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Abstract

The human body is the subject of several interesting phenomena and blood flow comes under
that category. The main motivator for this thesis is the flow of blood in aneurysms. An
aneurysm is a sudden expansion of an artery, with large expansion angles causing an adverse
pressure gradient and leading to flow separation. Several studies have shown the transitional
nature of the flow in aneurysms, and it has been seen that the variation of the wall shear
stress from cycle-to-cycle is one of the major reasons for the growth of aneurysms, and possibly
leading to their rupture at a later stage. It has also been noticed that the turbulent kinetic
energy (TKE) does not decay with the mean flow kinetic energy and the periodic kinetic
energy of the cardiac cycle. Therefore, it is intersting to research the turbulent decay to
see how the flow in an aneurysm can be affected. However, the number of variables in an
aneurysm are too high to effectively characterise this, and therefore, a simplified geometry
was chosen. Pipe flow is a good choice to start with, as it can mimic the wall-bounded nature
of an aneurysm. It also has a well-defined statistically steady turbulent state from where the
decay of turbulence can be studied. Additionally, blood being a non-Newtonian fluid, makes
it interesting to study the effects of shear-thinning.
To this extent, a Direct Numerical Simulation (DNS) study has been carried out using a
higher-order spectral element method code. First, statistics for fully-developed pipe flow
are compared with existing results. To a fully-developed turbulent state, a deceleration is
applied to bring the flow to a steady, laminar state. The decay of the turbulent quantities is
monitored during this process. Comparison studies are undertaken to study the influence of
the ramp rate, the dependence of the decay on the initial Reynolds number, and the variation
of the results between Newtonian and generalized Newtonian fluids. A modelling approach
using RANS has also been undertaken to see if only studying the mean flow is sufficient to
characterize the decay.
It is seen that two regimes of decay exist – a power-law decay based on turbulent scaling, and
an exponential viscous decay. The power-law decay is further divided into two stages – one
before the saturation of the integral length scale, and one after the saturation of the length
scale – with the maximum length scale being set by the diameter of the pipe. The exponential
model has been validated using the hypothesis of Skrbek 2008. The point of divergence from
the power-law to the exponential decay has been hypothesized here. It is seen that for all the
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cases studied, the point of divergence occurred at Reτ = 60. It is noticed that the decay is
independent of the ramp rates when they are applied at times on the order of magnitude of
1 Eddy Turnover Time (ETT). The decay does show a dependence on the initial Reynolds
number and the reasons for this are hypothesized. The RANS modelling used was found to
be insufficient due to the inability of the RANS model to gauge the size of the domain. For
generalized Newtonian fluids, it is noticed that the decay rate increases with shear-thinning.
The results obtained are discussed in the context of an aneurysm. Based on the diameter,
length and flow rate of the aneurysm, it can be hypothesized at which stage of decay the
flow is, and based on this, it has been discussed whether using a non-Newtonian modelling
approach is more beneficial than using a Newtonian approach for the decay.
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"There is a physical problem that is common to many fields, that is very old,
and that has not been solved. It is not the problem of finding new fundamental
particles, but something left over from a long time ago – over a hundred years.
Nobody in physics has really been able to analyze it mathematically satisfactorily
in spite of its importance to the sister sciences. It is the analysis of circulating or
turbulent fluids."
— Richard P. Feynman, The Feynman Lectures on Physics Vol 1





Chapter 1

Introduction

Turbulence is observable everywhere in our day-to-day life. From natural flows, such as smoke
rising from a chimney, to moving objects, like airplanes and cars, to important technological
applications, such as, heat exchangers and nozzles, the prevalence of turbulence is evident.
It plays an important role in geophysical flows arising in the atmosphere and the ocean,
while also being crucial to transport phenomena. Nearly every outdoor sport in the world
is somehow or the other affected by turbulence, both advantageously and disadvantageously
(Pope 2000).

Interest in turbulent flows has been omnipresent. It remains an unsolved problem from
a physical as well as a mathematical point of view, and it is seen that insufficient turbu-
lence modelling is the most obstructive factor in determining solutions for practical problems
(Nieuwstadt et al. 2016). Drawing a comparison between turbulent flows and its’ counter-
part, laminar flows, it is seen that the main contrast between the two is the state of order.
Laminar flow is ordered, smooth and regular, while turbulence is disordered, characterised
by fluctuations and outright chaotic (Nieuwstadt et al. 2016). These characteristics make
turbulence a very interesting subject to research.

Blood flow in arteries is a high motivator for the current study. It is a pulsating flow,
dominated by unsteady phenomena (Ku 1997). During diastole, the flow can be zero or even
reversed in certain arteries. Hemodynamic parameters play a crucial role in determining
treatment options for atherosclerosis, arterial stenoses, and aneurysms (Steinman 2012). In
particular, this work is focused on understanding the blood flow in an aneurysm. An aneurysm
is a sudden expansion of the artery, with large expansions leading to blood flow separation
on entry. In their Computational Fluid Dynamics (CFD) simulation, Rawat et al. 2019 show
that the computational model for the aneurysms are subject to the formation of vortex rings,
with the setting in of azimuthal instabilities causing the ring to destabilize and break down.
The whole mechanism is privy to turbulent fluctuations, and this has also been noticed in
other studies of aneurysms, even when the flow is predominantly laminar for the majority
of the cardiac cycle (Biasetti et al. 2011). The pulsatile nature of blood flow can lead to
cyclic transition to turbulence in aneurysms (Yip et al. 2001). This transitional nature leads
to significant variation in wall shear stress distributions in the artery, even in consecutive
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2 Introduction

cardiac cycles (Poelma et al. 2015). Additionally, it is also seen that the turbulent kinetic
energy (TKE) peaks at a diferent time in a cycle, as compared to the mean flow and periodic
kinetic energies (see Figure 1.1) (Poelma et al. 2015). These variations in flow quantities
are shown to be of major importance in analysing the origin, progression and possibly, the
rupture of the aneurysm, and thus, are crucial in providing proper care for the artery.

(a) (b)

Figure 1.1: (a) An abdominal aortic aneurysm with an expansion on flow entry (b) Variation of
the different kinetic energies per cycle (Images from Poelma et al. 2015)

An interesting aspect of blood flow is the non-Newtonian nature of blood (viscosity varying
with shear rate, strain rate or other factors). The range of applicability of the non-Newtonian
nature of blood in aneurysms is subject to considerable debate (Steinman 2012). Blood is
considered to be a shear-thinning fluid (Steinman 2012), where shear-thinning is defined as a
decrease in viscosity as shear rate increases (Macosko 1994). Yip et al. 2001 state that blood
can be treated as a Newtonian fluid for small internal diameters of arteries (upto 1 mm),
and at high strain rates (80 s−1 and above). Other studies such as, Biasetti et al. 2011 find
variations of up to 10% while predicting the wall shear stress in aneurysms, by using a non-
Newtonian, shear-thinning model for blood, as compared to the Newtonian model. Arzani
2018 proposes including rouleaux formation in non-Newtonian models to account for variable
shear-thinning behaviour based on the residence time of blood, and claims this to be highly
accurate to determine exact locations of low and high shear rates, and therefore, determine
the behaviour of the hemodynamic parameters more precisely.

It is clear from the literature on aneurysms, that the number of variable parameters governing
the flow in an aneurysm are too many. This makes quantifying turbulence, and in particular,
transition in aneurysms, very hard. Therefore, it becomes necessary to simplify things to
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isolate the effects seen in aneurysm, and to obtain more clarity about them. The geomet-
rical nature of an artery is similar to a pipe, and turbulent pipe flow is better understood.
Expounding further on non-Newtonian applications in pipe flow, drag reducing dilute poly-
mer solutions, and slurry transport in pipes can also be modelled as non-Newtonian fluids,
and thus, it is of considerable interest to study the same. The subject of laminar-turbulent
transition in pipe flow has been widely regarded for these specific fluids as well (Draad et al.
1998; Peixinho et al. 2005; Radhakrishnan et al. 2020). The non-Newtonian nature coupled
with the linear stability of pipe flows provides great complexities in understanding this topic.

In several aneurysms, it is noticed that the turbulence decays within a cardiac cycle itself.
The cycle-to-cycle variations are then absent, since the initial conditions are the same. For
larger aneurysms, the turbulence remains within an aneurysm and does not decay completely
(see Figure 1.1 again), which gives rise to the cycle-to-cycle variations. Since it is interesting
to discuss the breakdown of turbulence in an aneurysm, this study is focused on the decay of
turbulent pipe flow. Studying decay of turbulence in pipe flow can serve as a good building
block. It can also be useful in quantifying transitional flow, and also provide some detail on
how transition can be predicted. The physics behind turbulence decay in pipes is a highly
debated topic, enabling discussion on the very nature of turbulence itself.

As mentioned above, the important property of these processes is that they are nonlinear and
highly chaotic, which makes analyzing them theoretically a tough task (Sekimoto et al. 2016).
Direct Numerical Simulation (DNS) is a powerful tool that provides rich data sets, and has
been recently moving into the same range of Reynolds numbers as most experiments. It has
been at the forefront of understanding turbulence, with studies ranging from pulsatile flow
(Varghese et al. 2007) and vortex rings (Archer et al. 2008), to realizing pipe flows (Eggels
et al. 1994; Toonder et al. 1997a) and grid turbulence (Touil et al. 2002; Biferale et al. 2003).
Therefore, to study the decay, DNS using a high-order spectral element code will be carried
out. Higher-order methods are more accurate and thus, it is sensible to employ this to study
transition, which is a sensitive phenomenon by nature.

This report entails a description of the important physical and technological aspects related
to this project. It starts with a brief introduction of wall-bounded turbulence and turbulent
pipe flow, for both Newtonian and non-Newtonian fluids, in Chapter 2. Chapter 3 provides
insight on previous studies related to decay of turbulence, and tries to connect existing ideas
with the problem at hand. Chapter Chapter 4 gives a description of the spectral element
method, and the code which will be used to evaluate this problem. The methodology used
is validated and the results for this are shown in Chapter 5. Finally, the results of the study
are presented in Chapter 6, and some discussion is presented on the validity and quality of
the results obtained.
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Chapter 2

Pipe Flow

To quantify the problem described in Chapter 1, the idea of turbulence will be developed
from basic concepts. This chapter will elucidate some of the basic ideas applicable to all
kinds of turbulence, followed by an explanation of wall-bounded turbulence and pipe flows
specifically. It is then followed by a description on non-Newtonian modelling of viscosity and
its applicability to turbulent pipe flows.

2-1 General Characteristics of Turbulence

As mentioned previously, turbulence is characterised by chaos. It is the general belief, that
turbulence exists in vortical structures, called eddies. Turbulence can be thought of to occur
at two scales – the macrostructure, involving the largest length scales, and the microstructure,
having the smallest dimensions (Nieuwstadt et al. 2016). The macrostructure is characterized
by a length scale, L, and a velocity scale, U . These are generally properties of the flow
geometry. Every flow can be characterised by a Reynolds number, defined as the ratio of the
inertial forces to the viscous forces.

Re = UL
ν

(2-1)

For a fully turbulent flow, Re >> 1, which implies that the flow is dominated by inertia
and nonlinear processes, as compared to viscous effects. The large-scale structure is thus,
independent of the only property determined by the fluid, the viscosity (Nieuwstadt et al.
2016).

Turbulence is highly dissipative. Proceeding in a similar fashion as before, if the kinetic energy
scales as e ∼ U2, and the characteristic time scale as τ ∼ L/U , then the rate of dissipation is
given by

ϵ ∝ U3

L
(2-2)

Eq. 2-2 can be inferred as the loss of energy of the macrostructure through instability pro-
cesses, which has to be dispelled at a lower scale as heat or friction. The only available
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2-2 Turbulent Pipe Flow and its Structure 5

mechanism for the dissipation to occur is through viscosity, and this brings up the concept of
the microstructure. The gradient of the velocity can be large at small scales and that means
the viscosity can no longer be neglected (Nieuwstadt et al. 2016). Kolmogorov 1941 provided
one of the first ideas for the microstructure. The dissipation takes place through a cascade
process, wherein the input of energy occurs at the larger scales (L), which is transferred
onto smaller, intermediate scales (r), in the form of eddies, and then dissipated through even
smaller scales (η). The intermediate scales are large compared to the smallest scales, but
small with respect to the largest scales (η << r << L). They do not dissipate energy and
only transfer it. This intermediate range is called the inertial subrange. The overall energy
cascade now translates to the presence of large eddies in the macrostructure, which break-up
into smaller eddies and therefore, transfer energy to the microstructure. To appropriately
scale the microstructure, the important parameters to be considered are the viscosity, ν,
and the dissipation rate, ϵ. From a dimensional analysis, the following scales can be defined
(Kolmogorov 1941)

η =
(
ν3

ϵ

)1/4

, τ =
(
ν

ϵ

)1/2
, v = (νϵ)1/4 (2-3)

These are collectively called the Kolomogorov scales. It can also be noticed that Reη =
vη/ν = 1, which implies that friction is predominant in the microstructure as compared to
the macrostructure.

2-2 Turbulent Pipe Flow and its Structure

This section is dedicated to providing some insight on the structure and statistics of fully
developed pipe flow. It is important to quantify pipe flows, as this study will begin from a
realization of fully developed pipe flow, after which the decay of this turbulent state will be
researched. Above, the role of turbulence in pipe flows was elucidated. Therefore, it should be
no surprise that this is a field that has been studied extensively. The incompressible Navier-
Stokes equations, governing the temporal and spatial variation of the flow, can be written as
(Khoury et al. 2013)

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p+ 1

Reb
∇2u

(2-4)

where Reb = ubD/ν is the bulk Reynolds number dependent on the bulk mean velocity,
ub, and the pipe diameter, D. Pipe flows are simple in the sense that the mean flow is
axisymmetric, and the turbulent field is inhomogeneous in one direction only. Laufer 1954
performed experiments on turbulent pipe flows using hot wire anemometry. He explains a
division of the turbulent structure into three regions - the wall region, the central region and
the region in between connecting the two.

This concept has been further expanded by other authors. In fact, it has been generalised for
wall-bounded flows, such as channel flows and turbulent boundary layers. First, it is useful
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6 Pipe Flow

to introduce some quantities. Wall-bounded flows are characterized by existing friction from
the walls. Therefore, a wall friction velocity, u∗, can be defined as

u∗ =
√
τw

ρ
(2-5)

where τw is the wall shear stress. A scaling can be provided for the three regions mentioned.
For the outer region, which would be near the center of the pipe, the appropriate length scale
would be the radius, R, and an equivalent velocity scale would be the friction velocity, u∗
(Nieuwstadt et al. 2016). Then, a velocity defect law can be defined for the region as

u0 − u

u∗
= F

(
y

R

)
(2-6)

where u0 is a reference velocity, which is usually the mean centerline velocity in a pipe, unless
stated otherwise. Moving closer towards the wall, it is seen that the size of the eddies decrease
because of the influence of the wall. Eq. 2-6 is not valid in this region, and a new scaling is
required. Assuming that the flow is fully turbulent, a balance between the shear stress in the
region and the wall shear stress gives

u

u∗
= 1
κ

ln
(
y

y0

)
(2-7)

Here, y0 is an integration constant, and κ = 0.41 is the Von Kármán constant, which arises
from finding a closure relation for the turbulent stresses. This profile is logarithmic, and
therefore, called the logarithmic layer (Nieuwstadt et al. 2016). Eq. 2-7 is not valid at y = 0.
Thus, for the inner region, which is located near the wall, Prandtl’s law of the wall is followed
(Perry et al. 1986).

u

u∗
= F

(
yu∗
ν

)
(2-8)

This is called the viscous sublayer, as turbulent stresses are negligible here, and the fluctu-
ations arising in this region are induced by the layers above. To write the equations in an
appropriate manner, wall units are introduced – u+ = u/u∗ and y+ = yu∗/ν. From several
mean velocity measurements, it is noticed that the profile for the viscous sublayer is valid for
y+ < 5, and the logarithmic profile for y+ > 30. The region in between is called the buffer
layer, where no simple solution exists. This is a region of the flow where both the turbulent
and the viscous stresses are equally important (Nieuwstadt et al. 2016). It is also important
to match the logarithmic layer with the core region of the flow. A direct matching condition
for the velocity is not possible, and therefore, a matching condition is applied to the velocity
gradients. This gives rise to the velocity profile for the core as (Perry et al. 1986; Nieuwstadt
et al. 2016)

u0 − u

u∗
= 1
κ

ln
(
y

R

)
+A (2-9)

Using all the relations given above, the velocity in wall-bounded flows can be empirically
summarised as

u+ =
{
y+, 0 < y+ < 5
2.5 ln y+ + 5.5, y+ > 30

(2-10)
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2-2 Turbulent Pipe Flow and its Structure 7

(a) (b)

Figure 2.1: (a) Normalized axial mean velocity (b) Axial mean velocity scaled on inner variables
(Images taken from Eggels et al. 1994)

Eggels et al. 1994 provide good estimates for the velocity profile. The results show good agree-
ment with eq. 2-10. A plot depicting the profile, in both linear and logarithmic coordinates,
is given in Figure 2.1.

A conveninet approach to model turbulence is that any instantaneous turbulent quantity can
be split into two components - an average part, and a fluctuating part. This can be expressed
as

f = f + f ′ (2-11)

where a bar denotes the average of a quantity, and a prime denotes a fluctuating part. This is
referred to as the Reynolds decomposition. The average of fluctuating parts is zero (f ′ = 0)
(Nieuwstadt et al. 2016). Expanding eq. 2-4 in radial coordinates, (r, θ, z), introducing
Reynolds decomposition, and applying the conditions for fully developed flow (uθ = ur =
0 and ∂/∂θ = 0),

∂uz

∂z
= 0

1
ρ

∂p

∂z
= 1
r

∂

∂r

(
ν
∂uz

∂r
− ru′

zu
′
r

) (2-12)

It is easy to prove that ∂p/∂z = dp/dz, by differentiating the radial momentum equation
(not given here), with respect to z. This implies that p = p(z). The quantity u′

zu
′
r is the

normalized turbulent shear stress, also called the Reynolds stress (Laufer 1954). A wall
friction velocity can be defined as u∗ =

√
−ν(∂uz/∂r)r=R, and the normalized viscous shear

stress, −ν(∂uz/∂r), becomes u2
∗ at the wall. The total shear stress is given by

τrz

ρ
= u′

ru
′
z − ν

∂uz

∂r
(2-13)

For fully developed flow, the momentum balance yields the total shear stress as τrz/ρu
2
∗ =

2r/D, which is a linear profile. Additionally, the Reynolds stress is zero at both the wall and
the centerline. The variation of the shear stress is depicted in Figure 2.2.
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8 Pipe Flow

Figure 2.2: Total Shear Stress Normalized using ρu2
∗ at Re = 10,000 (Toonder et al. 1997a)

An interesting aspect of pipe flow is the dependence of statistics on the Reynolds number.
Toonder et al. 1997a conducted high-resolution LDV measurements in a turbulent pipe flow,
and found that the turbulence statistics scaled on inner-variables are Reynolds number de-
pendent for a range of Re = 5000 − 25000. This implies that the constants to depict the
logarithmic velocity profile are Reynolds number dependent as well, along with other higher-
order statistics, such as the skewness and the flatness.

The discussion on the energy budgets will play a key role in interpreting the results obtained
when the decay of turbulence is studied, and therefore, a short summary is provided here.
The turbulent kinetic energy budget can be defined as (Khoury et al. 2013)

Dk

Dt
= P k + ϵ+ Πk + Dk + T k (2-14)

where 2k = u′2
r +u′2

θ +u′2
z . The other terms are described as follows (the Einstein summation

convention is used here):

• P k = −u′
iu

′
j

∂ui
∂xj

: Production - Supply of energy by the mean flow, through interaction
with the turbulent shear stress

• ϵ = −ν
(

∂u′
i

∂xj

)2
: Viscous Dissipation - Always negative, acts as a sink for the turbulent

kinetic energy

• Πk = −1
ρ

∂p′u′
i

∂xi
: Pressure-related Diffusion: Turbulence transport by pressure fluc-

tuations

• Dk = ν
2

∂2u′
iu

′
j

∂x2
j

: Viscous Diffusion: Turbulence transport by viscosity

• T k = −1
2

∂u′
iu

′
iu

′
j

∂xj
: Turbulent Diffusion: Turbulence transport by velocity fluctuations

Figure 2.3 shows the contribution of the various terms to the turbulent kinetic energy budget.
From the definition of k, it is clear that the budget of k is obtained from the summation of
the budgets of the three turbulence intensities (Eggels et al. 1994). The major component
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2-2 Turbulent Pipe Flow and its Structure 9

Figure 2.3: Budget Terms Normalized by ν/u4
∗

contributing to the TKE is the term u′2
z . From Figure 2.3, it is seen that near the wall, the

dissipation is balanced by the viscous diffusion. Further away from the wall, in the buffer
layer, the production of turbulence reaches a maximum. This is then redistributed throughout
the flow by the different diffusion terms. Eggels et al. 1994 states that the viscous diffusion
plays an important role in redistributing the energy towards the wall, while the turbulent
diffusion is predominant in redistributing the energy in the buffer layer to the other regions
of the flow. Pressure diffusion is nearly zero in the budget - the term is important only for
the redistribution of energy from the axial component to the other two velocity components.

Several studies have also been dedicated to understanding the cascade process in pipe flow.
This involves plotting the energy spectrum at different locations, and determining the regions
of interest. Kolmogorov 1941 famously hypothesized that in the inertial subrange, the energy
spectrum is universal and is of the form,

E(k) = Cϵ2/3κ−5/3 (2-15)

where ϵ is the viscous dissipation and κ here refers to the wavenumber. This is easily proved
for homogeneous, isotropic turbulence, but is slightly more difficult to verify for cases that are
anisotropic. Laufer 1954 measured the various energy contributions and plotted the spectra.
He fit a -1 power law for the spectrum, but was unable to fit Kolmogorov’s universal -5/3
power law for higher Reynolds numbers, and thus, concluded that an inertial subrange doesn’t
exist in pipe flow. However, Lawn 1971 disputes this claim, and proved the existence of an
inertial subrange, and thus, the presence of a -5/3 power law.

The cascade of energy in a turbulent flow takes place through vortex stretching. The larger
eddies deform the smaller eddies, increasing the vorticity of the smaller eddies and transferring
energy to them. Wall-bounded flows are characterized by bursting. This involves the presence
of regions near the wall, where the velocity is small, and these are called low-speed streaks
(Nieuwstadt et al. 2016). Perturbations on these streaks will grow, and cause these streaks
roll up and form hairpin vortices. Hairpin vortices move low-speed fluid close to the wall
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10 Pipe Flow

into a region having a higher mean velocity away from the wall. This is induced by the two
counter-rotating vortices which form the base of the hairpin vortex, and are referred to as
ejections (u′

z < 0, u′
r > 0) (Araya et al. 2018). The hairpin vortices are stretched by the

mean deformation field, which leads to the growth of these local vortices, until they become
unstable and disintegrate into smaller structures. This process is called a "turbulent burst"
(Nieuwstadt et al. 2016). Most of the turbulent shear stress and kinetic energy is produced in
these bursting events. After bursting, high-speed fluid moving towards the wall replaces the
fluid close to the wall. This is called as a sweep event (u′

z > 0, u′
r < 0) (Araya et al. 2018).

The bursting process is crucial in trying to understand how the turbulence is produced and
dissipated. Another interesting observation of the process is made by Lee et al. 1990, where
the authors found the presence of streaks in homogeneous turbulence at high shear rates, that
were similar to the ones found in wall-bounded turbulence. Their study shows that a solid
boundary is not completely necessary for the production of streaks, and a high shear rate
alone could be sufficient. This is intriguing, as it raises the question, as to how similar a wall-
bounded flow is to homogeneous turbulence at high shear rates. This question becomes even
more important to answer when considering decay of turbulence, because of the predictability
of decay in homogeneous turbulence as compared to wall-bounded turbulence, and will be
revisited in later sections.

2-3 Non-Newtonian Modelling and Application in Pipe Flow

Some part of research is now dedicated to turbulent, non-Newtonian, fully-developed pipe
flow. This section is a means to understand the similarities and differences between Newtonian
and non-Newtonian with respect to the turbulence statistics. It is useful to introduce a few
concepts about non-Newtonian fluids here. Newtonian fluids are defined as those fluids for
whom the shear stress is directly proportional to the strain rate. Non-Newtonian fluids do not
adhere to this rule. First, the deformation gradient needs to be defined. The velocity gradient
is defined as ∇u = ∂ui/∂xj . Then, the deformation gradient is described as (Macosko 1994)

D = [∇u + (∇u)T ]/2 (2-16)

The shear stress is a function of the deformation gradient. For the simplest case of non-
Newtonian fluids, the viscosity varies with the shear rate only and these are called gener-
alised Newtonian fluids. Using the deformation gradient, the stress tensor can be defined as
(Bessonov et al. 2016)

τ = µ(γ̇)2D (2-17)
with the shear rate, γ̇, given by

γ̇ =
√

2tr(D2) =
√

−4IID (2-18)

Here, IID denotes the second principal invariant of the rate of deformation tensor, given as

IID = 1
2

[(trD)2 − tr(D2)] (2-19)

For incompressible flow, trD = 0. The most widely used form of the constitutive relation to
model the viscosity is the power law model.

µ(γ̇) = Kγ̇n−1 (2-20)
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2-3 Non-Newtonian Modelling and Application in Pipe Flow 11

where, K is called the consistency and n is the power-law index (Bessonov et al. 2016). The
value of n dictates the type of fluid being modelled – n < 1, indicates a shear-thinning fluid,
whose viscosity decreases as the shear rate increases; n > 1, indicates a shear-thickening
fluid, whose viscosity increases as the shear rate increases. The case of n = 1 indicates a
Newtonian fluid. The power-law has one defect however – for shear-thinning fluids, as the
shear rate tends to zero, the model predicts infinite viscosity as opposed to a fixed value seen
in experiments (Macosko 1994). This indicates the need for other models as well.

Applying a non-Newtonian model to pipe flow raises certain questions. The first question is
on how to define a generalised Reynolds number, since the viscosity is not constant. Metzner
et al. 1955 propose a Reynolds number, derived theoretically for laminar flow, such that the
Fanning friction factor conditions are satisfied by this Reynolds number (f = 16/ReMR).
This is the Metzner-Reed Reynolds number and is given for a power-law fluid as

ReMR =
8ρU2−n

b Dn

K(6 + 2/n)n
(2-21)

Eq. 2-21 reduces to the standard Reynolds number for n = 1. The Metzner-Reed Reynolds
number performs well in predicting the friction factor for laminar flow of generalised Newto-
nian fluids. However, its behaviour is not acceptable for transitional and turbulent flows. A
good reason for this is the method in which the relation is derived analytically, on the basis
of laminar flow considerations. Therefore, several authors (Pinho et al. 1990; Toonder et al.
1997b; Pinho 2003) propose another Reynolds number based on the wall viscosity, µw, as

Rew = ρUbD

µw
(2-22)

The wall Reynolds number provides more physical significance for turbulent pipe flows. As
mentioned previously, most of the turbulence is produced and dissipated near the wall in pipe
flows, and the region near the wall has the highest shear rate (Rudman et al. 2004). Fur-
thermore, this Reynolds number can be predetermined from experiments via the momentum
balance (Toonder et al. 1997b), and can also be fixed numerically using an iterative procedure,
if the viscosity model requires it (Ptasinski et al. 2001; Singh et al. 2017).

In the following paragraphs, description of changes to the structure and the statistics of
pipe flow due to non-Newtonian fluids is summarized. The results presented are for gener-
alized Newtonian fluids or for dilute polymer solutions behaving in the same fashion. For
non-Newtonian fluids, Bewersdorff et al. 1993 explain the thickening of the buffer layer, as
compared to Newtonian systems. Toonder et al. 1997b performed experiments and numerical
simulations with dilute polymer solutions and notice similar results. This is represented in the
form of an upward shift of the logarithmic profile of the mean velocity. Unlike the suggestions
of Virk et al. 1970, the shift is not quite parallel to Newtonian flow, and in fact the slope for
polymer solutions is quite larger than the Newtonian profile (see also Pinho et al. 1990).

Toonder et al. 1997b also provide compulsive evidence about the root mean square (RMS)
statistics. In comparison with Newtonian values, the axial RMS has its maximum shifted
slightly away from the wall, and also shows a higher magnitude. Additionally, they find a
slight decrease of this quantity for y+ ≤ 10, and also at the centerline. A possible explanation
for this is the creation of a shear-sheltering layer, with high turbulence above and lower
turbulence below (Ptasinski et al. 2001). The radial and azimuthal RMS values decrease
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12 Pipe Flow

almost across the entire cross-section, and the peak of the profile for both of the cases is
shifted slightly away from the wall. The results are also consistent with the increase in size of
the buffer layer (Bewersdorff et al. 1993). In their dilute polymer experiments, Pinho et al.
1990 find the radial and azimuthal fluctuations to be nearly five times less than the axial
fluctuations, and they have comparable results to Toonder et al. 1997b. Similar results are
also seen for purely shear-thinning fluids (Rudman et al. 2004; Rudman et al. 2006). This
reduction suggests that the strength of the vortices is weaker for non-Newtonian fluids, and
thus, a weaker bursting process must be observable (Rudman et al. 2006). The numerical
study of Singh et al. 2017 on generalized Newtonian fluids also emphasizes the increase in the
size of the structures as the degree of shear-thinning increases.

Taking a look at higher-order statistics for these flows provides a much deeper understanding
of the interaction of the non-Newtonian nature of the fluid with the turbulence. A decrease
in the magnitude of the Reynolds’ stress is observed, as compared to the Newtonian fluid,
at all regions except the center (Toonder et al. 1997b; Rudman et al. 2004), and similar to
the RMS values and fluctuations, the peak is shifted away from the wall. Simulations on
power-law fluids by Rudman et al. 2004 indicate that this distance from the wall decreases, as
the power-law index (n) decreases, which they claim is a reflection of the increased viscosity
away from the wall damping out the turbulent fluctuations. It is also interesting to note that
the Reynolds stress deficit increases with a decrease in the power-law index.

These studies indicate a modification to the shear stress formulation when employing a dilute
polymer solution or a non-Newtonian fluid. For generalised Newtonian fluids, Pinho 2003
provides an analytical view of the problem at hand. He derives transport equations for
momentum, Reynolds stress, and other quantities, by applying a Reynolds’ decomposition to
the viscosity. Therefore, writing the viscosity as ν = ν + ν ′, the unsteady Reynolds averaged
momentum equation, using the Einstein convention, is given as

Dui

Dt
= −1

ρ

∂p

∂xi
+ ∂

∂xj
(2νDij + 2ν ′D′

ij − uiuj) (2-23)

where Dij are the components of the deformation gradient introduced in eq. 2-16, and
D′

ij = ∂u′
i/∂xj , are the fluctuations of the deformation gradient. Eq. 2-23 introduces a new

diffusive term, 2ν ′D′
ij , and the classical viscous stress is slightly modified. Looking back at

eq. 2-13, which provides a stress balance for Newtonian flows, this can be modified as

τ+
rz = τ+

V + τ+
fv + τ+

R (2-24)

where τ+
R indicates the non-dimensionalized Reynolds stress, τ+

V is the non-dimensionalized
viscous stress, and τ+

fv is the turbulent viscous stress. The total stress (τ+
rz) remains constant

for Newtonian and non-Newtonian fluids, which makes it clear from the relation above, that
the turbulent stress deficit seen in these experiments and simulations, is manifested as a
polymeric stress for dilute polymer solutions (Toonder et al. 1997b; Ptasinski et al. 2001),
or a non-Newtonian viscous stress (Pinho 2003; Singh et al. 2017), which is represented by
τ+

fv in eq. 2-24. From the experiments and also from eq. 2-23, it can be noticed that the
viscous stress is slightly modified for non-Newtonian systems. Comparing eqs. 2-23 and 2-24,
it is clear that the turbulent viscous stress contains these deficit values, and is equivalent to
the term 2ν ′D′

ij . This extra term can be evaluated in experiments from simple algebra using
eq. 2-24 (Toonder et al. 1997b; Ptasinski et al. 2001), and also numerically, by using the
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2-3 Non-Newtonian Modelling and Application in Pipe Flow 13

expression given above (Singh et al. 2017). The turbulent viscous stress does not vanish at
the wall, as neither the fluctuations of the viscosity, nor the fluctuations of the shear rates
vanish at the wall. The term can either be positive or negative, and is in fact dependent on
the rheology of the fluid used (Singh et al. 2017). Proceeding in a similar fashion, Pinho et al.
1990 derive a transport equation for the turbulent kinetic energy as well, akin to eq. 2-14.

Dk

Dt
= P k + ϵ+ Πk + Dk + T k + ξnn + Dnn + χnn + ϵnn (2-25)

Here, the subscript nn is used to indicate the fact that these terms arise due to the non-
Newtonian analysis, and the viscous terms adopted from eq. 2-14, such as Dk and ϵ, now
employ the mean viscosity (ν) in their formulation. The new terms are detailed as follows:

• ξnn = ∂
∂xj

(2ν ′u′
iDij): Turbulent viscous transport due to the mean shear

• Dnn = ∂
∂xj

(2ν ′u′
iD

′
ij): Turbulent viscous transport, similar to the mean viscous trans-

port, Dk

• χnn = −2ν ′D′
ijDij : Turbulent viscous dissipation due to the mean shear

• ϵnn = −2ν ′D′
ijD

′
ij : Turbulent viscous dissipation, comparable with the mean viscous

dissipation, ϵ

The turbulent viscous dissipation due to mean shear, χnn also appears in the mean flow
kinetic energy equation, and can be either positive or negative, based on the shear rheology.
A positive value implies that the kinetic energy dissipation is reduced. Additionally, the sign
for this term is the same for both the mean flow and the turbulent kinetic energy budgets,
which suggests that this term impacts both the budgets in a similar manner. ϵnn, unique to
the TKE budget, can also be either a positive or negative value (Singh et al. 2017).

Similar to other quantities, the peak production of kinetic energy (P k) is shifted away from the
wall, with the general trend showing a decrease in production with increasing shear thinning.
On deeper analysis, it is fairly obvious that this decrease in P k coincides with the decrease in
the Reynolds stress mentioned earlier, since the velocity gradient does not change much with
shear thinning (Singh et al. 2017; Toonder et al. 1997b). The decrease is more prominent
near the wall (y+ < 10 as per Toonder et al. 1997b, y+ ≤ 6 as per Singh et al. 2017), as
compared to the rest of the regions. Decreasing the power-law index also elevates the mean
viscous transport, Dk, and the mean dissipation, ϵ, close to the wall (Pinho 2003).

The two non-Newtonian dissipation terms, χnn and ϵnn, are found to be positive for shear-
thinning and negative for shear-thickening fluids. These terms are to be interpreted for
shear-thinning fluids as "quantities that reduce the mean flow dissipation (ϵ) over the entire
pipe radius, but particularly for y+ < 40" (Singh et al. 2017). The overall effect is to reduce
the total dissipation for shear-thinning fluids for y+ ≤ 30, with the reduction balancing the
net reduction in the transport and the production as well.

While eqs.2-24 and 2-25 provide a nice basis to approximate the results obtained for non-
Newtonian fluids, these results are largely unverified experimentally. This is one of the main
reasons, why several experiments related to drag reducing polymers are discussed, as they
provide a good analogy to generalised Newtonian fluids (Toonder et al. 1997b; Ptasinski et al.
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14 Pipe Flow

2001). There is some solace to be found in the fact that these studies find similar results as
those provided by Rudman et al. 2004, Rudman et al. 2006 and Singh et al. 2017, and the
equations for the momentum and the turbulent kinetic energy provided by Ptasinski et al.
2001 are analogous to the ones derived by Pinho 2003. Along with the equivalence of statistics
between drag reducing polymers and generalised Newtonian fluids, this is particularly useful
to show that the equations derived by Pinho 2003 can be employed for predicting turbulent
quantities for non-Newtonian systems. Furthermore, Ptasinski et al. 2001 find the polymeric
dissipation to be the largest loss term in the TKE budget, and thus, postulates that most
of the energy is transferred directly to the polymers and not by the route of turbulence. It
will be interesting to see if the viscosity fluctuations contribute in a similar fashion to the
dissipation in generalised Newtonian fluids.

Toonder et al. 1997b also plot the one-dimensional power spectra at various locations in the
form popularised by Perry et al. 1975. The wavenumber is non-dimensionalised using the
quantity, u∗/ν, and the velocity is made non-dimensional using, u∗. Here, the viscosity used
is the wall viscosity, and u∗ is the wall-friction velocity. The axial component spectrum shows
a shift towards smaller wavenumbers as compared to Newtonian results, which indicates a
decrease of energy at the smaller scales, and an increase at the larger scales. The turbulent
energy of the radial component is found to be suppressed over the entire range of wavenumbers,
with a small shift in the peak towards smaller wavenumbers. The shift from small to large
scales is more prominent at y+ = 30.

To conclude this section, a discussion about the Reynolds number is undertaken. In the
aforementioned description of turbulent pipe flows, the wall Reynolds number was chosen
to contrast the results obtained. One of the reasons provided for using the wall viscosity
to scale the Reynolds number is the location of maximum production of turbulent kinetic
energy coinciding with the Newtonian fluid for the whole range of the flow index covered in
various studies (Toonder et al. 1997b; Rudman et al. 2006). This result is not completely
accurate though, with Singh et al. 2017, showing a slight shift in the production of TKE in
non-Newtonian fluids away from the wall. However, the shift is not large enough to influence
the results by a large margin, and this Reynolds number is still the most logical choice, since
turbulence is mainly produced and dissipated near the wall. All the results mentioned here
for turbulent flows employ the wall Reynolds number, and there is no anomaly noticed in the
results by doing so. Therefore, this is the first choice of generalised Reynolds number that
will be employed in this research.
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Chapter 3

Decay of Turbulence

The mechanisms of how turbulence breaks down and decays in different flows has been ob-
served for years. Of particular interest has been homogeneous, isotropic turbulence, which
will be discussed here to see if any of the findings in this field can be applied to the current
research. Isotropic turbulence is an ideal state wherein the turbulent fluctuations are statis-
tically uniform in all directions. This can be visualised as a flow far away from boundaries,
and is a simplification tool to research the underlying fundamental properties of turbulence.
Isotropic turbulence does not have any production or transport, and therefore, the TKE bud-
get only has dissipation. The most effective way to study isotropic turbulence experimentally
is to look at flow behind grids (grid-generated turbulence), which is homogeneous in the frame
of reference moving with the mean velocity of the flow (Pope 2000).

Unique solutions can be found, and it can be shown that the energy decays according to the
law, u′2 ∝ t−n. Various authors provide different values for the decay index. Kármán et al.
1938 gives an index of -1, while Batchelor et al. 1948 provides an index of -1 for the initial
period of decay, and an index of -5/2 for the final period of decay. This gives an overall decay
index of n = −10/7. Using a similar hypothesis, Saffman 1967 finds a decay exponent of -3/2.

Skrbek et al. 2000 studied decaying, homogeneous isotropic turbulence on a model based
on the three-dimensional energy spectra. They performed experiments where they truncate
the energy spectrum, by predefining the smallest and the largest wave number in the flow.
The smallest wavenumber is determined by the domain size, while the largest wavenumber
is effectively determined by the Kolmogorov length scale. They also study the effects of
intermittency on the decay, and find that its’ effect is to introduce a virtual origin for the
decay law, rather than actually change the decay exponent. Due to the introduction of an
energy containing length scale, special care was required in the study to distinguish between
the final period of decay, and the change in the nature of decay due to the truncation of the
length scale. Their theory provides good agreement with existing wind tunnel experiments on
grid turbulence and a decay index of -2 is found for the TKE, once the length scale has reached
saturation. A similar analysis of decay is also considered for a bounded domain without any
mean flow by Touil et al. 2002. Here, the use of introducing a low wavenumber cut-off is to
account for the effect of the geometry, and DNS is performed on this bounded geometry. The
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16 Decay of Turbulence

results obtained are similar to those of Skrbek et al. 2000 for experiments involving Helium
II in a finite channel, wherein the RMS vorticity decays as ω ∼ t−3/2, and the TKE decays
with an exponent of -2.

While it is tough to characterize the results of pipe flow with those of the studies mentioned
here, it is quite useful to understand the general character of decay for isotropic as well as
anisotropic, homogeneous flows. Towards the core of the pipe, far away from the wall, the
flow can be considered to be sufficiently isotropic. However, this analysis fails as one moves
closer to the wall. It has been noticed that turbulent boundary layers subject to favourable
pressure gradients, and sub-critical pipe and channel flows undergo relaminarization, i.e., a
process by which an initially turbulent flow is rendered effectively laminar (Sreenivasan 1982).
The precursor to relaminarization is called laminarescence, where large departures occur from
the initial fully turbulent stage. There is further suggestion that if the agency responsible
for creating laminarescence is removed, the flow can possibly become retransitional again. A
revision of the various studies on decay of turbulence related to pipe flows is provided in the
next section, followed by an extension of the presented research for non-Newtonian fluids.

3-1 Transition and Decay in Pipe Flows

In this section, a discussion is first provided to understand how turbulence is generated from a
laminar state. This will be helpful to set up fully-developed pipe flow simulations, while also
providing insight into how authors have approached the issue of transition. This could also
be helpful in analyzing the decay of turbulence and the reverse transition from a turbulent
to a laminar state. In the previous sections, it was mentioned that pipe flows belong to the
class of shear flows that are linearly stable. Providing perturbations of sufficient amplitude
generates an intermittent transition to turbulence for sufficiently high Reynolds numbers.
Using the idea of a nonlinear turbulence cycle for the regeneration of the vortices and the
streaks, Faisst et al. 2003 conducted numerical studies to provide traveling wave solutions,
i.e., "coherent structures that move with constant wave speed", akin to those found in Couette
and Taylor-Couette flows.

Initiation of turbulence at low Reynolds numbers generates turbulent flow with distinct struc-
tures. Wygnanski et al. 1973 show a region of localized turbulence upto Re = 2250, with a
length of approximately 20D, and this region is called a puff. Puffs travel at a speed of 0.9U
(U here referes to the mean velocity), and contain a block of disordered flow, with a decaying
wave at the front and a sharp interface at the rear (Peixinho et al. 2006). Thus, a puff is
considered as a "minimal flow unit" that can sustain turbulence, wherein the generation of
turbulent motion is balanced by the viscous dissipation of kinetic energy (Nieuwstadt et al.
2016). As the flow rate increases, these puffs split and delocalize into smaller puffs. Further
increase of Re, create rapidly expanding active regions of turbulence called slugs.

Several studies have been undertaken to characterize the pertubation amplitude required to
cause this transition to turbulence. Darbyshire et al. 1995 conducted experiments where they
introduce disturbances by injecting a constant fluid volume, at a certain distance downstream
of the fully developed laminar flow at different Reynolds numbers. By assigning a time, T0, a
point was marked as "transition" or "decay", based on whether the perturbation still persists
after the time or not. The required amplitude of perturbation was found to be proportional
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3-1 Transition and Decay in Pipe Flows 17

to the injected fluid volume. Further experiments conducted by Hof et al. 2003 generalize
this result and a scaling for the amplitude (A) with the Reynolds number, A ∼ O(Re−1), is
given. As expected, the required amplitude of perturbation to cause transition decreases with
increased Reynolds numbers (Peixinho et al. 2006).

The current study is not based on determining the onset of turbulence or on the point of
transition itself. Puffs are not usually observed in the decay of turbulence by switching-off
the forcing, as this is a gradual process. It is of interest however, to note that several different
ideas of decaying turbulence exist.

The relaminarization of an initially turbulent flow was first noticed in accelerated boundary
layers. The sudden acceleration imposed causes a reduction in the turbulent intensities, due
to the pressure forces dominating over the Reynolds stresses (Narasimha et al. 1979). In
pipe and channel flows, the reversion from turbulent to laminar flow is due to the action of
the viscosity. Several experiments have been carried out where a slight divergence is created
in the duct to reduce the pressure gradient. The divergence is such that there is no flow
separation, and thus, the turbulent stresses are dissipated by viscosity (Sreenivasan 1982).

Relaminarization is a gradual process, with some notable changes to both the structure and
the statistics, as compared to the fully developed turbulent flow state. The reduction in
turbulent intensities and stresses is accompanied by a departure of the velocity profile from
the "law of the wall" (Patel et al. 1968), and under suitable local conditions, will approach
the laminar velocity profile (Sibulkin 1962; Narayanan 1968). The experiments conducted
show a rapid adjustment near the wall, while the outer layer is manifested with slower pro-
cesses. Since the energy input is reduced, it is clear that the turbulent energy production
will also decrease, and this is accompanied by a reduction in the wall-layer bursting process
(Sreenivasan 1982). It has also been noticed that the low-speed streaks are elongated in the
streamwise direction, with longer survival of the hairpin vortices during relaminarization, as
compared to full turbulent flow (Araya et al. 2018).

Sibulkin 1962 was one of the first authors to perform experiments on the relaminarization
in pipe flow. A fully developed turbulent flow was initiated, which is then allowed to pass
through a diverging section of angle 1◦. He found that the rate of decay of the longitudinal
fluctuations was Reynolds number dependent, and the fluctuations decayed more rapidly near
the wall and at the center, rather than at an intermediate radius, during the initial period of
relaminarization. Furthermore, he measured the energy spectrum of the fluctuations along
the pipe centerline, and found these spectra at different axial locations to be similar to each
other in the measured wavenumber range.

A similar experimental setup was used to study reverse transition in a two-dimensional channel
flow by Narayanan 1968. He found that the longitudinal and vertical RMS values decrease
exponentially with the streamwise distance, and the Reynolds stress u′v′ tends to become
zero. Here, u′ represents the axial fluctuation, while v′ represents the wall-normal fluctuation.
Additionally, he comments that the streamwise velocity fluctuations persist for a longer period
of time than the vertical fluctuations. A new quantity is introduced here, termed as the
correlation coefficient (Narasimha et al. 1979), or the "loss of correlation", given as

C = u′v′√
u′2
√
v′2

(3-1)
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18 Decay of Turbulence

Figure 3.1: Departure of measured mean velocity from the expected Poiseuille value at the center
(Narasimha et al. 1979)

Narayanan 1968 finds that this quantity decreases as the flow moves downstream. The de-
crease in the correlation coefficient indicates that there is a decorrelation mechanism at work
as the flow relaminarizes. It is difficult to state when exactly relaminarization is complete.
Narasimha et al. 1979 define relaminarization to be complete "when the effect of the Reynolds
stresses on the mean flow development becomes negligible". This effectively translates to de-
termining when the Reynolds stresses are approximately zero. Additionally, Narasimha et
al. 1979 and Narayanan 1968 suggest monitoring the reduction in the correlation coefficient
(given by eq. 3-1) as a suitable method to determine the process of relaminarization.

Narasimha et al. 1979 provide another method to determine the relaminarization effectively.
They characterize the departure of the velocity at the center-line, from the case of fully
developed laminar flow. If this quantity is given by ∆U , then it is seen that

∆U = exp(−αx/2R) (3-2)

where α is a constant for a given Reynolds number. Furthermore, a dependence of α on the
Reynolds number is provided as α ∝ (Recr −Re2)1.5. Here, Re2 signifies the Reynolds number
that the flow is supposed to attain downstream of the expansion. Recr is the critical Reynolds
number, below which the flow is laminar. The relation provided shows that α increases as Re2
decreases. Fig. 3.1 shows this departure for different values of Reynolds numbers. Assuming
an isotropic flow, and using the precursor works of Owen 1969 on the flow in a trachea,
Narasimha et al. 1979 provides an empirical relation for the TKE as

u′2 = exp (−B(Recr −Re)3(x− x0)/R) (3-3)

It is interesting to note that a critical Reynolds number is tough to define for fully developed
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3-2 Decay of Non-Newtonian Systems 19

turbulent pipe flow, which is expected due to the highly non-linear nature of turbulence. The
experiments presented here for pipe and channel flows provide methods for the determination
of a critical Reynolds number for the case of relaminarization. Narasimha et al. 1979 state
that pipe and channel flows are unambiguously laminar for values of Recr < 1500 ± 100
and below. On the route to transition from a laminar to a turbulent state, the definition
of a critical Reynolds number is difficult. It is noticed in several studies of pipe flows that
triggering turbulence is highly dependent on the sensitivity of the initial conditions. The initial
conditions do not play a role in how the quantities scale or are defined – fully-developed pipe
flows are "memoryless". They play an important role in determining whether the realized state
is fully turbulent or not. Additionally, between the laminar and the turbulent state, there
exists no intermediate region with simple spatial or temporal characteristics, and therefore
the definition of a critical Reynolds number is ambiguous while achieving a fully-developed
turbulent flow. Provided sufficient observation time, even a statistically steady turbulent flow
may decay (Eckhardt et al. 2007). The crucial point of interest would be to provide some
comment on the point of complete relaminarization. Determining the decay of the TKE,
the turbulent fluctuations and the correlation coefficient, along with the structures, should
provide a picture of the relaminarization process.

3-2 Decay of Non-Newtonian Systems

With so many variables to factor in for the decay in a Newtonian system, introducing the
non-Newtonian nature of the fluid makes the discussion intriguing. The results are again
provided for generalized Newtonian fluids or for fluids modelled in a similar fashion. Chow
et al. 1967 try to hypothesize on some of the effects this inclusion may have on the decay of
isotropic turbulence. A viscoelastic fluid was studied using the Oldroyd constitutive equation.
They found that having suspended particles in the fluid speeds up the rate of decay, but
they also attributed most of the decay effects seen to the elasticity of the fluid, rather than
its shear-thinning behaviour. The small-scale structure of grid turbulence was modified by
adding a polymer additive, which is considered to show high shear-thinning behaviour, in
the experiments of McComb et al. 1977. Similar to pipe flows and other non-Newtonian
experiments mentioned, the polymer additive reduces the turbulence intensity behind the grid.
This consequently leads to a reduction in the rate of decay of velocity fluctuations behind the
grid, as compared to the Newtonian case. Besides, the concentration of the polymer additive
made a difference as well, with lower concentrations having an energy spectrum similar to
water (a Newtonian fluid), but higher concentrations showing considerable attenuation.

Doorn et al. 1999 measured the decay of turbulence in polymer and surfactant solutions
behind a towed grid, using Particle Image Velocimetry (PIV). They find distinct anisotropy
in these fluids as compared to water, and the differences are more persistent in the initial
period of decay. The anisotropy observed is comparable to the wall-region in wall-bounded
flows of Newtonian fluids. The surfactant case shows the existence of small-scale anisotropy
even at later stages, while this is suppressed in the polymer case. The energy spectra do show
a -5/3 power-law variation in a small range of wavenumbers, but it is not so conspicuous in
the surfactant case. This is possibly because of the suppression of large-scale energy in the
surfactant case, but the effect cannot be explained by the increased viscosity of the surfactant
solution.
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20 Decay of Turbulence

To understand the decay of a purely shear-thinning fluid, Rahgozar et al. 2017 performed
experiments in a boundary-free, uniformly sheared flow at high Reynolds number. They
employed a pulsatile flow similar to a heart beat to study the decay of TKE in a periodic
cycle. They used xanthan gum, which is similar to blood in its’ shear-thinning nature, and
found that the turbulent kinetic energy and the dissipation rate are modified, along with
significant alteration to the characteristics of the large-scale eddies. They find the decay rate
of the TKE to be much larger at the initial period for the non-Newtonian case, as compared
to the Newtonian case, and attribute this to the high viscosity at low shear rates.

It must be remembered from eq. 2-25 that the dissipation in a non-Newtonian fluid has
two extra terms as compared to a Newtonian fluid, and therefore, mention of dissipation
here is a summation of both the Newtonian and non-Newtonian terms. Rahgozar et al. 2017
find the dissipation rate decreases with respect to the Newtonian case at the initial part of
towing, an then increases in the latter part. This is attributable to the fact that polymers
probably absorb and store the turbulent energy at high shear rates and then release it at low
shear rates. It can also be inferred that when the Reynolds stresses weaken towards the end
of decay, polymers and shear-thinning fluids have more room to modify the structures. This
combination of absorbing and releasing energy leads to a higher overall dissipation rate. Other
studies on grid turbulence in polymer solutions also provide comparable results qualitatively,
especially with respect to the modification of structures in the flow (Liberzon et al. 2006;
Vonlathen et al. 2013).

The discussion now moves forward to the study of transition and decay in non-Newtonian pipe
flows. Similar to Newtonian Poiseuille flow, pipe flow of non-Newtonian fluids is also linearly
stable (López-Carranza et al. 2012). Indeed, it is shown that a non-Newtonian fluid is more
stable than its’ Newtonian counterpart (Peixinho et al. 2005; López-Carranza et al. 2012).
G. Tripathi 1971 found that the presence of a non-Newtonian fluid in the system delays
transition to turbulence, which is evident from the previous statement on linear stability.
Draad et al. 1998 also find a delay in transition in their experiments, although they can only
confirm this result for extended fresh polymers. An interesting point to note here is that the
natural transition number (transition to turbulence with minimal perturbation) is increased
for these dilute polymer solutions. The route to transition in non-Newtonian fluids is similar
to that of Newtonian fluids, with the manifestation of puffs and turbulent spots, followed by
slugs. The required amplitude of perturbation to cause turbulence is now slightly higher than
that for Newtonian fluids (Rudman et al. 2006).

Research on turbulence decay in pipe flows of non-Newtonian fluids has been limited. Relam-
inarizing flows have not been comprehensively researched for non-Newtonian fluids. Certain
details can be hypothesized - a higher critical Reynolds number can be obtained as compared
to the Newtonian flow, with possibly faster rates of turbulence decay near the wall. This
would be in line with other results noticed in grid turbulence of non-Newtonian fluids as well.
A study similar to the work of Peixinho et al. 2006 or Hof et al. 2006 would also be intriguing
to understand the characteristic lifetimes of turbulence. Additionally, concentrating on how
the rate of dissipation and turbulent kinetic energy varies with the Reynolds number and the
shear-thinning index, and hence, contrasting it with the Newtonian case is of particular in-
terest. Therefore, it is the intention of this study to undertake Direct Numerical Simulations
(DNS) to understand the nature of decay of turbulence in pipe flow of non-Newtonian fluids
at low to moderate Reynolds numbers.
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Chapter 4

Spectral Element Methods and
nek5000

Over the years, the employment of Direct Numerical Simulations has directly been correlated
to the availability of computational resources. The necessity to accurately capture the smallest
energy contributing scales in a flow has lead to the development of faster and better numerical
techniques to solve the Navier-Stokes Equations.
The spectral element method is an advanced implementation of the finite element method,
obtained by combining spectral techniques to the same. Here, the solution over each element
is defined in terms of a priori unknown values at the appropriate spectral nodes (Pozrikidis
2014). This provides an advantage as it maintains the generality of the finite element method,
while it improves accuracy by employing spectral techniques. The method is applicable over
a wide range of problems, and stable, accurate solution algorithms can be achieved with a
lower number of elements. Additionally, while spectral methods require periodicity in the flow
direction, due to the decomposition of the solution into Fourier modes, the spectral element
method has no such strict requirement (Pozrikidis 2014; Patera 1984).
In the finite element method, the quantity to be solved, which is the velocity for the Navier-
Stokes equations, is expressed as

ua =
N∑

i=1
biϕi (4-1)

where ua is the approximation of the exact solution, that has been defined in the form of
an expansion of N basis functions, with amplitudes bi (Prasad 2016). The basis functions
for the spectral element method are selected from a family of orthogonal polynomials. While
finite element methods use local basis functions (non-zero only on small subdomains), spectral
methods employs global basis functions (non-zero everywhere), spanning the entire domain of
the problem. This polynomial expansion is defined by interpolation nodes within an element,
which are distinct from the geometrical nodes. A variational formulation is then set up for
the governing differential equation, and the Galerkin’s projection is implemented. A system
of algebraic differential equations is obtained, which is modified by the boundary conditions,
and then solved (Pozrikidis 2014).
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22 Spectral Element Methods and nek5000

4-1 Selection of Basis Functions

The accuracy of a finite element method can be improved in two ways (Pozrikidis 2014):

1. h refinement: Reducing the element size, while keeping the polynomial order fixed

2. p refinement: Increasing the polynomial order, while maintaining the element size

For h refinement, the error decreases as a power of h, whereas for p refinement, the error
decreases faster than any power of 1/p, which implies exponential convergence. This is termed
as spectral convergence (Pozrikidis 2014). Ideally, low-order expansions should be employed
where the solution is expected to vary smoothly, while high-order expansions are required
where rapid spatial variations exist. Furthermore, it is paramount to achieve the best accuracy
for a given system while keeping the computational requirements to a minimum.

The best way to achieve this is by using orthogonal polynomials to define the basis functions.
These polynomials are used extensively for the numerical interpolation, integration and solu-
tion of differential equations by spectral expansions. The most used interpolation method is
the Lagrange interpolation, with the m-th degree Lagrange interpolating polynomial defined
as

ψi(ξ) = (ξ − ξ1) · · · (ξ − ξi−1)(ξ − ξi+1) · · · (ξ − ξm+1)
(ξi − ξ1) · · · (ξi − ξi−1)(ξ − ξi+1) · · · (ξi − ξm+1)

(4-2)

Eq. 4-2 is used to approximate solutions for a function of interest over an element in the
domain. While employing the interpolation, the placement of the nodes plays a key role.
Using an even number of nodes gives rise to oscillations near the ends of the interpolation
domain, because of the insufficient information provided to the polynomial towards the end
of the domain. This is called the Runge effect (Pozrikidis 2014). Therefore, evenly spaced
nodes within an element can only be employed if the order of the interpolating polynomial is
low. This could however, compromise the accuracy of the solution.

To obtain the highest accuracy for the interpolation, it is required that the intermediate m−1
nodes within the domain should be distributed at the zeros of the (m−1) degree interpolating
polynomial. This amounts to employing an uneven nodal base for the interior of the domain.
Several nodal bases such as the Chebyshev, Jacobi and Legendre nodal bases are available.
However, one of the more efficient ones is the Lobatto nodal base. The main advantage of
the Lobatto base is that the corresponding node interpolation functions are guaranteed to
vary within the range of [-1,1], irrespective of the order of approximation of the interpolating
polynomial (Pozrikidis 2014). Lagrange polynomials of different orders are depicted on a
Lobatto nodal base in Figure 4.1.

From the discussion above, it becomes clear that using a combined method of refinement, also
called as hp refinement, is much more beneficial for the convergence of the solution (Patera
1984). Fischer 1997 recommends a polynomial order in the range of m = 4 − 15. When the
domain becomes distorted a h refinement is preferred, so as to not drastically increase the
computational cost.

Anunay Prasanna Master of Science Thesis



4-2 nek5000 23

Figure 4.1: Set of Lagrange Polynomials Plotted using Lobatto Interpolation Nodes with Degree:
Left: m = 4; Center: m = 5; Right: m = 7

4-2 nek5000

For the present research, higher-order methods are required to accurately predict the nature
of decay. To this extent, the stability, accuracy and computational power of spectral element
methods has been described, and therefore, this method will be employed in the current study.
nek5000 is a solver that uses the spectral element method to solve the Navier-Stokes equations
with good scalability for different models (Paul F. Fischer et al. 2008). It employs a Lagrange
interpolation on a Lobatto nodal base, as mentioned above, with a Gaussian integration
quadrature to generate the solution (termed the Gauss-Lobatto-Legendre (GLL) distribution).
With respect to the formulation of the problem, nek5000 provides two approaches (Paul F.
Fischer et al. 2015; Deville et al. 2002):

1. PN − PN−2

• Algebraic type of solution
• Discretizes in space using compatible approximation spaces
• Solves coupled system for pressure and velocity

2. PN − PN

• Splitting Scheme
• Discretizes in time first
• Takes continuous divergence of momentum equation to arrive at a Poisson equation

for pressure

Here, PN refers to the space of all polynomials of degree less than N . Both these techniques
have their advantages and their disadvantages. Khoury et al. 2013 find the PN −PN−2 method
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to provide some differences in the pressure fluctuations with respect to experiments in their
simulation of pipe flows. However, the PN − PN−2 method is said to be beneficial as it
avoids spurious pressure modes (Fischer 1997). It performs better for low Reynolds number
cases than the PN − PN discretization, while LES performance is better when the PN − PN

discretization is employed. Both the methods are spectrally accurate however, and mostly
equivalent.

For the discretised equations, a filtering is required to maintain the numerical stability of
the equations. It is essential for high-strain regions and preserves inter-element continuity
and spectral accuracy in these cases. The filter attacks only the fine scale modes, which,
numerically speaking, should not carry any energy, and suppresses these modes in the spectral
element expansion, without compromising the spectral convergence (Deville et al. 2002).

nek5000 has an efficient strategy for parallel decomposition of the problem. Each element
is treated as a virtual processor, so that each element is an independent and indivisible unit
(Fischer et al. 1989). Parallel implementation is obtained by mapping groups of elements
onto separate processors. Load balance is achieved by making sure that the total number of
elements on any given pair of processors does not differ a lot (Fischer et al. 1989). Further
discussion on scaling results and solution costs can be found in Appendix A.
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Chapter 5

Geometry and Validation

Before attempting to answer questions about the underlying physics, it is necessary to ensure
that the results that are generated are trustworthy. Therefore, the first step is to validate the
numerical method and check the convergence of the statistics as required. Fully-developed
turbulent pipe flow is a well-defined state, and is the starting point for this research as
well. Thus, it was decided that the first step should be to set up a simulation for the same.
Considering the number of numerical and experimental cases available for fully-developed
pipe flow, it would also be easy to verify the results obtained from the current simulations
with exising cases. This chapter comments on the set up of pipe flow and the evaluation of
the various statistics.

5-1 Grid Generation and Preliminary Setup

To generate the appropriate spectral element grid for nek5000, first a mesh appropriate for a
finite volume solver is created (see Figure 5.1). With the selection of the order of the inter-
polating polynomial, a spectral mesh is created in nek5000. Following the advice of Fischer
1997 and Khoury et al. 2013, a polynomial order of N = 7 is chosen. Provided a suitable finite
volume grid, this polynomial order should provide sufficient spectral convergence (Pozrikidis
2014). Therefore, the total number of Gauss-Lobatto-Legendre points per element are 83.
Filtering of the very fine scales and dealiasing are enabled to ensure the numerical stability
of the solution.

To achieve a statistically fully developed pipe flow, a periodic boundary condition in the axial
(z−) direction is used. The flow rate in this direction is held fixed, and is prescribed by a
bulk velocity. Due to the applied periodicity, it is important that the length of the domain is
selected in such a way that the periodicity does not unduly affect the results obtained (Eggels
et al. 1994). Independence of the results from the domain length is determined by the axial
velocity correlations. These correlations are usually expected to decline to zero at half the
domain length (Eggels 1994). By this consideration, Eggels et al. 1994 uses a domain length
of Lz = 2πD for Newtonian pipe flow. Singh et al. 2017 employ a domain length that is twice
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(a) (b)

Figure 5.1: (a) Cross-section of the finite Volume Mesh modeled using gmsh (b) The corre-
sponding spectral mesh with polynomial order, N = 7

this size for their non-Newtonian simulations, although they do this only for better accuracy,
and good results are also expected with a length of Lz = 2πD. Hence, this domain length
was chosen as the standard for all simulations, unless stated otherwise.

It has been mentioned before that pipe flows are linearly stable (Drazin et al. 1981), and
that an initial perturbation is required to generate turbulence in pipes, with the amplitude
being dependent as O(Re−1) (Hof et al. 2003). Therefore, the initial condition is a fully-
developed laminar profile over the pipe cross-section, with random perturbations added to all
the velocity components. These perturbations take the form of sinusoidal waves, and have an
amplitude that is 2% of the bulk velocity.

To justify a numerical simulation without the use of a turbulence model, it is important that
the smallest scales of turbulence are resolved, both spatially and temporally. The smallest
scales spatially and temporally are the Kolmogorov length and time scales (Nieuwstadt et al.
2016), η = (ν3/ϵ)1/4 and τ = (ν/ϵ)1/2. For the length scale, a grid resolution that is 2.5-3
times the Kolmogorov length scale is generally sufficient to capture the physics of the flow
(Moin et al. 1998). For the time scale, Eggels 1994 provides a more restrictive criterion, called
the advective time scale, τa = η/u. This is the time taken by the small-scale eddies to pass a
fixed point when advected by the velocity of the macrostructure. For a wall-bounded, shear
driven flow, the scaling for the smallest eddies can also be provided by the viscous length
scale, ν/u∗, where u∗ is the wall friction velocity. The viscous length scale represents the
thickness of the viscous sublayer, and it is required that the grid spacing normal to the wall
must be smaller than this length scale (Eggels 1994). This is necessary to resolve the steep
gradients arising in the velocity near the wall. A grid independence study was undertaken to
notice the influence of the cell size on the results. These results can be seen in Appendix B-1.

For statistics comparison and averaging in time, a non-dimensional time scale, t∗ = R/u∗, is
used. In a similar fashion as the length, using the viscous variables to scale the time, it is seen
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Case No. of Elements No. of Grid Points ∆r+ (r∆θ)+ ∆z+

Eggels et al. 1994 96 × 128 × 256 3.1 × 106 1.88 0.05 - 8.84 7.03

DNS - nek5000 9754 4.9 × 106 (0.5,5.95) (0.98,5.31) (3.93,10.74)

Table 5-1: Grid spacing comparison for the Newtonian simulation

that the smallest time step required to resolve the flow temporally is ∆t = ν/u2
∗ = 0.0055t∗.

The imposed time step is much smaller than this due to the stability requirements set by
the Courant number. In essence, it is required that the Courant number be less than 1, and
this condition is met here rigorously. Therefore, the temporal resolution used is adequate to
capture all scales of motion (Eggels 1994). The case is homogeneous in the axial direction,
and thus, on-the-fly averaging is done in this direction and in time. Averaging is also done in
the circumferential direction.

The first validated case is that of Newtonian fully developed pipe flow, compared with the
work of Eggels et al. 1994. The second validation is to verify the results for a non-Newtonian
simulation, and this is compared with one of the results from the work of Singh et al. 2017.

5-2 Validation - Eggels et al. 1994

In their work, Eggels et al. 1994 simulate a pipe flow at a Reynolds number of Reb = 5300,
which provides a friction Reynolds number of Reτ = 180, defined based on the radius of
the pipe. The grid spacing in wall units in the radial (∆r+), azimuthal ((r∆θ)+) and axial
(∆z+) directions are comparable for the present simulation with that of Eggels et al. 1994
(see Table 5-1). While Eggels et al. 1994 has constant grid spacing in the radial and the axial
direction and a linearly expanding grid in the azimuthal direction, simulations employing
spectral element methods have a range of values for the grid spacing in all directions (Khoury
et al. 2013). This is becuase of the selection of the nodal base in a spectral element solver
(Lobatto nodal base for nek5000), and the uneven spacing involved in this selection. Lower
grid spacing is used near the wall, and higher spacing is employed towards the centre.

Sufficient averaging time is required to obtain converged statistics, especially for the higher-
order quantities. Additionally, it is important to gauge the starting time for averaging ap-
propriately, as the initial transients do not reflect the mean flow structure. Including them
may require longer averaging times to obtain converged statistics (Vinuesa et al. 2016). The
instantaneous wall shear stress is monitored, as seen in Figure 5.2, and the starting time is
chosen based on the convergence of this quantity. This indicates the requirement of a linear
profile for the time-averaged shear stress (seen in Figure 5.2 on the right). As the Reynolds
number simulated is quite low, a lot of time is given before starting the statistics calculation,
and several ensembles are collected. A flow development period of 30t∗ is provided. Statistics
are written every t∗, and this time separation between each collected ensemble is large enough
to ensure that the collected data fields are uncorrelated. Mason et al. 1986 advise integrating
at least 45 time units to ensure sufficient convergence, and therefore, statistics for up to 80t∗
are used in this simulation.
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(a) (b)

Figure 5.2: (a) Monitoring of Wall Shear Stress: The box represents the time duration that was
used for averaging (b) Linear profile of the time-averaged total shear stress

After the simulation is completed, the obtained results are averaged and spectrally inter-
polated onto a two-dimensional polar mesh, over the cross-section of the pipe. Spectral
interpolation maintains the simulation accuracy (Khoury et al. 2013). This is done using the
statistical toolbox of Rezaeiravesh et al. 2019. For the polar mesh, equidistant spacing in the
circumferential direction is used. A non-uniform grid is employed in the radial direction and
finite differences are used for the interpolation (Rezaeiravesh et al. 2019). This makes it easier
to post-process the statistics as compared to using a spectral mesh. Some of the statistics
are given below. The velocity profile shown in Figure 5.3 is in good agreement with that of
Eggels et al. 1994. Higher order statistics are also in good order. The Reynolds stress (5.4a)
has a standard deviation of the absolute deviation equal to 0.001%. The RMS values show
excellent agreement as well (5.4b), with the maximum standard deviation of the absolute
deviation being seen for u′

r, and is equal to 0.01%. The TKE budget terms are shown in
Figure 5.5 (standard deviation of absolute deviation ≈ 0.001% for all the terms).

Figure 5.3: Axial Mean Velocity scaled using Inner Variables compared with the values and the
empirical relation provided by Eggels et al. 1994
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(a) (b)

Figure 5.4: (a) Reynolds shear stress comparison (b) Comparison of the RMS values for the
velocity components

The budget terms for the individual components of the TKE - u′2
z , u′2

r and u′2
θ - can be seen

in Appendix B. The budget for u′
ru

′
z can also be seen there. There are slight discrepancies

in the budgets of u′
ru

′
z and u′2

r compared to that of Eggels et al. 1994. However, these varia-
tions are marginal (maximum absolute deviation less than 3%), and are therefore, considered
acceptable.

5-3 Validation - Singh et al. 2017

After obtaining satisfactory results with the statistics of the fully developed pipe flow for a
Newtonian fluid, the same is done for non-Newtonian flow as well. To this end, the results

Figure 5.5: Comparison of the budget terms of the TKE: The symbols are the results obtained
from Eggels et al. 1994 for the repsective quantities
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Case No. of Elements No. of Grid Points ∆r+ (r∆θ)+ ∆z+

Singh et al. 2017 115200 16.6 × 106 0.8 4.5 21

DNS - nek5000 12820 6.6 × 106 (0.5,4.97) (0.98,4.5) (3.93,10.74)

Table 5-2: Grid spacing comparison for the non-Newtonian simulation

of Singh et al. 2017 are used for validation. They ran DNS for shear-thinning and shear-
thickening fluids described using the power-law, with the index varying from n = 0.4 − 1.2. A
turbulent Reynolds number of Reτ = 323 was fixed for all the cases in their simulation. They
used a two-dimensional spectral element mesh for the pipe cross-section, with a Fourier spec-
tral expansion in the axial (z−) direction. The normalization for turbulent non-Newtonian
flow is done using the wall viscosity as mentioned in previous sections. Also, as described
by Pinho 2003, there are additional terms that arise in the balance of the shear stress and
the TKE budget for non-Newtonian fluids (see Section 2-3). It was necessary to accurately
evaluate these terms during the post-processing as well.

A power-law model is implemented in nek5000 in this research. The code is written in such a
way that the parallel processing does not require a large amount of computational resource.
Mesh resolution plays an important role with decreasing shear thinning. A comparison of the
mesh refinement used here along with the one used by Singh et al. 2017 is given in Table 5-2.
To validate the statistics, a value of n = 0.8 was chosen. This value of n encapsulates the
effects of shear-thinning, while also providing accurate results. Additionally, a lower degree
of shear-thinning translates to lesser computational time required to achieve convergence of
the statistics. The time step and the minimum grid size were well within the requirements
mentioned by Eggels et al. 1994. A flow development time is provided and the evolution of
the wall shear stress was monitored for this simulation as well. Similar to the case of Eggels
et al. 1994, statistics were collected after a linear wall shear stress profile was obtained. Since
the Reτ here is nearly twice that of Eggels et al. 1994, less time is needed for the convergence
of statistics, and therefore, fewer ensembles are required to obtain a statistically steady state
(Vinuesa et al. 2016). Statistics were written every 0.3t∗, with this time separation being
sufficient for the consecutive collected data fields to be uncorrelated. Averaging was done
from a time of 15t∗ to 30t∗, which was deemed sufficient for simulations around the same Reτ

(Vinuesa et al. 2016).

To check that the modelling of the viscosity was successful, the normalized mean viscosity,
ν+ = ν/νw, as a function of y+ is shown in Figure 5.6. Near the wall, the high shear rates
ensure that the the flow is similar to a Newtonian fluid (equivalent to using a power-law index
of n = 1 here). The differences in viscosity become more evident as one moves towards the
center of the pipe. A limiter is imposed towards the center of the pipe, where the strain rate
goes to zero. A fixed value of viscosity (ν = 3.9 × 10−3) is set, by using the definition of
viscosity for a power-law fluid, and a very low numerical value for the strain rate (O(10−8))
at this location. The obtained viscosity profile is in good agreement with the values provided
by Singh et al. 2017, as is the normalized axial mean velocity (see Figures 5.6a and 5.6b).
For a non-Newtonian fluid, the mean stress tensor contains an additional term due to the
fluctuations of the viscosity. This term is called the turbulent viscous stress (Singh et al.
2017), or the "polymer stress" (Ptasinski et al. 2001) (also see Section 2-3). This term adds
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(a) (b)

Figure 5.6: (a) Comparison of the normalized mean viscosity (b) Comparison of the normalized
axial mean velocity

(a) (b)

Figure 5.7: (a) Comparison of the Reynolds, viscous and turbulent viscous shear stresses (b)
Comparison of the normalized RMS values of the three velocities - The symbols are results obtained
from Singh et al. 2017

to the stress balance along with the mean viscous and the Reynolds stress. For n = 0.8, this
is a very small contribution. It effectively balances out the increase in the viscous stress near
the wall, and the decrease in the Reynolds shear stress towards the centre. The stress profiles
and the RMS values are shown in Figure 5.7. The statistics show excellent agreement, and
thus, the geometry and the convergence criteria used were found to be satisfactory.

The TKE budget is shown in Figure 5.8. The production, the turbulent diffusion and the
pressure diffusion are defined similar to a Newtonian flow. The viscous terms in the budget –
the dissipation and the viscous diffusion – are now provided using the mean viscosity in their
definition. These terms have a kink in their statistics around y+ ≈ 8. This is expected to
be near the region of maximum shear and the kink is due to a limiter imposed in the solver.
The raising of the strain rate to a power could lead to numerical diffusion, and the simulation
can indicate a higher diffusivity than expected. This would lead to erroneous calculations
and thus, this limiter is introduced to ensure that the viscosity does not explode near the
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Figure 5.8: Comparison of budget terms of the TKE: The symbols are the results obtained from
Singh et al. 2017 for the respective quantities

maximum at the beginning of the simulation. Although, the limiter is not required once the
flow is fully-developed, it is difficult to switch it off once active. The effect of the limiter is
only apparent for the higher order viscous terms, and does not have any effect on the global
flow.

The new terms arising out of the viscous fluctuations in the viscous dissipation – the mean
shear turbulent viscous dissipation (5.9a) and the turbulent viscous dissipation (5.9b) – are
also shown here in Figure 5.9. It is useful to calculate these terms although they may not
contribute much to the study of the decay. Both these terms are positive for n = 0.8, and
thus, lead to a decrease in the overall dissipation as compared to a Newtonian fluid. The
additional terms arising in the viscous transport are also calculated. They have a very minor
contribution to the budget (Singh et al. 2017), and can be seen in Appendix B-3. They are
an order of magnitude lower than the viscous dissipation terms, and therefore, these terms
are also not expected to play a major part in the decay.

(a) (b)

Figure 5.9: (a) Comparison of the normalized mean shear turbulent viscous dissipation (b)
Comparison of the normalized turbulent viscous dissipation - The symbols are results obtained
from Singh et al. 2017
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Chapter 6

The Decay Results

With the confidence in the statistics generated for both the Newtonian and the non-Newtonian
flow, it is time to answer some of the questions that have been raised in the earlier sections.
This chapter is dedicated to studying the decay of pipe flow turbulence. It starts with an
analysis of the deceleration of the fluid from the turbulent to the laminar state. Then, some
of the key aspects of the decay are touched upon – first, for Newtonian flow, and then for
non-Newtonian flow. Comparisons between different studied variables are also reported in an
attempt to further explain the decay. Finally, a discussion is provided with respect to the
results generated, and their applicability and limitations within the scope of the research.

6-1 The Deceleration Mechanism

One of the issues in an aneurysm, as shown previously, is the generation of TKE in a cycle
and its decay at a later stage. This is believed to lead to a significant variation in the wall
shear stress from cycle-to-cycle. In short, it is necessary to characterise transition from a
turbulent to a laminar state, and study how the turbulent quantities change. Therefore, it is
necessary to discuss how to do this. Narasimha et al. 1979 show several studies including their
own, where relaminarizing boundary layers and internal flows were studied using a spatial
acceleration or deceleration. This is generally induced in a channel (Narayanan 1968) or
in a pipe (Sibulkin 1962) by an expansion in the test section following the fully-developed
turbulent flow. The expansion is of a small angle (1◦ − 3◦) to ensure as little flow separation
as possible, and sufficient length is provided for the flow to eventually develop into a laminar
flow.

Imposing a spatial deceleration requires a very large domain length. Typically, these studies
have test sections with a streamwise length of Lz ≈ 130 − 150D. In a DNS, it is very hard to
study such long geometries. The simulation time and computational resources required to do
so would be extremely large, and thus, it is nearly impossible to apply this method of decel-
eration. Instead, it was decided to use a periodic domain and use a homogeneous temporal
deceleration to modify the flux of the flow. This is the method used by several authors such
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as Greenblatt et al. 1999; Greenblatt et al. 2004; He et al. 2000 etc., to study the variation
of turbulent quantities under imposed acceleration and deceleration mechanisms. For the use
of the deceleration itself, Sreenivasan 1982 states that there should not be much statistical
difference in the behaviour of the flow by employing a temporal deceleration, as compared
to a spatial decay. This is also accepted for pipe flow transitional studies in general, and
many authors employ this method in their research (Kleiser et al. 1991). Cyclic boundaries
are used in the streamwise (z) direction. Continuity of the flow is maintained while using
periodic boundaries, and thus, the use of a homogeneous temporal acceleration does not pro-
mote any unwanted disturbances in the radial or azimuthal directions as the flow traverses
the pipe completely and is mapped on to the periodic inlet again. Therefore, a homogeneous
temporal deceleration was considered to reduce the velocity and move from a turbulent to a
laminar state.

Greenblatt et al. 2004 state that the assumption that inhomogeneous spatial pressure gra-
dients and homogeneous temporal gradients are equivalent, has led to erroneous prediction
and correlation of turbulent quantities during the acceleration or deceleration stage itself.
However, it must be pointed out that here we are not quite interested in the decelerating
section in a detailed manner. It is rather what happens after the deceleration that is of more
significant importance. Most of the decay studies using spatial pressure gradients also study
the decay quite some distance after the expansion. These studies too do not provide any
information on the variation of the quantites during the deceleration itself. Additionally, the
flow expansions used negate the effects of flow separation. This is crucial, as flow separation
is one of the things that a homogeneous temporal deceleration cannot generate. In fact, it is
the major difference in the flow structure of the two deceleration mechanisms. However, the
importance of the flow separation on the study of the decay is minimal (Sreenivasan 1982),
and thus, a homogeneous temporal deceleration can be used.

6-1-1 Method of Deceleration

A temporal deceleration is used to reduce the bulk velocity of the flow from a turbulent to
a laminar state. Some time is provided to ensure that the flow is fully turbulent and then
a very rapid deceleration, with ramp times on the scale of the eddy turnover time are used.
This is done so as to change the current inertial state as quickly as possible and focus on
the effects of the decay, rather than on the deceleration itself. The deceleration is applied to
fully-developed pipe flow in the form of a linear ramp as given by (6-1).

Udes = Uin −
(
Uend − Us

Tend − Ts

)
(t− Ts) (6-1)

where Udes is the desired bulk velocity for every time step during the ramp, Us and Uend are
the initial and final bulk velocities, and Ts and Tend are the beginning and end times for the
application of the ramp. The bulk velocity in the domain after every time step is calculated.
The difference in flux, as set by the differential in the desired and calculated bulk velocity, is
added to the axial velocity. This is effective as the velocity at every stage is known. During
the turbulent state, the desired bulk velocity is set to the initial bulk velocity, so that there is
no added flux. For the deceleration, the ramp is used to determine the bulk velocity desired,
and after the application of the ramp the final velocity is used as the desired bulk velocity. The
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(a) (b)

Figure 6.1: (a) The imposed variation of Ub with Ub = Udes; Ts and Tend show the start and
finish times of the ramp, with (Tend − Ts) being the time duration of application of the ramp.
A fully turbulent flow is allowed to continue from t∗ = 0 − Ts, so as to ensure there are no
scratch arrays or other discrepancies before the application of the ramp (b) The variation in the
time-averaged wall shear stress during the application of the ramp. Ts and Tend can be inferred
from the graph for the bulk velocity

final velocity is decided based on the Reynolds number. Sreenivasan 1982 provide a critical
Reynolds number for channel flows as 1500, below which the flow is undoubtedly laminar. A
threshold of Recr = 1750 ± 10 is proposed by Peixinho et al. 2005 in their transitional study
of pipe flows, though this is still a high value for the critical Reynolds number. Although a
threshold is difficult to define as such, looking at the literature in this field it was decided that
a Reynolds number of Re = 1500 is sufficiently low for pipe flows to be fully laminar without
any disturbances. Therefore, this is the final fixed Reynolds number for all the flows studied
in this research. The Reynolds number helps in determining the final desired bulk velocity
for the flow. All results are again characterized by the non-dimensional time t∗, which are
based on the quantities defined at the fully-developed turbulent state.

The applied deceleration and the corresponding variation in wall shear stress are plotted in
Figure 6.1. Up to t∗ = Ts, the turbulent flow is active. This is done so as to avoid the presence
of any scratch or null arrays in the system due to restarting the fully-developed turbulent
state. After which, a linear ramp is applied to decrease the velocity. The velocity after that is
determined by the final Reynolds number. The wall shear stress decreases as the deceleration
starts and becomes negative. This implies zones of recirculation and local negative velocity
near the wall (also see Figure 6.2). This is similar to pulsatile flow, where acceleration and
deceleration lead to zones of recirculation within a domain (Ertunc et al. 2010).

The deceleration is rapid but short. He et al. 2000 formulates a non-dimensional ramp rate,
defined as α = D3/ν2(dU/dt). Compared to the studies of He et al. 2000 and Greenblatt
et al. 2004, the ramp rate used here is very high. These authors wanted to study the nature
of the acceleration or deceleration and the effects associated with it. However, as mentioned
previously, here the main interest is in the decay itself, and therefore, it makes sense to impose
decelerations on the turbulent time scale. He et al. 2016 and Guerrero et al. 2021 identify
different stages of turbulence with respect to the acceleration. However, using such a large
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(a) (b)

(c) (d)

Figure 6.2: Left: The instantaneous velocity profiles at different times – (a) For the decelerating
section and immediately after (c) For time steps much later than when the applied ramp is active:
The arrow indicates the direction of increasing t∗ Right: Instantaneous normalized RMS values
of the axial velocity - The corresponding colours from the velocity profile are used

ramp rate does not allow us to do so.

The instantaneous velocity and axial RMS profiles for a Newtonian flow of Reb = 5300 at
different time instants are shown in Figure 6.2. The ramp period is the same as the one used
in Figure 6.1. As the deceleration is applied, a point of inflection in the velocity profile is
seen near the wall (see Figure 6.2a). This is also the case in accelerating pipe flows, and can
be attributed to the velocity correction due to the application of the ramp (Greenblatt et al.
2004). The velocity correction is equivalent at all radii, but since the velocity is lowest near
the wall, a point of inflection arises here. As the deceleration is removed, this inflection then
propagates towards the center of the pipe. The flow tries to go back to the initial turbulent
state as seen in the velocity profile (see Figures 6.2c and 6.2d). But the turbulent intensity
has reduced and the flow does not contain sufficient energy to return back to its original state.
Instead it continues to decay, and the turbulent quantities reduce. The velocity profile starts
losing its’ characteristic steep gradient near the wall around t∗ ≈ 7 − 9, and reaches the fully
developed laminar state asymptotically. This is also noticeable in the intensities, with them
going to zero asymptotically as well. All the results for the decay shown in later sections are
with t∗ = 0 corresponding to the start of the deceleration, i.e., the initial fully-developed flow
is now discarded from the results.

Different coherent structures are plotted using the Q criterion in Figure 6.3. Positive Q
isosurfaces show areas where the rotation strength is greater than the strain, and these are a
great tool for identification of the different mechanisms present in a turbulent flow (Hunt et al.
1988). Just before the deceleration (t∗ = 0), the structures are identifiable and similar to fully-
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(a) (b)

(c) (d)

Figure 6.3: The coherent structures present in the pipe at different times during the deceleration
determined by the Q criterion. Different threshold values are used for Q at different time steps
to emphasize the results. The colouring used is of the instantaneous axial velocity (a) t∗ = 0 (b)
t∗ = 0.65 (c) t∗ = 1.25 (d) t∗ = 2.50

developed pipe flow. A short while after the deceleration has been applied completely, the
near-wall structures have decreased in size (see Figure 6.3b). The structures were measured
using the ruler option in Paraview, and were normalized using the initial friction velocity.
They have decreased from a length scale of approximately 100ν/uτ to 60ν/uτ . The organized
motions near the wall are the primary turbulence mechanism for the production of TKE and
the Reynolds shear stress. Therefore, a decrease in the length of the structures is equivalent
to an increase in turbulence, as this implies a higher bursting rate (Nieuwstadt et al. 2016).
This is also in accord with the inflection in the velocity profile and the presence of back flow.
Sreenivasan 1982 explains the elongation of the structures and the reduction in the bursting
rate for accelerating wall-bounded shear flows. The opposite can be expected for an applied
deceleration (He et al. 2000). As time goes on, the number of structures has reduced (Figure
6.3c), and the structures increase in length as well (Figure 6.3d). The structures have also
moved slightly away from the wall. This indicates the reduction in the turbulent intensities,
and therefore, the flow now gradually relaminarizes.
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(a) (b)

Figure 6.4: (a) Variation of the normalized Reynolds shear stress with respect to t∗ for a
Newtonian fluid with Reb = 10000 (b) The variation of the average eddy viscosity throughout
the pipe cross-section. The eddy viscosity is estimated from the average Reynolds shear stress
across the pipe cross-section

6-2 Results - Newtonian Flow

After the rapid deceleration, a study of the decay of turbulence can now be undertaken. First,
the results for a single Newtonian fluid with a starting Reynolds number of Reb = 10000 will be
discussed. In the previous section, the behaviour of the velocity profile and the axial turbulent
intensity after the deceleration was shown. Although the results were for Reb = 5300, similar
results are seen for Reb = 10000 as well. The variation of some of the other turbulent
quantities are shown here. Figure 6.4 shows the variation of the Reynolds shear stress with
non-dimensionalized time. Results are shown after the effects of the deceleration are well over,
and the flow is assumed to decay freely. Similar to the turbulent intensitites, the Reynolds
stress also decreases along the cross-section of the pipe. This is in accord with the decrease of
turbulence throughout the pipe cross-section over time. At t∗ ≈ 9, the Reynolds shear stress
has almost reached zero. An estimate for the eddy viscosity can be provided by considering
−u′

ru
′
z = 2νtDrz, where νt is the eddy viscosity and D is the deformation gradient. Figure

6.4b shows the variation of the eddy viscosity over time. The initial increase in its value
is associated with the application of the ramp. After that, the value for the eddy viscosity
decreases. During the early stages of decay, the eddy viscosity is an order of magnitude larger
than the molecular viscosity. As the Reynolds stress approaches zero, the eddy viscosity
behaves in a simialr fashion, and is an order of magnitude lower than the molecular viscosity.

A better understanding of the nature of relaminarization can be gained by analyzing the
budget terms – in particular, the production and the dissipation – of the TKE. Figure 6.5a
shows the change in the production, while Figure 6.5b shows the variation of the dissipation
of TKE. Similar to other turbulent quantities, these also decrease over time. The peak of the
production and the dissipation decrease consistently, with the values increasing towards the
intermediate radii of the cross-section. This is because of the turbulence diffusing towards
the center of the pipe. Another interesting point of note in the figure for the production term
is the shifting of the position of maximum production away from the wall. This implies a
thickening of the viscous sublayer and the buffer layer, and a shortening of the log-layer in
the pipe (Iida et al. 1998). As the flow gradually relaminarizes, it is to be expected that the
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(a) (b)

(c) (d)

Figure 6.5: The variation of the (a) Production (b) Dissipation - The arrows in (a) and (b)
indicate the direction of increasing t∗ (c) Viscous diffusion - The box represents a zoom-in from
r/D = 0.4 − 0.5 to indicate the growth of the viscous sublayer (d) turbulent diffusion - The box
represents a zoom-in from r/D = 0 − 0.2 to indicate the transfer of energy from the wall to the
center - All the budget quantities are normalized by ν/u4

τ , where uτ is the friction velocity for the
fully-developed turbulent flow. Legend : ( ) Fully developed turbulent flow ( ) t∗ = 3.10
( ) t∗ = 6.20 ( ) t∗ = 9.30 ( ) t∗ = 12.40

existing viscous sublayer changes into a laminar boundary layer (Sreenivasan 1982), and this
is consistent with the disappearance of the distinct structure of turbulent pipe flow.

Figures 6.5c and 6.5d also shows the viscous and turbulent diffusion terms of the TKE budget.
The viscous diffusion balances the dissipation near the wall (Eggels et al. 1994), and it shows
similar behaviour to the other budget terms with the maximum value decreasing and the peak
moving away from the wall. This further emphasizes the growth of the viscous sublayer. The
turbulent diffusion is small as compared to the other budget terms. However, its variation
over the pipe cross-section shows that the diffusion terms are responsible for the transfer of
energy away from the wall towards the intermediate radii and the pipe center (see zoomed in
version of Figure 6.5d).

A key quantity that is used to monitor the decay in pipe flows is the correlation coefficient, as
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Figure 6.6: The decrease of the volume-averaged correlation coefficient over time

defined by (3-1). It is seen in other relaminarizing flows that the wall-normal and streamwise
fluctuations become decorrelated over time (Sreenivasan 1982). This implies a decrease in the
correlation coefficient and the process is termed as the "loss of correlation" (Narayanan 1968).
From Figure 6.6, it is seen that the volume averaged correlation coefficient tends to zero over
time, after an initial increase in the quantity. This initial increase indicates the increased
turbulence due to the deceleration. The results seen here are similar to reverse transition
studies in channel flows (Narayanan 1968), and also in other wall-bounded flows (Sreenivasan
1982).

The organized motions present in the pipe are depicted in Figure 6.7 using the Q-criterion.
This figure now shows the structures for the decaying section of the flow only and not for
the deceleration. Due to this being a time-dependent flow, different threshold values for the
criterion are used at different time steps. Although this is not ideal for comparison, the
presence of the structures can still provide some meaningful information. Quasi-streamwise
vortices can be visualized at t∗ = 3.41, although as compared to a turbulent flow, they
are slightly larger in size (average size of 135ν/uτ as compared to 100ν/uτ ). There are less
structures as well. The decrease of the Reynolds stress and the production of turbulent energy
indicates that sweep events are suppressed (Araya et al. 2018). The sweeps are necessary for
creation of new streamwise vortices (Nieuwstadt et al. 2016), and a decay process would
naturally indicate a reduction in these. As mentioned previously, the turbulent structures are
moving away from the wall. The viscous sublayer loses its characteristic streamwise vortices,
and the turbulence is now produced by streamwise vortices that are longer and at a region
away from the wall (Iida et al. 1998). Over time the length of the structures continues to
increase. It is to be expected that the smallest eddies decay faster, leaving the larger eddies
in the flow (Batchelor et al. 1948). At t∗ = 8.68 and t∗ = 10.54, the threshold values required
to notice the structures are extremely low (Q = 0.006 and Q = 0.002 respectively), meaning
that the rate of rotation now present in the flow is nominal. Dubief et al. 2000 state that too
small a level of the threshold value would only display structures that play a minimal role on
the dynamics of the flow, while increasing the core of the structures seen, and this seems to
be the case here as well.

Batchelor et al. 1948 showed in their study of the final regime of decay in homogeneous,
isotropic turbulence that the longitudinal integral length scale increases with time. They
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(a) (b)

(c) (d)

Figure 6.7: The coherent structures present in the pipe at different times during the decay
determined by the Q criterion. The structures here are presented after the application of the
ramp. Similar to Figure 6.3, different threshold values of Q are employed. The colouring used is
of the instantaneous axial velocity (a) t∗ = 3.41 (b) t∗ = 6.82 (c) t∗ = 8.68 (d) t∗ = 10.54

mention that the eddies face two mechanisms - a stretching that increases their size, and
viscous dissipation that allows them to decay. Skrbek et al. 2000 show in their experiments
of homogeneous, isotropic turbulence with superfluid He II that while the length scale grows,
there is a maximum value it can reach – dictated by the size of the domain – after which
the length scale is considered to have saturated. In pipe flows, this is set by the diameter
of the pipe. To monitor the growth of the length scale, the two-point spatial longitudinal
correlation coefficient, defined by (6-2) (Eggels 1994), is evaluated. Here, z is the axial, ho-
mogeneous direction. The correlation is calculated using slab averages. These are averages
on a circular cross-section of the pipe at fixed values of z. Averaging is applied in the circum-
ferential direction as well, so as to obtain a velocity distribution per slab dependent on the
radial direction only. Due to the uneven distribution of the elements in the spectral element
grid, interpolating onto a uniform grid and finding slab averages is not straightforward, and
therefore, the correlations are not quite as smooth as they normally would be.

ρuzuz = < u′(r, θ, z, t)u′(r, θ, z + ∆z, t) >
< u′(r, θ, z, t)2 >

Λ =
∫ ∞

0
ρuzuzdz

(6-2)
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(a) (b)

Figure 6.8: (a) The longitudinal correlation coefficient (ρuzuz
) along the length of the pipe for

the decay (b) The growth of the streamwise integral length scale with respect to time. The radial
locatio is r/D = 0.25 for both (a) and (b)

In essence, it is tough to measure correlations for a decelerating flow without performing some
ensemble averaging. However, an effort to do the same has been made here. Figure 6.8 shows
the longitudinal correlation coefficient at a location of r/D = 0.25, and the variation of the
integral length scale with time as well. The length scale is approximately O(D) at around
t∗ = 2.5. This implies that the saturation of the length scale occurs at a very early stage as
compared to the studies of Skrbek et al. 2000 and Touil et al. 2002. The fast growth of the
length scale can be attributed to the large applied deceleration and the quick modification
of the mean inertial flow to a mean flow with no expected turbulence. From their scaling
analysis, Skrbek et al. 2000 also mention including viscosity corrections in the decay leads
to an earlier saturation time. Considering that the Reynolds number used here is quite low
as compared to Skrbek et al. 2000, it can be hypothesized that the viscosity corrections
probably start influencing the decay at an earlier stage, and therefore, an earlier saturation
time is noticed here. There are some differences between this research and the study of Skrbek
et al. 2000. There is no mean flow present in the study of Skrbek et al. 2000, while there is a
mean flow here. The flow studied here is not isotropic, but is highly anisotropic. Additionally,
the applied deceleration promotes the degree of anisotropy.

Slab averages are also used to monitor other turbulent quantities. To check the global variation
of quantities, averaging in the radial direction (r) is also done. The evolution of the TKE
with time is shown in Figure 6.9 - on a logarithmic plot (Figurge 6.9a), and on a semi-
logarithmic plot (Figurge 6.9b). A sudden drop-off in the TKE value is seen in the initial
stage, where the deceleration is applied in Figure 6.9a. Since we are interested in the region
after the deceleration, this section is not used to characterise the decay. After the initial
section, two linear profiles are visible in Figure 6.9a. Comparing the time scales in Figure
6.9a and Figure 6.8, it is evident that the first linear section refers to turbulent decay before
the saturation of the integral length scale. Using a linear fit, an exponent of −0.9 is seen
here. This exponent is lower in absolute value than the exponent provided by the relation
of E ∼ t−6/5 given in Skrbek et al. 2000. The second linear section of the decay begins
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(a) (b)

Figure 6.9: The decay of the volume-averaged TKE with respect to time (a) On a logarithmic
plot - The two coloured lines are logarithmic fits on the data: ( ) Expected decay law before
saturation of length scale ( ) Expected decay law after saturation of length scale (b) On a semi-
logarithmic plot - The symbols here mark an exponential fit for an expected viscosity-dependent
flow regime

approximately as the length scale is saturated. Again referring to the work of Skrbek et al.
2000, they show that for homogeneous, isotropic turbulence with a saturated length scale,
the TKE decays as E ∼ t−2. Employing a linear fit once more, the slope for this case is seen
to be −1.7, which is again slightly lower in absolute value than the one predicted by Skrbek
et al. 2000. The slopes for both the sets could possibly be lower than the work of Skrbek et al.
2000 because of the presence of TKE production in the budget. As mentioned previously, the
flow here is not isotropic, and is homogeneous in the axial and circumferential direction only.
The anisotropic and inhomogeneous nature of the flow may further promote turbulence, and
therefore, a lower decay rate is seen here. After t∗ ≈ 12, there is a clear drop-off of the decay.
This qualitatively looks similar to the LES and EDQNM results presented by Touil et al. 2002
for a homogeneous, isotropic flow, with no mean flow, in a bounded domain. These authors
hypothesize that the decay, after a long time, is similar to exponential viscous decay. Since
the Reynolds number studied here is extremely low (Reb = 10000) as compared to the studies
of Touil et al. 2002 (Rel0 ≈ 5000, where l0 is the integral length scale), this viscous decay
regime is expected to appear at an earlier time in the overall decay process. The exponential
decay for the later stages can be noticed in Figure 6.9b

Skrbek 2008 considers the last stage of decay and models it in a similar fashion to the decay
of oscillatory motion in viscous fluids. He considers an exponential decay law as E(t) =
E0 exp (−βt). The decay coefficient is given as β = 2νκ2, where ν is the kinematic viscosity
and k is the wavenumber. An exponential fit is made for the semi-log plot, and the coefficients
are compared. With the non-dimensionalized time scale and using κ = 2π/D (saturated
length scale), the expected value for the damping coefficient is β = 0.29. The coefficient of
the plot is β = 0.27, which is very close to the expected value of β for Re = 10000. This
allows us to put into perspective the final stage of decay. In the latter stages, the production
and dissipation of TKE are very small. As the flow relaminarizes, the viscosity starts playing
a greater role in the decay of turbulence, and the remaining turbulent energy is dissipated by
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Figure 6.10: The variation of the friction Reynolds number with non-dimensionalized time - The
point of divergence from the power-law decay to the exponential decay is marked. This point has
a value of Reτ = 62.85

the action of viscosity only.

It is difficult to predict the switch from the power-law to the exponential decay. As such
to pin-point an exact point for relaminarization is not straightforward, but an effort will
be made in this study. As mentioned previously, the change in the decay law is seen to
occur here for t∗ ≈ 12. Monitoring the change in the friction Reynolds number, it is seen
that this value corresponds to Reτ = 62.85. From Figure 6.10, it is not clear whether any
divergence is to be expected. This value could be purely coincidental. However, in their study
of relaminarizing channel flows, Iida et al. 1998 find that for Reτ = 60, the flow is highly
intermittent with very low Reynolds shear stress and production of TKE. Furthermore, using
small computational boxes, Tsukahara et al. 2014 noticed that the flow is completely laminar
at this friction Reynolds number. On increasing the size of the domain, they found that
localised turbulent structures, similar to puffs (Wygnanski et al. 1973), exist at the value of
Reτ = 60. This would explain why upto a certain point in the decay, turbulent scaling holds
for the nature of the decay. Around Reτ = 60, scaling on the inner variables might not hold
anymore. Localized structures are not noticed in our study, because the friction Reynolds
number is not maintained constant like the studies of Iida et al. 1998 and Tsukahara et al.
2014, but is allowed to decrease gradually. Additionally, the computational size of the domain
is not large enough to accurately observe puffs, although their existence is highly unlikely due
to the gradual nature of relaminarization.

The power spectrum of the axial velocity fluctuations for this case is given in Figure 6.11.
The wavenumber is non-dimensionalized using u∗/ν, and the spectrum is non-dimensionalized
using u2

τ in the footsteps of Perry et al. 1975. The spectrum has been truncated at the
smallest and the largest wavenumbers, set by the diameter of the pipe and the Kolmogorov
length scale. Qualitatively, the spectrum is similar to the one observed by Sibulkin 1962 for
the case of decaying pipe flows. He provides possible scaling laws for the spectrum, which do
not seem to hold over here. As expected, the cascade process is visible from the graph. The
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Figure 6.11: The power spectrum of the axial velocity fluctuation for r/D = 0.25 and Reb =
10000

Kolmogorov slope of -5/3 is barely evident in this graph indicating that the inertial subrange
is very minimal. Pope 2000 gives an analogy where he states that for decaying flows, a fair
estimate for the time an eddy spends in the initial subrange is roughly an order of magnitude
less than the eddy turnover time. This could probably explain why the inertial subrange is
not so evident.

The global decay of the Reynolds shear stress is depicted in Figure 6.12. After the initial
deceleration, the nature of the decay for this variable seems to be exponential (from t∗ ≈ 3.5).
Looking at Figure 6.4 and Figure 6.5, it is to be expected that the Reynolds stress decays at

Figure 6.12: The decay of the volume-averaged Reynolds shear stress with non-dimensionalized
time
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(a) (b)

Figure 6.13: (a) The pressure-strain term of the u′2
r budget (b): The volume-averaged RMS

velocities on a semi-logarithmic plot: A linear fit is done on the exponential curves to show the
overall difference in the decay rate of the three components. This can be seen from the coefficients
of t∗ within the exponential function

a faster rate than the TKE. It is possible that this is because of the decorrelation mechanisms
in the decay of pipe flow (Sreenivasan 1982), although there is no concrete evidence of this.

A few final observations are noted to wrap up this section. The decay of the volume-averaged
axial, radial and azimuthal RMS velocities is depicted in Figure 6.13b. Although the nature of
decay for these components is similar to the TKE, they are depicted on a semi-logarithmic plot
for comparison only. From the figure, it is quite clear that the streamwise turbulent intensity
decays much more slowly than the wall-normal and circumferential turbulent intensities. This
is similar to results obtained for decaying flows in a channel (Narayanan 1968), and also in
other accelerating boundary layer flows (Sreenivasan 1982). These authors found the wall-
normal intensities to decay nearly 1.5 times faster than the streamwise intensities, and an
equivalent result can be found here. This outcome can be attributed to the anisotropy of wall-
bounded flows. In a turbulent flow, the pressure-strain term in the u′2

r budget is responsible
for the energy tranfer between components (Eggels et al. 1994). Figure 6.13 also shows this
term and its decrease over time. This implies that the energy transfer between the different
components is lagging, and thus, it is ineffective to correct anisotropy (Iida et al. 1998).
Moreover, the location where the pressure-strain takes a negative value moves towards the
center of the pipe, which is an added indicator of the reduction in sweep events, and the
conversion of the viscous sublayer into a laminar boundary layer.

Figure 6.14 shows the global decay rate of the TKE at different r/D locations in the pipe.
Again, a semi-logarithmic plot is shown for simplicity. It is noticeable that the decay rate in
the buffer layer and the viscous sublayer are the fastest as compared to the log-layer and the
core region. This is as expected, as the major change in the turbulent quantities is expected
to occur near the wall. For the core region, it is seen that just after the deceleration, the
energy seems to stabilize at a value for a while (upto t∗ ≈ 2). This is similar to the results
seen in accelerated boundary layers where the authors mention "frozen turbulence" in the
core, with maximum changes occurring near the wall (Sreenivasan 1982; Guerrero et al.
2021). However, this is not maintained for a long time, and it is hypothesized that this
is because of the extremely large deceleration applied here. Sibulkin 1962 and Narayanan
1968 find that the intermediate radii, r/D = 0.2 − 0.3, initially shows the slowest decay of

Anunay Prasanna Master of Science Thesis



6-2 Results - Newtonian Flow 47

Figure 6.14: The decay of the TKE at different regions of the pipe: r/D = 0 is located at the
center

all the regions. Sibulkin 1962 hypothesizes that this could be because of the lower rates of
dissipation and production in the region, or the diffusion of turbulent energy from the walls
to the center. While the hypothesis of Sibulkin 1962 is a valid one, this result is not noticed
in these simulations. Here, the core of the pipe and the intermediate region seem to decay at
the same rate.

6-2-1 Independence of the Ramp Rate

With an idea on the decay, it is of quite some interest to see what parameters might affect
the nature of decay. A study was undertaken to check the effects of the ramp rate on the
decay. As mentioned previously, ramps applied over a length of time equivalent to the eddy
turnover time (ETT = τe = L/u′, where L is the length of the eddy) were being used to study
the decay. In essence, it is logical to study the behaviour of turbulent flows on a viable time
scale, and therefore, the ramp used was ensured to be on scale similar to the one observed
in the flow. The dimensionless time scale used in the results, t∗ = R/uτ , is expected to be
approximately 10 − 20ETT . It is now of interest to see what would happen if the ramp were
sped up or slowed down.

Figure 6.15 shows the decay of the turbulent kinetic energy for Reb = 10000 using different
ramp rates. The time scale denotes the time over which the ramp was applied. The ramp rates
that are less than or equal to O(1ETT ) all start at the same time and the applied deceleration
is also included in the plot. As expected, the nature of decay is similar irrespective of the ramp
rate used. It is also a result that was found by Sibulkin 1962, where he suggested the use of
sudden expansions to study the decay. It is true that a majority of the applied decelerations
are at times very similar to the eddy turnover time (ETT). However, it is noticeable that
the slower ramps used (with applied time of ramp t∗ = 0.75ETT and t∗ = 1ETT ) seem
to contain slightly less energy than the faster ramps. A study was also undertaken using a
ramp rate of O(t∗). This is a much slower ramp rate as compared to the other scenarios.
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Figure 6.15: The decay of the TKE for different time steps used to generate the linear ramp:
The ramps applied for 0.25, 0.5, 0.75 and 1 ETT all start at the same time and is indicated in
the figure. For the ramp applied over 1t∗ only the last quarter of the ramp (0.75 − 1t∗ in the
figure) is shown

Only the final quarter of the applied deceleration is represented in Figure 6.15. During this
stage, it is seen that the TKE increases slowly, as compared to sharp increases noticed for
the much higher ramp rates. Additionally, the drop off that was noticed - where the decay
is expected to change from a power-law to an exponential decay - occurs at an earlier stage
while using slower ramp-rates. While the ramp timings of 0.25, 0.5 and 0.75ETT divevrge
at approximately the same point, the curve for 1ETT diverges at an earlier time from this.
The curve for 1t∗ diverges earlier than 1ETT itself. This shows that using slower ramps is
not useful, as quite a bit of turbulent information is lost during the deceleration process.

The decay of the Reynolds shear stress is shown in Figure 6.16. Similar to the TKE, the
expected decay rates between different ramps are similar here as well. A key result that can
be noticed is the saturation of the shear stress into some form of steady state for the higher
ramp rates, with the values converging as time passes on in the decay. This is due to the fact
that the Reynolds shear stress is expected to go to zero as the flow relaminarizes (Narasimha
et al. 1979). For the higher ramp rate though this is not the case, with the shear stress
continuously decaying, although the values are too small for the stress to have any effect on
the mean flow.

From both Figure 6.15 and Figure 6.16, it is quite obvious that using slower ramps might
not be beneficial to study the decay. As mentioned previously, changing the flow state as
quickly as possible and allowing the flow to decay naturally thereafter is the best method to
study the decay. However, it is still interesting to see that using larger ramp rates (lower time
for application of ramp) provides better accuracy of results. A ramp rate on the timing of
0.5 eddy turnover time is used everywhere in this study. The difference between the results
obtained for ramp rates less than 1ETT is not large enough to cause any underestimation of
the decay, and therefore, 0.5ETT was chosen arbitrarily.
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Figure 6.16: The decay of the Reynolds shear stress for the different time steps: The results are
shown here from t∗ = 1, which is after the application of the deceleration

6-2-2 Dependence on the Initial Reynolds Number

Wall-bounded turbulent flows are characteristically scaled on inner and outer variables, and
the independence of this scaling with diferent configurations and properties has always been
a subject of debate. The Reynolds number of the flow is constantly under scrutiny in this
regard. Toonder et al. 1997a find that the turbulence statistics are indeed dependent on the
Reynolds number for ranges of 5000 - 25000. This is especially true as the Reynolds number
is lower and closer to the laminar state. Therefore, the next parameter that is interesting to
study is the initial Reynolds number of the turbulent flow. Most decay studies are carried
out at very high Reynolds numbers, to ensure that the flow is sufficiently turbulent for a long
period of time. Since it is of interest to study relaminarizing flows here, the range of the
starting Reynolds number chosen itself is quite low, and thus, it is quite logical to research
the variation in the decay. Three Reynolds numbers are simulated and they are given in
Table 6-1.

The decay of the TKE can be noticed in Figure 6.17a, which is a logarithmic plot and
Figure 6.18, which is a semi-logarithmic plot. The overall nature of the decay is similar for
all three Reynolds numbers, with the curves being qualitatively similar to the results of Touil
et al. 2002 for high Reynolds numbers. For Reb = 10000 and Reb = 7000, two regions of
power-law decay exist – one before the saturation of the length scale, and one after. For the
first stage of power-law decay, the exponent for Reb = 7000 is −1.2. The absolute value of
the exponent is larger than the value obtained for Reb = 10000, but it is closer to the value
predicted by Skrbek et al. 2000. The demarcation is not clear for the lower Reynolds number
case of Reb = 5300, although the length scale saturates at approximately the same time as
the other two cases. This is quite a low Reynolds number and therefore, it could be difficult
to discern the two regions of power-law decay here. The exponents for both the power-laws
are summarized in Table 6-1.

For all three cases, there is a saturation of the length scale, set by the diameter of the
pipe. The second stage of power-law decay follows after this. The curves then seem to
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(a) (b)

Figure 6.17: (a) The decay of the TKE for different initial Reynolds number depicted on a
logarithmic plot (b) The variation of Reτ over time for the three different Reynolds numbers: The
zoomed-in section shows that Reb = 5300 reaches Reτ = 60 at an earlier time than Reb = 7000
and Reb = 10000, which implies that Reb = 5300 diverges first

diverge and follow the exponential viscous regime, with Reb = 5300 diverging first, followed
by Reb = 7000 and Reb = 10000 curves. This implies that the virtual origin in time to
describe the exponential decay changes with the initial Reynolds number. The variation
in virtual origin could possibly be because of the increasing intermittency of the flow with
decreasing Reynolds number. Skrbek et al. 2000 make a similar observation in their study
of homogeneous, isotropic turbulence. They state that the effects of the intermittency on
the decay law is to change the virtual origin prescribing the law, rather than change the
nature of decay itself. It was also mentioned previously that the point of divergence could
possibly be predicted by the reducing friction Reynolds number. For Reb = 10000, this
point coincided with Reτ ≈ 60, and this is also true for the other two Reynolds numbers.
Faster divergence from the power-law decay to the exponential decay is evident from Figure
6.17b, where the zoomed-in section of the graph shows that Reτ = 60 is reached faster as the
initial Reynolds number decreases. As mentioned previously, various authors find localised
turbulent structures in their studies at this value of Reτ (Iida et al. 1998; Tsukahara et al.
2014). Therefore, around Reτ = 60, scaling on the inner variables might not hold anymore and
the differences in the decay for the three cases is now expected to arise due to the difference in
their viscosities. This could possibly be used as an indicator for when the decay law changes
from a power-law to an exponential behaviour, as it is one of the few points of quantitative
similarity noticed between the three different cases for the point of divergence. However, it
is difficult to comment why this happens, and further discussion is provided in Section 6-4.

Fitting linear curves on the logarithmic plots to estimate the power-law decay (not shown
in figure), it is seen that the decay exponent after the saturation of the length scale, is
approximately m = 1.7 for all three cases. This is close to the value of m = 2 expected
by Skrbek et al. 2000. The difference in the power-law index, as opposed to that noticed
by Skrbek et al. 2000, is attributed to the presence of production and the anisotropy of the
flow, as mentioned before. Skrbek et al. 2000 also predict that the rate of decay increases
as one studies lower Reynolds numbers. However, the range of Reynolds numbers studied
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Figure 6.18: The decay of the TKE for different initial Reynolds number depicted on a semi-
logarithmic plot: The curves represent the obtained result, while the symbols are linear fits for
the data to show the exponential viscous decay for the different Reynolds numbers

Reb R/uτ [s] s for E ∼ t−s m for E ∼ t−m β for E ∼ exp (−β(t∗ − tvo)) βth

5300 14.71 - 1.73 0.5 0.37

7000 15.15 1.2 1.65 0.33 0.31

10000 16.13 0.9 1.67 0.27 0.29

Table 6-1: Parameter space and results obtained to study the influence of the initial Reynolds
number: s is the power-law index before saturation; Reb = 5300 does not have a value for this
section as described in the text. m is the power-law index after saturation is reached. βth is
the expected theoretical value of the damping coefficient assuming a constant length scale of
κ = 2π/D

here might not be sufficient to notice this behaviour. For the viscous exponential decay,
fits of the nature E ∼ E0 exp (−β(t∗ − tvo)) are attempted, where tvo represents the non-
dimensionalized time from where the exponential decay is active. The estimated values of
β = 2νκ2, with κ = 2π/D, are in good agreement with the fits for the cases of Reb = 7000
and Reb = 10000, while there is some discrepancy between the values for Reb = 5300. The
values of all the coefficients are summarized in Table 6-1.

6-2-3 Modelling using RANS

It is difficult to model decaying flows. This is one of the fundamental issues that most
laminarizing flows have faced over the years (Sreenivasan 1982). With this in mind, an attempt
was made to study the decay of the flow with a RANS model. The study was conducted in
OpenFOAM with a low Reynolds number k− ϵ model. The three Reynolds numbers studied in
the previous section were also evaluated here. A fully-developed turbulent pipe flow was set
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Figure 6.19: The decay of the TKE as modelled by RANS: The initial section (marked in the
figure) has a lower slope than the rest of the decay. The drop-off in the TKE also seems to appear
at a much later stage for all the three Reynolds numbers as compared to the DNS results

up for each case, and an equivalent deceleration as the DNS study was applied here as well.

The plots for the TKE, k, and the dissipation rate, ϵ, are shown in Figure 6.19 and Figure 6.20.
The qualitative nature of the decay is simlar to the DNS results. The initial section of the
power-law decay is very small now, and is not quite clear from the graph. The power-law
decay region itself is extended. Fitting the data, it is seen that the power-law exponent is
now closer to -2.5 for all the cases. This is similar to the case of the final period of decay of
isotropic turbulence as predicted by Batchelor et al. 1948. The points of divergence from the
power-law to the exponential decay now occur at much later times – t∗ = 9, 14, 17 instead of

Figure 6.20: Decay of the dissipation rate with respect to non-dimnsionalized time: The nature
of the graph is similar to Figure 6.19
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t∗ = 7, 9, 12 with increasing values of Reb. The divergence shown as occuring near Reτ ≈ 60
for all the cases is now not seen at all. Furthermore, the RANS model does not seem to
predict the change in the length scale and its saturation. This is because of the inability of
the RANS model to exactly understand the presence of the geometry.

The inability of the RANS model to accurately predict the decay was not unexpected. The
fixing of the length scale by the RANS model is ineffective for this study, and therefore, it
is quite understandable why several authors in the past have not been able to appropriately
address this issue. This also shows the necessity of using DNS and resolving as many of the
energy-containing length scales as possible. Using a higher-order method such as nek5000,
only enhances the accuracy of the obtained results.

6-3 Results - Non-Newtonian Flow

With a grasp on the decay of Newtonian flows, it is time now to study the effects of introducing
a varying viscosity to the flow. As mentioned previously, blood can be treated as a shear-
thinning fluid (Macosko 1994). To this end, the decay of power-law fluids has been studied. It
is also of some interst to study the variation of the decay with shear-thinning itself. Therefore,
it is easier to study power-law fluids, since the only parameter to vary is the shear-thinning
index.

As mentioned previously, pipe flows for non-Newtonian fluids are more stable than for New-
tonian fluids (López-Carranza et al. 2012), and thus, transition is delayed. Therefore, the
largest initial Reynolds number (Reτ = 315 for Newtonian, Reτ = 323 for non-Newtonian
fluids) is used to compare the decay. To study the decay, a linear ramp on the scale of the

(a) (b)

Figure 6.21: The variation of the (a) Production (b) Dissipation - The arrows in (a) and (b)
indicate the direction of increasing t∗ - All the budget quantities are normalized by νw/u

4
τ , where

uτ is the friction velocity, and νw is the wall viscosity for the fully-developed turbulent flow. The
quantities here (n = 0.8) decrease at a faster rate than the Newtonian flow (n = 1) (see Figure
Figure 6.5). The final two time stamps are very tough to discern because of their values beeing
extremely close to zero. Legend : ( ) Fully developed turbulent flow ( ) t∗ = 3.10 ( )
t∗ = 6.20 ( ) t∗ = 9.30 ( ) t∗ = 12.40
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(a) (b)

(c) (d)

Figure 6.22: The coherent structures present in the pipe at different times during the decay
determined by the Q criterion. The structures here are presented after the application of the
ramp. The values of t∗ here, again indicate that the flow laminarizes at a faster rate for a
non-Newtonian fluid (n = 0.8) than a Newtonian fluid (n = 1). Similar to Figure 6.7, different
threshold values of Q are employed. The colouring used is of the instantaneous axial velocity (a)
t∗ = 2.12 (b) t∗ = 4.55 (c) t∗ = 6.36 (d) t∗ = 8.18

eddy turnover time is used here as well. The deceleration mechanisms are similar to those
employed for the Newtonian flow. As the flow decelerates, the velocity reverses at the wall for
non-Newtonian flows as well. The turbulent intensities increase as the deceleration is applied,
after which the fluid does not have enough energy to reach the turbulent state. Instead the
remaining turbulence decays, and the flow reaches a laminar state.

The decay of turbulence is qualitatively similar for non-Newtonian and Newtonian flows.
This view seems to hold with the analysis of Chow et al. 1967, where a decay independent
of the nature of the fluid was shown for non-Newtonian fluids as well. After the applied
deceleration, there is a decrease in the turbulent quantities, such as the Reynolds shear stress
and the TKE budget terms. These quantities decrease over time and asymptotically reach
zero. Figure 6.21 show the decrease in the production and the dissipation of the TKE budget
over time for n = 0.8. The same time stamps as Figure 6.5 are used to compare the values.
It is evident that the decay is qualitatively faster in a generalized Newtonian fluid than a
Newtonian fluid. The last two time stamps are barely visible in Figure 6.21, indicating that
the flow has probably already decayed and reached a laminar state.
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(a) (b)

Figure 6.23: (a) The decay of the volume-averaged TKE over time for n = 0.8 depicted on
a logarithmic point: The blue line represents a liner fit to indicate the power-law decay before
the saturation of the length scale occurs, while the red line indicates the power-law decay after
the saturation of the length scale (b) The variation in Reτ over time: The point of divergence
indicates the approximate time when the decay diverges from a power-law to an exponential decay.
The value is Reτ = 61.5

The organized motions in the pipe for the decaying flow are shown in Figure 6.22. These
results are again for n = 0.8 and are qualitatively similar to the Newtonian flow. The struc-
tures increase in length over time and their number decreases, indicating that the bursting
rate is reducing. The thickness of the viscous sublayer increases and eventually, a laminar
boundary layer is formed. This is clear from the structures moving away from the wall and
towards the centre. The time stamps used here again reinforce that the decay is faster here
than for the Newtonian flow.

The decay of the volume-averaged TKE for n = 0.8 is shown in Figure 6.23a on a logarithmic
plot. Similar to Newtonian flows, there are two regions of power-law decay – one before
saturation of the length scale, and one after saturation. This is followed by an exponential
viscous decay. The value of the exponent for the first stage of decay is -1.1, and for the
second stage it is -1.9. For both the power-law decays, the exponents are comparable to the
values provided by Skrbek et al. 2000 for homogeneous, isotropic, Newtonian flows. However,
comparing these values with the results obtained here for the Newtonian case of Reb = 10000
(Reτ = 323), the absolute values obtained for n = 0.8 are slightly higher. During the turbulent
regime, the scaling between a non-Newtonian and Newtonian fluid is not expected to vary by
much, and thus, the difference in the exponents could simply be becuase of the error arising
out of these estimated fits. Figure 6.23b shows the variation of Reτ with non-dimensionalized
time for n = 0.8. The point of divergence from the power-law decay to the exponential decay
is marked on the graph. Similar to the Newtonian fluids the value is Reτ ≈ 60 here as well,
but the point now occurs at an earlier time than for the Newtonian flow (t∗ = 8.5 here as
compared to t∗ = 12.5 for n = 1 and Reb = 10000).
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Figure 6.24: Normalized average viscosity with time: The dotted lines show the average viscosity
for the fully-developed laminar flow, normalized using the wall viscosity of the fully-developed
turbulent pipe flow. The average viscosities approach the laminar value asymptotically

6-3-1 Influence of Shear-thinning

It is also beneficial to study the effects of shear-thinning on the decay. The power-law value
for blood is n = 0.67, and therefore, two values of the power-law index, n = 0.6 and n = 0.8,
will be studied here. The parameters necessary to define the flow are provided by Singh et al.
2017, and therefore, a fully-developed turbulent state can be set up and verified. These results
should also enable suitable discussion on how the results obtained here can be applied to an
aneurysm.

Unlike Newtonian flows, there is also a change in viscosity here over time. Using Reynolds
averaging for the non-Newtonian viscosity (Pinho 2003), the slab-averaged viscosity can be
monitored with time. The average viscosity is normalized using the wall viscosity, and this
is depicted in Figure 6.24. The viscosity increases with time until it reaches a steady-state
solution. It is expected that the shear rate will decrease over time as the flow starts to
relaminarize. The existing gradients in the flow are expected to reduce and become less
steep over time. This explains why the viscosity increases. The increase in viscosity is also
consistent with the fact that the decay law diverges from the power-law to an exponential
decay at an earlier stage (see Figures 6.23a and 6.26a). As the turbulence decays, the flow
becomes more viscosity dependent at a faster rate as the degree of shear-thinning increases.
This could explain why turbulent scaling for the power-law decay holds equivalently for both
non-Newtonian and Newtonian fluids, where the flow is almost independent of the viscosity,
but the point of divergence occurs earlier in non-Newtonian fluids. For laminar flow of power-
law fluids, the analytical result for the velocity profile is given by (6-3) (Metzner et al. 1955).

w(r) =
(
τw

KR

)1/n
(
R1/n+1 − r1/n+1

1
n + 1

)
(6-3)

Differentiating with respect to r, and substituting it in the constitutive equation for the vis-
cosity, a radial distribution for the laminar viscosity can be found. The average viscosity
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for laminar flow can be calculated for both the fluids, and compared with the viscosity ob-
tained here for relaminarizing flows. Doing so, it is seen that for both flows, the viscosity
obtained here is slightly lower than the expected value for a fully-developed laminar state.
This strengthens the impression that the flows are asymptotically reaching a laminar state.
Figure 6.24 plots the average viscosity for both the cases. The result matches excellently for
the case of n = 0.8, while the result for n = 0.6 shows some variance. This could possibly
be because of the increase in intermittency of the flow with increasing shear-thinning (Singh
et al. 2017).

Figure 6.25a plots the development of the integral length scale for the three fluids at a radial
location of r/D = 0.25. This indicates that the length scale is of O(D) for all three fluids fairly
early. The rate of growth of the integral length scale is not very different for the Newtonian
fluid and n = 0.8. This could be because the value of n = 0.8 is quite large to fully indicate
the effects of shear-thinning. The results of n = 0.6 seems to suggest that the saturation
length is reached quicker with increasing shear-thinning, although this is not quite evident
from the decay of the TKE. The higher dissipation of TKE implies that the energy-containing
eddies decay faster with increasing shear-thinning, and have shorter lifetimes (Rahgozar et al.
2017). From the growth of the length scale, it is even more clear that the qualitative nature
of decay is similar for Newtonian and generalized Newtonian fluids. The power spectrum for
the axial velocity fluctuations is plotted in Figure 6.25b. Again, the spectrum is truncated at
the smallest and the largest wavenumber, similar to Figure 6.11. The graphs are qualitatively
similar. Similar to the results of Toonder et al. 1997a, the energy has shifted to the smaller
wavenumbers for the non-Newtonian fluids. Indeed, the amount of energy shifted seems to
increase with shear-thinning. Since, the spectrum is truncated the energy being lesser at the
smaller scales (like the results of Toonder et al. 1997a) is not quite certain. However, the
cascade seems to become faster with the increase in shear-thinning and therefore, it can be
expected that there is less energy contained at the small scales with increasing shear-thinning.

Figure 6.26 shows the decay of the TKE for the three different fluids. For the power-law

(a) (b)

Figure 6.25: (a) Variation of the streamwise integral length scale over time (b) The power
spectrum of the axial velocity fluctuations for the three cases - Both plots are given at a radial
position of r/D = 0.25

Master of Science Thesis Anunay Prasanna



58 The Decay Results

(a) (b)

(c)

Figure 6.26: The decay of the volume-averaged TKE for different values of n - (a) On a
logarithmic plot (b) The variation of Reτ over time: The zoomed-in section shows that n = 0.6
reaches Reτ = 60 the fastest, followed by n = 0.8 and n = 1 (c) On a semi-logarithmic plot:
The symbols represent linear fits on an exponential curve to show the difference in the decay rate
of the three fluids

decay stages, the flow does not seem to distinguish between the non-Newtonian and the
Newtonian fluid, indicating that the flow is sufficiently turbulent for the solutions obtained
to be independent of viscosity. Soon after, the flow starts to settle into an exponential decay,
expressed in the form of E ∼ E0 exp (−β(t∗ − tvo)). It was mentioned previously that the
flow diverges from a power-law decay to an exponential decay at approximately Reτ = 60,
and this seems to also be true for both the power-law fluids. From the decay plots and the
development of the average viscosity it is clear however, that the flow diverges at an earlier
time as the degree of shear-thinning increases.

The parameter space studied and the values of the constants for the decay fits are summarized
in Table 6-2. As mentioned previously, it must be noted here that the poewr-law decay holds
for smaller times as the shear-thinning increases, and the viscous, exponential decay is reached
at a faster rate. For the exponential fits, the damping constant, β, is defined here as β = 2νκ2,
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n s for E ∼ t−s m for E ∼ t−m Reτ β for E ∼ exp (−β(t∗ − tvo)) βth

1 0.9 1.67 62.85 0.27 0.29

0.8 1.1 1.88 61.50 0.71 0.74

0.6 1.15 1.93 63.31 0.94 1.08

Table 6-2: Parameter space and results obtained to study the influence of shear-thinning - (i)
Reτ indicates the point where divergence is expected to occur (ii) The expected theoretical values
for β are calculated using the theoretical average viscosity and are given as βth

(a) (b)

Figure 6.27: The viscosity contours for the two power-law fluids at t∗ = 8. The distribution
is more uniform for n = 0.6 than n = 0.8, further proving that the turbulence decays faster for
n = 0.6 (a) n = 0.8 (b) n = 0.6

with κ = 2π/D, and ν taken to be constant in time during the exponential decay. Using the
average viscosity values for n = 0.8 and n = 0.6, the theoretical estimated values and the
obtained values are in decent agreement, with the error expected to arise from the selection of
the virtual origin. From the decay curves and their points of divergence, it is a fair estimation
that the overall decay increases with shear-thinning. The value of β increases with shear-
thinning, indicating that the decay is more exponential as the power-law index decreases in
value. Figure 6.27 shows the contours for the instantaneous velocity and the viscosity for
n = 0.8 and n = 0.6 at t∗ = 8. It can be seen that the viscosity distribution is more uniform
for n = 0.6 as compared to n = 0.8 at the same time, which implies that the gradients in the
flow are less steep, and thus, the flow for n = 0.6 is more laminar than for n = 0.8.

To close this section, it is again of interest to see the pace of decay for the three RMS
velocities. Figure 6.28a plots the decay of the volume-averaged turbulent intensities with
time for n = 0.8. Similar to the Newtonian decay, the axial intensity decays at a slower
rate than the wall-normal and circumferential intensities. This shows the highly anisotropic
nature of the flow. With the nature of decay being similar between the non-Newtonian and
Newtonian flows, this result is as expected. The rate of decay at different regions of the pipe
for n = 0.8 are presented in Figure 6.28b. The fastest decay occurs near the wall, with the
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(a) (b)

Figure 6.28: Left: Global decay of the RMS velocities for n = 0.8 Right: The decay of the TKE
for different regions of the pipe for n = 0.8

viscous sublayer and the buffer layer showing the fastest decay. The core region also shows
similar behaviour to the Newtonian flow. The energy does not seem to decay upto t∗ ≈ 3,
indicating some form of "frozen turbulence" at the centre. But the applied deceleration is too
large to maintain this state for long time periods, and the flow slowly reaches the laminar
state asymptotically. A point of difference between Figure 6.28b and Figure 6.14 is that
for the non-Newtonian flow the laminarity of the sublayer is quite evident, with the TKE
converging to a constant value (O(10−7)) over time. This behaviour is not quite discernible
for Newtonian flows. This only gives more credence to the fact that shear-thinning increases
the pace of the decay. Given that the nature of decay is similar, the results presented above
(Figure 6.28) also hold for n = 0.6.

6-4 Discussion

In the past few pages, results from the study of the decay of turbulence have been reported.
This section is to summarize the key results and comment on the quality of the research
undertaken. It is of interest for aneurysms to study decaying tubrulence. As mentioned
previously, aneurysms are subject to the formation of vortex rings (Rawat et al. 2019), which
are unstable and break down in subsequent cardiac cycles. It was also seen that the TKE of
the flow in an aneurysm does not decay with the mean flow kinetic energy and periodic kinetic
energy, but rather, much later in the cycle (Poelma et al. 2015). To this end, it is of interest
to study decaying flows in a confined geometry. The geometry of a pipe was chosen as it
satisfies this minimum requirement for the study. The presence of a well-defined statistically
steady state that could be used as a baseline to start researching the decay was an added
bonus.
The decay was studied by applying a deceleration to a fully-developed turbulent flow and
bringing the flow to a laminar state. It was seen in Section 6-2-1 that it is more appropriate to
study the decay by using ramps on the time scale of a turbulent eddy. Doing so, three regions
of decay are discerned after the deceleration process is complete – an initial power-law decay,
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a power-law decay beset by the saturation of the energy-containing length scale, followed by
the stage of viscous, exponential decay. There are some discrepancies in the results. For the
Newtonian case of Reb = 5300, the two power-law regimes are not clearly visible. Additionally,
the value of β obtained for the exponential decay of this case, shows an error of approximately
30%. But the consistency of this modelling with the other results obtained here, indicates
that this discrepancy could arise becuase of the initial Reynolds number being very close to
the transition regime. Toonder et al. 1997b show that the statistics for fully-developed pipe
flow are dependent on the Reynolds number, and therefore, this could possibly be the case
here as well.
The results obtained are qualitatively similar to the results described by Skrbek et al. 2000;
Skrbek 2008; Touil et al. 2002 and others, although there are some differences between these
studies and the one carried out here. Most of these authors study homogeneous, isotropic
turbulence. The case studied here is anisotropic and inhomogeneous in one direction. Ad-
ditionally, its homogeneity in the axial direction immediately after the application of the
deceleration is questionable, although it is quite sure that the flow during the decay is ho-
mogeneous in the streamwise direction. The presence of the production of TKE here also
makes it difficult to exactly characterize the similarity between the flows of Skrbek et al. 2000
and Touil et al. 2002, and the one studied here. Touil et al. 2002 also show results for an
inhomogeneous flow between two plates with no base mean flow and find similar results as
the homogeneous, isotropic flow. Therefore, the results here are completely viable.
The essence of this study is to characterize the relaminarization of the flow. With the turbu-
lent quantities asymptotically reducing to zero, it is evident that relamiarization is underway.
Since, a transition from turbulent to laminar state is present, it becomes interesting to point
out where exactly the switching between the states occur. Relaminarization is a gradual
process and therefore, the point of switching between the two states is difficult to pinpoint
exactly. However, it is interesting to note that the divergence from the power-law to the ex-
ponential decay occurs at Reτ ≈ 60 for all the cases studied. As mentioned previously, several
authors have noticed that this friction Reynolds number is critical in terms of understanding
relaminarization in channel flows (Iida et al. 1998; Tsukahara et al. 2014). For fully-developed
flows at this Reynolds number, these authors notice the flow to be intermittent with patches
of localized turbulence when using large computational domains, and the flow to be com-
pletely laminar when smaller computational boxes are used. Noticing intermittency is quite
difficult here, because of the continuous decrease of the friction Reynolds number in the flow.
However, what is clear from the literature and this study is that around Reτ = 60 and after,
the viscosity plays a much bigger role in the decay of turbulence than other turbulent mecha-
nisms. The flows diverge from a turbulent scaling and a scaling based on viscosity is provided
for this section. This exponential estimation for the viscous decay was borrowed from the
hypothesis of Skrbek 2008, and it is good to see that the scaling holds for both Newtonian
and non-Newtonian flows.
With the presence of three regions of decay, it becomes a question of judging when exactly one
region ends, and the other begins. This raises the question of the selection of a virtual origin.
As these flows relaminarize, they are subject to intermittency and to an extent this should
affect the selection of the virtual origin. Skrbek et al. 2000 hypothesize that the decay law
is not expected to change because of the presence of intermittency. It is expected however,
that a new virtual origin is defined to account for this. The study here does not include any
intermittency effects, but as mentioned, the only change expected is in the precise definition
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of the starting points of the different stages of decay.

A study was undertaken to understand the changes in the decay with varying initial Reynolds
number. It is expected that if the flow is sufficiently turbulent, the nature of decay should be
independent of the Reynolds number. This seems to hold for a while, before the flows start
deviating from one another. This deviation occurs at approximately Reτ = 60, where the
change over from the power-law to the exponential viscous decay is expected. The difference
in flows for the exponential regime is expected to arise out of the differences in viscosity of
the different flows.

The difficulties of turbulence modelling for decaying flows is another topic that was briefly
addressed. A low Reynolds number k − ϵ model was used to simulate decaying, Newtonian
flows for the same three Reynolds numbers as the DNS. Unlike the DNS, the different power-
law regions are not clearly visible. Moreover, the power-law decay holds for a very long time,
and it is tough to characterize the point of divergence at Reτ ≈ 60. The inability of the
RANS model to understand the growth of the length scale and the presence of the bounded
geometry is a serious disadvantage to study this type of flow. Thus, it is essential to resolve
much smaller scales and therefore, an LES or DNS study is more beneficial to accurately
determine the differnt facets of this study.

To put the results obtained in the context of an aneurysm requires some thought. Using a
deceleration is qualitatively equivalent to studying one half of a cardiac cycle, and therefore,
the results can be transferred to an aneurysm to some extent. Large expansion angles in
aneurysms also cause flow separation, which has not been studied here. It has been noticed
in other studies that to describe the decay of turbulent quantities, the nature of the flow
separation is not quite important (Sreenivasan 1982). Hence, several authors propose the use
of sudden expansions to study the decay of the flow on the scale of an eddy turnover time
(Sreenivasan 1982; Sibulkin 1962), and this is what is done here.

Consider that the diameter, length, expansion angle and flow rate are known for a given
aneurysm. From the flow rate and the expansion angle, an estimate on the deceleration of the
blood flow as it approaches the aneurysm can be provided. Supposing that the combination
of expansion angle and flow rate is such that the friction Reynolds number of the flow is
never greater than Reτ = 60 in the aneurysm, then the exponential viscous decay is the only
expected decay regime to be present in the aneurysm. If the combination is sufficient for the
turbulent scaling to hold (Reτ > 60), then the power-law decay can be expected.

Differentiating between the two stages of power-law decay is dependent on the length and the
diameter of the aneurysm. The energy containing length scale for the flow in an aneurysm can
be estimated and it can be compared with the diameter to see if saturation of the length scale
has occurred. The study here shows that some time passes between the applied deceleration
and the saturation of the length scale. Therefore, the length of the aneurysm also has a major
role to play. The length of the aneurysm raises the question of how much time the flow has
within an aneurysm to actually go through the two stages of power-law decay mentioned here.
Additionally, added recirculation, as blood from a new cycle enters the aneurysm while some
amount of the blood from the previous cardiac cycle still remains (Rawat et al. 2019), could
play a major role in accumulating turbulence over time and preventing the saturation of the
length scale. Considering how long the turbulent scaling actually holds, it is not reasonable
that all the stages of decay will be seen together in a single aneurysm for a single cardiac
cycle. Such a long aneurysm would not be safe and would require treatment immeidately.
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An important question that this research set out to answer is the usage of non-Newtonian
modelling for blood flows. This is a large area of debate (Steinman 2012), and it is very
tough to answer that question convincingly, although an attempt is made here. The results
here show the dependence on the viscosity for the decay, and clearly indicate that the rate of
decay increases with shear-thinning. As mentioned previously, blood has a power-law index
of n = 0.67, and can therefore be considered to be sufficiently shear-thinning to require this
modelling. For the turbulent scaling, the nature of the fluid is not discernible, simply because
the viscosity does not affect the flow at the largest scales. However, including the shear-
thinning definitely incresaes the rate of decay qualitatively. The decay changes between its
different stages earlier than for Newtonian flows. Modelling blood as a shear-thinning fluid in
an aneurysm then implies that even a turbulent decay could possibly revert to the exponential
viscous decay very quickly. The dependence of the viscosity on the decay for the exponential
regime shows that if only the viscous decay is present in an aneurysm, then including the
effects of shear-thinning makes a larger difference than if the power-law decay holds.
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Chapter 7

Conclusion

This document details the applications of turbulent non-Newtonian flow and its importance.
In essence, this research is carried out to understand the underlying physics of interaction
between the varying viscosity and the phenomenological nature of turbulence (Pinho 2003).
With regards to this a description has been provided about fully developed turbulent pipe
flows, both qualitatively and quantitatively. The discussion has then been extended to non-
Newtonian fluids. The differences in non-Newtonian and Newtonian flows, both in terms of
application and phenomenology, have been emphasized. Major differences have been found
in modelling blood as a non-Newtonian fluid as compared to a Newtonian fluid in some
researches (Rodkiewics et al. 1990), while other studies do not show the need to model the
non-Newtonian nature of blood flow for all flow rates (Steinman 2012). There is no conclusive
evidence to push the debate either way, and therefore, including the non-Newtonian nature
of the fluid in this study made the discussion more intriguing.

The number of variable parameters in an actual aneurysm are too high. Thus, it is easier
to quantify certain parameters by looking at a simplified case. Studying the decay has great
practical value and could be useful to characterize aneurysms as well. The idea of this research
study is to characterize the decay of turbulence from a well-defined state. Fully developed
pipe flow fits this description, in particular when considering the fact that the geometry of an
aneurysm is similar to that of a pipe. To this extent, a DNS study using nek5000 has been
carried out. Using a higher-order method has been beneficial and has improved the accuracy
of the results. The applied methods have been validated for Newtonian and non-Newtonian
flows by the comparison of fully-developed flow statistics.

A deceleration is applied to reduce the flow from a turbulent to a laminar state. It is shown
that three regions of decay exist, and possible scaling for the same is also provided. The
major effort in this thesis is dedicated to verifying if the different stages of decay can be
clearly identified for all the cases simulated. The difference between the first two stages can
be identified by the saturation of the energy containing length scale. Both these stages follow
a power-law decay. This was explained to be qualitatively similar to the results of Skrbek
et al. 2000. After a while, there is a change over in the decay law, and the decay is now seen
to be exponential. The scaling hypothesized by Skrbek 2008 is used for this region, and it is
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shown here that this is a valid hypothesis. The point of divergence between the power-law
and exponential decay regimes has been debated. It is shown that this divergence occurs at
Reτ ≈ 60 for all cases. This is an intriguing result and can be used as a future stepping stone
to understand and characterize transition and relaminarization in pipe flows. Including the
effects of intermittency to study this would also further the discussion. The influence of the
ramp rate applied for the deceleration and the initial Reynolds number is studied as well. A
RANS modelling approach is also attempted to check if a turbulence model can be used to
explain the decay. However, it is clear that DNS provides better results for decaying flows.

The differences in the decay of Newtonian and non-Newtonian fluids have been emphasized,
with shear-thinning increasing the rate of the overall decay. The results are then put into
context for an aneurysm. It is hypothesized that the shear-thinning of blood needs to be
modelled depending on the regime of decay seen in an aneurysm. With the clear difference
in results for the differnt shear-thinning fluids during the exponential decay, it is evident
that for the exponential regime, modelling the shear-thinning provides more accurate reuslts.
Although modelling the shear-thinning might not be necessary for the turbulent decay quan-
tiatively, the shift in the point of divergence with increasing shear-thinning indicates that it
might be useful to model the turbulent flow as a generlaized Newtonian fluid as well.

The overall outlook of the research is positive. It has been able to address most of the
questions it set out to answer. However, there are some shortcomings that need to be looked
at in the future. The modelling of the non-Newtonian flows in nek5000 was a success for the
most part, apart from the requirement of a limiter at the location of maximum shear. This
led to some disparities of the maxima for the higher-order viscous quantities. Although there
was no considerable effect of this on the global flow, a smoother limiter could be used to avoid
this. The use of limiters itself can be made null and void by studying viscosity models other
than the power-law model. Model such as the Carreau-Yasuda or Casson model are better
suited to model blood as well, and therefore, the result obtained using these models could be
quite intriguing.

The majority of the decay studies available are carried out for homogeneous, isotropic turbu-
lence. It is tough to characterize and compare the results available for these studies with those
of pipe flows. The highly anisotropic nature of this flow is shown in the research. Addition-
ally, the homogeneity of the flow in the axial direction just after the deceleration is applied is
also questionable. To appropriately study the correlations and the development of the length
scale for decelerating flows, performing an ensemble averaging would be more helpful. The
results here for the same are lacking convergence. It would also be ideal to study a pipe of
length O(100D). This requires a high computational load and therefore, this is difficult to
do.

For an aneurysm, the results are presented in this research with quite some ambiguity. There-
fore, performing a simulation of an aneurysm will shed light on the decay processes present
in it. Some of the variables not considered here, such as the effects of the pulsatile nature of
blood flow on the decay should also be studied. Although it was shown that flow separation
does not have a major role to play in the decay, it would be beneficial to validate this. The
topic of decay is a difficult one to characterize, especially in the context of an aneurysm.
However, an effort has been made here to answer some of the questions raised, while avenues
to explore other research interests have also been created.
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Appendix A

Parallel scaling of nek5000

Fig. A.1 depicts the variation of the solution time with respect to the number of processors.
τcomp corresponds to the total computing effort required. The direct stiffness summation is
represented by τds, while the inner-product communication time is represented by τip. τsol is
the summation of the three aforementioned terms. It can be noticed that the total computing
cost decreases with an increase in the number of processors, while the parallel overhead costs
increases, as there is more mapping and communication required between elements. τip can
become the dominant factor as the total number of processors increases, and thus, there is a
minimum attainable solution time at a finite number of processors (Fischer et al. 1989).

Figure A.1: Computing Costs Associated with Parallel Decomposition, Measured in Wall Clock
Time (Fischer et al. 1989)
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Parallel costs were also evaluated for the local cluster. A cylindrical pipe geometry with 1875
global elements, employing a polynomial degree of order 7 (N = 7, lx1 = 8). This gives the
total degrees of freedom as 1875×83 = 960000. The case was parallelized and tested, starting
from 8 cores until 56 cores. Fig. A.2 shows the logarithmic variation of the time required per
time step with the total number of cores. This reinforces the fact that the computational cost
decreases with the increase in the total number of processors, and the scalability in nek5000
is quite efficient.

Figure A.2: Efficiency of Parallel Scaling in nek5000
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Appendix B

Additional Validation Results

B-1 Grid Independence Study

A grid independence study was done to check the influence of the grid on the results. Some
of the results are shown below. Five cases were studied, and the results were validated with
those of Eggels et al. 1994. The number of elements for these were 1875, 3900, 7840, 9764
and 12820. The interpolating polynomial used for the GLL distribution is of order N = 7,
and thus, the total degrees of freedom for each case is 83 × Number of Elements. Figure B.1a
shows the average wall shear stress for each case and the expected value. For the first two
element sizes, the value is quite erratic. Therafter, the values are close to the expected value,
and thus, one of the sizes from these must be selected.

Figure B.1b shows the Reynolds shear stress for the different cases. As the number of elements
increases, the results are closer to the expected value. For 9764 and 12820 elements, the
results match exactly with those of Eggels et al. 1994, and therefore, one of these values will
be selected for the rest of the simulations. To finalise the selection, the computational time
required for each element size is plotted in Figure B.2. The time required increases with the
number of cells in the simulation. Considering that both 9764 and 12820 elements provide
the same results that are in good agreement with those of Eggels et al. 1994, the case which
required lesser computational time was chosen. This leads to the selection of the case with
9764 elements. The total degrees of freedom are 4.9 × 106.
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(a) (b)

Figure B.1: (a) The obtained value of the time-averaged wall shear stress for different element
sizes: The red line indicates the expected value for the case (b) The Reynolds shear stress plotted
for different grid sizes, The selected value (Grid Size = 9764) and the results from Eggels et al.
1994 is given in the figure. Each grid size has [(N + 1)3 × Grid Size] degrees of freedom with
N = 7 Legend : ( ) Grid size = 12820 ( ) Grid size = 7840 ( ) Grid size = 3900
( ) Grid size = 1875

Figure B.2: Required computational time for different grid sizes. The selected grid size (9764
elements) is marked in the figure
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B-2 Additional Budget Terms - Eggels et al. 1994

Figure B.3: Budget terms of u′2
z : The symbols are the results obtained from Eggels et al. 1994

for the respective quantities

Figure B.4: Budget terms of u′2
θ : The symbols are the results obtained from Eggels et al. 1994

for the respective quantities
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Figure B.5: Budget terms of u′
ru

′
z: The symbols are the results obtained from Eggels et al. 1994

for the respective quantities

B-3 Additional Results - Singh et al. 2017

(a) (b)

Figure B.6: (a) Comparison of the normalized mean shear turbulent viscous transport (b):
Comparison of the normalized turbulent viscous transport - The symbols are results obtained
from Singh et al. 2017
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