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S U M M A R Y
In this study, we develop a methodology to estimate monthly variations in degree-1 and
C20 coefficients by combing Gravity Recovery and Climate Experiment (GRACE) data with
oceanic mass anomalies (combination approach). With respect to the method by Swenson et al.,
the proposed approach exploits noise covariance information of both input data sets and thus
produces stochastically optimal solutions supplied with realistic error information. Numerical
simulations show that the quality of degree-1 and -2 coefficients may be increased in this way
by about 30 per cent in terms of RMS error. We also proved that the proposed approach can be
reduced to the approach of Sun et al. provided that the GRACE data are noise-free and noise in
oceanic data is white. Subsequently, we evaluate the quality of the resulting degree-1 and C20

coefficients by estimating mass anomaly time-series within carefully selected validation areas,
where mass transport is small. Our validation shows that, compared to selected Satellite Laser
Ranging (SLR) and joint inversion degree-1 solutions, the proposed combination approach
better complements GRACE solutions. The annual amplitude of the SLR-based C10 is probably
overestimated by about 1 mm. The performance of the C20 coefficients, on the other hand, is
similar to that of traditionally used solution from the SLR technique.

Key words: Satellite geodesy; Satellite gravity; Reference systems; Geopotential theory;
Time variable gravity; Global change from geodesy.

1 I N T RO D U C T I O N

Since its launch in 2002, the Gravity Recovery and Climate Exper-
iment (GRACE; Tapley et al. 2004) satellite mission allows data
processing centres to produce monthly gravity field solutions (e.g.
Bettadpur 2012; Watkins 2012; Dahle et al. 2013; Klinger & Mayer-
Gürr 2016; Farahani et al. 2017). After subtracting a static/mean
gravity field, the obtained time variations in the Earth’s gravity
field reflect changes in its mass distribution. Apart from the grav-
ity changes originated from the interior of the solid Earth, such as
those due to the Glacial Isostatic Adjustment (GIA) and megathrust
earthquakes, the observed signals are caused by mass variations
within a very thin layer enveloping the solid Earth (oceans, conti-
nental water/ice/snow storage, etc.). Using GRACE data as input,
one can uniquely estimate the latter mass variations, which are of
great interest in many applications, including the study of ongoing
climate change.

Typically, a monthly GRACE gravity field solution is expressed
by a set of spherical harmonic coefficients (SHCs) complete to a cer-
tain degree. One problem of these solutions is that they lack degree-1
coefficients (�C10, �C11 and �S11; the symbol � is dropped here-
after for simplicity), which are proportional to the geocentre motion
defined as the displacement of centre of mass of the whole Earth
system (CM) with respect to the centre of figure of the solid Earth
(CF) (Ray 1999). Omission of the degree-1 contribution leads to sig-

nificant errors in surface mass estimates (Wu et al. 2012). Another
problem of GRACE monthly solutions is that the C20 coefficient is
subject to large uncertainties (Chen et al. 2016), presumably due to
thermal-related systematic errors in the accelerometer data (Cheng
& Ries 2017). Therefore, for the purpose of inferring surface mass
anomalies, a GRACE user is advised to complement GRACE solu-
tions with independently estimated degree-1 coefficients and replace
the native GRACE C20 coefficients with more accurate ones.

Most of studies published until now have been using the degree-1
coefficients as supplied by Swenson et al. (2008) (GRACE-OBP-
Swenson), while the C20 coefficients are taken from Satellite Laser
Ranging (SLR) analysis (Cheng et al. 2013a). This approach, how-
ever, has some weak points. First, the estimates of the degree-1
coefficients are not statistically optimal in the sense that errors in
both GRACE data and the Ocean Bottom Pressure (OBP) model are
not accounted for, as explained below. Second, the C20 coefficients
produced from a different observation technique and with a differ-
ent data processing procedure may not be consistent with GRACE
solutions. As far as the degree-1 coefficients are concerned, the
estimates provided with Swenson’s approach are not optimal in a
statistical sense.

The GRACE-OBP-Swenson approach estimates degree-1 coef-
ficients by combining GRACE data and oceanic degree-1 coeffi-
cients extracted from an OBP model. In its original implementation,
this approach yields a much smaller annual amplitude of the C10
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(∼2 mm) than alternative techniques, such as SLR (∼3 to ∼6 mm)
(e.g. Cheng et al. 2013b; Ries 2013; Sośnica et al. 2013) and GPS-
based inversion (∼3 to ∼4 mm) (e.g. Wu et al. 2006; Jansen et al.
2009; Rietbroek et al. 2012). Sun et al. (2016a,b) developed an im-
proved variant of the GRACE-OBP-Swenson approach (GRACE-
OBP-Improved approach) by making a proper truncation of the
input GRACE solutions, reducing GRACE signal leakage and tak-
ing into account self-attraction and loading (SAL) effects (Gordeev
et al. 1977; Conrad & Hager 1997). The resulting C10 annual ampli-
tude was about 3 mm, that is, in line with the GPS inversion method,
as well as at least some of the SLR results. In addition, C20 time-
series estimated this way compared well with several SLR-based
solutions (e.g. Cheng et al. 2013a; Lemoine et al. 2013).

However, the underlying assumption of the GRACE-OBP-
Improved method is the same as that of the GRACE-OBP-Swenson
method: that the degree-1 and C20 from an OBP models as well
as GRACE data are treated deterministically, which implies that
these data are free of error. As a consequence, any errors in OBP
modelling and GRACE data propagate into degree-1 and C20 esti-
mates in an uncontrolled way, that is, the estimation procedure is
statistically not optimal.

With this study, we propose to modify the GRACE-OBP approach
in such a way that degree-1 and C20 coefficients are estimated by
means of a statistically optimal combination of GRACE data and
an OBP model (the combination approach). Furthermore, a realistic
estimation of uncertainties in the input data is part of the combina-
tion approach, which allows us to supply the estimated low-degree
coefficients with a stochastic description of their errors.

The combination approach can also be considered as a variant of
the joint inversion procedure (Rietbroek et al. 2009, 2012), devel-
oped as an effort to improve global GPS inversions. In these studies,
surface loading variations (up to a maximum degree of 30) were
estimated from a combination of GPS, GRACE, and OBP data. As a
result, the degree-1 information comes from GPS-derived degree-1
mass loading and the OBP data. However, the GPS tracking network
is highly uneven and sometimes very sparse, which may lead to a
prominent network effect. Also, it is still challenging to isolate a
load-induced contribution from the total GPS site movements (Dong
et al. 2002). In addition, the deficiency in modelling/removing the
draconitic error in GPS data processing (Griffiths & Ray 2013) adds
further uncertainty to GPS-sensed degree-1 information. Another
problem of the above procedure is that the three data sets are not
coupled. For example, total ocean mass is conserved, and water ex-
change with continents is not taken into account. In this study, the
GPS data are not used. Furthermore, total ocean masses are coupled
with surface mass changes over land.

It goes without saying that correcting GRACE solutions with ac-
curate estimates of degree-1 and C20 coefficients improves the mass
anomaly estimates. Still, it is important to quantify such improve-
ments and to compare the obtained mass anomaly estimates with
those based on the traditionally used degree-1 and C20 coefficients.
Therefore, in this study we also propose a method to evaluate the
quality of the obtained degree-1 and C20 coefficients in terms of
inferred surface mass anomalies.

The paper is organized as follows. We describe the combination
approach in details in Section 2. Then, we conduct numerical ex-
periments to verify the correctness of the approach as well as to
identify its optimal implementation parameters (Section 4). After-
wards, we apply the selected parameter setting to derive degree-1
and C20 time-series using real data (Section 5). We then demonstrate
that using these coefficients improves the estimates of regional mass
variations (Section 6). Finally, Section 7 concludes the paper.

2 M E T H O D O L O G Y

2.1 Combination approach

Various data sets can be combined in the statistically optimal sense
if their noise variance–covariance matrices are available (a general
form of the optimal data combination is presented in Appendix A).
The optimal data combination in the context of the GRACE-OBP-
Improved approach is presented below.

Let the mass anomaly (in terms of equivalent water height) at
a point k be denoted as hk. The oceanic mass anomaly function
can then be expressed as a linear combination of surface spherical
harmonics:

hk = ϑk

∞∑
l=1

l∑
m=−l

C (h)
lm Ylm,k, (1)

where ϑ k represents the ocean function, which equals 1 if k is
a point over ocean and equals 0 otherwise; Ylm, k is the normal-
ized surface spherical harmonic of degree l and order m at point k;
C (h)

lm are the spherical harmonic coefficients describing surface mass
re-distribution. These coefficients are called thereafter mass coeffi-
cients. Note that summation in eq. (1) starts from degree 1, which
implies a conservation of total mass. Also note that the summation
is truncated at a certain degree in practice. Eq. (1) can be re-written
in terms of matrix-to-vector multiplication as

h = OYd, (2)

where h is the K × 1 vector of mass anomalies hk, with K the number
of grid points; Y is the K × L matrix with entries equal to Ylm, k; d is
the L × 1 vector containing coefficients C (h)

lm starting from degree 1,
with L the number of mass coefficients, and O is a K × K diagonal
matrix with elements representing the ocean function, that is,

{O}(k,k) =
{

1 if k is a point in ocean

0 if k is a point on land.
(3)

Assuming that mass redistribution takes place in a thin spherical
layer, we can relate the mass coefficients to the dimensionless SHCs,
according to Wahr et al. (1998)

d = Sx, (4)

where x is the L × 1 vector containing the set of dimensionless
SHCs. S is the L × L diagonal matrix with entries

{S}(lm,lm) = (2l + 1)

3(1 + kl )

ρearth

ρwater
a, (5)

where a is the Earth’s average radius; ρearth is the average density of
the Earth, ρwater is the density of water and kl is the load Love number
of degree l. Note that k1 = 0.021 (which is slightly dependent on
the chosen Earth model), which implies that the vector x in eq. (4)
should be provided in the CF frame (Blewitt 2003).

Therefore, our functional model is{
Tx = xg

OYSx = h,
(6)

where xg is a Lg × 1 vector containing the SHCs provided by
GRACE, Lg equals (L − 4) since we assume that degree-1 and C20
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coefficients are absent; T is a truncated unit matrix of size Lg × L
matrix applied to truncate the x vector,

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 · · · · · · 0

0 0 0 0 0
. . .

. . .
. . .

...

...
...

...
...

...
. . .

. . .
. . .

...

...
...

...
...

...
. . .

. . .
. . . 0

0 0 0 0 0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Then, the result of the combination approach is given as

xc = (
TT C−1T + SYT OC−1

o OYS
)−1 (

TT C−1xg + SYT OC−1
o h

)
,

(8)

where xc (L × 1) denotes the set of re-estimated SHCs obtained
after combining the two data sets, with the first four elements
being the degree-1 and C20 coefficients; C (Lg × Lg) is the full
noise variance-covariance matrix of the SHCs from GRACE and
Co (K × K) is the noise variance-covariance matrix of the oceanic
mass anomalies.

2.2 Input data in general terms

2.2.1 GRACE data and their noise covariance matrices

The input GRACE SHCs (xg) are the Stokes coefficients (named
GSM product). Such coefficients are cleaned for tidal contributions
(with the use of a particular ocean tide model). Non-tidal atmo-
spheric and oceanic contributions are also removed from GRACE
observations in the level-1 data processing using the Atmosphere
and Ocean De-aliasing level-1B (AOD1B) products (Flechtner &
Dobslaw 2013). Monthly averages of the removed non-tidal effects
are provided in the form of SHCs in the so-called GAC files. GAD
files are the same as GAC, but restricted to ocean areas. However,

the oceanic contributions are from an OBP model, which conserves
the ocean water mass. Water exchange between ocean and land is
thus ignored. Also, the OBP model does not take into account SAL
effects. Consequently, the total ocean mass change signal as well as
the fingerprints due to SAL effects remain in the GSM coefficients.

As for the noise covariance matrices of GRACE data, CSR RL05
solutions (truncated at degree 60) are used throughout the study.

2.2.2 Oceanic data and their noise covariance matrices

Oceanic mass anomalies are provided by an OBP model, which
is also used to produce GRACE GSM coefficients. In order to be
compatible with the input GRACE data, tidal and non-tidal oceanic
contributions should be removed from the oceanic data. As a re-
sult, when working with GRACE GSM coefficients, oceanic mass
anomalies predicted by the OBP model are set equal to zero. As
mentioned, we need to additionally estimate the signals caused by
ocean-land mass exchange and fingerprints. Here, we estimate the
total ocean mass variations by integrating GRACE-derived mass
anomalies over oceans. Then we account for SAL effects and de-
termine the fingerprints in ocean waters (Mitrovica et al. 2001) by
solving the sea level equation (Farrell & Clark 1976; Tamisiea et al.
2010). It is worth noting that using GRACE to estimate the total
ocean mass variation requires a complete GRACE solution includ-
ing degree-1 and C20 coefficients in the CF frame. Therefore, total
ocean mass variation is determined through an iterative procedure.
The four targeting coefficients are null as a starting point and later
updated with estimates of these coefficients. The total ocean mass
variation as well as the estimated coefficients converge quickly with
only 3 or 4 iterations (thereafter, the difference between the subse-
quent solutions is smaller than 0.1 per cent, see also Fig. 1).

Unlike for GRACE data, the error covariances of the OBP esti-
mates are not provided directly. In the following, we will estimate
the uncertainty σ k at each oceanic data point in order to construct,
at least, a diagonal error variance for the OBP estimates.

Figure 1. Oceanic mass anomalies updates at different iterations. In panels (a)–(d), we show the updates for iteration 1 (RMS: 2 mm; maximum value: 6 mm),
iteration 2 (RMS: 0.4 mm; maximum value: 0.8 mm), iteration 3 (RMS:0.08 mm, maximum value: 0.2 mm) and iteration 4 (RMS: 0.01 mm, maximum value:
0.03 mm), respectively.
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Since the oceanic mass anomaly is a combination of the OBP
model output (the OBP model error has to be considered even
though the residual signal is zero) and the fingerprints, the RMS
error σ k at a given ocean point can be easily computed under the
assumption that the error from these two sources are not cross-
correlated:

σ 2
k = σ 2

obp,k + σ 2
f ts,k, (9)

where σ obp, k and σ fts, k are the RMS errors of OBP and fingerprints,
respectively. The computation of them is described in Section 4.2.

The matrix Co is defined as a diagonal matrix. Ignoring the error
correlations may result in the overestimation of the OBP model
accuracy and, therefore, in a too high weight assigned to the OBP
predictions. In order to overcome this problem, we propose to scale
the diagonal matrix Co uniformly by a factor α.

{Co}(k,k) = ασ 2
k , (10)

The optimal choice of alpha will be discussed later in Section 4.2.
Therefore, we can introduce a diagonal weight matrix

P = OC−1
o , (11)

with elements equal to

{P}(k,k) =
{

1
ασ 2

k
if k is a point in ocean

0 if k is a point on land.
(12)

Finally, eq. (8) can be re-written as

xc = (TT C−1T + SYT PYS)−1(TT C−1xg + SYT Ph). (13)

2.3 Relation with the GRACE-OBP method

The basic ideas behind the combination approach and the GRACE-
OBP approach are very similar. Here, we show how the two methods
are inter-related.

Let us define xe as a 4 × 1 vector with entries equal to the degree-
1 and C20 coefficients and xg as a (L − 4) × 1 vector containing
coefficients provided by GRACE (C20 coefficient is excluded). As-
sume that both xe and xg are free of errors. Then, the whole set of
error-free SHCs x can be represented as:

x = TT
e xe + TT xg, (14)

where Te is a 4 × L matrix:

Te =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

⎤
⎥⎥⎥⎥⎦. (15)

The second line in eq. (6) can be written as

h = OYS
(
TT

e xe + TT xg

) = OYSTT
e xe + hg, (16)

Thereby, hg (K × 1) represents oceanic mass anomalies without
the contribution from the degree-1 and C20 coefficients. We sub-
tract hg from both sides of eq. (16), which allows us to isolate the
contribution of the degree-1 and C20 coefficients. That is

h − hg = OYSTT
e xe. (17)

Note that TT
e Te yields an idempotent matrix, that is, TT

e Te =
TT

e TeTT
e Te; S and TT

e Te commute because they are diagonal

matrices, that is, STT
e T = TT

e TS. As a result, eq. (17) can be
written as:

h − hg = OYSTT
e Tex

= OYSTT
e TeTT

e Tex

= OYTT
e TeSTT

e Tex

= OY
′
S

′
xe. (18)

where Y
′

is a K × 4 matrix and S
′

is 4 × 4 matrix; they are the
same as Y and S, but only for the degree-1 and C20 coefficients.
Eq. (18) can be considered as a linear functional model connecting
an unknown vector S

′
xe and data vector h − hg . Then, xe can be

solved for by plain linear regression. The obtained equation

S
′
Y

′T OY′S′xe = S
′
Y

′T Oh − S
′
Y

′T Ohg, (19)

or

Y
′T OY′S′xe = Y

′T Oh − Y
′T Ohg, (20)

is the same as eq. (12) in Swenson et al. (2008) if written out explic-
itly (see Appendix B). The resulting solution is optimal provided
that the noise in h − hg is white. Therefore, if the GRACE data are
noise-free (so that hg contains deterministic values and one does
not have to estimate xg) and the noise in OBP data is white, the
combination approach reduces to the GRACE-OBP approach.

3 I M P L E M E N TAT I O N PA R A M E T E R S

In Sun et al. (2016a), we have already shown that estimates of
degree-1 and C20 time-series based on the GRACE-OBP approach
are controlled by at least three implementation parameters: (i) max-
imum degree of the input GSM coefficients, (ii) width of the buffer
zone (a periphery surrounding the continents due to the application
of a shrunk ocean function) and (iii) whether to consider SAL effects
when distributing water over oceans or not. Sun et al. (2016b) ad-
dressed the optimal choice of implementation parameters by means
of numerical simulations. They showed that the set of input GSM
coefficients should be truncated between degrees 30 and 50, in
order to include mass re-distribution at large spatial scales while
excluding high-degree coefficients contaminated by large errors.
The buffer zone should be around 200 km to mitigate the impact
of continental signal leakage. Also, the ocean water has to be dis-
tributed realistically by taking into account SAL effects. We expect
that the optimal truncation degree and the buffer zone width found
in Sun et al. (2016b) will not change significantly in the combina-
tion approach. Therefore, we limit ourselves to the most promising
combinations of implementation parameters. We test truncation de-
grees between 10 and 60, and buffer zones widths of 100, 200 and
300 km; SAL effects are always taken into account.

4 N U M E R I C A L E X P E R I M E N T S

Numerical experiments are carried out to verify the correctness and
evaluate the performance of our methodology.

4.1 Simulation of GRACE GSM coefficients

The procedure to generate GRACE GSM coefficients is very similar
to that described by Sun et al. (2016b). It is based on the updated
ESA Earth System Model (ESM), which covers the period from
1995 to 2016 and is complete to spherical harmonic degree 180
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Figure 2. Uncertainty of oceanic mass anomalies. (a) The RMS error of OBP predictions. (b) The RMS error of fingerprints. (c) Total RMS error obtained
with eq. (9).
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(Dobslaw et al. 2015). It employs state-of-the-art geophysical mod-
els to simulate gravity changes due to mass re-distribution within
the Earth system. It is worth noting that we have added SAL ef-
fects to the original ESM model. We sum up the contributions of
the atmosphere, ocean, continental water, and ice-sheet components
to mimic GRACE-sensed gravity changes due to surface mass re-
distribution. The error-free GSM coefficients are then generated
by removing the monthly average of the dealiasing product, called
DEAL coefficients, which represent a simplified model of mass
transport in the atmosphere and ocean; they play the same role as
the AOD1B product. The DEAL coefficients are provided together
with the ESM. Two types of errors present in real GRACE GSM are
added to the simulated error-free GSM coefficients to obtain realis-
tically perturbed ones. First, random errors are simulated using the
CSR RL05 monthly noise covariance matrices complete to degree
60. To make the results more representative, we generate ten error
realizations per month. Second, we additionally introduce one real-
ization of errors in the DEAL product, which is provided together
with the ESM as the so-called AOerr files. The errors documented
in the AOerr files are first defined as the differences between the
updated ESM (the one used in this study) and the original ESM
model, and then upscaled to match the uncertainty estimated by
pairwise model comparisons based on a small ensemble (four) of
atmospheric and oceanic models.

As a result, ten sets of noisy GSM coefficients per month are at
our disposal. The sets are contaminated by different random errors
and the same AOerr errors. For more details regarding the data
simulation procedure, the reader is referred to (Sun et al. 2016b).

4.2 Determination of oceanic noise variances

The combination approach requires stochastic information about
errors in the oceanic mass anomalies, which is not directly available.
In this study, we estimate the RMS error σ k at each data point of a
1 × 1 degree ocean grid. According to eq. (9), one needs to know the
RMS error σ obp, k (for the OBP mass anomaly) and the RMS error
σ fts, k (for the fingerprint mass anomaly). To obtain σ obp, k, we use
the OBP error estimates provided by the ESM. Since only one error
realization per monthly OBP is given, we assume that the OBP noise
is stationary in the time domain and calculate the RMS error per
grid node using all monthly error estimates (Fig. 2a). For σ fts, k, we
calculate fingerprints from ten realizations of simulated noisy GSM
coefficients. Assuming that the fingerprint noise is also stationary
in the time domain, we compute the RMS error by averaging errors
over months and noise realizations (Fig. 2b). Finally, σ k (Fig. 2c) is
computed through eq. (9).

As explained in Section 2.2.2, a scaling factor (α) has to be
introduced to account for the lack of information about OBP error
covariances. To estimate the scaling factor, we use two criteria.
First, the scaled error covariance matrix Co should result in minimal
Actual RMS Errors (ARE) when comparing the resultant degree-1
and C20 estimates with the synthetic truth. Second, the obtained
Formal RMS Errors (FRE) for degree-1 and C20 solutions should
be of similar magnitude as the ARE. To make the calculation of
ARE and FRE easier to understand, we visualize them in Fig. 3.

We calculate the ARE (ecf,n
ARE) and the FRE (ecf,n

FRE) for a particular
coefficient (indicated by superscript cf, which runs over the four
estimated mass SHCs, namely C10, C11, S11 and C20) based on the
nth GSM realization. The best scaling factor, however, is different
from coefficient to coefficient and from realization to realization.
To obtain a uniform choice, we further calculate the combined ARE

Figure 3. Actual error, actual RMS error (ARE) and approximated actual
RMS error (approx. ARE) for one realization of synthetic C10 coefficients.
The actual errors are obtained as the differences between the resulting C10

time-series and the synthetic truth. ARE is then obtained as the RMS differ-
ence, which is shown as a grey band (the upper and lower bound of the grey
band is then ± ARE).

Figure 4. Combined ARE, combined FRE and combined approximated
ARE as functions of the scaling factor. The grey band along the combined
approximated ARE curve shows its STD from 10 GSM realizations. Note
that the parameter setup is as follows: truncation degree: 50, buffer zone
width: 200 km.

(ecmb
ARE) and the combined FRE (ecmb

FRE) (shown in Fig. 4 as a function
of scaling factor):

ecmb
ARE =

√√√√ C20∑
c f =C10

(
AVR

〈
ecf,n

ARE, (n = 1, 2, . . . , N )
〉)2

,

ecmb
FRE =

√√√√ C20∑
c f =C10

(
AVR

〈
ecf,n

FRE, (n = 1, 2, . . . , N )
〉)2

, (21)
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Figure 5. The RMS errors (average over 10 simulated GSM solutions) for resulting degree-1 and C20 coefficient time-series (in mm of equivalent water
height). Results for C10, C11, S11 and C20 are presented in panels (a)–(d), respectively. The thick grey lines show the results of the GRACE-OBP-Swenson
approach. The dashed grey lines indicate solutions based on the GRACE-OBP-Improved approach considering SAL effects and using a 200 km buffer zone.

where N is the number of sets of simulated GSM coefficients
(N = 10). Further increasing N does not change the results sig-
nificantly. AVR 〈 〉 is the operator of averaging RMS errors over all
error realizations. Note that according to the Parseval’s identity, the
sum of squared spherical harmonic coefficients describing the mass
transport function is equal (up to a constant scaling factor) to the
squared L2-norm of the mass transport function itself.

As α increases, the combined ARE decreases until convergence
(within 1 per cent for α > 45), whereas the combined FRE increases
linearly. The decrease of the combined ARE means that the obtained

solution gets closer to the statistically optimal one, which is an
indication that the assumed errors in the OBP estimates become
more reasonable as α increases. A proper choice for the scaling
factor is therefore at the intersection of the two curves, which is
around 55 (corresponds to the upscaling of the RMS error with
a factor of about 7.5). It is worth noting that the optimal scaling
factor does not change significantly with different implementation
parameter setups (not shown). Such a large value of α might seem
odd for a synthetic experiment, but it is justified by the fact that
the OBP model used here is not provided with an error covariance
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matrix. The noise added to the error-free OBP estimates is not
generated from a provided error covariance matrix but taken from an
existing noise realization provided by Dobslaw et al. (2016) . Based
on this noise realization, we construct the diagonal error covariance
matrix for the OBP data. A large α is expected to account for the
discrepancy between the actual stochastic properties of exploited
noise realization (which is correlated in the spatial domain) and the
adopted noise covariance matrix, which is diagonal (and, therefore,
does not take noise correlations into account).

In real data processing, information of ARE is not available.
Therefore, we propose to estimate the actual error using the ap-
proach of Ditmar et al. (2017), which allows us to approximate the
actual error in a time-series without the knowledge of the true signal
(More information can be found in Appendix C).

The conducted numerical study allows us to validate that proce-
dure in the context of low-degree coefficients. In Fig. 3, we also
show an example of time-series of the estimated RMS of the actual
errors. We calculate the combined approximated ARE for the four
coefficients (ecmb

approx. ARE) following a similar equation as eq. (21):

ecmb
approx. ARE =

√√√√ C20∑
c f =C10

(
AVR

〈
ecf,n

approx. ARE, (n = 1, 2, . . . , N )
〉)2

.

(22)

Clearly, ecmb
approx. ARE is the average over ten error realizations. This

is not the case when dealing with real data, where only one error
realization (true error) present. Fortunately, the ecf,n

approx. Err does not
change significantly from realization to realization (see the grey
band in Fig. 4).

For all error realizations, the scaling factor determined from the
approximated actual error and the formal error is fairly close to
the optimal scaling factor, which is equal to 55 in the considered
case. Therefore, it is recommended to use the same procedure when
processing real data. The obtained formal error will change linearly
if the scaling factor determined differs from the optimal one.

4.3 Quality indicator

The resulting degree-1 and C20 time-series based on each param-
eter combination are compared with the synthetic truth (the scal-
ing factor α is fixed to 55). Our goal is to select the setup that
leads to the minimal RMS error of the resulting time-series. To that
end, we compute the RMS of the differences between the resulting
time-series (T (C (h)

lm )) and the synthetic truth (T (Ct(h)
lm )) in terms of

equivalent water heights. In Fig. 5, we show the RMS errors for
all the tested parameter combinations (as functions of the trunca-
tion degree). Best estimates for degree-1 and C20 time-series are
obtained with a 200-km buffer zone and a truncation degree be-
tween 30 and 50. For C20, it becomes worse around degree 40 for
reasons that are still under investigation. We also show the RMS
errors for solutions based on the GRACE-OBP-Improved method
(200-km buffer width, SAL effects are taken into account) for com-
parison. Additionally, we show the results obtained with the original
implementation parameters of Swenson et al. (2008). The combi-
nation approach clearly outperforms the two latter approaches by
producing solutions with lower RMS errors.

However, our goal is to determine the unified optimal parameter
setup that would lead to the best estimation of all the considered
coefficients. To this end, we use the sum of error variances of the

Figure 6. The same as Fig. 5, but the unified quality indicator is shown
instead of RMS errors per coefficient.

four coefficient time-series as the overall quality indicator (QI):

QI = 1

N

N∑
n=1

(
VAR

〈
T

(
C (h)
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)n
− T

(
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)〉
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(
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− T

(
Ct(h)

11

)〉

+ VAR
〈
T

(
S(h)

11

)n
− T

(
St(h)

11

)〉
+ VAR

〈
T

(
C (h)

20

)n
− T

(
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20

)〉 )
, (23)

where VAR 〈 〉 is the operator for calculating the variance of a time-
series; n indicates the data set number (n = 1, 2, . . . , N), and N is
the total number of data sets (N = 10). Note that all the coefficients
are defined in terms of equivalent water height. Our intention is to
choose the parameter setting that leads to the lowest QI value. Fig. 6
shows that a truncation degree larger than 35 and a buffer width of
200 km are the preferred setup.

While the QI values give an indication of the overall quality of
the resultant degree-1 time-series, it is the annual cycle (the largest
periodic signal) that is particularly interesting. In Figs 7 and 8, we
show the mean annual amplitude and phase estimates of degree-
1 and C20 time-series and their standard deviations (indicated by
light coloured bands). For annual amplitudes (Fig. 7), the estimates
are getting closer to the synthetic truth as the truncation degree
increases. However, when using the narrow buffer (100 km), one
cannot recover the true annual amplitude with any truncation degree
for C10, S11 and C20. With a wider buffer (200 or 300 km), we can
recover the annual amplitude within 10 per cent for all four coef-
ficients when using truncation degrees higher than 35. For annual
phase estimates, we see less dependence on the implementation pa-
rameters. In most cases (except for the C10 estimates based on a
100 km buffer zone) one can recover the true annual phase within 5
d. In addition to the QI mentioned above, we compute the QI for an-
nual variations based on Sun et al. (2016b) (eq. 7). Consideration of
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Figure 7. The mean annual amplitudes of the GSM degree-1 and C20 time-series (mm EWH) estimated using different implementation parameters, based on
10 sets of simulated GSM solutions. The standard deviations of amplitude estimates (based on 10 sets of GSM solutions) are indicated by light coloured bands.
The true amplitudes are marked in all panels as black horizontal lines. Results for C10, C11, S11 and C20 are shown in panels (a)–(d), respectively.

this criterion confirms that, larger truncation degrees are beneficial
for estimating annual variations (Fig. 9).

Ultimately, we recommend to use a truncation degree of 50 and
buffer width of 200 km. In Sun et al. (2016b), the same buffer width
was selected but the truncation degree was 45.

The selected parameter setup ensures good estimates of both
overall quality and annual variations in all four coefficients.

5 R E S U LT S B A S E D O N R E A L DATA

We produce degree-1 and C20 time-series using real GRACE data
as input. The CSR RL05 GRACE monthly solutions (complete

to degree 60) for a 12 yr period from August 2002 to June
2014 and their corresponding noise variance-covariance matrices
are used. We correct the input GSM coefficients for the pole
tide according to Wahr et al. (2015). The GIA effects are cor-
rected for by removing the GIA model computed by A et al.
(2012) (degree-1 coefficients in the CF reference frame are kindly
provided by the authors through personal communication. These
modelled degree-1 trends are not used during the calculation,
but can be useful at the last stage to restore the GIA contribu-
tions to the resulting degree-1 solutions). Other time-variable solid
Earth signals are ignored as in previous studies (Swenson et al.
2008).
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Figure 8. The same as Fig. 7, but for the annual phases.

The noise covariance matrix of the oceanic data is the same as
determined in the numerical experiments, but scaled with a different
scaling factor. In order to determine the proper scaling factor, a
number of candidates (in the range from 50 to 150) are tested.
For each scaling factor, we estimated the time-series of the four
low-degree coefficients and the associated combined formal error.
According to Fig. 10, the optimal scaling factor is 120. The choice
of the scaling factor has minor effects on the estimated coefficients
but strongly affects the formal error estimation.

The final time-series are shown in Fig. 11(a), where the degree-1
time-series are compared against the solutions from the GRACE-
OBP-Swenson approach (Swenson et al. 2008), and the C20 time-
series is compared to an SLR solution (Cheng et al. 2013a). Our
C10 and C11 time-series have larger annual amplitudes while the S11

time-series is almost indistinguishable from the Swenson’s solution.
Our C20 time-series is free of large anomalies with a period of
161 days and has other considerable differences from the SLR one,
especially after 2011. Note that our C20 time-series shows a more
pronounces annual cycle, which is reasonable in view of a seasonal
mass exchange between oceans and continents.

We compare also the low-degree coefficients estimated with dif-
ferent techniques in terms of annual variations (Table 1), we see that
annual variations predicted with the combination approach and the
GRACE-OBP-Improved approach are in line with those based on
independent techniques. An exception is a discrepancy in the annual
phase estimates of C10. Solutions based on GRACE and OBP data,
including those based on the combination approach, the GRACE-
OBP-Improved approach, and the GRACE-OBP approach, are more
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Figure 9. The same as Fig. 6, but the quality indicator for annual variations
is shown instead of quality indicator for RMS error.

than a month behind those based on other techniques. We show in
the next section (Section 6) that the GRACE-OBP-based solutions
are likely more accurate.

One of the advantages of the combination approach is that
it provides the noise variances and covariances of the estimated
coefficients in a natural way (Fig. 11b). We show that the for-
mal errors of degree-1 and C20 coefficients are different from
month to month and generally larger than those documented
in the product based on GRACE-OBP-Swenson (ftp://podaac.
jpl.nasa.gov/allData/tellus/L2/degree_1/deg1_coef.txt). The corre-
lations between the errors in these coefficients are rather small
except those between C10 and C20 (Fig. 11c). This is expected be-
cause the polar areas play the major role in the separation of these
coefficients (the corresponding surface spherical harmonics reach
their local maxima in absolute value). However, there is a lack of
oceanic data in the southern polar region caused by the presence
of the Antarctica. On the other hand, the zonal degree-1 and -2
spherical harmonics in the northern polar region are of the same
sign. This means that a positive error in the C10 coefficient can be
largely compensated by a negative error in the C20 coefficient and
vice versa. Thus, these errors must show a strong anti-correlation.

6 W H I C H D E G R E E - 1 A N D C 20

S O LU T I O N T O U S E F O R E S T I M AT I N G
M A S S VA R I AT I O N S ?

Independent estimates of degree-1 and C20 coefficients are typically
used to correct GRACE solutions in order to obtain more accurate
estimates of surface mass anomalies. However, owing to the lack
of an accurate reference regionally or globally, it is difficult to
quantify the added value of this correction. GRACE users often
adopt a specific solution without justification for their choice. In this
section, we offer a simple way to evaluate the quality of degree-1 and
C20 coefficients. GRACE GSM solutions are used to estimate mass

Figure 10. Combined FRE and combined approximated ARE as functions
of the scaling factor. Note that the parameter setup is as follows: truncation
degree: 50, buffer zone width: 200 km.

variations within particular regions where the mass variations are
known to be minor, namely East Antarctica and the Sahara Desert
(e.g. Helsen et al. 2008; Liu et al. 2010). These regions are used as
validation areas. We estimate mass anomaly time-series there, using
the GRACE solutions corrected with different variants of degree-1
and C20 time-series. The best degree-1 and C20 time-series should
result in the smallest mass variations over the selected validation
areas. Note that the mass anomalies over validation areas at different
geographic locations may not be sensitive to all the coefficients. It
is thus important to select more than one well-separated regions as
the validation areas.

We have prepared 7 versions of GRACE solutions by using dif-
ferent combinations of degree-1 and C20 coefficients:

(i) Ori GRC: Original GRACE CSR RL05 solutions as they are.
That is, zero degree-1 coefficients and the native GRACE C20 are
adopted.

(ii) SLRDeg1 + SLRC20: GRACE solutions complemented
with SLR-based degree-1 (Cheng et al. 2013b) and C20 coefficients
(Cheng et al. 2013a).

(iii) INVDeg1 + SLRC20: GRACE solutions corrected
with degree-1 coefficients based on the joint inversion ap-
proach (Rietbroek et al. 2016) (https://doi.pangaea.de/10.1594/
PANGAEA.855539) and SLR C20 coefficients.

(iv) SWEDeg1 + SLRC20: GRACE solutions complemented
with degree-1 coefficients based on the GRACE-OBP-Swenson ap-
proach (Swenson et al. 2008); C20 coefficients are based on SLR
data . This is the traditionally used approach.

(v) CMBDeg1 + CMBC20: GRACE solutions corrected with
the degree-1 and C20 coefficients provided by the combination ap-
proach.

(vi) CMBDeg1 + SLRC20: GRACE solutions corrected with
the degree-1 coefficients provided by the combination approach
and SLR C20 coefficients.

ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/deg1_coef.txt
ftp://podaac.jpl.nasa.gov/allData/tellus/L2/degree_1/deg1_coef.txt
https://doi.pangaea.de/10.1594/PANGAEA.855539
https://doi.pangaea.de/10.1594/PANGAEA.855539
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Figure 11. Final solutions for degree-1 and C20 time-series (a), their formal error estimates (b) and correlation coefficients (c) based on the combination
approach. In panel (a), linear trends are removed. Results are offset for clarity. The coloured bands show the 2-σ uncertainties. The black dashed line shown in
panel (b) (denoted as ‘Swenson et al.’) is taken from the official product based on (Swenson et al. 2008) (see the text).

Table 1. Estimated amplitudes and phases of the annual variations of degree-1 and C20 coefficients, based on real data. The contribution of atmosphere and
ocean (GAC) is restored. Please note that the annual amplitude A and phase φ are defined by Acos (2π (t − t0) − φ), where t0 refers to January 1 of a particular
year. The solutions ‘Combination approach *’ and ‘Combination approach **’ are estimated over reduced time intervals to be more comparable with those
from Wu et al. (2015) and Rietbroek et al. (2012).

C10 C11 S11 C20

Amp Pha Amp Pha Amp Pha Amp Pha Time span
(mm) (day) (mm) (day) (mm) (day) (10−11) (10−11)

Combination approach 3.2 ± 0.2 66 ± 3 2.4 ± 0.1 61 ± 3 2.6 ± 0.1 333 ± 2 16.2 ± 0.7 48 ± 3 2002 Aug – 2014 Jun
Combination approach * 3.1 ± 0.2 64 ± 3 2.4 ± 0.1 58 ± 3 2.6 ± 0.1 333 ± 2 15.7 ± 0.7 47 ± 3 2002 Aug – 2009 Apr
Combination approach ** 3.0 ± 0.2 64 ± 3 2.5 ± 0.1 57 ± 3 2.6 ± 0.1 334 ± 2 15.4 ± 0.7 46 ± 3 2003 Jan – 2008 Dec

GRACE-OBP-Improved 2.9 ± 0.2 68 ± 3 2.3 ± 0.1 52 ± 3 2.9 ± 0.1 327 ± 2 16.1 ± 0.7 47 ± 3 2002 Aug – 2014 Jun
GRACE-OBP-Swenson 1.9 ± 0.1 65 ± 4 1.9 ± 0.1 53 ± 3 2.5 ± 0.1 319 ± 2 2002 Aug – 2014 Jun
INV (Rietbroek et al. 2012) 1 3.0 18 2.1 56 3.4 327 2003 Jan – 2008 Dec
INV (Rietbroek et al. 2012) 2 2.2 31 2.0 63 3.4 326 2003 Jan – 2008 Dec
INV (Rietbroek et al. 2016) 3.5 ± 0.1 66 ± 3 2.2 ± 0.1 58 ± 2 2.7 ± 0.1 325 ± 2 2002 Aug – 2014 Jun
(Wu et al. 2015) 1 3.9 ± 0.1 21 ± 1 2.1 ± 0.1 45 ± 1 2.7 ± 0.1 321 ± 1 2002 Apr – 2009 Apr
(Wu et al. 2015) 2 3.3 ± 0.1 22 ± 3 1.9 ± 0.1 54 ± 2 2.6 ± 0.1 322 ± 1 2002 Apr – 2009 Apr
(Wu et al. 2015) 3 3.5 ± 0.1 19 ± 1 1.9 ± 0.1 52 ± 1 3.0 ± 0.1 337 ± 1 2002 Apr – 2009 Apr
SLR (Cheng et al. 2013b) 4.2 ± 0.3 33 ± 2 2.9 ± 0.4 49 ± 4 2.7 ± 0.1 339 ± 2 2002 Aug – 2014 Jun
SLR (Cheng et al. 2013a) 14.1 ± 0.7 53 ± 3 2002 Aug – 2014 Jun

(vii) GODeg1 + GOC20: GRACE solutions corrected with
the degree-1 coefficients and C20 provided by the GRACE-OBP-
Improved approach (Sun et al. 2016b).

It should be noted that we have also used a filtered GRACE
solution based on DDK-4 (Kusche et al. 2009). Besides, multiple
sub-regions are selected as validation areas in each of two places.
However, the results are very similar and thus we show the results
based on one of the areas. The linear trends in the resultant mass
transport time-series are subject to large uncertainties and are not

comparable. The linear trends in SLR-based degree-1 coefficients
reflect merely drifting errors with respect to the origin of the In-
ternational Terrestrial Reference Frame (ITRF). Degree-1 solutions
from other considered approaches involve the use of a GIA model.
However, the adopted GIA models are different and all contain
large uncertainties of unknown magnitude. Therefore, trends and
seasonal variations in the resulting mass transport time-series must
be assessed independently. Here, we will focus on the seasonal vari-
ations (Sections 6.1 and 6.2). The quality of the trend estimates in
our degree-1 and C20 solutions are not assessed in the following
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Figure 12. Mass variations in the validation area at East Antarctica. In panel (a), we show the signal RMS in terms of equivalent water heights. The study area
is indicated with a red polygon (45◦E/120◦E/76◦S/84◦S). Panel (b) shows RMS values of mass anomaly time-series as a function of truncation degree. Panels
(c) and (d) show the mean mass anomaly per calendar month. The shadowed colour bands indicates the spread of the monthly mass anomalies. Note that the
calendar month 0 represents December of the previous year. In panel (c), we show the results based on the GRACE solutions after replacing the C20 coefficients
with those from independent approaches. In panel (d), we show results when the GRACE solutions are further complemented with degree-1 coefficients based
on different approaches.

experiments. Nevertheless, we show the resulting trend estimates in
the mass transport time-series over both validation areas (Section
6.3). These trend estimates are obtained based on the assumption
that the GIA model provided by A et al. (2012) is free of error. It

is worth noting that under such an assumption, the combination ap-
proach, which is a generalised GRACE-OBP-Improved approach,
should be able to recover the true linear trends in the degree-1 and
C20 time-series (Sun et al. 2016b).
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Table 2. RMS of mass anomaly (integrated over validation areas) obtained
by averaging the corresponding time-series. In this table, we intend to
show explicitly the numbers based on four solutions, namely, Ori GRC,
CMBDeg + CMBC20, CMBDeg1 + SLRC20 and GODeg1 + GOC20
for a truncation degree of 50. See Section 6 for the meaning of abbreviations
in the first column.

GRACE solutions East Antarctic Sahara Desert
(cm) (cm)

Ori GRC 0.92 0.78
CMBDeg1 + CMBC20 0.33 0.35
CMBDeg1 + SLRC20 0.34 0.39
GODeg1 + GOC20 0.29 0.31

6.1 Mass variations in East Antarctica

There are no physical processes that would be able to cause large
mass variations in the interior of East Antarctica (Helsen et al.
2008). Therefore, the GRACE solution augmented with the optimal
degree-1 and C20 estimates should result in the minimal mass vari-
ations. However, one should bear in mind that mass anomalies in
this region are sensitive to only the zonal coefficients, that is, C10

and C20.
In the background of Fig. 12(a), we show the RMS mass anomaly

based on the solution from the combination approach in the con-
sidered time interval (2002 - 2014). One of the tested regions (or
validation areas) in this area is indicated in the panel with a red poly-
gon. All variants of GRACE solutions are employed to estimate the
total mass variations within the validation area, and the resulting
RMS estimates of the de-trended mass variation time-series (as a
function of the truncation degree) are shown in Fig. 12(b).

It can be seen that the RMS value of the mass variation time-series
based on the original GRACE solution (Ori GRC) is about 0.9 cm.
It reduces by more than 50 per cent when we use INVDeg1 +
SLRC20, and is further reduced if we apply the SWEDeg1 +
SLRC20 or CMBDeg1 + CMBC20. Results based on the later
solution is improved by about (10 20 per cent) compared to that
based on the traditional approach. In contrast, using SLRDeg1 +
SLRC20 worsen the results by about 20 per cent. For clarity, results
based on CMBDeg1 + SLRC20 as well as GODeg1 + GOC20 are
not shown in the figure as they are very close to the CMBDeg1 +
CMBC20, but the corresponding resultant RMS values of the time-
series is documented in Table 2. We will discuss the results later in
Section 7.

Note that the truncation degree of the GRACE solution (between
30 and 60) obviously plays a minor role in the RMS estimates,
which implies that the validation area is large enough to ensure a
cancellation of random errors in high-degree coefficients.

Subsequently, we calculate the mean mass anomaly per calendar
month and show the effect of replacing C20 and adding degree-1 co-
efficients in panels (c) and (d), respectively. In the Ori GRC case,
a clear seasonal pattern is revealed. Replacing the original C20 co-
efficients with those from SLR data and the combination approach
show some differences but does not significantly change the resul-
tant seasonal pattern (Fig. 12c). Such a seasonal pattern can thus be
attributed to either the absence of the degree-1 coefficients or errors
in higher-degree coefficients. However, the total mass variations of
the validation area are obtained by integrating all data points within
the area. Mass anomalies due to high-degree errors are random and
would unlikely show a seasonal pattern. Also, as previously showed
(Fig. 12b), increasing the truncation degree does not significantly
change the RMS estimates of the mass transport time-series. This
is an indication that the errors in high-degree coefficients indeed

largely cancel each other. Furthermore, different validation areas in
East Antarctica are employed, but the revealed seasonal pattern is
quite consistent. This contradicts to the nature of high-degree errors
as their impact changes quickly from location to location. Therefore,
we believe that the observed season pattern is mostly due to the lack
of the degree-1 coefficients. Indeed, once the GRACE solutions are
complemented with proper estimates of degree-1 coefficients (based
on the joint inversion approach, GRACE-OBP-Swenson approach,
or the combination approach), the seasonal pattern significantly re-
duces or disappears (Fig. 12d). Remarkably, after using degree-1
solutions from SLR, the resulting seasonal pattern is in anti-phase,
as compared to the one produced without degree-1 coefficients.

6.2 Mass variations in the Sahara Desert

We further conduct a similar analysis for validation areas in the
Sahara Desert, another place with minimal mass variations. Vali-
dation areas in this region should allow us to check the quality of
the tesseral coefficients, and in particular of C11 coefficient among
the four estimated coefficients, as the surface spherical harmonic of
degree 1 and order 0 reaches maximum in that area, exceeding the
other three surface spherical harmonic under consideration.

In Fig. 13, we show the considered validation area (indicated with
a red polygon in panel a). The resulting RMS value of the mass vari-
ation time-series based on various version of GRACE solutions are
shown in panel b. This time, we notice that SWEDeg1 + SLRC20
is able to reduce the RMS value by about 50 per cent. INVDeg1 +
SLRC20 and CMBDeg1 + CMBC20 manage to further reduce the
RMS estimates by about 0.1 cm. On the other hand, SLRDeg1 +
SLRC20 worsen the results significantly.

A clear seasonal pattern reveals itself in the mass variation time-
series based on the Ori GRC (Fig 13c). Switching C20 coefficient
between different variants barely changes the resultant seasonal pat-
tern. This is expected because the zonal degree 2 surface spherical
harmonic at the latitude of 22.5◦ is only 30 per cent of the values at
the poles. Adding the degree-1 coefficients based on the GRACE-
OBP-Swenson, joint inversion or the combination approach to the
GRACE solutions reduces the annual amplitude of the seasonal pat-
tern (Fig. 13d). When using the SLR-based degree-1 coefficients,
we end up having an even more prominent seasonal pattern, which
again, is in anti-phase with the original one.

6.3 Trend estimates in mass transport time-series

In Table 3, we show the linear trend estimates extracted from differ-
ent mass transport time-series for both validation areas. Note that
the GIA contributions are cleaned from all variants of the GRACE
solutions, including both low- (degree-1 and C20) and high-degree
coefficients. Therefore, the obtained trend estimates should reflect
the present-day mass transport rates. The large discrepancy between
these trend estimates suggests the large uncertainty in GIA models
(e.g. Klemann & Martinec 2011; A et al. 2012).

7 C O N C LU S I O N S A N D D I S C U S S I O N

We have developed a combination approach for a statistically opti-
mal estimation of degree-1 and C20 coefficients. We have also shown
that the combination approach is a generalization of the GRACE-
OBP approach proposed by Swenson et al. (2008) and improved by
Sun et al. (2016b). If GRACE data are free of noise, whereas noise
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Figure 13. Same as Fig. 12, but showing mass transport in the validation area at the Sahara Desert (6◦W/30◦E/15◦N/30◦N).

in OBP data is white, then the combination approach reduces to the
GRACE-OBP-Improved approach.

Based on the numerical experiments, we find that the overall
quality of the resultant degree-1 and C20 time-series can be largely
improved (RMS errors are reduced by about 30 per cent) by tak-
ing into account the stochastic information of noise in the input
data sets. Degree-1 and C20 coefficients based on real data are then
computed. The obtained annual variations are similar to those of
other approaches. However, we do notice that the annual ampli-

tude of the SLR C10 time-series is about 1 mm larger than our
estimates as well as many others. The annual phase of our C10 coef-
ficients is more than a month later than the SLR- and GPS-derived
solutions (Rietbroek et al. 2012; Cheng et al. 2013b; Wu et al.
2015) but close to the solution based on GRACE and altimetry
data (Rietbroek et al. 2016). Error estimates and the correlation
coefficients are also important product of the proposed approach.
Remarkably, they are provided not as constant numbers, but as time-
series.
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Table 3. Estimates of linear trends in the resulting mass transport time-series
(August 2002–June 2014). See Section 6 for the explanation of the names
in the first column. Note that the degree-1 solution denoted by INVDeg1.
These degree-1 coefficients are associated with surface load only and the
modelled GIA signals are not restored. In the last two rows, we also show
the results after restore GIA signals to the GRACE solutions.

GRACE solutions East Antarctic Sahara Desert
(cm yr−1) (cm yr−1)

Ori GRC − 0.58 ± 0.06 0.11 ± 0.04
SWEDeg1 + SLRC20 0.00 ± 0.03 − 0.10 ± 0.03
INVDeg1 + SLRC20 0.10 ± 0.03 − 0.08 ± 0.03
GODeg1 + GOC20 − 0.39 ± 0.03 0.05 ± 0.03
CMBDeg1 + CMBC20 − 0.45 ± 0.03 0.11 ± 0.03

GODeg1 + GOC20 GIA restored 0.14 ± 0.03 0.04 ± 0.03
CMBDeg1 + CMBC20 GIA restored 0.08 ± 0.03 0.10 ± 0.03

To validate the resulting degree-1 and C20 coefficients, we se-
lected two validation areas with minimal mass variations (central
East Antarctica and Sahara Desert). Those areas are used to com-
pare estimates of surface mass anomalies obtained from GRACE
solutions corrected with 7 different combinations of degree-1 and
C20 coefficients in estimating surface mass anomalies. It should be
noted that the mass anomalies in the selected validation areas are
relatively insensitive to the S11 coefficients. Fortunately, seasonal
signals in the S11 time-series are the most consistent (among the
three degree-1 coefficients) between the results from different tech-
niques (Table 1). This is likely because the S11 coefficient (or the Y
component of the geocentre motion), is well controlled by spatial
variations of mass and gravity field at non-polar areas centred at 90◦

and 270◦ longitudes, and those areas are relatively well represented
in the networks of both SLR and GPS stations.

Even though the annual amplitude of the C10 time-series based on
Swenson et al. (2008) is reported to be small, it results in reasonable
surface mass anomaly estimates. In contrast, the SLR-based degree-
1 coefficients (Cheng et al. 2013b) are not sufficiently accurate for
estimating surface mass anomalies. Probably, the annual amplitude
is overestimated and the annual phase is wrongly estimated. This
finding is consistent with the fact that SLR technique is relatively
inaccurate in the estimation of the C10 and C11 coefficients SLR
is inaccurate due to a poor quality of tropospheric corrections, too
few ground stations in polar areas, and the absence of stations over
oceans.

Contradictory to the numerical results, the degree-1 and C20

solution from the GRACE-OBP-Improved approach (GODeg1 +
GOC20) performs slightly better (about 10 per cent) than that based
on the proposed approach in terms of the resulting RMS values of
the mass transport time-series. The reasons are still under investi-
gation.

By switching from the C20 solutions based on the combination
approach to those obtained with the SLR technique (while applying
the same degree-1 solution based on the combination approach), we
find a marginal difference (about 10 per cent) in the resultant RMS
value of the mass transport time-series. This is an indication that
our C20 time-series and the SLR-based one are of similar quality.

As far as the future developments are concerned, the combina-
tion approach will benefit from improvements in the input data sets.
Future OBP models will likely be more accurate. More realistic co-
variance matrices for OBP noise will further enhance the advantage
of this approach. In order to also address the linear trends in degree-
1 and C20 coefficients, a better way of dealing with the solid Earth
signals is warranted. Until now, those signals are accounted for with

a GIA model, which is assumed to be free of errors. However, large
uncertainties in GIA modelling and the fact that tectonic signals are
ignored (e.g. due to megathrust earthquakes) could substantially
affect the trend estimates in the low-degree coefficients.

Finally, our products after taking into account the full er-
ror covariance matrices of the GRACE data and a more ad-
vanced error model for the OBP products are publicly available
at http://www.citg.tudelft.nl/deg1c20).
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A P P E N D I X A : G E N E R A L F O R M O F DATA C O M B I NAT I O N

dc = (
AT

1 C−1
1 A1 + AT

2 C−1
2 A2 + . . . + AT

n C−1
n An

)−1 ·(
AT

1 C−1
1 d1 + AT

2 C−1
2 d2 + . . . + AT

n C−1
n dn

)
, (A1)

where A1, A2, . . . , An are design matrices and C1, C2, . . . , Cn are the noise variance-covariance matrices corresponding to data sets d1,
d2, . . . , dn, respectively.

A P P E N D I X B : E X P L I C I T F O R M O F E Q UAT I O N ( 2 0 )

In eq. (20), Y
′

is a K × 4 matrix that can be written explicitly as

Y
′ =

⎡
⎢⎢⎢⎢⎢⎣

P10(cos θ1) P11(cos θ1) cos φ1 P11(cos θ1) sin φ1 P20(cos θ1)

P10(cos θ2) P11(cos θ2) cos φ2 P11(cos θ2) sin φ2 P20(cos θ2)

...
...

...
...

P10(cos θK ) P11(cos θK ) cos φK P11(cos θK ) sin φK P20(cos θ3)

⎤
⎥⎥⎥⎥⎥⎦ , (B1)

where θ and φ are the colatitude and longitude at point k, respectively.
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Therefore, Y
′T OY

′
becomes a 4 × 4 matrix

Y
′T OY

′ =

⎡
⎢⎢⎢⎢⎣

I 10C
10C I 10C

11C I 10C
11S I 10C

20C

I 11C
10C I 11C

11C I 11C
11S I 11C

20C

I 11S
10C I 11S

11C I 11S
11S I 11S

20C

I 20C
10C I 20C

11C I 20C
11S I 20C

20C

⎤
⎥⎥⎥⎥⎦ , (B2)

where, the following notation is used

I 10C
11C =

∫
d
P10(cos θ )ϑ(θ, φ)P11(cos θ ) cos φ

I 11C
11S =

∫
d
P11(cos θ ) cos φϑ(θ, φ)P11(cos θ ) sin φ

Other elements are similarly defined. (B3)

Clearly, Y
′T Oh is composed of the oceanic degree-1 and C20 coefficients Cocean

10 , Cocean
11 , Socean

11 and Cocean
20 .

Finally, we have

Y
′T Ohg =

⎡
⎢⎢⎢⎢⎢⎣

∫
d
P10(cos θ )ϑ(θ, φ)hg∫
d
P11(cos θ ) cos φϑ(θ, φ)hg∫
d
P11(cos θ ) sin φϑ(θ, φ)hg∫
d
P20(cos θ )ϑ(θ, φ)hg

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−G10C

−G11C

−G11S

−G20C

⎤
⎥⎥⎥⎥⎦ (B4)

A P P E N D I X C : B A S I C I D E A S O F T H E A P P ROA C H B Y D I T M A R E T A L . ( 2 0 1 7 ) F O R T H E
Q UA N T I F I C AT I O N O F R A N D O M N O I S E I N A DATA T I M E - S E R I E S

That approach is based on the assumptions that (i) true signal in the data time-series is close (but not necessarily equal) to a combination of
an annual periodic signal and a linear trend; (ii) noise in the time-series is uncorrelated and (optionally) non-stationary; (iii) time-series of
noise variances is known up to a constant multiplier (scaling factor). Then, the data time-series is approximated by a regularized one on the
basis of a properly designed regularization functional (
[H]):


[H ] =
K−1∑
k=1

(hk+1(t) − hk(t))2dt, (C1)

where K is the total number of years considered and hk(t) is by definition the mass anomaly in the kth year; hk + 1(0) = hk(1) due to the
continuity of H(t).

The optimal regularization parameter is estimated with the Variance Component Estimation (VCE) technique (Koch & Kusche 2002),
which includes the proper scaling of the provided noise variances. Then, the time-series of scaled noise variances is the measure of actual
random noise in the considered data.


