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Abstract

Reverse engineering binaries is required to understand and analyse pro-
grams for which the source code is unavailable. Decompilers can transform
the largely unreadable binaries into a more readable source code-like repre-
sentation. However, many aspects of source code, such as variable names
and comments, are lost during the compilation and decompilation processes.
Furthermore, by stripping the binaries, more informative symbols/tokens, in-
cluding the function names, are also removed from the binary.

Reverse engineering is time-consuming, much of which is taken up by
labelling the functions with semantic information. Therefore, we propose a
novel code summarisation method for decompiled and stripped decompiled
code. First, we leverage the existing BinSwarm dataset and extend it with
aligned source code summaries. Next, we create an artificial demi-stripped
dataset by removing the identifiers from unstripped decompiled code. To train
our model for summarising code using this dataset, we fine-tune a pre-trained
CodeT5 model for the code summarisation task on the given dataset. Further-
more, we investigate the performance of the input types, the impact of data
duplication and the importance of each aspect present in the source code on
the model performance. Moreover, we design and present some intermediate-
training objectives to increase the model performance.

We present the following findings: Firstly, we find that the model gen-
erates good summaries for decompiled code, with similar performance to
source C code. Compared to summarising decompiled code, the quality of the
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demi-stripped model is significantly lower but still usable. Stripped performed
worse and produced mostly incorrect and unusable summaries. Secondly, we
find that deduplication greatly reduces the performance of the model, putting
the performance of decompiled code roughly in line with other decompiled
datasets. Thirdly, we found that the loss of identifiers causes a drop in the
BLEU-4 score of 35%, with another 25% decrease attributable to the in-
crease of decompilation faults caused by stripping. Lastly, we show that our
proposed deobfuscation intermediate-training objective improves the model’s
performance by 0.54 and 1.54 BLEU-4 on stripped and demi-stripped code,
respectively.
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Chapter 1

Introduction

1.1 Problem Definition and Significance
Reverse Engineering (RE) is the act of “breaking down” the inner workings of bi-
nary executables to analyse and understand programs. It is used to find vulnera-
bilities and analyse novel malware. Reverse engineering can also help researchers
quickly understand novel malware, fingerprint existing malware [37], replicate soft-
ware of which the source code is lost, discover illegitimate usages of intellectual
property, porting abandonware, and more [10]. The binaries are the most accurate
representation of the program that runs on the system, there is no guarantee that the
source code represents the binary delivered to the user [10].

Unlike binaries, source code is relatively easy to read, but unfortunately, it is
not always available. The original source code is compiled into a runnable binary
program by compilers such as Clang/LLVM1 or GCC 2 and delivered to the user.
Once compiled, the exact source code version, which was used for compilation,
may become unknown or lost altogether.

To understand what a binary program does exactly, the binary code can be de-
compiled into readable code by decompilers such as Ghidra3 and IDA Pro.4 Under-
standing decompiled code is still an intrinsically difficult process. It is a manual,
time-consuming process and still largely depends on the skill of the Reverse Engi-
neer [10, 37]. Much of the work that goes into reverse engineering a binary is spent
labelling functions with semantic information [37].

Source code can be described as having two information channels: the algorith-
mic channel and the natural language channel. The algorithmic channel specifies
the execution of a program (semantics), while the natural language channel specifies

1Clang: https://clang.llvm.org/
2GCC: https://gcc.gnu.org/
3Ghidra Framework: https://ghidra-sre.org/
4IDA Pro: https://hex-rays.com/ida-pro/
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1. INTRODUCTION

the purpose and context of the program (syntax) [11]. The natural channel includes
function and variable names, code comments and the specific human-readable struc-
ture of programs. Computers only consider the algorithmic channel to execute a
program, while humans use both the algorithmic channel and the natural channel to
understand a piece of code [11]. Furthermore, code is very regular and predictable,
even more so than natural languages [20]. Language models leverage this natural-
ness of code [20] to understand source code.

Due to the naturalness of code, Natural Language Processing (NLP)-based tech-
niques are tailored to the source code as well. For instance, code summarization [25]
is used to automatically generate short natural language descriptions of code. While
these methods have been successfully applied to programming languages such as
Python, Java and PHP [38, 17, 12, 2], none of these methods has been applied to
the relatively syntactically-poor output of decompilers. The compilation process,
which transforms readable code into runnable binaries, destroys much of the infor-
mation contained in the natural channel. Especially stripped binaries - binaries of
which the symbol table is removed - will be challenging since they have almost no
identifiers at all. Hence, in this thesis we aim to investigate the following goal to
address this gap:

To investigate the application of state-of-the-art code summarisation methods
for decompiled code.

1.2 Contributions
We, therefore, propose our code summarisation model, which takes decompiled
functions and synthesises summaries. Figure 1.1 shows an overview of the pro-
posed approach. The starting point for a reverse engineer is a binary that a compiler
has compiled from source code. This binary is then processed by a reverse engi-
neering tool like Ghidra, which decompiles the binary. From this decompiled code,
the functions are then extracted. These decompiled functions are then summarised
using our trained CodeT5 [38] model, which will be discussed in more detail in
Chapter 2.

We perform experiments on this solution to find the impact of decompilation
and stripping on the model performance. Furthermore, we investigate the effect of
duplicates in the data, and which differences between stripped and unstripped data
contribute most to the performance drop. Finally, we use the knowledge from these
experiments and design intermediate-training objectives to improve the model’s per-
formance on stripped decompiled code.

Our main contributions can be summarised as follows:

2



1.3. Implications

Figure 1.1: Proposed solution

Model: Our main contribution is a pre-trained, fine-tuned code-summarisation model
for decompiled and stripped-decompiled code. The model uses CodeT5 and
is fine-tuned and evaluated on our own dataset of source code, decompiled
code and stripped-decompiled code pairs.

Impact study: To create this model, we explored the influence of the input types,
the impact of data duplication, and the impact of different aspects of stripped
and unstripped decompiled code on the model performance.

Intermediate-training: To improve the performance of the model, we implemented
and evaluated the Neural Machine Translation (NMT), deobfuscation (DOBF)
and span-detection (SPAN) intermediate-training objectives.

Dataset: Finally, we contribute the dataset used to fine-tune and pre-train the model.
The dataset contains aligned comment-source code, comment-decompiled
code, and comment-stripped-decompiled code pairs. We also provide a syn-
thetic dataset of comment-demi-stripped code pairs. Furthermore, we provide
the data used for the pre-training objectives. This novel dataset can be used
by other works to train and evaluate their models.5

1.3 Implications
Several stakeholders can benefit from this research:

1. Firstly, security researchers who aim to understand malware. This could help
them understand and reverse engineer novel malware more quickly.

2. Users of closed-source software can use this to inspect the software for faults.
Closed source software can be patched, rewritten and reused to serve its ex-
act purposes. Furthermore, understanding the source code can allow users to
change the binary in memory during runtime. A malicious example of this

5Dataset: https://doi.org/10.4121/20301309
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1. INTRODUCTION

group is game hackers who change certain memory addresses to give them-
selves an unfair advantage (changing their health points, for instance) [10].

3. Reverse engineers aim to replicate closed-source software or software of which
the source code is lost. Reverse engineering can be used to help create open-
source copies or to port the software to newer architectures. Examples range
from porting old abandoned open-source projects to porting abandonware (on
which copyrights still apply), or even the theft of intellectual property from
closed-source commercial software.

4. On the flip side, creators of closed-source software can use reverse engineer-
ing to determine whether other software has copied their products and in-
fringed on their intellectual property.

5. Lastly, developers of reverse engineering programs and toolkits might be able
to use the results of this research to enhance their own products.

1.4 Structure
The rest of the thesis is outlined as follows: Chapter 2 will consist of a brief in-
troduction and explanation of concepts and tools used throughout the thesis. In
Chapter 3 we will discuss other relevant work in this field and how these relate to
ours. Chapter 4 will cover the research methodology, the experimental setup will be
covered in Chapter 5. The results will be presented in Chapter 6, followed by a dis-
cussion on the findings and a short discussion on the threats to validity and ethical
considerations in Chapter 7. Finally, Chapter 8 will conclude with the findings and
discuss possible future works.

4



Chapter 2

Background

In this chapter, we will cover the required background knowledge to understand
this thesis and discuss the corresponding works. We will start by covering different
aspects of binary reverse engineering. Firstly, compilers and compiler optimization
levels will be covered, and then stripping will be explained. Finally, we will dis-
cuss the Ghidra toolkit and the relevant modules. The second part of this chapter
will feature an explanation of Natural Language Processing methods for code. We
will start by explaining the code summarisation task, and we will then move on
to explain transformers and CodeT5. Finally, the BLEU, METEOR and ROUGE
evaluation metrics will be explained in detail.

2.1 Binary Reverse Engineering

2.1.1 Compilers and Optimization Levels
Compilers are programs that translate code from one language to another, but gen-
erally, and in the context of this thesis, the term is used to refer to programs that
translate high-level code, like C, to a lower-level language such as machine code.
For our work we focus on the GNU Compiler Collection (GCC)1 and Clang/LLVM
(Clang).2

Compilers frequently feature optimization levels. Generally, the goal of opti-
mizations is the improvement of runtime performance or program size at the ex-
pense of compilation time and the ability to debug [21]. Compilers generally use
optimization flags, grouped into optimization levels, where each level uses a differ-
ent set of optimization flags.

For example, the GCC features 60 optimization flags across 8 different opti-
mization levels, which are denoted by a -O option [21, 22]. By default, if GCC

1gcc: https://gcc.gnu.org/
2Clang: https://clang.llvm.org/
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2. BACKGROUND

is invoked without any optimization options, the program will be compiled with
O0. O1, 02 and O3 incrementally apply more optimization to the binary at the ex-
pense of a higher compilation time [22]. These optimization levels are also found in
other compilers such as Clang-LLVM. Other optimization levels, such as Os, which
optimises for binary size, are also included in GCC [22].

Optimizations can restructure and transform the program in relation to the source
code, by changing the control flow or the data of the program [8]. This obfuscation
can complicate the reverse engineering process by reducing the accuracy of Ghidra
[8].

2.1.2 Stripping
Aside from compiling with higher optimization levels, binaries can also be stripped
to obfuscate the underlying code and to resist analysis[39]. Binaries which have not
been stripped still contain a lot of debugging information, which can be used during
development. This debug information, like function names, self-defined types etc.,
can be used to analyse and reverse engineer the binary. Commercial Off-the-Shelf
(COTS) software is often stripped to reduce the memory and storage footprint of
binary, and to resist analysis to protect the intellectual property of the creator. Many
vulnerable and malicious binaries are, unfortunately, also stripped to resist security
analysis and hide their faults[19].

Unix and Unix-like operating systems include a strip utility. The strip utility
removes any operands that are not necessary for the execution of the binary while
ensuring that the execution of the binary remains unchanged. The exact implemen-
tation and scope of the utility is left to the implementation.3

The strip utility as implemented in GNU/Linux removes the symbol table from
the binary. The symbol table contains each symbols location, type and name. The
symbol table can be dumped for a given binary by using the nm command 2.1,
which is included in Unix and Unix-like operating systems.4

Like higher optimization levels, the use of stripping can greatly complicate the
efforts to reverse engineer a binary, as well as reduce the accuracy and effectiveness
of reverse engineering tools.

3strip: https://pubs.opengroup.org/onlinepubs/007908799/xcu/strip.html
4nm: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/nm.html
5Bitcoin secp256k1: https://github.com/bitcoin-core/secp256k1

6

https://pubs.opengroup.org/onlinepubs/007908799/xcu/strip.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/nm.html
https://github.com/bitcoin-core/secp256k1


2.1. Binary Reverse Engineering

U malloc
U memcpy
U memset

0000000000000060 r minus_b1.3052
0000000000000040 r minus_b2.3053
0000000000005680 t nonce_function_rfc6979
00000000000000c1 r one.4283
0000000000000120 r output32.4535
00000000000000e0 r pad.4239
00000000001101e0 r secp256k1_const_lambda
0000000000110240 r secp256k1_const_modinfo_fe
0000000000110200 r secp256k1_const_modinfo_scalar
000000000000c7d0 T secp256k1_context_clone
000000000000c690 T secp256k1_context_create
000000000000c920 T secp256k1_context_destroy
0000000000000000 D secp256k1_context_no_precomp
...

Figure 2.1: Sample output of nm command from secp256k15ECDSA library

2.1.3 Ghidra
Ghidra is a free and open-source reverse engineering toolkit developed by the US
National Security Agency. Ghidra has been in development since the turn of the
century and had been in use internally, before being open-sourced in April of 2019.

Ghidra contains many separate analysis modules that allow a reverse engineer
to analyse compiled code. The modularity of Ghidra and the inclusion of a scripting
engine allow users to add custom modules and scripts. We will specifically focus
on the tools used in the process that was used to transform binaries into readable
code (see 2.2).

Figure 2.2: Transformation of binary to readable code

Ghidra features a disassembler, as seen in figure 2.3, which will take the binaries

7



2. BACKGROUND

and assemble them back into an intermediate representation. In the case of x86-x64
binaries like the binaries this project will focus on, this intermediate representa-
tion will be the assembly language. Processors have an associated language that
defines the mapping between user-readable assembly language instructions (e.g.
MOV, ADD, etc.) and their corresponding byte values. In order to properly dis-
assemble a binary image for a specific architecture, Ghidra requires a language
module for that specific processor. A language module is software that implements
language translation. Ghidra has a set of language modules for the most popular
processor languages(such as x86-64, ARM, MIPS ..). Besides these architectures
which are supported out-of-the-box, developers have also been extending Ghidra’s
support with custom processor architectures. For example, there exists a language
module for the Allegrex CPU featured in the PlayStationPortable. 6

Figure 2.3: Ghidra’s disassembly window.

The decompiler, also featured in Ghidra, is a processor language-agnostic trans-

6Ghidra-Allegrex: https://github.com/kotcrab/ghidra-allegrex
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2.1. Binary Reverse Engineering

formation engine that takes the disassembled code and creates a source code repre-
sentation, as can be seen in Figure 2.4. The representation is written in pseudo-C,
a C-like representation that generally follows the general language conventions of
C. The interactive decompiler window allows the user to directly see the correspon-
dence between the pseudo-C and assembly representations. The user can also make
changes to the decompiled code, such as changing automatically generated variable
names and types and adding comments.

Figure 2.4: Ghidra’s decompiler window showing a snippet of decompiled function
from the secp256k1 ECDSA library

9



2. BACKGROUND

2.2 Natural Language Processing for Code

2.2.1 Code Summarisation

Code summarisation (also referred to as source code summarisation) is the task of
writing short descriptions from source code, usually a single sentence summary of
the source code. The main use is for software documentation, like the one-sentence
JavaDoc description used in Java [25]. This documentation is important for program
comprehension and for maintenance. But the process of writing and maintaining
these descriptions is a labour-intensive and time-consuming task, which is where
the need to automate that process arises. Code summarisation is an extremely active
and popular research problem in the field of software engineering [25].

While code summarisation can be applied to any particular piece of code, the
problem is usually posed as the generation of a description on the function or
method level. A major limitation of these methods is that the model is not pro-
vided with any background knowledge.

A twist on the code summarisation task is proposed by Allamanis et al.. Extreme
summarisation is defined similarly to the code summarisation task, but instead of
an entire sentence, the model is tasked with summarizing the function in the form
of a single descriptive function name.

2.2.2 Transformers and CodeT5

In this thesis, the CodeT5 model [38], which is based on Transformers [36], is exten-
sively used. This section provides a quick overview of the Transformer architecture
and the CodeT5 model.

Transformers

The current state-of-the-art NLP models for programming languages such as CodeT5
[38], CodeBERT [17] and Codex [12] are all based on the Transformer architec-
ture [36].

Transformers were originally proposed by Vaswani et al. as a novel sequence-to-
sequence [35] (seq2seq) architecture. Unlike the Recurrent Neural Networks [32]
(RNN), the Long Short-Term Memory [33] (LSTM) variant of RNNs [32] and Con-
volutional Neural Networks [26] (CNN), Transformers only use a mechanism called
self-attention to capture dependencies between the input and output.

10



2.2. Natural Language Processing for Code

Figure 2.5: Model overview of Transformer [36], with an encoder (left) and decoder
(right).

11



2. BACKGROUND

Transformers use an encoder-decoder architecture 2.5. The encoder maps a se-
quence of input representations x = (x1,x2...xn) to a continuous intermediate repre-
sentation z = (z1,z2...zn). From this intermediate representation the decoder creates
an output y = (y1,y2...ym).

The encoder is comprised of N layers. The input tokens are transformed into
an embedding, to every embedded token a positional encoding is added. This posi-
tional encoding adds information about the position of every token in the sequence.
RNNs receive an O(n) time penalty for sequential operations on sequences of length
n, while sequential operations in Transformers are O(1) in respect to the length n of
the sequence.

The input is then processed by the self-attention function, which maps a query,
and a set of key-value pairs to an output Attention(Q,(K,V )). Intuitively, the query
vector Q can be described as the input token, and the mapping finds the most sim-
ilar key vector K and outputs the value. This is done by taking the dot product
of Q and K, normalizing by dividing by the dimension K and taking the softmax
function. This normalization is important to limit the dot-product values to ensure
that the softmax function still retains a good gradient flow. The resulting value
softmax(QKT

√
dk
) is maximal when the vectors Q and K are most similar. Finally this

can be multiplied with the value V to get the value paired with the most similar
value.

Attention(Q,(K,V )) = softmax(
QKT
√

dk
V )

This attention function is applied h times and the resulting concatenation is called
the Multi-Head attention layer, where in every attention head different learned weight
matrices Wi are also applied.

MultiHead(Q,K,V ) = Concat(head1,head2...headh)W O

headi = Attention(QW Q
i ,KW K

i ,VWV
i )

This output is then fed into a Feed-Forward Neural Network and normalized. This
single encoder layer, can be stacked N times. This entire process can be parallelized
to pass the entire input sequence at once through the encoder.

The decoder is similarly structured to the encoder. Firstly the target sequence
is shifted to the right, such that the model has to predict the next target token. The
target sequence is also embedded and the positional encoding is added. The first
Multi-Head attention block has masking applied, such that the attention of tokens
further in the target sequence is not taken into account while predicting the attention
of the current token. Recall that, during training, the model can use the entire input
sequence, but only the previous target sequences to predict a token. The mask is a
simple upper-triangular matrix, where the upper triangle is set to −∞ and the lower

12



2.2. Natural Language Processing for Code

triangle to 0, such that:

Attention(Q,(K,V )) = softmax(mask+
QKT
√

dk
V )

This ensures that, during training, the self-attention blocks can still be computed
in parallel, without having to resort to sequentially sampling the target. The next
attention block in the decoder implements cross-attention, where the key and value
K,V vectors are fed in from the encoder, and the query Q vectors are fed in from
the previous decoder block. This allows every token in the decoder to attend to all
tokens in the encoder, which is important to allow the output to condition to the in-
put. Similarly to the encoder, the final block of the decoder is a feed-forward neural
network. The decoder is also stacked N times, and the output of these layers is fed
into a Linear Feed Forward Neural Network, which transforms the embedding into
a vector of probabilities for every token in the vocabulary of the model. Then the
softmax function is applied to the output of the network and the highest probability
token is selected as the output. During training, the model is tuned to maximize the
probability of predicting the correct output token given the input to the encoder.

Transformers offer a variety of advantages over RNNs and CNNs:

Parallelizability Transformers can process the entire input sequence in parallel.
This allows them to leverage the high number of processing cores in conven-
tional GPU architectures, which makes them much faster to train and deploy.

Long Memory The Self-Attention paradigm allows the model to establish and re-
member dependencies along the entire length of the input sequence. The
length of the input does not restrict the dependencies. Furthermore, because
the model is not recursive in nature and the self-attention vector is calculated
for the entire input, the memory gradient does not vanish as with CNNs.

Interpretability Unlike the black-box-nature of RNNs and CNNs the self-attent-
ion gradient of the multi-head attention layers can be visualized to show the
dependencies between different tokens of the input and output.

Transfer Learning

Pre-trained Transformers-based language models, such as RoBERTa [29], Code-
BERT [17] and CodeT5 [38] utilize a pre-train and fine-tune paradigm. In this
paradigm, the models are first trained in an unsupervised manner on a large un-
labeled dataset. In the case of RoBERTa, a Masked Language Modeling (MLM)
objective was used, where random tokens are masked out from a swath of text (or
code in CodeBERTs case) and the model is tasked to predict said tokens. These
pre-trained models can then be fine-tuned to perform a more specialized task, such
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as summarisation. This concept is called transfer learning (TL). TL uses the knowl-
edge that is obtained in one task to solve a different task. It allows the creation of
general models that are trained once on massive (usually unlabeled) datasets. These
general models, which contain general domain knowledge can then be trained for
a specific downstream task. In general, this approach is quicker and requires less
training data than training a model on the downstream task from scratch [15].

CodeT5

CodeT5 [38] is another state-of-the-art pre-trained programming language model
built on the T5 (Text-to-text Transfer Transformer) architecture proposed by Wang
et al. and pre-trained on a mix of unsupervised and supervised tasks. CodeT5
employs an encoder-decoder architecture. Some state-of-the-art models, such as
BERT [15] only feature an encoder, while other models, such as GPT [9] only fea-
ture a decoder. Furhtermore, in contrast to other models, CodeT5 is trained using
both unimodal (PL only) and bimodal (NL-to-PL) tasks in six programming lan-
guages. This bimodal training allows CodeT5 to have strong performance in both
uni-modal (PL-to-PL) tasks such as code translation and code refinement, as well
as cross-modal tasks such as code summarisation and code generation (PL-to-NL).

2.2.3 Scoring Methods
To evaluate the quality of the source code summaries an evaluation metric is re-
quired, which quantifies the quality of a produced candidate summary compared to
a reference. The simplest metric is an exact match score, where the score is 1 if
the candidate matches the reference exactly. This metric does not reflect the actual
quality of the produced summary.

BLEU

The most widely used metric in the code summarisation task is Bilingual Evalua-
tion Understudy Score (BLEU) [34]. BLEU was originally proposed as a technique
to evaluate the machine translations against a set of human translations. In the
code-summarisation domain, the automatically generated summaries are compared
against a programmer defined summary. BLEU produces a percentage number be-
tween 0 and 100, which defines the similarity between a candidate and a set of
reference sentences. BLEU-N calculates the cumulative N-gram precision scores,
the number of matching N-grams divided by the total number of N-grams in the
candidate sentence. The unigrams (1-grams) account for the adequacy of the candi-
date while the longer N-grams account for the fluency. Two problems arise, firstly
the score can be artificially inflated by simply repeating the same matching N-gram
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multiple times in the candidate 2.1. Secondly, the score can also be inflated by
creating a very short candidate such that the denominator is very small 2.1.

Reference Calculate the Secp256k1 private key given generator Precision
Repeating the the the the the the 6/6 = 1
Short Calculate 1/1 = 1

Table 2.1: An example of a repeating and short candidate, and the resulting 1-gram
precision.

To counteract these two issues, BLEU firstly clips the n-grams in the numerator,
such that each match is only counted once. Secondly, a Brevity Penalty (BP) is
applied such that a short candidate is penalized. Recall that long candidates are
already inherently penalized by the precision metric. Let c be the length of the
candidate and r be the length of the reference, BP is then defined as:

BP =

{
1, if c < r.
e(1−r/c), otherwise.

(2.1)

The geometric mean of each of the clipped n-gram precision scores pn is taken:

BLEU-N = BP · exp(
N

∑
n=1

wnlogpn)

Where wn is a uniform weight wn = 1/N.
While N could be any number, BLEU-4 is the most commonly used variant.

Since code summaries are generally quite short and the BLEU score was originally
designed for use in longer corpora of text it can occur that there are no matching 4-
grams between a candidate and reference summary[34]. The geometric mean will
then result in 0, and the BLEU score will also be 0. To solve this, smoothing is
applied. There exist a variety of smoothing methods, which all add a factor to the
numerator and denominator of pn [34].

A major weakness of the BLEU metric is the fact that it does not consider the
meaning of the reference and candidate texts, and that synonyms and syntactically
different texts have a low score despite their adequacy. For example, a reference
of “Calculate the Secp256k1 private key given the generator” and a candidate of
“Secp256k1 secret key calculation from G” will score very lowly, despite the fact
that they both convey the same information.

METEOR

METEOR (Metric for Evaluation for Translation with Explicit Ordering) [24] is
also a metric proposed to assess a machine-generated translation against multi-
ple human-generated references. Unlike BLEU which is a precision-based metric,
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BLEU Score Interpretation
<10 Almost useless
10 - 19 Hard to get the gist
20 - 29 The gist is clear, but has significant grammatical errors
30 - 40 Understandable to good translations
40 - 50 High quality translations
50 - 60 Very high quality, adequate, and fluent translations
>60 Quality often better than human

Table 2.2: Interpretation of BLEU scores [34]

METEOR is more recall-focused. METEOR has a higher correlation with human
judgement than BLEU [25]. METEOR uses wordlists and stemming to also take
synonyms into account. On the flip side, the stemming and synonyms are language-
dependent and somewhat more expensive than BLEU to calculate.

The METEOR score is calculated by first generating an alignment between a
candidate and the reference sentence. An alignment is a mapping between each
unigram (or word) in the candidate and reference sentences. The unigrams can be
matched in 3 ways: Firstly the unigrams can be an exact match. The unigrams can
also be matched on the stem, which will match words on their stem. For example
the words ’improved’ and ’improving’ will both be reduced to their stem ’improv’
and will then be matched. Finally, words can also be matched if they are synonyms,
for instance ’quick’ and ’fast’. This is determined using the WordNet [16] database.
The alignment which best preserves the word order is selected.

A fragmentation penalty (p) is also introduced to account for congruity. The
minimum number of adjacent matched groups (or chunks) of words in the candidate
and reference. The penalty Pen is calculated as a function of the number of chunks
ch, the number of matches m, and hyperparameters γ,β.

f rag =
ch
m

Pen = γ∗ f ragβ

(2.2)

The selected alignment is then scored using a harmonic mean:

P =
m
t

R =
m
r

Fmean =
P∗R

α∗P∗ (1−α)∗R
Score = (1−Pen)∗Fmean

(2.3)
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ROUGE-L

ROUGE or Recall-Oriented Understudy for Gisting Evaluation, is a package which
includes a number of metrics, the most popular among them is ROUGE-L [28]. As
the name implies, it is more recall oriented than BLEU. Unlike BLEU and ME-
TEOR, the ROUGE measures were constructed to score automatically generated
candidate summaries against one or multiple reference summaries. ROUGE-L is
much quicker than METEOR to calculate and is language-independent.

ROUGE-L simply finds the longest common subsequence (LCS) between the
reference and the candidate. Note that the words do not need to be consecutive but
they have to be in order. The length of the LCS lcs, the length of the reference r,
the length of the candidate c, and a large constant β → ∞ are then used to calculate
the score:

P =
lcs
c

R =
lcs
r

ROUGE−L =
(1+β2)∗R∗P

R+β2 ∗P

(2.4)
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Chapter 3

Related Work

In this section, we provide an overview of studies most related to our goal of gen-
erating summaries for binary functions. Binary reverse engineering and the use of
NLP for software engineering are vast and active fields, so we select and discuss
the closest state-of-the-art works in the field. We categorise the studies into three
groups: identifier recovery, binary translation and code summarisation. Finally, we
will discuss the open challenges and the relation of our own work to these chal-
lenges.

3.1 Recovering Identifiers from Stripped Binaries

Debin [19] aims to recover debug information from stripped binaries. The authors
use a tree-based classification model to determine which registers in the intermedi-
ate representation are useful to predict and map to an actual variable, as opposed
to constant values and intermediate values, which have no mapping to source code
variables. A probabilistic graph-based model is built, and all the variable names
and types are jointly recovered using a maximum a posteriori probability inference.
The authors show state-of-the-art performance in the recovery of both names and
types. Notably, the authors claim no noticeable performance penalty between dif-
ferent optimisation levels.1

Unlike previous works, VarBERT [7] uses a Transformer-based NLP model
for the task of variable name recovery. The authors pre-trained a BERT model
with a standard Masked Language Modelling (MLM) objective. This same model
is then fine-tuned to predict the names and types from unstripped binaries using a
constrained Masked Language Modelling objective. The authors show state-of-the-
art performance in the recovery of names and types. Furthermore, the authors of

1Debin Presentation at CCS’ 18: https://youtu.be/x1x_KtS-5Hs?t=1551
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3. RELATED WORK

VarBERT have shown that the performance of Debin does not generalise well to
other datasets [7].

FUNCRE [3] uses a pre-trained and fine-tuned ROBERTA model to predict
usages of inlined library functions. Recall that compilers with optimisations en-
abled can inline functions in the binary (Chapter 2). Therefore, identifying library
function calls is key to understanding the behaviour of the binary. The authors
use indelible markers, which do not get destroyed by compiler optimisations, to
mark usages of library functions. The model is pre-trained with an MLM objective
on the stripped decompiled code. It is then fine-tuned to detect and name inlined
function usages in a given context window. The authors combine their model with
the function recovery functionality included in Ghidra. The resulting combined
model significantly improved the performance of Ghidra’s inlined function recov-
ery capabilities. The performance exceeded Hex-Ray’s IDA-pro, which performs
significantly better than Ghidra at inlined function recovery [3].

3.2 Binary Translation
Neutron [27] frames decompilation as a neural machine translation problem and
utilises an LSTM-based neural translation network to translate disassembled bina-
ries back to C source code. The binaries are not stripped and do not have any
optimisations enabled. To handle long-term information, the LSTM also includes
an attention mechanism. The authors first remove the identifiers before translation,
ensuring the identifiers are aligned with the translated identifier-less source code.
The translations created by Neutron can contain syntax errors, so the authors apply
regular expressions to create a tailor-made syntax checker. Neutron achieves high
accuracy on the translation task, but only on unstripped and non-optimised code.

3.3 Automatic Source Code Summarisation
PolyglotCodeBERT [2] applies multilingual training to a CodeBERT [17] model.
The use of multilingual and multimodal pre-training objectives is a well-established
paradigm; recall the use of multilingual and bimodal pre-training objectives in
CodeT5 [38] (Chapter 2). Ahmed and Devanbu propose a multilingual fine-tuning
objective to augment the labelled fine-tuning dataset, to improve the performance
of languages with less abundant labelled data. The authors found that identifiers
are an essential aspect of training data and that identifiers are not language-specific.
Recall that unstripped decompiled binaries have few identifiers, and that stripped
decompiled binaries have no identifiers. We will, therefore further investigate the
importance of identifiers in decompiled binaries
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Ahmed and Devanbu use the CodeXGLUE dataset to train their model. The
multilingual aspect is achieved by mixing samples from different programming lan-
guages in training set to train the model in all languages simultaneously. The single
multilingual model is then tested on the test set of the different programming lan-
guages in the CodeXGLUE dataset. Using this approach the authors were able to
report the highest-scoring model on the CodeXGLUE [30] 2 Code Summarisation
benchmark. Their score was later surpassed by CodeT5 [38]. PolyglotCodeBERT
reported an average BLEU4 score of 20.06 over all the programming languages,
with the greatest improvements reported in Ruby and JavaScript, the languages
with the fewest samples in CodeXGLUE. Recently, DistillCodeT5 reported an even
higher score than PolyglotCodeBERT and CodeT5. Unfortunately, as of the writing
of this work, DistillCodeT5 is not yet published, and we were unable to find any
details about the implementation.

3.3.1 Open Challenges
Although there have been many studies on binary identifier recovery and code sum-
marisation, several aspects have not been properly addressed and investigated. The
application of code summarisation methods to decompiled code, has not been ad-
dressed by any work at all 3.1. Neutron [27] proposes a Neural Machine Translation
solution but does not consider compiler optimisations. Debin [19] and VarBERT re-
cover variable/function names and types. PolyglotCodeBERT proposes a state-of-
the-art code summarisation method but only focuses on source code 3.1. Further-
more, some works on binary code fail to take compiler optimisations or stripping
into account [27]. We, therefore, investigate the application of code summarisa-
tion methods to decompiled stripped and unstripped code. Furthermore, we enable
compiler optimisations.

2CodeXGLUE benchmark: https://microsoft.github.io/CodeXGLUE/
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Table 3.1: Overview of related work and our proposed solution.
22



Chapter 4

Approach

The proposed solution starts with a data collection step, where we collect open-
source projects. We then compile and decompile these open-source projects. The
decompiled functions are aligned with the documentation extracted from the source
code. We then process this data to extract descriptive comments and split the data
into multiple sets. Finally, we use this data to fine-tune and evaluate a pre-trained
CodeT5 model. We also design a few intermediate-training objectives, which are
applied to the model before fine-tuning to improve the model performance.

4.1 Data Collection
We require a dataset of decompiled functions labelled with a description to create
and assess our solution. This dataset should be relatively large to suit the ”data-
hungry” nature of our deep-learning models. Furthermore, the dataset needs to
feature a diverse set of data representative of our solution’s actual real-life use case.
To create a large and diverse dataset to train and assess our solution we made use of
BinSwarm [3], an existing dataset of aligned decompiled and stripped decompiled
functions. 1

Buildswarm starts by collecting C-based projects from Github. The projects are
filtered to only include projects that are: Actively being developed, using Travis
CI and built for Ubuntu Linux. The projects are built using Docker. The resulting
binaries are then copied and stripped, and both the stripped and unstripped binaries
are decompiled using Ghidra. The functions are extracted from the stripped and un-
stripped decompiled code and aligned with the source code. We extract documenta-
tion from the original source code to add descriptive comments to this dataset. We
depend on the documentation included in the source code by the original authors in
the form of single and multiline comments. We align the decompiled functions with

1BinSwarm; https://hub.docker.com/r/binswarm/cbuilds
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the comments in the source code by using srcML2 to extract any documentation lo-
cated directly before a function signature and then finding the function signature
and project name in the decompiled dataset.

A function’s documentation often also contains other details besides the de-
scriptive summary. We found that C projects do not follow a single documentation
standard. For example, Javadoc for Java has a short one-line description or sum-
mary for each method at the beginning of the multiline comment block. In C, there
is no singular documentation standard, so there might not be a single line summary,
and we will need to locate it in the comment block automatically. Furthermore, we
found that a large number of functions did not have any documentation associated
with them at all. To deal with these issues, we did not include any functions that
are missing documentation. We devise a few simple rules to extract the summary to
find the single sentence description.

A high-level overview of this process is shown in figure 4.1.

Figure 4.1: Data Collection

From the dataset of decompiled functions, we also create another dataset. We
2srcML: https://www.srcml.org/
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emulate the process of stripping by removing all the identifiers from the decompiled
code and replacing them with placeholders. For clarity, we call this demi-stripped
data. Like the stripped dataset, the identifiers are all removed, but the decompiler
still had access to the identifiers and could use the symbol table during decompila-
tion. Most importantly, this demi-stripped dataset still has the same structure and
control flow as the unstripped decompiled dataset.

4.1.1 Dataset Split

The dataset is split into a train, test and validation set. These sets constitute approx-
imately, 80%, 10% and 10% respectively[25] of the complete dataset. To prevent
leakage of vocabulary and code patterns between the sets, we sample the sets in
a cross-project manner. This means that an entire project gets assigned to one of
the sets, and functions from the same project cannot be assigned to different sets.
The different sets should also have a similar distribution of optimisation level and
average source-code length.

4.1.2 Duplication

Large corpora of code, like the corpus gathered by BinSwarm, tend to have a high
degree of duplication [25]. As a result, snippets of code that are relatively un-
changed appear in multiple parts of the corpus. This can be in the form of copied,
generic or auto-generated functions. These functions will appear in multiple repos-
itories and might be duplicated across the training and testing data.

Besides exact duplicates, near-duplicates can also occur. Near-duplicates are
like exact duplicates, but they differ in a few minor aspects like additional code
comments or different function names. While removing exact duplicates is rela-
tively fast and straightforward, removing near-duplicates is much more challenging
and computationally intensive [4].

The issue with code duplication in classical code summarization is that the mod-
els and tools are supposed to be used to generate summaries for new and unseen
code. The evaluation metrics should therefore measure the generalisation of the tool
on new samples [4]. Duplicates and near-duplicates are not defined as new samples.
A user of such a tool could simply look these samples up. Furthermore, large, high-
capacity models like CodeT5 with 220 million [38] or Codex with 12 billion [12]
trainable weights, have a large capacity to memorize duplicated code [4]. How-
ever, the use case outlined in this work is more akin to deobfuscation. As explained
by Allamanis, deobfuscation could be a use case where duplicates are valid and part
of the true distribution of the problem[4]. Unfortunately, compiled code contains a
lot of duplicate code, and understanding this code is still difficult and essential for
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understanding the binary. We, therefore, focus on the model’s performance on code
with duplicates, but we also report the deduplicated results.

4.2 Intermediate-Training

The standard CodeT5 model was not pre-trained on any decompiled code. It might
therefore be useful to apply additional training steps to ’teach’ the model the embed-
ding of decompiled and stripped decompiled code. Since we apply these training
steps between the pre-training and fine-tuning of the model, we refer to this training
strategy as intermediate-training.

To apply and assess other intermediate-training objectives, we train a CodeT5-
base model on a predefined objective. Then after that intermediate-training step,
we fine-tune the resulting model on our fine-tuning datasets. We essentially apply
another training step to the already pre-trained base model. We can then measure
the impact of the intermediate-training step on the model’s performance after fine-
tuning.

Figure 4.2: Pre-Training

We define several different pre-training objectives. Each of these objectives
aims to teach the model the embedding of the identifiers, such that these identifiers
can be inferred from the stripped code. For these objectives, we use the relatively
large dataset of demi-stripped code. Some samples might be included in both the
fine-tuning data and the intermediate-training data, but the model objective will
differ. To prevent leakage, we remove the test set of the fine-tuning data from the
intermediate-training data.
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4.3 Fine-Tuning
The concept of transfer learning, which is utilised in CodeT5, depends on the use
of a fine-tuning step to train the pre-trained model on the downstream task. In this
case, we make use of the CodeT5-base model, which was trained on mixed upstream
tasks by the authors [38].

We fine-tune a pre-trained CodeT5-base model on the constructed dataset. The
model is trained on the summarization task as defined in the model. The model
is trained on the train set, then evaluated after every epoch on the validation set
and finally tested on the test set. During training, the performance of the model is
measured using the BLEU-4 metric. BLEU-4 is reported to be unreliable when con-
sidering small changes in reported scores [31]. We further evaluate the performance
using the EM (exact match), METEOR and ROUGE-L metrics.

27





Chapter 5

Experimental Setup

5.1 Research Questions
We must create and assess our model to reach our goal of creating an automatic
system for decompiled code summarisation. We define research questions which
we will answer throughout the thesis. Firstly it is essential to assess the different
datasets and set a baseline for each. We can then investigate the impact of different
aspects of the data. Finally, we can apply this knowledge to design intermediate-
training objectives, further improving performance. This leads to the following
research questions:

• RQ1: How do different input types (source, unstripped decompiled, demi-
stripped, stripped) affect the model’s performance? (data-richness ef-
fect)

Firstly, we want to know the impact of the data-richness on the model per-
formance. The different datasets have different degrees of data richness. The
source code has all of its identifiers and comments in code. Unstripped de-
compiled code has no comments and loses many of its identifiers. The de-
compiler also introduces some noise. Demi-stripped data loses all of the re-
maining identifiers. Stripped data also has no identifiers and introduces even
more decompilation noise.

• RQ2: What is the impact of data duplication on the model’s perfor-
mance? (data-duplication effect)

Secondly, we will evaluate how the model reacts to data duplication, whether
the model performance is simply a result of the memorisation of certain ex-
amples, or if the performance results from a generalisable understanding of
the data.
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• RQ3: To what extent does each aspect of stripped decompiled binaries
impact the model’s performance? (data-input study)

The different datasets each contain different aspects of the original source
code. The dataset size, number of decompilation errors and the type and
number of recovered identifiers. Which of these aspects are most important
for the model performance?

• RQ4: How do different intermediate-training objectives affect the model’s
performance? (model-objective effect)

Finally, we will apply the insights provided by the previous questions to de-
sign new intermediate-training objectives, through which we aim to address
the shortcomings of the base model.

5.2 Dataset
To answer the research questions, we construct a diverse and representative dataset.
The Buildswarm dataset contains around 1.8m aligned decompiled-sourcecode pairs
and 400k aligned stripped-sourcecode pairs. The significant difference is caused by
the inherent difficulty finding functions in stripped decompiled code.

From this dataset, we collect any documentation located above the functions
using srcML. For example, figure 5.1 shows an example of the source code of a
function from the ECDSA library. Above the function definition (line 401), we
locate a function block.

Figure 5.1: Example function with its documentation (truncated)

This documentation can be split into the following classes:

1. Double slash comments, example from Jep:release utf char.
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// release memory allocated by jstring2char

These comments are thrown out, as these are generally not used for documen-
tation.

2. Single line comments, example from Nesbox:Curl mime read.

/* Set mime part remote file name. */

We take the entire comment as a description.

3. Multiline comments, example from oftc-ircservices:cs on client join.

/**
* CS Callback when a Client joins a Channel

* @param args

* @return pass_callback(self, struct Client *,
char *)↪→

* When a Client joins a Channel:

* - attach DBChannel * to struct Channel*
*/

In this case, we take the first line or sentence.

The data is pre-processed using the Pandas 1 data analysis library as well as the
Pandarallel 2 parrallelizability extention for Pandas.

The samples are pre-processed by first extracting the function name and adding
it as a column to the data. For the stripped samples, we utilise the alignment with
C by extracting the function name from the source code for each sample. Next, the
samples are aligned with the comment data using the file name where they reside ap-
pended with the function name, for instance: /Repos Bionic/ secp256k1/secp256k1
.c:secp256k1 pubkey load. We further pre-process the data by removing any new-
lines from the function body and by unescaping any characters that have been es-
caped for file safety purposes, such as &gt; for >.

The samples are split into a train, validation and test set. Each set is collected
into a single .jsonl 3 file.

To answer the second research question, the dataset must be deduplicated. The
dataset is deduplicated using a fork4 of the near-duplicate-code-detector [4]. We
use this tool to compare all the datasets’ functions and find clusters of near-duplicate

1Pandas: https://pandas.pydata.org/
2Pandarallel: https://pypi.org/project/pandarallel/
3JSON Lines: https://jsonlines.org/
4Near Duplicate Code Detector: https://github.com/SERG-Delft/near-duplicate-cod

e-remover
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5. EXPERIMENTAL SETUP

[
{"repo":"author/project","docstring_tokens":["Tokenized",

"description"], "code_tokens":["Tokenized", "code"],
"partition": "train"}

↪→

↪→

{"repo":"author/project","docstring_tokens":["Tokenized",
"description"], "code_tokens":["Tokenized", "code"],
"partition": "valid"}

↪→

↪→

]

Figure 5.2: Example entries of a .jsonl file with two dummy entries

functions. We randomly select one function per cluster and discard the rest from the
dataset. We use the standard tool configuration as recommended by Allamanis. Of
the removed duplicates, we observe that a relatively large number originates from
common libraries, such as SQLite5, that are packaged with binary programs. Thus
a certain amount of duplication is also likely to occur “in the wild”.

5.3 Model Configuration
To first establish a performance baseline, we train a CodeT5-base model on the
summarisation task on source C. The baseline is used to compare the decompiled
C, stripped decompiled C and the demi-stripped datasets to the source code. For
deduplicated code, the results can be compared with the performance of CodeT5-
base on the code summarisation task [38], where the performance varies between
15.24 and 26.03 BLEU4 scores depending on the language. Based on this, we set
the baseline for a usable summarisation model around a BLEU4 score of 15, with
anything lower than a BLEU4 score of 10 essentially unusable. Besides the standard
BLEU and EM metrics used by most code summarisation works [17, 38, 30, 2, 1,
25], we also include the METEOR and ROUGE-L metrics. But we found that the
metrics mostly aligned, we therefore mainly focus our discussions on the BLEU-4
score.

A grid search of the optimal settings was infeasible from a time perspective, so
we performed training mainly using the recommended settings from the CodeT5-
base model [38]. We double the source length for the decompiled, stripped, and
demi-stripped code to 512 tokens instead of the standard 256 tokens used for the
source code. We compensate for the fact that the average length of decompiled

5SQLite: https://www.sqlite.org/index.html
6It is not recommended to use Ghidra versions before 10.1 since these versions have not been

patched against a Log4J RCE
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5.3. Model Configuration

Package Version
Nvidia drivers 510.60.02
cuda 11.6
numpy 1.22.2
tensorboard 2.8.0
torch 1.9.0+cu111
transformers 4.16.2
tree-sitter 0.20.0
Ghidra 10.0.4 6

Table 5.1: The most important packages and their versions

code is almost twice as long as the source code. We utilised two different servers
for training 5.3. We trained the model on either an NVIDIA RTX3080 with 10GB of
VRAM or an NVIDIA GTX 1080ti with 11GB of VRAM. The authors of CodeT5
used an NVIDIA A100 GPU with 40G of VRAM for fine-tuning [38]. To compen-
sate for the lack of memory, we reduced the batch size to 2, which was the maximum
length that still fit both GPUs 5.2.

CodeT5-base Our Settings
Source length 256 Tokens 256/512 Tokens
Target length 128 Tokens 128 Tokens
Max epochs 15 15
Patience 2 2
Batch Size 32 2
Vocabulary Size 32100 32100

Table 5.2: Model configuration of the base model and our used settings

Server 1 Server 2
CPU Intel XEON E5-2620 AMD Ryzen Threadripper 3990X
Cores 16 (32 threads) 64 (128 threads)
RAM 192GB 128GB
GPU Nvidia GTX 1080TI Nvidia RTX 3080
VRAM 11GB 10GB
Storage 7.3TB HDD 1TB NVME SSD

Table 5.3: Hardware used for training and evaluation
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5. EXPERIMENTAL SETUP

5.4 Manual Evaluation
To investigate the third research question, namely the data-input study, we compare
the results of the different datasets to see the influence of the different aspects of
code on the model performance. Furthermore, we observe that there could be two
principal reasons for a sample to be malformed. Firstly, Ghidra can fail to decompile
the function correctly. Secondly, during the data collection phase, the comment
might not have been appropriately parsed, which results in an incorrect description
of the function. To investigate this influence on the stripped model’s performance,
we randomly sample 25 high and low-performing samples (in terms of BLEU-4
score) and manually analyse the decompiled code and the description.

5.5 Intermediate-Training
We constructed three intermediate-training objectives, namely Translation, Deob-
fuscation and Span Prediction, to address the model-objective research question.

5.5.1 Translation

The first defined intermediate-training task is a Neural Machine Translation task. In
this code-to-code task, the model has to translate the source code from one program-
ming language to another [30]. We implement a translation from demi-stripped to
unstripped decompiled code in our case. Note that, by construction, the only dif-
ference between decompiled and demi-stripped code is the lack of identifiers in the
demi-stripped code. Figure 5.3 shows an example of a training sample. The input
field denotes the input to the model, and the output field depicts the expected model
output. We task the model with ”translating” a decompiled function back to the
source code. Note that besides the missing identifiers, the structure is also slightly
different.

5.5.2 Deobfuscation

The second defined task is a deobfuscation objective. In this code-to-text objective,
we task the model with predicting the identifiers in demi-stripped code. Recall that
in the demi-stripped code, all identifiers are masked with meaningless placeholders,
where duplicate identifiers are assigned the same placeholder. The model will have
to output a map of the placeholders to their original value. While the model’s output
is somewhat textual and not code, it is not precisely natural language. Figure 5.4
shows an example of a training sample.
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5.5. Intermediate-Training

repo: NLnetLabs/ldns
input: "undefined8 MASK0 ( long param_1 ) {

undefined8 uVar1;
if (param_1 != 0) {

uVar1 = MASK1();
uVar1 = MASK2(uVar1);
return uVar1;

}
return 0;

}"
target: "uint8_t ldns_rr_label_count (const ldns_rr * rr ){

if (!rr) {
return 0;

}
return ldns_dname_label_count (ldns_rr_owner(rr));

}"

Figure 5.3: Translation intermediate training objective

repo: NLnetLabs/ldns
input: "undefined8 MASK0 ( long param_1 ) {

undefined8 uVar1;
if (param_1 != 0) {

uVar1 = MASK1();
uVar1 = MASK2(uVar1);
return uVar1;

}
return 0;

}"
target: "{MASK0: ldns_rr_label_count, MASK1:
ldns_rr_owner, MASK2: ldns_dname_label_count}"

Figure 5.4: Deofbuscation intermediate training objective

5.5.3 Span Prediction

Finally, we define a Span Prediction objective. In this code-to-text objective, we
task the model with recovering the identifiers from demi-stripped code. Although,
unlike the DOBF objective, every identifier (even matching identifiers) is assigned
unique placeholders, the model has to output the assignment of the placeholders in
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5. EXPERIMENTAL SETUP

a form closer to natural language and puts more emphasis on duplicated identifiers
which might be more critical. Figure 5.5 depicts an illustration of a training sample.

repo: NLnetLabs/ldns
input: "undefined8 MASK0 ( long param_1 ) {

undefined8 uVar1;
if (param_1 != 0) {

uVar1 = MASK1();
uVar1 = MASK2(uVar1);
return uVar1;

}
return 0;

}"
target: "MASK0 ldns_rr_label_count MASK1
ldns_rr_owner MASK2 ldns_dname_label_count"

Figure 5.5: Span-detection intermediate training objective
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Chapter 6

Results

In this chapter, the results of the experiments are presented, and the results are
grouped by research question.

6.1 RQ1: Data-richness study
We collect around 40k stripped-description pairs from the dataset and around 480k
decompiled-description and C-description pairs.

The performance of the CodeT5-base model on each of the datasets is presented
in table 6.2. The metrics are calculated for each individual sample from the test set,
and the average score is presented in the table.

BLEU-4 EM METEOR ROUGE-L
C 36.97 25.56 38.34 40.92
DecomC 33.26 20.20 34.65 37.79
Demi 21.69 13.10 21.22 23.33
Stripped 9.53 3.41 8.53 10.43

Table 6.1: Result of fine-tuning CodeT5-base on the different datasets

We found that the C and DecomC models generally produced good summaries,
evident by the BLEU-4 scores over 30. The summaries produced by the demi-
stripped model were substantially worse, but most were still very usable, evident by
the BLEU-4 score above 20. The stripped model mainly produced unusable sum-
maries, as evidenced by the BLEU-4 score below 10. However, most sequences
produced by the model were grammatically and syntactically correct and had some
meaning. These could have easily passed for a summary but not for the targeted
function. For example, the model produced the output “Unload a C library” against
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6. RESULTS

the reference “Destroy getline object and nullify its pointer”, this output is com-
pletely meaningless in the context of the targeted function.

Furthermore, we observed some examples where the model produced a rela-
tively good summary which would likely be very useful but differed heavily from
the ground truth. This caused the output to be scored poorly, and the model would
suffer a penalty during training. For example, the model produced the output “qsort
an array of values by type” against the reference “Sort variables by type”, which
results in a low BLEU-4 score, despite being more descriptive.

6.2 RQ2: Data-duplication study
After deduplication, we are left with around 218k decompiled-description pairs and
only 7.5k stripped-description pairs. The performance of the base model on each of
the datasets is presented in table 6.2:

Deduplicated BLEU-4 EM METEOR ROUGE-L ∆BLEU-4
C 28.17 14.82 30.60 33.51 8.80
DecomC 19.09 4.68 21.12 24.55 14.17
Demi 11.52 2.24 11.31 13.81 10.17
Stripped 7.03 0.91 6.15 7.49 2.50

Table 6.2: Result of fine-tuning CodeT5-base on the deduplicated datasets and the
difference with the baseline

We find that the influence of deduplication on the our model’s performance is
relatively small on source code, of only 14%. Duplicate have a relatively large
impact on the decompiled (43%) and demi-stripped (47%) code. Of the removed
duplicates, we observe that a relatively large number originates from common li-
braries that are packaged with binary programs.

6.3 RQ3: Data-input study
We find that the performance on decompiled code is slightly lower than source
code 6.1, while the performance of demi-stripped code is much higher than stripped
code. To control for the impact of the dataset size, we reduce the size of the dataset
of the demi-stripped code to match the stripped dataset and fine-tune a CodeT5-base
model using the same setup.

We find that the dataset size does not sufficiently explain the significant differ-
ence between the demi-stripped and stripped performance. To further investigate
this, high and low performing stripped samples were investigated. We randomly
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6.4. RQ4: Model-objective study

Samples BLEU-4 EM METEOR ROUGE-L
Demi 40k 17.48 8.22 17.22 19.68
Stripped 40k 9.53 3.41 6.6 7.61

Table 6.3: Comparison between a reduced Demi-stripped and Stripped CodeT5-
base model

select 25 samples above and 25 below a certain BLEU-4 score threshold. We set
this threshold at a BLEU-4 score of 50.

Decompilation Failure Bad Description
High 4/25 6/25
Low 8/25 7/25

Table 6.4: Number of samples which were badly decompiled and which had a badly
mined description respectively

We find that the number of inaccurate descriptions is similar (6 vs 7) between the
high and low-scoring samples. However, on the flip side, the number of decompila-
tion failures is much higher (4 vs 8). Furthermore, we found that all the decompiled
code generally had very few recovered symbols, making it very syntactically poor
compared to actual programming languages.

6.4 RQ4: Model-objective study
The results of the intermediate-training objectives are presented in table 6.5. Since
the source code and unstripped code perform well, we only focus on improving
the performance of the stripped and demi-stripped code. The intermediate-training
objectives are baselined against the results from RQ1.
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Baseline 9.53 3.41 8.53 10.43 21.69 13.10 21.22 23.33
TRANS 5.22 0.92 4.81 5.44 20.74 11.72 20.30 22.37
DOBF 9.98 3.49 8.81 11.17 23.23 12.35 22.77 24.93
SPAN 9.42 3.15 8.64 10.68 22.18 11.47 21.19 24.45

Table 6.5: Result of fine-tuning CodeT5-base after intermediate-training
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6. RESULTS

Adding the translation intermediate-training objective did not yield higher scores
in either stripped or demi-stripped code across all metrics. We found that the deob-
fuscation objective resulted in substantially higher scores in both stripped and demi-
stripped code across the metrics. The only exception being the EM rate. The span
prediction intermediate-training objective yielded mixed results, only improving the
METEOR and ROUGE-L scores for stripped code and BLEU-4 and ROUGE-L for
the demi-stripped code.
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Chapter 7

Discussion

In this chapter, we will provide an analysis and reflection on the results of the ex-
periments. Furthermore, we will discuss the threats to validity and the implications
of this work.

7.1 Interpreting the Results
We found a relatively large difference between the number of recovered decom-
piled and stripped decompiled functions. This can likely be attributed to the fact
that Ghidra struggles a lot more with recovering stripped functions. Recall that the
symbol table commonly contains information regarding the location and name of
functions. When this table is dropped, the start- and endpoints of functions are
hard to infer by automatic tools, especially since many functions get inlined, and
JUMP instructions replace CALL instructions. Asides from difficulties in demar-
cating functions, it is also difficult to align the associated source code function with
the decompiled function. With unstripped code, the function name remains, mean-
ing the functions can be aligned using the name. We attempted to utilise an existing
solution by Alves-Foss and Song called Jima [6] to find function boundaries. Jima
is the current state-of-the-art tool for function boundary detection in stripped bina-
ries. The tool is implemented as a plugin for Ghidra, but in our experiments, we
find no statistical difference between the base performance of Ghidra and Jima on
our own dataset. The difficulties in extracting stripped functions, make training and
applying a model to stripped binaries challenging.

The model produced many instances where the output was grammatically cor-
rect and resembled an accurate summary but is meaningless in the context of the tar-
geted function. This shows that the model, or more specifically the decoder, knows
the output language well. This is likely because of the pre-training, which included
several natural language objectives [38], and the fine-tuning, which is exclusively
focused on natural language.
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7. DISCUSSION

Duplicates have a relatively significant impact on performance. Removing du-
plicates from the dataset puts the model’s performance more in line with other dedu-
plicated datasets, such as the CodeXGlue dataset used for CodeT5. Removing du-
plicates has a more considerable impact on decompiled code than on source code.
As noted previously in Chapter 4, duplicates are part of the problem space. We,
therefore, consider them in the other experiments.

We find a relatively small difference in performance between source code and
decompiled code (without demi-stripping). This indicates that in-function-comments
and variable names are relatively unimportant for the model performance. Although
Ahmed and Devanbu observed that identifiers might be more important than syntax
in the code-summarisation task, we can further conclude that the function name is
explicitly essential for model performance. Removing just the function name from
the decompiled samples, as opposed to removing all identifiers in demi-stripping,
results in slightly higher performance than demi-stripped code, which indicates a
very high dependence on the name of the function in the code-summarisation task.

The prediction of function names from the function body is an already defined
task, called ”extreme summarisation”, discussed in Chapter 2. While extreme sum-
marisation will help recover function names for stripped functions, which can aid
understanding, it has limited applicability to unstripped code, which still retains
its function names. In Appendix B we report on a few experiments on this task.
We find that, similar to the regular summarisation task, the model struggles with
stripped code due to decompiler issues, so we decided not to pursue this avenue any
further.

Stripped code performs significantly worse than the demi-stripped code, even
when the dataset size is matched. This indicates that the decompilation failures,
which occur more with stripped code, also greatly impact model performance.

Our choice of stripper might also influence the performance of the model. We
find that our stripped code does not benefit from Ghidra’s decompiler as much as
other examples. For example, the decompiled stripped binaries used by David et al.
contain much more details than our samples. The sample shown in figure 7.1 is a
binary compiled using GCC and optimisation level zero.

We observe that Ghidra’s decompiler manages to recover a variable name and
an external call to the strlen function. However, in our stripped samples, we do
not observe this behaviour, none of the library functions is recovered, and Ghidra
predicts no variable names even in samples compiled using -O0.

From the intermediate-training objectives, we find that the translation task low-
ers performance. There could be two explanations for this: Firstly, the model is
intermediately-trained on a PL-to-PL objective, while the fine-tuning objective is a
PL-to-NL objective. This causes a so-called mismatch in training objectives. Recall
that as discussed in Chapter 2 Transformers encode the input into embedding space
using an encoder. The decoder will then transform this embedding into the output.
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7.2. Threats to validity

Figure 7.1: Short decompiled function from the GNU Debugger [14] decompiled
by Ghidra

In this case, this mismatch in objectives causes the decoder to be weakened in PL-
to-NL tasks by the intermediate-training objective. During the pre-training phase,
which is applied by Wang et al., the objectives are a mix of NL-to-PL, PL-to-PL
and PL-to-NL tasks. This allows a single model to be flexible and to be applied to
different tasks.

The second explanation for the lower performance after TRANS intermediate-
training is that the target length is also different. While the output for code sum-
marisation is at most 12 tokens long, Neural Code Translation has a target length of
512 tokens. In general, longer target sequences make it difficult for the Transformer
model to apply the attention gradient over the entire sequence length properly.

The DOBF and SPAN intermediate-training objectives do yield better perfor-
mance. Both of these objectives solve the objective mismatch issue and are PL-to-
NL objectives. The DOBF performed slightly higher, which could be explained by
the shorter target length since it had no repeated identifiers.

7.2 Threats to validity

This section will cover the threats to validity. These threats are split into three cat-
egories. The internal threats cover threats to the study’s validity, i.e. whether the
conclusions are valid within the confines of our experimental setup. The external
threats cover threats to our study’s applicability (generalisability) to situations out-
side the confines of our experiments. Lastly, the construct validity section covers
how well our work covers and measures the intended constructs.
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7.2.1 Internal
Noise The training and evaluation data contains a significant amount of noise, ei-

ther in the form of badly decompiled functions or incorrect documentation.
While machine learning models (and specifically NLP models) should be able
to handle noisy data, this might introduce some bias into the models.

Inductive bias The base CodeT5 model on which we applied our intermediate-
training and fine-tuning strategies will include some bias which would then
be transferred to our model.

Lucky sets The randomly selected test set might not represent the data’s real dis-
tribution.

Data collection Only functions that decompile (Ghidra produces any output) and
are commented are represented in the data. This is most apparent in the
stripped dataset, where we can only recover a small fraction of the total num-
ber of functions.

7.2.2 External
Resisting analysis This work only focuses on stripping as a means of resisting

binary analysis, other techniques like control flow or data obfuscation are
also used to prevent reverse engineering.

Stripping techniques In this work a very bipolar notion of stripping was used;
the strip utility utilised removes any and all identifiers from the binary after
compilation. Other techniques, which remove some identifiers before com-
pilation, will result in different decompiled codes with some identifiers left
behind by the compiler.

Target Architecture We only considered binaries and projects that were compiled
to the x86/x64 architecture. Other architectures like ARM, and other pro-
gramming languages could provide other results.

Open/Closed-Source The data gathered for the experiments in this thesis, were ex-
clusively from open-source projects. Decompiling closed-source projects is
specifically forbidden by some EULAs and the lack of source code documen-
tation makes it difficult to set a reference summary. However, reverse engi-
neering open-source software is not very useful in practise, since the source-
code is readily available. Closed-source software might have a different data
distribution and will present other challenges like obfuscation.
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7.2.3 Construct

Mono-operation bias This work only explores a single state-of-the-art model and
only focuses on NLP techniques. Other models, or other techniques, might
be more successful at this task.

Mono-method bias This work exclusively focuses on generating code summaries
from functions to help REs understand binaries. While the code summarisa-
tion task is well defined in the source-code domain, it might not be well suited
for binary analysis.

Suitability of metrics As discussed in Chapter 2, the metrics used in this thesis
do not capture semantic meaning. BLEU-4 and ROUGE-L have no semantic
capabilities and METEOR only has a limited number of word-based rules.

7.3 Broader Impacts

In this thesis, we propose a novel solution to aid reverse engineers in their work.
Among many use cases, this solution could help malware analysts to understand
novel malware and its weaknesses quickly. The software can be analysed to find
possible vulnerabilities and malicious payloads. The source code can be recon-
structed for old binaries for which the source code is lost. Finally, it could help in
the process of patching binary programs, known as micropatching.

The proposed solution applies a well-known and well-studied task from the soft-
ware engineering research field to the binary reverse engineering domain. We have
proposed a model for one of the many different applications of NLP to code. Other
existing and extensively studied applications, like defect detection and code repair,
could also be applied to decompiled code.

While the proposed solution has some limitations, especially stripped code, we
hope our work inspires other researchers to improve our models further or propose
their own solutions. For this, and in the spirit of open science, we have also pub-
lished our research data. Other researchers can improve our models by designing
their own pre-training objectives and applying them to an already trained model.
Furthermore, researchers could also use the provided datasets to train and evaluate
their own models.
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7.4 Ethical Considerations

7.4.1 Automation Bias
The model that we propose can provide REs with assistance in understanding de-
compiled binaries. However, the automation bias of such a model should be care-
fully considered, especially since REs can over-rely on the model outputs. The
output might be incorrect and could lead the RE down an incorrect path, leading
to the RE requiring a longer time to understand the binary or misunderstanding the
binary, thus missing specific critical security faults or incorrectly labelling the bi-
nary as non-malicious. The model’s output should always be taken as a reference
by practitioners and checked for correctness.

7.4.2 Offensive Language
As we have observed in the training data, some of the comments that were mined
from Github contain insulting or discriminatory statements, such as figure 7.2. Note
that this comment has been removed in the most recent version. The prevalence of
offensive language in Software Engineering communities such as Github is a known
issue [13]. The training data might contain such samples so that this same language
might be reflected in the model output.

//WTF IS THIS!!!
//Are you really trying to prevent the analyzed binary
//from doing anything that would cause it to segfault irl?
//WHY?
// - <Author removed>

Figure 7.2: Example of an offensive comment from radareorg/radare2-
bindings/radare2 /libr/anal/esil.c,

7.4.3 Computational Costs
Training these models requires a non-negligible amount of computational resources.
Therefore, we attempted to carefully design our experiments to limit the number of
GPU hours. We also selected a pre-trained model, which allows us to skip the
expensive pre-training step. Compared to other state-of-the-art LLMs, CodeT5 is
a relatively small model with only 220M parameters compared to CodeX, which
has 12B parameters [12]. Furthermore, we release our trained models so that the
community can avoid repeated training.
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7.4.4 Malicious Use
As with much research in the field of binary reverse engineering, this work could
be used for malicious purposes. Malicious practitioners could use this work to RE
binaries and extract protected intellectual property. Furthermore, this work could
be used to analyse binaries for faults and vulnerabilities, such that they can be de-
veloped into exploits for use by malicious actors. Any reverse engineer aided by
the methods proposed in this work should carefully consider their effort’s legal and
ethical aspects.1 Furthermore, any vulnerabilities discovered with the help of these
methods should be disclosed responsibly to the owner without needlessly putting
the security of users at risk.

1Electronic Frontier Foundation: https://www.eff.org/issues/coders/reverse-engin
eering-faq
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Chapter 8

Conclusion and Future Work

To conclude the thesis, we will first summarise the answers to the research questions
posed in Chapter 5 based on our findings and discussion. We will then discuss
possible directions for future work based on this thesis.

8.1 Summary
We find that source and unstripped decompiled code performed relatively well,
while demi-stripped performed significantly worse. Stripped performs even worse,
and the resulting model mainly was unusable. We observe that duplicates have a
relatively significant impact on the model performance. Removing these duplicates
puts the model performance in line with other source-code datasets. This shows
that our models are not only reproducing previously encountered summaries but are
also able to create new summaries and have a deeper understanding of the under-
lying patterns in the data. Finally, we discover that the loss of identifiers causes a
drop in performance and that the introduction of decompilation faults in stripped
code has a large impact on the model performance.

We find that the model’s performance can be improved using intermediate-
training objectives. Mainly, we observe that a Deobfuscation intermediate-training
objective improves model performance across the board. However, we also find
that the effectiveness of the intermediate-training objective is dependent on the fine-
tuning objective, as an objective mismatch could cause a drop in performance.

8.2 Future Work
This work solely focuses on the C language. These same techniques could be ap-
plied to other compiled languages. Of particular interest is the Go language. Much
of the novel malware is written in Go.
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Besides the exploration of other languages, other stripping techniques could also
be explored. We solely focused on the stripping tool included in Linux, but other
stripping techniques, some of which are less strict than the Linux implementation,
could also be explored.

Furthermore, we focus solely on the Ghidra decompiler, which is free to use.
Other paid decompilers could also be used for the decompilation step. IDA-Pro1

features more advanced function identification methods as F.L.I.R.T.2 and Lumina3,
which could help with function extraction in stripped binaries.

We found that Ghidra struggles to decompile stripped functions and generally
adds minimal syntax or identifiers to the function, which is why exploring these
methods on disassembled code might see more success. Disassembled code should
have fewer decompilation errors and mistakes. However, using models like Code-
BERT and CodeT5 would probably not see much success, as these models are
trained on source code. Decompiled code is similar to source code by design,
but disassembled code has a relatively limited but very different vocabulary, which
could cause Out-Of-Vocabulary issues. One would therefore need to completely
retrain models from scratch on data in the disassembled data.

Another solution would be to keep using these methods but add an additional
module to determine whether a stripped sample is a well-decompiled function or if
a decompilation failure has occurred. Then, the improperly decompiled functions
could be skipped, and the RE would only receive the high-quality output.

The output of Ghidra could also be enhanced using a model like DIRE [23] or
Debin [19] to recover more identifiers before passing the function to the summarisa-
tion model. This method would, however incur an additional performance penalty
since it needs to decompile the binaries and recover the identifiers using one of these
models. Furthermore, any mistakes and biases introduced by those models would
be transferred to our model.

The use of BLEU-4 as a scoring method also introduces some issues. The cur-
rently employed scoring methodology does not take semantics into account, mean-
ing that the model could produce perfectly valid and usable descriptions. How-
ever, since they do not match the baseline syntax, the score will be very low, and
the model will be penalized. Instead of using BLEU-4, METEOR and ROUGE-L
scores to score the candidate against the baseline, a semantic method like Sentence-
BERT [18] could also be employed.

Finally, this work could be developed into a Ghidra plugin. Using Ghidra’s
scripting engine, extracting the functions from the decompiled code and infer the
comments using one of our trained models would be relatively straightforward. To

1IDA-Pro: https://hex-rays.com/ida-pro/
2F.L.I.R.T: https://hex-rays.com/products/ida/tech/flirt/in_depth/
3Lumina: https://hex-rays.com/products/ida/lumina/
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8.2. Future Work

prevent the constant loading and unloading of the model in the GPU and the re-
quirement for a GPU, the models could even be made permanently available online
through an API. The script can then insert the comments above the decompiled
functions in the decompiler window. The script would then be run when Ghidra
processes a binary to aid the RE in understanding the binary.
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[8] Sandrine Blazy and Stéphanie Riaud. Measuring the robustness of source
program obfuscation: Studying the impact of compiler optimizations on the
obfuscation of c programs. page 123–126, 2014. doi: 10.1145/2557547.
2557577. URL https://doi.org/10.1145/2557547.2557577.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901, 2020.

[10] Juan Caballero and Zhiqiang Lin. Type inference on executables. ACM Com-
put. Surv., 48(4), May 2016. ISSN 0360-0300. doi: 10.1145/2896499. URL
https://doi.org/10.1145/2896499.

[11] Casey Casalnuovo, Earl T Barr, Santanu Kumar Dash, Prem Devanbu, and
Emily Morgan. A theory of dual channel constraints. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: New
Ideas and Emerging Results, pages 25–28, 2020.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,
William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christo-
pher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models
trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

[13] Jithin Cheriyan, Bastin Tony Roy Savarimuthu, and Stephen Cranefield. To-
wards offensive language detection and reduction in four software engineering
communities, 2021. URL https://arxiv.org/abs/2106.02245.

[14] Yaniv David, Uri Alon, and Eran Yahav. Neural reverse engineering of
stripped binaries using augmented control flow graphs. Proceedings of the
ACM on Programming Languages, 4(OOPSLA), nov 2020. doi: 10.1145/
3428293. URL https://doi.org/10.1145/3428293.

54

https://doi.org/10.1145/2557547.2557577
https://doi.org/10.1145/2896499
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2106.02245
https://doi.org/10.1145/3428293


Bibliography

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2018. URL https://arxiv.org/abs/1810.04805.

[16] Christiane Fellbaum. Wordnet. In Theory and applications of ontology: com-
puter applications, pages 231–243. Springer, 2010.

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A
pre-trained model for programming and natural languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 1536–1547,
2020.

[18] Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. Se-
mantic similarity metrics for evaluating source code summarization. arXiv
e-prints, pages arXiv–2204, 2022.

[19] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin
Vechev. Debin: Predicting debug information in stripped binaries. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 1667–1680, 2018.

[20] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar De-
vanbu. On the naturalness of software. Commun. ACM, 59(5):122–131, apr
2016. ISSN 0001-0782. doi: 10.1145/2902362. URL https://doi.org/
10.1145/2902362.

[21] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level explo-
ration. In Proceedings of the 6th annual IEEE/ACM international symposium
on Code generation and optimization, pages 165–174, 2008.

[22] M Tim Jones. Optimization in gcc. Linux journal, 2005(131):11, 2005.

[23] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis,
Claire Le Goues, Graham Neubig, and Bogdan Vasilescu. Dire: A neural
approach to decompiled identifier naming. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 628–639.
IEEE, 2019.

[24] Alon Lavie and Michael J Denkowski. The meteor metric for automatic eval-
uation of machine translation. Machine translation, 23(2):105–115, 2009.

[25] Alexander LeClair and Collin McMillan. Recommendations for datasets for
source code summarization. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics:

55

https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362


BIBLIOGRAPHY

Human Language Technologies, Volume 1 (Long and Short Papers), pages
3931–3937, Minneapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1394. URL https://aclantholo
gy.org/N19-1394.

[26] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[27] Ruigang Liang, Ying Cao, Peiwei Hu, and Kai Chen. Neutron: an attention-
based neural decompiler. Cybersecurity, 4:5, 03 2021. doi: 10.1186/
s42400-021-00070-0.

[28] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004.
Association for Computational Linguistics. URL https://aclanthology.o
rg/W04-1013.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach, 2019.

[30] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Am-
brosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li,
Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming
Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie Liu. Codexglue: A machine learning benchmark dataset for code under-
standing and generation. 2021. doi: 10.48550/ARXIV.2102.04664. URL
https://arxiv.org/abs/2102.04664.

[31] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. Reassessing Auto-
matic Evaluation Metrics for Code Summarization Tasks, page 1105–1116.
Association for Computing Machinery, New York, NY, USA, 2021. ISBN
9781450385626. URL https://doi.org/10.1145/3468264.3468588.

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning rep-
resentations by back-propagating errors. nature, 323(6088):533–536, 1986.

[33] Jürgen Schmidhuber, Sepp Hochreiter, et al. Long short-term memory. Neural
Comput, 9(8):1735–1780, 1997.

[34] Shi, Ensheng Wang, Yanlin Du, Lun Chen, Junjie Han, Shi Zhang, Hongyu
Zhang, Dongmei Sun, and Hongbin Sun. On the evaluation of neural code
summarization. ICSE, 2022.

56

https://aclanthology.org/N19-1394
https://aclanthology.org/N19-1394
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2102.04664
https://doi.org/10.1145/3468264.3468588


Bibliography

[35] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27,
2014.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, pages 6000–6010, 2017.

[37] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and
Michelle L. Mazurek. An observational investigation of reverse engineers’
process and mental models. In Extended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing Systems, CHI EA ’19, page 1–6,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450359719. doi: 10.1145/3290607.3313040. URL https://doi.org/
10.1145/3290607.3313040.

[38] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 8696–8708, 2021.

[39] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu, and Xiangyu
Zhang. Stochfuzz: Sound and cost-effective fuzzing of stripped binaries by
incremental and stochastic rewriting. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 659–676. IEEE, 2021.

57

https://doi.org/10.1145/3290607.3313040
https://doi.org/10.1145/3290607.3313040




Appendix A

Glossary

In this appendix, we give an overview of frequently used terms and abbreviations.

BLEU: BiLingual Evaluation Understudy

CNN: Convolutional Neural Network

COTS: Commercial Off-The-Shelf

DOBF: Deobfuscation

EM: Exact Match

IR: Intermediate Representation

LLM: Large Language Model

LSTM: Long Short-Term Memory

MASK: Mask Prediction

ML: Machine Learning

MLM: Masked Language Modelling

NL: Natural Language

NLP: Natural Language Processing

NMT: Neural Machine Translation

PL: Programming Language

RE: Reverse Engineer or Reverse Engineering
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RNN: Recurrent Neural Network

seq2seq: Sequence-to-sequence

SOTA: State-Of-The-Art

SPAN: Span detection

TL: Transfer Learning
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Appendix B

Extreme Summarisation

In this appendix we report on the application of the extreme summarisation task on
our dataset.

B.1 Methodology and Experimental Setup
We apply the parameters and setup as provided by Ahmed and Devanbu for the
extreme summarisation task.1 Note that the authors use their setup for the sum-
marisation task and only change the maximum target length of the output to 10
tokens. We fine-tune a CodeBERT [17] model for 5 epochs, we chose this limit for
brevity as we found that all models converged during the third or fourth epoch as
can be observed in figure B.1. After every epoch we evaluate the model using the
validation set, and finally the model is tested using the test set.

To prepare the dataset, we use the same pipeline as shown in figure 4.1. In-
stead of extracting the comment data, the name of the functions is extracted from
their aligned source code. These function names will function as reference. Since
missing or unalignable documentation is no longer an issue, we are able to collect
significantly more decompiled function-function name pairs. Our dataset consists
of 2.1m decompiled and 630k stripped samples. Recall that unstripped decompiled
functions still retain the function name after decompilation, so we selectively strip
away the function name from the function definition and any recursive calls in the
function bodies.

The dataset is split into a train, test and validation set. Similarly to the regular
summarisation task we split them in a cross-project manner, with the sets consti-
tuting 80%, 10% and 10% of the complete dataset respectively. We followed the
recommendations by LeClair and McMillan on the dataset construction.

1Model and parameters: https://zenodo.org/record/5670434
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B. EXTREME SUMMARISATION

Figure B.1: Loss during CodeBERT training on stripped data

Since the output of the model is so short and generally contains up to 3 to-
kens [5], BLEU would be unfit as a metric. Similarly to Allamanis et al. and Ahmed
and Devanbu, we chose to use the F1-score.

F1 =
2∗Precision∗Recall

Precision+Recall
∗100

Every function name is broken up into subtokens, the name ”popStack” would
therefore be tokenised into ”pop” and ”stack”. The precision and recall are then
calculated by comparing the tokens in the reference and the model prediction. Note
that this does not take the order of the tokens into account.

Ahmed and Devanbu report F1 scores ranging from 24 to 54 and F1 scores rang-
ing from 0.41 and 0.54 with regular CodeBERT and PolyglotCodeBERT respec-
tively. Note that these models were trained and evaluated on the CodeXGLUE [30]
dataset which is deduplicated, while our own dataset is not.

B.2 Results
We find that the results resembled the results from the regular code summarisa-
tion task. The CodeBERT model achieved an F1 score of 20.6 and 5.45 on the
stripped and unstripped code respectively. Manual assessment of the produced sam-
ples shows that the model for unstripped code could produce some usable samples,
but the stripped model was unable to produce almost anything of value, as can be
observed in table B.1.
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B.2. Results

Reference Decom Stripped
main main main
sha 256 transform md 5 process block sha 1 process block
get ins len op nd num reg s op nd get size
r id storage foreach queue fore ach hash find
map init pro g init c se g open

Table B.1: Sample of CodeBERT extreme summarisation model output
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