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We demonstrate lensless single-shot dual-wavelength digital holography for high-speed 3D imaging in industrial
inspection. Single-shot measurement is realized by combining off-axis digital holography and spatial frequency
multiplexing of the two wavelengths on the detector. The system has 9.1 µm lateral resolution and a 50 µm unam-
biguous depth range. We determine the theoretical accuracy of off-axis dual-wavelength phase reconstruction for
the case of shot-noise-limited detection. Experimental results show good agreement with the proposed model.
The system is applied to industrial metrology of calibrated test samples and chip manufacturing. © 2024 Optica

PublishingGroup

https://doi.org/10.1364/AO.519491

1. INTRODUCTION

Industrial inspection of manufactured components is critical
in ensuring product quality and performance. In the measure-
ment of component structure, e.g., analysis of surface defects,
and assessment of dimensional accuracy and assembly quality,
optical inspection plays a vital role [1–3]. Challenges in this field
are obtaining high spatial resolution, large field of view, rapid
measurement, and 3D imaging capability. 3D imaging extracts
depth information thereby enabling the detection of defects that
may be overlooked when relying solely on 2D images. Common
optical 3D imaging methods [2] include stereo vision, fringe
projection profilometry, and optical coherence tomography. Yet
their limitation lies in their limited resolution, need for scanning
in time, or the need for multiple cameras. In mass production
industries, such as semiconductor production and assembly,
high-speed imaging is important for real-time monitoring of
product quality, which is challenging with current imaging
modalities. Digital holography [4–7] is a technique that enables
full-field depth-resolved single-shot measurement with a field
of view and resolution comparable to classical microscopes,
thereby meeting the demands of many industrial inspections.

Digital holography (DH) can simultaneously retrieve the
amplitude and phase of the optical field and reconstruct the 3D
shape of the object from it [8–10]. In industrial applications DH
primarily operates in reflection mode where the phase change of
non-transparent objects is caused by the height variation of the
surface. Many studies [11–13] have shown the efficacy of DH in
reconstructing various industrial components, including those
that are reflective or matte, or have steep edges, demonstrating
its robustness and wide applicability. Another notable advan-
tage of DH is its ability of wavefront reconstruction, enabling
numerical propagation for refocusing to any plane of interest.

Unlike classical microscopes, DH does not rely on lenses for
“imaging” [14], thereby avoiding lens aberrations, but also
making the setup compact and circumventing cumbersome
mechanical focusing operations.

A major limitation of the classical DH is that it cannot
retrieve an unambiguous depth when the optical path difference
is larger than the illumination wavelength due to the “2π ambi-
guity.” This can be solved using phase unwrapping algorithms.
However, this works well only for a gradual and continuous
changing sample surface [15–18]. Dual-wavelength DH
(DWDH) [19–21] alleviates the phase wrapping problem by
employing measurements at two wavelengths and subtracting
the phases of their fields to get the beat phase corresponding to
the synthetic wavelength. The synthetic wavelength is larger
than the illumination wavelength and defines the “new” unam-
biguous measurement range. The closer the wavelengths of
the two lasers are, the larger the synthetic wavelength will be.
For example, Abeywickrema et al . [22] achieved a centimeter-
scale measurement range with an acousto-optic modulator by
sequentially measuring holograms at two wavelengths. For high
speed acquisition the holograms at the two wavelengths also can
be measured in a single-shot measurement, by using spectral
multiplexing with a Bayer mosaic color camera [23–25] or by
combining an off-axis configuration with spatial frequency mul-
tiplexing [26], the latter of which is widely adopted due to better
image resolution and more economical monochrome cameras.
For instance, Fratz et al . [27,28] designed a multi-wavelength
DH system with a synthetic wavelength ranging up to 1 mm
that was successfully applied for detection in a precision turning
plant. Piniard et al . [29] reported a dual-wavelength system
for in situ real-time investigation of the melt pool morphology.
Many papers [30–33] have also reported improvements to
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off-axis-based DWDH to develop applications in different
fields. However, all the aforementioned papers use lenses for
imaging, and thus, the lensless imaging capability of DH, as well
as the advantages it brings in making systems more compact,
have not been fully exploited.

Even though the wavelength separation between the two
wavelengths determines the unambiguous measurement range,
the accuracy in determining the surface height depends on the
accuracy of the phase estimation at the synthetic wavelength
[34–36]. The phase estimation is influenced by noise from
environmental vibrations, laser power fluctuations, and shot
noise. Additionally, for rough surfaces, the diffuse scattering
introduces additional phase noise and decoherence of the opti-
cal fields, further impacting phase estimation. Piniard et al .
[37] investigated the impact of noise in DWDH; however, their
study focused on the effect of surface roughness on phase mea-
surements, in which case the scattering decorrelation noise was
the dominant factor. A few studies [38–40] indicate that, after
excluding environmental and sample factors, shot noise is the
ultimate factor affecting phase accuracy in DH, and its impact
on the phase measurement has been extensively examined, albeit
limited to the single-wavelength scenario.

Realizing the large and steep height variations on object
surfaces during industrial inspections and the need for fast,
accurate, and large-depth-range 3D imaging for integrated
circuits (IC) process control, we propose a high-phase-accuracy,
single-shot DWDH system. The adoption of a lensless con-
figuration makes the setup compact and easy to integrate into
existing industrial equipment. We analyze the imaging field
of view and spatial resolution in the lensless configuration
and their limit factors. Additionally, we extend the single-
wavelength DH shot-noise model proposed by Chen [39] to
the DWDH scenario. Based on a theoretical analysis of our
extended noise model and comparison with experimental
results, we demonstrate the feasibility of our model and show
that the shot-noise-limited phase sensitivity is approached. We
show the successful application of single-shot large-depth-range
imaging of IC micro-structures and chip tilt detection.

2. METHODS

A. Lensless Digital Holography Setup

The setup of the lensless single-shot DWDH is illustrated in
Fig. 1(a). A He–Ne laser (HRS015B, Thorlabs) with wave-
length λ1 = 633 nm and a laser diode (CPS650F, Thorlabs)
with wavelength λ2 = 637 nm are used as light sources and
yield a synthetic wavelength 3= λ1λ2/|λ1 − λ2| ≈ 100 µm.
Both beams first pass through a beam expander to increase the
beam size to cover the entire sample. The beam expander for λ1

is composed of two positive lenses (LA1805-A and LA1509-A,
Thorlabs) and a pinhole (P30K, Thorlabs) and for λ2 is com-
posed of two lenses (LA1131-A and LA1509-A, Thorlabs) and
a pinhole (P25K, Thorlabs). The purpose of the pinhole is to
filter out high-spatial-frequency noise from the laser output,
producing a clean Gaussian-shaped illumination. The expanded
beam for λi , with i = 1, 2, is then split into two fields with a
cube beam splitter (BS013, Thorlabs). In one arm, the field
illuminates the object, and its reflected field is redirected by a
pellicle beam splitter (BP250, Thorlabs) and captured by the

(a)

(b) (c)

Fig. 1. (a) Schematic overview of the lensless single-shot DWDH
setup. BE, beam expander; M, mirror; BS, beam splitter; CAM,
camera. (b) An acquired dual-wavelength hologram. (c) The power
spectrum of the hologram of (b).

camera; this is the object field Oi . The object field has an ampli-
tude |Oi | and phaseϕi . In the reference arm, the field Ri , reaches
the camera after reflection by a mirror and transmission through
the pellicle beam splitter. The interference of these two fields
produces an interference pattern (hologram). The reference
beam Ri is an inclined plane wave, with spatial frequencies fx ,i

and f y ,i along the x and y directions, respectively. The subscript
i = 1, 2 indicates the two wavelengths.

In our setup, the two illumination fields propagate coaxially
to the sample along the direction of the optical axis while the
two reference beams approach the camera at different angles
giving rise to different spatial frequencies. Through variation
of the incident angle, the interference fringes for λ1 and λ2 are
orientated along the two diagonals of the sensor, leading to
their spectra (Fourier transform of the hologram) to appear at
a frequency axis orthogonal to the direction of their fringes.
Positioned at an approximate distance of 70 mm from the sam-
ple holder, a monochrome 8-bit camera (MC124MG-SY-UB,
XIMEA) with dimensions of 4112× 3008 pixels and a pixel
size1x =1y = 3.45 µm is employed. The numerical aperture
(NA) for a lensless system is equal to the half open angle from
the sample to the sensor, i.e., NA=Wcam/2d , where Wcam is
the width of the camera sensor, and d is the distance between
the object and camera. To accommodate the beam size, only
1536× 1536 pixels of the sensor area (5.3× 5.3 mm2) were
used in our measurements, resulting in an NA= 0.035 and a
field of view (FOV) of 28.09 mm2. The exposure time for the
hologram in our measurements was around 60 µs and varied
depending on the samples to be measured. Because the two fields
from the two wavelengths are not coherent with each other, the
intensity of the dual-wavelength hologram IDW captured by the
camera is the sum of the two single-wavelength holograms [30]:
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IDW = |O1|
2
+ |R1|

2
+ O1 R∗1 + O∗1 R1

+ |O2|
2
+ |R2|

2
+ O2 R∗2 + O∗2 R2

= |O1|
2
+ |R1|

2
+ |O2|

2
+ |R2|

2

+ 2|O1||R1| cos(ϕ1 − fx ,1x − f y ,1 y )

+ 2|O2||R2| cos(ϕ2 − fx ,2x − f y ,2 y ), (1)

where all fields are functions of spatial coordinates x and y .
Figures 1(b) and 1(c) show an example of an acquired holo-
gram and its corresponding spectrum. The inset in Fig. 1(b)
illustrates a chessboard-like interference pattern caused by the
cross-overlapping of the two interference fringes. In contrast,
Fig. 1(c) presents well-separated spectra, thanks to the dif-
ferent spatial frequencies carried by the two reference beams.
The cross marker indicates the center position of the sideband
(Oi R∗i ). According to Fourier optics, the cutoff frequency of
the sideband is fc ,i =NA/λi =Wcam/(2λi d). The circles
indicate the spectral range that will be truncated during the
subsequent reconstruction and is set to be slightly broader than
the bandwidth of the sideband fc ,i .

B. Object Field Reconstruction

The Fourier-transform-based filtering algorithm is an efficient
and straightforward reconstruction method for off-axis DH and
can also be applied to DWDH. First, the hologram is Fourier
transformed to determine its power spectrum, as depicted in
Fig. 1(c), where the spectra of the real/virtual image terms for
the two wavelengths are cross-diagonally distributed due to
off-axis illumination. Second, two band-pass masks are created
to selectively filter the spectra of the two fields (Oi R∗i ). The
location of the mask center is determined by the coordinates
of the maximum value of the sideband. The selection of the
mask radius, as described in the previous section, needs to be
larger than the cutoff frequency fc ,i . The cutoff frequency fc ,i

can only be approximated at first, by reasonably estimating the
distance between sample and camera d . After obtaining the pre-
cise distance by refocusing, fc ,i can be updated once again. We
further multiply the estimated mask radius fc ,i by 1.1 to avoid
loss of spatial resolution. Third, the filtered spectrum undergoes
an inverse Fourier transform, followed by compensation for the
phase slope of the reference field through multiplication with a

digitally generated reference beam Rdig
i based on the centroid

of the off-axis term [29] to determine the spatial frequency of

Rdig
i . Finally, we perform a linear phase fitting and subtrac-

tion to reduce the phase residue. At this point, the object field,
which is the field diffracted from the object onto the detector, is
obtained. The undiffracted field in the sample plane is obtained
through back propagation using the angular spectrum method
[41]. The propagation distance to the sample is determined by
searching for the distance at which the image edges are sharpest
[11]. It is worth pointing out that imperfection in laser align-
ment or inaccuracy in slope phase compensation may result in
a slight offset between the two on-focus images. In such cases,
image registration is recommended. Finally, the phase map ϕi is

retrieved by extracting the imaginary and real parts of the result-
ing complex field and then calculating the arctangent of the
ratio. The process for phase retrieval at the two wavelengths in
off-axis dual-wavelength digital holography can be summarized
as [30]

ϕi = angle
(
F−1
{F{IDW} ·Maski } · R

dig
i

)
. (2)

Note that both phase maps ϕi are wrapped, which prevents
extracting the height map of the sample correctly from each
individual phase map. This issue can be resolved by calcu-
lating the so-called beat phase 8 in dual-wavelength digital
holography as [30]

8= ϕ1 − ϕ2 = 2πOPL

(
1

λ1
−

1

λ2

)
= 2π

OPL

3
, (3)

where OPL denotes the optical path length, which is twice
the height map of the sample due to the setup working in
reflection mode. Examination of Eq. (3) reveals that the
phase 8 is wrapped only when OPL>3. In contrast, for
single-wavelength DH, the phase ϕi becomes wrapped once
OPL>λi , which explains why DWDH can unambiguously
measure objects with substantial height differences without the
need for phase unwrapping algorithms. The data processing
time for the whole process of beat phase estimation is around
1.2 s for a 1536× 1536 pixel hologram (using an Intel Xeon
W-2223 CPU at 3.60 GHz). Obviously, the closer the two
wavelengths, the larger the synthetic wavelength 3, allowing
for larger height difference measurement. However, as the
two wavelengths draw closer, the impact of laser source band-
width and wavelength drift becomes more significant. Since
the height accuracy scales with 3 in Eq. (3), a larger synthetic
wavelength at the same single-wavelength phase sensitivity ϕi

leads to a reduction in height estimation accuracy. Hence, it is of
paramount importance to achieve the highest phase sensitivity
possible.

C. Theoretical Accuracy of DWDH Phase Estimation

The accuracy of phase measurement defines the height accuracy
and can be quantified by the standard deviation of the phase
reconstruction σ(ϕ). This metric not only reflects the minimal
detectable phase change but also describes the spread in phase
measurements over time. In practice, surface roughness, techni-
cal noises, and environment will influence the accuracy of phase
measurement [37–40]. For a polished surface, the impact of
roughness could be irrelevant compared to other noise sources
[37,40]. Maintaining stable experimental conditions and using
a high-performance camera can effectively decrease many types
of noise, such as dark-current and background noise. However,
shot noise is the ultimate limiting factor and sets a baseline for
the phase accuracy [38,39]. Chen et al . [39] theoretically stud-
ied the phase sensitivity for single-wavelength off-axis DH and
derived an analytical expression for the best achievable phase
accuracy estimation under shot-noise-limited detection:

σϕ =

√
|O|2 + |R |2

2g |O|2|R |2
S

MN
, (4)



4430 Vol. 63, No. 16 / 1 June 2024 / Applied Optics Research Article

where the intensities are measured in photoelectron counts on
the camera, “g ” is the camera gain, and S/MN denotes the
ratio of the filter area S to the entire Fourier area MN. The ratio
of the DC term of the hologram over the amplitude of the
interference is the reciprocal of the fringe visibility. It is worth
noting that the accuracy σ(ϕi ) is a function of x and y as a result
of the non-uniformity of the reference and sample field. The
camera gain “g ,” with unit of e−/ADU, is calibrated using the
mean-variance fitting method [42], serving as the conversion
factor between the number of photoelectrons and the analog-to-
digital unit (ADU) reading of the camera. A higher “g ” leads to
improved phase accuracy (decreasing phase standard deviation).
This is consistent with physical intuition: with a larger camera
gain at the same camera readout, a pixel contains more photo-
electrons; therefore, the impact of shot noise, which follows a
Poisson distribution, on the signal decreases. The calibrated gain
of the camera we used is g = 9.6± 0.15.

We apply the phase accuracy model Chen et al . [39] to
off-axis DWDH. First, due to the non-coherence of the two
independent laser sources and the linear detection efficiency,
the dual-wavelength hologram of Eq. (1) can be considered as a
superposition of two individual single-wavelength holograms.
Second, as previously discussed, the respective amplitudes
|Oi | for each wavelength can be determined utilizing different
filters via Fourier filtering. Therefore, following similar deriva-
tion steps, we find that the phase accuracy σϕi reconstructed
from a dual-wavelength hologram under the condition of
shot-noise-limited detection is

σϕi =

√
|O1|

2 + |R1|
2 + |O2|

2 + |R2|
2

2g |Oi |
2|Ri |

2

S
MN

. (5)

This expression shares a close resemblance with Eq. (4). The
difference lies in the DC term: in the dual-wavelength case, the
DC term is the summation of the two DC terms from the two
individual single wavelengths. To avoid detector saturation,
the maximum value of |Oi ||Ri | in dual-wavelength needs to
be smaller than in the single-wavelength case. Consequently,
when using the same hardware and reconstruction algorithm,
a comparison of Eqs. (4) and (5) suggests that, even if the phase
measurement accuracy at an individual wavelength is the focus
of interest, the phase accuracy obtained from a dual-wavelength
hologram is inferior to that from a single-wavelength hologram.
For DWDH with equal power in the two wavelengths, a total
power of the illumination equal to that for the single-wavelength
case, and a perfectly balanced interferometer, the phase accuracy
at individual wavelengths is a factor

√
2 worse than the result

from a single-wavelength DH measurement.
For the beat phase8, which is given by the subtraction of two

independent phase maps, as expressed in Eq. (3), its variance
equals the sum of the variances of the other two phases, i.e.,

σ 2
8 = σ

2
ϕ1
+ σ 2

ϕ2

=
|O1|

2
+ |R1|

2
+ |O2|

2
+ |R2|

2

2g
S

MN

×

[
1

|O1|
2|R1|

2
+

1

|O2|
2|R2|

2

]
. (6)

This can be considered the shot-noise-limited phase accu-
racy for DWDH and can be converted to height accuracy via
Eq. (3). Equations (5) and (6) make it possible to quantify and
evaluate the phase accuracy of a DWDH setup, solely from one
hologram.

3. RESULTS

A. Lateral Resolution and Field of View

In conventional optical microscopy, there is generally a trade-off
between the lateral field of view (FOV) and image resolution
as the objective lens and tube lens are matched for a minimal
aberration. While a high-NA objective lens can enhance the
lateral resolution, it comes at the expense of a smaller lateral
FOV, and vice versa. In a lensless DH setup with plane wave
illumination, the imaging FOV is equal to the sensor size, and
the lateral resolution is determined by both the NA of the sys-
tem and the pixel size of the sensor1x . According to the Abbe
criteria, the theoretical resolution can be calculated using the
formula r A = λ/2NA. Decreasing the distance from the sample
to the sensor or increasing the sensor size can increase the NA
of the system and improve resolution. However, it ultimately
is limited by the finite pixel size, because the image is discretely
sampled by the sensor in lensless DH. This usually does not pose
a big problem in classical microscopes, because in magnified
images the point spread function is wider than the pixel size.

The experimentally achievable resolution and FOV were
determined by imaging a USAF resolution target; see Fig. 2.
Figures 2(a) and 2(b) show the acquired 5× 5 mm2 hologram
and the corresponding power spectrum, respectively. The
width of the spectrum, also referred to as the sensor bandwidth,
depends on the pixel size 1x and is equal to 1/1x . According
to the Nyquist theorem, only signals with a spatial frequency
within the sensor bandwidth can be accurately sampled and
retrieved. Since the spectra of the fields Oi R∗i and their complex
conjugates are symmetrically distributed and have the same
bandwidth, the optimal spectrum arrangement in DWDH
should be a diagonal distribution with the two wavelengths
along different diagonals, as shown in Fig. 2(b). The dashed cir-
cle in the figure indicates the bandwidth of the sideband, which
is smaller than the sensor bandwidth, leading to the achievable
resolution given by the Abbe diffraction limit. During the data
processing, the distance from the sample to the sensor was found
to be 76.11 mm. Consequently, r A ≈ 9.1 µm was the best
achievable DWDH resolution, as the resolutions for the two
wavelengths are almost equal.

The reconstructed intensities for λ1 and λ2 are shown in
Figs. 2(c) and 2(d), respectively. The insets display zoomed-in
images of the red dashed box area, from which we can see that
the smallest distinguishable pattern is element 5-5, which has
50.8 line pairs per millimeter. Also note that the FOV of the
images is 5× 5 mm2, the same dimensions as the hologram in
Fig. 2(a). However, only part of the FOV is useful as the beam
intensity is diminished at the edges. Figures 2(e) and 2(f ) show
the respective phase maps of the zoomed-in image for λ1 and
λ2, respectively. Figure 2(g) shows both the intensity and phase
profiles of element 5-5 along the dashed line in Figs. 2(c)–2(f ).
We can observe that this set of patterns just can be resolved for
both intensity and phase. Therefore, it can be concluded that
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(a) (b)

(c) (d)

(e)

(f)

(g)

Fig. 2. DWDH measurement on USAF resolution target. (a) The
acquired dual-wavelength hologram. (b) The corresponding power
spectrum. The width is equal to 1/1x . (c), (d) Reconstructed intensity
maps for λ1 and λ2, where the inset represents the zoomed-in image of
the selected areas. (e), (f ) The respective phase map of the selected areas
in (c) and (d). (g) Intensity and phase profile curves of element 5-5 of
the USAF target.

the spatial resolution of the setup is better than 9.84µm, a value
close to the theoretical resolution of r A ≈ 9.1 µm.

B. Phase Accuracy

The phase measurement accuracy for DWDH was experimen-
tally quantified and compared with the theoretical model. A
silver mirror was used as the object to avoid the influence of the
scattering decorrelation noise on the phase that stems from the
surface roughness. The experimental method for measuring the
phase accuracy is as follows: first, we took a series of holograms at
40 ms intervals during 10 s. Second, the phase maps from each
hologram were reconstructed separately for the two wavelengths
and the synthetic wavelength by using Eqs. (2) and (3), that is,
ϕ1, ϕ2, and8. Finally, the standard deviation σexp of the phase
variation at every location was calculated from the time series.
Figure 3(a) shows the three phase maps for λ1, λ2, and3 recon-
structed from one of the captured holograms. The phases are
constant for the mirror object. Figure 3(b) shows the variation
of the phase at one point (marked with a red cross) in Fig. 3(a)
on each reconstruction, and the statistical distribution is shown
in the histogram. As can be seen, due to noise in the experiment,
there are temporal fluctuations in the phase. We can obtain the

(a)

(b)

Fig. 3. (a) DWDH reconstructed phase maps of a mirror sample for
λ1, λ2, and 3. (b) The phase change over time for the three phases at
the selected point in (a). The histogram on the right shows the corre-
sponding statistical distribution.

(a) (b) (c)

Fig. 4. (a) Experimental and (b) theoretical DWDH phase accuracy
comparison for λ1, λ2, and 3. (c) Comparison along the red lines in
(a) and (b), where the blue line is the experimental data and the red line
is the theoretical prediction.

phase measurement accuraciesσexp at the indicated point, which
are 15.8, 19.7, and 24.7 mrad forλ1,λ2, and3, respectively.

The spatially resolved phase measurement accuracy maps are
illustrated in Fig. 4. Figure 4(a) shows the experimental phase
accuracy for λ1, λ2, and 3 and Fig. 4(b) shows the theoretical
phase accuracy calculated with Eqs. (5) and (6). All parameters
required to obtain the theoretical accuracy can be computed
from a single captured hologram. A quantitative comparison
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between the theoretical and experimental accuracy is presented
in Fig. 4(c); each plot corresponds to the comparison along
the red dashed lines in Figs. 4(a) and 4(b). From Fig. 4(c), it
can be seen that higher phase accuracy appears at the center
of the detector area for both the experimental and theoretical
accuracy. This characteristic can be explained by the Gaussian
illumination profile, which results in a higher intensity (more
photons) at the center and thus less noise. Furthermore, the
comparison reveals that the experimental accuracy is basically
lower bounded by the theoretical accuracy. The theoretical accu-
racy is based on shot noise only; however, the severe fluctuations
observed in the experimental results imply that other factors
such as readout noise, pixel inconsistency, and source instability
also affect our measurements to some extent.

C. Application to Industrial Inspection

Several experiments were conducted to demonstrate the appli-
cability of our setup for industrial inspection. Figure 5 shows
quantitative 3D reconstruction of a metal workpiece (manufac-
tured by Rubert & Co Ltd, product type 515), which consists
of six engraved grooves on its surface (with depths of 1, 5, 10,
50, 100, 1000µm). Figure 5(a) is the acquired dual-wavelength
hologram, which is a superposition of two interference patterns.
The inset in Fig. 5(a) depicts the power spectrum density distri-
bution of the hologram. The spectrum shows that the spectra

(a) (b)

(c) (d)

(e)

Fig. 5. DWDH measurement on a metal workpiece. (a) The
obtained dual-wavelength hologram, where the inset shows its spec-
trum. (b), (c) Reconstructed intensity and wrapped phase for λ1.
(d) Beat phase map computed by Eq. (3) after tilt compensation and
ignoring low-intensity areas. (e) 3D topography map of the selected
area in (d).

for λ1 and λ2 are diagonally distributed and well separated.
Figures 5(b) and 5(c) show the reconstructed intensity and
phase map for λ1 (the result for λ2 has a similar appearance).
The phase map, Fig. 5(c), displays a wrapped phase according to
spherical waves, which is caused by the slight concavity on the
workpiece surface. Nevertheless, the presence of the grooves is
still discernible, as the groove depth introduces additional phase
delays, resulting in discontinuities in the phase distribution
around the groove edges.

The beat phase map 8, computed via Eq. (3) and after
subtraction of a linear phase tilt, is illustrated in Fig. 5(d). It is
evident from the figure that the issue of phase wrapping has been
significantly alleviated, and that the grooves are well visible due
to their difference in phase value with respect to the surface.
The phase values in regions with insufficient intensity have
been removed and replaced with NAN (not a number). This
is necessary, as calculating the phase in these areas results in an
ill-defined phase due to the denominator of the arctangent being
zero or close to zero. These regions occur around the periphery
of the image and on either side of the grooves. The former is
attributed to the non-uniform illumination of the Gaussian
beam, while the latter is because the grooves have very vertical
side walls, making it challenging to obtain reflective light from
these areas. Figure 5(e) demonstrates a 3D topography map of
the region highlighted in red in Fig. 5(d) where the phase has
been converted to height distribution and the linear phase has
been subtracted. The 3D map clearly distinguishes the presence
of two grooves with nominal depths of 5 and 10 µm. The red
line depicted in Fig. 5(e) denotes the projection of the recon-
structed height distribution along the y -axis, confirming that
the depths of the identified grooves are in line with the expected
nominal values. The manufacturer stated nominal bottom
width of the 10 µm groove measures 134 µm and that of the
5 µm measures 111 µm. These two dimensions measured from
our results are 132.6± 3.9 and 119.4± 7.5 µm, respectively.
Given that the discretization interval of the image equals the
pixel size (3.45 µm), the deviation between the measurement
and the nominal value is reasonable.

Figure 6 demonstrates the application of DWDH to indus-
trial 3D chip inspection to determine the tilt of a die on a
substrate. This tilt primarily results from the shrinkage and
expansion of the glue solidification during the adhesive bonding
process. The recorded hologram and its corresponding spec-
trum are illustrated in Fig. 6(a) and the inset therein. Figure 6(b)
shows the reconstructed intensity at the surface of the chip,
which is a superposition of the intensities for λ1 and λ2. While
the intensity map provides many details about the chips, it
fails to discern the presence of any tilt of the die. Furthermore,
since the amount of tilt is minimal, the focus variance does not
noticeably vary. However, the phase map clearly highlights this
tilt as it appears in the form of distinctly increasing phase values.
Figure 6(c) shows the height calculated from the two wrapped
phases with the help of Eq. (3), wherein phases with excessively
low intensities were omitted for better visibility. The tilt of the
chip can be seen as the color variation from upper left to bottom
right. After 3D plane fitting operation, the tilt angle θ relative to
the x y plane is quantified as 0.38± 0.006 deg.
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(a) (b)

(c)

Fig. 6. DWDH application demonstration on chip tilt detection.
(a) The captured dual-wavelength hologram and its spectrum. (b) Sum
of the reconstructed intensities for λ1 and λ2. (c) Calculated height
map and 3D topography map of the chip obtained from the beat phase.
The tilt angle of the chip surface is indicated.

4. DISCUSSION

We demonstrated diffraction-limited lateral resolution
DWDH. In the lensless configuration, the achievable reso-
lution for two wavelengths using only a single detector and
single frame acquisition is determined by the numerical aper-
ture, but also by the correct choice of off-axis angle and pixel size
1x . The off-axis angle translates the spectrum of the sideband
in the frequency domain, and the pixel size 1x determines
the sensor bandwidth. Achieving the Abbe theoretical limit r A

is only possible when the sensor bandwidth covers the entire
sideband. If the sideband surpasses the sensor bandwidth, which
generally happens when the off-axis angle or system numerical
aperture is too large, the achievable resolution will be worse
than r A. It is also worth mentioning that the spatial resolution
in coherent imaging depends on the phase difference between
two points [41]. Therefore, in real-world measurements of 3D
objects, the achievable resolution can either be better or worse
than the Abbe diffraction limit.

Although the DWDH FOV is given by the sensor size, in our
experiment the useful FOV is more limited by the illumination
beams that have a Gaussian light distribution that does not illu-
minate the entire FOV uniformly. To address this issue the illu-
mination beam can be made more uniform with a flat-top beam
collimator, which could be added after the beam expander.

Our paper investigates phase accuracy under conditions
where shot noise is the dominant factor. For a polished mirror,
the surface roughness is sufficiently small (less than 1 nm) so
that decorrelation noise has very little influence. However, when
the specimen has a rough surface, diffuse reflection can lead to

speckle decorrelation, which deteriorates the phase measure-
ment. Therefore, for phase accuracy measurements of rough
objects, we recommend using the noise model proposed by
Piniard et al . [37] along with the approach outlined in this paper
to achieve a more precise prediction of phase accuracy.

The speed of the DWDH imaging proposed here is limited
by two factors. First, the acquisition time of the camera, which
typically ranged on the order of hundreds of microseconds, vary-
ing slightly depending on the reflectivity of the object. Notably,
a single measurement proved sufficient to complete the entire
imaging process. The imaging speed can be further enhanced by
taking a higher-speed camera and more powerful light sources.
Second, the data processing time is a few seconds for any of our
experiments. We anticipate that faster data processing can be
achieved with code optimization or conversion to a dedicated
pre-compiled programming language.

In this paper, we only show one application case; nevertheless,
we believe that this method will have multiple untapped indus-
trial applications.

5. CONCLUSION

In this paper, we demonstrate a lensless single-shot DWDH
system designed to address challenges encountered in modern
industrial inspection. The dual-wavelength approach effec-
tively extends the unambiguous measurement range to 50 µm
in height. Combination off-axis and spatial frequency mul-
tiplexing offers a feasible solution for achieving single-shot
dual-wavelength acquisition. We derive general expressions for
quantifying and evaluating the phase accuracy for a DWDH
setup from a single hologram under the condition of shot-
noise-limited detection. Our experimental result shows a good
agreement with our theoretical model. Also we demonstrate the
capability of DWDH for 3D optical industrial inspection.
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