundary layer
is thicker than the velocity boundary layer. For air Pr is usually assumed to be
constant, equal to 0.70.
The stresses, 7, can be linearly related to the gradients in the velocity field since
the gas is considered to be a Newtonian fluid:

Ou ov  Ou
Trx:)\v'u+zﬂg—xy sz:Tyr:ﬂ(?'f'?)v
v w v
Tyy = AV -u + 2,u,a—y, Tye = Toy = u(-é; + 5),
Jw n 6u)
dx  9z”
where A is the second coefficient of viscosity. p and A are related through Stokes’
theorem namely that the bulk viscosity is zero, i.e. A+ 2/3p = 0. The coefficient of
viscosity can be accurately approximated using Sutherland’s empirical law:

p T 1+T5/Ty

b~ ) T+ T/ T 220

(2.19)

0
Trz = AV - u + 2#520‘7 Tez = Toz = »U‘(
yA

where T is in Kelvin. The constant, Ts = 110K, is known as Sutherland’s constant.

By expressing p, T, u and q as functions of p, pu and pE using equations (2.15)
to (2.20), the number of variables is now equal to the number of equations, i.e. two
scalars, p and pk/, and one vector, pu.

NONDIMENSIONALIZATION AND SIMILARITY PARAMETERS

The development of a solution method for the Navier-Stokes equations in the form
of equations (2.11) to (2.20), and the analysis of the results are facilitated by nondi-
mensionalization and introduction of similarity parameters. The solution depends
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on five physical parameters: the size of the airfoil (represented by c), the freestream
velocity (%e), the freestream coefficient of viscosity (peo), the freestream density
(pso) and the freestream speed of sound (aw). According to the so-called Pi the-
orem [13] the number of similarity parameters which can be defined to completely
describe the flow is the number of physical parameters subtracted by the num-
ber of fundamental dimensions required to describe the physics. The fundamental
dimensions required to describe the physics are mass, length and time (three dimen-
sions). Note that the temperature has been eliminated from the governing equations
through the employment of equations (2.14) to (2.18) and equation (2.20). Thus two
similarity parameters can be defined. These similarity parameters can be obtained
by nondimensionalization of the governing equations.

There are many possibilities for the nondimensionalization where at least three
basic nondimensionalization variables have to be chosen (at least equal to the num-
ber of the fundamental dimensions required to describe the physics). More than
three nondimensionalization variables can be employed, e.g. for convenience, which
will introduce proportionality constants. Here p, u, * = [z,y,2]T and p are used
as the basic nondimensionalization parameters with py, @oo, ¢ and Uy, as the ref-
erence conditions, respectively. In two-dimensional configurations ¢ represents the
chord length, while in three-dimensional configurations it is usually set equal to the
root chord. The nondimensionalization parameters for the remaining variables are
derived from the main parameters: time by ¢/a, specific energy by a2, and pres-
sure by peoa? . After this nondimensionalization the Navier-Stokes equations can be
written in a matrix form as (using the overbar to indicate dimensionless variables):

%/Q//de+6/9/(f7"~_é)-nds=4/FV-ndS, (2.21)

where Q is the vector of conservative variables!, F! and F" are the inviscid and
viscous flux vectors, respectively. In a Cartesian coordinate system the vector of
conservative variables is:

p
B pu
Q=1 v |, (2.22)
P
pE
while the inviscid fluxes are:
pu pu pw
) pul+p ) Pl ) o
Fl' = P Fl=| p*+p Fl'= o] . (2.23)
Pl D pw’ + p
(PE +p)a (PE +p)v (PE + pyw

INote that although @ is introduced here as a vector, its symbol is indicated by a normal letter
to distinguish it from a spatial vector which has components in the coordinate directions.
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The viscous fluxes are:

0 0
_ 77_::1 _ ’ftg;y
FIV = ?yr s Fyv = ’T—_yy (224)
Tex Tay
ﬁfxz + ﬁ"-'xy + 'I”_'xz - q:v ﬂfyr + @fyy + w”-'yz - qﬂ
and:
0
_ ’FIZ
FZV — ,f-yz . (225)
’FZZ
UTsp + UToy + Doz — G
The stresses are:
_ Bo,.0a 2_ _ o 0v 0a
= - 2— — —v . Ty = Tyr = = —_— ),
Tez Few gz?‘ 3 W) Toy = Tye Fem g? + g?{)
_ i v _ _ _ I W v
Ty = =—2——-—=V-1u Tyz =Ty = = (= + =), 2.26
Yy Reoo( ay 3 v ) v Y REOO(ay az) ( )
- i (23117 2v a - B i 8ﬁ+87ﬁ)
2z = m— 4o T oV Tox = Tez = 3z 7 3= )
Reoo aZ 3 = Reoo 82 OI
and the heat flux vector is:
- Vi _
= - ——Ve. 2.27
1 Pr Rey ( )

The freestream Reynolds number based on the speed of sound, Re., is defined as
PoolooC/ oo = Rew /My, and the Mach number as My = Uy /s with Uy = |t
The Reynolds number represents the ratio between the inertial force and the viscous
force. The Mach number measures the compressibility of the flow. Note that the
similarity analysis could have been started already directly after equation (2.19),
excluding equations (2.16) and (2.18). Then the number of physical parameters had
to be extended with ¢,, ¢,, & and Ts and the fundamental dimension by T. The
analysis would have yielded the ratio of specific heats (), Prandtl number (Pr) and
(s = Ts/T,,) as the additional similarity parameters.

The viscosity coeflicient is obtained directly from the dimensionless Sutherland
law, equation (2.20). The temperature can be calculated using equation (2.14) as
T/T, = a®. The dimensionless freestream values of various flow quantities are
tabulated in table 2.2, where « is the angle of attack. Note that in the present
study the side slip angle 3 is assumed to be zero, so that a y-z symmetry plane
can be defined and only a half three-dimensional space needs to be considered. The
extension to cases with a nonzero side-slip angle needs only a minor modification.
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flow quantity symbol freestream value
density Poo 1

speed of sound Qoo 1
coefficient of viscosity foo 1

z component of velocity g M, cosa

y component of velocity T 0

z component of velocity — @Weo My sin
static pressure Poo 1/v
internal energy €0 Poo/ (7 — 1)
total energy E, Eoo + S M2

Table 2.2: Dimensionless value of flow variables at freestream condition

GEOMETRIC CONSERVATION LAwW

The appearance of a control volume surface velocity, Z, in equation (2.21) is of
importance since a deforming computational flow domain will be treated. The mov-
ing control volume surface should not disturb the physics which is modeled by the
governing equations. This requirement can be checked easily by realizing that the
freestream condition should be a solution of equation (2.21). This requirement is
called the freestream consistency check, see e.g. [121, 165].

Consider first the steady part of equation (2.21) applied to the freestream con-
dition:

(FL-FY). / / ndS =0, | (2.28)
an

which results in the first geometrical identity:

/ / nds =0. (2.29)
an

The other geometrical identity is obtained by applying the unsteady equation to the
freestream condition:

ngtzfn// dl”—Qmi/:*c-ndS+(F;~—F:°)-ZJndS:O, (2.30)

which results in the second geometrical identity, known as the Geometric Conserva-
tion Law (GCL) in, an integral form; G

Gl [fomss-o e

Essentially, equation (2.29) is the requirement that the control volume is closed and
equation (2.31) is the requirement that the rate of change of the volume is balanced
by the velocity of the surface of the control volume, see figure 2.3. Equation (2.29)
and equation (2.31) have to be satisfied simultaneously with solving equation (2.21)
to avoid the occurrence of nonphysical sources in the method. Note that for a steady
flow method, involving a fixed mesh, only equation (2.29) has to be satisfied.
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Figure 2.3: Change of control volume due to the motion of a surface element of the control
volume

DIFFERENTIAL FORM OF THE NAVIER-STOKES EQUATIONS

The surface integrals in equation (2.21) can be converted into volume integrals, using
Gauss’s theorem:

// —~+VF av + ///Qadv //Q ndS = ///VFdV

(2.32)

The second and third integrals on the left-hand side cancel out according to the GCL.
Since the control volume element is arbitrary, equation (2.32) can also be applied to a
differential element resulting in the differential form of the Navier-Stokes equations:

3Q+v Fl=v.F". (2.33)

For the sake of convenience the overbars of all variables are dropped and all variables
represent from now on the dimensionless variables.

REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS

For turbulent flow the Navier-Stokes equations are averaged in time. The set of
equations for the time-averaged Navier-Stokes equations is obtained by defining a
flow variable f as the sum of its average value and its fluctuation. The formal
definition of the time-averaging is:

T/2

1
f(z,y,2,t) = lim — f(@y,z,t +7)dr + f'(7,y,2,t)
Tooo T -T/2
=f(z,y,2,t) + f'(w,y, 2,1). (2.34)

In practice a finitc value is taken for T and the time-averaging process is valid if
the time scale of the simulated unsteady flow phenomena remains large compared
to T. For compressible flow the mass-weighted, the so-called Favre-averaging, is
introduced as:

plz,y,z, ) f(z,y,2,1)
fleoy,z,t) = -
( ) px,y, 2, t)
=flz,y,z,t) + f'(x,y, 2, 1), (2.35)

+ "z, y, 2, t),
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in order to simplify the resulting equations. The final form of the equations is
obtained by applying the time-averaging, equation (2.34), to p and p, applying
the Favre-averaging, equation (2.35), to u and E and subsequently time-averaging
the equations. The resulting equations will contain the so-called Reynolds stresses
which are expressed as functions of the averaged variables using the Boussinesq’s
approximation. The detailed derivation of the equations for turbulent flow may be
found in Appendix A. The result is summarized here:

%?_+v.1r’=v.p", (2.36)

where the conservative variables and inviscid fluxes are (and note that the overbars
have now the meaning of time-average values, as defined by equation (2.34)):

p pu
p pu* +p+ 3pk
Q=| pv |, Fl= P (2.37)
pw pu
PE (PE +p + Spk)a
pY pw
poi P
Fl=1 po*+p+35pk Fl = Fng) : (2.38)
_puw pu? + p+ 3pk
(PE + p + 2pk)0 (PE + p + 5pk)w
The turbulent viscous fluxes are,
0 0
Tzz Try
FY = Tya , F) = Tyy (2.39)
Tez Tz;y
'&TII + ,67—3:11 + ’lIJTIZ - g '&Tyz + 'DTyy + 'II)Tyz - qy
and
0
TZZ
FY = Tyz . (2.40)
) Tex Co B
'ELTZI + 'Dsz + "I)Tzz —q;
The stresses are:
1% o 2 ~ 1% o7 ou
zxZT—~2———V~ = 12,\‘—4—‘—,
T Reoo ( ail: 23 'u') Tzy Ty Reoo (g:{; gy)
HT v - ur w v
== 2__—V- 2 = Toy = =— ——+—, 2.41
Tyy Reoo ( gq 32 u) Ty 7. Y Reoo ( gy gg) ( )
Ur w . Hr U w
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and the heat flux vector is:

_ T y(uPrr + uEPr)Vé
Reoo PrPrr(u+ pE)

(2.42)

where yr = p + pg, with pg being the eddy viscosity coefficient. Note that an
overbar is used to designate time averaged variables, defined by equation (2.34), and
a tilde is used to designate mass-weighted averaged variables, defined by equation
(2.35). It can be seen that the governing equations for the averaged flow quantities
have exactly the same form as the original equations except that the flow variables
are now, p for the density, @& for the velocity, E for the total energy, p =p+ %/_Jk for
the pressure and the coefficient of viscosity is replaced by its turbulent value.

Again the tildes and overbars are dropped for convenience and from now on the
flow variables represent time and mass-weighted averaged values, respectively, when
dealing with turbulent flow.

INviscib COMPRESSIBLE FLow

The system of equations governing inviscid compressible flow is, like the Navier-
Stokes equations, named after its momentum equation namely the Euler equations.
They are obtained by neglecting the viscous and heat-conducting terms in equation
(2.33):
W v.F= (2.43)
ot
There are two important mathematical properties of the Euler equations: the hyper-
bolic character of the unsteady Euler equations and the existence of discontinuities
in the solution, i.e. shock waves, vortex sheets and contact discontinuity surfaces.
The latter property is in contrast with the Navier-Stokes equations where in prin-
ciple the density, pressure and velocity fields are continuous due to the presence of
elliptic viscosity and heat conduction terms. The numerical methods to solve the
system of Euler equations are based on these mathematical properties.
The hyperbolic character of the Euler equations is demonstrated by the existence
of wave-like solutions in the form of, see e.g. Hirsch [76]:

Qx,t) = Q™™ 1), (2.44)

where i = v/—1, x is the position vector and n is a vector normal to the wave front
surface (surface which separates the region which has been and the one which has
not becn influenced by the wave). Substitution of equation (2.44) into the Euler
equations in the so-called quasi-linear form,

0Q ] B I OF' .
5y + A" -VQ =0, where A =90 (2.45)

vields the condition for a nontrivial solution of Q, which is |wl — A’ -n|=0. The
condition for hyperbolicity then is the existence of real eigenvalues of the Jacobian
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A’ - m. It is shown in appendix B that the eigenvalues are indeed all real. This
means that the eigenvalues represent the speed of propagation of the waves in the
direction of n. This information is very important in discretizing the governing
equations because the domain of dependence of the discrete equations has to cover
the domain of dependence of the continuous equations.

It was already mentioned that the governing equations in an integral conserva-
tion form allow weak solutions containing discontinuities to exist. When the Euler
equations in integral form are applied across a moving surface of discontinuity they
become:

([F] - ClQ)) - naise = 0, (2.46)

where [-] represents a jump across a surface of discontinuity, C is the velocity of
the surface of discontinuity and ngs is the normal to the surface of discontinuity.
Equation (2.46) relates two states separated by the surface of discontinuity. For a
more detailed discussion, see [76]. Equation (2.46) is known as the Rankine-Hugoniot
relation in which ¢ represents the velocity of the discontinuity surface. Satisfaction of
this jump condition ensures the correct position and strength of the discontinuity.
Thus it is very important that the discretized Euler equations render this same
property across discontinuities. The discretized equations in a nonconservation form
do not have this property, which makes the nonconservation form invalid to use in
flows containing discontinuities, or alternatively the jump condition, i.e. equation
(2.46), has to be introduced explicitly across the discontinuities.

2.5.3 BOUNDARY CONDITIONS

Boundary conditions have to be imposed in order to obtain a well-posed problem.
Since the Navier-Stokes equations and the Euler equations represent problems of
propagating waves (in the case of the Euler equations the waves are undamped, while
in the case of the Navier-Stokes equations the waves are damped by the diffusive
terms), the information concerning the direction of propagation of the waves plays
a very important role in determining the correct boundary conditions. This can be
illustrated using a simple scalar model of the Euler equations, i.e. consider

Ju Of

ot oy =0 o (2.47)
with the flux function f = cu and c a positive constant, which is solved in the domain
of z = [0,1] and ¢ > 0, see figure 2.4. The solution of equation (2.47) represents a
right running wave with velocity ¢, u(z,t) = u(z — ct) with c as the characteristic
direction. Thus it is clear that a point in the domain is influenced only by the part of
the domain which resides on the left side of this point. For example, see figure 2.4,
u(zg,tp) depends on u(za,ta) or precisely u(zg,tg) = u(za,ta). Consequently,
at x = 0 a boundary condition has to be specified at all time, while specifying a
boundary condition at £ = 1 will violate the nature of the problem. Instead, to
obtain the value at z = 1 one has to extrapolate u from the domain towards z = 1.
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Figure 2.4: Space-time plot on one-dimensional wave propagation

For a system of hyperbolic equations, i.e. the Euler equations, there is more
than one wave. By examining the eigenvalues of the Euler equations the direction
of propagation of each wave can be determined. At the boundary a value associated
with each wave can then be specified or extrapolated depending on the sign of the
corresponding eigenvalue.

FAR-FIELD BOUNDARY

To set up a proper condition at the far-field boundary the direction of propagation
of the waves is identified. To facilitate this identification the Euler equations are
expressed in the characteristic variables on the [I, m, n] coordinate system with n
normal to the boundary surface pointing outward. Assuming homentropic flow, i.e.
a uniform entropy everywhere, the Euler equations become:

BRI
ot
OR;
ot
OR3
ot
OR,

ot
ORs

ot

+A-VR, =0
+A2'VR2=—* (lV)p

+A3‘VR3:A (mV)p

T =

+X-VRy=—al-(I-VIu—am-(m-V)u (2.48)
+ A5 VRy=al - (I-VIu+am - (m-V)u,.
where A = [u,u,u,u + an,u — an|7, o is the local speed of sound, R = [s, uy, tum,
R*,R7]7, 5 is the entropy, I and m are the tangential vectors perpendicular to the
normal vector at the boundary (n), w; = u -1 and u,, = u - m are the tangential
components of the flow velocity and R* = u, +2a/(y—1). R is called the Riemann
variable. Equations (2.48) are usually referred to as the compatibility equations.
The right-hand side of the first equation is zero, which means that s is invariant in
the direction dn/dt = u. The other equations have nonzero right-hand sides, but if
the far-field boundary is set to a constant freestream condition, the right-hand sides
will also be zero, leaving u;, u,,, R and R~ invariant along the associated paths.
At the boundary the direction of propagation of each Riemann variable can
be decomposed into a normal and a tangential direction. The tangential dircction
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carries information which does not enter nor leave the domain, while the normal
direction of propagation carries information which effectively enters or leaves the
domain. Since the direction of propagation of the waves is represented by the sign
of the eigenvalues of the Jacobian of the flux, i.e. A, the boundary conditions are
determined by examining locally the eigenvalues of the flux normal to the boundary.

Here a simple technique is adopted to calculate the boundary values. When a
wave leaves the domain, the associated Riemann variable at the boundary is obtained
by extrapolation. When a wave propagates into the domain, the associated Riemann
variable takes the freestream value. Note that this approach will satisfy the non-
reflecting condition if the flow at the boundary is close to the freestream condition.
The possible cases are then:

e subsonic |u,| < a

— inflow u, < 0: s, u,, and u, are set to their freestream values and since
u,+a > 0and u, —a < 0 the R* is extrapolated from inside the domain
to the boundary and R~ takes the freestream value.

— outflow u, > 0: s, u; and u,, are extrapolated from the values inside the
domain to the boundary and again since u, + ¢ > 0 and u, —a < 0 the
R is extrapolated from inside the domain to the boundary and R~ takes
the freestream value.

e supersonic |u,| > a

— inflow u, < 0 < —a: all eigenvalues are negative, all variables are set at
the freestream values.

— outflow u, > 0 > a: all eigenvalues are positive, all variables are extrap-
olated from the the values inside the domain towards the boundary.

Note that in the supersonic case conservative variables, see equation (2.22)
may be used directly rather than the Riemann variables.

Since equations (2.48) are not valid across discontinuities, as they were derived using
the assumption of infinitesimal wave amplitude and homentropic flow, shock waves
and other discontinuities may not be present at the boundary.
The above boundary condition holds formally for the Euler equations. The
boundary conditions for the Navier-Stokes equations are less clear than those for
- the -Euler equations. Although the equation for the conservation: of mass is still
hyperbolic the second-order diffusive terms in the momentum and energy equations
introduce elliptic behavior with respect to the space coordinates, which suggests a
Dirichlet type condition at the boundary. Usually it is hypothesized that far from
the airfoil the viscous terms become vanishingly small and the boundary conditions
for the Euler equations remain valid. However, this assumption can not be applied
for the far-field condition downstream of a solid body where the wake shear layers are
present. Nordstrom [120] suggested to extrapolate all variables at the downstream
outflow for a time-dependent Navier-Stokes calculation when sufficiently large trans-
verse gradients of the velocity are present.
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SOLID BOUNDARY

For the Euler equations the normal velocity at a solid boundary is set to zero in
agreement with the slip boundary condition. This implies that only one eigenvalue
is positive so that only one variable may be prescribed, viz. the normal velocity. The
other three variables have to be extrapolated from the interior of the flow domain
to the surface. In the present study the method of the normal momentum equation
due to Rizzi [142], modified to account for the moving boundary, is used to obtain
the pressure at the surface. The tangential velocity and density are obtained by
extrapolation.

In viscous flow problems the no-slip condition is applied implying that the veloc-
ity is zero at the surface. The density is obtained either via a constant temperature
condition at the wall or by specifying the heat flux at the wall. For the constant
temperature condition usually the stagnation temperature is taken which leads to
the condition for the dimensionless speed of sound as:

/ -1
Qwall = 1+ TMOQCN (249)

while in case the heat flux boundary condition is applied, one has:

—KB—E = 4y wall-

For an adiabatic wall the heat flux guway is set equal to zero leading to the following
relation at the wall:

Ié‘p_@

9= on (2.50)
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CHAPTER 3

SOLUTION OF UNSTEADY
NAVIER-STOKES EQUATIONS FOR,
FrLow PAST AIRFOILS

For most of the problems in practice requiring the solution of the Navier-Stokes
equations a numerical approach is the only obvious way. The two main reasons
for that are the nonlinearity of the equations and the often arising geometrical
complexity in the application. This chapter presents the approach taken to solve
the Navier-Stokes equations for the unsteady flow past stationary and oscillating
airfoils. Various results are also presented to establish the validity of the method
and to demonstrate its capability.

The usual building blocks of a method to solve numerically the unsteady Navier-
Stokes equations are: the construction of the mesh, the spatial discretization and
the temporal integration. The methods studied for each of them were selected
here mainly on the basis of efficiency in aeroelastic simulations. From the author’s
experience, in a cooperation with NLR, gained in solving the full-potential equation
[77, 79, 131] and considering the literature survey in the previous chapter, some
general directives can be identified:

e An implicit method is applied for the temporal integration due to its favorable
numerical stability characteristics. The method should have at least second-
order accuracy in time because simulations with large time step are desired.
One-step implicit methods, which solve a linearized equation at each time step,
show lack of accuracy for large time steps. Therefore an implicit method which
solves the nonlinear unsteady equation using a subiteration scheme should be
applied;

e It has been identified that there are two possible temporal integration methods
which can be applied for the present study: dual-time stepping method with
explicit subiterations and implicit method employing relaxations. It has been
known that acceleration methods, 1.e. multigrid, implicit residual smoothing,
and local time stepping, arc indispensable for efficient methods employing ex-
plicit subiterations. On the other hand, a basic implicit method employing
a simple relaxation scheme usually gives already satisfactory efficiency, pro-
vided the relaxation matrix/Jacobian is carefully designed. This advantage

39
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outweighs the complexity commonly referred to in the implementation of an
implicit method. Application of a multigrid method for an implicit method
will improve further its efficiency. Furthermore, with the fast development
of acceleration techniques for implicit methods, like conjugate gradient-based
methods, a further development of an implicit method appears to be still open.
Therefore, an implicit subiteration method employing a relaxation scheme is
preferred and should be applied. Acceleration methods will not be applied in
the present study and are left for future research;

e Since flows at high Reynolds number are considered the viscous effects will be
concentrated in thin shear layers close to the solid surface. The Thin-Layer
approximation of the Navier-Stokes equations (TLNS) is therefore valid and
should be applied because it will simplify the numerical method considerably;

e A structured mesh method should be applied for the following reasons. (a)
Given the application of an implicit method, the ordered structure of the Ja-
cobian matrix in a structured mesh method will facilitate the application of
various relaxation schemes. (b) The implementation of the thin-layer approx-
imation of the viscous terms is trivial in a structured mesh method. (c) A
quasi-one-dimensional upwind method is employed in the present study. The
mesh dependency of a quasi-one-dimensional method is likely to be less se-
vere in the case of a structured mesh method than for an unstructured mesh
method, provided that the mesh topology is carefully selected. In this case the
mesh orientation should be chosen to align with the direction of propagation
of the dominant waves.

In the following sections, some basic discretization aspects of the unsteady Euler/Navier-

Stokes equations for flows with shock waves are presented, followed by the discussion
of the computational mesh handling for moving boundaries and the transformation
of the governing equations from the physical domain into the computational domain.
Subsequently the solution methods: spatial discretization and temporal integration
are presented.

3.1 DISCRETIZATION ASPECTS OF UNSTEADY FLOW WITH SHOCK WAVES

Two important aspects in developing a shock-capturing method are: ensuring a
" "correct shock position and shiock strength and preventing the spurious subgrid fre-
quency components due to discontinuities (for which additional numerical dissipa-
tion to damp the oscillations is required). These basic aspects, considered here for
unsteady flow problems, are discussed in the following sections.

3.1.1 ENSURING PROPER SHOCK POSITION AND SHOCK STRENGTH

It was shown by Lax [99] that a proper shock strength and shock location can
be computed using the conservation form of the governing equations. In steady
flow calculations this means maintaining conservation of the spatial discretization.
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In calculations of the more general unsteady flows, which might include a moving
mesh, also the temporal coordinate has to be taken into account.

Consider the Euler equations in the integral form, i.e. the inviscid part of equa-
tion (2.32). Treating the temporal coordinate in a similar manner as the spatial
coordinates, and applying the Gauss’ integral theorem, one obtains:

/é/ V. F dV=/a£fF-hdS=0, (3.1)

. . . =1 .
where V' is a nabla operator for a space-time coordinate system and F is the
flux including the conservative variable which acts in the temporal direction as

F' = [Q, F], F!, F]]". A conservative discretization for general unsteady flow cases
implies maintaining the conservation property of equation (3.1). Discretizing equa-
tion (3.1) in a conservative manner includes the satisfaction of the GCL which was
introduced in equation (2.32).

The effect of the conservation property for a deforming mesh can be seen clearly
from figure 3.1, which for clarity shows a one-dimensional flow problem.

space-time cell , linsr
i,n+1
n
i
z',iz
fspatial cell
fixed mesh deforming mesh

Figure 3.1: Volume elements for fixed and deformed mesh

The normal direction of the space-time cell for the fixed mesh and hence the
flux component Qe, remains perpendicular to the temporal axis, whereas for the
deforming mesh a component in the temporal axis appears so that the flux compo-
nent (e, has to be taken into account. The GCL condition, equation {2.31), in this
one-dimensional case can also be seen from figure 3.1, and is simply:

dlyyy  dl,

li n+l — l1. n
: = = - . 3.2
At At At (3:2)

The detailed application of the GCL in the calculation of two-dimensional flows
using the Navier-Stokes equations will be presented in section 3.3.

(M

3.1.2 PREVENTING THE SPURIOUS SUBGRID FREQUENCY COMPONENTS

Considering the solution of the flow equations as decomposable into frequency com-
ponents, a shock discontinuity can be related typically to the high-frequency com-
ponents of the solution. However, a discrete svstem represented by a finite number
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of mesh points is able to support only a finite number of frequencies (Ap;, =
2A, Amax = 2NA, where A is the wave length, A is a typical measure of the mesh
size and N is the number of mesh points). Hence, the components contained in a
solution with a frequency higher than the highest supported frequency can not be
represented by the discrete system. These components will appear as lower frequen-
cies through aliasing. High-frequency components are continuously produced when
shock waves occur in the solution. Those which can not be accommodated by the
mesh are called subgrid components. They may harm the overall solution if they
are not carefully considered.

In central difference methods of Beam and Warming [26], Jameson et al. [91] a
diffusive term is explicitly added to the discretized equations to prevent the subgrid
components affecting the solution. The diffusive term has a user-specified scalar
artificial viscosity coefficient. In upwind methods, the hyperbolic character of the
Euler equations is exploited to arrive at a stable scheme enabling oscillation-free
solutions (also called monotonic), see Hussaini et al. [84]. The resulting schemes, in
a certain sense, are similar to the schemes with explicit artificial viscosity, but now
with the coeflicient in the form of a matrix.

3.2 COMPUTATIONAL MESH

The aspects concerning the mesh for an unsteady flow calculation are the topology
of the mesh, the initial mesh generator and the treatment of the mesh when the
boundaries move. In the present study a standard algebraic-elliptic method is used
to generate the initial mesh. To deform the mesh in order to follow the moving
boundaries an elliptic method is introduced and the spring analogy method of Batina
[24] is modified to enable the method to handle large deformations.

3.2.1 MESH TOPOLOGY

The choice for the topology of the mesh should not only be based on the geometrical
features, but also on the expected solution (the flow features). In viscous flow
boundary layers are generated along solid surfaces which continue as a wake upon
_leaving .the airfoil at the trailing edge.. These thin shear layers are. the.regions
where viscous effects are dominant, which suggests that one member of the family
of coordinate lines should run along the airfoil surface and continue onto the wake.

Furthermore, in transonic flow shock waves can be properly captured if another
member of the family of coordinate lines runs more or less parallel to the shock
wave. Boundary-fitted meshes with a C-type or an H-type topology meet all these
requirements. Here the C-type mesh is used since it is more efficient in terms of
mesh points needed to wrap around an airfoil and does not have a singularity at the
leading edge like the H-type mesh. The coordinate transformation from the physical
to the uniform computational domain is illustrated in figure 3.2.
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Figure 3.2: Coordinate transformation from physical to computational domain
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3.2.2 MESH GENERATOR

The mesh generator used in this study is an improved version of the one presented
by the author in [131], which is based on an algebraic method with a smoother based
on an elliptic method.

The target applications presented in [131] are flow calculations employing the
full-potential equation. For the present applications, which utilize the Navier-Stokes
equations only minor modifications turned out to be necessary. The method to
distribute the points in the normal direction had to be modified. The original
method used a one-parameter exponential function to distribute the mesh points in
the normal direction. For a mesh to be used for solving the Navier-Stokes equations,
however, it is preferred to prescribe the distance from the airfoil surface to the first
mesh point. This is required to properly capture the viscous sublayer. For this
purpose a two-parameter stretching function is used. The stretching is controlled
by specifying the lengths of the first and the last segment. An example of the grid
generated using this method is presented in figure 3.3 and figure 3.4. The airfoil is
the RAE 2822 airfoil section, the dimension of the mesh is 161x60, with 120 points
on the surface of the airfoil. Around the nose of the airfoil the distance between the
surface and the first point away from the surface is 4x107% chords and close to the
trailing edge it is 8x107® chords. The outer boundary was set at 20 chords away
from the airfoil.

3.2.3 DYNAMIC MESH ALGORITHM

To consistently take into account the moving solid surface of the airfoil section, the
inner boundary of the mesh at which the solid surface resides has to conform to
the motion of the airfoil surface at all times. The other part of the mesh inner
boundary, i.e. the cut, see figure 3.2, has to follow the motion of the trailing edge.
The mesh outer boundary is free to move or is fixed as long as it stays in the far-
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Figure 3.3: Overall picture of the grid around an RAE 2822 airfoil
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Figure 3.4: Grid close-up near an RAE 2822 airfoil

field. For motions of a rigid airfoil the whole mesh may be attached to the airfoil and
move along with the airfoil. When the airfoil deforms (control surface oscillation,
chordwise bending) the mesh has to deform in order to follow the motion of the
.solid surface. - The deforming airfoil is the most. general situation, which. means
that a method developed for this type of motion can certainly be applied also to
rigid motions. In three dimensions, even for a simple isolated wing, the sectional
deformation is most likely to vary in spanwise direction, so that a deformed mesh
capability is definitely required.

In the present study some basic properties of the dynamic mesh algorithm are
required: it should be efficient, robust, independent of the initial mesh, suitable for
general types of motion and conservative, i.e. the property that the initial mesh is
recovered when the moving boundary returns to its initial position. In general, the
procedure to deform the mesh includes:
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1. Read the initial mesh, extract some quality parameters of the mesh and store
these quality parameters, so that they can be used during the calculation of
the mesh.

2. Deform the mesh to follow the moving boundary, while keeping the quality
parameters constant.

Two methods have been investigated in the the present study: the elliptic method
and the spring analogy.

ELLIPTIC METHOD

Although the initial mesh can be generated by any method, in the elliptic dynamic
mesh method the mesh points are assumed to be solutions of a system of Poisson
equations, see e.g. Thompson [166]:

63:1 + gzz = P(é.a C)
Caz + Cez Q(€7 C)

P and Q are the source functions which control the mesh spacing during the mesh
deformation. Function P controls the mesh point distribution in &-direction and
function @ the mesh point distribution in (-direction. P and @ serve as quality
parameters and are extracted from the initial mesh and stored. The procedure to
calculate P and @ from a given mesh can be found in [131]. P and Q are very effective
in preserving the mesh point distribution during the deformation, which means that
the deformed mesh will have a similar quality in the mesh point distribution as the
initial mesh. However, these quality parameters fail to preserve local orthogonality
which is important at the solid surface. A simple method to maintain orthogonality
at a solid surface is proposed by introducing an additional forcing function at the
surface as:

D CGRUGE N LGRIGRN
P~ * leemmel (3.3)

where £(£) and n(£) are a vector tangential to the surface and a vector connecting the
point on the surface and the first mesh point away from the surface, respectively,
see figure 3.5. Function @ is kept unchanged since it is not necessary to change
the mesh point distribution in the (-direction. Superscript n and 0 represent the

solid body

Figure 3.5: Norma! and tangential vectors for the definition of surface forcing function
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conditions at time level (n) and the initial mesh, respectively. This surface forcing
function is blended with the field forcing function as follows:

P(&,¢) = £(0) P(&) + [1 - F(QIP(E,0), (34)

where f(() is some monotonic function of { = [0, 1], the normalized ¢, which satisfies
the condition f(0) = 1 and f(1) = 0. Using these forcing functions, equations (3.2.3—
3.4) are solved to obtain the mesh points at each time step using a point Gauss-Seidel
(PGS) relaxation method. The initial guess of the mesh points is calculated using
an algebraic method. Some 4 to 5 PGS iterations are usually sufficient to ensure a
mesh of good quality.

SPRING ANALOGY

The mesh is modeled as a system of springs connecting each pair of mesh points.
The stiffness of each spring is set proportional to the inverse of the length of the
segment which connects the pair of points. The stiffnesses of the springs are the
quality parameters of the spring analogy method. At its mean steady position the

1—1 7 1+1

Figure 3.6: The spring analogy of the mesh

system is statically balanced. Then, when the airfoil moves while the outer boundary
is fixed, the points in the field will also move to reach another equilibrium position.
As no masses are involved in this mesh, the deformations follow instantaneously the
airfoil motion. This means that the spring system will not introduce some spurious
dynamic characteristics to the system. The static balance of the spring forces for
thé mesh deformation at (i, k) in the new position is expressed by the equation:

K k-1(0Tk — 6Tk 1) + ki i1 (0% — Opyr) +
ki 1(0mi — 0xi1) + ki1 (0 — d2ip1) = 0, (3-5)

in which k is the stiffness of a mesh segment and dz is the displacement of a mesh
point. The power r of the stiffness coefficients serves as a control parameter of the
mesh deformation. To prevent large deformations of the mesh close to the airfoil, a
relatively large value of r is used, whereas close to the outer boundary a small r is
applied. In between, a linear interpolation is used.
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In contrast to the elliptic method, which employs a system of coupled nonlin-
ear equations, the equations of the spring analogy are linear and uncoupled, being
a strong advantage over the elliptic method. Originally, a predictor-corrector type
method was used to solve the static balance equation, see Batina [24]. The predictor
step employed a linear extrapolation from the displacements at the previous time
and the corrector step used the Jacobi iteration method. This relaxation method
worked satisfactorily for the cases considered in {24] where meshes for the Euler
equations were deformed and relatively small time steps were employed in the cal-
culations. In the present study, where a relatively large time step is pursued, the
method did not give a satisfactory convergence rate, even for meshes for the Euler
equations. The number of Jacobi iterations grew very rapidly with the magnitude
of the deformations. The situation was even worse for the stiff meshes commonly
used in viscous flow calculations. To overcome this problem, the original method
has been modified by replacing the predictor step by a solution of the static balance
equations in ¢ direction only:

k,:,k_l(é:vk - 5(13[:_,1) + k;,k+1(5wk — 6:1:k+1) = 0, (36)

called here the implicit predictor. Equation (3.6) is a simple scalar tridiagonal
system of equations which can be solved efficiently. This predictor scheme also
relieves the need to store the deformations of the previous time step. The corrector
step employs the PGS relaxation method and usually not more than two iterations
are needed.

Both methods are applied in the present study. A test case involving large
displacements will be presented later in this chapter to investigate the applicability
of these methods.

3.3 COORDINATE TRANSFORMATION

The flow equations discussed in chapter 2 are expressed in a Cartesian coordinate
system. For reason of convenience in working with deforming structured meshes the
flow equations are transformed in a time-dependent curvilinear coordinate system.
The transformation and its inverse transformation are written as:

z=2((71) §=E(x,2,1)
z = 2(61 C’T) ¢ = C(xvzvt)

t=r.

A time transformation is not necessary since for time-accurate calculations a uniform
time step is used in the whole domain.

The differentials in the Cartesian and in the curvilinear coordinate systems can
be calculated using the chain rule as:

dt 1 0 0 dr dr 1 0 0 dt
de | = | z, xe I dé and aE |1 =& & & dx

dz ooz oz || dC d¢ G GG L
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Comparing the above two equations, the so-called metrics of the transformation can
be easily derived:

£2=Jz(1 <I=_Jz€7
fz = —J.Z‘g, Cz = JCE{, (3-7)
&= —J(Tr2¢ — 2:2¢), G =—J(—T 2 + 2, T¢).

The Jacobian of the mesh transformation, J = 9(¢,()/9d(z,y), can be calculated
from J = h™1, where:

oz
o€
which represents the ratio of the areas of an element (in two-dimensional flow) in
the computational and in the physical domain. The metrics ¢; and (, represent
the components of the normal to the line of constant £ scaled by the Jacobian,
and (; represents the velocity in the same normal direction and again scaled by the
Jacobian. A similar interpretation holds for &, &, and & for the line of constant
¢. For brevity, total fluxes are defined to consist of the inviscid and viscous fluxes
as F; = FI — FY and F, = F! — FY. After the transformation the Navier-Stokes
equation (2.21) will be in the following nonconservation form:

3Q oQ | . 0Q

+& §+C¢ ac 53 § C € (z C-. (3.9)

Peyret et al. [129] showed that a conservation form of the Navier-Stokes equations
in a general curvilinear coordinate system may be obtained with the help of the
following transformation invariants:

h= = JIEZC — T¢Rg, (38)

Ez

0, 0
Ff_ + 'a—C =0, (3.10)
o, 9
% o =0. (3.11)
and
oh 9 9 _

The hat (8) above the metrics means that they are not scaled by the Jacobian.
Using these invariants, the conservation form of the Navier-Stokes equatigns in the
curvilinear coordinate system is obtained:

8Q OF; OF,
Q 4 e 9%

a& 9
where the new conservative variable is Q = AQ and the fluxes in the curvilinear
coordinate system are given by:

Fo= Bl - FY =EQ+&FI+EF - GFY +6FY) ()
= FCI - F(v = élQ + CIF; + ézeI - (éxF::/ + 62sz)~ (3.15)

=0, (3.13)
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Figure 3.7: The normals showing the closed computation cell

The physical interpretation of the two transformation invariants, equations (3.10)
and (3.11), can be seen from figure 3.7. The left picture shows a volume cell with
its normal vectors on its cell faces, denoted by vectors with dashed lines. The right
picture visnalizes the condition imposed by equations (3.10) and (3.11), which can
be interpreted as the condition of the volume cell being closed. These two equations
are actually the differential form of equation (2.29). The other invariant relates the
rate of change of the area of a volume cell and the velocities normal to the cell
faces. This is actually a statement of the GCL, equation (2.31), in a differential
form. As mentioned in section 2.5.2, a failure to satisfy these invariants may result
in non-physical sources disturbing the solution.

The inviscid fluxes can be written in a more compact form by defining the so-
called contravariant velocity components as U = & + Eu + Ew and W = (¢ +
(zu + Cw. U is the component perpendicular to lines of constant £, and W is the
component perpendicular to lines of constant (. The inviscid fluxes, as defined by
equations (3.14) and (3.15), may then be written as:

pU pW
[ Fl = W+ Gp | (3.16)
pwlU + fAzp PwW +(:p
pEU +U'p pEW + Wp

where U’ = {,u + &w is the scaled absolute velocity perpendicular to the lines of
¢ constant. A similar definition applies to W’. The hat has the same meaning as
before. The viscous fluxes, as defined by equation (3.14) and equation (3.15), are
written accordingly as

0
- {szz + §27.r,z
. szTz + (Sszz
ExuTog + Uy, + L wTy, — e

(3.17)
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0
oV éxTz: + észz
_ ¢ C 3.18
¢ CaTez + Cz7:zz ( )

61“711 + W'T:cz + GwT,, — qc

THIN-LAYER APPROXIMATION

The Thin-Layer approximation can be implemented very conveniently in the trans-
formed equations. It keeps only the dissipation terms in the normal direction since
large gradients of the velocity are expected in this direction. This means that F€V,
i.e. equation (3.17), is dropped and the flux in £ direction has only an inviscid contri-
bution. Furthermore, the gradients of the velocity in £ direction are also neglected
because these are assumed to be small compared to the gradients in ¢ direction,
which results in very simple expressions for the stresses. This approximation may
be interpreted as modifying the chain rule into:

Ou Ou ou du du ou du
8_§+416_C~CI a ‘-—‘Sz_+Cza_~Cz_

a 9z~ oE " ac T A
Using these expressions, equation (3.17) for the Thin-Layer Navier-Stokes equations
become simply:

du
i

0
AV U ml’LL(; + mzw(
¢ - E MaU¢ + maWyg ’ (319)
my, o ms, 9 Y
- +m —(w’)¢ + my—e
2 (u)¢ 2(uw) + 9 ()¢ m4Pr ¢

where the metric functions are:

m=h(E ) m= Rt
ma = WG+ 3C2) ma = h(GE+ 2.

Note that this form is slightly different from the one commonly presented in the
literature, e.g. Steger [160]. The reason to use this form is to separate the geometric
terms (the metrics) from the flow variables in order to facilitate an easy.derivation
of the Jacobian. '

3.4 DISCRETIZATION METHODS

After having obtained the set of flow equations expressed in the curvilinear coor-
dinate system, viz. equation (3.13), (3.16) and (3.19), this section presents the
discretization methods to solve them. The objective is to develop a numerically
stable and accurate simulation method, applicable for large time step unsteady flow
simulations.
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A natural choice for a conservative discretization method is the finite volume
method. Two possible schemes can be considered, namely cell-centered and vertex-
centered schemes. Based on a formal error analysis of a numerical scheme the vertex-
centered scheme, where the unknowns are stored at the vertices and the secondary
cell is used as the control volume, is more accurate than the cell-centered scheme,
where the unknowns are stored at the cells and the primary cell is used as the
control volume, see e.g. Radespiel et al. [139], Rossow [149]. In practice, however,
the difference in accuracy is not significant as shown by Swanson and Radespiel
[163]. In the present study, the choice to adopt a cell-centered scheme over a vertex-
centered scheme has been primarily based on convenience in applying the scheme.
A vertex-centered scheme needs a special treatment in the region close to the mesh
boundary, while a cell-centered scheme can be applied throughout the field.

Following the first directive presented at the beginning of this chapter, an im-
plicit temporal integration method with implicit subiteration employing relaxation
is applied. This has been implemented using the method of lines, where the spatial
discretization and temporal integration are considered separately. At each time step
a set of discretized unsteady Navier-Stokes equations is solved using a relaxation
scheme. To ensure the convergence of that scheme, the relaxation matrix has to
be positive and preferably diagonally dominant. As will be shown later in this sec-
tion, an upwind difference method can be constructed to possess these properties,
while a central difference method method can not, so an upwind difference method
is applied. Another consideration is that an upwind difference method is in general
more accurate in modeling shear layers than a central difference scheme, which of
course is a very important feature of methods for solving Navier-Stokes equations.
It should be noted that not all upwind difference methods can model shear layer
accurately, thus only the class of upwind methods which has this property will be
considered in the present study. The main disadvantage of an upwind difference
method, however, is that it is more expensive in terms of CPU time, than a central
difference scheme.

3.5 SPATIAL DISCRETIZATION

The cell-centered finite-volume method is applied for the spatial discretization of
the Navier-Stokes equations. This can be done conveniently in the transformed
coordinates, i.e. equation (3.13). Since this equation is valid in the whole domain,
the following integral form may be used:

a [ 8 0 .
= | hQ dede¢ —, =T . Fdede =0, 3.20
5 [ hQacac+ [ (G o Fdcac (3.20)

where V is the control volume in the transformed coordinates. Expressing the second
volume integral as a surface integral and expanding the time derivative, one obtains:

/ —= ded¢ + / Q— ded¢ +/ -[de,d¢)T = 0. (3.21)
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In the cell-centered method, the average value of Q is defined as a discrete value rep-
resenting the flow variables in cell (4, k). According to the average integral theorem
it holds:

Q-5 [ Qu (3:22)
Si»j Sij

However, the position to locate @Q;; is not known in general. Evaluating equation
(3.21) in a uniform computational domain, defining Aé = A¢ = 1, the semi-discrete
form! of equation (3.13) becomes simply:
0 Oh ~ - -
hn+1a_? FQU B S BI B — Frit =0 (3.23)
The form of equation (3.23) where all fluxes are defined at the cell faces is called
a discrete conservation form and the fluxes are called conservative fluxes. At each
cell face only the flux normal to the face has a contribution to the equation, so that
its computation may be considered as a locally one-dimensional problem. At cell
face i + %, J only flux ﬁ‘g is involved, hence at this cell face only &, £, and &, are
calculated. For the same reason at cell face 7, j + % only (;, {; and (, are calculated.

3.5.1 CALCULATION OF METRICS ACCORDING TO GCL

Consider first the transformation invariants defined by equations (3.10) and (3.11).
The discretized form of equations (3.10) and (3.11) which conforms to the discrete
equation for the flow, i.e. equation (3.23), is:

Coirdg ~&oint it Caigil — Coij-1 =0

Girdi —&intit Gugarr — Gugoy =0

These equations have to be satisfied to avoid the presence of nonphysical sources.

The metrics satisfying the transformation invariants are calculated as:

EAI i+l = Fikdgrd T Fiplg-l gxig‘+% = —(zi+§,j+§ - zi—%,j+%) (3.24)
Coinds = ~(Turtyrt = Tirnd) Gaged = Tupyep — Ti-ig+s

This is the only condition required for a calculation involving a fixed mesh.

. The rate of change of the cell volume, 8h/d, is calculated from the contravariant
mesh speed using the GCL statement equation (3.12) as:

oh _ 06 96

ar ot aC

The contravariant mesh speeds, ét and C}, are calculated from the deformation of
the mesh caused by the motion of the airfoil. This motion is prescribed in case

!Semi-discrete form means one of either the spatial discretization or temporal integration has,
while the other has not been applied.
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of a forced vibration and for an aeroelastic simulation case it is determined by the
solution of the elasto-mechanical equations. In case the elasto-mechanical equations
are solved using a two-level scheme, e.g. the Newmark method or the transition
matrix method, the contravariant mesh speed at a cell face, £ or (™) is
calculated on the ’space-time’ (swept) area formed by a cell face at two structural

levels, see figure 3.8. For example, é:’:il at cell face [2-4] of figure 3.8 is calculated
2

—meshatt=n+1
~~meshatt=n

AHD = i+ +

Figure 3.8: Space-time area formed during mesh deformation
as —V¢ - & in the swept area [2-2"-4’-4], in which:

1. .
Vé = (Vi 4+ Ve
- 1

T 9AT

For a three-level scheme, e.g. the second-order implicit backward Euler scheme, &
is calculated as:

(™) +z™  —x -z (3.25)

n
i+5.0+7 +30-3 z‘+;,j—~§)'

n
i+3.0+3

. 3“nn 1An7 n
& =58 - 7% o (3.26)

The above way of calculating the contravariant mesh speed was shown by Obayashi
[121] to be consistent with the rate of change of the cell volume, which implies that
equation (3.12) is implicitly satisfied. The GCL ensures that the area of the cell at
time level n + 1 of figure 3.8 is the area of the cell at time level n plus the area of
the cell faces swept during the following time step.

3.5.2 UPWIND DISCRETIZATION OF INVISCID FLUX

The inviscid flux is a crucial element in the discretization of the Navier-Stokes equa-
tions since it requires artificial viscosity for stabilization which may not disturb the
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physical viscosity. The conservative methods which are used in this study are dis-
cussed in this section. Aspects which determine the usability for the current problem
are presented.

Pulliam {137] showed that in general an upwind scheme can be written as a cen-
tral scheme plus a damping term. Hence, constructing an upwind scheme may also be
regarded as constructing a proper artificial viscosity for a set of centrally-discretized
Euler equations. However, the original reason is to discretize the equations in an
appropriate manner according to the direction of propagation of the information.

Consider again the simple hyperbolic equation, equation (2.47) from section
2.5.3, where the velocity ¢ can now be positive or negative. The case of ¢=0 is
not considered because it would not contribute to the change of u. When c is posi-
tive, equation (2.47) models a right-running wave and thus a backward difference is
appropriate. For negative ¢ the wave is running to the left and a forward difference
is appropriate. Thus a proper differencing can be set up by separating ¢ into a
positive and a negative component as:

c=ct+c, (3.27)

where ¢t = 3(c+|c]) and ¢” = L(c —|c|), and discretize them using a backward
and forward differencing, respectively. Applying this separation and a first-order
backward difference in time one obtains for equation (2.47):

cAt
uftt — ol + g—A—(u?Ill — Ml — lc]('u:'fl1 ultt 4yl = 0. (3.28)
The last term is a second-order diffusive term which brings stabilization to the
central difference of the third term. The conservative flux definition of equation
(3.28) at a cell face is:

1 1
fiyr = §C(Uz‘+1 +u;) ~ §|C|(ui+1 - u;). (3.29)

In the neighborhood of a shock wave the central difference methods tend to produce
spurious oscillations in their solution. These oscillations are a purely numerical
behavior since they are not observed in experiments. The behavior of the solution of
the Euler equations should be monotonic, like for instance the solution of the Laplace
equation. The notion of monotonicity for upwind differences was introduced in an
attempt to obtam a solutlon which is free from w1ggles ertmg equatlon (3 28) as:

Cm—H ntl Cn+1 nt1 CTIIUITII =ul (3 30)
where:
At At|c| At
mtl _ b n+l _ n+l -
Co = —gxz(etle), € (47 O = g (e—le),

one can see that C;*' > 0, CJ! < 0 and C'' < 0. The form of this first-order
scheme, i.e. equation (3.30), is called ’positive’, which has a monotonic solution,
see e.g. Dick [46]. A monotone scheme does not have oscillations in the solution.
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A weaker condition for a method to be free of wiggles is the Total Variation Di-
minishing (TVD) condition, see Hirsch [76], Hussaini et al. [84] for an excellent
reference. A higher-order upwind scheme, which can be obtained from variable or
flux extrapolation, needs to be limited to preserve the monotonicity of the first-order
scheme. Since a TVD scheme preserves monotonicity, this criterion is used to limit
the flux/variable extrapolation. This section presents upwind methods which have
a monotonic behavior.

FLux VECTOR SPLITTING (FVS)

The solution of a system of hyperbolic equations represents in general more than
one wave. Each wave may have a different direction of propagation. Flux vector
splitting is a method to split the inviscid flux into positive (moving forward) and
negative (moving backward) contributions.

The first FVS was proposed by Steger [161]. He splits the inviscid flux like
in equation (3.27). Although the method became popular, it contained a lack of
differentiability of the flux at sonic and shock points causing a glitch in the flow
variables.

VAN LEER FVS An ingenious direct solution of the discontinuity problem of Ste-
ger’s splitting [161] was introduced by van Leer. The flux is split based on polynomial
expansions in Mach number for which the requirement is put, amongst others, that
no discontinuities are present. For example, the mass flux may be written as a
function of Mach number as:

DtQ1

Fgm = pU = pMga, where M= —, (3.31)
where a is the speed of sound. Since the symmetry property of the mass flux is
F! (M) = ~F}(~M) and at a supersonic condition F/ (M) = F} (M) and
an:(—M) = FEIm(VM), then the symmetry property of the split mass flux should
also be:

F (M) = —F/ (-M).

With the conditions that Fg 4+ Fg - = FEI and that F{ be continuous at M = +1
the proper choice would be:

Flr= :I:%(ME +1)2 (3.32)

The detailed description of the van Leer splitting may be found in the original
paper of van Leer [103] or in [76] and for applications with moving meshes it is
described in {128] and [12]. In the moving mesh case the Mach number defined in
equation (3.31) is the Mach number relative to the speed of the cell face, Mg =
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[(u — )& + (w = )€,]/a. The inviscid flux written as a function of M is:

paﬂ;fg
puaM¢ + Ezp
=y . 3.33
Vel pwaMg + £zp ( )

pEaM; + p(aM; — &)

The tilde means that the quantity is normalized with the magnitude of the normal
to the cell surface. Following the approach of [12] the van Leer flux for | M| < 1 is:

1
gz(—I_} +2a)/y+u
o &G(-UE2) /v 4w ’
(YWU' +&)(=U+2a)/(y - 1) + 2a*/(v* - 1) + k

F{* = |ViF{y

where the mass flux Fg * is taken from equation (3.32) and k is the kinetic en-
ergy per unit mass. For a supersonic flow condition the flux returns to its unsplit
form, i.e. equation (3.16). Unfortunately the superiority of van Leer’s splitting
in capturing shock discontinuities does not extend to its performance in capturing
contact discontinuities, which is necessary for resolving viscous layers. This is due
to the convective term which does not vanish when the contact discontinuity is at
rest. This drawback makes van Leer’s FVS not a proper choice for a Navier-Stokes
solver. The van Leer’s FVS is applied here in conjunction with the hybrid method
which will be presented later in this section.

ADVECTION UPSTREAM SPLITTING METHOD FVS (AUSM) This FVS has been
designed to have the performance of flux-difference splitting (FDS, see next subsec-
tion) in capturing contact discontinuities while maintaining the simplicity of FVS.
The essence of the method is the separation of the flux into a convective term and
a pressure term as:

pa 0
—(velDr | e |+ g = |VEUC+oP,  (3:30)
pHa &,

where H = E + p/p. The convective term is treated in an FDS style while the
pressure term is split as in van Leer’s FVS. In the original paper of Liou [105],
splitting based on the polynomial in Mach number is used for both convective and
pressure terms as:

€1+— [ 5z+1 1+1) + M 1+%(Q;%)][ac~f]i+% + [pz+ +p’i_+1]'P§’ (335)
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where:

e, = J1Cd I (@Q) + M Q120
" [aC¢l,,, otherwise

. +0.25 (M £1) if M| <0
0.50 (M +|M|) otherwise
= [os0pEM) if M} <0
0.50 p(M + |M|)/M otherwise.

In this manner the convective flux vanishes when the contact discontinuity is at
rest. Application of AUSM FVS for solving the Navier-Stokes equations leads to
accurate solutions in shear layers. The application of AUSM FVS for moving mesh
problems is obtained automatically when defining the Mach number to be relative
to the speed of the cell face.

AUSM FVS is applied here because it seems very suitable for the present ap-
plication. The results of this scheme will be compared with results of the other
methods to demonstrate the potential of this scheme.

GopuNov’s METHOD, FLUX DIFFERENCE SPLITTING (FDS)

Although more complicated than the FVS method, the FDS method is considered
in the present study since it has a very good performance in capturing the contact
discontinuities. Thus a natural choice for use in a Navier-Stokes method.

The original Godunov method is a semi-analytical method. An analogy may
be drawn with the panel methods for the linearized potential flow equation. The
fundamental solutions in a panel method are the singularities (source, sink, dipole,
etc.), while in the Godunov method it is the solution of the Riemann problem of
the flow in a shock tube, see figure 3.9. At rest, ¢ < 0, the pressure on the right

L L T R Jt=o0

diaphragm

L > =Rl t>0

expansion fan contact shock

Figure 3.9: Riemann's problem, shock tubes at rest and after the diaphragm has broken

side of the diaphragm is lower than the one on the left side. After the diaphragm
breaks, a shock wave moves to the right, a contact discontinuity also moves to the
right with different (lower) speed and an expansion fan moves to the left. The state
at time ¢ > 0 is a function of the initial state at ¢ = 0, namely @ and Qg. For
a more detailed discussion about the Riemann problem, sce standard books on gas
dynamics, e.g. Liepmann and Roshko [104].

The Godunov method for solving a hyperbolic equation proceeds as follows. At a
certain time level the continuous state of the flow is replaced by a piecewise constant
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Qi

i—-1 % i+1 z i-1 ¢ i+1 =z

Figure 3.10: Definition of discontinuity at cell faces in Godunov's method

distribution, see figure 3.10. The state in a cell is obtained by averaging the values
in a cell as:

0, = le‘ /;;Q(x, t)dz. (3.36)

Consequently the outcome is a discontinuity at every cell face. These discontinuities
are then considered as a Riemann problem with the cell face as the diaphragm of a
shock tube and the current time level as ¢t = 0. For example: at cell face i + % the
states are Qr, = Q; and Qr = @Q;;1. The state at the next time level is obtained by
solving the Riemann problem at time ¢ = A¢. This step is the physical step of the
Godunov method. After solving the Riemann problem, the state in a cell will obtain
contributions from two neighboring cells. The state at the next time level in a cell
is obtained by averaging these contributions. The averaging processes, the first and
the third stage, are of numerical nature. They can be considered to be independent
from the physical stage.

The exact solution of Riemann’s problem for the Euler equations requires the
solution of a set of nonlinear algebraic equations. This is considered to be time-
consuming because it has to be done for each cell face. Hence, an approximate
Riemann solver is usually applied which should be able to represent the important
features of the problem, but at less computational effort. This approach is also
justified because even when using the exact Riemann solver, the solution is averaged
in the cell. Up to now, the approximate Riemann solvers which are considered to
be amongst the best are Osher’s and Roe’s approximate Riemann solvers.

OsHER’S FDS  Osher’s approximate Riemann solver [124] for the Euler equations
is a generalization of the Engquist-Osher method [56] for potential flow. Their
metbod is an improvement of the Murman-Cole method which recognizes only a
shock transition, but not a sonic point. The application of Osher’s method to the
Euler equations leads to the definition of the numerical flux at the cell face as:

1
= §[Fgli+%(Q;1) + F,gll_‘.%(Q;%)] - ng;.;.%v (3-37)

7

I
F, Eit+i
where the last term, which is usually called the flux difference, for Osher’s scheme
is:

P 1 Qi !
ng i+l = §/Q |A¢(Q)] dQ. (3.38)

i
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The integration of | A{(Q)] implies a continuous flux with respect to the conservative
variable. The evaluation of the integral is carried out by taking the path in the @
space according to the simple wave decomposition [124]. Using a set of Riemann’s
invariants, an exact integration (in this sense) may be carried out but the resulting
expression is very complicated. Moreover, when an implicit scheme is employed,
the Jacobian of the flux with respect to the conservative variables will be very
complex and thus undesirable from a computational point of view. Many authors
sacrifice some convergence, and perhaps also some stability, by using a simplified
flux Jacobian.

The pure Osher’s FDS method is not applied in the present study due to its com-
plexity, which was already found by many authors to be very CPU time consuming.
The mixed one, with FVS, is applied in the present study and will be described later
in this section.

Roe’s FDS Roe’s approximate Riemann solver employs much less complicated
expressions. It constitutes an exact Riemann solution for the following linearized
equation:

0Q , 4199, 1,0Q

B T +AC ac =0, (3.39)

in which each dimensional direction is treated independently. Since a local lin-
earization is assumed for A{(Q) and A[(Q), the numerical flux at a cell face follows
equation (3.29):

1 ~, =

By = glEL Q) + Ly (@ )] - Sl AHQI@Y, - @), (3.40)
The superscripts + and — represent the states at the right and left side of the cell
face (diaphragm of the Riemann problem), respectively. The flux difference can be
written in a more efficient way by using the definition of characteristic variables,
6We = L¢0Q, and the diagonalization of the flux Jacobian, Al = R¢|A;|L¢, where
L and R¢ is the matrix of the left and right cigenvector of the flux Jacobian,
respectively, and A; is a diagonal matrix with the cigenvalue of the flux Jacobian as
the entry:

|A16Q = i |\eldwer, (3.41)

where 6@ = @ —@Q~. Equation (3.41) is more convenient than the flux difference of
equation (3.40) because it shows a decomposition of the flux difference dFI |A’|(§Q
into simple waves described by the right eigenvectors, 7, with amphtude dwy. ThlS
representation of the flux difference was first used by Roe in [145)].

Equation (3.39) is actually in a nonconservation form which can not be used
across a discontinuity. The novel feature of Roe’s approach lies in the definition of
the Jacobian at the cell face, [A’( Q)|, where a special type of averaging process,
which became known as Roe’s averaging, is used for defining Q out of Q* L and
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Q- il at a cell face. The Rankine-Hugoniot relation across a discontinuity, equation
(2. 46) written specifically as:

F{I1+1 Fg’i = Aé ;‘+%(Qi+1 - Qi) (3.42)

is satisfied in this averaging process. This makes equation (3.39) also valid across
discontinuities. A set of variables is introduced which together with the inviscid
flux renders a similar quadratic behavior of the flux of Burgers’ equation. The Roe
variables and the associated inviscid flux as functions of Roe’s variables are:

r1 VP T (rlét + Tzéz + Taéz)
Roe _ | T2 | _ | VPU pL_| T (ﬁfz + 7‘261 + rgcfz) + fzp 3.43
¢ 3 \/_pw ¢ 7'3(7‘1& + 7'25:0: + 7”352) + gzp ’ ( )
T4 vPH rirg — &p

where p = (y — 1)[ryry — 5(r3 + 3)]/7. A direct calculation will show that this
expression of the inviscid flux has a quadratic property with respect to Roe’s vari-
ables. This property remains valid when it is transformed back to the conservative
variables using 6Q = (0Q/0Q%¢)6QRe¢. After the Roe variables have been aver-
aged at a cell face, the Jacobian A 1 is calculated using these averaged values. In

practice, however, the calculation of the flux difference is carried out using equation
(3.41) since it is more efficient.

The right eigenvectors, the eigenvalues and the fundamental state of the am-
plitude (variation of characteristic variables) are calculated using the Roe averaged
value at the cell face. The Roe averaging process is efficiently calculated by defining

r = y/pt/p~ and then:

_ utr +u~ wrr +w” Htr+H~
il s = T Ul 3 = ——— w1, = —— i1l g = ——
Piylji =P > Uip L ) » Wil r+1 v Higd 1

The speed of sound at the cell face can be obtained from these values. The eigenval-
ues A are U,U,U — a,U + a, the amplitude of the wave which is the characteristic
variable depends on the choice of normalization of the eigenvectors. In appendix B
the normalization is chosen such as to have a very simple expression of the right
eigenvectors. The detailed expression of the right and left eigenvectors can be found
in appendix B.

HyBRID FDS AND FVS This approach was introduced by Coquel and Liou [39]

to take advantage of both FVS and FDS methods. As mentioned before, F VS,
especially van Leer’s FVS, is superior in capturing shocks (nonhnear field) but less
accurate in the shear layer (linearly degenerate field). Exactly the reverse is true for
FDS. The idea of hybridization will be clear when both FVS and FDS are written
as equation (3.37), with the flux differences, see [39]:

5Q7,Qt
dF{pys = 1/ [A{][® (s;Q_,Q"L)]—aﬂ%’—g—-—z ds (3.44)
dFYpos = / Al 0(s: @, @ P ELED g (3.45)
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where ®(s,Q~, Q) is a family of paths in the phase space, which connects @~
and Q*, with s as the parameter. s is [0,1], where ®(0,Q", Q") = Q~ and
®(1,Q~,Q%) = QF. Equations (3.44) and (3.45) show that FDS is path dependent,
while FVS is not. A flux formula which has superiority in capturing shocks as well
as accuracy in capturing contact discontinuities can be constructed by combining
both methods as follows:

CO-. 0+
dFEIHUS :'1' /;\‘L ‘Aé\FVS[Q(s;Q‘,Q““)]&‘%Q_)_ ds

2
1 0%(s;Q~,Q")
Js

+ § / |A£‘F05[s, CI)(S; Q7 Q+)] ds, (346)
LD

where subscript HUS means hybrid upwind scheme, subscript NL nonlinear fields

(shock) and subscript LD linearly degenerate fields (contact discontinuity). Equation

(3.46) can also be written in a more convenient form as:

1 0%(s;Q~, Q"
FEIHUS = FEIFVS + 5 ,/|:D (‘Ag‘FVS - ‘AHFDS)[@(S; Q"7Q+)]_(S§TQ.Z ds,
(3.47)

which shows the FVS flux plus an anti-diffusive flux. When @~ and Q% are con-
nected only by a shock, then equation (3.47) represents a pure FVS. When @~ and
Q" are connected only by a contact discontinuity, then equation (3.47) represents a
pure FDS. This remarkable behavior of equation (3.47) is used to improve van Leer’s
FVS using Osher’s FDS as:

~Fg (@) — F{w (@) i M| <0

. (3.48)
+F5’\7L(Q§) - Fgl\fL(Q{H) otherwise.

1 — !
F{HUS_FEVL{

The Riemann invariants for calculating Q*~ from Q™ are: p/p”, W and U 4 2a/(y —
1), while the Riemann invariants for calculating Q** from Q% are p/p”, W and
U/ — 2a/(y — 1). It should be noted that U** = U*~ is the speed of the contact
discontinuity.

3.5.3 SOME CONSIDERATIONS OF THE DISCRETIZED INVISCID FLUX

The upwind methods described in the previous sections, van Leer’s FVS, AUSM-
FVS, Roe’s FDS and the hybrid method of van Leer-Osher FV /DS, have been
implemented and studied. Concerning the implementation, the simplest ones are
AUSM FVS and van Leer’s FVS. The Roe FDS and the hybrid method are compa-
rably complex. It is noticeable that concerning the derivation and implementation
of the Jacobian of the flux all methods are comparably complex. The most complex
one, however, is the hybrid method.

Although the van Leer FVS and AUSM-FVS have very simple expressions for
the flux formula, their Jacobian is far from simple due to the presence of functions
of the Mach number. This suggests to use a different set of unknowns than the
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usual conservative variables. However, since unsteady flows are considered and
consequently the time derivative of the conservative variables will always be present
in the residual, working with variables other than the conservative variables is not
efficient.

It is also noticeable that constructing an approximation for the Jacobian of the
AUSM flux is not trivial. Some approximations were tried to keep the expression
simple, thereby maintaining the simplicity of the flux formula and reducing CPU
time, but none resulted in a robust approximation. On the other hand, it is relatively
simple to construct an approximation for the Jacobian of Roe’s FDS. Finally, since
the exact Jacobian of the hybrid method is very complex and expensive to calculate,
the Jacobian of van Leer’s FVS is employed. In section 3.10.2 these methods will be
applied to a set of test cases. The results will be compared to determine the most
suitable method for CAS applications. This method will be extended and applied
for three-dimensional configurations in chapter 6.

3.5.4 CALCULATION OF HIGHER-ORDER INVISCID FLUX

The calculation of fluxes at a cell face involves: calculation of the metrics, definition
of the variables at the two sides of the cell face, calculation of the inviscid flux
according to the FVS or FDS approach and calculation of the viscous flux. The
calculation of the metrics has to meet the transformation invariants requirement
(GCL). For the presented upwind methods, when the flux is calculated in a first-order
manner, the resulting scheme is TVD. For example: at cell face (: + ) Q* = Qi
and @~ = Q;. A higher-order flux definition at a cell face is obtained by defining
the averaged state in a cell to be linear instead of constant, see figure 3.11. This
involves an extrapolation which can be applied to the flow variables or directly to
the flux itself. The first is called the variable extrapolation method and the latter

Q(z) Qi
D

i~1 i 141 * i-1 4 i+l «z
Figure 3.11: Definition of discontinuity at cell faces in the higher-order Godunov method
is called the flux extrapolation method.
In the present study the higher-order inviscid flux is obtained by defining the
flow variables on the two sides of the face using the variable extrapolation scheme

of van Leer, which is usually called the Monotonic Upwind Scheme for Conservation
Law (MUSCL scheme). The general form of the MUSCL scheme is:

s
;% =Qit1 — Z[(l - k8)dQyy 1 + (1 + ks)dQiL,]

Qpyy = Qb 31— R8)dQr + (1 +Ks)dQ) (3.49)

i+
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where d@Q = Qi1 — @i, dQ; = Q; — Qi-1. k controls the accuracy of the extrapo-
lation, £ = —1 is the second-order fully upwind scheme, x = 1/3 is the third-order
upwind biased scheme and x = 1 is the second-order central scheme. The limiter
function s serves to limit the higher-order gradients to preserve the monotone be-
havior of the scheme. A non-monotone scheme would result in an overshoot due
to higher-order gradients when the variable extrapolation equation (3.49) is applied
close to shock waves. Since the first-order scheme has a monotone property, the
limiter maintains the monotonicity of the solution by reducing the order of the ex-
trapolation scheme equation (3.49) into first-order when it is necessary, namely in
the vicinity of shock waves. Although there are many choices for the limiters, here
the one of Albada et al. (8] is applied, primarily because of its continuous behavior
which is indispensable for an implicit method:

0 2dQTdQ + €
C{dQ)? + (dQ7) + €

The small quantity ¢ ensures the limiter to behave properly in smooth flow regions.

S

(3.50)

3.6 APPLICATION OF SOLID BOUNDARY CONDITIONS

The surface boundary condition is applied by introducing two layers of ghost-points
along the interior side of the airfoil. The first ghost point is related to the first
layer in the computational domain and the second ghost point is related to the
second layer in the computational domain. In this manner the higher-order MUSCL
variable extrapolation can be used throughout the domain without having to modify
the scheme in the vicinity of solid surfaces.

3.6.1 VELOCITY BOUNDARY CONDITION

For inviscid flows, the boundary condition at the solid surface requires the normal
velocity to vanish at all time. For the Euler equations this condition is the only
one which may be specified at the solid surface because only one eigenvalue at the
surface has a positive sign (leaving the solid surface represents a positive direction).
The other quantities have to be extrapolated from the computational domain onto
the surface.

The application of the boundary condition is carried out in a very simple manner.
The velocity in each ghost point consists of two components: the normal compo-
nent and the tangential component. The normal component is determined from the
corresponding mirrored value in the computational domain and the tangential com-
ponent is obtained from extrapolation from the computational domain. The normal
component in the ghost point has to cancel the mirrored normal component making
the normal velocity zero at the solid surface. Thus the normal component in the
ghost point is:

Un ghost — “[(ucomp - 2-7:) . n]”y (351)
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where ¢ = [z,,2,]7 is the velocity of the solid surface. The extrapolation of the
tangential velocity to the ghost points may not affect the condition given in equa-
tion (3.51). The simplest way to satisfy this condition is by removing the normal
component from the extrapolated velocity. If the extrapolated velocity at the ghost
points is denoted by ey, its tangential component becomes:

Ur,ghost = WUext — [(uext - fB) . n]n

Using the usual notation for the transformed equations, very simple formulas are
obtained for the velocity in the ghost points:

Ughost = Uext — w[éx; éz]Ty (352)

where w = Wi +Wcomp +(;, W is the contravariant velocity in the ¢ direction using
the geometric data of the surface.

The velocity boundary condition for viscous flows, for which the normal velocity
as well as the tangential velocity vanish, is much simpler:

Ughost — 2z — Ucomp- (3.53)

In this manner the velocity at the ghost points is obtained without having to solve
a system of equations.

3.6.2 UNSTEADY NORMAL MOMENTUM EQUATION ON SOLID SURFACE

To extrapolate the pressure from the field to the ghost points, the normal momentum
equation method of Rizzi [142] is applied. The normal momentum equation used
here is derived from the scalar product of the normal direction V¢ = [, (,]* and
the momentum equations:

o [ phu ] L9 [ pul + &:p ] L9 [ qu+C}p] _Q[C}Tmﬂfxnz]

(7’; phw 52 p’wﬁ + Ezp & pr + C;p Cszr + ¢ Tez
(3.54)

a¢

For inviscid flows, inserting the condition W = 0 in the normal momentum equa-
tions, omitting the stresses and substituting the continuity equation leads to:

;) . s 8, 8L, 8¢,
(V- VG +(VC- V0L = plh 3t +uE + ) +
| - o ol o ‘

For viscous flow, inserting also the condition U = 0, one obtains:
%
or’

The viscous stresses at the surface have been omitted since they are small compared
to the other terms, especially in high Reynolds number flows.

(VE- vé)g% +(VE- vé)g—’g ~p (3.56)
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3.6.3 FLUX FORMULA AT SOLID SURFACE

Due to the vanishing normal velocity at the solid surface, the flux has only pressure
terms. Applying the usual flux formula to the surface flux does in general not
guarantee vanishing convective terms. The flux at the surface is therefore calculated
using the pressure part of the van Leer splitting:

0

Fg wall = Dwall ? ) (3.57)
=&
where the splitting of the pressure follows equation (3.35):

1
Pwalt = p+ (Qghost) +p (Qcomp) and pi = 5 p(l + M)a

provided that the Mach number normal to the solid surface is smaller than one.
Equation (3.57) is stable and performs well in conjunction with all flux formula
used in the present study.

3.7 TEMPORAL INTEGRATION

As has been mentioned previously, in the method of lines the spatial discretization
and the temporal integration are treated separately. This section discusses the
temporal integration method for the semi-discretized equations which result from the
spatial discretizations presented in the previous sections. The temporal integration,
complying with the directive at the beginning of in this chapter, employs an implicit
method with subiteration. The section will begin with some introductory notes
followed by the formulation of the subiteration and discussions of the methods to
solve the resulting set of nonlinear algebraic equations.

3.7.1 INTRODUCTION

For simplicity consider again the model equation, i.e. equation (2.47). Applying
only the spatial discretization which was presented in section 3.5.2 results in an
ordinary differential equation:

du; - = -
dqu = Cisytio1 + Cius + Ciy i, (3.58)
where:
- et = el = c—|d
/2 = ) Cl = Tx /1 = - .
G 2Azx Ax H 2Azx

Equation (3.58) is the semi-discrete equation for an interior point. At the boundary
either u; ; or u;,; is known (from extrapolation or a fixed value depending on the
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sign of ¢, see section 2.5.3). The semi-discrete equation for the whole field can be
written as:

dUu
- = 3.
7 CU + B, (3.59)

where U is the vector of the unknown, C is the matrix representing the spatial dis-
cretization and B is the vector of the nonhomogeneous term including the boundary
conditions. The nonhomogeneous and homogeneous terms determine the steady and
transient state, respectively. The condition for well-posedness or stability of equa-
tion (3.59) is that the real part of all eigenvalues of C is negative, see Hirsch [76]'.
In the case of a first-order upwind method, like equation (3.59), the eigenvalue of
matrix C is —|c|/Az. A proper temporal integration method of equation (3.58) must
have a stability region in the complex plane which includes the whole spectrum of
the eigenvalues of C. A temporal integration method is called A-stable, see Gear
[62], if its stability region includes the whole negative complex plane, including the
imaginary axis. This implies that an A-stable method is appropriate for any type
of proper spatial discretizations.

3.7.2 UNSTEADY RESIDUAL

In the present study an implicit linear multistep method is applied to equation (3.23).
If a strictly A-stable scheme is desired at most a second-order accurate discretization
may be applied to 0@Q/9r [62]. Experience gained during the course of the study
revealed that a second-order scheme gives satisfactory results in most cases, thus
it is adopted as the default scheme of the present method. However, third-order
accurate backward differencing for 8Q /07, which is defined as stiffly stable by Gear
[62], is also applied and employed for some cases presented later in this chapter.
The stability region of a stiffly stable temporal integration method does not cover
the imaginary axis. This may give problems when central differencing is applied
for the spatial discretization. This is one of the reasons for not considering the
central schemes in the present study. Another-and the most important-reason is
that a diagonally dominant Jacobian matrix can only be expected from an upwind
method.

The residual at a certain time level is defined by equation (3.23). The time
derivative of @) is approximated using backward differences as:

— & —(cAQ™ + clAQ™ ! + ,AQ™ ), 3.60
aT AT (CO Q + Q 2 Q ) ( )
where the coeflicients ¢; are presented in table 3.1.

After selecting the temporal discretization from one of the schemes presented in
table 3.1, the discretization of the unsteady Navier-Stokes equations is complete,

'Note: If one is only interested in the steady state a large negative value of the real part of the
eigenvalues is preferred. When the ratio of the maximum and the minimum of the eigenvalues is
very large the problem is said to be stiff.
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method Co ¢ C2
1st order 1 0 0
2nd order 3/2 -1/2 0
3rd order 11/6 -7/6 2/6

Table 3.1: Coefficients for the linear multistep method

which reads:

OAQ™ + e AQM + e AQP? . 06 9,
Ar )—Q(52+52)

L fIntl (Qn+1) B n+1 -(Qn+1) + fml 1(Qn-(»l) _ fntl l(Q”‘"l) =0, (3.61)

gitl, gi-1 i+l Cig-i

hn+1(

where AQ™ = Q™! — Q™. Equation (3.61) represents a set of nonlinear algebraic
equations which have to be solved for @™*!, the state of the flow at the next time
step. Newton’s method is employed to solve this set of nonlinear equations:

OR(Q")
9Q

AQP = —R(QF), (3.62)
where p is the subiteration level, Q” is the p-th iteration of the solution Q™ AQP
is QP! — QP and the residual is defined as:

Cohn+1 Qp
AT

R(QP) is the residual of the steady equation:

R(Q) = FIIAL(Q) — BIP (@) + 72 (@) = F7E) L (@),

£it3.j Cij-%

R(QF) = +8(Q™ Q" Q") + R(Q"). (3.63)

and S(Q™, Q"!,@"?) is the source term, which does not change during the itera-
tion:

_CQQn + ClAQn—l + CQAQ”7 2

96, | ¢
AT 2 Tac

o O¢
Starting from an initial guess, QP=°, equation (3.62) is solved iteratively until the
residual reaches a certain norm, which means that the discrete unsteady Navier-
Stokes equations are satisfied at time step (n + 1). This iteration is called the
subiteration. The accuracy of the subiteration scheme, i.e. equation (3.62), is deter-
mined only by the right-hand side (RHS), while the left-hand side (LHS) determines
the rate of convergence. In a full Newton method, where the LHS is the exact Ja-
cobian of the RHS and is inverted exactly to obtain the correction, a quadratic
convergence of the residual can be expected [123, 170, 171]. An inexact LHS and/or
an approximate inversion may be used at the cost of loosing the quadratic conver-
gence property of Newton’s method. In this case the method is called the quasi
Newton method, see e.g. [123, 170] . In the present study a quasi Newton method
is constructed and presented in the following subsection.

S(Qn, Qn~1, Qn—Q) — hn-{—l(

)= @Q™( )-
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3.7.3 RELAXATION METHOD

In devising the relaxation scheme some issues are considered: efficiency, in terms
of CPU time and storage per iteration, robustness and good convergence. In most
cases, approximations to the LHS, which reduce the work and storage per iteration,
slow down the convergence. Therefore, the LHS should not be too far away from
the exact Jacobian of the RHS.

Based on these issues, the LHS is set to be the Jacobian of a first-order accurate
residual. The residual itself can be of higher order accuracy. Several advantages of
this approximation over the Jacobian of a second-order accurate residual are: (a)
the LHS has three entries in each coordinate direction instead of five, which reduces
the storage significantly, (b) it allows application of the efficient block tridiagonal
solver for the equations in a mesh line, () positivity and diagonal dominance of
the LHS, which improves convergence and robustness, are always guaranteed for
any time step and (d) a first order upwind method as previously shown produces
monotonic solution thus a limiter does not have to be applied, keeping the LHS
simple. The equation for the subiterations reads:

[L7]AQY_, + [L]AQY + [LF]AQY,, = —R(Q”,Q™, Q" ™"), (3.64)

where the [L]’s represent the entry of a line:
L71AQi = ~[4F,_, JAQu (3.65)
(Li]AQ; = ~[A2“iyj_%]AQ,-,j_1 +[Dis]8Qi5 + [A ’j+%]AQ1,j+1 (3.66)
[L1AQun = [AL ) JAQis (3.67)

and where the diagonal entry, [D; ;], is:

n+1 +

Ar T A
with ¢y from table 3.1. The Jacobian of van Leer’s FVS and AUSM-FVS are cal-
culated in an exact manner using the chain rule of differentiation. For the hybrid
van Leer-Osher FV/DS method the exact flux Jacobian of van Leer’s FVS is used.
The exact Jacobian of the inviscid flux using Roe’s FDS is very complicated and
expensive to calculate, see {22], so that a simplified Jacobian is used instead. There
are many possible approximations for the Jacobian: from A* = A 4 max(])\|)],
A* = A(Q) + |A(Q)]| (without Roe's averagirig) up to a finite-difference type. ' The
following form, which was found to be very robust and reasonably efficient, is used
here:

— A

1
§i—3,

1= + — A
[DIJ] - [CO J + A Ac i,j—%]’

S
Cij+g

ATF = ZAI(QY) = S |4(Q)] (369

It may be expected that due to these approximations the convergence rate will
diminish, but numerical experiments revealed that, as far as convergence of the
iteration procedure is concerned, the method performed well and turned out to be
very robust.
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When a local time step is applied to the LHS the time stepping method becomes
similar to the approach of Jameson [90] in which an explicit subiteration scheme is
employed. In this case the local time step should be set equal to:

A7 = min(Atgopan, ATref/A), A= |U| + [W|+ a(|VE] + [V(]). (3.69)

Here temporal integration with a local time step is only needed to start the calcu-
lation. After a number of time steps, a very large global time step may be used to
obtain fast convergence to the steady state.

In solving equation (3.64) a line relaxation is employed with direct inversion along
(-lines. The direct inversion should resolve stiffness due to the mesh stretching and
implicitly handles the viscous terms which have an elliptic behavior. To account
for the nature of signal propagation and for reasons of stability when the RHS is
higher-order accurate, forward and backward sweeps are carried out in £ direction.
The forward sweep from &; to Emax 1S:

(LJAQI! = —Ri — [L7]1AQY) — wi[LT]1AQY,,, (3.70)
which results in an intermediate solution AQ, followed by the backward sweep:
[LIAQEY = —Ri — w[L7]AQM — [LT]1AQM, (3.711)

where w; = 0.80 to 0.90. Due to the differences of the LHS from the exact Jacobian
of the RHS only a part of the correction is used to update Q: Q™' = Q¥ + wAQ,
where w = 0.30 to 0.60. Since in each sweep the equations along lines are solved
this method may be called successive line over-relaxation (SLOR) and since forward
and backward sweeps are carried out the method is also called symmetric successive
over-relaxation (SSOR).

When the iteration is started from a poor initial guess (e.g. the freestream
condition) more than one iteration is needed before the residual is updated. After
a number of time steps the residual is updated after every sweep to obtain faster
convergence. In this case the scheme represents a nonlinear relaxation method and
w; should be reduced to w, = 0.30 to 0.40. The subiteration is stopped once |[R"*'?|
drops below a prescribed value. This criterion is different from the one applied in
[90] where [R™!!P|/|R™1] is used. The present choice has been made after having
observed that sometimes in the beginning of a subiteration the value of the unsteady
residual is already very small, so that setting the convergence criterion relative to
this level yields an unnecessarily stringent condition.

3.7.4 NONSTATIONARY ACCELERATION METHODS

This method was developed from an optimization approach called the conjugate-
gradient method. In this method the iteration matrix changes in each iteration
level for which reason the method is called a nonstationary method. The original
conjugate-gradient method applies only to a symmetric positive definite matrix.
Starting from a zero initial guess the method will converge to the exact solution
after N iterations, where N is the dimension of the iteration matrix. Therefore
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the method is essentially a noniterative method. In practice, however, after several
iterations the residual is expected to be lower than a prescribed tolerance and the
iteration is stopped.

In the present study three types of nonstationary acceleration methods were
applied [20]: Conjugate Gradient Squared (CGS), Bi-Conjugate Gradient Stabilized
(Bi-CGSTAB) and Generalized Minimal Residual (GMRES). All these methods are
applicable to nonsymmetric linear systems.

In this type of methods a sequence of orthogonal vectors is generated and used
for searching the solution along this direction, which is obtained after an initial
approximation of the solution is made and the correction to this approximation is
made to be orthogonal to all base vectors. The base of these vectors, which is called
a Krylov subspace, is (r, Ar, A%r,...), where r = b — Az, A is the Jacobian matrix
and b is the RHS. The generated vectors are orthogonal to all vectors generated in
the preceding iteration steps. In CGS and Bi-CGSTAB these vectors are generated
using a simple recurrence relation involving the preceding iterations. In GMRES the
Krylov subspace is explicitly generated using a modified Gram-Schmidt orthogonal-
ization, similar to equation (3.52). This means that all generated vectors have to be
stored to generate new ones. This constitutes the main drawback of the GMRES
method. Although the CGS and Bi-CGSTAB do not suffer from this storage prob-
lem, the convergence of these methods is often irregular, especially for the CGS. The
reader should refer to Barret et al. [20] for an excellent presentation of the methods.

In practical applications these methods are too expensive to use directly. A
preconditioned problem is considered instead:

M1'Az=M"b, (3.72)

where M is the preconditioner matrix. The preconditioner can have the form of
the previously mentioned relaxation method or other types of iterative methods
which will be presented later in this section. Because these nonstationary iterative
methods are applied on top of the ’traditional’ method, they may be regarded as an
acceleration method. Since the linear equation does not need to be solved perfectly,
only a small number of iterations is applied in the linear iteration loop. This in turn
suggests that a method with a better uniformity of the convergence rate should
be chosen. After considering this criterion, the CGS method, which has a highly
irregular convergence rate, was dropped and was not elaborated further. The best
acceleration is obtained using GMRES. In practice the linear iteration is stopped
after 4 to 8 steps, implying that the pena.lty in the storage of all orthogonal vectors at
each iteration step when using the GMRES method may be considered as moderate.

3.7.5 OTHER TYPES OF PRECONDITIONER

By relying on the acceleration obtained by applying the aforementioned nonsta-
tionary acceleration methods, a less CPU intensive preconditioner can be employed.
Two types of preconditioners have been applied, namely the incomplete lower-upper
decomposition (ILU) and the PGS iteration. The ILU sweeps follow equations (3.70
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3.71), but with a different definition of the equation in a line [L;], as follows:

[LIWd]AQz —[A( i,j— ]AQz,] 1+ [D! ]]AQz,]
[L?Wd]AQt [D ,J]AQ” + [ 1]AQz,]+17

Cijt+y
leading to forward-backward sweeps:
[Lng]AQf+l = —Ri - [A“i j+l]AQf;—ll—l [L ] p+1 [L+]AQ1+1
[LNAQI = =R+ [AF, ,JAQE!, — [L7]AQM — [LF1AQL.

Cij—3 6,1 i+l

The PGS sweep is a very simple relaxation in which only the block-diagonal matrix
is taken as the iteration matrix:

[DiJAQT = —Ri+ A7, JAQT — 1A, JAQET,

—[L71AQMH — [LHAQLY, (3.73)

Cij—

where the latest value of AQ is always used in the RHS. Equation (3.73) is used to
sweep forward and backward.

3.8 TURBULENCE MODELING

Based on Bussinesq’s approximation of the Reynolds stresses (see Appendix A), for
turbulent flows the coefficient of viscosity consists of the coeflicient of laminar vis-
cosity and coefficient of eddy viscosity, see equation (2.41). The laminar coefficient
of viscosity is calculated from the temperature using Sutherland’s empirical law,
i.e. equation (2.20). The coefficient of eddy viscosity has to be calculated from a
turbulence model. In the present study two types of turbulence model have been
applied: the algebraic turbulence model of Baldwin and Lomax (18] (BL) and the
one-equation model of Spalart and Allmaras [157] (SA).

Mainly due to its simplicity, the BL turbulence model is perhaps the most applied
turbulence model. By definition this turbulence model is not complete, which means
that it requires a prior knowledge of the flow condition to tune the parameters
involved in the model. The BL turbulence model was originally designed for two-
dimensional turbulent boundary layers. It gives satisfactory results for attached
flows, but less satisfactory results for separated flows. Advanced turbulence models,
which require much more effort to obtain the coefficient of eddy viscosity, sometimes
do not bring clear and definitive improvement compared to the BL turbulence model.
Therefore, it is quite common that the BL model is used as a first step for further
research in the application of a more advanced turbulence model. Concerning the
way the turbulence length scale and velocity scale are calculated the BL turbulence
model is usually called 'not local’. It means that the coefficient of eddy viscosity
at a certain point depends to a large extent on the flow and geometrical data at
other locations. The calculation of the length and velocity scale requires the normal
distance to the wall, or to the center of the wake in case of wake flow. and the
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maximum value of a certain function, the so-called BL. F-function, i.e. equation
(C.7), in the boundary layer or wake . The detailed explanation concerning the
application in the present study is presented in appendix C.

The SA turbulence model [157] is relatively new compared to the BL model. It
requires the solution of a transport equation for the working variable #, simulta-
neously with the flow equations of section 2.5.2, from which the coefficient of eddy
viscosity can be calculated in a simple way. Compared to the BL turbulence model
the SA model may be considered as ’local’. The traditional one-equation turbu-
lence models solve the transport equation for the turbulent kinetic energy k, which
still requires a 'non local’ method to calculate the eddy viscosity, see e.g. Wilcox
[175]. The SA turbulence model was designed based on empiricism and dimensional
analysis [157]. Contrary to BL this model is complete, i.e. does not require a prior
knowledge of the flow. For attached flows the SA turbulence model sometimes gives
less accurate results than the BL model [175]. For separated flows mixed success has
been reported by Bartels [21], Ekaterinaris et al. [55], Rumsey et al. [152], Rumsey
and Vatsa [153], but in general the SA model is better than the BL model. The
description of the SA model as applied in the present study is also discussed in
appendix C.

3.9 SUMMARY OF THE PRESENT CUA METHOD

Summarizing the developments presented in the previous sections, the following
methods have been adopted in the present CUA method:

e A second/third-order accurate implicit temporal integration method employ-
ing an implicit subiteration scheme. The subiteration scheme employs linear
or nonlinear line relaxation methods and a nonstationary iteration method,
i.e. Bi-CGSTAB and GMRES with ILU or Jacobi preconditioners.

e A second-order spatial discretization, which reduces to first-order in the vicin-
ity of discontinuities, employing a cell-centered finite volume method. The
inviscid flux is discretized using either van Leer’s FVS, AUSM FVS, Roe’s
FDS or the hybrid van Leer-Osher FV/DS. The viscous term is discretized,
using the thin-layer approximation, in a central manner.

¢ The mesh deformation is handled using either an elliptic method or the spring
analogy method.

3.10 NUMERICAL RESULTS

This section presents some results of the present CUA methods including those of
flow simulation and mesh deformation. An extreme test case for the mesh deforma-
tion has been selected to demonstrate its robustness and therewith its applicability
to routine applications.

Subsequently various aspects of methods for flow simulation will be validated: re-
laxation method, inviscid flux method, moving mesh method, time accuracy, steady
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and unsteady flows in an inviscid as well as in a viscous mode. Some demanding
test cases have been selected to demonstrate the robustness of the present method.
Results of the inviscid flow test case will be compared to results of well-known meth-
ods employing a similar flow model. The viscous flow results will be compared to
both numerical results and experimental data.

3.10.1 TEST OF DYNAMIC MESH ALGORITHMS

The purpose of this section is to test the dynamic mesh algorithms of the present
method in deforming the initial mesh. The chosen quality parameters are tested to
show their effectiveness. The most important characteristic is the robustness and
efficiency: the dynamic mesh deformer should not produce mesh folding and should
preserve the quality of the mesh point distribution, and all this without requiring
an excessive effort. The orthogonality at the solid surface is desirable but in general
it is not a strict requirement.

A mesh for calculations employing the Euler equations for the flow around the
RAE2822 airfoil is considered. The dimensions of the mesh are 160x30. The main
reason to use a mesh for the Euler method is the experience that it is more difficult
to maintain the quality of a relatively coarse mesh than of a fine mesh. Certaiﬁly
it is more difficult to solve equation (3.2.3) and equation (3.5) on a fine mesh but
the method employed in the present study, which is of an implicit type, performs
efficiently for both coarse and fine meshes.

Figure 3.12 shows the initial mesh for the present test case. The details around
the nose, which shows the orthogonality of the mesh near the surface, are presented
on the right. Starting from this zero angle of attack, the airfoil is forced to pitch
nose-up about the 0.25 chord point in two steps of 5 deg displacement. In the
following paragraphs the meshes at the last position, i.c. 10 deg pitch angle, are
presented.

Figure 3.13 shows the results using the elliptic method without the surface forcing
function. The solution of the elliptic equation, equation (3.2.3), proceeds by gener-
ating a first guess using an algebraic method and subsequently 5 PGS iterations are
carried out. The mesh distribution is preserved by the method but the orthogonality
is less preserved. Figure 3.14 shows the results using the elliptic method with the
surface forcing function. It can be seen that the mesh orthogonality near the airfoil
surface has been improved relative to the case without surface forcing function.

Figure 3.15 shows the results using the spring analogy with the original solution
method of Batina [24]. Although a relatively large number of iterations has been
applied the result is still not satisfactory. Near the trailing edge mesh folding occurs
which would certainly cause a breakdown in the flow calculation. This situation is
improved using the proposed modification of the predictor step by solving the spring
equation in the (-direction. Subsequently only two iterations have been applied for
the complete equations. The result is shown in figure 3.16. Now a better distribution
of points has been obtained near the leading edge and mesh folding close to the
trailing edge does not occur.

From these exercises some conclusions may be drawn: the source functions
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P(£,¢) and Q(&, () are indeed the proper quality parameters to maintain the mesh
point distribution and the proposed surface forcing function improves the orthogo-
nality close to the surface. Similarly, the spring stiffnesses preserve the mesh point
distribution of the initial mesh. Against expectation, the elliptic method only needs
slightly more CPU time compared to the spring analogy method. This may be ex-
plained by the geometry and the motion being quite simple so that the initial guess
made by the algebraic method, a transfinite method using the Hermite polynomial,
already gives a good mesh. Therefore only a small number of iterations is required
to smooth the mesh. Furthermore, the results using the elliptic method (with sur-
face forcing function) has a better quality especially close to the solid surface. This
suggests that the elliptic method is better for two-dimensional cases. However, for
three dimensional cases, where the boundaries and the motion of the surface are
complex, the spring analogy may be better on the whole than the elliptic method.

3.10.2 COMPARISON OF INVISCID FLUX METHODS

In this section the performance of the various inviscid flux methods is discussed. The
comparison is carried out in both the Euler mode as well as in the Navier-Stokes
mode. The important parameters are the shock position and the shock strength,
which can be seen from the pressure or Mach number distribution. Another aspect
which is of paramount importance for viscous flow calculations is the performance
in capturing viscous layers. This is judged by observing the skin friction and the
isomach contours. A more detailed inspection, looking at the boundary layer profile,
is not carried out because from the two parameters some conclusive results can be
already obtained.

For the test case in the Euler mode the flow past an NACA 0012 airfoil at
My=0.85 and a=1 deg is considered. Results from the AGARD Compendium of
Test Cases [4] are used as a reference. In this test case two shock waves are present.
This test case has been chosen because the position of the shocks is obviously very
sensitive, as appearing from the various results in [4] for this test case.- The result
which was concluded in [4] as the best result is used here as a reference. The
dimensions of the mesh for the present calculation are 140x30, with 100 points on
the surface of the airfoil.

Figure 3.17 shows the comparison of the chordwise distributions of the pressure
coefficient and the Mach number. All methods show a good agreement for the shock
position and the shock strength.  No significant difference is shown: as-far as the
pressure distribution is concerned. For the Mach number distribution the results
still show some differences downstream of the shock. The possible explanation for
this difference is the incompatibility between the flux formula at the solid surface
and the flux formula in the field.

Figure 3.18 and figure 3.19 show the isobars and isomach contours for this test
case. The isobars obtained by the various methods do not show significant differ-
ences. Inspecting the lower side shock wave, the weak one, the FVS schemes and the
hybrid scheme seem to capture the shock somewhat sharper than the Roe FDS. The
isomach contours also show some differences. The van Leer FVS result shows a sort
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of numerical boundary layer which can be seen from the way the contours approach
the solid surface. The AUSM-FVS result shows wiggles close to the solid surface
which suggests that the numerical dissipation is too low. The possible explanation
of this deficiency is that the stabilizing term of the AUSM FVS is a function of Mach
number. Close to the surface the flow is almost parallel to the lines of constant ¢
which implies that the Mach number variation in the (-direction is very small. This
may have caused the stabilizing term of AUSM FVS to be ill-defined. Finally the
results of Roe FDS and the hybrid method are almost identical.

The viscous flow case is the transonic flow past the RAE 2822 airfoil at M ,,=0.729,
aexp=2.92 deg and Re,,=6.5x 108, As a reference the results of the NLR MUTU2D
Navier-Stokes method presented by Haase et al. [69] are used. The dimensions of the
mesh are 160x60, with 100 points on the airfoil surface. The calculations have been
carried out at a corrected angle of attack, acorr=2.31 deg, which was suggested by
Cook et al. [38].

Figure 3.20 shows the comparison of chordwise distributions of the pressure and
skin friction coefficients for the viscous flow case. Except the result using van Leer’s
FVS, all methods show a good agreement concerning the shock position and shock
strength. The shock strength using van Leer’s FVS is a bit weaker and the position
is slightly in front of the other results, which suggests that the dissipation is too
high. The inferiority of van Leer’s scheme can be seen clearly in the skin friction
coeflicient.

Figures 3.21 and 3.22 show the isobars and isomach contours, respectively. The
isobars again show no significant differences between the methods. The differences in
the isomach lines can only be seen in the result using van Leer’s FVS. The deficiency
of the amount of dissipation of the AUSM FVS, which is observed in the inviscid
test case, does not seem to affect the results.

The results of the test cases of this section lead to the following conclusions. For
inviscid flow applications, as far as the surface pressure distribution is concerned, all
methods give satisfactory results. However, the flow field data reveal the inadequacy
of the dissipation of the AUSM FVS and the excessive dissipation of van Leer’s FVS.
For viscous flow applications all methods except van Leer’s FVS give satisfactory
results. This means that only Roe’s FDS and the hybrid van Leer/Osher FV /DS
perform consistently well for both inviscid and viscous flow applications. Because
the hybrid method is much more complex than Roe’s FDS method, it is concluded
that Roe’s FDS is the most suitable method for the present study. The Roe FDS
will be used throughout the rest of this chapter.

3.10.3 COMPARISON OF RELAXATION METHODS

The steady viscous flow case considered in the previous section is again used for the
comparison of the relaxation methods. The efficiency, in terms of convergence rate,
of the various relaxation methods applied in this study has been investigated. The
global time step has been set at a very large value, A7=10°, since only the steady
state is of interest. The combination of the stiff viscous mesh and the large time
step makes the test case very hard. For this reason the results would also indicate
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the robustness of the methods.

The results obtained using the standard SSOR method are compared to the ones
obtained using the nonstationary iteration methods of GMRES and Bi-CGSTAB.
The CGS method has not been included since the convergence rate is very nonuni-
form and the result is almost useless. The CGS method gives a reasonable result
when a moderate time step size is used. The preconditioner for the nonstationary
iteration methods is ILU.

Figure 3.23 shows the convergence of the lift coefficient and figure 3.24 shows
the convergence of the residual of the mass conservation equation. Each of them are
plotted against the iteration number and the CPU time. The indicated CPU time
is normalized with respect to the one required for the calculation of the residual.
Thus it more or less represents the CPU time of a step of an explicit method. The
figures indicate that the Bi-CGSTAB can not even let converge the residual, thus it
is not appropriate for this large time step case. From the plots against the iteration
number, GMRES clearly shows a faster convergence compared to the standard SSOR
method. But since the computational work per iteration of the GMRES method is
higher than that of the SSOR method, this advantage does not show up strongly
in the plots against CPU time. The other aspect of GMRES is the higher memory
requirement compared to the SSOR method since the solutions of the former linear
iterations have to be stored to form the appropriate Krylov-space.

From the test case presented in this section it is concluded that the SSOR method
1s in general superior to the GMRES method. SSOR is a good approximation to the
perfect inversion of the Jacobian matrix in that a nonlinear relaxation can be applied
(only one sweep of the SSOR method is necessary before the nonlinear residual is
updated). The fact that the Jacobian matrix is not a true Jacobian of the residual,
which means that even with a perfect inversion quadratic convergence would not be
achieved, may have contributed to this situation.

3.10.4 STEADY VISCOUS FLOW

The validation of the method in predicting the pressure and sectional coefficients
for steady flow is presented in this section. The flow past an RAE2822 airfoil is
considered at M,,=0.729, texp=2.92 deg and Re.,=6.5x10% Geometrical data
and experimental data for this condition, which is known as case 6.1, are available
in Cook et al. [38]. The transition was forced at 3% chord from the leading edge
on both upper and lower surface. A.comparison with another methed is-pravided
by the result of the NLR MUTU2D Navier-Stokes method described in Haase et al.
[69]. All calculations have been performed at a corrected angle of attack accounting
for tunnel wall effects, acorr=2.31 deg.

The calculation has been carried out on a C-mesh of 189x60, with 150 points
on the airfoil. The outer boundary is 40 chords away which from the experience
already gives converged values of aerodynamic forces. Figure 3.25 shows the part of
the mesh close to the airfoil section. The distance away from the solid wall to the
first mesh point in normal direction is about 107° at the leading edge and 10~° at the
trailing edge. This results in the maximum i that is O(1) during the calculation.
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The result of MUTU2D is obtained using a C-mesh of 240x72, with 209 points
on the airfoil and with the outer boundary placed only 10 chords away. The short
distance of the outer boundary for NLR MUTU2D is allowed due to the embedding
of a vortex correction in the far-field boundary conditions.

Figure 3.26 shows the comparison of the present results, the experimental data
and the NLR MUTU2D results. Overall, good agreement has been obtained regard-
ing the shock position and the shock strength. The pressure distributions on the
lower surface of both calculation methods are in excellent agreement with experi-
mental data. The shock position predicted by the present method is a bit forward,
which is closer to the experimental data, than the one of NLR MUTU2D. The latter
method captures the pressure peak at the leading edge better. The comparison of
the aerodynamic coefficients is shown in table 3.2.

Cyr Cu Cp

present method 0.748 -0.098 0.0150
NS-NLR (MUTU2D) 0.777 -0.105 0.0149
experiment 0.743 -0.095 0.0127

Table 3.2: Comparison of the aerodynamic coefficients of the present method, the NLR
MUTU2D and the experiment of [38]. RAE 2822 airfoil at M,=0.729, Re=6.5%108
aexp:2.92 deg

The lift and the moment coefficients of the present method are closer to the
experimental data, which can be explained by the better prediction of the shock
position. Although the present method captures the pressure peak at the leading
edge less satisfactorily than the MUTU2D, it seems that it does not give much
contribution to the lift and moment because of the misalignment of the normal
vector at this part of the surface. The predicted drag coefficient is less satisfactory,
probably because the mesh is not fine enough. The difference between the results
of the present method and of MUTU2D may be attributed to the difference in the
CFD modeling, the size of the mesh and the outer boundary conditions.

It may be concluded that the present method gives satisfactory results in pre-
dicting the aerodynamic forces for this steady flow case.

3.10.5 UNSTEADY FLOW

The most important application for which the method has been developed is un-
steady flow. This section presents the validation of many aspects of the present
method. First the applications using large time steps are validated for a fixed mesh,
after that for a deforming mesh and finally the robustness and efficiency of the
method are demonstrated.

STATIC MESH

The well-known test case for unsteady flow is the 18% thick circular arc airfoil of
Seegmiller et al. [156] and McDevitt et al. [108]. This case is a good validation
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test for the time accuracy of the basic temporal integration method, since no airfoil
motion is present. This type of flow is usually called transonic buffet or shock
induced oscillation (SIO). As shown in the experiment, at a certain range of Mach
number the flow is unsteady with a distinct reduced frequency component.

This case has been suggested also by many authors as a good test case for the
implementation of turbulence models. The flow condition is a=0 deg, My=0.76
and Re,=11x10% The present result is obtained using a C-mesh of 140x60 with
100 points on the airfoil. The experiment was carried out in a wind tunnel with
upper and lower walls that were contoured to match the inviscid streamlines at
My=0.775. Wall interference effects were reduced thereby, although not completely
eliminated. The result of the calculation is influenced strongly by the distance of
the outer boundary, where the freestream condition is imposed. Some authors, e.g.
Arnone et al. [14], suggest 10 chords to be a good distance, so this is used here as
well.

The instantaneous Mach contours at eight time levels during the simulation are
presented in figure 3.27 showing the shocks, strengthening when moving upstream
and weakening when moving downstream, and the waving wake. The time histories
of the lift and moment coefficients are shown in figure 3.28. This result was obtained
using a time step of 0.10 with 8 subiterations per time step producing a maximum
CFL number of about 20,000. The simulation was carried out up to a dimensionless
time of 50. Subsequently, another 10 time steps were simulated to record the field
data. The symbols in figure 3.28 show the time levels at which the instantaneous
Mach contours have been plotted in figure 3.27. Note that the time step of 0.10 is
much larger than that commonly presented in the literature.

The chronology of the flow simulation can be summarized as follows. The simu-
lation is started from a freestream initial condition. Proceeding in time, symmetric
shock waves are formed at the two sides of the airfoil. For a short time the flow
remains symmetric. After the shocks have strengthened and caused shock-induced
separation which spreads up to the trailing edge, a nonsymmetric flow is started.
This suggests that the wake is the main means of communication between the two
shock waves. Proceeding further in time, the nonsymmetric condition continues,
characterized by a weakening of one shock, strengthening of the other and a deflec-
tion of the wake. The sequence in figure 3.27 starts at tay/c =50.5 when the airfoil
upper side has a strong shock together with a massive shock-induced separation
which deflects the wake to its side. This deflection of the wake causes the flow at the
other side (lower side) to fully reattach and thus to create a strong shock, figure 3,27
at tas/c =50.5~53.5. After that this shock in turn starts massive shock-induced
separation which deflects the wake toward the upper side at tas,/c =54.5~56.0. The
wake deflection then causes full reattachment of the flow on the upper side, and so
the phenomenon repeats itself. The alternating massive shock-induced separation
sheds vorticity downstream in a manner similar to the von Kdrmén vortex street for
low speed flow about bluff bodies. Although the flow is highly unsteady, the airfoil is
stationary, so that the simulated flow may be considered as an natural aerodynamic
mode of the flow.

The reduced frequency which is calculated by identifying the period of oscillation,
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is presented in table 3.3. This value of the reduced frequency is well inside the range

freestream condition k
present method outer boundary at 10 chords away 0.250
experiment curved-wall tunnel 0.245

Table 3.3: Comparison of reduced frequency obtained using the present method with the
experiment of [108). Circular arc airfoil, 18% thickness ratio at Ms=0.76 and Rex,=11x10°,
140x60 C-mesh

of calculation results commonly presented in the literature, [105, 156]. This suggests
the validity of the present temporal integration method and turbulence model.

FORCED VIBRATION

The response of a rigid NACA 0012 airfoil to forced oscillations is analyzed here to
assess the performance of the computational method. The inviscid flow results were
obtained using a mesh with dimensions of 140x30 and the viscous flow calculations
were carried out on a mesh of 140x60. Both meshes have 100 points on the airfoil
surface. The outer boundary is placed at 40 chords away from the airfoil. For the
viscous flow calculations the average distance away from the solid wall to the first
mesh point in the normal direction is about 6x107¢ chord.

VALIDATION OF DYNAMIC MESH ALGORITHM To validate the dynamic mesh al-
gorithm an inviscid flow case of an oscillating NACA 0012 airfoil is considered. The
oscillation is a pitching motion about 0.25 chord at My=0.754, amean=2.00 deg,
aamp=2.50 deg and k=0.082 based on semichord. The coefficients C;, and CM,O.‘ZS
at the two dynamic mesh strategies, the rigid mesh and the spring analogy are com-
pared. In the case of the spring analogy, the outer boundary of the mesh is held
fixed. Since the airfoil does not deform, both methods should give similar results.

Figure 3.29 shows a comparison of Cr, and C,, (95 for the two dynamic mesh
strategies as a function of the angle of attack. Virtually no difference can be ob-
served. It should be noted that the moment loop reveals a strong nonlinearity in
the flow with a shock moving over a significant trajectory.

The present results were obtained using a relatively large time step, 24 steps per
cycle, thus an error in the mesh handling and the outer boundary would be noticed
immediately. Therefore the conclusion may be drawn that the current treatment of
the time-dependent metrics and the outer boundary is correct.

UNSTEADY INVISCID FLOW An example of an unsteady inviscid flow application
is shown in figure 3.30 for the conditions mentioned before. This is the case which
is used for the validation of the dynamic mesh algorithm. Results of the present
method are compared with those of TULIPS, an FP method described by Schippers
[154], an extended version of TULIPS described by Westland and Hounjet [173] and
the DLR-Euler method of Polz [130]. The extended TULIPS method employs the
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Clebsch potential with entropy and vorticity corrections for modeling strong shock
waves. The DLR-Euler method uses van-Leer’s FVS for the inviscid flux modeling
and an explicit method to march in time. Figure 3.30 shows the comparison of the
lift and moment coefficients.

The results of the present method, the DLR-Euler method and the extended
TULIPS method agree very nicely. The TULIPS result shows a consistent difference
when compared to the results of the Euler methods. The hardly noticeable difference
between the results of the present implicit method and the explicit method of DLR-
Euler confirms the applicability of the present temporal integration strategy. The
present result was obtained using 48 time steps per period of oscillation and at
each time step 8 subiterations were employed. The time needed to run one cycle
of oscillation was less than 2 minutes on a Silicon Graphics Inc. (SGI) workstation
with R8000/R8010 processors.

The adequacy of the present method for the current case is demonstrated further
in figure 3.31 and in table 3.4 which illustrates the computational efficiency for

At /cycle subiteration 9Q/8r  CPU time (min/cycle)

48 8 2nd order 1.74
24 8 2nd order 0.87
12 12 3rd order 0.64
8 12 3rd order 0.43

Table 3.4: CPU time comparison of running strategies shown in figure 3.31

several variations of the iteration strategy. The lift and moment coefficients show a
very good agreement, even for an extremely low number of time steps per period

UNSTEADY VISCOUS FLOW Two cases are considered in this section. The first case
pertains again to transonic flow conditions, M,,=0.754, Re,,=5.7x10%, amean=2.00
deg, camp=2.50 deg and k=0.082. The experimental result is taken from Wood
[177]. The transition was forced at 10% chord, both on the lower and on the upper
surface. The calculation employs the Baldwin-Lomax turbulence model.

Figure 3.32 shows the comparison of the experimental and the calculated re-
sults. The inviscid flow results do not agree with the viscous flow results nor with
the measurement. Concerning the viscous flow results, only during the upstroke
the lift and moment are reproduced relatively:well. “The discrepanty between ‘the
results starts near the maximum angle of attack and is most probably due to the
inadequacy of the algebraic turbulence modeling to treat a strong shock-boundary
layer interaction properly. During the downstroke only the second half of the stroke
the lift coefficient is satisfactorily predicted.

Another application of the present Navier-Stokes solver is shown in figure 3.33
for an AGARD standard test case of transonic viscous flow, case 3 of [97]. The
flow conditions are M,,=0.60, Re,=4.8x10%, amean=4.86 deg and the flow is fully
turbulent. The mode of vibration is a pitching oscillation about 0.25 chord with
aamp=2.44 deg and k=0.081 based on semichord.
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Figure 3.33 shows the results of the test case. Good agreement between both
calculated results has been obtained for both the lift and moment coefficient. The
agreement with the experimental data is also good as far as the lift coefficient is
concerned, but less satisfactory for the moment coefficient. The present results
were obtained using 400 steps per period of oscillation with 4 subiterations in each
time step. The CPU time was 35 minutes on an SGI (R8000/R8010 processors)
workstation. The maximum CFL number during the calculation was about 55,000.
The adequacy of the present method for the current case is presented in figure
3.34 and in table 3.5 where the computational efficiency is demonstrated for several
iteration strategies. The lift coefficient shows a very good agreement even for a very

At/cycle subiteration 8Q/8r  CPU time (min/cycle)

400 4 2nd order 35.45
100 4 2nd order 8.83
24 12 3rd order 6.25
16 12 3rd order 4.46

Table 3.5: CPU time comparison of running strategies shown in figure 3.34

low number of steps per period. The moment coefficient is more sensitive to the
choice of the time step and iteration strategy. Some differences are apparent, but
the main features appear to be captured well enough by all strategies.

It is generally known that due to the accuracy in resolving the shear layer, an
FDS method needs less mesh points to reach a certain accuracy compared to van
Leer’s FVS method which is more diffusive and therefore more robust. Therefore
the results of Rumsey and Anderson [151] have been included in figure 3.33, which
were obtained with a Thin-Layer Navier-Stokes method using van Leer’'s FVS to
enable large time steps. The present result was obtained using FDS (with a coarser
mesh) and moreover with a larger time step, thus requiring less CPU time compared
to the method of [151].

DYNAMIC STALL Formally the TLNS flow model is not applicable to the case of
dynamic stall, as the flow is massively separated and the concept of the thin-layer
approximation is not valid anymore. For such cases the full Navier-Stokes equations
(FNS) should be employed. Nevertheless, many authors still employ TLNS for this
case. One reason for this is that when the flow is separated and vortices are formed,
convective terms will become dominant, which reduces the role of viscosity. In other
words: it reduces the improvement in applying FNS compared to TLNS. Another
reason is that for FNS usually not enough points are used in the streamwise direction
to resolve the flow separation, so that accurate FNS results would not be obtained.

The deep dynamic stall case considered by Ekaterinaris et al. {55] is used as a
test case. An NACA 0015 airfoil is immersed in subsonic flow at a low Mach number
of 0.30 and a Reynolds number of 2 x 10°. In the experiment a turbulence trip was
applied very close to the leading edge. This justifies the use of fully turbulent flow
in the computation. The mean condition is beyond the stall condition at amean=15
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deg. The airfoil was excited sinusoidally in a pitching oscillation about 0.25 chord
with an amplitude of @amp=4.20 deg and a reduced frequency of k=0.10. The
employed mesh was 160x60 with 140 points along the surface. The Spalart-Allmaras
turbulence model was employed for the simulation. The steady mean flow was first
calculated and then three periods of oscillation were carried out. The time step was
set at 256 steps/period with 12 to 24 subiterations. The results of the second and
third cycles showed negligible differences.

Figure 3.36 presents the instantaneous density contours at several times during
the oscillation starting at &(0) = Qmean. In agreement with the experiment and
the result of Ekaterinaris et al. [55], a vortex sheet is formed originating from the
leading edge, and rolling up into the dynamic stall vortex at some distance above
the trailing edge, before the maximum angle of attack is reached at ¢t = 77/32.
The flow separation at the upper surface causes the reduction of lift and moment,
see also figure 3.35. The stall vortex induces the formation of the so-called trailing
edge vortex with a circulation of opposite sign. The figure at t = 8T/32 shows this
situation. Then the feeding of the vortex sheet diminishes. This and the interaction
of two vortices result in the weakening of both vortices until they disperse and are
transported downstream at about ¢ = 117/32. The interaction of the vortices causes
the oscillation in lift and moment which can be seen in figure 3.35. After that the
flow on the upper surface begins to reattach. These flow developments during the
oscillation match with the experimental observation: massive flow separation before
maximum angle of attack, shedding of leading edge vortex and forming of trailing
edge vortex at the maximum angle of attack right before the down stroke begins.

The comparison of the lift and moment about 0.25 chord coefficients is presented
in figure 3.35. Comparisons are provided by the computational and experimental
results of Ekaterinaris et al. [55]. The computational result [55] was also obtained
using a Thin-Layer Navier-Stokes flow method with the original Spalart-Allmaras
one-equation turbulence model on a mesh of 311x91 and with 16,000 time steps
per period. Although the trends are well captured, the quantitative comparison is
not -more than fairly good. . Already at the mean condition the calculated:lift of
both the present method and the computational result of [55] are too high. More-
over, the present result shows an oscillation in some part of the down stroke. A
similar behavior was also obtained in [55] for the Johson-King half-equation model,
the Baldwin-Barth one-equation model and the k-w SST two-equation model. The
recent paper by Ko and McCroskey [93] which employed also the Spalart-Allmaras
turbulence model for this deep dynamic stall case showed also this oscillation. Con-
sidering the aeroelastic problems related to dynamic stall, e.g. for helicopter rotors
and wind turbine blades, where the area of the loop is of main interest, the present
results may be considered good compared to the experiment.
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Figure 3.13: The deformed 160x30 mesh around RAE 2822 airfoil using the elliptic method
without surface forcing function
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Figure 3.14: The deformed 160x30 mesh around RAE 2822 airfoil using the elliptic method
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Figure 3.15: The deformed 160x30 mesh around RAE2822 airfoil using the spring analogy
with extrapolation predictor

Figure 3.16: The deformed 160x30 mesh around RAE2822 airfoil using the spring analogy
with the new 'direct z-solve’ predictor
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Figure 3.17: Comparison of pressure distributions and Mach number obtained with various
inviscid flux methods for the inviscid flow test case. NACA 0012 airfoil at M,=0.85, =1.00
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Figure 3.18: Comparison of isobars obtained with various inviscid flux methods for the inviscid
flow test case. NACA 0012 airfoil at M,=0.85, «=1.00 deg, 160x60 C-mesh




86 Chapter 3. Solution of Unsteady Navier-Stokes Equations for Flow Past Airfoils

Roe’s FD! vieer-|

vLeer-Osher-FVDS AUSM-|

Figure 3.19: Comparison of isomach contours obtained from various inviscid flux methods for
the inviscid flow test case. NACA 0012 airfoil at M,,=0.85, a=1.00 deg, 160x60 C-mesh
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Figure 3.20: Comparison of pressure distributions and skin friction obtained from various

inviscid flux methods for the viscous test case. RAE 2822 airfoil at M,=0.729, aexp—2 92
deg and Re,,=6.5x10%, 160x60 C-mesh
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Figure 3.21: Comparison of isobars obtained from various inviscid flux methods for the viscous
flow test case. RAE 2822 airfoil at M,=0.729, crexp=2.92 deg and Rexo=06.5x 108, 160x60
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Figure 3.22: Comparison of isomach contours obtained from various inviscid flux meth-
ods for the viscous flow test case. RAE 2822 airfoil at M=0.729, aexp=2.92 deg and
Reo,=6.5%10%, 160x60 C-mesh
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Figure 3.23: Convergence rates of the lift coefficient against the iteration number and CPU

time for various relaxation methods. RAE 2822 airfoil at My=0.729, Rey,=6.5x10% and
acorr=2.31 deg, 160x60 C-mesh
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Figure 3.24: Convergence rates of the residual of the mass conservation equation against
the iteration number and CPU time for various relaxation methods.
My=0.729, Re,,=6.5x105 and acorr=2.31 deg, 160x60 C-mesh
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Figure 3.25: The mesh for the viscous flow calculation. RAE 2822 airfoil, 189x60 C-mesh
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Figure 3.26: Comparison of calculated and measured distributions of pressure and skin fric-
tion coefficients for RAE 2822 airfoil at M,=0.729, aexp=2.92 deg, acorr=2.31 deg and
Reo,=6.5x10%, 189x60 C-mesh
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Figure 3.27: Instantaneous Mach contours at four time levels (AM = 0.10) of 18% circular arc
airfoil at M,,=0.76 and Re,,=11x105, the time is relative to 10800 /c=50, 140x60 C-mesh
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Figure 3.28: Time history of lift coefficient and moment coefficient about 0.25 chord of 18%
circular arc airfoil at My, =0.76 and Reso=11x10°, 140x60 C-mesh
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Figure 3.29: Comparison of Cy, and Cy 25 of NACA 0012 airfoil pitching about 0.25 chord at
M=0.754, amean=2.00, @amp=2.50 and k=0.082, using rigid and dynamic mesh modeling,
140x30 C-mesh
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Figure 3.30: Comparison of calculated Cy, and CMO 25 of NACA 0012 airfoil pitching about
0.25 chord at Mo,=0.754, omean=2.00 deg , camp=2.50 deg and k=0.082, using different
inviscid flow methods, 140x30 C-mesh
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Figure 3.31: Comparison of calculated C}, and Cr0.25 of NACA 0012 airfoil pitching about
0.25 chord at My=0.754, amean=2.00 deg , aamp=2.50 deg and £=0.082, using various
iteration strategies, 140x30 C-mesh
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Figure 3.32: Comparison of calculated and experimental C, and CM 0.25 of NACA 0012 airfoil
pitching about 0.25 chord at My,=0.754, amean=2.00 deg, aamp—2 50 deg, £=0.082 and
Reo=5.7x10%, 140x60 C-mesh
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Figure 3.33: Comparison of calculated and experimental C, and C; 3 25 of NACA 0012 airfoil
pitching about 0.25 chord at M,=0.60, amean=4.86 deg, camp=2.44 deg, k=0.081 and
Reso=4.8x10%, 140x60 C-mesh
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Figure 3.34: Comparison of calculated Cf, and C11,0.25 of NACA 0012 airfoil pitching about

0.25 chord at M,=0.60, emean=4.86 deg , camp=2.44 deg, k=0.081 and Re,,=4.8x10°,
using various iteration strategies, 140x60 C-mesh
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Figure 3.35: Comparison of calculated Cy, and Cys of NACA 0015 airfoil pitching about 0.25
chord at My,=0.30, amean=15 deg , camp=4.20 deg, k=0.10 and Res,=2x10%, 16060
C-mesh
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Instantaneous density contours at eight time steps of NACA 0012 airfoil

pitching about 0.25 chord at M,,=0.30, &mean=15 deg , camp=4.20 deg, k=0.10 and
Reoo=1.93x10%, 160x60 C-mesh. The thickened contour is freestream density (p=1) and
Ap=0.05
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3.11 CoNcLUsioNs CONCERNING THE Two-DIMENsSIONAL CUA METHOD

A method to solve the Thin-Layer Navier-Stokes/Euler equations for two-dimensional
unsteady flow applications has been described. The method employs large time
steps, O(10) per cycle of oscillation, while maintaining accuracy by solving the un-
steady nonlinear equations using subiterations. From the results of test cases the
following conclusions may be drawn:

e From the test case for the dynamic mesh algorithm, it follows that the chosen
quality parameters for both the elliptic method (i.e. forcing functions P(¢, ()
and Q(¢,¢)) and the spring analogy method (i.e. the spring stiffnesses) pre-
serve the mesh distribution effectively. The proposed surface forcing function
for the elliptic method shows a similar performance in preserving the surface
orthogonality.

e From the comparison of results obtained for the various inviscid flux methods,
namely: van Leer’s FVS, AUSM FVS, Roe’s FDS and van Leer-Osher FV/DS,
the following conclusions are drawn:

— For inviscid flow, all methods show a good performance in capturing
the shock waves. The chordwise surface pressure distributions do not
differ significantly. However, the Mach number distributions show some
discrepancies. The field isomach contours from the AUSM FVS even
shows some wiggles close to the surface.

— For viscous flow, all but van Leer’s FVS method show a good result. The
shock strength using van Leer’s FVS is a bit weaker than those obtained
with the other methods and the shock position is slightly more upstream.
The most significant difference is in the friction coefficient which is much
higher compared to those obtained with the other methods.

— The AUSM method performs well in the viscous flow test case, but not
as good in the inviscid flow test case. The wiggles in the Mach number
distribution close to the surface suggest a lack of numerical dissipation.
The method is also less robust than the one with van Leer’s FVS.

— The hybrid van Leer-Osher scheme performs well for all test cases. The
inclusion of an ’anti-diffusive’ flux from Osher’s scheme into van Leer’s
FVS appears to dramatically improve van Leer’s FVS. The drawback is

* the complexity of the Jacobian of thé Aux which allows only dri approxi-
mate Jacobian to be employed.

— The comparison of the CPU time of all methods reveals minor differences.
The simplicity of the FVS seems to be overshadowed by the complexity
of calculating the Jacobian of the flux. On the other hand, it is quite
easy to construct an approximate Jacobian for Roe’s FDS which leads to
a good performance. Thus for an implicit method, where the Jacobian
of the flux is required, the FVS is not better than Roe’s FDS in terms of
efficiency.
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— As far as the CPU time is concerned the mixed van Leer-Osher scheme
is the most expensive method and AUSM is the cheapest.

It can be concluded that the best method, which is the simplest and most
straightforward one, is thus Roe’s FDS.

e From the comparison of the results of the relaxation methods, nonlinear relax-
ation employing a simple SSOR sweep shows a good performance compared
to a more complex non-stationary iteration method such as GMRES.

e The present method has been applied to an airfoil in a flow under various
conditions: steady flow, unsteady flow about a stationary airfoil section, forced
vibrations with a moving mesh in transonic flow and dynamic stall. The results
demonstrate in each case an adequate quality.

o The computational efficiency of the method admits two-dimensional simula-
tions to be performed on a routine basis. This efficiency, primarily expressed
in terms of computation time, is obtained mainly due to the freedom of tak-
ing large time steps during the time-accurate simulations, while maintaining a
satisfactory accuracy. Typical results shown have been obtained with 8 time
steps per cycle with 12 subiterations for inviscid flow and 16 time steps with
12 subiterations for viscous flow.
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CHAPTER 4

SIMULATION OF UNSTEADY FLOW
PHENOMENA AROUND AIRFOILS

In this chapter the method to solve the Navier-Stokes equations developed in the
previous chapter is further employed to study unsteady flow phenomena around
airfoils. The applications discussed here are mostly dominated by viscous effects.

It is known, and has also been shown for the test case of the stationary circular
arc airfoil in section 3.10.5, that under certain flow conditions the shock-induced
separated flows exhibits time-dependent phenomena. At these conditions a distinct
frequency appears which can be associated with a natural aerodynamic mode of the
flow. Zwaan [184] showed that in case of a harmonically pitching airfoil the unsteady
flow could be compared with a forced mass-spring-damper system, being brought
into resonance. The present chapter presents numerical simulations and discussions
about this type of flow.

Since the flows considered here always involve significant shock motions, the
method is first validated with the experiment of Tijdeman [167] concerning the phase
lag of the shock motion with respect to the motion of the airfoil, and the underlying
physical phenomenon hypothesized by Tijdeman. Subsequently the behavior of the
shock motions in separated flow is considered by reproducing experimental results of
Davis and Malcolm [42]. The discussion will lead to the confirmation of the existence
of a natural mode of the flow. Finally the flow at buffet onset of an NACA 0012 airfoil
is calculated of which the results are compared with experimental data of McDevitt
and Okuno [109]. Prior to the discussions about unsteady flow phenomena, an
introductory section will explain how the results will be presented.

4.1 PRESENTATION OF THE RESULTS

In this chapter two types of unsteady flow are discussed: the unsteady flow due to
sinusoidal motion of the airfoil and the inherently unsteady flow about a stationary
airfoil. The most common form of representation of an unsteady flow quantity due
to a sinusoidal displacement is its Fourier series. For an unsteady flow quantity, say
C'p(t), generated by the sinusoidal motion at a frequency w, the Fourier series is:

X
Cp(t) =Cpo + Z (Cp , coswnt + C}, , sinwnt), (4.1)

n=1
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with
1 /T
Cpo = T/O Cp(t) dt
2 T
= —/ Cp(t) cos nwt dt (4.2)
T Jo

2 T
Pn= —/ Cp(t) sin nwt dt,
T Jy

where Cp is simply the average of Cp over the period of T = 27/w. In a linear
case n=1 is enough to completely express Cp(t). According to common practice
Cp(t) is supposed to be generated by an airfoil motion that is represented by a
cosine function. This implies that at t=0 the airfoil is in one of its extremal po-
sitions, and that at t=T7/4 the airfoil passes its mean position on its way to the
other extremal position. Cp, is usually called the real (or in-phase) part and C%
the imaginary (or out-of-phase) part of Cp,,. This designation is connected to the-
ory of linear unsteady aerodynamics, where Cp can be represented in the Argand
plane as a rotating vector, with in-phase and out-of-phase (i.e. real and imaginary)
components with the rotating vector representing the airfoil displacement. The in-
tegrations in equation (4.2) are carried out using the trapezoidal rule during the
simulation. Commonly C%,, and C% ,, are normalized with respect to the amplitude
of the harmonic airfoil motion. In the cases to follow only the components for n=1
are presented. In practice the simulation of the flow due to a cosine displacement
function is rather difficult, since one has to start from maximum displacement. In
the present simulations a sinusoidal displacement function was always used.

In the case of an inherently unsteady flow, the airfoil is stationary while the flow
exhibits a time-dependent character. Usually more than one frequency exist in the
flow. A similar Fourier decomposition as equation (4.1) can also be made in this
case by choosing a reference frequency. Or if one would like to see the frequency
spectra of a time-dependent data, a discrete Fourier transform is applied to the time
signal as:

N-1
= f(k)e 2™V =0,1,2.N -1
k=0
provided that there are N discrete points in the time signal. Another method of
presentation, as shown by Roos [147], is by correlation of the data. The normalized
autocorrelation function of an unsteady flow quantity f(¢) at some spatial location
is defined as:

T
R(f,7) = i—% Jim /0 FOF(t+7) dt, (4.3)

where the root-mean-square 9y is defined as:

o= 1 [ "y o g (44)
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The autocorrelation function represents the correlation of an unsteady time signal at
a certain time ¢ with the same signal at time ¢+ 7. The normalized cross-correlation
function of unsteady flow data f(t) at one location with unsteady flow data g(t) at
another location is defined as:

R(f,g9,7) = gt + 1) dt. (4.5)

wfwg T—»oo T / f
The cross-correlation function shows whether data at a certain location is correlated
to the data at another location at an earlier or later time. The cross-correlation
functions of data at many locations would show the direction of the flow of infor-
mation/disturbance. The normalized correlation functions are calculated using a
standard routine employing discrete Fourier transforms.

4.2 TransonIic Frow ABouT PrrcHING NLR 7301 AIRFOIL

The proper simulation of a shock wave motion is a very important characteristic
in testing the computational method. Tijdeman {167] categorized the shock motion
in case of attached flow into three types: A, B and C. Type A involves an almost
sinusoidal shock wave motion which indicates the existence of the shock during the
whole period of oscillation. This type of shock wave motion usually occurs at a high
subsonic speed with a well-developed shock wave. Type B shock wave motion occurs
at a somewhat lower Mach number in which during the downstream motion of the
shock the dynamic (weakening) effect is dominant causing the shock to disappear
momentarily. Type C shock wave motion is characterized by the dominating dy-
namic (strengthening) effect during the forward motion of the shock which causes
the shock to pass the sonic point and to leave the airfoil in upstream direction as a
free shock wave.

The test case of the harmonically pitching NLR 7301 airfoil presented by Tijde-
man for type A shock motion is discussed here. The main purpose is to confirm
Tijdeman’s phenomenological model concerning the flow mechanism which causes a
phase lag between the shock motion and the airfoil motion. The model postulated
that the phase angle between the shock motion and the motion of the airfoil is the
time required by a pressure signal generated at the trailing edge to arrive at the

shock:
e dx e dz
At = — / —_— = ~/ —_ 4.6
Jz=c Uloc — Gloc z=c (1 - Mloc)aloc’ ( )

where M. is calculated by taking into account the gradient of the Mach number
normal to the surface as:

Mloc = R[Mloc, at the surface ~~ Moo] + jwoo- (47)

R is a relaxation factor. The local Mach number at the surface should be understood
as the one at the edge of the boundary layer. Waves which propagate from the trail-
ing edge moving upstream are usually called Kutta waves. They may be explained
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as follows. When the circulation at the airfoil changes (e.g. due to the change in the
angle of attack) the wake will adapt itself to the new situation, resulting in a change
of the angle at which the wake leaves the airfoil. This change involves a pressure
disturbance at the trailing edge, which will expand as a Kutta wave.

For the numerical simulation, a 160x60 mesh with 120 mesh points at the airfoil
surface is used. The outer boundary is set at 100 chords away from the airfoil. The
flow conditions are My=0.70, 0ac=2.00 deg , Qexp=3.00 deg and Re,,=2.1x108,
The corrected angle of attack is the one suggested by Tijdeman [3, 167]. During
the experiment a transition strip was placed at 0.30 chord. Two calculations were
made, one for a fully turbulent flow and one with a turbulent flow starting at 0.30
chord, to see the effect of the transition strip. Figure 4.1 shows the comparison
of the calculated steady pressure distribution with the measured results. Excellent
agreement with the experimental result is obtained for the calculation with transition
strip which shows the importance of applying the transition strip for this case. Thus
this transition strip is used for further calculation of the unsteady flow. The skin
friction coefficient is positive everywhere along the airfoil surface, confirming that
the flow is indeed attached.

The unsteady flow case is a pitching oscillation about 0.40 chord with an ampli-
tude of 0.50 deg. The reduced frequency based on semichord ranges from k=0.023
up to £=0.192. Figures 4.2 and 4.3 show the normalized (by the amplitude of the
oscillation) unsteady pressure distribution expressed in real and imaginary compo-
nents and in magnitude and phase angle, respectively. In general the agreement is
satisfactory. The differences between the calculated and the measured data may at
least partly be attributed to wind tunnel wall effects which were not eliminated in
reducing the measured data. The results of the computation using 96 time steps
per cycle and those using 48 time steps per cycle show only slight differences in the
phase angle close to the trailing edge, where the magnitude of the unsteady pressure
is very small.

Further, figure 4.4 shows the history of the shock position during the oscillation
for the reduced frequencies k=0.023, 0.072, 0.144 and 0.192. The phase lag between
the shock wave and the airfoil motion is calculated by fitting a quadratic function
centered on the peak in the shock trajectory at ¢, ~450 deg. The phase lag of the
shock with respect to the airfoil motion is then ¢, — 450.

k experiment computation formula 4.6
0.023 ~5 deg 9.65 deg 5.80 deg
10072 ~20deg 2221 deg  1825deg
0.144 ~35 deg 38.41 deg 36.51 deg
0.192 ~50deg  50.11 deg 48.68 deg

Table 4.1: Comparison of calculated and measured phase angles of the shock motion lagging
the airfoil motion

Table 4.1 presents the comparison of the computed and measured phase lag of
the shock motion with respect to the airfoil motion, also included data obtained
using equation (4.6) with R=0.70. It should be noted that the local Mach number
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at the surface has been calculated from the pressure data of the steady flow calcu-
lation using the isentropic relation. This is done in order to be consistent with the
procedure followed in post-processing the data from the experiment. Calculation
using the true Mach number at the edge of the boundary layer gives almost the
same result.

From the comparison of the results shown in table 4.1, it may be concluded
that an adequate accuracy of the numerical simulation is obtained using the present
method. The validity of Tijdeman’s formula has also been assessed.

4.2.1 FIGURES
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Figure 4.1: Comparison of calculated and measured pressure distributions of an NLR 7301

airfoil at My,=0.70, 0ac=2.00 deg , aexp=3.00 deg, and Rego=2.1x10° using 160x60 C-
mesh
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Figure 4.2: Comparison of calculated and measured pressure distributions of an NLR 7301
airfoil pitching about 0.40 chord at My,=0.70, 0mean=2.00 deg , Qamp=0.50 deg, £=0.192
and Re,,=2.1x10% with transition strip at 0.30 chord, using two strategies using 160x60
C-mesh
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Figure 4.3: Similar as figure 4.2 but expressed in magnitude |Cp| and phase angle, ¢




4.3. Shock Wave Motions in Separated Flow About NACA 64A010 105

—— k=0.192 — — k=0.072
——— k=0.144 — —— k=0.023
720 — : 720 T—
f/’s (deg ¢ (deg) airfoil pitching motion
360 —— 360 ——
shock position
0 0

« (deg)
| | | I

i | | [ | i
0.3800 0.4400 0.5000 1.400 2.000 2.600

Figure 4.4: History of shock position for various excitation frequencies. NLR 7301 airfoil
pitching about 0.40 chord at My,=0.70, @mean=2.00 deg , 0tamp=0.50 deg, £=0.023, 0.072,
0.144 and 0.192 and Reoe=2.1x10° with transition strip at 0.30 chord

4.3 SHOCK WAVE MOTIONS IN SEPARATED FLow ABoutr NACA 64A010

NASA Ames has carried out extensive research, both experimentally and computa-
tionally, on unsteady transonic aerodynamics, including separated flow conditions.
The experimental results presented by Davis and Malcolm [42] show the character-
istics of the unsteady aerodynamic loads on an NACA 64A010A (the last A means
Ames version) airfoil in transonic attached and shock-induced separated flow con-
ditions. In the attached flow condition, in response to the airfoil motion, the shock
wave behaved like the one observed by Tijdeman [167], see the previous section. This
behavior will be called the normal shock response. In the case of shock-induced sep-
arated flow some interesting phenomena were observed. When the static angle of
attack increased, the shock wave moved upstream rather than downstream. In the
sequel this type of shock wave response will be called the reverse shock response.
The reverse shock motion phenomenon has a direct influence on the unsteady aero-
dynamic loads, which will be discussed later in this section.

In this section simulations are discussed which were made with the aim to repro-
duce some experimental results of NASA Ames [42]. A C-mesh of 160x60 is used
with 120 points on the surface of the airfoil. The standard airfoil coordinate from
[1] (NACA 64A010) are used instead of the Ames version. The standard NACA
64A010 coordinates are only slightly different from the Ames coordinates. The case
at flow condition M.=0.789, mean=4 deg and Re,,=12x10% is selected. In the
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experiment a transition strip was not applied and in general the transition point is
not known. From a limited transition study at My=0.80 and Re,,=12x10° [42] it
may be concluded that the transition point must have been located at 0.05 chord.
In the calculation the flow was assumed to be fully turbulent. This case is called
the shock stall case because flow separation induced by the shock wave occurs at
the upper surface.

The comparison of the calculated and measured pressure distribution for steady
flow is shown in figure 4.5. The pressure distribution on the lower side and the one
on the upper side in front of the shock wave are in excellent agreement with the
measured values. However, the shock wave is predicted too aft compared to the
experiment, which might be attributed to the inadequacy of the turbulence model
or to tunnel wall influence. From the skin friction coefficient, see the right plot of
figure 4.5, the simulation predicts extensive flow separation behind the shock wave.
This is in agreement with the observation in the experiment [42]. Therefore, despite
of the inaccuracy in predicting the shock position, it may be concluded that the
computational result is in qualitative agreement with the experimental result.

The unsteady flow case considered in this section is a pitching oscillation about
0.25 chord. The amplitude of oscillation is azmp=1.01 deg. A wide range of reduced
frequencies, from a low frequency £=0.051 up to a relatively high frequency k=0.204
based on semichord, is considered. The unsteady aerodynamic responses to the
excitation at these frequencies were reported in [42] showing significant changes in
behavior.

Figure 4.6 shows the comparison of the real and imaginary parts of the first
Fourier component of the unsteady pressure distribution at k=0.051. The exper-
imental data from [42] were digitized because they are not available as numerical
data. Although the shock position and the pressure level are only in a fair agree-
ment, all the trends are well captured. At this low frequency the unsteady pressure
at the upper surface shows a peak with increased pressure in the real part. This
peak is associated with the reverse motion of the shock, like the one observed in
figure 12 of [42] for the so-called the quasi-steady condition, i.e. k=0.

Figure 4.7 shows the comparison of the real and imaginary parts of the first
Fourier component of the unsteady pressure distribution at k=0.204. The experi-
mental data were obtained from [41]. As in the case of low reduced frequency only a
fair quantitative agreement is obtained but the trends are well captured. Now in the
real part of the unsteady pressure distribution at the upper surface there is a peak

. with decreased pressure, This seems to-suggest that at this high reduced. frequency
excitation, the shock motion returns to the normal one, like in an attached flow
case. However, comparing figure 4.7 with a typical attached flow unsteady pres-
sure distribution of figure 4.2, there are still characteristic differences. To further
investigate this type of shock motion some more flow simulations at various reduced
frequencies were carried out. Figure 4.8 shows the comparison of the instantaneous
shock position during one cycle of the pitching oscillation at reduced frequency ex-
citations of k=0.051, 0.102, 0.150 and k=0.204. Although the shock trajectories for
the excitation at k=0.051 and k=0.204 clearly show a different direction of motion,
the change in shock motion from low to high frequency case looks quite continuous.
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Thus it can be concluded that the ‘normal’ shock motion at high frequency is caused
by the large phase lag between the motion of the airfoil and the motion of the shock.

The same behavior of the shock motion at low and high frequency was observed
by den Boer and Houwink [44] in the unsteady pressure measurement of the NLR
7301 airfoil. Moreover, Zwaan [184] noticed that at certain combinations of Mach
number and angle of attack the unsteady flow behavior could be compared with a
mass-spring-damper system with a natural frequency lying in the range of excitation
frequencies, so that by varying the excitation frequency an aerodynamic resonance
condition could be realized. Thus at shock-induced separated conditions, the flow
may contain a natural frequency. In the case of the NLR experiments the natural
mode was damped.

The existence of the natural frequency of the flow can be seen in figure 4.9 which
shows the history of C;, and Cjs and the magnitude of the Fourier components of Cp,
for the case of low reduced frequency excitation (k=0.051). The first peak represents
the response to the excitation. Although there are several more peaks corresponding
to the 3rd harmonic, 5th harmonic, etc., the distinct peak at about £=0.17 shows
that the forced vibration has excited the natural mode of the flow. At a slightly
higher angle of attack, i.e. a=4.50 deg, a self-sustained shock-induced oscillation
occurs without exciting the airfoil, i.e. without oscillating the airfoil. Figure 4.10
shows the history of C and Cj; and the magnitude of the Fourier components of C .
A peak is observed in the magnitude of the Fourier components at about k=0.185,
indicating a natural mode of the flow. This value is slightly higher than the natural
frequency of the flow obtained at @=4.00 deg, presented in figure 4.9.

From the simulation of unsteady flows about the NACA 64A010 airfoil presented
in this section some conclusions can be drawn: The present method has been suc-
cessfully applied to simulate unsteady shock motions for shock-induced separated
flow conditions. There exists an natural frequency of the flow which appears to be
related to the mechanism of shock-induced flow separation. At a certain condition
a self-sustained shock-induced oscillation occurs in the flow about the stationary
airfoil, at a reduced frequency of the natural frequency of the flow.
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4.3.1 FIGURES
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Figure 4.5: Comparison of calculated and measured pressure distributions. NACA 64A010
airfoil at M,=0.80, =4.00 deg, and Re,=12x108 using 160x60 C-mesh
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Figure 4.6: Comparison of calculated and measured pressure distributions. NACA 64A010
airfoil pitching about 0.25 chord at M=0.80, &'mean=4.00 deg , aamp=1.01 deg, £k=0.051
and Reo,=12x10°% using 160x60 C-mesh
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Figure 4.7: Comparison of calculated and measured pressure distributions. NACA 64A010
airfoil pitching about 0.25 chord at M=0.80, dtmean=4.00 deg , ctamp=1.01 deg, £=0.204
and Rey,=12x10% using 160x60 C-mesh

360 — 360 |-
6. (g .
0.204 airfoil pitching motion
0.150
180 —— 180 —+—
k=0.102
0.051
0 0
| e N o el
0.450 0.550 0.650 2.75 4.00 5.25

Figure 4.8: Comparison of calculated positions of the shock wave. NACA 64A010 airfoil
pitching about 0.25 chord at M,,=0.80, &mean=4.00 deg, ramp=1.01 deg, k=0.204 and
0.051 and Res=12x10° using 160x60 C-mesh
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Figure 4.9: History of Cf, and Cjs and magnitude of the Fourier components of Cr,. NACA
64A010 airfoil pitching about 0.25 chord at My=0.80, &mean=4.00 deg , Qamp=1.01 deg,
k=0.051 and Re,,=12x108
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Figure 4.10: History of C, and C)s and magnitude of the Fourier components of Cf. NACA
64A010 airfoil in a buffet condition at M=0.80, a=4.50 deg and Rey,=12x10°
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4.4 TraNsoNIC BUFFET oF NACA 0012 AIRFOIL

The case of transonic buffet of the NACA 0012 airfoil, as occurs in the experiment
of NASA Ames [109], is another example of shock-induced oscillation, besides the
well-known circular arc airfoil in transonic flow. Now also nonzero angles of attack
are involved. The case of 18% circular-arc airfoil, for which the present method gives
very satisfactory results, see section 3.10.5, is more popular as an unsteady flow test
case than the buffet of NACA 0012 airfoil. The effort to reproduce the complete
buffet boundary using numerical simulation was done so far using a viscous-inviscid
interaction method by Edwards [51] and Girodroux-Lavigne and LeBalleur [63]. To
the author’s knowledge, confirmed by a very recent paper of Bennett and Edwards
[32], only little success has been reported for methods involving the Navier-Stokes
equations. Recently, Raghunathan et al. [140] reproduced the buffet of NACA 0012
using TLNS at a particular Mach number and angle of attack. In this section the
present method is employed to reproduce the buffet boundary and to study the
unsteady flow phenomenon.

The experiment carried out at NASA Ames for an NACA 0012 airfoil by McDe-
vitt and Okuno [109] included both static and dynamic measurements. A clear buffet
boundary separating the steady and unsteady responses of a stationary NACA 0012
was obtained. The tests were carried out at Mach numbers ranging from 0.70 to
approximately 0.80 and angles of attack up to 6 deg, sufficient to penetrate buffet
onset. Beyond the buffet onset shock-induced oscillations occurred in the flow. The
Reynolds number during the test ranged from 1 to 14 million, based on the chord.
To minimize the wall interference the upper and lower tunnel walls were flexible and
boundary layer suction was utilized.

Following the calculation of [63] and [51], a Reynolds number of 10 million was
used here throughout the simulation. In all calculations, unless otherwise noted,
the Baldwin-Lomax (BL) algebraic turbulence model was used. In the numerical
experimentations the main reduced frequency of the response was found, like in the
case of circular arc airfoil, to depend on the extent of the outer boundary where
the freestream condition was imposed. However, the buffet boundary was hardly
influenced. For the present calculations a 160x60 mesh, with 120 points at the
airfoil surface was employed. A distance of the outer boundary comparable to the
one in the calculations of [63] and [51], i.e. 20 chords away, was applied. At this
distance the reduced frequency is mildly dependent on changing this distance. The
simulations were started from freestream condition. To avoid nonphysical results due
to numerical transients, the first time step employed a small underrelaxation factor
and many subiterations. Subsequently 12 to 20 subiterations were used depending
on the convergence of the unsteady residual at each time step.

At each Mach number, i.e. M,=0.725, 0.750, 0.775 and 0.800, a sequcnce of
simulations with an incrcasing angle of attack were carried out until an unsteady
flow response was obtained. The increase of the angle of attack between subsequent
simulations was 0.50 deg. For example, figure 4.11 shows the history of €'y and
Chr for M,=0.775 at three angles of attack, ®=2.50, 3.00 and 4.00 deg. The first
unsteady response due to shock-induced separation is obtained at a=3.00 deg. The
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case of =4.00 deg represents a heavy buffet condition.

Figure 4.12 shows the instantaneous Mach contours at four time levels for Mo,=0.775
and a=4.00 deg. It is more convenient to refer also to figure 4.13 which shows the
corresponding isobars and contours of constant skin friction plotted in space and
time. The first two plots of figure 4.12 show the strengthening and downstream
motion of the shock wave. This strong shock wave causes the flow separation to
extend further downstream and coalesce with the trailing edge separation, see figure
4.13. The growth of the separation bubble takes place in a rapid manner, being in
agreement with the observation of Piercey [43]. After the flow behind the shock has
become fully separated, indicated by the shedding of a vortex which formed due to
the rapid change of the circulation around the airfoil, see the last plot of figure 4.12,
the shock wave starts to move upstream and a strong disturbance, originating from
the shock foot, is transported downstream. This disturbance is caused by a rapid
change of the circulation around the airfoil due to the flow separation. On moving
upstream the shock wave arrives at the slower supersonic region which weakens the
shock wave, and reduces the pressure gradient to the level that causes flow reat-
tachment. The flow reattachment causes the increase of the circulation around the
airfoil which shifts the shock wave downstream and enlarges the supersonic region.
The cycle then starts over again.

For the calculation at zero angle of attack, the sequence of simulations was calcu-
lated for increasing Mach numbers. The difference between subsequent simulations
is M,=0.05. Figure 4.14 shows the history of C;, and C), at three difference Mach
numbers: My,=0.830, 0.840 and 0.845. The flow at M =0.845 shows the first occur-
rence of an unsteady shock-induced oscillation. Figure 4.15 shows the instantaneous
Mach contour at four time levels at M,,=0.845 and =0.00 deg. The phenomenon
is similar to the nonzero incidence case of figure 4.12, only this time both sides
experience shock-induced oscillations with 180 degree phase difference. Notice the
similarity with the transonic buffet of the circular arc airfoil, figure 3.27.

The complete buffet boundary is presented in figure 4.16. Comparisons are pro-
vided by the experimental results of NASA Ames [109] and the computational results
of [51, 63] employing a viscous-inviscid interaction method of TSP and a boundary
layer method. In [63] a semi-implicit viscous-inviscid coupling was applied in a time-
consistent manner, while in [51] an unsteady viscous-inviscid coupling method was
introduced in which the coupling between viscous and inviscid flow contained ac-
tive control elements in order to minimize the coupling error. This coupling, called
interactive boundary layer coupling, was: designed to.-enable modeling of flews with
shock-induced oscillations. At each condition in figure 4.16 two symbols have been
plotted, in the case of nonzero angle of attack the symbol at the lower incidence
represents the last steady flow condition and the other symbol represents the first
unsteady shock-induced oscillation condition. For the zero angle of attack case the
two symbols represent subsequent Mach numbers at which a steady flow and an un-
steady flow solution have been obtained, respectively. In general, good agreement
between the calculated and the experimental results has been obtained. The buffet
boundary predicted by the present method is slightly higher at high Mach numbers.
The buffet boundary lies between those of [51] and [63]. The comparison of the
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dominant reduced frequency during the buffet process is shown in figure 4.17. Al-
though the buffet onset predicted by the present method is different from the results
of [51], the trend of the dominant reduced frequency with the increase of the angle
of attack is similar. At a=4.00 deg the present result is close to the result of [63]
and is somewhat lower than the experimental result. This is probably due to the
time consistent character of the method of Girodroux-Lavigne and LeBalleur [63]
which is closer to a Navier-Stokes simulation. The result of [51] is slightly higher
than the experiment.

Up to this point the calculations have been focused on the comparison to allow
a further study of the aerodynamic mechanism in the unsteady flow. To study
the unsteady flow phenomena further, inspection of the results of simulations for
the nonzero (My,=0.775, ®=4.00 deg) and zero (M,=0.845, ®=0.00 deg) angle of
attack conditions were carried out.

Figure 4.13 shows the space-time plot of the isobars and contours of constant skin
friction. The following observations can be made: The shock moves downstream and
near the most downstream shock position, z;/c =0.45, flow separation starts at the
shock foot at (t — tg)aw/c =3. The separation bubble spreads downstream towards
the trailing edge and merges with the trailing edge separation at (¢ — #g)ac/c ~15.
During this time the shock position remains almost constant. At (t — tg)as/c =13
the the shock starts to move upstream and a large disturbance is shed from the shock
foot towards the trailing edge. On arriving at the trailing edge at (¢ — #g)as/c ~15
the flow on the lower surface becomes also influenced, probably primarily because
the direction of the wake starts to rotate upwards (decambering of the airfoil), see
also figure 4.12. The disturbances propagate upstream along the airfoil lower side
with a speed lower than the convection speed in the separated region at the upper
side. At (t — tg)ac/c =22 the flow at the upper surface starts to reattatch at 0.70
chord. At this time the shock position is most forward. The reattatchment region
spreads rapidly both upstream and downstrcam. When the flow is fully attached
the downstream motion of the shock sets in. Meanwhile the disturbances traveling
along the lower side arrive at the leading edge at (t — tg)ax/c ~24 and appear to
change the local angle of attack (a change in oncoming flow direction, see figure
4.12). This variation of local angle of attack changes the pressure upstream of and
in the supersonic flow region only slightly.

The propagation of pressure disturbances from the shock foot to the trailing edge
for a heavy buffet condition found in the simulation was also observed by Roos [147]
in a wind tunnel experiment. Roos [147] showed this feature by cross-correlating
the pressures at the upper surface of a Whitcomb supercritical airfoil for a heavy
buffet condition, see figure 4.18. The reference point of the cross-correlation was
at 0.90 chord. The peaks, at positive value of 7, in the cross-correlation of the
pressure at the reference point and the pressures at a number of points upstream of
the reference point show that the pressure at the reference point is correlated with
the pressure upstream at an earlier time. This means that pressure disturbances
propagate downstream. Here, similar cross-correlations have been calculated for the
heavy buffet condition at M=0.775 and @=4.00 deg. The results are presented
in figure 4.19. Similar to the results of Roos. the pressure a the trailing edge is
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correlated with the pressure upstream at an earlier time which means that the
pressure disturbances propagate downstream. Thus the present method is in a
qualitative agreement with the finding of Roos [147].

The physical explanation of this type of self-sustained unsteady flow has actually
been attempted for quite a long time. Here, only the representative models, i.e. Lee’s
mode] [100] and Stanewsky and Basler’s model {159], will be discussed.

Lee’s model is shown in figure 4.20. The model hypothesizes a closed loop in
which the pressure disturbance propagates in the separated flow region from the
foot of the oscillating shock to the trailing edge, which then disturbs the wake.
Subsequently, due to the disturbance the wake produces upstream propagating waves
outside the boundary layer region to arrive at the shock and cause the shock motion
of Tijdeman’s type A. Lee tested his hypothesis using a computational method
employing the TSP equation. A pulse disturbance was introduced explicitly at the
trailing edge and the time required to close the loop, i.e. the period of oscillation, was
calculated. Reduced frequencies of the same order of magnitude as the ones observed
in the experiment were obtained. In his computational model, Lee assumed that
waves are generated at the trailing edge and propagate upstream. However, in
the present buffet simulation upstream propagating waves have not been observed.
This will be demonstrated as follows. A similar cross-correlation as in figure 4.19
was computed in the flow region outside the separated flow which according to
the hypothesis of Lee should contain upstream propagating waves. The result is
presented in figure 4.22. Contrary to the model of Lee, a similar situation as in the
separated flow region is observed, i.e. the waves propagate downstream. To further
clarify this finding 7 at the peaks in the correlation diagram were calculated for all
pressure data behind the shock wave. The reference point is located at z/c=1.055.
The results have been plotted in figure 4.23. Each contour in figure 4.23 represents
the location at which the peak in the correlation diagram occurs at the same value
of 7. These contours may also be interpreted as contours of constant phase lag with
respect to the reference. Figure 4.23 shows a source of disturbances at the shock
foot. The waves propagate mainly downstream and partly upstream to the upper
part of the shock. Thus, two objections may be formulated for Lee’s model: the
upstream propagating waves have not been observed and the shock motion is not of
type A, as postulated.

The other representative model of self-sustained shock-induced oscillation is due
to Stanewsky and Basler [159], sketched in figure 4.21. The idea of their model is
similar to.Lee’s, but. the. pressure disturbances: are now traveling mainly: upstream
along the lower side of the airfoil and control the oncoming flow. The objection to
this model is that although the upstream propagating waves were indeed observed
in the calculation, their influence on the flow in front of and in the supersonic flow
region at the upper side is very limited, see figure 4.13.

The application of the Spalart-Allmaras (SA) turbulence model for this case is
not as successful as the BL model. Figure 4.24 shows the history of C; and the
magnitude of the Fourier components for the case at M, ,=0.775 and a=4.00 deg
calculated with the BL and SA turbulence model, and the zero angle of attack case
at M =0.845 calculated with the BL model. Although the calculation with the SA
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model predicts a similar shock-induced flow separation, the shock-induced oscillation
is obviously damped. Very recently a similar calculation was carried out at NASA
Langley by Bartels [21] which resulted also in damped responses. It should be noted
that actually the natural frequency of the flow is still there, indicated by the presence
of a peak at about £=0.19 in the Fourier components of the lift coefficient. _

To confirm the existence of a natural frequency in the flow in case of a calculation
using the SA turbulence model, the airfoil was excited in pitching oscillation about
the 0.25 chord. Figure 4.25 shows the history of C; and the magnitude of the
Fourier components of C}, for the excitation frequencies £=0.10, 0.19 and 0.40. It is
clear that the response at k=0.19 is always excited by the forced oscillations at all
three frequencies. Moreover excitation at k=0.19 produces a significant amplitude
of Cyp in the same order as the buffet condition calculated using the BL turbulence
model. This result suggests that the natural mode of the flow is related to the
shock-induced separated flow, whereas the self-sustained oscillation is determined
by another mechanism.

From the simulation of transonic buffet of the NACA 0012 airfoil several conclu-
sions are obtained: The present method has been successfully applied to simulate
buffet flow for NACA 0012. Comparison of the buffet onset with the experimen-
tal results and other computational results employing viscous-inviscid interaction is
satisfactory. The hypothesis of Lee [100] is not supported by the results of the sim-
ulation. Confirming the previous results obtained by others, the Spalart-Allmaras
turbulence model does not give satisfactory results in modeling the buffet flow.




116 Chapter 4. Simulation of Unsteady Flow Phenomena Around Airfoils

4.4.1 FIGURES
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Figure 4.11: History of C, and Cjs of a NACA 0012 airfoil at M,,=0.775, a=2.50 deg (last
steady solution), @=3.00 deg (first unsteady solution), @=4.00 deg (deep buffeting condition)
and Rex=107 using 160x60 C-mesh
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Figure 4.12: Instantaneous Mach contours at four time levels of an NACA 0012 air-
foil at My=0.775, a=4.00 and Reyx=107, using 160x60 C-mesh. Time is relative to
todoo/c=124.83
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Figure 4.13: Contours of pressure and skin friction plotted in space-time of an NACA 0012
airfoil at M,,=0.775, @=4.00 deg and Re,,=107 using 160x60 C-mesh
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Figure 4.14: History of C; and Cys of an NACA 0012 airfoil at @=0.00 deg, M,=0.830 (last
steady solution), Mx=0.840 (small fluctuation unsteady solution), M,,=0.845 (unsteady
sotution) and Reoo=107 using 160x60 C-mesh
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Figure 4.15: Instantaneous Mach contours at four time levels of an NACA 0012 airfoil
at M=0.845, @=0.00 deg and Re,,=107 using 160x60 C-mesh. Time is relative to
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Figure 4.16: Comparison of calculated and measured buffet boundaries of an NACA 0012
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0.845 and Reo,=107




4.4. Transonic Buffet of NACA 0012 Airfoil 119

—O6— TSP+BL Edwards [51]
& TSP+BL Girodroux-Lavigne& L eBalleur [63]
— 8 — TLNS present method
X Experiment McDevitt&Okuno [109]

0.300 —
k
X
/E
0.150 +—
BQ/Er
0.000
L |« (deg) |
[ [ B
1.00 3.00 5.00

Figure 4.17: Comparison of calculated and measured dominant buffet reduced frequency of an
NACA 0012 airfoil at My=0.775, =2.00 to 4.00 deg and Re,,=10"

Riwyy, pgo. 7)
Rlpgg. pgo 7!

Rlpgg, Pgo. 7
Rip7p Pgo. 7)

Ripgs. Pgo. 7)

R e A U T

e —— Ripy0. Pgo. 7)
i ] ' | ]
~2 -1 0 1 2
T{ms}

Figure 4.18: Cross-correlation function of pressures on the surface of a Whitcomb supercritical

airfoil showing the propagation of disturbances during heavy buffet, taken from the experiment
of Roos [147]
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Figure 4.19: Cross-correlations of pressures on the surface of an NACA 0012 airfoil at a heavy

buffet condition of My,=0.775, a=4.00 deg and Re,,=10" using 160x60 C-mesh
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Figure 4.20: Self-sustained shock oscillation model of Lee [100]
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Figure 4.21: Self-sustained shock oscillation model of Stanewsky and Basler [159]
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Figure 4.22: Cross-correlations of pressures outside the separated region of an NACA 0012

airfoil at a heavy buffet condition of M,,=0.775, «=4.00 deg and Re,,=10" using 160x60
C-mesh
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Figure 4.23: Contours of constant time lag, obtained from applying cross-correlation, of pres-
sures behind the shock wave of an NACA 0012 airfoil at a heavy buffet condition of My,=0.775,
a=4.00 deg and Re.,=107 using 160x60 C-mesh

— M,=0.775, a=4 deg, BL turbulence modei
— — — My=0.775, a=4 deg, SA turbulence model

— — M=0.845, a=0 deg, BL turbulence model

0.700 0.220 ——
CL JCL,1|
0.367
0.110 —
0.033 i I
-0.300 — ; 0.000 ——7¢
tay /e :
i T e e
0.0 65.0 130.0  0.000 0.400 0.800

Figure 4.24: History of C, and the magnitude of the Fourier components of C;, for three cases
of a stationary NACA 0012: M,,=0.775, a=4.00 deg using Baldwin-Lomax turbulence model
and Spalart-Allmaras turbulence model and M,,=0.845, a=0.00 deg using Baldwin-Lomax
turbulence model, all at Rey,=107
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Figure 4.25: History of (' and the magnitude of the Fourier components of Cy, for the forced
pitching oscillation about 0.25 chord of an NACA 0012 at M,,=0.775, a=4.00 deg, k=0.10,
0.18, 0.40, calculated using Spalart-Allmaras turbulence model
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4.5 CoNcLUSIONS CONCERNING THE SIMULATION OF UNSTEADY FLOW PHE-
NOMENA AROUND AIRFOILS

The present method has been further validated by numerically simulating flows with
significant viscous effects. From the cases considered in this chapter the following
conclusions can be drawn:

1. Harmonically oscillating airfoil:

e The present method produces adequate accuracy in predicting shock mo-
tion for attached flow cases. Tijdeman’s hypothesis concerning the phase
lag of a type A shock motion has been reproduced.

e For flows with a large extent of separation, qualitatively correct results
are also obtained. The behavior of the shock motion at low frequency
and high frequency excitation are well predicted, i.e. the shock moves in
a direction opposite to the one observed in the attached flow case, with
a phase lag between shock and airfoil motion which increases with the
excitation frequency.

e The occurrence of an aerodynamic resonance because of the presence of
an aerodynamic natural mode of the flow can also be predicted.

2. Buffet:

e The buffet onset of the NACA 0012 airfoil for zero and nonzero angle of
attack conditions is in a good agreement with experimental results.

o The finding of Roos [147] that in a heavy buffet condition the pressure dis-
turbances propagate downstream behind the shock has been confirmed.

o The hypothesis of Lee [100] for the buffet/shock-induced oscillation mech-
anism has not been confirmed. There is no evidence of upstream prop-
agating pressure waves generated at the trailing edge, which interfere
with the shock wave. Instead, pressure waves have been observed to be
generated at the shock foot and propagate downstream.

3. Turbulence modeling:

o The Spalart-Allmaras turbulence model appears to be less successful for

. simulation of buffet flow. Despite the evidence of the existence of a nat-
ural frequency in the flow calculated using this turbulence model, no
self-sustained oscillations have been obtained.

e Both Baldwin-Lomax and Spalart-Allmaras turbulence model predict
similar shock-induced separated flow conditions. This seems to suggest
that the presence of a natural frequency in the flow is more likely to be the
consequence of a shock boundary layer interaction. There are other mech-
anisms which ensure the self-sustained oscillation to take place. More
research is needed to determine these mechanisms.




CHAPTER 9

AEROLEASTIC SIMULATIONS USING
CUA METHODS

According to the general directives for the development of a CAS method, sec-
tion 2.3.3, the aerodynamic and the structural part should be loosely coupled. The
aim of this chapter is to discuss in more detail the loose aero-structural coupling
strategy to integrate both parts which were discussed in the previous chapter.

The following subjects are discussed in this chapter: introduction of the loose
aero-structural coupling methods, the structural model used for the present two-
dimensional CAS method, the temporal integration method for the structural part,
the aero-structural coupling method based on aerodynamic and structural extrapo-
lation, the analysis of the results and an example of a two-degree-of-freedom airfoil
in transonic flow.

5.1 INTRODUCTION

In most of the methods found in the literature the time step of the unsteady aero-
dynamic method dictates the time step for the aeroelastic simulation. This has
been the main drive to investigate an efficient CUA method for CAS applications,
which was presented in chapter 3. It was concluded there that the present unsteady
aerodynamic method can be used with large time steps while still maintaining suf-
ficient accuracy. The choice of the time step is determined by the physical accuracy
requirement rather than by the numerical stability limit.

In the beginning of the study the commonly used simple aerodynamic extrapo-
lation method of Edwards et al. [52] was applied. It was shown by Prananta and
Hounjet [132] that by using the present unsteady aerodynamic method, the time step
of the aeroelastic simulation is determined by the accuracy of the aero-structural
coupling procedure. This conclusion was drawn from the observation that aithough a
large time step can be used for both the aerodynamic and the structural part to pro-
duce results with adequate accuracy, coupled simulations require a relatively small
time step. Therefore, improvement of the coupling method is necessary to benefit
from the large time step allowed by the current aerodynamic methods. Two cou-
pling methods have been studied: an improved aerodynamic extrapolation method
and a structural extrapolation method.

The methods discussed in this chapter will be applied also for three-dimensional
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Figure 5.1: Typical section of a wing, CG is the center of gravity, EA is the elastic axis, K}, is
the translational stiffness, K, is rotational stiffness

configurations, which will be presented in the next chapter.

5.2 STRUCTURAL MODEL

The assumption that the structural deformations are relatively small leads to lin-
ear models for the equation of motion of the structural part. For the purpose of
the present discussion, a two-dimensional model of a wing is considered, which is
rigid along its chord. The aeroelastic properties of this model, called typical section
wing, is usually made to fit the properties at 70-75% of the actual wing semi-span.
The motion of the typical section can be fully described by the translational and
rotational displacements i and «, respectively, representing typical bending and
torsional displacements of the actual wing. Figure 5.1 shows the schematic pic-
ture of the typical section. The vibrational characteristics of the typical section
are determined by the location of the center of gravity, CG, and the elastic axis,
EA. The elastic axis marks the point where a vertical force will result in a transla-
tional displacement only and a moment about that point will result in a rotational
displacement only.

As only these two degrees of freedom are involved, modal decomposition is not
applied.

5.2.1 EQUATIONS OF MOTION

The equations of motion of the typical section wing may be derived by balancing the
forces at and moments about EA. It should be noted that in deriving the equations
of motion it is always assumed that sina = o and cosa =~ 1. The balance of forces
then is:

m(h + z4b3) + Kyh+ L =0 (5.1)
and the balance moment about EA is:
mh zob + b+ Koo — Mea = 0, (5.2)

where h is the translational displacement, positive downward, m is the mass of the
typical wing section and I, is the mass moment of inertia with respect to EA, both
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per unit wing span. L = ¢,2bC is the aerodynamic lift force, defined as positive
upward, and Mga = o04b?C)y is the aerodynamic moment about EA, defined as pos-
itive nose up, both quantities again per unit of wing span. After some simplifications
equations (5.1) and (5.2) become:

h+2a6+wih = —2¢5CL/m, (53)
Toh + 126+ riwla 4¢Cpr/m, (5.4)

where z, is the dimensionless distance of CG behind EA, r, = /I,/(mb?) is the
dimensionless radius of gyration with respect to EA, w, = /K/m is the natural
frequency of the uncoupled translation, w, = \/K,/I, is the natural frequency of
the uncoupled rotation and h = h/b the dimensionless translational displacement.
Since both the equations of motion and the aerodynamic quantities C, and Cy,
will be integrated simultaneously, their dimensionless time steps have to match. The
nondimensionalization time parameter for the aerodynamic part, ¢/ay, is used for
the whole set of equations, to arrive at the following representation in a matrix form:

Mi(t)+ Kz(t) = B'U(z, 1), (5.5)
with:
Pl oz, o[ Wi o0
M_[xa Tg]’ KW('O[ 0o |

M2 -4 0
t . oo
vzl

where ¢ = 2M,,/U is defined as the time scaling factor for a reason which will be
explained later, U = Uy /(wab) is the reduced velocity, u = m/(wpb?) is the mass
ratio and the variables are z = [h,@|T and U = [C, Cy]7. In case the accuracy of
the structural part defines the time step for the whole set of aeroelastic equations one
might adopt the structural time, t; = tw,. The scaling factor between aerodynamic
and structural time steps is then: A¢; = @A¢t, for which ¢ is called the time scaling
factor.

The consequence of defining A and o with respect to EA, becomes clear by
examining equation (5.5). The stiffness matrix K is diagonal, whereas the mass
matrix M has off-diagonal elements. h and a, are said to be inertially coupled,
besides of course the aerodynamic coupling originating from U.

Equation (5.5) can be brought into a standard state space representation, i.e. a
system of ordinary differential equations of order one as:

X = AX + BU(X, 1), (5.6)

where:
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where the state variable is now X = [z,%]7. The state space form, which has been
common in the study of aircraft flight dynamics for long, has also been adopted in
structural dynamics because of its versatility in describing time-dependent processes.
In equation (5.6), various similarity parameters are included: structural similarity
parameters (offset of EA downstream of CG z,, radius of gyration r, and frequency
ratio wy/w,), aerodynamic similarity parameter (Mach number M) and the aero-
structural coupling parameters (reduced velocity U and mass ratio ).

5.2.2 TEMPORAL INTEGRATION METHODS FOR STRUCTURAL DYNAMICS

In the study of structural dynamics, usually the forcing function does not depend
on the state of the structure. The commonly applied temporal integration methods
in structural dynamics are the Houbolt method, the Newmark-8 method and the
Wilson-f method. They are all implicit methods. The Houbolt method is applied
directly to the second-order form of the equations of motion, equation (5.5), where
Z is approximated by a second-order backward difference formula and the resulting
algebraic equation is solved for z"*!. The Newmark-3 and the Wilson-8 method
belong to the class of linear acceleration methods in which a linear variation of
the acceleration from time t" to t* + At is assumed. The reader should consult
Bathe [23] for an excellent discussion of these methods. In addition, for nonlinear
structural dynamic problems linear multistep methods are reported to be suitable,
see Park [127].

In the present study only the Newmark-3 scheme with parameters resembling
the trapezoidal scheme (average acceleration) will be considered. This method is
known to be unconditionally stable and very accurate in resolving the amplitude of
oscillation Gear [62]. Applying the trapezoidal scheme to the first-order equation,
i.e. equation (5.6), results in:

Xn+1 - X" _ Axn+1 + X"
At B 2

+ BU™ 3, (5.7)

where U™ is a representative value of U between time level (n) and (n + 1).
Equation (5.7) can be easily solved for X™*! which is the state of the structure at
the next time level.

Considering a system represented by equation (5.6) where A is time-invariant,
an exact solution can be derived if U does not depend on X. Similar to a scalar
‘ordinary differential equation, the solution of equation (5.6) when U = U(t), can be
written as:

n+1 et n+1
X A yo L / A =) By (r)dr. (5.8)
0

The first part is the homogeneous solution and the second part is the particular

. n+1 .
solution. In some cases et can be calculated in an exact manner, but some-
times this is not done due to reasons of efficiency or convenience in the numerical
implementation. Moreover, an exact integration of the particular part is usually
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parameter value remark
airfoil  NACA 64A010 taken from [1]
a -2.00 elastic axis in front of the airfoil
T 1.80
r2 3.48
wh/wa 1.00 ratio of uncoupled frequencies
n 60.00

Table 5.1: Aeroelastic parameters of a typical section (Isogai's case A) used for the example
of structural temporal integration methods

difficult. Therefore an approximate method is applied here. The method is called
the transition matrix method; some notes on this method are presented in appendix
D. The state at the next time level is obtained using the recursive relation:

X = X" 4+ QU™ 3, (5.9)

where a constant aerodynamic force U™tz is assumed between time level (n) and
time level (n + 1). The methods for calculating ® and © are presented in appendix
D. For practical reasons it is more convenient to express the Newmark-3 method,
viz. equation (5.7), in the form similar to equation (5.9). In this case ® and © are:

& = [1-2tarir+ Sa,
2 2
A
0 = [I- 5 A" MB. (5.10)

The effectivity of the Newmark-8 and the transition matrix method has been
tested using Isogai’s case A [87]. The parameters are listed in table 5.1. This test case
was originally proposed by Isogai [86] to investigate the transonic dip phenomenon
of a swept back wing. Therefore the aeroelastic parameters of the typical section,
shown in table 5.1, were designed to mimic the behavior of a swept wing: EA in front
of the leading edge and a relatively high frequency ratio between the first bending
and the first torsional modes. The natural frequencies of the free vibration can be
easily calculated by considering the homogeneous part of equation (5.5):

e[ e e

Substitution of [k, )T = [k, &Te™! into equation (5.11) results in an eigenvalue
problem:
2/ 2.2 2 2
wiwie® —w —Tow -0 5.12
|0 (5.12)

which can be solved for w?:

P T L 0 N LR Y LT R 1Y T P
272 - a3) 12— a2 |
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Inserting the aeroelastic parameters of Isogai’s test case A into equation (5.13)
one obtains two eigenvalues, w;=0.7134¢p and w,=5.3380¢ (or using structural time
w1=0.7134w, and wy=>5.3380w,). The pivot point of the vibration modes can be
calculated with the help of the first equation of equation (5.12):

Ty =a—h/&

2

ToW

=0- 55— 5.14
" R - o

to arrive at: x,,=-3.866 for the first mode and ,,=-0.134 for the second mode,

both are measured in b from the center of the airfoil. The wind-off mode shapes of
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(a) first mode w=0.7134w, (b) second mode w=5.338w,

Figure 5.2: Vibration modes of Isogai’s typical section

Isogai’s typical section are sketched in figure 5.2, where the node of the first mode
is in front of the leading edge and the node of the second mode is at the airfoil from
the leading edge.

The simulation proceeds from an initial velocity for the pitching motion, &(0) =
0.0lay/c. This initial condition will excite both modes. The number of time steps
per cycle is set based on the highest frequency, i.e. the natural frequency of the
second mode. The results for a small time step of 96 per cycle are shown in figure
5.3. The time traces show clearly the presence of two vibration modes with periods
of oscillation of 27/(0.7134w,)=8.804/w, and 27/(5.338w,)=1.177/w,. It should be
noted that the time along the horizontal axis of figure 5.3 has been nondimensional-
ized using the structural parameter because a nondimensionalization using the flow
parameters would require the data of M,, and U, which are not relevant in this case.
The results of the transition matrix method are practically the same as those of the
Newmark-3 method. This test case also cross-checks. the implementasion of the two
methods which turn out to be consistent.

The results for a large time step of 8 steps per cycle are shown in figure 5.4.
The reference is provided by the result of the transition matrix method using small
time step presented in figure 5.3. The results of the transition matrix method
do hardly differ from the reference, which suggests that the transition matrix &
has been accurately calculated. Meanwhile the results of the Newmark-3 method
reveal an inaccuracy in resolving the high frequency component. The period of the
high frequency component is clearly different from the reference. But it seems that
the neutrally stable character of the Newmark-8 scheme, implying zero numerical
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Figure 5.3: Comparison of the results between the matrix transition method, equation (5.9),
and the Newmark-3 method, equation (5.7), for small time step

damping, ensures that the amplitude of the oscillation is in general correct. This
neutrally stable character is further tested by executing the simulation up to 20
periods of the lower frequency modes. If there were inaccuracies in resolving the
amplitude of oscillation this long simulation should reveal them. The results are
presented in figure 5.5 which show that the amplitude is correctly reproduced, i.e.
constant up to a very long simulation time.

5.3 Lo0OOSE AERO-STRUCTURAL COUPLING METHODS

In the classical, linear aeroelastic approach the aerodynamic forces are divided into
motion-dependent and motion-independent contributions (due to flow separation,
wake, gust, etc.). The calculated responses to initial displacements and velocities
and to motion-independent forces are superimposed afterwards. Since in nonlinear
cases this superposition principle can not be applied, equation (5.5) treats all aero-
dynamic forces as one single term, U(x,t). Moreover, since in general an explicit
relation between U and z can not be obtained in a simple manner, the aerodynamic
forces will be treated as an excitation of the structural system, thus U = U(t). The
coupling of the two equations of motion is effectuated via the (nonlinear) dependency

of U(t) = [CL(t).Cr(t)]T on z = [h,a)7.

5.3.1 COMMONLY USED METHOD

The commonly used loose aero-structural coupling method was introduced by Ed-
wards et al. [52] and applied in [102, 141, 143]. In this method an approximation
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Figure 5.4: Comparison of the results between the matrix transition method, equation (5.9),
and the Newmark-3 method, equation (5.7), for large time step

of the aerodynamic force is constructed and used to evaluate the nonhomogeneous
part of equation (5.9). At the end of time level (n) the structural equations need the
aerodynamic loads at time level (n+ 1) in order to solve the structural equations for
the new position and velocity of the fluid/structure interface. These aerodynamic
data are approximated using a simple extrapolation as:

U+l 2™ — U™ (5.15)

where U™t! is the approximation of the aerodynamic force at time level (n+1),U"
and U™! are the aerodynamic forces at time level (n) and (n — 1), respectively. The
integral of the particular part of equation (5.9) is then carried out by assuming a
constant aerodynamic force of the form:

1 -

UMb =@ Uy,
_3 n 1 n—1
= L (5.16)

Solving equation (5.9) using the aerodynamic load defined by equation (5.16) results
in an approximate position and velocity of the fluid/structure interface which are
used to enforce boundary conditions to the flow solver, including the mesh deforma-
tion, to obtain the aerodynamic data, U"*'. Rausch et al. [141] applied a corrector
step in which the last aerodynamic data are used to solve the structural equations
once more and subsequently update the mesh.
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Figure 5.5: Comparison of the results between the transition matrix method, equation (5.9),
and the Newmark-£3 method, equation (5.7), for large time step and very long simulation time

It has already been shown by Prananta and Hounjet [133] that this method
fails to give good results for aeroelastic simulations with large time steps. Two
methods are considered to improve the commonly used loose aero-structural cou-
pling procedure: an improved aerodynamic extrapolation method and a structural
extrapolation method.

5.3.2 AERODYNAMIC EXTRAPOLATION

The most straightforward improvement of the commonly applied aerodynamic ex-
trapolation method is by simply taking into account more data from the past, i.e.
to apply a higher-order extrapolation.

To set up an extrapolation method, the aerodynamic force is expressed as a
function of the flow variable ) and the state variable X as U = U{(Q, X). The
extrapolation of U from the data up to time level (n) to time level (n+ 1), neglecting
higher order terms, is:

ouoeQ oU 0X At

n+%z mn % il Y
v Ut oo Tax o) 2

(5.17)

The first term takes into account the change in the flow and the second term the
change in the geometry. The 0Q)/0t and 0.X /0t are readily available data or can be
calculated easily, while 0U/0Q and 0U/0X have to be calculated.

To calculate OU/0Q and QU /0X the aerodynamic forces are expressed explicitly
as function of Q, h and «. Note that the h direction is parallel to the z direction
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and pointing downward, the aerodynamic force coefficients are calculated as:

Cu(t) = —"A/%— % pi(8)Cea(0),
Cut) = ~50 T Ol - 2)elt) ~ () — sea)Ca O,

where p(t) is the surface pressure nondimensionalized by psea2, and [z, &;|T denotes
the normal vector of the surface, nondimensionalized by the chord length ¢, as
defined in equation (3.7). The coordinates of the fluid/structure interface are written
explicitly as functions of ~ and « as:

z(t) = zea+(2(0) — zea) cosa(t) + (2(0) — zea) sina(t)
2(t) = zea — (2(0) — zga) sina(t) + (2(0) — zga) cos a(t) — h(t)/2,
where [2(0), z(0)]7 is the coordinate of the interface at its mean steady position.

The change of the lift coefficient due to the change in flow variable, i.e. the first
term of equation (5.17), is:

0CLop _ 0CL| __ 2 om;
Tl AN R A (5.18)

where the pressure p is used instead of Q. The gradients of the lift coefficient with
respect to the state variables are:

oCy, 2 o . 2 _
Sa = —Mgo %, pi(—C.(0) sin a(t) — (- (0) cos a(t)),
oc,  9Cp oCp
oh ~  9h  O0a

The change of the moment coefficient about the elastic axis EA due to the change
in flow variable is:

BCMap_aCM __i % _ N _ - .
o |, Mgoz’ 5t [(z — 2ea)Ce—(x — 7EA) ()i (5.19)

Ned

The gradients of the moment Cyy with respect to the state variables are calculated
in a similar manner:

Cw 2 - 0z - ~ ~ o, O, ..
Ba M;Ezpz(t)[(z(t) ZEA)go;Jrégcz(t) (z(t) st)a %@(t)]u
Cu acM_acM_O
oh  ~  Hh Oa

where 8C, /00, 8(,/da,dz/0c and 8z/B can be easily calculated from equation
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(5.18) as:
?9—% = ,(0) cosa(t) — & (0) sin a(?)
Zi = =((0)sina(t) — ¢ (0) cos a(t)
2—2 = —(2(0) ~ zea) sin a(t) + (2(0) — zg) cos a(?)
2_2 = —(2(0) — zea) cos a(t) — (2(0) — 2ga) sin a(t).

Inserting these expressions in equation (5.17) the aerodynamic forces at time level
(n+ 3) can then be predicted using X and dp/8t data at time level (n).

5.3.3 STRUCTURAL EXTRAPOLATION

The structural part behaves like a filter to the aerodynamic signal. This results
in structural motions which are smoother functions of time than the aerodynamic
forces. Thus it may be expected that extrapolating the structural state yields a
better result than extrapolating the aerodynamics data.

To obtain the aerodynamic force at time level (n+3), the position of the interface
is first approximated as:

Oh™ At

RE o Bt 4 o —

T 2
" et — —. 20
a2 A+ at 2 (5.20)
The quantities Oh/0t = h and da/dt = & are readily available. Using these data,
the mesh can be generated at time level (n + 1). Actually a similar method was
introduced by Farhat and Lesoinne [58] for a different reason, namely to satisfy the

GCL on the fluid/structure interface.

For the velocity a linear extrapolation is applied:

. 3. 1.
R™tE e Dh 4 —pn ! 5.21
R ht S (5.21)
3 1
G 56"+ 5@“'1. (5.22)

Using these data the velocity of the interface can be calculated and used to impose
the boundary condition on the flow equations. It was concluded in [58] that the
surface velocity at time level {n) has to be used to impose boundary condition at
time level (n + 1), otherwise high frequency oscillations would occur due to the
violation of the GCL. In the present study, although the velocity is assumed to be
linear, no high frequency oscillations have been experienced so far. This may be
explained by the fact that the GCL is satisfied by the CUA method, see chapter 3
and Prananta and Hounjet [132].

In this method the aerodynamic part marches at a time level between the struc-
tural states. This method is more efficient than the first one since all quantitics
needed for extrapolation are readily available or otherwise can be easily calculated.
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5.3.4 RESULTS

In this section some results for the coupling procedures discussed in the previous
section are presented. The same case as in section 5.2.2 is considered, i.e. Isogai’s
case A [86]. The aeroelastic parameters are given in table 5.1. Only results employ-
ing the Euler equations are considered, since for reasons of accuracy these allow the
largest time steps to be taken. The flutter boundaries of this case using the present
method will be compared to results of some other methods and discussed at the end
of this chapter. The result presented here will concentrate on the large time step
aspect of the method.

A mesh consisting of 140x32 points was used. The steady flow was first calcu-
lated at the mean condition. The aeroelastic simulation was subsequently started
from this steady condition by setting an initial velocity £(0). The small time step
simulation used 32 time steps/period of the uncoupled mode while the large time
step simulation applies 8 time steps/period. Two cases are considered, the first one
is a supercritical, i.e. slightly unstable, condition at M,,=0.775 with speed index
V* = Uy /(waby/l)=1.00 and the second one is a subcritical condition at M=0.85
with V*=0.53.

Applying the small time step for the supercritical case, the common aerody-
namic extrapolation of [52], the present aerodynamic extrapolation and the present
structural extrapolation methods produce the same results, see figure 5.6.

The comparison of simulation results obtained using small and large time steps
for the supercritical case are presented in figures 5.7 to 5.9. Figure 5.7 reveals clearly
the inadequacy of the commonly used method for large time step simulations. On the
other hand, the results of the present aerodynamic extrapolation method, depicted
in figure 5.8, show a good agreement between results of large time step and small
time step simulations. Figure 5.9 shows that a similar good agreement is obtained
using the structural extrapolation method.

To obtain the damping of the response a fitting method, which will be discussed
in section 5.4, is applied. The fitting method is based on the work presented by
Hounjet et al. [81]. After the analysis a quantitative comparison can be made:

method o CPU(min/simulation)

small At 0.00616 46

large At, aerodynamic extrapolation 0.00617 15

large At, structural extrapolation 0.00679 15
“targe-At, sémple extrapolation [52]  0.01270 15~

where o is the damping decay coeflicient. It can be seen that the present extrapola-
tion methods give more accurate o values compared to the commonly used method
of [52] for the same cost in terms of CPU time.

The simulations using the small time step needed 46 minutes of CPU time on an
SGI R8000 workstation, while large time step simulations needed 15 minutes, which
is a significant saving of turn-around time. It should be noted that although the
time step is four times larger, the speed-up of the large time step simulation is less
than four because more subiterations are required per time step.
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These damping coeflicients are for a particular speed index. To obtain the Aut-
ter speed index at this Mach number M,=0.775 some more simulations at different
speed indices have to be carried out usually at least three. The corresponding damp-
ing coefficients are then interpolated to zero value. After.running more simulations
the flutter speed index obtained using each of the methods is:

method Vi

small At 0.942
large At, aerodynamic extrapolation 0.942
large At, structural extrapolation 0.938
large At, simple extrapolation [52]  0.911

Edwards’ [52] simple extrapolation method method eventually produces a flutter
speed which is about 5% lower than the rest.

A similar study has been performed for the subcritical case where a strong shock
wave is present. The results are shown in figures 5.10 to 5.13. Similar observations
can be made as for the supercritical example. At the small time step the method
of [52], the present aerodynamic extrapolation method and the present structural
extrapolation method produce practically the same result. At the large time step
the current methods are superior to the common aerodynamic extrapolation method
of [52]. A more detailed comparison after analysis of the time responses is:

method o CPU (min/simulation)
small At -0.00167 46
large At, aerodynamic extrapolation -0.00167 15
large At, structural extrapolation -0.00146 15
large At, simple extrapolation [52] +0.00172 15

Note that the simple method produces an unstable result, contrary to the other
methods. After running more simulations the flutter speed indices are obtained:

method Vi

small At 0.541
large At, aerodynamic extrapolation 0.541
large At, structural extrapolation 0.540

large At, simple extrapolation [52] 0.528

From the presented test cases it may be concluded that the present aero-structural
coupling methods maintain adequate accuracy for simulations using large time steps.
This possibility to carry out the aeroelastic simulation using large time steps leads
to a CPU time reduction of about 60% compared to the one for simulation using
small time steps.
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Figure 5.6: Comparison of time response of k and « for small time step simulations of Isogai's
case A at M,,=0.85
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Figure 5.7 Comparison of time responses between small and large time step simulations for
extrapolation method of [52], Isogai’s case A at M,,=0.775
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Figure 5.8: Comparison of time responses between small and large time step simulations for
the present aerodynamic extrapolation method, Isogai's case A at M, =0.775
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Figure 5.9: Comparison of time responses between small and large time step simulations for
the present structural extrapolation method, Isogai’s case A at M,,=0.775
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Figure 5.10: Comparison of time response of h and a for small time step simulations of Isogai’s
case A at M,,=0.85"
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Figure 5.11: Comparison of time responses between small and large time step simulations for
aerodynamic extrapolation method of [52], Isogai's case A at M,,=0.85
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Figure 5.12: Comparison of time responses between small and large time step simulations for
the present aerodynamic extrapolation method, Isogai’s case A at M,,=0.85
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Figure 5.13: Comparison of time responses between small and large time step simulations for
the present structural extrapolation method, Isogai’s case A at M,,=0.85
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5.4 ANALYSIS OF THE RESPONSE

The purpose of the analysis of the time responses is to obtain the damping and
the frequency of the oscillatory components involved. The response signals are
approximated by the following function:

z(t) = ag + a1e”** cos (wit + ¢1) + aze" cos (wat + ¢2) + ..., (5.23)

where o;, w; and ¢; is the damping, frequency and phase lag of mode ¢, respectively.
Each component is generally known as a damped cosine function or exponential
cosine function and has been used in Bennett and Desmarais [31], Hounjet et al.
[81]. The maximum number of oscillating components which is selected depends on
the number of vibration modes involved in the simulation.

The approximation function, equation (5.23), assumes linearity in the response
signals. This assumption limits the application to small amplitude vibrations. For
example, at a certain condition, in the beginning of a simulation a growing response
is observed, but after the amplitude has increased sufficiently large it stabilizes at
a certain amplitude. Such a response is known as a limit cycle oscillation (LCO).
In this case only the signal at the beginning of the response, where the amplitude
of oscillation is still sufficiently small, is fitted to equation (5.23). The concept of
stability in this sense is known as asymptotic stability, Hagedorn [71], Meirovitch
[112], where, starting from an equilibrium condition, a response to a disturbance
is called stable if it returns to the equilibrium condition as ¢ — oo. This is the
most common concept applied in practice!. Although the present method can be
applied in the conditions beyond the asymptotic stability boundary, for example to
find the amplitude of LCO, the term flutter boundary which separates the stable and
unstable responses should be interpreted here in the sense of asymptotic stability.

The fitting procedure proceeds by an iteration containing two steps: the linear
step and the nonlinear step. The linear step is a simple least-squares fitting method
to calculate the a; with assumed values of g;, w; and ¢; (or values calculated at the
previous iteration). The nonlinear step is a minimization procedure for the o;, w;
and ¢; with constant a;. The iteration is stopped after the cost function reaches a
certain tolerance. For example, assume a set of N sample points which will be used
to fit a response with two damped cosine functions. In both steps the cost function
is defined as:

N
I= Z [a0 + a1€7'" cos (wnti + ¢1) + a2€”" cos (wati + ¢2) — a;.-]2 . (5.29)
i=1
First an initial guess for g;, w; and ¢; is made. The coefficients a; are then calculated
using three equations obtained from 81/da; = 0. Applying these coefficients in the
second step, I is minimized using the downhill simplex method with respect to o,
w; and ¢;. After obtaining a better approximation of o;, w; and ¢;, a least-square
fitting is carried out to determine new values for a;. This loop is stopped after I has
reached a certain tolerance, see [31, 81] for a detailed description of the method.

! According to airworthiness requirements the damping of the system must have a prescribed
minimum value.
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5.5 APPLICATIONS FOR TwO-DEGREE-OF-FREEDOM AIRFOIL

In this section some results of the two-dimensional CAS method are presented. The
aims are to validate the present approach and to produce new results. The Isogai
case A [87] is again considered. This case is selected for validation because many
results can be found in the literature.

5.5.1 ATTACHED FLOW CASE

The angle of attack of the oncoming flow is zero. The Mach number ranges from 0.75
to 0.95. Well-known inviscid flow results of Isogai [87] are used to validate the present
CAS method. Also the interesting features of multiple flutter points at a certain
Mach number and LCO found by Bendiksen and Kousen [29] will be reproduced.
Furthermore, new results using a viscous flow modeling will be presented. In this
viscous flow case the Reynolds number is Re,,=6x10°.

The analysis proceeds by first calculating the steady-state condition at a certain
Mach number. The airfoil is then excited sinusoidally in a rotational mode about
the elastic axis at the frequency w, with an amplitude of 1.00 deg. After 2 periods
of forced oscillation the airfoil is released for another 4 to 5 periods to obtain the
response.

The dimensions of the C-type mesh are 140x 32 for the inviscid flow and 140x60
for the viscous flow. For these simulations the present aerodynamic extrapolation
method is employed. The time needed for one simulation run is about 15 minutes for
an inviscid flow computation and about 45 minutes for a viscous flow computation
on a SUN SPARC 20 workstation. The viscous flow case takes much longer CPU
time since it needs a smaller time step and also a finer grid.

Figures 5.14 and 5.15 show typical time responses close to the lowest flutter
boundary at various Mach numbers for inviscid and viscous flow, respectively. The
vibration mode depicted by translational and rotational displacements at almost
the same phase is mostly bending with the node in front of the elastic axis, see the
sketch of figure 5.2(a). In both inviscid and viscous cases the position of the node,
a — h/a, moves towards the airfoil as the Mach number increases, i.e. the ratio h/a
increases. An exception is for the inviscid flow response at M, .=0.90. where the
vibration mode is mostly rotation, i.e. h/a ~ —1, see the sketch of figure 5.2(b).

The flutter mode in which the node resides in frout of the airfoil is the classical
bending-torsion flutter where the aerodynamic forces generated by the torsion mode
amplify the motion of the bending mode. In the case of a swept wing the first
bending mode has the elastic axis in front of the airfoil which is very similar to a
bending-torsion mode of a straight wing. Therefore Isogai [86] concluded that this
type of flutter mode of a swept wing may be called a one-modec flutter. The other
flutter mode, the torsion mode, is typical for transonic flow conditions. The motion
is strongly related to the motion of the shock wave [29. 87].

Figure 5.16 compares the flutter speed indices and the associated nondimensional
flutter frequencies obtained using the present inviscid flow method with inviscid flow
results obtained by Isogai [86] using a TSP method and by Bendiksen and Kousen



144 Chapter 5. Aeroleastic Simulations Using CUA Methods

[29] using an Euler method. As a reference, results using linear thin-airfoil theory are
also presented. The flutter speed indices were calculated starting from M,=0.75 to
M,=0.95 with an increment of 0.025. The present inviscid flow results agree fairly
well with the other results. The bottom of the dip is predicted at V*=0.53 which
is close to the TSP result. Until M,,=0.875 the lowest flutter is primarily due to
the first mode which is mainly bending with a frequency close to the first coupled
wind-off frequency. Thereafter a bulge occurs causing multiple flutter points. At
M5=0.90 the flutter is now primarily due to the second mode, which is mainly
rotation. This situation can be noticed in the time response of figure 5.14.

Figure 5.16 shows that the rotational mode flutter starts at M,,=0.85 and at a
speed index higher than the first mode flutter. It should be noted that the flutter
point at M,,=0.90 and the adjacent one at M,=0.9125 have a very different char-
acter, the first representing primarily the second mode and the latter primarily the
first mode. This difference can not be seen in the plot of flutter speed indices but
is indicated clearly in the plot of the flutter frequencies, i.e. the right plot of figure
5.16. The second mode flutter does not occur at M, =0.9125 since at this condition
the shock has reached the trailing edge which restrains its motion. These two types
of flutter mode have also been found by Ehlers and Weatherhill [54] using a TSP
equation.

Figure 5.17 shows the comparison between the viscous and inviscid flow results.
The viscosity apparently reduces the dip, fills up the bulge and passes the higher
frequency flutter mode found in inviscid flow. To display the different behavior
of the viscous and inviscid flow results at M,,=0.85 the time responses at various
speed indices are shown in figures 5.18 and 5.19. For the inviscid flow case, at a
speed index higher than the lowest flutter speed index, a stable solution has been
found and at an even higher speed index flutter occurs again at a different flutter
mode. One can see from figure 5.18 that solutions of LCO type have been obtained
at a speed index beyond the uppermost flutter boundary. For the viscous flow case,
although at speed indices higher than the flutter speed index low damping responses
were encountered, no stable solution and no high frequency rotational flutter mode
was found. As a final remark, to the author’s knowledge no bulges have ever been
found in wind tunnel tests with a flutter model, which seems to confirm the present
result for viscous flow.
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Figure 5.16: Comparison of calculated speed indices and nondimensional frequency at the
flutter boundaries for inviscid flow cases. Isogai's case A
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5.5.2 SEPARATED FLOW

In this section an exploratory test case is presented. A high angle of attack case is
considered with the aeroelastic parameters of the Isogai case A. Flutter calculations
were presented in many papers, e.g. [29, 52, 54, 87, 135], for flow conditions in
which viscous effects are not dominant. Here an aeroelastic simulation is presented
at Mo=0.650-0.825, Reoe=12x%10° and amean=4 deg, where the viscous effects are
expected to be significant.

The angle of attack is included in the aeroelastic simulation by prescribing the
direction of the oncoming flow, i.e. not by prescribing an initial o, see figure 5.20.
The steady situation is always assumed to be in equilibrium. In the calculation

mean h position
Ky

U
5 a(t) < =
amean . . —
mean a position —

Figure 5.20: Typical section of a wing with nonzero mean angle of attack

this is assured simply by subtracting the steady flow aerodynamic forces from their
instantaneous values during the simulation.

Flow simulations using the present method for viscosity dominated flows about
an NACA 64A010 airfoil have already been presented in section 4.3. The simulation
of steady flow at M,,=0.80 showed a good qualitative agreement (figure 4.5). Most
importantly, the simulations of the unsteady flow due to forced vibrations showed a
correct behavior at high and low frequency, as compared to the experiment. At low
frequency the shock moves forward with the increase of the angle of attack (figure
4.6), whereas at high frequency the shock motion lags the airfoil motion so much
(figure 4.7) that it resembles the attached flow case where the shock moves backward
by the increase of the angle of attack, see also figure 4.8. These results justify the
application of the present method for the aeroelastic simulation at this separated
flow condition.

Aeroelastic simulations are performed starting from the steady flow condition
8t Qmean=4.00 deg.:An initial condition of &(0) is used: The time responses:of the
translational and rotational motion about the elastic axis at My=0.70, 0.80 and
0.825 for various speed indices are presented in figures 5.21 to 5.23. At M. =0.70
where the flow is fully attached the time responses for various speed indices, shown
in figure 5.21, is dominated by the first mode, see also figure 5.2. Figure 5.22 shows
the time responses at Mo,=0.80, where the flow behind the shock wave is separated,
for various speed indices. The time responses at this Mach number are mostly
second mode and as can be seen from figure 5.22 the flutter boundary is difficult to
determine. At M,,=0.825 the first mode responses are obtained again, presented in
figure 5.23.
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The flutter speed indices at various Mach numbers are presented in figure 5.24.
Isomach contours at some Mach numbers have also been plotted. These plots refer
to the corresponding steady flow conditions. The flutter speed indices show a dip at
My=0.70. After the dip the flutter speed index increases with the increase of Mach
number. However, at M,,=0.775 and 0.80 the flutter boundary becomes unclear.
The time responses are lowly damped at low speed indices and become an LCO at
high speed indices. The responses at these Mach numbers are dominated by the
second mode. Considering an LCO response as an unstable response, in the sense
of asymptotic stability, this means that the flutter speed index decreases again. A
similar characteristic to the one observed in the SKV-5 test program (figure 1.2) for
the highest angle of attack case where flow separation occurred at the second dip and
the flutter mode became mostly torsional. When the flutter speed index increases
again after the second dip, at M,,=0.825, the first mode flutter returns. This is
different from the result of the SKV-5 test, where seccond mode flutter remained
dominating.

The other known problem associated with flow separation is the so-called buf-
feting. Buffeting is defined as the structural response due to buffet excitation. In
the previous chapter, the buffet boundary of a stationary NACA 0012 airfoil was
calculated. At M,,=0.775, Re,.=x10" and angle of attack 4.00 deg, i.e. a condition
beyond buffet boundary for this Mach number, the C[(¢) history shows a sustained
oscillation with a distinct reduced frequency, see figure 4.11. Aeroelastic simulation
at this flow condition has been carried out using the structural data of Isogai’s case
A at V*=0.40 and V*=0.50. The airfoil was released from the beginning of the sim-
ulation without initial conditions of //b(0) nor &(0). The history of C and h/b and
the corresponding spectrum (expressed in terms of the period of oscillation Twy)
are shown in Figure 5.25. The Cy history for this freely-moving airfoil looks quite
similar to the one for a stationary airfoil, i.e. figure 4.11. The spectrum of C}, for
each simulation shows a high peak which corresponds to a peak in the spectrum of
h/b response. The second mode (with Tw,=1.177 at wind-off condition, see section
5.2.2) seems to be excited but the response due the buffet is more dominant.
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Figure 5.21: History of translational and rotational displacement about the elastic axis at
various speed indices for Isogai case A of NACA 64A010, M,,=0.70, a=4 deg, Re.o=12x10°®
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Figure 5.22: History of translational and rotational displacement about the elastic axis at
various speed indices for Isogai case A of NACA 64A010, M,=0.80, a=4 deg, Res,=12x108
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Figure 5.23: History of translational and rotational displacement about the elastic axis at
various speed indices for Isogai case A of NACA 64A010, M, =0.825, a=4 deg, Re,,=12x10°
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Figure 5.24: Results of aeroelastic simulations for Isogai case A of NACA 64A010, M,,=0.650-
0.825, a=4 deg, Re,,=12x10%. The isomach contours are at steady flow conditions,
AM=0.10 and the thickened contour is M=1
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5.6 CoNcLUSIONS CONCERNING THE Two-DIMENSIONAL CAS METHOD

A two-dimensional CAS method employing the Thin-Layer Navier-Stokes/Euler
equations has been developed.

Attention has been given to simple and fast aero-structural coupling procedures.
They are based on the extrapolation of the aerodynamic state or the structural state
using gradient information from the equations and from the previous time steps.

Results of test cases have been presented with the aim of validating the present
aero-structural coupling method and producing new test cases for the Navier-Stokes
equations. The results of the test cases presented in this chapter have led to the
following conclusions:

o The aero-structural coupling methods improved the simple aerodynamic ex-
trapolation method of [52].

e Accurate results can be obtained with time steps corresponding to 8 steps/period

of the highest frequency mode.

o Two-dimensional flutter boundaries can be obtained in acceptable turnaround
times on a moderate type workstation.

o Flutter boundaries, calculated for the Isogai case A using the inviscid flow
method agree fairly well with data provided by other methods.

e A significant computer cost reduction of more than 60% is obtained by the
implementation of the current extrapolation schemes allowing large time steps.




CHAPTER O

COMPUTATIONAL AEROELASTIC
SIMULATION METHOD FOR
THREE-DIMENSIONAL FLOW

This chapter discusses the extension of the CUA/CAS methods for two-dimensional
flow presented in the previous chapters to the flow about three-dimensional config-
urations. The objective is to obtain a three-dimensional CAS method capable of
analyzing isolated wings and simple wing-body configurations, retaining the accept-
able turnaround times of the simulations which were achieved for two-dimensional
flow applications. A necessary step towards this objective is the application of paral-
lel computing to the CUA method. Due to the adoption of the modal decomposition
approach in which a limited number of degrees of freedom is defined, parallelization
of the structural part is not worthwhile as the computing time of the structural part
is negligible compared to that of the aerodynamic part.

The requirement concerning the geometrical modeling for three-dimensional aeroe-
lastic applications should reflect the general requirements presented in section 2.5.1.
For example, the fuselage/body should be taken into account only when its flexibil-
ity can not be neglected which may cause aercelastic problems, or otherwise when
its aerodynamic interference with the lifting surfaces (where aeroelastic phenomena
are usually decisive) is significant. The aeroelastic simulations of a T-tail configura-
tion presented by Eussen et al. [57] and a blended wing-body with low aspect ratio
wing reported by Guruswamy (67] are examples of aeroelastic cases requiring the
modeling of the fuselage. In many cases the inclusion of a fuselage or bodies in the
aeroelastic analysis is to investigate their effect on the aerodynamic characteristics
of the wing and thus may not be of primary concern for the aeroclastic analyses.

Most developments of the two-dimensional CAS method can be directly extended
to the three-dimensional CAS method. The main difference is of course the treat-
ment of the geometry in the aerodynamic as well as in the structural parts.

In the following the method for three-dimensional flows will be discussed and a
number of results will be given. Next, the structural model and the solution of the
aeroelastic simulation method are presented. Finally an example of the aeroelastic
sirnulation will be shown.

157
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6.1 AERODYNAMIC MODEL

The aerodynamic part employs a time-accurate three-dimensional Euler/Navier-
Stokes method with a deforming mesh capability. In this section some aspects of
the method are presented: the mesh topology, the spatial discretization and the
temporal integration. Subsequently some results are presented.

6.1.1 MESH TOPOLOGY

Defining the proper mesh topology for a three-dimensional flow case is more difficult
than for a two-dimensional flow case. The difficulty stems from the existence of many
more features, both in the geometry and in the flow. Features in the geometry
are those related to the effort in generating the mesh around three-dimensional
configurations, while features in the flow are those related to the effort to represent
the physics properly. The difficulty in accommodating the multitude of features is
the main reason for the application of a multi-block approach for structured meshes.
In a multi-block method the domain is split into blocks which are constructed to
capture the features conveniently and/or accurately. A multi-block structured mesh
method is considered as the state of the art for steady flow problems in obtaining
accurate aerodynamic forces for aircraft performance analysis, e.g. see Oskam and
Slooff [125]. The main disadvantage of a multi-block structured mesh method is the
significant effort to generate a mesh with adequate quality for which in most cases
an expert in mesh generation is needed.

On the other hand, a mono-block mesh approach offers less flexibility in capturing
the geometrical and flow features of the problem and one is restricted to concentrate
on certain features. Therefore, the precise definition of a mesh topology in a mono-
block approach is more important than that in a multi-block approach. In return,
generating a mono-block mesh is a much less strenuous task than generating a
multi-block mesh. As mentioned previously, the primary concern in geometrical
modeling are the lifting surfaces for which important aero-structural interaction is
expected to occur. Inaccuracies in modeling the fuselage are usually acceptable
which makes it possible to use a simple block for the wing. For this reason, in the
present study a mono-block approach has been taken. Most of the meshes employed
in the present study were generated using the FOLDIT-BLOWUP mono-block mesh
generator described in [80], which is based on a hyperbolic method and has a very
flexible surface mesh handling. . I

For an isolated wing the most stralghtforward extensmn of the two—dlmenswnal
method is to apply a CH-topology (C in £-direction and H in #-direction). The
geometrical transformation from the Cartesian physical domain to a curvilinear
computational domain is depicted in figure 6.1. Using this topology a good mesh
resolutions can be obtained near the leading edge and near the trailing edge. On
the other hand, a good resolution near the wing tip is in most cases more difficult to
realize. This topology can be considered as a series of two-dimensional sections in
n-direction with C-topology. Another possibility is an O-topology in the n-direction;
an example will be shown in the next paragraph. As can be seen in figure 6.1, on
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uppwr wing

Figure 6.1: Geometrical transformation from Cartesian physical domain to computational do-
main with CH-topology for isolated wing configurations

the plane of { = 0 two types of boundary conditions have to be satisfied: the solid
surface boundary and the continuity condition. This is another disadvantage of a
mono-block approach, i.e. the complexity in applying various boundary conditions
in the same boundary plane.

A further extension which enables the method to handle also a fuselage is by
letting a part of the boundary plane n = 0 represent a solid surface, namely that
of the fuselage. An example of the geometrical transformation of a mesh around a
wing-body configuration is shown in figure 6.2, taken from Haase et al. {70]. The
mesh has an O-topology in 7-direction, which improves the resolution near the wing
tip.

Another way to wrap a wing-body configuration is by employing a mesh with
an HO-topology. An example of the geometrical transformation of a mesh around
a fighter-type wing-body-tail configuration is shown in figure 6.3. One can see that
the solid surface resides only in one plane, i.e. plane ¢ = 0. In gencral, keeping
the solid surface to reside only in one plane means that the clustering for capturing
the boundary layer will occur only in one direction (¢-direction). To achieve the
same goal, the mesh with CO-topology shown in figure 6.2 needs clustering in two
directions, i.e. the (-direction, to capture the boundary layer of the wing, and the
n-direction, to capture the boundary layer of the fuselage.

6.1.2 DyNAMIC MESH ALGORITHM

In the three-dimensional CUA method, only the spring analogy method is applied.
It has been shown in section 3.10.1 that the method is robust and efficient. In
this method the mesh points are connected by a spring system which reacts to the
displacements of the solid surface.

The same implicit predictor as the one applied in the two-dimensional CUA
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Figure 6.2: Geometrical transformation from Cartesian physical domain to computational do-
main with CO-topology for wing-body configurations

method is employed because it has shown to retain its robustness for three-dimensional
flow applications. -An example of the mesh deformation using the spring anal-
ogy method is shown in figure 6.4. The deformation was artificially introduced
by twisting the wing at its tip (distributed linearly in the spanwise direction, f(y) =
y/s 0(yep), s is the half span of the wing). A large deformation which was carried
out in two steps with each step 8(yyp) = 25 deg, was applied to show the robustness
of the method. In each twisting step the implicit predictor and 4 PGS iterations
were employed to solve the static balance equations. The resulting mesh, shown in
figure 6.4, does not have mesh folding and/or negative cell volumes, as required for
the flow solver.

6.1.3 GOVERNING EQUATIONS

The Thin-Layer Navier-Stokes equations in the computational domain are obtained
through a coordinate transformation from the Cartesian physical domain:

€= Loyzt), 1= nlyz1),
¢(= C¢(z,y,21), 7=t (6.1)

The conservation form of the Thin-Layer Navier-Stokes equations in a curvilinear
coordinate system [£, 7, (] reads:

or o€ on oC o
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Figure 6.3: Geometrical transformation from Cartesian physical domain to computational do-
main with HO-topology

where the conservative variable is Q = hQ and Q = [p, pu, pv, pw, pE]", the inviscid
flux vector are:

U PV pW
pul + &.p puV + figp puW + Cop
Fl=\| wU+&p | Ej=| pV+ip |, Fl=| wWgp |,
pwlU + &:p pwV +7.p pwW + C.p
pEU+U’p pEV +V'p pEW + W'p

where the contravariant velocities are:

U=+ &u+ fyv +&w
Vo=, + nzu + Myv + N w
W :Ct + Ceu + CyU + Czwv

and U =U =&, V' =V —n,and W = W — (. Similar to the form of the thin-layer
viscous terms in the two-dimensional flow case one gets for the three-dimensional
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Figure 6.4: A deformed mesh for viscous flow calculations around an isolated wing, the mesh
follows the deformation of the wing using the spring analogy method with the implicit predictor

case:

0
R MU + myaY¢ + my3We
FCV = — M2l + Ma2V¢ + Mma3We
mysU¢ + Moz + MazWe
Y

, (6.3)

where:

Eys = Tz T2z 4 Mg o
¢ 2 2 VT  (64)

Y
mlg(uv)( + m23(vw)c + mlg(wu)c + m4P—Te<.

The metrics functions m are:
4 ‘ h
mn = h(gcz + CZZ + sz)a myy = §<1<y’
4 h
ma = h(¢Z + EC; +¢2), mp= gCyCz,

4 h
ma3 = h((i + g; + ‘gczz)a mz1 = gCZCa:v
ma = h(G; + ¢ + ().
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The metrics of transformation are obtained in a similar manner as in the two-
dimensional case:

bo=J(nzc —yczm)y e =J(Weze — yezo)y G = JI(Yezg — YnZe),
& = J(zgze — zcxy), oy = J(zcwe — 2ex¢), (= J(zexy — 2Te), (6.5)
& =J(Zg¥c — xcYn), M= J(@Tye — Tey), G = J(Teyn — ToYe)- '

The Jacobian of the mesh transformation, J = 8(¢,7,()/d(z,y, z), can be calculated
from J = h™!, where h is the determinant of dz/9¢:

Te Ty T¢

h=|ye v Y |=Te(Ynzc — Yczn) — Ye(Tnzg — T¢2n) + 2e(Tnyc — TcYy),  (6.6)
Ze oz %

in which a cofactor expansion of the first column has been carried out, h represents
the ratio of the volume in the physical domain and the corresponding element in
the computational domain. The metrics, [&;,&,,&]7, e, M, 1), [Cor G GT, are
the normal vectors (the contravariant directions) of the cell face of constant &,7,¢,
respectively.

GEOMETRIC CONSERVATION LAw

As in the two-dimensional case, the transformation of the conservation form of the
governing equations in the Cartesian coordinate system, equation (2.33), into an-
other conservation set of equations in a curvilinear coordinate system, i.e. equation
(6.2), assumes that the transformation invariants are satisfied. The first transfor-
mation invariant, related to fixed mesh problems, is expressed here as:

ofe] o], af¢
ot | W an | W ac | v
4 E, 1, e .

=0. (6.7)

This equation ensures that a cell volume is defined without ambiguity (c.g. matching
faces, no overlap, no gaps). If the mesh deforms when proceeding in time, the
following invariant has to be satisfied in addition to equation (6.7):

oh  0& O 0

— 4+ =+ —+4+=—==0 6.8

07+8§+8n+8C ’ (68)
which ensures that a closed cell at a certain time level remains closed at the next
time level. Equation (6.8) is the statement of the GCL in the differential form for
three-dimensional meshes.

BOUNDARY CONDITIONS

At solid surfaces the normal velocities vanish in inviscid and viscous flow cases,
while in the latter case the tangential velocity components vanish as well. The
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application of the velocity boundary condition is carried out in the same way as for
the two-dimensional case, using equations (3.52) and (3.53).

The extrapolation of the pressures from the computational domain to a solid
surface is carried out using the component of the momentum equation normal to the
solid surface. For three-dimensional configurations this results in a two-dimensional
set of equations. Instead of solving these equations, an explicit extrapolation is
carried out as:

R N
(Vc.vc)a —(v¢- vg) 3% (V(-Vﬁ)£+

7] Az 0 ¢,
w2 e %, a4;)+

t T a z
pUtV(|(ac +u %%+ a%’% - )+
VIVCI(BC' 2oy 0 64’ (6.9)

“on " Von on )

where the geometrical data are evaluated using the solid surface data and the flow
data at the right hand side are evaluated using the data at the first layer above the
solid surface. It should be noted that equation (6.9} is valid for inviscid flow cases
where the condition W = 0 has been imposed. For viscous flow cases, imposing also
U =V =0, a simpler form is obtained as:

PR 2 on . Op
(6 VOL = (67O L - (v T)Z + vi %, (610

where the viscous stresses have been neglected.

The treatment of the far-field boundary condition follows the one for two-dimen-
sional configurations employing the locally one-dimensional boundary conditions
based on Riemann invariants.

For the present study where the side slip angle 3 is always assumed to be zero,
so that the condition at the symmetry plane, y = 0, becomes simply:

9Q
dy

The application of this boundary condition, using ghost cells, is very simple, i.e.
.,settmg the value at the ghost cell equal to its mirror value, with respect to the plane
" y=0, in the field. Two ghost cells are defined for second-order accuracy and also for
ease of application of the MUSCL scheme.

=0. (6.11)

6.1.4 DISCRETIZATION

Equation (6.2) is spatially discretized, like in the two-dimensional case, using a
cell-centered finite-volume method:

Q oh P T _
/v WS dedndC + [v Qo dedndC + /a B lde,dn,dc)” <o (6.12)
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At time level (n + 1) the semi-discretized equations of equation (6.12) in a uniform
computational domain reads:

6Q o Ok
+1 n I'n+l  _ pIndl In+l In+tl
h * TQ +F5’+2J’° Fﬁ"uk an+‘k an-i,k+
1 Vyn+1 Vyn+tl ,
(B = )i — (B = FO5 =0, (6.13)

where, Fg, ﬁ’,,, FC, are the fluxes normal to the cell face at constant & n and (,
respectively.

CALCULATION OF METRICS

To conform to the transformation invariants defined by equation (6.7) the metrics
are calculated at the cell face at which they are needed. For example, V¢ is needed
at cell face (1 + 3,7, k) and calculated as V€ = x, x x¢, where:

1

Tyixljk = (‘Bzi‘,]+2,k+1 T Tl getlh-d T Tixl o lkel T “’zxw;—-,k—%)’
1

Leixlje = 5("311 gtikl T Eigl i Ll — Lyl i1 1= wliz,]f—,k~%)7

see figure 6.5. The rate of change of the cell volume, 3h/d7, is calculated from the

Titlj+lrsl
cell (4,5, k)
vy 1 1
¢ ® 2okt
cell face (i + 3,4, k)
Y Tivdjtd k-1
¢ it hi-bh-d

Figure 6.5: A three-dimensional volume cell
contravariant grid speed using equation (6.8) as:

@:_%w%v%, (6.14)
or 06 On o
which ensures that the GCL is always satisfied. The calculation of the contravariant
grid speed is carried out in the volume swept by the cell face when moving from
time level (n) to time level (n + 1).

CALCULATION OF INVISCID FLUX

As has been concluded in developing the two-dimensional method, section 3.10.2,
Roe’s FDS is the most suitable among the upwind methods for the problems con-
sidered in the present study. Therefore, only Roe’s FDS is applied in the three-
dimensional CAS method. Roe’s FDS for three-dimensional flow problems is not
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fundamentally different from the one for two-dimensional flow because the method
is quasi one-dimensional. The only difference is the set of left and right eigenvectors,
and the corresponding eigenvalues, used for splitting the flux difference.

The eigenvectors and the corresponding eigenvalues for the three-dimensional
Euler equations are presented in appendix B.

TURBULENCE MODELING

As a logical extension, the algebraic turbulence model of Baldwin-Lomax [18] (BL)
is also implemented in the three-dimensional flow method. The implementation is
carried out in a stripwise manner in the spanwise direction. For the mesh with
CH-topology the turbulent eddy viscosity at the wing tip is extrapolated using a
prescribed damped exponential function from the wing tip to the far field in order
to have a smooth transition away from the solid surface. In general, the algebraic
turbulence model is difficult to apply in a three-dimensional configuration due to
several reasons: the various topologies, the possible existence of staggering solid
surfaces and moreover since the Baldwin-Lomax turbulence model is not ’local’ it
may not be suitable for domain decomposition.

Therefore the one-equation turbulence model of Spalart-Allmaras {157] (SA) is
also applied in this study. The SA one-equation model solves a transport equation
for working variable 7, from which the turbulent eddy viscosity can be calculated,
see equation (C.10). The only configuration-related geometrical data is the dis-
tance from each cell to the closest wall, which is required to be accurate only for
cells close to a solid surface. For three-dimensional configurations this data can be
easily calculated, even for a relatively complex configuration. Since the governing
equation for the Spalart-Allmaras turbulence model is to a certain extent similar
to the flow equations, a similar method can be employed to solve the SA equation.
Consequently, in a multi-domain environment the dependence between the solutions
in neighboring domains will resemble that of the flow equations. This convenience
in implementation for three-dimensional configurations was the primary reason to
apply SA turbulence model.

A more detailed description of the BL turbulence model and the SA one-equation
turbulence model can be found in appendix C.

TEMPORAL INTEGRATION METHOD

Following the two-dimensional method, the linear multi-step method is applied..In
each time step the residual for the unsteady equations is constructed, i.e. equation
(6.13) with a suitable backward time differencing of 9Q/d7 from table 3.1, and
with the expression of dh/Or using equation (6.14). The resulting nonlinear set
of algebraic equations is subsequently solved using a relaxation scheme. Several
subiterations are employed in each time step to reduce the error to the required level
of accuracy. Thus at the end of each time step the nonlinear unsteady equations are
satisfied to a certain tolerance.

The left-hand side involved in the subiteration is constructed in a similar way as
in the two-dimensional method, see section 3.7.3. In the two-dimensional method a
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line relaxation is applied with an update of @) after each sweep or after several sweeps.
The sweeping is in é-direction while the equations along (-lines are solved directly.
The direct inversion of the equations along (-lines should resolve the stiffness due
" to the mesh stretching and implicitly treats the viscous terms which have an elliptic
behavior. In the three-dimensional version the line relaxation with a direct inversion
of equations along (-lines is retained which leaves some possibilities for the sweep
direction:

o Forward-backward sweep in the planes of constant £ or 7, see figure 6.6. For

direction of sweeping

C?ZL£

Figure 6.6: Relaxation sweep along the planes of constant £

N A
k&planes of constant ¢

example, for sweeping in the &-direction the equation for the forward sweep
reads:

[PJAQI = ~R(@", @™, Q") - [P 1AQ] — w[P1AQE,,  (6.15)
which results in an intermediate correction, AQ, followed by a backward sweep:
[PIAQI = ~R(Q, Q" Q") —w[PT]AQY — [P7]AQM,.  (6.16)

The [P)’s represent the entry of a plane of constant &:

[I?i_]AQifl = _[Azi_%,j,k]AQiflJ;k (617)
[PIAQ: = —[A7, 1 JJAQus e + [Leis]AQu, +[A], 11 (JAQi 4 (6:18)
[FT1AQuer = [Ag 1 5 JAQu15: (6.19)

“where the entry along a (-line, [L¢;;JAQ; ;, is:
[L¢ig]|AQs; = _[Agz’jyk_%]AQi,j,k—l + [Dij k| AQu sk + [AEZ-J-JH_%]AQi,j,k#»Ia

and the entry of the diagonal, [D; ; ], is:

hn+1
)= + A- ¥ 4
[Dijk) =[co AT A ik AEi-—%,j,k + Ani.ﬁ%,k A Lk
+ — - ¢
A A z,],k—%]’ (6.20)
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in which ¢ can be found in table 3.1. The entry of plane [P], equation (6.18),
has the same form as the left-hand side of the two-dimensional relaxation,
equations (3.65-3.67), for which application of a direct inversion is too expen-
sive. Several approximate inversion schemes in each plane are applied: the
two-dimensional method, i.e. SSOR, ILU decomposition, zebra relaxation or
a PGS relaxation with red-black (RB) ordering. The last two methods are
applied to take advantage of the implementation in a vector computer. Simi-
lar to the two-dimensional relaxation method, Q) can be updated after several
linear iterations or in each sweep using the intermediate correction, AQ. The
latter may be seen as a nonlinear relaxation scheme.

¢ Forward-backward sweep along the planes of constant (£ + 7)), see figure 6.7.
The equation for the forward sweep reads:
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Figure 6.7: Relaxation sweep along the planes of constant (£ + )
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which results in an intermediate correction, AQ, followed by a backward sweep:
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where the equation along a (-line, [L¢ i,j]AQi,j, and [Di,j,k] are defined by
equation (6.20). This scheme is called here Line LU-SGS, since equations
along the (-lines are directly inverted. The original LU-SGS scheme of Yoon
and Jameson [181] sweeps along the planes of constant (£ + 7 + () and only a
block-diagonal matrix is inverted in each plane, see figure 6.8.

Another method is using a PGS relaxation, either with natural ordering or with red-
black ordering. Red and black are used to call computational cells with (£ + 7 + ¢)
odd and even, respectively. During the first relaxation sweep only the flow variables
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Figure 6.8: Relaxation sweep along the planes of constant (¢ + 1+ ()

with red color are updated and during the second sweep only the flow variables with
black color are updated. The set of linear equations with red color depends only
on the data with black color. Consequently, the update of the flow variables with
the same color does not depend on each other and can be done concurrently. The
equation for a PGS relaxation is:

[Di,]"k]AQf‘;l = — R(Qp7 Qny Qn_l) - [Agi_;_%yj,k]AQi;l,j,k + [Ag—i_%’j,k]AQf—l,j,k
- [A;i7j+%7k]AQ€,j+l,k + [A:;,"j_%’k]AQf,j—l,k
- [Agi,j,k+%]AQ§),j,k+l + [Azi)j,k_%]Asz,kfl’ (623)

where [D; ;] is defined by equation (6.20).

6.2 PARALLELIZATION STRATEGY

The solution methods for the flow equations including the turbulence model and
the spring analogy equation have been parallelized using a domain decomposition
approach. The equations for the structure are not parallelized because the number
of degrees of freedom is too small to justify the additional overhead cost of paral-
lelization. The adoption of a domain decomposition strategy, instead of data paral-
lelization, was dictated by the portability requirement. Data parallelization usually
leads to a fine grain parallelization which is not suitable for networked computers.
Moreover, it needs a special compiler (HPF). The current implementation has been
ported to a variety of computers, from PCs up to MPP and PVP supercomputers.

To execute the relaxation in each subdomain in parallel the dependency among
the subdomains has to be frozen. This means that some boundary values are treated
explicitly. Consequently, in contrast with a parallel domain-decomposed explicit
method, the convergence will decrease as the number of subdomains increases.
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Figure 6.9: Artificial boundary condition between two subdomains using ghost cells

6.2.1 DOMAIN DECOMPOSITION

The computational domain is divided into subdomains, where each subdomain is
assigned to a processor!. The subdomains are created by dividing the mesh in
&- and 7-directions only, i.e. not in the direction of body surface normals. From
numerical experimentation it turned out, as was expected, that dividing the mesh
in {-direction results in a significant penalty in convergence. This probably can be
explained from the usually high stretching of the mesh in (-direction, while also the
viscous terms behave in an elliptic manner. Thus the (-lines are not split up but
kept as a whole.

The decomposition is carried out statically prior to executing the code. The dif-
ference in boundary conditions between the subdomains usually does not contribute
significantly to the computing time. Thus e.g. for a set equal of processors the mesh
is divided equally among the nodes. For a set of unequal processors the mesh is
divided according to the speed of the different nodes.

6.2.2 EXPLICIT SUBDOMAIN COUPLING

At the boundary of each subdomain the ghost cells have two possible conditions:
a physical boundary condition, like a solid surface, freestream, etc., or an artificial
boundary condition, i.e. the flow variables of its neighboring domain. For maintain-
ing second-order spatial accuracy two layers of ghost cells are needed for the artificial
boundary, see figure 6.9. The flow state at the ghost cells of the artificial boundary
is transfered from the neighboring subdomain using inter-process communication
routines. In this manner the subdomain coupling is conservative.

. For the flow equations the possible coupling variables between the subdomains
is either Q or AQ. In the first case the interchange takes place after the Q has
been updated (using Newton’s method), so that the linear step works completely
locally in a subdomain. In the latter case the interchange already takes place during
the linear step. Concerning the convergence, the transfer of AQ would certainly
have a positive effect. Even for the RB point-relaxation there is no penalty at all if
after each linear step a transfer of AQ is carried out. But certainly this costs some
communication time. As will be shown, the convergence penalty for a moderate

'In the parallel programming term a processor or a computer participating in parallel computing
is also called a node, or a processing element (PE) in case of an MPP machine
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number of processors (up to 64) is not really significant. Therefore, in most cases,
except when it is mentioned otherwise, the results in this study have been obtained
using the transfer of Q. The solution method for the one-equation turbulence model
" is along exactly the same lines as for the flow equations.

For the spring analogy equations the mesh position is transfered to the neighbor-
ing subdomains. A slight difference exists compared to the decomposition of flow
and turbulence model. The unknown for the spring equation is at the vertex, which
means that there is an overlap region which is shared by two subdomains. This
overlap region is updated following the update in the field and the transfer to the
neighboring subdomains. In this manner the neighboring subdomains will share a
unique value of the mesh position in the overlap region.

6.2.3 IMPLEMENTATIONS

The implementation of the subdomain coupling method can be carried out conve-
niently using a communication library, e.g. Parallel Virtual Machine (PVM), Mes-
sage Passing Interface (MPI), Bulk Synchronized Parallel (BSP), CRAY SHMEM,
etc.. There are two possibilities in communicating the interface values between two
subdomains: using message passing (MP) (a pair of send-receive routines) or direct
remote memory access (DRMA). The first method already has some sort of syn-
chronization mechanism, whereas the latter needs a user-specified synchronization.

Transferring a message from processor 1 to processor 2 using the MP method
needs send and receive routines. For example, in PVM the transfer of @) looks
like:

proc 1: call PVM_Send(Q(1,n,j,k),5,proc_2)
proc 2: call PVM_Recv(Q(1,0,j,k),5,proc_1).

The receive routine will block the program in processor 2 while waiting for the
data to arrive from processor 1. Thus it is ensured that the program in processor 2
will get the proper data for further processing.

In the DRMA method the memory of the data which will be transfered has to
be symmetric. This means that the addresses of the memory in two computers
(or processing elements in case of an MPP machine) are the same. The transfer
proceeds simply as: processor 1 writes to the memory of processor 2. For example,
using the CRAY SHMEM library the transfer of ) looks like:

proc 1: call SHMEM_put(Q(1,n,j.,k),proc_1,
& Q(1,0,k,k) ,proc_2,5)
call SHMEM_barrier()

proc 2: call SHMEM_ barrier().

It should be noted that processor 2 does not know whether processor 1 has already
written the data to its memory or not. Therefore both processors have to call the
so-called barrier routine which blocks the programs until both processors have
called it.
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In the present method the PVM communication library is employed since it
is available on most of today computers. The PVM library employs the message
passing method. In the CRAY computers the native communication library, the
SHMEM library, transfers data much faster than the PVM library. Therefore, in
the implementation on the CRAY computer (MPP T3E and PVP J910) the most
critical part of the communication routine, i.e. the interchange of the boundary
data, is applied using the CRAY native communication library SHMEM which uses
the DRMA method.

While waiting for completing the transfer of the data between the processors,
some other tasks can be carried out. For example, since the transfer is only in the 7-
and &-direction, the flux in the {-direction can readily be calculated without waiting
for the neighbors. This technique reduces the portion of communication time in the
whole computation.

6.3 REsuLTs oOF CUA METHOD FOR THREE-DIMENSIONAL FLOW

In this section a number of applications of the CUA method to three-dimensional
flow is presented. Some standard test cases are considered to establish the validity of
the method. First the results of the parallelization of the method will be discussed.

6.3.1 RESULTS OF PARALLELIZATION

The purpose of the test cases presented in this section is to validate the decom-
position method and to investigate its scalability. Scalability is a measure of the
efficiency of a parallel computing method when more nodes are employed. Scalability
of a parallel method can be quantified using the speed-up. Speed-up of a simulation
using p processors with respect to a simulation using n processors is defined here as:

Tan
Tp’

n _
P

(6.24)

where T;, is the wall-clock time of the simulation using n processors and T}, is the
wall-clock time of the simulation using p processors. A perfectly scalable method
will have a linear speed-up.

The speed-up is determined by various aspects: the ratio of the computing time
to the communication time, the imbalance between the programs running on dif-
ferent processors and the efficiency of the solution method. The higher the ratlo of
'computlng time to the communication time the better the speed-up. By the increase
of the number of processors the communication time between the sub-domains, for
imposing the artificial boundary conditions, changes slightly and the communication
time for the global coordination increases depending on the type of the computer.
Meanwhile the computing time will reduce strongly by the increase of the number
of processors. Therefore, when the size of the problem (the number of mesh points)
is fixed, the so-called fixed mesh problem!?, the speed-up will certainly decrease with
the increase of the number of processors.

Fixed mesh problem should not be confused with stationary mesh (non moving mesh) problem
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Another measure of the speed-up is the so-called proportional mesh speed-up
where the number of mesh points per processor is kept constant. Thus the total mesh
size is proportional to the number of processors. The latter will produce a better

" measure of the speed-up since the ratio of computing time to the communication

time changes only slightly. Thus the speed-up of a fixed mesh case may be considered
as conservative.

To measure the speed-up for the proportional mesh, a series of meshes is needed.
In general, generating a series of meshes is difficult for a realistic configuration.
Many authors presented the test case of the flow over a flat plate. In this section
only a fixed mesh case is presented with a reasonable number of mesh points. For
this purpose the CT5 case of the standard AGARD LANN wing test case is used
[34]. This case concerns the transonic flow about a supercritical transport type wing
at M,=0.82, =0.60 deg, oscillating about an axis parallel to the y-axis located at
z/c,=0.621 with a reduced frequency £=0.102 based on the root semi-chord and an
amplitude of 0.25 deg. For this calculation the DLR mesh [118] is employed. The
mesh, shown in figure 6.10, has a CH topology and dimensions of 161x33x41. The
same mesh was used by Heinrich et al. [74] for a similar study using an implicit dual
time stepping method.

The calculations were carried out on the SUN MP 1000 machine (8 processors) of
the Chair Aerospace Structures and Computational Mechanics of the DUT Faculty
of Aerospace Engineering and on the CRAY T3E of the DUT Center for High
Performance Applied Computing (HPaC) with 72 processing elements (PE). The
SUN MP is a shared memory system with 1 GB of RAM (4 byte words), while the
CRAY T3E is a distributed memory system with 128 MB of RAM (8 byte words)
in each PE.

The calculations were carried out with all variables in core. On the CRAY
T3E at least 8 PEs had to be employed for memory and load balancing. Thus the
comparison for 1 to 8 processors was done on the SUN MP and 8 to 64 processors
on the CRAY T3E. The speed-up with the CRAY T3E has been calculated relative
to the 8-processor performance.

STEADY FLOW

The results of the steady flow calculations are presented in figures 6.11 to 6.13.
Figure 6.11 shows the comparison between the results using 8 processors, the results
using 64 processors and the experiment. A more comprehensive comparison of the
results of the present method with experimental data will be presented in the next
section. It can be concluded that the parallelization does not change the quality of
the solution. Figure 6.12 presents the convergence history of the simulations using
different numbers of processors. The convergence penalty caused by the explicit
treatment of the artificial boundary increases with the number of processors. It can
be seen from the L2 norm of the residual of the mass conservation equation that
this penalty is not severe, even for a large number of processors. In line with this,
the history of the lift coefficient is hardly influenced by the parallelization. The
speed-up of running on more processors is shown in figure 6.13. This speed-up was
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calculated based on the wall-clock time required to converge using the criterion of
the L2 norm of the residual of the mass conservation equation. The execution using
64 processors took less than 4 minutes.

UNSTEADY FLOW

The calculations for the forced vibration case were carried out using 24 time steps
per cycle, with a number of subiterations between 12 and 20 with the convergence of
the simulated lift coefficient as the criterion. The left part of figure 6.14 shows the
comparison of the history of the lift coefficient using 8 processors and 64 processors.
It can again be concluded that the parallelization does not alter the solutions. For
the simulations using 32 and 64 processors, on average one additional subiteration
is required in each time step to achieve the same convergence level as the 8 and 16
processors runs. The speed-up is shown in the right part of figure 6.14. The simula-
tion using 64 processors took about 3 minutes per cycle of oscillation. The speed-up
of the unsteady flow simulation is better than for the steady flow simulation. This
can be explained by the convergence criterion of the lift coeflicient used in stopping
the subiteration. Figure 6.12 has shown already that the lift coeflicient seems to be
insensitive to the parallelization.

The speed-up obtained here for both steady and unsteady flow simulation is
comparable to the result of Heinrich et al. [74]. Therefore, the present method can
be concluded to be satisfactory, since the implicit temporal integration method of
[74] employs explicit subiterations, which does not have a convergence penalty when
increasing the number of processors.

6.3.2 RESULTS OF FLOW SIMULATIONS

The results of the flow simulations are presented in this section. The cases range from
a simple isolated wing case up to wing-body configurations of a transport aircraft
and a fighter type configuration. The purpose of these test cases is to validate the
flow modeling and temporal integration method for three-dimensional applications.
Some results have been produced using a single workstation and some others using
a cluster of workstations or an MPP machine.

ONERA-M6 wWING

. The ONERA-M6 wing was selected to verify the current method for:three-dimensional
steady flow applications. Results have been obtained for M,,=0.84 and Re,,=14.6x
10°, based on the root chord, with a=3.06 deg and a=5.06 deg. The first test case
represents an attached flow condition and the second one has a flow separation bub-
ble just behind the shock over a part of the wing span. The dimension of the grid
is 128x23x25 for the inviscid flow case and 128x23x48 for the viscous flow case.
The mesh for the viscous flow calculation, shown in figure 6.15, has been obtained
by redistributing the mesh points in the (-direction so that sufficient resolution was
obtained near the wing surface. The experimental results for comparison were ob-
tained from Schmitt and Charpin [155]. For the first case calculations were also
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performed by Hounjet and Eussen [80] with a FP method (AESIM) on the same
grid.

Figure 6.16 shows a comparison of the pressure distributions calculated with the
present method and the FP method at several span stations of y/s=0.20, 0.44, 0.80
and 0.90. The presence of two shock waves at the inner wing and one shock wave
at the tip region suggests the presence of a lambda shock at the upper side of the
wing. The overall comparison is fairly good. Near the root section the results agree
very well, except in the trailing edge zone which might be caused by the onset of
shock generated entropy and vorticity which are not modeled in the FP method.
The other possible explanation is that the Kutta condition is explicitly satisfied
by the FP method, while for the Euler method the flow at the trailing edge is
captured as a contact discontinuity. An attempt was made to reduce the differences
by redistributing the grid in the trailing edge zone which had however only a limited
effect. In comparison to the FP method the second shock has been predicted a bit
further aft by the Euler method. At the wing tip the differences are slightly larger.

Figure 6.17 shows a comparison of the calculated pressure distribution with ex-
perimental data. Near the root section there are two shock waves which are well
predicted, except for the peak value of the first one. The second shock wave is a bit
too far downstream which is only slightly improved by the viscous flow method. The
pressure distributions on the lower side agree well. Near the wing tip the Navier-
Stokes method performs not as good as the inviscid flow methods. This is probably
due to an insufficient resolution of the mesh in the spanwise direction near the tip
and the inadequacy of the algebraic turbulence model. These results are similar to
the Navier-Stokes results presented in the literature for this configuration.

Figure 6.18 shows a comparison of the calculated surface pressure coefficient
with the experimental data at several span stations of y/s=0.20, 0.65, 0.80 and
0.90, at the higher incidence of a=>5.06 deg. Starting at the root section there
are two shock waves which are well predicted, including the peak value of the first
one. Again the second shock wave is situated a bit too far downstream which is
fairly well improved by the viscous method. Also the pressure distributions on the
lower side agree well. The measured pressure distributions at y/s=0.80 and 0.90
show the presence of a separation bubble at the foot of the shock. Although the
calculated pressure distributions close to the trailing edge agree reasonably well
compared to the experiment, the separation bubble could not be captured properly.
A calculation employing the Spalart-Allmaras turbulence model has not improved
this deficiency. Similar results for methods using the Baldwin-Lomax and Spalart-
Allmaras turbulence model were obtained by Radespiel et al. [139]. They also showed
that the Johnson-King turbulence model could model this separation bubble well.

The CPU time of the viscous flow calculation (21000 relaxation sweeps) was a
factor 3 higher than that of the inviscid flow calculations (=500 relaxation sweeps)
for obtaining a 4 digit accuracy of the lift coeflicient. The calculations were carried
out on a SGI workstation with R8000/R8010 processors. It took about 10 hours for
the Navier-Stokes calculation.
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NLR F-5 wiNGg

The applicability of the present CUA method is validated using the NLR F-5 fighter
type isolated wing. Geometrical and experimental data of NLR wind tunnel tests
are described by Tijdeman et al. [169] for the clean wing. In this case the viscous
effects are weak to mild.

The vibration mode is a rigid pitching oscillation with an amplitude of 0.25 deg
about the root midchord. The axis of rotation is perpendicular to the root plane.
The frequency is 40 Hz, corresponding to k=0.274, based on the root semi-chord.
The flow condition is M,,=0.90, Re,,=12x10%, based on the root chord, and a=0
deg. The steady flow calculations were performed with the Navier-Stokes equations
and the Euler equations on a coarse mesh of 128x22x36 and 128x22x24 points,
respectively. Similar dimensions of the mesh were also used by Guruswamy [68] for
this case.

Figure 6.19 compares the steady pressure distributions at the span stations
y/$=0.20, 0.50, 0.70 and 0.85. Only slight differences are noticed between the Euler
and the Navier-Stokes results. Therefore only the Euler method was applied further
for the unsteady flow case. The unsteady flow calculations were performed using 24
time steps and 48 time steps per cycle with 12 to 20 subiterations.

The unsteady first harmonic pressure coefficients are compared in figures 6.20
and 6.21. Except for peak values a fairly good agreement is shown. The differences
close to the leading edge may be caused by the insufficient mesh resolution around
the nose. Inspection of the time signals revealed the existence of a moving shock
close to the leading edge which can not be found in the experimental results. Most
probably the relatively widely spaced distribution of pressure orifices did not allow
a precise recording of the shock wave motion, especially for the small amplitude of
the pitching motion. The differences due to the applied number of time steps are so
small that in conclusion 24 time steps per cycle were sufficient for the calculation.
The CPU time for the inviscid calculation using 24 time steps per cycle was about
1.5 hours per cycle using a SUN workstation with ULTRA SPARC 1 processor. It
may be concluded that the present method gives satisfactory results for the steady
and unsteady flows around NLR F-5 fighter type wing.

LANN WING

The LANN wing is considered again. An extensive comparison of calculated results
was already performed in 1984 by Hounjet and Meijer [82] using the measured wing
geometry, the static deformation, the measured vibration modes and an angle of
attack correction for matching with the steady flow pressure distribution, in vali-
dating the time-linearized inviscid FTRAN3 method. In the present calculations
design contours were applied, no account was taken for the static deformation, the
angle of attack correction and the vibration mode correction. The LANN wing ge-
ometry was taken from Bland [34]. Experimental data were obtained from Zwaan
[183].

Calculations and comparisons were made for pitching about 0.621 root chord
at M,=0.822, 0=0.6 deg and Re,,=7.3x10% based on root chord. The amplitude
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of oscillation was 0.25 deg with a reduced frequency of & = 0.102 based on root
semi-chord. The same mesh as employed in the parallelization test cases was used.
This case has moderate viscous and transonic effects.

' A comparison of the steady pressure distributions is shown in figure 6.22 at the
span stations of y/s=0.20, 0.47, 0.65 and 0.82. The Euler results show a substantial
deviation from the experimental data, even for the lower side. The calculated data
using the Navier-Stokes equations are in fairly good agreement with the experimental
data for the whole wing at both sides, for both shock positions at the inner wing
and peak suction levels at the leading edge.

Unsteady first harmonic pressure distributions are compared in figures 6.23 and
6.24. The Euler results were generated with 24 time steps per cycle and the Navier-
Stokes results were obtained using 48 time steps per cycle. It is immediately clear
that the agreement of the experimental data with the Navier-Stokes results is better
than with the Euler results, although both sets of calculated results are qualita-
tively correct. The results using the Euler equations are similar to those presented
by Brenneis and Eberle [35] which were also validated for the case of k=0.076. Part
of the differences between the computational and the experimental results should
be attributed to the presence of additional vibration modes of the wing model ob-
served during the wind tunnel tests, which were partly not in complete phase or
counterphase with the excitation force, see [82].

The CPU time for the inviscid flow case was about 2.5 hours per cycle of os-
cillation on an SGI workstation with R8000/R8010 processors. The CPU time of
the unsteady viscous flow calculation (48 time steps x 16 relaxation sweeps) was
a factor 3 higher than that of the inviscid flow calculations (24 time steps x 12
relaxation sweeps) for one cycle. It should be noted that unsteady flow results of
the aforementioned FP method required about 5 times less computing time than
the present Euler method.

The application of the present method for the transport type wing suggests the
importance of viscous flow modeling for flow about a relatively thick wing. The
computing time for the viscous flow case which was about 7.5 hours required an
overnight run on a workstation. This was one of the reasons to apply a parallel
computing method to reduce the wall-clock time. Finally it may be concluded that
the present method gives also satisfactory results for a transport type wing.

DLR-F4 WING-BODY CONFIGURATION

Recently, many European rescarch institutes have carried out a common project
to validate CFD methods and assess turbulence models, see Haase et al. [70] for a
complete report on the project. One of the configurations considered in the project
was the DLR-F4 transport wing-body configuration. This case is perhaps the best
test case for validation since the mesh and the results of many well-known institutes
in Europe are available on a CD-ROM. Steady transonic flow experiments were
conducted in the high speed wind tunnel (HST) of the NLR, Amsterdam.

The case considered is the transonic flow at M, ,=0.75, @=0.93 deg and Re,
=12.49%10° based on the semi-span of the wing model. The mesh had a CO topol-
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ogy, with solid surfaces on both #=0 and (=0, see figure 6.2. The dimensions of the
mesh were 257x89x49 which in total amounts to about 1.1 million mesh points.

The calculation with the present method was carried out on 32 processors of the
CRAY T3E computer. The convergence of the lift coefficient and the L2 norm of
the residual of the mass and energy conservation equations is shown in figure 6.25.
The work unit along the horizontal axis is the wall-clock time required to evaluate
the residual. Thus it represents more or less the time required to perform one
explicit step. The iterations were stopped after the lift coefficient reached 4 digits
of accuracy. By this time the residual had dropped about 3 orders of magnitude.
Similar figures were also presented in [70]. The calculation time was about 90
minutes.

The comparison of the computed and measured pressure distributions on the
surface of the wing is shown in figure 6.26. Comparisons are provided by the ex-
perimental data and also two other computational results, namely of Daimler-Benz
Aerospace (DA) using a Thin-Layer Navier-Stokes method with the Baldwin-Lomax
algebraic turbulence model, and British Aerospace (BA) using also a Thin-Layer
Navier-Stokes method but with the k—7 two-equation turbulence model. Both com-
putational methods apply central difference schemes for the inviscid fluxes, where
the method of DA is of Jameson type and the method of BA is of Lax-Wendroff
type. It is repeated here that the present method employs an upwind method of
Roe’s FDS with the Spalart-Allmaras one-equation turbulence model. The results
of the present method are in good agreement with the other computational results
and the experimental data, except for the shock position which resides between the
result of BA and DA.

It may be concluded that satisfactory steady flow results have also been obtained
using the present method for this wing-body configuration of transport type.

FIGHTER TYPE WING-BODY-TAIL CONFIGURATION

The most complicated configuration considered in the present study is a wing-body-
tail fighter type configuration. Unsteady flow experiments were conducted in the
HST of the NLR, Amsterdam for a semi-span model of this configuration. The wing
was excited sinusoidally in a pitching motion. Figure 6.27 shows a mesh with about
200,000 points. The inlet of the engine was smoothed over. The case considered is
a transonic flow case at My =0.92 and omean=6.00 deg. All results were obtained
using the Euler mode. . : S

The comparison of the calculated pressure distributions on the wing upper sur-
face and the experimental data is presented in figure 6.28. The overall agreement is
good, except for the shock which is too strong and located too much downstream.
The differences near the wing tip may be explained by the experimental result be-
ing obtained with a wind tunnel model having a missile tip-launcher, whereas the
present calculation was carried out with a clean wing. The shock strength and
location may be improved by using the Navier-Stokes method.

In the unsteady flow case the pitching oscillation had an amplitude of amp=0.50
deg. Figures 6.29 and 6.30 show the real and imaginary part of the pressure dis-




6.3. Results of CUA method for three-dimensional flow 179

tributions on the upper surface of the wing compared to the experimental results.
Two simulations were performed employing small and large time steps on a SUN
MP using 6 processors out of a maximum of 8. The small time step was 64/cycle
" requiring 3 hours/cycle of wall-clock time and the large time step was 8/cycle re-
quiring 25 minutes/cycle of wall-clock time. Large and small time step results are
very similar. Their differences are almost negligible when the results are compared
with the experimental data. In view of the complicated configuration and the dif-
ferences in geometrical modeling, the agreement is reasonable for the inboard part
of the wing, but diminishes towards the tip. The differences at the outboard part
of the wing may be caused by the flow separation which was observed during the
experiment.

In general the results for this relatively complex configuration are satisfactory.
The low number of time steps per cycle required to obtain adequate unsteady flow
results with a computing time less than half an hour justifies the present approach.
The results presented in this section validate the application of the present method
for a complex configuration.
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Figure 6.10: Mesh around LANN wing with CH topology, number of mesh points = 220,000
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Figure 6.11: Steady pressure distributions on LANN wing, case CT5
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Figure 6.12: Convergence of lift coefficient and residual in mass conservation equation
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Figure 6.13: Speed-up of parallelization of steady flow calculation for LANN wing, case CT5,
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Figure 6.14: Performance of parallelization of unsteady flow calculation for LANN wing, case

CTS5, fixed mesh problem
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Figure 6.15: Mesh around ONERA M6 wing with CH topology for calculations involving the
Navier-Stokes equations
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Figure 6.16: Comparison of steady pressure distribution on ONERA-M6 wing calculated with
FP and Euler methods at My, = 0.84, a = 3.06 deg
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Figure 6.17: Comparison of experimental and calculated steady pressure distributions for
ONERA-M6 wing at My,=0.84, @=3.06 deg and Re,,=14.6x10°
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Figure 6.18: Comparison of experimental and calculated steady pressure distributions for
ONERA-M6 wing at M, =0.84, a=5.06 deg and Re,,=14.6x10°
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Figure 6.19: Comparison of experimental and calculated steady pressure distributions for fighter
type wing at My,=0.90, a=0 deg and Re,,=12x10°
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Figure 6.20: Comparison of real part of experimental and calculated (Euler) first harmonic
pressure distributions for fighter type wing at M,=0.90, atamp=0.25 deg and k=0.274
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Figure 6.21: Comparison of imaginary part of experimental and calculated (Euler) first har-
monic pressure distributions for fighter type wing at M,=0.90, 0ramp=0.25 deg and k=0.274
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Figure 6.22: Comparison of experimental and calculated steady pressure distributions on LANN
wing at My,=0.82, a=0.6 deg and Ren,=7.3x10°
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Figure 6.23: Comparison of real part of experimental and calculated first-harmonic pressure
distributions on LANN wing at M=0.82, 0tmean=0.6 deg, atamp=0.25 deg and k=0.102
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Figure 6.24: Comparison of imaginary part of experimental and calculated first harmonic pres-
sure distributions on LANN wing at M,=0.82, amean=0.6 deg, amp=0.25 deg and £=0.102
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Figure 6.25: Convergence history of lift and residual for the DLR-F4 wing-body test case at
My=0.75, a=0.93 deg, Re,,=12.49x10°
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Figure 6.26: Comparison of experimental and calculated pressure distributions on the wing of
DLR-F4 wing-body configuration at My,=0.75, «=0.93 deg
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Figure 6.27: Mesh around wing-body-tail fighter type configuration with HO topology, number

of mesh points ~200,000.
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Figure 6.29: Comparison of the real part of experimental and calculated unsteady pressure
distributions on the upper side of the wing of fighter type configuration at My, =0.92, a =6.00
deg, Qamp =0.50 deg
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Figure 6.30: Comparison of the imaginary part of experimental and calculated unsteady pres-
sure distributions on the upper side of the wing of fighter type configuration at M., =0.92,
« =6.00 deg, aamp =0.50 deg
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6.4 STRUCTURAL MODEL

In the two-dimensional case of a rigid airfoil, the motion is completely defined by
the two variables [h, a], representing a two-degree-of-freedom system. For the three-
dimensional case, a more general approach is applied in which N degrees of freedom
can be employed in the analysis.

As has been introduced in section 2.4, the motion of the structural part is rep-
resented by a finite number of predefined mode shapes. These modes are obtained
from solving the homogeneous equation for the motion of the structure, i.e. equa-
tion (2.2). Thus, the structural part in the present CAS method is represented by
the mode shapes, ¢, which have been normalized by the mass matrix, see equation
(2.3), and the corresponding natural frequencies of these mode shapes.

Since a loose aero-structural coupling is employed, the choice of the level of
modeling of the structural part is quite flexible as long as the mode shapes can be
defined at the nodes of the CUA mesh that are located on the solid surface. For
example, a high aspect ratio wing structure can be modeled as a beam with the
spanwise variation of the translation and the rotation as the variables, a thin low
aspect ratio wing can be modeled as a flat plate, and so on. The most general
method for modeling the structure is by a finite element method (FEM), see e.g.
Bathe [23]. .

The determination of modal parameters of an aircraft structure by calculation or
experiment is a theme in itself and lies outside the scope of the present study. The
limited attention that is given here to this theme does not imply that it is less im-
portant than the CUA/CAS issue. Mass and stiffness forces are usually much larger
than the unsteady aerodynamic forces, as it has been made clear in table 2.1, and
the accuracy of the modal parameters is a matter of primary concern. Experience
has learned that the natural frequencies can be determined quite accurately. Gen-
eralized masses and natural mode shapes data are generally less accurate, especially
at higher natural frequencies. The mode shapes are constituent elements in the
generalized aerodynamic forces besides the aerodynamic pressures. Moreover, the
mode shapes are required to prescribe the boundary condition for the aerodynamic
calculations.

The interfacing between the aerodynamic data and the structural data in the
aeroelastic system will be the subject of the next sections.

-~ 6.5 - AEROELASTIC EQUATIONS

As has been mentioned in chapter 1, and also shown by the examples in the pre-
vious section, in almost all cases of aeroelastic analysis an incompatibility exists
between aerodynamic nodes and structural nodes at the fluid/structure interface.
Figure 6.31 shows an example the FEM modeling of the structural part using flat
plate elements and FVM modeling of the aerodynamic part. Figure 6.32 shows the
situation near the nose of the AGARD 445.6 wing. It can be clearly seen that the
aerodynamic surface control points (points on the surface where the solid-surface
boundary condition is imposed and the pressure is calculated) and the structural
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Figure 6.31: Different types of discretization and geometrical modeling of the aerodynamic
(finite volume) and structural (finite element) part of AGARD wing 445.6

FEM nodes (points where the structural displacement, velocity and acceleration are
calculated) do not coincide. In this case an interpolation method is required. In
aeroelastic problems the aerodynamic mesh at the interface is usually denser than
the structural mesh. Therefore, representing the aerodynamic data at the struc-
tural mesh may be called restriction, whereas representing the structural data at
the aerodynamic mesh may be called prolongation.

The interpolation method to be adopted for the present three-dimensional CAS
method is based on aeroelastic applications. Aeroelastic practice has shown that
spline methods are effective interpolation methods. Such a method has also been
applied in the present study. The most important requirement for the spline method
is stated in section 2.1, i.e. that the work transfer should be conserved. The aero-
dynamic force restriction to the structural mesh can be written as:

fF=1R] f% (6.25)

where f* are the aerodynamic forces at the structural nodes and f¢ are the aero-
dynamic forces at the aerodynamic surface control points, whereas the prolongation
of the structural displacements to the aerodynamic surface control points can be
written as:

d* = [P]d" (6.26)
The requirement that the transfer of work is constant can be expressed as:

fodt = o de, (6.27)
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Figure 6.32: Control point incompatibility between the structural computational model and
the aerodynamic computational model

which upon substitution of equation (6.25) and equation (6.26) results in the con-
dition:

[R] = [P]T. (6.28)

In the present study the volume spline method of Hounjet and Meijer [83], which
was developed primarily for the conservation of aeroelastic data transfer, is applied
to determine the restriction and prolongation operators. The volume spline method
employs a series of three-dimensional functions which are solutions of the Laplace
equation. The interpolation also has to satisfy the requirements: applicable for
smooth and non-smooth data, monotone and correct far-field behavior. A detailed
description of the method was given in [83].

To solve equation (2.4) the GAFs have to be evaluated at those structural nodes
which represent the solid boundaries. Assuming a conservative work transfer the
GAFs can also be calculated by first prolongating the mode shape data to the
aerodynamic control points on the solid surface. Therefore, prior to the aeroelastic
simulation the mode shapes obtained from the structural dynamic calculation have
to be prolongated to the aerodynamic mesh points on the solid surface. Figure 6.33
shows the first four mode shapes and the corresponding natural frequencies of the
AGARD 445.6 wing after the prolongation to the aerodynamic surface control points
using the volume spline method.

--Followipg the determination of the mode shapes at the aerodynamic surface con-
trol points, the aeroelastic simulation proceeds by solving the aeroelastic equations.
In a generalized coordinate system the structural equations, i.e. equation (2.4), are
written here as:

Gi + 2Gwidi + wlg = Qs i=1.N, (6.29)
where ¢; is the generalized coordinate and Q; = ¢ SQ;, in which Q; is the di-

mensionless generalized force, given by equation (2.5). As for the two-dimensional
method, the set of second-order differential equations, equation (6.29) is brought into
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z(t) = q(t)d; + @2(t) Dy + @33 + ahy

Figure 6.33: The first four mode shapes prolongated from the structural nodes to the aerody-
namic surface control points of AGARD 445.6 wing. Note that for clarity not all mesh lines
have been plotted

a standard state-space representation in a system of first-order differential equations:

X = AX + BQ, (6.30)

0 1 0
A:[—wz —2Cw]’B:[1]’

and the state variable is defined as X = [g, ¢]7. The solution of equation (6.30) fol-
lows the method presented in chapter 5 for two-dimensional aeroelastic simulations.

where:

6.5.1 CONFORMITY OF AERODYNAMIC AND STRUCTURAL PARAMETERS

The most serious and always returning problem faced by an aeroelastician in daily
practice turns out to be the painstaking merging of the data supplied by the struc-
tural engineer and the data supplied by the aerodynamic engineer. In this section
the approach which is taken in the current study is highlighted. This approach
should be general enough to handle most of the practical problems.

Neglecting the structural damping parameter, the equations relating the struc-
tural data and aerodynamic data in the dimensional form can be expressed by the
following equation:

m; §i + mawl g = Qi (6.31)
where both sides have the dimension of a force. @ is the generalized aerodynamic
force defined as:

1

Q=3

pOOUogo/ Cp ¢g:slr -1 dSq, (632)
Satr
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where the subscript str means that the data are based on the structural data. The
mode shapes ¢; are taken to be dimensionless, thus ¢; has the dimension of a length.

In the computation of structural data with e.g. a finite element model, usually
the original measures of the structure are employed, whereas in the aerodynamic
calculation normalized measures of the mesh are preferred, e.g. by using a unit
root chord or a unit semi-span, etc. To harmonize the structural and aerodynamic
data one common reference length is used here for both data sets, but this length
should be expressed relative to the separate definitions of nondimensionalization.
Accordingly, when the root chord is selected as the reference length of the structural
data, ¢, s, the aerodynamic data has to use also the root chord, but now expressed
as the reference length ¢, ,.

Equation (6.31) is nondimensionalized using the following parameters: the aero-
dynamic dimensionless quantities: length using ¢, ,, time using ¢, . /@, density using
Peo; and the structural dimensionless quantities: mass using the reference mass m,.,
frequency using the reference frequency w,. The resulting equation becomes:

i §; + =2 me; § = 52Q, (6.33)
where the variables with a bar denote dimensionless variables, U = Uy /(wrc, )
is the reduced velocity and Q is the dimensionless generalized aerodynamic force
defined on the aerodynamic mesh as:

_ 1
Qi = o / / CP @] ser * T dSaer. (6.34)
7\ Saer

The mode shapes ¢, and the surface area defined on the aerodynamic mesh are
simply:

cr,
d’i,aer = 'CT—:¢z‘,str1 (635)
cz'
Saer = c;,a Sstn (636)

7,5
and the mass ratio u is defined as:

my

p= . (6.37)

pOOCg,s
i The aeroelastic equation has now; like-the two-dimensional ‘version, two-aero-
structural coupling parameters, namely the reduced velocity U/ and the mass ratio
p. For each problem a proper scaling factor is calculated for the reduced velocity
and mass ratio according to the present definition. An example will be given in the

next chapter for the AGARD standard test case of the 445.6 wing.

6.5.2 REsuLts OF CAS METHOD FOR THREE-DIMENSIONAL FLOW

The well-known AGARD 445.6 wing is considered, a three-dimensional AGARD
standard aeroelastic configuration which is described in [179]. The configuration
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for dynamic response, i.e. the weakened model number 3, was selected. The mesh
applied for this calculation consists of 121x29x24 mesh points. First the case for
M,=0.96 and x = 225.820 is considered. It should be noted that this value of u is
only consistent at the experimental flutter point which was obtained at V*=0.3076.
In the present calculation it is used also for all other speeds. ‘

The data given in [179] are: mass of the model ma=0.12764 slugs', reference
volume wa=4.595 ft®, density p,,=0.000193 slugs/ft, root chord ¢, ,=1.833 ft and
generalized mass m;=1 1bf s2/in=0.0833 slugs. The speed index is defined in [179]
as V*= Uy /(wabr s\/pin, where the mass ratio is defined as pua = ma/(pova) and wy
is the frequency of the second mode (first torsion mode, see figure 6.33).

To use the present aero-structural coupling parameters, the reduced velocity is
defined as Up = 2U/(crsw2). The scaling parameters for the reduced velocity and
mass ratio are calculated as follows. First define the reference length as c,,=1 ft.
The reference mass is the mass of the wing model m,=0.12764 slugs. The reduced
velocity and the mass ratio for the simulation are calculated as:

U= UAUscaI (638)
K= HAHscal, (6.39)
where the scaling factors are:
CT S
Uscal = 26;,a = 0.9165 (640)
pacn = - = 0.7461. (6.41)

TS

The factor 2 in the denominator of equation (6.40) arises from the reference length
being the semi-chord in the definition of speed index according to AGARD [179].

To show the applicability of the present aerodynamic method for large time step
simulations a forced vibration case is first considered. The second mode of the 445.6
wing was excited in a sinusoidal motion with a reduced frequency of k=0.10, based
on root semi-chord, and an amplitude of 0.005¢, ,. Figure 6.34 shows the generalized
aerodynamic forces Q; and @, associated with the first two vibration modes using
a small time step (48 steps/period) and a large time step (10 steps/period). No
significant differences were found. The CPU time for the small time step simulation
was about 120 minutes/period using one processor of the CRAY J90, or 20 min-
utes/period using a cluster of 4 SUN ULTRA SPARC workstations. The large time
step simulation on the CRAY and the SUN takes about 60 and 12.5 minutes/period,
respectively.

Next the validation of the structural extrapolation method is presented. For this
purpose only the first two vibration modes were used, namely the first bending and
first torsion mode. These modes are primarily involved in the flutter mechanism,
see Lee-Rausch and Batina [101]. The simulations proceeded by first calculating
the steady flow around the mean condition. Subsequently all modes involved in the
simulation were excited by giving an initial speed of ¢;=0.01.

11 slug=1 Ibf s?/ft=32.2 Ibm
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To cross-check the methods, simulations with the simple aerodynamic extrapola-
tion method of Edwards et al. [52] and the present structural extrapolation method
were made using a small time step (48 steps/period of the second mode). The results
are presented in figure 6.35. Both methods showed an excellent agreement.

For the large time step simulation 8 steps/period of the second mode were ap-
plied. The comparison of the results for the simple aerodynamic extrapolation
method of [52] is shown in figure 6.36. As already noted for the two-dimensional
case this method is not adequate for large time step simulations. The results in fig-
ure 6.37, obtained using the current structural extrapolation method at large time
steps, show in general a good agreement with those obtained with small time steps.
The comparison of the value of the damping decay coefficients is:

method o CPU (min/simulation)
small At 0.0040 40
large Ar, structural extrapolation  0.0042 25
large A7, simple extrapolation [52] 0.0102 25

Finally the present structural extrapolation method is employed for a simulation
involving all four vibration modes. The time step is set at 8 steps/period of the
highest modes. Three simulations were made at V*=0.253, V*=0.266 and V*=0.293
using the same initial condition as in the previous simulations. The time responses
of the first two modes are depicted in figure 6.38. The flutter speed index was
calculated from the quadratic interpolation of damping data. The comparison with
data available from other references is shown in the table below:

Method Vi
AESIM (full-potential) [80]  0.303
CFL3D (Euler) [101] 0.256
CFL3D (Navier-Stokes) [101] 0.287
Experiment [179] 0.3076
Present (Euler) 0.279

Is should be noted that the results of CFL3D were estimated from [101]. The CPU
time for each simulation was about 48 minutes/simulation on a cluster of 6 SUN
ULTRA SPARC workstations or about 18 minutes/simulation using 8 processing
elements of CRAY T3E.

The comparison of the flutter speed indices at various Mach numbers with the
results of Hounjet and Eussen {80}, C. Farhat and'M. Lesoinne {37} and the exper-
iment of NASA Langley, is shown in figure 6.39. In general a good agreement is
obtained between the results of all methods in predicting the transonic dip.
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Figure 6.34: Comparison of forced vibration case of 445.6 wing at M,=0.96 between small
48/period and large 10/period time steps runs
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Figure 6.35: Comparison of time responses between the aerodynamic extrapolation method
of [52] and the present structural extrapolation method for small 48/period time steps, 445.6
wing at M,=0.96
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Figure 6.36: Comparison of time responses between small 48/period and large 8/period time
steps simulation for aerodynamic extrapolation method of [52], 445.6 wing at My,=0.96
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Figure 6.37: Comparison of time responses between small 48/period and large 8/period time
steps simulation for the present structural extrapolation method, 445.6 wing at M,,=0.96
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Figure 6.38: Time responses of the first four modes of 445.6 wing at My,=0.96 for three
speed indices
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Figure 6.39: Flutter boundaries of AGARD |-wing 445.6
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6.6 CONCLUSIONS OF THREE-DIMENSIONAL CUA AND CAS METHODS

The extension of the two-dimensional CUA/CAS method to a method for three-
dimensional configurations has been carried out. Only the methods which were
concluded in chapter 3 to be suitable for three-dimensional configurations have been
applied: Roe’s FDS for the inviscid fluxes and the spring analogy method for the
dynamic mesh deformation.

Attention has been given to retaining an acceptable computing time by applying
a parallel computing method based on domain decomposition.

Test cases have been presented with the aim of validating the present parallel
computing, flow simulation and aeroelastic simulation methods. The test cases
presented in this chapter lead to the following conclusions:

e Most of the parts of the two-dimensional method can be extended straight-
forwardly for application to three-dimensional configuration straightforwardly.
The relaxation and the spring analogy method retain their robustness.

o The scalability of the parallel method is satisfactory. The penalty in conver-
gence due to the explicit treatment of the artificial boundary between sub-
domains turned out to be mild up to 64 processors. The scalability of the
unsteady flow test case was better than that of the steady flow case.

e The flow simulation results show that the temporal integration performance of
the two-dimensional method is retained to a large extent. A time step in the
O(10) per cycle can be employed for the simulation of forced vibration cases
which leads to an acceptable turnaround time for unsteady flow simulation.

e Satisfactory results have also been obtained for a geometrically more com-
plicated wing-body transport type configuration and a wing-body-tail fighter
type aircraft.

e The present aero-structural coupling method developed in chapter 5 for two-
dimensional configurations has been successfully applied in three-dimensional
aeroelastic simulations.

e Aeroelastic simulations can be carried out in an acceptable turnaround time
provided that a sufficient number of computers or processors is employed.
This is made possible by both the present aero-structural coupling procedure
and the parallel computing capability. For the AGARD standard aeroelastic
test case, the employment of the present aero-structural coupling procedure
reduces the running time to almost a half. Each simulation can be run as fast
as 18 minutes using 8 processors of the CRAY T3E.




CHAPTER (

CONCLUSIONS AND PROSPECTS OF
CAS FOR APPLICATIONS IN
PRACTICE

In the previous chapters opportunities to include higher-level flow modeling (i.e. the
Euler and Navier-Stokes equations) in CUA and CAS methods have been investi-
gated, with the aim to make these methods more attractive for practical aeroelastic
applications, especially in industry. This last chapter presents a summary of the
results of the study, some concluding remarks and recommendations for further re-
search in this field. Detailed conclusions of each part of the study have been given
at the end of the corresponding chapter.

A new CUA/CAS method has been developed in which the results of the study
have been incorporated. The features and capability of the method can be summa-
rized as follows:

1. Governing equations:

o Flow: the Euler/Navier-Stokes equations on deforming mesh.

o Turbulence modeling: Baldwin-Lomax algebraic model and Spalart- All-
maras one-equation model.

e Structure: linearized equation of motions: two-degree-of-freedom airfoil,
multiple-degree-of-freedom modal decomposition for three-dimensional
configurations.

2. Discretization methods:

o Upwind spatial discretization of the inviscid fluxes: van Leer’s FVS,
AUSM FVS, Roe’s FDS, van Leer’s/Osher’s FV/DS.

e Mesh topologies: mono-block C-mesh for two-dimensional flow; mono-
block CH-, HO-, CO-meshes for three-dimensional flow.

o Central spatial discretization of the viscous terms, approximated using
thin-layer assumption.

o Implicit temporal integration employing line relaxation schemes in each
time step.
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¢ Spring analogy mesh deformation method with implicit predictor.

e Parallel domain decomposition for the solution of the flow equations,
Spalart-Allmaras transport equation and mesh deformation scheme, ap-
plied using PVM communication library.

e Loose aero-structural coupling method: aerodynamic extrapolation and
structural extrapolation.

o Transition matrix method for the aeroelastic equations.

Several new approaches have been introduced: the implicit treatment of the
spring analogy mesh deformation method to allow large structural deforma-
tion, the treatment of the GCL and the aero-structural coupling methods
which allow large time step aeroelastic simulations.

. The method has been validated using various test cases:

e Two-dimensional cases of steady flow, transonic buffet of a circular arc
airfoil, unsteady flow forced vibration, dynamic stall and aeroelastic sim-
ulation of Isogai’s case A.

¢ Three-dimensional cases of steady flow, unsteady flow at forced vibration
and aeroelastic simulation.

. In addition, several new cases have been considered:

o Analysis of two-dimensional flow field at transonic buffet to improve the
understanding of the flow physics.

e Two-dimensional viscous flow modeling of Isogai’s case A aeroelastic sim-
ulation at low as well as high angle of attack.

o Buffeting of an NACA 0012 airfoil using Isogai’s case A structural data.

e Three-dimensional unsteady transonic flow about wing-body-tail fighter
type configuration.

5. The cases considered in this study demonstrate the following characteristics

of the present CUA/CAS method:

~ o Robustness: thanks to the application of upwind methods ,almost no
parameter has to be tuned for a wide range of cases. The only important
parameter is the underrelaxation factor. This robustness will be of great
value to an aeroelastician in applying the CAS method.

» Versatility: a wide variety of applications has been presented which shows
the generality of the present approach. For attached flow conditions quan-
titative agreement has been generally obtained. Concerning flows with
significant viscous effects the present method gives correct results, at least
in a qualitative sense, which makes the present method a useful tool for
studying flow physics.
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o Reasonable computing time on moderate computer hardware, provided
that a number of computers is available for parallel computation of three-
dimensional cases. The time step can be determined based on the physics
and is not limited by the numerical stability boundary. Typical ap-
plications: a two-dimensional aeroelastic simulation requires 15 min-
utes/simulation in the Euler mode or 45 minutes/simulation in the Navier-
Stokes mode on a moderate workstation, while a three-dimensional aeroe-
lastic simulation in the Euler mode requires 48 minutes/simulation on a
cluster of 6 workstations or 18 minutes/simulation on a CRAY T3E using
8 processing elements.

These characteristics of the present approach should make application of the
CUA/CAS method attractive for the design office.

In the course of the study some possible improvements have been indicated for
further development of the present CUA/CAS method:

1. In striving for still increased efficiency, acceleration methods can be applied to
improve the convergence of the relaxation scheme. Furthermore, optimizing
the use of the mesh can be obtained by adapting the mesh to the solution,
see e.g. Hagmeijer [72]. However, this adaptation may require a considerable
effort.

2. The frequency content of the time response of an aeroelastic simulation usually
changes during the simulation. In the beginning often many frequencies exist
after which only the flutter mode, which is usually of low frequency, becomes
dominant. In such cases the application of an adaptive time step size can
reduce the simulation time by increasing the time step size as soon as high
frequency content has been damped out.

3. If the flutter boundary in the asymptotic stability sense is sought, an analysis
method which proceeds by identifying a linearized aerodynamic model will be
more efficient than the method presented in section 5.4. A preliminary result
of such a method has been presented by Hounjet et al. [81], where after one
time domain simulation the flutter boundary can already be determined.
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ArPENDIX A

REYNOLDS- AVERAGED
NAVIER-STOKES EQUATIONS

For a stationary turbulent flow, the Navier-Stokes equations are averaged in time.
The set of partial differential equation for the time-averaged Navier-Stokes equations
is obtained by defining for example the pressure as the sum of its average value and
its fluctuation:

p(z,y, 2,t) = b(z,y,z,t) + 7'

1 [T
plz,y,2,t) = Tlim 7 plz,y, 2, t + 7)dr
300 —T/2
p=p—0p (A.1)

In practice a finite value is taken for T and the time-averaging process is valid if the
time scale of the simulated unsteady flow phenomena remains large compared to 7.
By definition, the time-average of the fluctuating part is zero, p = 0. The other
flow variables are represented in the same manner. The desired set of equations
is obtained by expressing the flow variables in the governing equations in a time-
averaged value and its fluctuation and by subsequent time-averaging. The continuity
equation becomes

p+p) Bp+p)E+uw) 8(p+p)@+)  9p+p)w+w)
ot * Or * Oy * 0z =0. (A2)

After expanding the multiplication, the whole equation is time-averaged to arrive
at:

i e Tar Vo Tor T or oy oy | oy | oy
o | Opw 07 | 97V
0z Jz 0z 0z
With the help of a few relations in the averaging process, such as

o5 o7 o OB  07% 9P 9% O  OFY 07V

=0

p=p pu=pi pu=pu=0,
the remaining terms arc
op opu opv Opw Opd v Op'u’
_p+_pt_e+ﬂ+ pw P o' ol
ot oz oy 0z or dy 0z

=0.
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Comparing the last equation with the original continuity equation, new terms have
appeared. The last three terms can be eliminated by introducing mass-averaging
into velocity components, temperature, and energy according to Favre:

pu m _m i _PE

p’ p p’ p

The pressure and density use the original time-averaging process. The velocity
components and energy variables then become u = %+ 4", etc. With mass-averaged
variables the continuity equation after dropping terms that become zero reads

’a:

<
i

!
£

a_5+@ opu”  Opu"  9pt " Bpv” ap_m+aw apw"

—_— _— —_— =0
ot 31:+61 Oz 8y+6y+3y+82 3z+3z

The third and fourth term can be combined since pu” + p/u” = pu”, which can be
evaluated further with the help of the following manipulation:

pu = p(i+ ") = pa + p'a + pu”,
into o
pu” = pu — pﬂa

which is zero according to the definition of a mass-averaged variable. Using this
result, the mass-weighted time-averaged continuity equation can be brought into:

op | 9pi opu  9pv  9pw

ot oz By 0z
This equation is more convenient to work with than the original time averaged one
and will be used henceforth.

The time-averaged momentum equations are obtained using the same technique

and the same manipulations. The fluctuation of the viscosity coefficient is usually

small and therefore assumed negligible. For example, the momentum equation in
the z-direction becomes

=0. (A.3)

opu | Opw* | Opiv | Opuis __Op  Oar +75) ey t7h) O +7h)
ot oz dy 9z az oz Oy 0z

(A.4)

The last equatlon shows that in turbulent flow the stresses like 7, Tay @nd 7., have
appeared in addition to the laminar stresses. They are called turbulent stresses
The turbulent stresses in the z-direction are

r W Ou 2
= _ 2. u" - Tl 1T
Taz Re( 2»‘7 V u") — puu
r B v auu —
= () A5
Try Be az (9 ) putY ( )
fz _ u (Gw” 8u”) —

Oz
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The last terms in all three equations, —pu"u”, —pu"v", and —pu”w", are called the
Reynolds stresses. The momentum equation in the other coordinate directions have
a similar form.

The energy equation is more complicated since a new variable arises from the
definition of total energy:

~ 1
pE = ple + é(u2 + 02 + w?)]
= pé + pk + pk, (A.6)
where k is the kinetic energy of the mass-averaged mean flow,
- 1
k= 5(&%52 + %), (A7)

and k is the turbulent kinetic energy per unit mass,

— 1
k= P = S pw T+ ). (A8)

Thus k is defined as the Favre-average of the kinetic energy of the turbulent fluc-
tuations. The relation of time-averaged pressure and other variables due to the
perfect gas law becomes

B+p)=(—1)(p+p)E+e").
After time-averaging the time-averaged pressure is obtained:
b= (v=1)pe+pé+pe”
= (y—1)pe.
The energy equation with these definitions becomes:

opE opEu 0pEv  OpEw opu  Opv  Opw

ot T ar Ty T s T er oy 07 T
o(art + ﬁT;TfT +wrktT)
dz
B(ﬁTfy+T + ﬁTyL;rT + szLy*T)
dy
oarET + 177';;”" + Wkt
0z
V.q- Oph/'u" _ dph''v"” B 8ph”w”7
ox Oy 0z

where superscript L + T means total stresses from the contribution of the averaged
mean flow and the turbulent stresses. The total energy without turbulence kinetic
energy was denoted by E, thus E = E — k. Similar to the stresses, the influence of
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turbulence on the heat flux is shown by the appearance of additional terms in the
balance of energy, called the turbulent heat flux:

_aph"u" dphu" B Aph"w"
Oz oy 0z

Due to the appearance of turbulent stresses and turbulent heat fluxes, the set of
time-averaged Navier-Stokes equations needs some more relations to form a closed
set of equations. The simplest way to handle these terms is by following the concept
of eddy viscosity, where the Reynolds stresses are assumed to depend also on the
gradient of the mean flow like their laminar counterpart. According to Boussinesq
the Reynolds stresses are assumed to be:

rR_ bhe 400 20w, 2_

ol e - Y_Z

Pt =T = T30 " 33;) ~ 376
—puo = 7R = ’;z(g: 3") (A.9)
T R HE ow a’l},

puw” =T, =% 5 + s —J, etc.

In the above expressions pp is called turbulent eddy viscosity. In the same manner
the heat flux vector is assumed to have a similar form as the laminar heat flux
vector:

T _ _[ ohu”, pho" | R w" ]T ’y“Ev~

Prr

where the Prandtl number is taken to be constant, Pry = 0.90. Substitution of
equation (A.9) into equation (A.5) results in the expression of stresses in the z-
direction with the eddy viscosity concept:

T _ M @_g .’ 7e ?ﬁ_ .'.,g—
Tzrﬂﬁg( 8z 3 )+R (261: 3V w) 3pk:
" B up O Od
7 o) T E e oy
T__,u_a_w_ﬁ O BE ow Ou
Tas - Re' 0z t oz ),‘ Re 0z +6z

H
TZ_;,:T(

(A.10)

)-

A simplification of the turbulent stresses may be obtained by assuming that the
gradients of the fluctuating variables are small and also that  is relatively very small
compared to up. Hence, neglecting the first group will not degrade the accuracy.

In summing up, the Navier-Stokes equations for turbulent flow with eddy vis-
cosity approximation in matrix form become:

oQ , OF! L8 oF] L OF _oFy . oF) L oFY
oz Bz 0z oz 0z 0z’

(A.11)
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where the conservative variables and inviscid fluxes are:

ﬁ.
m
Q=| M |,
pi
pE
pu ]
poil
Fl'=| po*+p+3pk
pob

(PE +p + 2pk)¥ ]

The turbulent viscous fluxes are:
’ W
TII
FIY = Tyz
TZI

UTgg + UTay + WTzz — Gz |

and

EY =

2
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pit +p+ 2pk

Fl=

x
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P
Fiy
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UTyz + UTyy + wry, —
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The nondimensional stresses are:
ur ,.0u 2
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Reoo( o 3V u)
HT o] 2 -
= — 2——=-V-u
Tyy Reoo( gq 32 )
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and the heat flux vector is:

KT o o1
Tegy = Tyg — —=— + — N
Y Y Reoo ax ay)
r Hr ow n 8{;)
2= Tay = =\ 537~ ah
Y Y Reoo 8y 0z
r MT ou ow
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

where pr = p + pg. Usually the turbulent kinetic energy term is included in the
pressure. By defining that p = p + 2/3pk, the form of the time-averaged equations
returns to the original form of the equations for laminar flow with the coefficient of
viscosity replaced by its total (laminar plus turbulent) value.

If the turbulent coefficient of eddy viscosity is known, these equations completely
define the turbulent flow in terms of time-averaged and mass-weighted time-averaged
flow variables. The turbulent coefficient of eddy viscosity is obtained from a turbu-

lence modeling.
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AprPENDIX B

EIGENVALUES AND EIGENVECTORS OF
EULER EQUATIONS

The eigenvalues and eigenvectors of the system of Euler equations are needed when
Roe’s approximate Riemann Solver is applied to discretize the inviscid flux terms.
They are also needed to determine the boundary condition. In this appendix their
derivation is presented to show the possible choices which can be made, for the sake
of completeness and for future use elsewhere.

Consider first the Euler equations in a Cartesian coordinate system, written in
conservation form:

oQ  OF] OF/  OF] _

o " oy "o (B-1)
which quasi-linear form reads:
§9+A’QQ+A’QQ+A§8—Q—O (B.2)

ot * Ox Y 9y 9z

where Q = [Q1, Q2, @3, Q4, @s]T=[p, pu, pv, pw, pE]" is the vector of conservative
variables, AL, Al Al are the Jacobian matrices. In the so-called primitive variables
q= [Qh G2,43, 44, QSIT = [p'l u,v, w\p]Tv equation (Bl) reads:

dq . 0¢ 0q ;0q _

—+a = +a+a

ot | Tor YOy | 0z 0 (B.3)

where the flux Jacobian of the Euler equations, written in the conservative and
primitive variables, are connected by a similarity transformation, e.g. in z-direction:

ol = M~'ALM, (B.4)

with M = 8Q/dq. M can be easily calculated by writing the conservative variables
as functions of primitive variables,

i 1 0 0 0 O

P pu uw o p 0 0 0
M=_— pv =lwv 0 p 0 0 |,

oq pw w 0 0 p O

p/v+ pk k pu pv pw 1/
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where k is the kinetic energy per unit mass, 3(u®+ v> + w?), and ¥ =y — 1. In the
same way M~ = 8¢/8Q is obtained as:

Q 1 0 0 0
P Q2/@1 -u/p 1/p O 0 o
M‘l:% Qs/Q1 =| -v/p 0 1/p 0 0],
Qs/Ch ~wfp 0 0 1/p 0
M@s — 3(@3+ Q3)/Qi] Tk —Au —jv —Jw

Since a’ and A’ are similar according to the relation given in equation (B.4),
they share the same eigenvalues. The eigenvectors of a’ and A’ diagonalize o’ and
A into the same diagonal matrix A, which contains the eigenvalues at its diagonal.
For example, in z-direction it follows:

A= l,,airz = LzAin,

where the left and right eigenvectors are normalized in such a way that R, L, =
rzl; = I. Using equation (B.4) one obtains:

Ay =LM7'AIMr, = L ALR,,

which gives the relations between the eigenvectors in the primitive and conservative
variables as:

Ly=1M"1' and R, = Mr,. (B.5)

In deriving the eigenvalues and eigenvectors of the Euler equations, it is easier to
work with the primitive variables rather than the conservative ones, because in this
form many entries in the Jacobian matrix are zero. The flux Jacobian of the Euler
equations in the primitive variables is, e.g. in z-direction:

v p 00 O
0 uw 0 0 1/p
al=10 0 w0 0
0 0 0 u O
0 pa® 0 0 u

In a curvilinear coordinate system the flux normal to the cell surface is treated as
in the one-dimensional case; for example in the ¢-direction: F{ = [Q, F), FI, FI|T -
[ét,fm,éy,éz]T. The flux Jacobian of the transformed equations in the conservative
and primitive variables become, respectively:

Al = 61 + LA+ §,AL + £, AL

dg = &1 + Gal + &al + Lal,
where I is an identity matrix of (5 x 5).
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The characteristic equation for the flux Jacobian of the Euler equations in prim-
itive variables is:

) Apéx péy Péz 0

0 U-x 0 0 &/p

M—-é=| o0 0 U-x 0 §&/p |=0, (B.6)
0 0 0 U-Xx &/p
0 pa?é, pa’, pa?€, U -

where U = ft + ézu -+ éyu -+ Ezw is the contravariant velocity. The determinant is
obtained by first expanding equation (B.6) using the first column, followed by the
expansion using the first row of the reduced matrix:

) ) U-Xx 0 &/p ) 0 U-x 0
U-N[U=XN] 0 U-X &/p |~&/p| 0 0 U=xrj=0
pa2§y pa2€z U-2A pa2§1 Pazfy pazéz
Finally the first row of the reduced matrices is used for expansion to obtain:
(U= N0 -0 -a*(@+& +E)=0, (B.7)
which can be solved easily for the eigenvalues:
Ay, A =U

M=U+ay/E2+ &+
M =U—a\/8+E+E (B.8)

The left and right eigenvectors can be calculated from the relation (B.5), e.g. in
£-direction:

VAL=X1 and Alr’ = \r,
where I/ is the j™ line vector and 7 is the j* column vector associated with the
j* eigenvalue of Aé . The equation for the left eigenvector reads:

U pgz péy Péz AO
1o U 0 0 & _
[llle)l:hléhlS}] 0 0 U 9 éy/p = /\j[ll,l2713,l4715]]7
0 0 0 U &z[p
0 pa2fz pazfy pa2§z U
or after reducing the left hand side:
WU =\l
llpér + 120 -+ l5pazé1; = )\jlg
Lo, + 15U + lspaé, = Al
LpE, + 14U + lspa®E, = Ajla
l?éx/l) + l?éy/p + 1‘453/[) + 156. = )‘]lﬁ-
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For Ajo3 = U one obtains; l; is arbitrary, thus define |} = a§1’2’3). The remaining
equations are:
L+ a215 =0
béa/p+ 1) p+ 14 /p =0,

which can be satisfied by taking 5 = ol /a2 and (lo, I3, LT = [Ry (123) z(123) £(1.23) ¥
in which & - V§ 0. For A\y5 = U+ a|Vf | one obtains that {; = 0, leavmg

lspa®; = +la
lspa®€, = +lsa
lspa®€, = +l4a
hér/p+1s€/p+ L€, [p = +lsa,

which is satisfied by an arbitrary l; = a,. Note that V€ = V£ / |V§ |. Summing up,
the matrix of the left eigenvectors is:

agl) P -(1) 70 —ail)/a"’
. a§2) 72 ~(2) 72 —a§2) /a?
[ = a§3) ’;;./g}) ~(3) kgs) _ags)/a? . (Bg)
0 paéjﬁ OzzpafSi ozgpaff,i Qg
0  —agpal; —aspaly, —aypal, Qs

The matrix form of the equations for the right eigenvectors reads:

U p&a pby 9t 0 T T
0 U 0 0 &/p || T2
0 0 U O &/o||m|=X]rs
0 0 0 U fz/p T4 T4
0 paé; pa®é, pa%, U Ts s

or

7‘10 + széx + T3,0£y + mpéz = A

U e /p = Ay

r3U + TsE,/p = A3

rel + 156, /p = M4

rpa’l, + r3pa’E, + rapa®f, + rsU = Ajrs.

For A 33 = U one obtains: 71 is arbitrary, thus define r; = 851’2’3) and r5 = 0. The
only equation left is:

7‘25::: + TSéy + r4£2 =0,
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Wthh can be satisfied by taking [ro, 3,14 = = [g&*, b2 AT

% - V€ = 0. For Ays = U £ a|VE| the system of equatlons becomes

in which

7’2,051 + T3péy + T4P£z =dna
r5éa/p = £r0

Tséy/P = *r3a

r5§~z/p = %r4a

rgpaQEI + rapa2£y + 7"4pa2£~z = %£rsa,

which can be satisfied by an arbitrary value of r1, defined as r; = 85, and r5 = ra.
The right eigenvectors can then be written in matrix form as:

O By
) i 3 baake/p —Paoks/p
r=1 &) %) X Bubyfp Byl |- (B.10)

X 59 D Buaklfp —paak./p
0 0 0  fBua? Baa®

1t should to be noted that the choice of a’s and #’s is constrained by the normal-
ization rl = I.

The left and right eigenvectors of the Euler equations in the conservative variables
are obtained by transforming the left and right eigenvectors in the primitive variables
through equation (B.4). The left eigenvectors in the conservative variables are:

oMo -TW/p & /p+ a“ yu & /p+ a0 B /p+ ol —ally
g - U@ /p 53’//) +oqu &) /p+ a0 &P /o +alP5w ~af?5
a53)¢> -U®/p chf)/p —+ aga)‘yu k§3)/p + a(3)7v Fc(zz)/p + a§3)fyw —a?):y )
—ay(al’ + 7k) og(afx~ — Fu) ag(afy~ Fv) 02(0.5{ - Jw) Qo
(el — k) —ag(as +Ju) —oalay +Jv) —aa(al, +Jw) 2y

where 7 = v/a?, ¢ = 1 + yk/a?, UY = V&® . [u,v,w]", and U’ = VE - [u, v, w]” is
the velocity normal to the fixed cell face. The right eigenvectors in the conservative
variables are:

Bt o g B B
Bt i fPut 20 60ut i ot &a)  Ga(u—Ea)
/611 v+ f(yl P §2)U + 5(.5/2)P P)U + X(S)P Ba(v+&a)  Ba(v—&a) |-

61 w+ 3 ﬂgz)w + 5((22)/) B? w+ )52 )p Ba(w + {}a) Fo(w — f:za)
BV +TWp Pk + TP Pk +U®p Bo(H +U'a) H(H - U'a)
(B.12)

where H = k + a?/7 is the total enthalpy per unit mass and U@ = Vx@ - [u, v, w]".
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From these two matrices of the eigenvectors, the forms presented in the literature
can be identified. For example, the form presented by Whitfield and Janus [174] and
Pulliam [137], which were generated using the MACSYMA symbolic manipulator, can
be obtained by setting:

agl) = gx agz) = éy ag.’i) = gz Qg = 1/(pa\/§)

> > > (B.13)
5§I)= z ﬁgz):‘fy ia)z‘fz 522,0/(‘1\/5)
R R R e x) x) 0 & -§
~(2 ~ ~ ~ ~ ~ ~ .
B mpy mO =2 3P =& 0o & (B.14)
R &Y R & P & & 0

The forms presented by Morrison [113], which have a very simple form of the right
eigenvectors, can be reproduced using:

V=1 aP=0 =0 a= 1/(24%)
W _ 1 a@ _ o a3 _ z (B.15)
W=1 gP=0 gP=0 g=1
R & &Y [0 0 0]
-3 23 () A
Kz Ky Kz L Sz Yy z
PO ) (fo 0 0]
Rl b A A (B.17)
& & 1 RN

where (7., 7, 7,]" and [}, (), '] are unit vectors tangential to the cell face.

The form used in the present work is judiciously chosen to have the same right
eigenvectors as those usually presented in accordance with Roe’s scheme. For three-
dimensional flow, the forms are almost the same as those presented in (137, 174],
with slight different values of a; and 8,. The right eigenvectors are:

ff ~§y~ ~§z_ Qy Qz
5 usz _ ufy ~ pE; ugz + p;_y a2(u + §_xa) a2(u - §Ia)
'Uéz + p§3 ~U§y . vg, ipfx 2] (’U + gya) oz(v — §_ya) )
‘ w{x - p{y w§y+ p{z ~ w&z B a2(w +§za) a2(w - {Za)
k& +pU k& +pV  kE, + pW  p(H +U'a) ao(H — U'a)

where a; = p/(2a) and [UM), U, U®)] has been named [, V, W], which using
equation (B.14), can be expressed as:

U=v 2 — wéy
V = wé, — uf,
W = ué, — v,
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The corresponding left eigenvectors for this set of arbitrary values are:

€r¢‘ U/p g:cu’)' éa:'U;? gz/p E:zw':/ + gy/p "‘g:z;/
§y¢ V/p 61/“"7 + gz/p 5y'u7 gyw? - §x/p _ff;)’
&0 — W/p Euy — fy/l’ EzU’Y + Ez/p &wy =&Y |y

5‘2('?/,C - Qla) ﬂ?(u"/ {za) _ﬁQ(U"f §y(1) —ﬁ2(w'_Y - g:za) )62/:7/
Bo(7k + U'a) —Bo(uy +E&a) —Pa(vi+Ea) —Pa(wy+Ea) Py

where 3, = 1/(pa). The characteristic variable corresponding to these sets of eigen-
vectors can be calculated as W = L@ or W = l8q. The latter has a much simpler
form than the first one and thus it is used here:

ém 0~ ‘fz _~§y "'éz/a2 5p

éy _ﬁz 0~ & _§y/a2 ou

W= | & & - 0 —£,/a? dv
0 apals oopaf, ogpel, oy bw

| 0 —oppal; —oappaly —oazpal, Qg op

£(8p — p/a®) + U
£,(8p — p/a®) + 8V
= | &(6p—p/a?) + W
az(padU’ + 6p)

i ay(—padU’ + p)

For two-dimensional flow only [z, 2] and [£,(]” coordinate directions are used.
The left eigenvectors of the two-dimensional flow equations can be obtained by
simply removing the second column and third row of the left eigenvectors for the
three-dimensional flows, i.e. equations (B.9) and (B.11). In the same way the right
eigenvectors of the two-dimensional flow equations are obtained by removing the
third column and second row of the right eigenvectors for the three-dimensional
flows, i.e. equations (B.10) and (B.12).

The form used in the present study gives a very simple expression for the right
eigenvectors. The arbitrary values are:

=1 o{? =0 ay=1/(2d%)

B.18
ﬁ“)—l fP=0  p=1 (B18)
~(1)  ~(1) r
Ky K 0 0
{ K2 z® ] =rlé & ] (B.19)
~(1) (1)
Xz Xz 110 0 :!
, =21 = ~ . B.20
I: )222) )2(22) :I 1Y & —& ( )
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The right eigenvectors are:

1 9 1 } 1 :
v & utael, u-—aé;
w =& wtael, w-af; |’
k' W H+al' H-aol'
and the left eigenvectors are:
¢ yu yw =
-w . §z - _£w " 0
o (Yk —al") co(—Fu+a&;) a(—yw + ak.) @y
Yk +aU') oa(—Fu-a&;) oo(~Jw —af,) ¥y

where oy = 1/(2a%). The characteristic variables corresponding to these sets of
eigenvectors are:

[ 1 0 0 ~1/a? op
sw— | © pE. —pts 0 Su
0 azpal,  pal, o ow
| 0 —aapal, —onpal, dp
dp — Op/a?
pdW
= az(padU' +6p) |- (B.21)
L aa(—padl’ + op)

This set of right eigenvectors, left eigenvectors and characteristic variables is
used in the present study to calculate the flux and the flux Jacobian for the Roe’s
FDS according to equations (3.41) and (3.68).




ApPENDIX C

TURBULENCE MODELS

After adopting the Bussinesq eddy-viscosity approximation to compute the Reynolds
stresses, a turbulence model is required to calculate the turbulent eddy viscosity co-
efficient. Two types of turbulence model have been applied for the present CUA
method, i.e. the Baldwin-Lomax algebraic turbulence model [18] and the Spalart-
Allmaras one-equation turbulence model {157]. This appendix presents some de-

scriptions of these turbulence models and discusses the implementation in the cur-
rent CUA method.

C.1 BALDWIN-LOMAX ALGEBRAIC MODEL

The Baldwin-Lomax algebraic turbulence model [18] is the most popular algebraic
turbulence model. It is an improvement of the Cebeci-Smith model as far as ease of
implementation is concerned, since the Baldwin-Lomax does not need the determi-
nation of the location of the boundary layer edge like in the Cebeci-Smith model.
These algebraic turbulence models are based on Prandtl’s mixing length hypothe-
sis. At solid surfaces the Baldwin-Lomax turbulence model has a two-layer eddy
viscosity model:

i C g ‘crossover
g = { (P'E)mner C g (Cl)

(/—"E)outer é > Ccrossover

where ( is the normal distance from the wall and Cerossover is the smallest value of
¢ at which values of ug from the inner and outer models are equal. The normal
distance C is implemented in the present study as the distance along the (-coordinate
direction, i.e. in general not perpendicular to the surface. At the wake region only
the outer formulation is applied in which the normal distance is measured from the
center of the wake.

For the inner region the classical Prandtl formulation, where the coefficient of
eddy viscosity is a product of the turbulence length scale [ and the turbulence
velocity scale v = l{w|, corrected by Van Driest is used:

(HE)inner = Plz|w|, (Cz)
where |w| = |V X u| is the magnitude of the vorticity and:
L= k(L —e v/, (C3)
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in which £=0.41 is the von Kdrmén constant; the parameter A+ is a damping
constant and has been calibrated with boundary layer data to be A*=26. The
variable y* is defined as:

gt = LR, ©4)

where subscript w represents the solid wall condition and 7, is the wall shear stress.
The formulation of the eddy viscosity for the outer region is:

(£E)outer = pK Ccp Fnake FxLes, (C.5)

where K=0.0168, Ccp=1.60. Fyake is the product of the turbulent length scale and
the turbulent velocity scale. Fwake is calculated as:

Fuake = min(CmaxFumax, CwiCmaxtidies Fuax), (C.6)
where (max and Fyax are determined from the so-called Baldwin-Lomax F-function:
F({) = Clwl(1 — e7v™/4™), (C.7)

After calculating the F-function in a (¢, 7)-station, Fyax is determined as the maxi-
mum value of F(¢) at that station and (max is the {-value at which Fyax occurs. To
find Fyax and (uax in a profile at a (&, 7)-station a parabolic function approximation
is applied for every three points starting at the solid surface. Each time the first
derivative is checked for the presence of a stationary point, and when that is the case
the second derivative is checked to determine whether or not the stationary point
is a maximum. Subsequently (uax is used to calculate the Klebanoff intermittency
factor, Fxies, given by:

N
Faes(¢) = [1 +5.5 (M> ] : (C.8)

MAX

This factor accounts for the intermittent behavior of the low between laminar and
turbulent condition in approaching the outer flow from inside the boundary layer.
It should be noted that the exponential function in equation (C.7) is calculated only
above solid surfaces, in the wake this quantity is set to zero. The quantity uper is
the difference between the maximum and minimum of the magnitude of the velocity
at an(£;n)-station: R ' g

UpiFF = [ulmax — [u[min, (C.9)

where |u|min = 0 on solid surfaces.

The calculation of the eddy viscosity in the wake region is started by first search-
ing the center of the wake at a (£, n)-station. The search method is the same as that
used to find the Fiyax, using a parabolic three-point approximation. The normal
distance is then calculated with respect to this position. The calculation of Fiyake
always uses the second formula of equation (C.6).
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C.2 SPALLART-ALLMARAS ONE-EQUATION MODEL

The one-equation turbulence model of Spalart and Allmaras [157] is a method of
modeling the turbulent eddy viscosity by using a transport equation with 7 as the
variable. The turbulent eddy viscosity coefficient, ug = pvg can then be calculated
from ¥ using: '

pvr = pv fur, (C.10)

where: .

__X _
ful—m and X=

TR

The governing equation representing the transport of the turbulent variable  the
production and destruction of # is:
ov . . - .
E+(u~V)u—M(u)fP(u)+D(1/)+T:0. (C.11)

This equation has to be solved simultaneously with the flow equations. The mixed
advection diffusion terms are:

M) = ¢y V- [(v + 5)V)P] — cpa (v + D)V25, (C.12)

where ¢33 = (1 +cp)/0 and ¢y = ci2/0, in which ¢;’s and o are constants of Spalart-
Allmaras turbulence model. These constants are specified at the end of this section.
The production of eddy viscosity in a free shear flow is related to the deformation
tensor (u;/0z;). Spalart and Allmaras [157] suggest to use the vorticity strength as
the norm of the deformation tensor. The other norms which can be used include the
strain rate and the norm of the whole tensor (,/&; ju; ;). These norms should return
to the usual |0u/0n| in a simple shear flow. The production term as suggested in
[157] is:

P(0) = e[l — fra)S7. (C.13)

The norm used in the production term should satisfy the log-law behavior close
to solid walls. The norm used in the present study is proposed by Edwards and
Chandra [50}], who claimed that their norm of the deformation tensor is more stable
than the original norm of Spalart-Allmaras:

$=S(-+ ) (C.14)
X

The destruction term is present in the region close to the solid wall due to the
blocking effect. The destruction term of the original Spalart-Allmaras model is:

17

o, (C.15)

D(5) = (curfu = 5 fu)
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where:

S, 1¢ 1
glﬁ—-:c—’:éi] , g=r+cu(r®-r) and r= T
Following the statement in [157] that the wall-blockage function, f,, = f,(vr,d, S ),
may be replaced by any function provided that the dimension is correct and be-
haves properly in the inner layer where the log law holds, Edwards and Chandra
(50] also introduced another type of wall-blockage function. They claim that the
new wall-blockage function behaves better numerically, which guarantees a positive
destruction term. The modification replaces r in equation (C.15) by:

fw:g[

. tanh(i7/(x2d%S5))

tanh(1) (C.16)

The turbulent transition is incorporated in the model using a smooth function to
prevent numerical difficulties. The transition function is:

T = fa(AU)?, (C.17)

where
2
—cio o [d® + g2 + d?)

U _ 2
fa = cage AU , g =min(0.10, A—) and fip = cpe” 10X
th.T

The transition point has to be defined a priori (e.q. in case a transition strip is
present) or defined using other criteria (e.g. the position at which g reaches a
certain value). This feature is not incorporated in the current study. The constants
used in the Spalart-Allmaras turbulence model are:

¢1=0.1355 0=2/3 ¢p=0622 k=041
Cyl = Cbl/li2 + (1 + Cbg)/a' Cuo=0.30 Cow3=2 c1=7.1
Cﬂ:l ct2=2 Ct3:]_.1 Ct4:2

Further, d is the distance to a nearest wall, S is the magnitude of the vorticity,
d, is the distance from the field to the position of the transition strip, AU. ig the
difference between the velocity at the field and at the velocity at the transition strip
and w; the the wall vorticity at the position of the transition strip.

C.2.1 DISCRETIZATION

Equation (C.11) can be expressed in a conservation form by using the mass conser-
vation equation to arrive at:
Opv

W+V~pﬂu+p@=0, (C.18)
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where the source terms are:
Q(v) = —M() - P(9) + D(#) + T. (C.19)

Subsequently, transforming equation (C.18) from the Cartesian coordinate system
to a curvilinear coordinate system results in:

Ophv  0ppU + OpiV + OpoW

5t o T o 5+ =0 (C.20)

where h = 8(z,y,2)/8(&,1,¢) is the inverse Jacobian of the transformation and
[U,V,W]T are the contravariant velocity components. Following Spalart and All-
maras [157] a first-order upwind method is adopted to discretize equation (C.20).
Borrowing the idea of Roe [145], a linearized equation,

Ophv - Bpv 7] Opv

pv | 13,007 _
O U VI W 4 phQ =, (C.21)

is solved in which each coordinate direction is considered independently and [[7 , v, W]T
is calculated using the Roe averaged variables. The flux at a cell face is calculated
in the same manner as by equation (3.29), e.g. in the &-direction:

1 1.~ _
Feirsan = 5 Ueirrin + feizn) = 5IUI (P15 = PVi k), (C.22)

where the flux function is f; = piU. The time derivative is approximated as in the
case of the flow equations:
Ophv Opv _0Oh

ar ~ar P
with 8h/87 calculated from the contravariant mesh speed using the GCL statement,
i.e. equation (3.12), and 85/9r is approximated using a backward differencing with
the same order of accuracy as that for the flow equations.

Following the approach for the flow equations, the thin-layer approximation is
also applied to the advection diffusion terms. The first term in a curvilinear coordi-
nate system 1is:

(C.23)

M) =emlte 206, 20) + ¢ 200,22, (C.24)

aC ¢ *a¢

where 7 = v + » and discretized as:

¢

Mi(9) = ews[Ppet (CoigkCripsd + CoiakCeiir 1) Paghsr = Pigp)
- Dz,],k—%(Cr i,j,kc.tljk‘~ +G l]kC,. zjk——)(l/l]k - U?]"C 1)} (C25)

The second term reads:

M?([/) Cb4V[Cz (Cz ) Cz

ac 3<)] (C.26)
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which is discretized as:
Mo(P) = = Coaliik[(Co iikCoijhrt + Ceiiboijpns) Fipar — Fisie)
= (CiihCeigh-t + CoigkCe ip—1) (Pigh = Pigp-1)]. (C.27)
The production and destruction terms can be calculated at each volume cell directly
from equations (C.13) to (C.16).
C.2.2 GRADIENT OF PRODUCTION AND DESTRUCTION TERMS

The gradient of the production and destruction terms are required for an implicit
solution of the Spalart-Allmaras one-equation turbulence model. The gradient of
the production term is:

5. .08
F e (S + VE)’ (C.28)
where
as 1 9fu
9 = (“;;27;* o)
ofy _
do 3P i S e
The gradient of the destruction term is:
D) fu, 7 0fs
o7~ i@t @ (G29)
where
Ofw 09 | [1+c5, %__96(14-03,3) 1+¢8, -
9~ O | g6+ b, (g8 +cB3)2 [g®+ B,
g—g = Cw2(67‘ - l)—
_ 2
or _ 1 tanh(7/(Sk%d?))? 1 v 88 (C.30)

ov tanh(1) ;c?d?[_ a 561/1




APPENDIX D

TRANSITION MATRIX METHOD

The transition matrix method is a method to solve a system of first-order ordinary
differential equations in the form of:

X = AX + BU, (D.1)

where matrices A and B are constant or time invariant, X is the state vector and
U is the excitation vector. This type of equation is often used in flight mechanics
for the analysis of the stability and control of aircraft.

To obtain the solution of equation (D.1) consider first the homogeneous part:

X = AX. (D.2)
Applying the Laplace transform to equation (D.2) results in:
sx(s) — x(0) = Ax(s),
and after reduction:
x(5) = [sT — A7 (0). (D.3)

The time domain solution is obtained by applying the inverse Laplace transform to
equation (D.3):

X(t) = L7YsI — A7 X(0)
=Atx(0). (D.4)

The formal definition of the exponential function in equation (D.4) is obtained
through the Taylor series expansion:

A'zt'z A3t3

At _ =
e =14 At+ 5t 3l + (D.5)

Consider now the particular solution of equation (D.1). First premultiply equation
(D.1) by K:

KX - KAX = KBU. (D.6)
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Choosing K to be e‘A(‘_"’)', so that K = —K A, then equation (D.6) can be written
as:

d(KX) = KBU dt, (D.7)

from which integration leads to:
KX ~ KoXo = /0 'K (r)BU(r) dt. (D.8)
Since K has always an inverse, X becomes:
X(6) = K- KoXo + /0 KK (r)BU(r) dr

=eAtx, + / Al - T)BU(r) dr. (D.9)

Since equation (D.1) is linear, a recurrence formula can be developed:

n+1

Xt = gAAExn | / eAAtBU(r) dr. (D.10)

Since B is constant, equation (D.10) can be written as:
X" =9X" +0Q, (D.11)

where @ is called the transition matrix and ©Q is the approximation to the nonho-
mogeneous part, where a constant value of ¢ throughout the time step is assumed.
In case matrix A is simple the exact form of the transition matrix can be cal-
culated using equation (D.4). When matrix A is not simple, direct computation
using equation (D.5) is preferred. Furthermore, direct computation of the transition
matrix is more suited for computational implementation.
For equation (6.30), used in the three-dimensional CAS method, the exact form
of the transition matrix can be derived as:
o(A7) = e~SwaT sin(wsAT + 1)) ésin(wdAT)

| ﬁ | —wsin(weA7)  sin(wgAT +¢) J ,,

¢ =tan™' Y—— 1{ CZ, ¢ =tan ' Y —— 1_2 ¢t
Wy = Wy/ 1-— CQ

© can be easily obtained by integrating ®.

(D.12)

where




FysiSCHE EN NUMERIEKE ASPECTEN
VAN AEROELASTISCHE SIMULATIES

SAMENVATTING IN HET NEDERLANDS

Het proefschrift beschrijft onderzoek naar de ontwikkeling en toepassing van een nu-
merieke aéro-elastische simulatiemethode (CAS=Computational Aero-elastic Simu-
lation method). De behoefte aan zo'n CAS-methode, waarvan het wiskundig model
gebaseerd is op de Euler- en Navier-Stokes-vergelijkingen, is recentelijk door de in-
dustrie en onderzoeksinstituten bij verschillende gelegenheden naar voren gebracht.
Daarbij is een kloof geconstateerd tussen de mogelijkheden van bestaande Euler/N-
S-methoden die hoofdzakelijk ontwikkeld zijn door de instituten, en de eisen die
door de industrie worden gesteld. Daarom zijn de aspecten inzake de industri€le
toepassing in het hier beschreven onderzoek van bijzonder belang. Onder deze as-
pecten vallen: aanvaardbare turnaround-tijd, robuustheid, nauwkeurigheid en re-
delijke hardware-eisen.

Een fundamentele keuze in het onderzoek was de ontwikkeling van een losse
aérodynamisch-elastomechanische koppelingsmethode die een betrekkelijk onafhanke-
lijk gebruik toelaat van gewenste methoden voor de behandeling van de aérodyna-
mische en elastomechanische delen. Als deel van het onderzoek is een methode on-
twikkeld voor de numerieke simulatie van tweedimensionale instationaire stromingen
(CUA= Computational Unsteady Aerodynamics). Zoals vaak in de vakliteratuur is
opgemerkt, vereist de numerieke stabiliteit in aéro-elastische simulaties in de meeste
gevallen het gebruik van een betrekkelijk kleine tijdstap. Daar een grote tijdstap
essentieel is voor een efficiente methode, is in het onderzoek een impliciete meth-
ode toegepast die het mogelijk maakt de tijdstap te laten bepalen door de fysica.
Deze impliciete methode past’ in iedere tijdstap een lijnrelaxatie toe om de niet-
lineaire instationaire stromingsvergelijkingen op te lossen. Om het relaxatieschema
efficiént te laten werken wordt van een upwind-methode gebruik gemaakt die een
positieve Jacobiaan garandeert. Diverse upwind-methoden voor de nict-visceuze flux
zijn onderzocht. De methode van Roe voor fluxdifferentiesplitsing is voor de hier
beschouwde toepassingen het meest geschikt gebleken. De CUA-methode is aan de
hand van standaard test-gevallen gevalideerd. Ook zijn nieuwe gevallen onderzocht.

Verder zijn losse aérodynamisch-elastomechanische koppelingsmethoden bestu-
deerd om de traditionele koppelingsmethode te verbeteren, die niet doeltreffend
bleek te zijn voor aéro-elastische simulaties met grote tijdstappen. Twee nieuwe
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a€rodynamisch-elastomechanische koppelingsmethoden zijn geintroduceerd: de aéro-
dynamische extrapolatie methode en de elasto-mechanische extrapolatie methode.
Testgevallen hebben de verbetering door de nieuwe koppelingsmethode aangetoond.
Vervolgens is de methode toegepast op de aéro-elastische simulatie van een tweedi-
mensionale vleugel met twee vrijheidsgraden. Nieuwe resultaten met de N-S-verge-
lijkingen zijn verkregen die kunnen dienen als toekomstige testgevallen voor andere
numerieke methoden. Resultaten van een flutterberekening voor een tweedimension-
ale superkritieke vleugel bij een hoge invalshoek laten een tweede dip zien, die sterk
lijkt op die in het SKV-5 experiment van het NLR.

Ten slotte is de CUA/CAS-methode voor tweedimensionale stromingen uitge-
breid naar driedimensionale stromingen, bedoeld voor de toepassing op enkelvoudige
vleugels en vleugel-rompcombinaties. De belangrijkste stap om rekentijden aan-
vaardbaar te maken is de toepassing van een methode voor parallel rekenen in combi-
natie met vele processoren. Een domeindecompositiemethode is gekozen die gebruik
maakt van standaard portable communicatieprogrammatuur waardoor het mogelijk
is de methode te draaien op een variéteit van computers. De driedimensionale me-
thode is toegepast op verschillende standaard testgevallen, van enkelvoudige vleugels
tot vleugel-rompconfiguraties van een transportvliegtuig en een gevechtsvliegtuig.
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