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Dependence Between Parameter Estimation and
Statistical Hypothesis Testing: Positioning Safety

Analysis for Automated/Autonomous Vehicles
Sebastian Ciuban , Peter J. G. Teunissen , Senior Member, IEEE, and Christian C. J. M. Tiberius

Abstract— The analysis of positioning safety often employs
a probability-based formulation. This approach quantifies the
probability of positioning failure, which is the probability of the
position estimator being outside a safety-region, and compares
it against an application specific requirement. The design of
positioning algorithms for safety-critical applications, such as
automated/autonomous vehicles, should consider the dependence
between parameter or state estimation and statistical hypothesis
testing for model misspecifications in the evaluation of positioning
safety. If this dependence is not considered, as this article shows,
the conclusions drawn from the positioning safety analysis might
be overly-optimistic. Therefore, this article focuses on the afore-
mentioned dependence through a vehicle positioning scenario
based on an Extended Kalman Filter (EKF) and the Detection,
Identification, and Adaptation (DIA) method for misspecifications
in the motion and measurement models. Grounded in the
distributional theory for the DIA method, our positioning safety
analysis utilizes the conditional probability density functions
(PDFs) of the combined EKF and DIA position error, which
are generally nonnormal. We compute the probability of vehicle
positioning failure in two cases 1) when the dependence is
considered and 2) when it is not, to quantify the over-optimism
introduced by ignoring this dependence. Finally, we present our
conclusions and recommendations.

Index Terms— Positioning safety, probability of positioning
failure, DIA method, conditional PDFs, automated driving.

I. INTRODUCTION

PARAMETER or state estimation and statistical hypoth-
esis testing for model misspecifications are two central

statistical inference tools in the design of positioning systems
for safety-critical applications, such as automated/autonomous
vehicles [1], [2], [3]. Given a chosen parameter estimation
and statistical hypothesis testing procedure, along with the
obtained n-dimensional position estimation error ϵ ∈ Rn of
a vehicle and an application-specific safety region B ⊂ Rn ,
the event of positioning failure can be formulated as F =

{ϵ /∈ B} [4]. For positioning safety analyses the probability
of positioning failure (denoted as PF ) can be used to verify
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whether requirements or guidelines are being met (e.g., the
ones in [5]). The probability of positioning failure can be
expressed as,

PF =

∫
Bc

fϵ(e) de, (1)

where fϵ(ϵ) is the probability density function (PDF) of
ϵ ∈ Rn and Bc

⊂ Rn is the complement of the safety-
region B ⊂ Rn . Such probability-based formulations, along
with the computation or upperbounding of these probabilities,
are widely used for safety analyses of failure events in nuclear
power plants, aerospace systems, structural engineering, and
Global Navigation Satellite System (GNSS) based position-
ing for civil aviation applications [6], [7], [8], [9], [10],
[11]. The application of similar principles from GNSS-based
positioning in civil aviation has also been discussed for auto-
mated/autonomous vehicles in [3], [12], and [13].

Since both parameter estimation and statistical hypothesis
testing are used in the algorithms of positioning systems,
the dependence between them should be reflected in the
PDF fϵ(ϵ) [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24]. To the best of the authors’ knowledge, there is a
lack of positioning safety analyses for automated/autonomous
vehicles that specifically address the dependence between
parameter estimation and statistical hypothesis testing when
quantifying PF . Therefore, we put forward the following
question in the context of positioning safety analyses for
automated/autonomous vehicles:

How do the results for PF differ when the dependence
between parameter estimation and statistical hypothesis test-
ing is accounted for, compared to when it is ignored?

In this article, we show through a positioning scenario of
an automated vehicle, driving cooperatively with an adjacent
vehicle, that ignoring the aforementioned dependence can
result in its PF being one order of magnitude too optimistic.
The consequence of this over-optimism is that it may lead
to safety requirements or guidelines being declared satisfied
when they are not.

For vehicle positioning, we use an Extended Kalman Filter
(EKF) for parameter (or state) estimation [25], [26], along with
the Detection, Identification, and Adaptation (DIA) proce-
dure to perform statistical hypothesis testing to accommodate
for multiple model misspecifications [14], [27]. Examples
of model misspecifications are unmodelled accelerations in
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the vehicle’s motion model, outliers and anomalies which
may incidentally corrupt sensor measurements (e.g., from a
GNSS receiver), etc. To account for the dependence between
parameter estimation and statistical hypothesis testing in the
PDF fϵ(ϵ) of the estimation error ϵ ∈ Rn we apply the
principles of the theoretical framework introduced recently
in [14]. Building on this setup, we proceed with the posi-
tioning safety analysis based on PF during design stage of
the positioning systems (i.e., offline). At the design stage,
decisions are made regarding (i) measurement models, (ii)
parameter estimation methods, (iii) statistical hypothesis test-
ing procedures to accommodate for model misspecifications
(e.g., missmodeling of the vehicles’ motion, outliers or faults
in sensor measurements), and (iv) positioning scenarios for
vehicles, among other factors. This approach aligns with the
scenario-based safety assessment framework used for auto-
mated and autonomous vehicles [28], [29], [30].

This article is organized as follows: In Section II we present
the combined Kalman Filter (KF) and DIA method, while
discussing the principles of approaching statistical hypothesis
testing through the partitioning of the vector space of KF-
predicted residuals. These principles, though illustrated with
the KF and DIA method, are equally applicable to the EKF and
DIA method. In Section III we show the expression of the PDF
fϵ(ϵ) which accounts for the dependence between the (E)KF
and the DIA method. Section III further shows: (i) the formula-
tion of the probability of positioning failure based on fϵ(ϵ) and
its conditional components resulted from the application of the
rule of total probability; (ii) the formulation of the probability
of positioning failure when the aforementioned dependence
is ignored. Section IV presents, by means of an example,
a quantitative positioning safety analysis for an automated
vehicle driving cooperatively with an adjacent vehicle. First,
we carry out an analysis based on the components of the PDF
fϵ(ϵ) which is used to determine which of these components
have the largest (or smallest) impact on the probability of posi-
tioning failure. Secondly, we compare the obtained results with
the case when the aforementioned dependence is ignored and
quantify the difference. Finally, we present our conclusions
and recommendations in Section V.

Throughout the paper we make use of the following nota-
tion: an underscore denotes a random quantity (e.g., the
random vector x ∈ Rn), fx(x) is the PDF of x, E

(
x
)

is the
expectation, D

(
x
)

is the dispersion or variance operator, and
C

(
x, y

)
is the covariance operator. The error-variance matrices

are denoted with a capital italic P while the probability of an
event E is denoted PE = P(E). For the weighted squared norm
of a vector we use the notation ||.||2Q = (.)T Q−1(.). We also
provide Table I with the notation for key symbols.

II. COMBINED KALMAN FILTER AND DIA METHOD

The discrete-time evolution of the state vector xk ∈ Rn (at
epoch k) can be captured by the linear(ized) motion model

xk = 8k,k−1xk−1 + dk, (2)

where 8k,k−1 ∈ Rn×n denotes the transition matrix, dk ∈

Rn is the process noise which is assumed to have a normal

TABLE I
KEY SYMBOLS AND THEIR DESCRIPTION

distribution with E
(
dk

)
= 0n×1, C

(
dk, dl

)
= Qdk dk δkl , and

C
(
dk, xinit

)
= 0n×n with δkl being the Kronecker delta and

xinit is the normally distributed initial state vector.
The following linear(ized) measurement model describes the

relation between the random vector of observables yk ∈ Rmk

and xk ,

yk = Ak xk + ek, (3)

where Ak ∈ Rmk×n is the design matrix and ek ∈ Rmk

is the measurement noise which is assumed to have a nor-
mal distribution with E

(
ek

)
= 0mk×1, C

(
ek, el

)
= Rkδkl ,

C
(
ek, xinit

)
= 0mk×n , and C

(
ek, dk

)
= 0mk×n .

Misspecifications could occur in the functional and stochas-
tic models from (2) and (3). We consider the case of
misspecifications only in the functional models as these are
the most common occurring in practice [31]. In subsequent
developments, we omit the k index for simplicity. Based on
the vector of predicted residuals ν ∈ Rm (Figure 1), a DIA
procedure can be designed [27], [31], [32], [33]. The multiple
statistical hypothesis testing problem is

H0 : E
(
ν
)

= 0m×1 vs. Hi ̸=0 : E
(
ν
)

= Ci bi , (4)

for i ∈ {1, . . . , nH}, where Ci ∈ Rm×qi has rank (Ci ) =

qi for i ̸= 0. The matrix Ci specifies the type of model
misspecification (e.g., unmodelled accelerations, outliers in
sensor measurements), bi ∈ Rqi is the size of the model
misspecification and qi ∈ {1, . . . ,m} is its dimension for i ̸=

0. It is possible to unambiguously link the testing decisions
for the Hi ’s to partitions Pi of vector space Rm such that
∪

nH
i=0 Pi = Rm and Pi ∩ P j = ∅ for i ̸= j . Therefore, if the

predicted residual ν lands in a Pi ⊂ Rm (i.e., ν ∈ Pi ) then
hypothesis Hi is selected as most likely. The equations of the
KF together with the local Detection (D) Identification (I)
and Adaptation (A) procedure are shown in Figure 1. The
initialization of the KF is done according to Lemma 7 in [34]
yielding x̂init and its error-variance matrix Pinit.
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Fig. 1. KF equations and DIA procedure. Time updated variables have
the [.]− superscript and the measurement updated ones have [.]+. The
subscript [.]0 indicates the vector or matrix using the models of H0. The
L i ∈ Rn×m (given in the Appendix) drives the adaptation step under a Hi ̸=0
and L i = 0 for i = 0.

The combined outcome of the KF and of the DIA procedure
is expressed as

x =

nH∑
i=0

x̂i pi (ν), (5)

where pi (ν) is an indicator function which takes the value 1 if
ν ∈ Pi , and 0 otherwise. Note that the uncertainty of (5) is
driven by x̂i and by pi (ν). The definitions of the partitions
are (an example is shown in Figure 2)

P0 =

{
ν ∈ Rm

| ||ν||2Qνν
≤ χ2

α(m, 0)
}
,

Pi ̸=0 =

{
ν ∈ Rm

| ν /∈ P0, Ťi = max
j∈{1,...,nH}

T j

}
, (6)

where ||ν||2Qνν
is the overall model test statistic, χ2

α(m, 0) is
the Chi-squared critical value for a level of significance α, and
T j is the result of the following transformation [31], [35]

T j = CDFχ2(q j ,0)

(
||QC j ν||

2
Qνν

)
, (7)

where CDFχ2(q j ,0)(.) is the cumulative distribution function

(CDF) of χ2(q j , 0), ||QC j ν||
2
Qνν

H0
∼ χ2(q j , 0), QC j =

C j

(
CT

j Q−1
νν C j

)−1
CT

j Q−1
νν is a projection matrix onto

R
(
C j

)
, and Tl has a uniform distribution on the interval

[0, 1] under H0. This transformation is applied such that
all T j have the same PDF under H0 as the dimension of
the model misspecification bi ∈ Rqi would generally differ

Fig. 2. Example of partitioning predicted residual vector space Rm=2

when ν ∼ N (E
(
ν
)
, Qνν ), Qνν =

[
2 1
1 2

]
, H0 : E

(
ν
)

= 0m×1,

Hi ̸=0 : E
(
ν
)

= Ci bi , i ∈ [1, 4], and α = 10−1. The following types of
1D model misspecifications are considered: C1 =

[
1 0

]T , C2 =
[
0 1

]T ,
C3 =

[
1 1

]T , and C4 =
[
1 −1

]T . The dotted lines are the vector spaces
spanned by R (Ci ) ⊂ Rm=2.

across Hi ̸=0. Therefore, Ťi corresponds to the most likely
Hi ̸=0. Equation (5) together with (6) describe the following
procedure{

if ν ∈ P0 (no D) → output x̂0,

if ν /∈ P0 (D) → ν ∈ Pi ̸=0 (I) → output x̂i (A).
(8)

III. CONDITIONAL PDFS AND TOTAL PROBABILITY
OF POSITIONING FAILURE

From (5) is clear that pi (ν) defines a nonlinear mapping of
ν which causes the PDF of the filter error ϵ = x − x to not be
normally distributed despite that ϵ̂i ∼ N (0n×1, Pi ). The PDF
of ϵ follows from Theorem 1 in [14]

fϵ (ϵ) =

nH∑
i=0

∫
Pi

fϵ̂i ,ν
(ϵ, υ)dυ

=

nH∑
i=0

∫
Pi

fϵ̂0
(ϵ + L iυ) fν(υ)dυ, (9)

where use has been made of the independence between the
normally distributed ϵ̂0 and ν [34]. However, ϵ̂i and ν are
dependent since the joint PDF fϵ̂i ,ν

(ϵ, ν) ̸= fϵ̂i
(ϵ) fν(ν) for

i > 0 [14]. One can decompose (9) via the rule of total
probability to obtain the conditional PDFs which account for
the testing decisions under H0, such as Correct Acceptance
(CA) when H0 is accepted and False Alarm (FAi ) when H0 is
rejected and Hi is accepted,

fϵ (ϵ|H0) = fϵ|CA(ϵ|CA)PCA +

nH∑
i=1

fϵ|FAi (ϵ|FAi )PFAi ,

(10)

where fϵ|CA(ϵ|CA) = fϵ̂0
(ϵ|H0) = N (0n×1, P0) and

fϵ|FAi (ϵ|FAi ) =

∫
Pi

fϵ̂0
(ϵ + L iυ|H0) fν(υ|H0)dυ

PFAi

(11)



5512 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 4, APRIL 2025

for i > 0, PCA = P
(
ν ∈ P0|H0

)
, PFAi = P

(
ν ∈ Pi |H0

)
are

the probabilities of the events of CA and FAi such that PFA =∑nH
i=1 PFAi and 1 = PCA + PFA. The summation term in (10)

causes fϵ (ϵ|H0) to be a nonnormal PDF. Similarly, under
an alternative hypothesis Ha the decomposition of (9) gives
the following result based on the testing decisions: Missed
Detection (MDa) when H0 is accepted, Correct Identification
(CIa) when H0 is rejected and Ha is accepted, and Wrong
Identification (WI) when H0 is rejected and H j is accepted
for j /∈ {0, a},

fϵ (ϵ|Ha) = fϵ|MDa (ϵ|MDa)PMDa + fϵ|CIa (ϵ|CIa)PCIa

+

nH∑
i ̸=0,a

fϵ|WIi (ϵ|WIi )PWIi , (12)

where fϵ|MDa (ϵ|MDa) = fϵ̂0
(ϵ|Ha) = N (LaCaba, P0),

fϵ|CIa (ϵ|CIa) =

∫
Pa

fϵ̂0
(ϵ + Laυ|Ha) fν(υ|Ha)dυ

PCIa

,

fϵ|WIi (ϵ|WIi ) =

∫
Pi

fϵ̂0
(ϵ + L iυ|Ha) fν(υ|Ha)dυ

PWIi

, (13)

with PMDa = P
(
ν ∈ P0|Ha

)
, PCIa = P

(
ν ∈ Pa |Ha

)
, and

PWIi = P
(
ν ∈ Pi |Ha

)
for i /∈ {0, a} being the probabilities

of the events of MDa , CIa , and WI j such that 1 = PMDa +

PCIa +
∑nH

i ̸=0,a PWIi . The second and third terms in (12) cause
fϵ (ϵ|Ha) to be a nonnormal PDF.

Next, we formulate the total probability of positioning
failure based on (10), (12), a given safety-region B ⊂ Rn ,
and its complement Bc

= Rn/B

PF (b) =

∫
Bc

fϵ(e) de

= ω0

∫
Bc

fϵ(e|H0) de +

nH∑
i=1

ωi

(∫
Bc

fϵ(e|Hi ) de
)

= ω0 PF |H0 +

nH∑
i=1

ωi (PF |Hi (bi )), (14)

where the dependence on the size of the model misspecifi-
cations b =

{
b1, b2 , . . . , bnH

}
has been accounted for in

the notation, and ωi = P(Hi ) are the a-priori probabilities of
occurrence of the hypothesesHi for i ∈ {0, . . . , nH}. A further
decomposition of (14) via the rule of total probability gives

PF (b) = ω0(PCAPF |CA +

nH∑
i=1

PFAi PF |FAi )

+

nH∑
a=1

ωa(PMDa PF |MDa(ba)+ PCIa PF |CIa(ba)

+

nH∑
i ̸=0,a

PWIi PF |WIi (ba)), (15)

The decomposition(s) of PF (b) is useful in the design stage
of the positioning system. It helps identify which hypotheses,
along with the associated testing decision outcomes, have the
largest impact or are most influential to PF (b). The evaluation
of (15) is mainly driven by three factors: (i) the structure of

the nonnormal conditional PDFs, (ii) the range of the model
misspecifications inside the set b to find the worst-case PF (b),
and (iii) the shape and size of the safety-region B.

If, in the safety-analysis, one would ignore the dependence
between parameter estimation and statistical hypothesis testing
and assume ϵ̂i and ν to be independent for all i ∈ {0, . . . , nH}

then (9) would become

fϵo (ϵ) =

nH∑
i=0

fϵ̂i
(ϵ)

∫
Pi

fν(υ)dυ, (16)

where fϵ̂i ,ν
(ϵ, ν) = fϵ̂i

(ϵ) fν(ν) is expressed as a product of
the marginal PDFs. Then the formulation of the probability of
the positioning failure, when the aforementioned dependence
is ignored, is based on

Po
F (b) =

∫
Bc

f o
ϵ (e) de, (17)

and decompositions via the rule of total probability can
similarly be done as in (14) and (15).

IV. QUANTITATIVE SAFETY ANALYSIS FOR COOPERATIVE
VEHICLE POSITIONING

To illustrate the principles from the previous sections we
consider, as an example, the case of two connected vehicles
driving on a highway in a cooperative positioning setting.
The two-vehicles are capable of exchanging positional coor-
dinates as provided by their positioning systems (e.g., via
Cooperative Awareness Messages) and conduct inter-vehicle
distance measurements (e.g., via LiDAR, Radar) [36], [37],
[38]. Each vehicle runs an EKF which makes use of the
cooperative positioning information to improve its positioning
performance. In the following sub-sections we present the cho-
sen motion and measurement models, the simulation scenario,
and the results of the positioning safety-analysis for single and
multiple configurations of the vehicles.

A. Motion and Measurement Models

Curvilinear motion models are commonly used for vehicle
tracking [39], [40], [41]. Among them we choose the Constant
Turn Rate and Velocity (CTRV) model given its suitability for
highway driving conditions. The perturbed nonlinear equations
of motion are

u̇
v̇
ṡ
ψ̇

θ̇


︸ ︷︷ ︸

ẋ

=


s cos(ψ)
s sin(ψ)

0
θ

0


︸ ︷︷ ︸

8(x)

+


0 0
0 0
1 0
0 0
0 1


︸ ︷︷ ︸

G

[
zṡ
z
θ̇

]
︸︷︷︸

z

, (18)

where 8(x) is a nonlinear vector function, u and v are the
coordinates in [m] of the vehicle in a uv-plane, s is the speed
of the vehicle (sometimes referred to as ‘polar velocity’) in
[m/s], ψ is the heading angle with respect to (w.r.t.) the u-axis
in [rad], θ is the heading rate in [rad/s], zṡ is the process noise
modelling the longitudinal acceleration in [m/s2], and z

θ̇
is the

process noise modelling the heading acceleration in [rad/s2].
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We assume that z ∈ R2 is a white-noise random process
with spectral density matrix Szz = diag([qṡ qθ̇ ]), where qṡ
is the spectral density in [m2/s3

] and qθ̇ in [rad2/s3
]. These

assumptions are suitable for highway driving conditions [39].
The process-noise is d =

∫
1t eF(t−τ)G z(τ )dτ and the process-

noise variance-covariance matrix is given by [42]

Qdd =

∫
1t

(
eF(t−τ)G

)
Szz

(
eF(t−τ)G

)T
dτ, (19)

where 1t = t − t0 is the time update step in [s], eF(t−τ)
=∑

∞

j=0
F j (t−τ) j

j ! , and F = ∂xT8
(
x(0)

)
for an appropriately

chosen linearization point x(0).
The following measurement model is considered

E(y(co)) =
[
u(1) v(1) u(2) v(2) l(12) l(21)]T

,

R(co)
= blkdiag ([R1 R2 Rl ]) , (20)

where (u(1), v(1)) is the position of vehicle 1 in [m], (u(2), v(2))
of vehicle 2 in [m], l(12) and l(21) are the inter-vehicle
distances in [m]. Then we have for j ∈ {1, 2}, the
variance-covariance of the position measurements R j =[

σ 2
u j

ρ jσu jσv j

ρ jσu jσv j σ 2
v j

]
[m2] and that of the distance measure-

ments Rl = diag
([
σ 2

l12
σ 2

l21

])
[m2]. Sensor calibration is

presumed to ensure that all measurements are referenced to
a defined Center of Reference (CoR) situated at the geometric
center of the vehicle’s rooftop. Since these motion and mea-
surement models are nonlinear, we implement an EKF. The
framework presented in Section II holds as it is valid for both
linear and linearized models with the appropriate changes (e.g.,
using the jacobian J8 ∈ Rn×n of the vector function 8(.) and
JA ∈ Rm×n of the vector function A(.)) [26]. From (20) it
follows that m = 6.

B. Alternative Hypotheses

Based on the previously discussed motion and measurement
models, we formulate the following alternative hypotheses for
the statistical testing procedure in which we account for:

• Model misspecifications in motion models H1 : E
(
ν
)

=

(−JAJ8)C1b1 and H2 : E
(
ν
)

= (−JAJ8)C2b2, with
q1 = q2 = 1, and b1, b2 ∈ R in [m/s2], account for
longitudinal deceleration or acceleration of vehicles 1 and
2. These types of model misspecifications are expressed
as

C1 =
[
0 0 1 0 0 0 0 0 0 0

]T
,

C2 =
[
0 0 0 0 0 0 0 1 0 0

]T
.

(21)

• Model misspecifications in position measurements
H3 : E

(
ν
)

= C3b3 and H4 : E
(
ν
)

= C4b4, with
q3 = q4 = 2, and b3, b4 ∈ R2 in [m], account for 2D
model misspecifications in the position measurements of
vehicles 1 and 2 (outliers in positions). These types of

model misspecifications are expressed as

C3 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]T

,

C4 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]T

. (22)

• Model misspecifications in inter-vehicle distance mea-
surements H5 : E

(
ν
)

= C5b5 and H6 : E
(
ν
)

= C6b6,
with q5 = q6 = 1, and b5, b6 ∈ R in [m], account for
1D model misspecifications in the inter-vehicle distance
measurements. These types of model misspecifications
are expressed as

C5 =
[
0 0 0 0 1 0

]T
,

C6 =
[
0 0 0 0 0 1

]T
. (23)

With the alternative hypotheses defined, the formulation of the
partitions Pi ⊂ Rm can carried out according to the principles
in (4) and (6). The combined outcome of the EKF and of the
DIA procedure for the two-car cooperative (co) positioning
setting is

x(co)
=

[
x(1)

x(2)

]
. (24)

which results in the dimension n = n1 + n2 = 10. The filter
error ϵ(co)

= x(co)
− x(co) and the process-noise variance-

covariance matrix are expressed as

ϵ(co)
=

[
ϵ(1)

ϵ(2)

]
, Q(co)

dd = blkdiag
([

Q(1)
dd Q(2)

dd

])
. (25)

C. Scenario With a Single Configuration of the vehicles

In this simulation scenario, two vehicles are driving on a
highway, on the Center of Lanes (CoL), which are parallel,
and have a width (lw) of 3.5 [m] each [43]. Both vehicles are
set to have a length of 4.5 [m] and a width of 1.8 [m] [44].
The geometry of the scenario and the details of the simulation
parameters are given in Figure 3 and Table II.

The spectral densities are chosen to model realistic vehicle
behavior on a highway, accounting for gentle acceleration or
deceleration of 0.5 [m/s2] in the longitudinal direction [46].
For smooth lateral maneuvers, such as lane changes, the
spectral density corresponds to variations of 0.03 [rad/s2]
(1.81 [deg/s2]). The position measurements have a precision
(standard deviation) of 0.100 [m], indicative of positioning
via Differential GNSS (DGNSS) [47]. The precision of the
inter-vehicle distance measurements (0.050 [m]) is assumed
to rely on an automotive-grade LiDAR system.

Our analysis focuses on vehicle 1, though a similar approach
is applicable to vehicle 2. Therefore we are interested only in
the filter error of the 2D position of vehicle 1 (at a single-
epoch), ε = H T ϵ(co), with H T

=
[
I2 02×8

]
(we omit the

index 1 for simplicity). The PDF of ε is

fε(ε) =

nH∑
i=0

∫
Pi

fε̂0

(
ε + H T L iυ

)
fν(υ)dυ, (26)

and the results from Section III follow similarly.
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Fig. 3. Schematic representation of the 2D geometry for the single
configuration simulation scenario. Source: Adapted from [45].

TABLE II
SIMULATION PARAMETERS AND THEIR VALUES

Established requirements for the shape and size of the
safety-region B are not yet formalized for positioning of auto-
mated/autonomous vehicles. However, some research studies
are available in which rectangular and elliptical shapes have
been used [5], [48], [49]. For our analysis we choose an
ellipse to inscribe the shape of the vehicle. The safety region
is defined as

B =

{
ε ∈ R2

| ||ε||2QB ≤ 1
}
, (27)

where Q−1
B =

[
0.358 −0.259

−0.259 0.358

]
[m−2

]. The major-axis of B
has a length of 6.36 [m] with an orientation w.r.t. the horizontal
axis of 45◦, and the minor-axis has a length of 2.55 [m]. In the
next subsections (IV-C.1 and IV-C.2) we present an analysis
of the components of the PDFs of ε under H0 and Hi ̸=0.
In the last subsection (IV-C.3), the resulting probability of
positioning failure is discussed, comparing the cases where
the dependence between parameter estimation and statistical
hypothesis testing is accounted for and when it is ignored.

1) Components of fε(ε|H0): The components of fε (ε|H0)

are shown in Figure 4. Since in Rm there is a symmetry of
fν(ν|H0) about the origin and the partitions Pi , it follows that
E

(
ε|H0

)
= 0n1×1. Under the events of FAi ’s, the orientation,

shape, size, and multimodality are an outcome of the averaged
shifted functions fε̂0

(
ε + H T L iν|H0

)
for ν ∈ Pi (the out-

come of statistical testing). The study of the variability of the
shifting term H T L i ν will give an indication of the amount of
variability under Hi ̸=0, while H0 is valid. Therefore we do an

TABLE III
EIGENVALUES, LENGTH OF P.A., AND ∡ OF P.A. W.R.T. u-AXIS

analysis of the ellipses spanned by ζ T Q−1
i ζ = 1, with ζ ∈ R2,

Q−1
i =

[(
H T L i

)
Qνν

(
LT

i H
)]−1 which can be factorized as

Q−1
i = Ui3iU T

i (based on the eigendecomposition). Table III
shows the eigenvalues of each Q−1

i , the length of the principal
axis (p.a.), and the angle (∡) of the p.a.’s w.r.t. the u-axis
(measured counterclockwise).

Since the hypotheses Hi model 1D model misspecifications
for i ∈ {1, 2, 5, 6}, it means that through the corresponding
L i terms, the obtained Q−1

i matrices have only one nonzero
eigenvalue. Although H1 models a model misspecification in
the longitudinal speed of vehicle 1, the orientation of the p.a.
of Q−1

1 is driven by the direction of motion of vehicle 1 and by
the correlation between the position states of the two vehicles
due to the distance measurements. The correlation depends
on the relative position of vehicle 2 w.r.t. vehicle 1, and on
the structure in (20). As the CoR of vehicle 2 has almost the
same u-coordinates as of vehicle 1, the aforementioned (inter-
vehicle) correlation will ‘pull’ the p.a. of Q−1

1 from an angle of
45 [deg] to one of 30.03 [deg]. The direction of the p.a. of Q−1

2
is tilted more towards the v-axis, the main contributor being
the relative position of the vehicles (captured by the inter-
vehicle correlation). The p.a.’s of Q−1

5 and Q−1
6 are also tilted

more towards the v-axis due to the inter-vehicle correlation.
The parameters of the ellipses corresponding to Q−1

5 and
Q−1

6 are the same since the corresponding entries in the design
matrix and the precision of the distance measurements, for
both ways, are the same. The conditional PDFs fε|FAi (ε|FAi )

for i ∈ {1, 2, 5, 6} do not exhibit multimodality as the outcome
of statistical testing reveals that H T L i ν with ν ∈ Pi is closely
distributed across the p.a. The impact of falsely accepting H1,
H2, H5 or H6, while H0 is valid, on the positioning safety of
vehicle 1 is not expected to be significant (see Figure 4).

As the hypotheses H3 and H4 model 2D model mis-
specifications in the position measurements of vehicle 1 and
vehicle 2, the matrices Q−1

3 and Q−1
4 have two nonzero eigen-

values. The eigenvalues and the orientation of the p.a. of Q−1
3

indicate a larger variation along the u-axis than along the v-
axis. The variation is smaller on the v-axis due contribution
of the [cm]-level inter-vehicle distance measurements and due
to the relative position of vehicle 2 w.r.t. vehicle 1. The large
variation along the u-axis is captured by the length of the
p.a. and its explanation can be given by investigating the
components of

Q−1
3 =

[(
H T L3

)
R

(
LT

3 H
)

+

(
H T L3

)
JA P−JT

A

(
LT

3 H
)]−1

.

(28)
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Fig. 4. Components of fε (ε|H0) for α = 10−3 and nν = 106 pseudo-random samples drawn from fν (ν|H0) (note the different scale of fε|FA3 (ε|FA3)).
The last figure in the second row is fε|FA3 (ε|FA3) in relation with the safety region B.

The second term in (28) is dominant through the contri-
bution of the process-noise variance-covariance matrix Qdd
(see also Table II). Despite the [dm]-level position measure-
ments and [cm]-level inter-vehicle distance measurements,
the considered variations in longitudinal acceleration and in
heading acceleration are the driving factors. At the bottom
right of Figure 4 the component fε|FA3 (ε|FA3) is displayed
in relation with the safety region B, which indicates that
it has the largest probability density outside B among all
components of fε (ε|H0). Although the term H T L3 ν with
ν ∈ P3 is sparsely distributed, it manifests a ‘smearing’
effect by fε̂0

(
ε + H T L3ν|H0

)
instead of a multimodality.

The ‘smearing’ is related to the elongation of Q−1
3 in the 2D

space (a condition number of 2.638). In the case of Q−1
4 , the

largest variation is along the v-axis as the direction of the
p.a. is driven by the inter-vehicle correlation and their relative
positions. Since the ellipse is highly elongated along the p.a.
(a condition number of 4.91 · 102), which also has the second
largest length, the sparsely distributed H T L4 ν with ν ∈ P4 is
causing fε|FA4 (ε|FA4) to be bimodal.

2) Components of fε(ε|H1): Since under anyHi ̸=0 the PDF
of ε depends on the bi ’s (see (12)), one needs to choose or
make assumptions on the size of the model misspecification.
We show the analysis of the components of fε (ε|H1), though
similarly this can be done for the other hypotheses. Under
H1 we assume a model misspecification of b1 = −3 [m/s2

] (a
longitudinal deceleration). This case corresponds to a braking
event done by vehicle 1 (e.g., due to a congestion on the lane).
In this case there is no symmetry of fν(ν|H1) about the origin
and the partitions Pi (this is true for any Hi ̸=0). The simulated
probabilities of the decision events are shown in Figure 5.

The variability of the probabilities across the simulations in
Figure 5 is higher for the lower ones given the same number
of used pseudo-random samples, in this case nν = 106.

An indicator for the separability between the probabili-
ties of the events of MD1, CI1, and WIi (for i /∈ {0, 1}) is

Fig. 5. The probabilities of MD1, CI1, and WIi (for i /∈ {0, 1}) over
100 simulations with nν = 106, α = 10−3, and b1 = −3 [m/s2

].

represented by the angles between the subpaces of Rm spanned
by R

(
C∗

1
)
, R

(
C∗

2
)
, and R (Ci ), for i /∈ {0, 1, 2}. The angles

between a one-dimensional subspace and a higher-dimensional
subspace in Rm can be computed in two steps: (i) project
the one-dimensional subspace onto the higher-dimensional
subspace, (ii) compute the angle between the one-dimensional
subspace and the projection. When comparing subspaces in
Rm , each with a dimension larger than one, the concept of
canonical (or principal angles) is used [50], [51], [52]. The
inner products involved in the computation of the angles
are with respect to the metric defined by Q−1

νν (Algorithm
6.1 of [52]). The obtained angles are presented in Table IV.

Table IV shows that the angle ∡
(
R

(
C∗

1
)
,R (C3)

)
=

38.13◦ is by far the smallest which means that as fν(ν|H1)

moves along R
(
C∗

1
)

in P1, the probability density outside
P1 will be larger in P3 than in P2, P4, P5, or P6. This is



5516 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 4, APRIL 2025

Fig. 6. Components of fε (ε|H1) for α = 10−3, b1 = −3 [m/s2
], and nν = 106 pseudo-random samples drawn from fν (ν|H1) (note the different scale of

fε|WI3 (ε|WI3)). The last figure from the second-column is fε|WI3 (ε|WI3) in relation with the safety region B.

TABLE IV

ANGLES BETWEEN R
(
C∗

1
)

AND R
(
C∗

2
)
, R (Ci) FOR i /∈ {0, 1, 2}

confirmed by Figure 5 which shows that, among the wrong
identifications, PWI3

is largest with a mean value of 0.137 ·

10−1
± 1.177 · 10−5 (over 100 simulations). In practice this

means that in the case of a moderate to hard braking event by
vehicle 1, the probability to wrongly identify H3, when H1 is
valid, is significantly larger than any of the other probabilities
of wrong identification. With respect to the components of
fε (ε|H1) we observe that fε|WI3 (ε|WI3) is the most shifted
away from the origin (see Figure 6).

In the case of an alternative hypothesis such as H1, the
shape of the conditional PDFs is also driven by the model
misspecification. The term H T L i ν with ν ∈ Pi and ν ∼

fν(ν|H1) is distributed and shifted along the subspaces of
R2 spanned by R

(
H T L i C∗

1
)

for i ∈ {1, . . . , 6}. This in turn
impacts the modes of the conditional PDFs as a result of
the averaging of the shifted functions fε̂0

(
ε + H T L iν|H1

)
according to (26). As Figure 6 shows, the impact of wrongly
identifying H3, while H1 is valid, on the positioning safety
of vehicle 1 will be largest. A similar analysis for the other
fε (ε|Hi ) when i ∈ {2, 4, 5, 6} reveals that the positioning
safety of vehicle 1 is also impacted most by the component
corresponding to the wrong identification of H3. In the case
of fε (ε|H3), the conditional component fε|MD3 (ε|MD3) has
the largest impact.

3) Total Probability of Positioning Failure: The total prob-
ability of positioning failure PF (b) from (15) depends on
b =

{
b1, b2 , . . . , bnH

}
. By evaluating PF (b) over ranges

of the model misspecifications one can obtain the worst-case
scenario.

First, we show the results of the computations for
PF |H0 and for the maximum PF |Hi for i ∈ {1, . . . , nH}

TABLE V
COMPUTED MAXIMUM PROBABILITIES OF POSITIONING FAILURE

OVER 100 SIMULATIONS (µSIM AND σSIM ), WORST-CASE
BIASES PER Hi FOR i ∈ {1, . . . , nH}, AND MICS

in Table V over 100 simulations together with the determined
Most Influential Component (MIC). We define the MIC to be
the component of a PF |Hi which has the largest contribution,
or is the most influential (MICE = PE PF |E). The MICs are
also useful to compare the safety-performance of different
statistical hypothesis testing strategies (i.e., different choices
of partitioning of Rm).

In the case of PF |H0 the mean value of 1.3·10−4
±8.3·10−7

is rather high considering [dm]-level positioning measurement
and [cm]-level inter-vehicle distance measurements. The MIC
of PF |H0 is

MICFA3 = PFA3

(∫
Bc

fε|FA3 (ε|FA3) de
)

(29)

with fε|FA3 (ε|FA3) =

∫
P3

fε̂0
(
ε+H T L3υ|H0

)
fν (υ|H0)dυ

PFA3
having

the most probability density outside B across all of the com-
ponents. This confirms the analysis done based on Figure 4 and
of Q−1

3 =
[(

H T L3
)

Qνν

(
LT

3 H
)]−1 from Table III and (28).

Under H3, in the case of model misspecifications in the
GNSS-based position measurements at [m]-level (±[2.1 0.0]T

[m]) for vehicle 1, the maximum of the mean value of
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TABLE VI
VERIFICATION OF RESULTS IN TABLE V VIA STANDARD MONTE CARLO

OVER 100 SIMULATIONS (µSIM AND σSIM )

PF |H3 is 8.3·10−1
±3.4·10−3, which is also the largest across

all components from Table V. The result is expected since,
among all alternative hypotheses Hi ̸=0 considered, alternative
hypothesis H3 specifically addresses model misspecifications
in the position measurements of vehicle 1.

Once the maximum PF |Hi for i ∈ {1, . . . , nH} are
determined, the next step is to compute the worst-case total
probability of positioning failure based on (15), in which the
weights ωi = P(Hi ) have to be set. In line with the EKF
update step of 1t = 1 [s], the a-priori P(Hi ) are chosen
on a per second basis. The chosen values serve as examples
based on several studies and existing standards: (i) P(H1) =

P(H2) = 10−6 which corresponds to harsh vehicle braking
events while driving on highways [53], (ii) P(H3) = P(H4) =

10−5 corresponds to a position error potentially due to a fault
in the signal-in-space of a GNSS (e.g., GPS) satellite [54],
(iii) P(H5) = P(H6) = 10−5 represents an example of a
probability of failure of the LiDAR according to a study
in [55], and (iv) P(H0) = 1 −

∑nH
i=1 P(Hi ) = 9.9996 · 10−1.

Using these assumptions and the results from Table V, the
worst-case scenario total probability of positioning failure is
computed to be

PF (b) = 1.4 · 10−4
± 8.3 · 10−7. (30)

In the case that safety requirements are established, (30)
can be used to determine whether the requirements are
met.

If, in the safety-analysis, one would ignore the depen-
dence between parameter estimation and statistical hypothesis
testing then the worst-case scenario total probability of posi-
tioning failure would be based on (16) and (17), which
gives

Po
F (b) = 1.2 · 10−5

± 4.5 · 10−8. (31)

We notice that Po
F (b) is lower than PF (b) from (30) by

approximately an order of magnitude (i.e., it provides a too
optimistic assessment).

4) Verification of Results: To verify the results from
Table V we use a ‘crude’ Monte Carlo simulation to generate
nε = 105 pseudo-random samples ε from fε (ε|Hi ) for i ∈

{0, . . . , nH}. This approach corresponds to the simulation of
the EKF and the DIA procedure a chosen number of times (in
this case 100) for each hypothesis. Doing so, the probabilities

Fig. 7. Schematic representation of the 2D geometry for the multiple config-
uration simulation scenario simulation scenario. Source: Adapted from [45].

of positioning failure can be computed for the worst-case
scenario. The obtained results are shown in Table VI.

Next, the worst-case scenario total probability of failure is
computed

PMC
F (b) = 1.4 · 10−4

± 3.4 · 10−6. (32)

The results from Table VI and (32) agree with those from
Table V and (30) as the relative differences are below 3%.

D. Scenario With Multiple Configurations of the Vehicles

In this simulation scenario, we study 14 distinct configura-
tions of the two vehicles using the same simulation parameters
from Table II and the previous a-priori probabilities of the
hypotheses. Figure 7 provides a schematic representation
of the configurations considered between vehicles 1 and 2.
In these configurations, vehicle 2 is positioned at 14 equally
spaced points along the center of its lane. For instance,
in configuration 8, vehicle 2 is placed nearly parallel to
vehicle 1. Figure 8(a) presents the results of the worst-case
probabilities of positioning failure, comparing the scenarios
where the dependence between parameter estimation and sta-
tistical hypothesis testing is accounted for (blue) and where
it is not (red). When vehicle 2 is positioned in its own
lane, either behind or in front of vehicle 1, the worst-case
PF (b) is highest. This is because the conditional density
fε|FA3 (ε|FA3) becomes the main contributor. Figure 8(b)
illustrates that for configurations 1, 10, and 14, the conditional
density fε|FA3 (ε|FA3) has a large probability density outside
the safety-region B. In contrast for configuration 8, when the
two vehicles are nearly parallel, most of the probability density
lies within B.

The over-optimism resulting from ignoring the dependence
between parameter estimation and statistical hypothesis testing
is quantified in Figure 9 as the ratio of the worst-case results
shown in blue and red in Figure 8(a). We observe that the ratio
is large when vehicle 2 is positioned in its own lane, either
behind or in front of vehicle 1. However, the ratio approaches 1
when the vehicles are nearly parallel.

Thus, ignoring the aforementioned dependence leads to an
overly optimistic assessment, by an order of magnitude, of the
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Fig. 8. (a) Worst-case probabilities of positioning failure, and their simulation standard deviations, for the 14 configurations, showing the cases where the
dependence between parameter estimations is considered (blue) and ignored (red); (b) Conditional PDF fε|FA3 (ε|FA3) in relation to the safety region B of
vehicle 1 for configurations 1, 8, 10 and 14.

Fig. 9. Ratio of the worst-case PF (b)/Po
F (b) to quantify the over-optimism

caused by ignoring the dependence between parameter estimation and statis-
tical hypothesis testing.

worst-case total probability of positioning failure in most of
the two-vehicle configurations shown in this scenario. This
could result in wrongful positioning safety assessments, such
as concluding that safety requirements or guidelines are met
when they are not.

E. Computational Resources

The computations were carried out on a Dell Latitude
7440 laptop, equipped with a 13th Gen Intel Core i7 pro-
cessor with 10 physical cores and 16 GB of RAM. The
system runs Windows 10 Enterprise, and the programming

environment is MATLAB 2024a with the Parallel Comput-
ing Toolbox. The analyses utilized 10 physical cores of the
processor, taking advantage of MATLAB’s parallel computing
capabilities. As an example, the computation time to obtain
PF |H0 from Table V over 100 simulation repetitions for
uncertainty quantification, was ≈ 5 minutes. Similarly, com-
puting PF |Hi for a size of model missepecification was ≈

5 to 7 minutes. These computation times could be reduced with
access to more physical cores or by decreasing the number of
independent simulation repetitions. They also depend on the
programming language and code implementation. The results
shown in Figure 8(a) were generated using computational
resources from the Delft High Performance Computing Centre
(DHPC) [56].

V. SUMMARY AND CONCLUSIONS

This contribution addressed the dependence between param-
eter estimation and statistical hypothesis testing in auto-
mated/autonomous vehicle positioning safety analysis and
quantified the consequences of neglecting this dependence.
The positioning safety discussed in this article focuses on
the design stage of positioning system (i.e., offline). At this
stage, key decisions are made regarding (i) measurement
models, (ii) parameter estimation methods, (iii) statistical
hypothesis testing procedures to account for model mis-
specifications (e.g., mismodeling of vehicle motion, outliers,
or sensor measurement faults), and (iv) positioning scenar-
ios for vehicles, among other factors. This approach aligns
with the scenario-based safety assessment framework used
for automated and autonomous vehicles [28], [29], [30].
Firstly, we have based the positioning safety analysis on the
distributional theory for the DIA method which gave access
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to the PDFs conditioned on the statistical hypothesis testing
decision outcomes [14]. Using these conditional PDFs, the
probability of positioning failure was computed for a chosen
safety region B. The expression of the total probability of
positioning failure considering a set of model misspecifications
b =

{
b1, b2 , . . . , bnH

}
is,

PF (b) =

nH∑
a=0

ωa

∫
Bc

fε (e|Ha) de, (33)

with

fε (ε|Ha) =

nH∑
i=0

∫
Pi

fε̂i ,ν
(ε, υ|Ha)dυ

=

nH∑
i=0

∫
Pi

fε̂0

(
ε + H T L iυ|Ha

)
fν(υ|Ha)dυ,

(34)

where, in the case of i = 0, use has been made of the
independence between the normally distributed ϵ̂0 and ν [38].
It is important to note that ϵ̂i and ν are dependent since
fϵ̂i ,ν

(ϵ, ν) ̸= fϵ̂i
(ϵ) fν(ν) for i ∈ {1, . . . , nH} [14].

Using, as an example, a simulation scenario of two
connected vehicles driving on a highway in a cooperative
positioning setting, we have accounted in the motion model
of the EKF (the CTRV model), for: (i) gentle accelera-
tion or deceleration by setting the spectral density q( j)

ṡ =

0.250 [m2/s3
] corresponding to variations of 0.5 [m/s2], and

(ii) smooth lateral maneuvers (e.g., lane changes) by setting
q( j)
θ̇

= 0.001 [rad2/s3
] corresponding to variations of 1.81

[deg/s2], for both vehicles ( j ∈ {1, 2}). In the measurement
model of the EKF, the precision of the position measurements
was set at 0.100 [m] (indicative of DGNSS) and for the
inter-vehicle distance measurements at 0.050 [m] (indicative
of an automotive-grade LiDAR system). Based on this setup,
we have carried out a positioning safety analysis for vehicle
1 by computing the total probability of positioning failure for
a worst case-scenario at a single-epoch. To achieve this we
have computed first the conditional probabilities of positioning
failure under each considered hypothesis where: (i) H0 is the
null hypothesis, (ii) H1 and H2 account for 1D unmodelled
longitudinal accelerations or decelerations of vehicle 1 and
vehicle 2, (iii) H3 and H4 account for 2D model misspecifi-
cations in the position measurements of vehicles 1 and 2, and
(iv) H5 and H6 account for 1D model misspecifications in
the inter-vehicle distance measurements from both vehicles.
The results were shown in Table V, and their verification
was presented in Table VI, the relative biases between them
being below 3%. Next, assumptions were made on the a-priori
probabilities of the hypotheses occurrence ωi = P (Hi ), for
i ∈ {0, . . . , 6}, to compute the worst-case total probability of
positioning failure

PF (b) = 1.4 · 10−4
± 8.3 · 10−7. (35)

This result shows that, in this scenario and the considered
models and assumptions, even in a setup of [dm]-level vehi-
cle positioning via a combined EKF and DIA method, the

probability is rather large compared to what is considered to
be desirable for automotive applications (e.g., [5]).

Secondly, we have considered the case when the dependence
between parameter estimation and statistical hypothesis testing
is ignored. In this situation, the evaluation of (33) is based on
the following PDFs

fεo (ε|Ha) =

nH∑
a=0

fε̂i
(ε|Ha)

∫
Pi

fν(υ|Ha)dυ. (36)

where fϵ̂i ,ν
(ϵ, ν) = fϵ̂i

(ϵ) fν(ν) for i ∈ {0, . . . , nH}. The
resulting worst-case total probability of positioning failure is

Po
F (b) = 1.2 · 10−5

± 4.5 · 10−8, (37)

which is approximately one order of magnitude lower than
PF (b) in (35). Furthermore, we have extended the posi-
tioning safety-analyses by considering multiple configurations
between the two vehicles. For most of the configurations
the worst-case scenario Po

F (b) is overly-optimistic. Therefore,
ignoring the dependence between parameter estimation and
statistical hypothesis testing can result in wrongful positioning
safety assessments, such as concluding that safety require-
ments or guidelines are met when they are not. The conclusion
about the consequence of ignoring the aforementioned depen-
dence is consistent with existing research from various other
disciplines such as, mathematical statistics, econometrics, and
signal processing [17], [18], [19], [20], [21], [22], [23],
[24]. We also note that addressing more complex vehicle
scenarios—planned as future work—will increase the dimen-
sionality of vector spaces (e.g., the predicted residual space
Rm if additional sensors are used in the vehicle’s positioning
system), and therefore an increase in the computation times to
determine the probability of positioning failure. While these
computations are expected to remain feasible offline within
a scenario-based safety framework, future work includes also
studying computation times for more complex scenarios.

Below we provide several remarks and recommendations
regarding positioning safety analyses:

• Any procedure which uses parameter or state estimation
and statistical hypothesis testing should consider the
dependence between them either through a rigorous the-
oretical framework or through conservative assumptions
which ensure that the conditional PDFs are overbounded
with simpler PDFs (e.g., normal distributions).

• We recommend the distributional theory for the DIA
method, a theoretical framework that rigorously addresses
the aforementioned dependence and which gives access to
the PDFs conditioned on the statistical hypothesis testing
outcome [14].

• The probability of positioning failure should be for-
mulated based on the conditional PDFs. Doing so,
a component-wise positioning safety analysis starting
from (15) is made possible.

• If a quantity requires numerical simulation (e.g., via
Monte Carlo methods) such as the probabilities of the
events in (11)-(13) or the probabilities of positioning
failure in (33), the simulation uncertainty (e.g., simulation
standard deviation) should be quantified and reported.
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APPENDIX
THE EXPRESSIONS OF L i FOR i > 0

For model misspecifications in the motion model

L i = (In − P−1 AT Q−1
νν A)8Ci (−A8Ci )

+︸ ︷︷ ︸
(C∗

i )
+

,

(
C∗

i
)+

=

((
C∗

i
)T Q−1

νν

(
C∗

i
))−1 (

C∗

i
)T Q−1

νν . (38)

Similarly, it follows that for model misspecifications in the
measurement model we obtain

L i = P−1 AT Q−1
νν Ci C+

i ,

C+

i =

(
CT

i Q−1
νν Ci

)−1
CT

i Q−1
νν . (39)

where Ci C+

i = QCi .
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