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a b s t r a c t 

The organization and shape of the microstructural elements of trabecular bone govern its physical proper- 

ties, are implicated in bone disease, and serve as blueprints for biomaterial design. To devise fundamental 

structure-property relationships and design truly bone-mimicking biomaterials, it is essential to charac- 

terize trabecular bone structure from the perspective of geometry, the mathematical study of shape. Us- 

ing micro-CT images from 70 donors at five different sites, we analyze the local and global geometry of 

human trabecular bone in detail, respectively by quantifying surface curvatures and Minkowski function- 

als. We find that curvature density maps provide distinct and sensitive shape fingerprints for bone from 

different sites. Contrary to a common assumption, these curvature maps also show that bone morphol- 

ogy does not approximate a minimal surface but exhibits a much more intricate curvature landscape. 

At the global (or integral) perspective, our Minkowski analysis illustrates that trabecular bone exhibits 

other types of anisotropy/ellipticity beyond interfacial orientation, and that anisotropy varies substan- 

tially within the trabecular structure. Moreover, we show that the Minkowski functionals unify several 

traditional morphometric indices. Our geometric approach to trabecular morphometry provides a funda- 

mental language of shape that could be useful for bone failure prediction, understanding geometry-driven 

tissue growth, and the design of bone-mimicking tissue scaffolds. 

Statement of significance 

The architecture of trabecular bone is key in determining bone properties, and is often a starting point 

for the design of bone-substitutes. Despite the substantial history of bone morphometry, a fundamental 

characterization of trabecular bone geometry is still lacking. Therefore, we introduce a robust framework 

to quantify local and global trabecular bone geometry, which we apply to hundreds of micro-CT scans. 

Our approach relies on quantifying surface curvatures and Minkowski functionals, which are the most 

fundamental local and global shape quantifiers. Our results show that these shape metrics are sensitive 

to differences between bone types and unify traditional metrics within a single mathematical frame- 

work. This geometrical framework could also be useful to design bone-mimicking scaffolds and under- 

stand geometry-driven tissue growth. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many natural and man-made materials are characterized by a 

omplex and often hierarchical spatial architecture. A well-known 

iological example of such a spatially structured material is trabec- 
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lar bone, exhibiting a characteristic sponge-like morphology [1] . 

he quantitative morphological characterization of trabecular bone 

nd other structured materials is essential in the study of these 

ystems, for two primary reasons [2] . First, the morphology or ar- 

hitecture of many materials is often the outcome of a biological or 

hysical process. The study of such morphologies, therefore, pro- 

ides insight into the mechanisms governing their formation. In 

rabecular bone, for example, the organization of the microstruc- 
c. This is an open access article under the CC BY license 
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ure is driven by external loading, and changes in the morphology 

an be indicative of bone diseases, such as osteoporosis [3–5] . Sec- 

nd, the morphology of spatially complex materials can strongly 

ffect their physical properties, making morphological character- 

zation indispensable for establishing structure-property relation- 

hips. For example, this intimate structure-property connection is 

hat enables foams and metamaterials to attain their unique prop- 

rties [6] . Moreover, material morphology can also directly elicit 

iological responses in biomaterials, affecting aspects such as cell 

igration, cell fate and spatial tissue organization [7–10] . 

In the context of trabecular bone, the importance of the mi- 

roarchitecture has long been recognized, and many morphomet- 

ic indices have been proposed [11] . However, such indices typi- 

ally only quantify a particular morphological aspect, such as den- 

ity, thickness, or interfacial anisotropy, and often lack a funda- 

ental geometric foundation or interpretation [12] . For example, 

he well-known structure model index (SMI), which classifies tra- 

ecular bone by its rod-like or plate-like nature [ 13 , 14 ], is known

o be conceptually flawed by its inability to capture all types of 

aturally-occurring shapes within the trabecular structure [ 13 , 14 ]. 

oreover, calculating the same metric using different software 

ools often provides significantly different results, owing to sub- 

tantial variations in the algorithm implementations [ 15 , 16 ]. Hence, 

here is a need for a unifying, robust approach to quantitatively 

haracterize the shape of complex materials, including trabecular 

one. Such a well-defined, mathematical framework is established 

n the realms of differential and integral geometry, providing fun- 

amental descriptors of local and global shape. Local shape can 

e accurately captured using the concept of surface curvature. For 

ny small neighborhood on a surface, the mean and Gaussian cur- 

atures, defined in terms of the principal curvatures, capture the 

ost fundamental shape information ( Fig. 1 ). The magnitudes and 

igns of these measures characterize the local convexity/concavity 

r the sphere-like vs. saddle-like character of the surface. Global 

hape, on the other hand, can be characterized by the so-called 

inkowski functionals (MF). MF are versatile shape indices with 

trong roots in integral geometry, capable of robustly quantifying 

ifferent aspects of spatial structure [ 2 , 17 , 18 ] ( Fig. 1 ). These shape

ndices, which can be of scalar or tensorial nature, are fundamental 

n the sense that they form a basis for any other additive func- 

ional that describes the shape of a 3D body (Hadwiger-Alesker 

heorems) [ 19–21 ]. 

These mathematically defined shape metrics have been used 

o quantify the structure of complex, inanimate materials, such as 

lends undergoing spinodal decomposition [22] or granular pack- 

ngs [17] , but have not yet been used to characterize trabecu- 

ar bone. Here, we applied these local and global shape measures 

o hundreds of micro-computed tomography (micro-CT) scans ob- 

ained from bone biopsies of 70 donors at five anatomical sites 

5] . At the local level, we computed the mean, Gaussian and net 

urvatures of the trabecular bone interfaces. We observed that the 

patial curvature distributions are sensitive to differences in bone 

icroarchitecture from different sites. At the global level, we com- 

uted the scalar and tensorial MF, and compared them with tradi- 

ional morphometric indices. We focused on the more potent ten- 

orial MF that can sensitively quantify the various types of intrin- 

ic anisotropy, which is highly relevant in the study of trabecular 

one [ 23 , 24 ]. By using these fundamental shape descriptors, and 

econciling them with previous metrics, we provide a novel geo- 

etric perspective on trabecular morphometry, that is also com- 

atible with virtually every other type of complex microstructure, 

ncluding tissue engineering scaffolds and architected biomaterials. 

s such, our approach does not only offer new insights into tra- 

ecular morphology, but also provides a more unified “language of 

hape” that is useful in the design of bone-mimicking biomaterials 

25] . 
344 
. Materials & methods 

.1. Trabecular bone data set 

All analyses were performed using previously-published, high- 

esolution μCT data from the European Union BIOMED I Con- 

erted Action “Assessment of Bone Quality in Osteoporosis”. The 

etails of the database composition and data acquisition protocols 

an be found elsewhere [ 5 , 57 ]. Briefly, the data set comprised tra-

ecular bone biopsies harvested from 70 donors (38 male, 32 fe- 

ale, age between 23 and 92 years) at five anatomical sites: the 

emoral head (FH), the iliac crest (IC), the calcaneus (CA), the sec- 

nd lumbar vertebra (L2), and the fourth lumbar vertebra (L4). 

he specimens were scanned using a high-resolution μCT system 

 μCT 20, Scanco Medical AG, Switzerland) with a spatial resolu- 

ion of 28 μm and cubic voxels with 14 μm length (for the CA 

amples, cubic voxels with an edge length of 28 μm were used). 

 4 m m 

3 cubic volume of interest (VOI) was selected from the 

esulting scanned data, and 3D binary images of the mineralized 

one phase were obtained after Gaussian filtering and threshold- 

ng. These binary images served as the basis for all consecutive 

nalyses. 

.2. Surface reconstruction 

The binary volume data was processed using custom Python 

odes and Python-based mesh processing libraries [ 58 , 59 ]. First, 

 triangle mesh of the trabecular bone surface was reconstructed 

rom the volume data using a marching cubes algorithm with 

 spacing equal to the voxel size (Supplementary Fig. 7a) [60] . 

o padding was applied to the volume data prior to the march- 

ng cubes algorithm, ensuring that only the trabecular interface 

as meshed and resulting in a mesh that was a 2-manifold with 

oundary (Supplementary Fig. 7c). Next, degenerate (zero-area) 

aces and small disconnected components were removed from the 

esh. To account for the roughness inherent in marching cubes 

eshes, the triangle meshes were smoothed using implicit fair- 

ng. This is an efficient smoothing approach that is based on the 

mplicit integration of a diffusion process, and guarantees volume 

reservation during smoothing [61] . The algorithm solves the lin- 

ar system: 

 

I − λdtL ) M 

n +1 = M 

n 

here M 

n represents the set of mesh vertices at iteration n , L rep- 

esents the Laplacian, and λdt is a user-defined smoothing con- 

tant. The trabecular bone meshes were all smoothed using a sin- 

le iteration and λdt = 5 , enabling the smoothing of the marching 

ubes artefacts while maintaining small curved features on the tra- 

ecular bone surfaces. 

.3. Curvature estimation algorithm 

The principal curvatures of the trabecular bone surface were es- 

imated at every vertex of the discrete triangle mesh using an ef- 

cient multiscale fitting algorithm [ 58 , 62 ]. The applied algorithm 

as an adaption of the Osculating Jets method [63] , and fitted 

 second-order polynomial to a local neighborhood around every 

ertex for the curvature estimation. The local neighborhood was 

efined as a ball with a user-defined radius, which was centered 

t the vertex of interest. For the FH, IC, L2, and L4 trabecular bone 

eshes, the radius was defined as: 

 = 10 〈 e 〉 
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Fig. 1. Surface curvature and Minkowski tensors. (a–b) The minimum ( κ1 ) and maximum ( κ2 ) principal curvatures and the associated principal directions on the mesh 

of a “mother and child” sculpture (model is provided courtesy of UU by the AIM@SHAPE-VISIONAIR Shape Repository). (c–e) The definitions of the mean ( H), Gaussian ( K), 

and net ( D ) curvatures as functions of the principal curvatures. The top row visualizes the curvatures of the “mother and child” sculpture, while the bottom row depicts 

some small sections of a trabecular bone interface. Spherical, hyperbolic, cylindrical, and planar regions are highlighted in d). The scale bar in c) represents 0.5 mm. (f) 

A visualization of the components used in the computation of the Minkowski tensors of a coarse “mother and child” model, showing the position vectors ( ̄r ) and normal 

vectors ( ̄n ), as well as the expressions for the tensors considered in this study. 
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here 〈 e 〉 represents the average mesh edge length for a particu- 

ar bone specimen ( 〈 e 〉 ≈ 20 μm ). In the case of the CA meshes,

hich were scanned with a larger voxel size, the radius was set to 

 = 5 〈 e 〉 , corresponding to a similarly-sized neighborhood as com- 

ared to the other bone specimens. The sensitivity of the curvature 
345 
stimation algorithm to the neighborhood size ( r) and smoothing 

arameter ( λdt) was assessed by calculating the interface shape 

istributions for a representative sample at different combinations 

f r and λdt , and by visualizing color-coded curvature distributions 

n the triangle meshes (Supplementary Figs. 8 and 9). 
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.4. Curvature probability density distributions 

All reported curvatures were non-dimensionalized using a char- 

cteristic length parameter [32] : 

 v = 

S 

V 

here S is the total mesh area and V = 4 3 m m 

3 is the volume of the

ubic specimen. Face curvature values were calculated by averaging 

he curvatures of the three vertices associated with every face. In 

onstructing the probability density distributions of curvature, the 

ace curvatures were weighted by their face area. In case of the 

nterface shape distributions (ISD), this implied that the ratio of 

he face areas with a certain combination of curvature to the total 

esh area was considered. For example, in case of the ISD of the 

rincipal curvature, this means [28] : 

 ISD ( κ1 , κ2 ) = 

A ( κ1 , κ2 ) 

A Total 

.5. Radial distribution function of curvature 

To compute the radial distribution functions (RDF) of the mean 

nd Gaussian curvatures, the curvature values in the range of the 

 . 5 percentile and the 99 . 5 percentile were considered. These cur- 

ature values were binned in 100 bins of equal width and were 

eighted by their face areas. Since the RDF considers the curva- 

ures of face pairs separated by a given distance, a characteristic 

istance was defined in function of the previously described char- 

cteristic length scale S v : 

 = 

˜ r S −1 
v 

here ˜ r is a user-defined length parameter. In order to find face 

airs, a spherical shell of nominal radius r and thickness �r was 

entered around the barycenter of every sample face of interest, 

here: 

r = 

1 

10 

S −1 
v 

All faces with barycenters inside the spherical shell were con- 

idered as paired faces to the sampled face. For every bin, 10 0 0

nique random faces were selected and the curvatures of the 

orresponding paired faces were computed and stored in area- 

eighted histograms with 100 bins of equal width. If the bin con- 

ained less than 10 0 0 faces, which could occur at the extreme val-

es of the curvature range, all available faces were used as sample 

oints in the RDF. By sampling every bin, and combining the cor- 

esponding area-weighted curvature histograms of the paired faces, 

he RDF was constructed as a 100 × 100 matrix with probability 

alues. 

.6. Minkowski structure metrics 

The Minkowski functionals (scalars W v , tensors W 

r,s 
v ) and the 

otational invariants of the irreducible Minkowski tensors (IMT) ( q s 
nd w s ) were computed on the trabecular triangle meshes using 

 C ++ code ( https://github.com/morphometry/karambola ) that it- 

rates over all faces, edges, or vertices to compute the relevant 

inkowski metrics, in accordance with Table 2 of Ref. [20] . In or- 

er to prepare the trabecular bone meshes for the Minkowski met- 

ic computation, the non-manifold edges and vertices that could 

esult after the marching cubes reconstruction had to be removed. 

he non-manifold edges were removed by constructing the face 

djacency matrix of the mesh and removing those faces with edges 

hared by more than two faces. Non-manifold vertices that re- 

ained after the deletion of non-manifold edges were removed 

sing Meshlab [64] . Of the six relevant Minkowski tensors, only 
346 
he tensors W 

0 , 2 
1 

and W 

0 , 2 
2 

are translation-invariant tensors, which 

eans that: 

 

r,s 
v ( B � t ) = W 

r,s 
v ( B ) 

here B � t signifies the translation of body B along vector t [20] . 

he other Minkowski tensors are translation-covariant, and do not 

atisfy this relationship. For those translation-covariant tensors, a 

onsistent definition of the mesh origin is required to enable a fair 

omparison between the different meshes. For all the trabecular 

one meshes, the origin was defined to be in the center of the 

ubic bounding box. 

In order to deal with the open trabecular bone meshes, a 

omain-wise analysis of the Minkowski metrics was performed. To 

his end, the faces at the boundaries of the mesh were assigned a 

ifferent label than the faces inside the trabecular surface, and the 

inkowski metrics were computed for each labeled domain sep- 

rately. In this way, the faces not on the boundary are effectively 

onsidered to be part of a “closed” surface, and all the relevant 

inkowski metrics could be calculated, which is not the case for 

he “open” boundary faces [20] . Representing a mesh as a doubly- 

onnected edge list (DCEL), the boundary faces are those faces with 

t least one half-edge that appears only once in list ( i.e. , it is not

hared with another face). A visual representation of the boundary 

ace labeling is provided in Supplementary Fig. 10a. 

.7. Spatial decomposition 

A domain-wise Minkowski analysis was performed on spatially 

ecomposed meshes. The mesh was subdivided into a 3 × 3 × 3 

ubic grid, and all faces were assigned a label based on the loca- 

ion in the grid, resulting in a total of 28 different labels (27 labels 

or the grid domains and one label for the boundary, see Supple- 

entary Fig. 10b). The relative difference between the local and 

lobal DA was defined as: 

˜ r,s 
v = 

| λr,s 
v | min | λr,s 
v | max 

− 〈 | λr,s 
v | min | λr,s 
v | max 

〉 
〈 | λr,s 

v | min | λr,s 
v | max 

〉 

Here, 
| λr,s 

v | min 

| λr,s 
v | max 

defines the ratio of the minimal to the maximal 

igenvalue of the tensor W 

r,s 
v , while 〈·〉 refers to the average value. 

For the calculation of the quadratic and cubic invariants of the 

rreducible Minkowski tensors (IMT), the rank s was in the range 

f [ 0 , 8 ] . 

.8. Ellipsoid representation of tensors 

The rank-2 Minkowski and MIL tensors were visualized by el- 

ipsoid surfaces, with radii and directions that were defined by the 

igenvalues and eigenvectors of the tensors, respectively [ 38 , 41 ]. 

he surface of an arbitrarily oriented ellipsoid, centered at the ori- 

in is obtained by solving the following expression for x : 

 

T Mx = 1 

here M is a positive-definite matrix. The eigenvalues λs of M are 

elated to the semi-axes c s of the ellipsoid by: 

s = 

1 

c 2 s 

The corresponding eigenvectors then represent the principal 

rientations of the ellipsoid. By exploiting this relationship, the 

igenvalues and eigenvectors of the rank-2 tensors used in this 

ork could be represented as ellipsoid surfaces. In visualizing the 

llipsoids of the spatially decomposed samples, the ellipsoids were 

niformly scaled to the same volume, which is given by: 

 = 

4 

πc c c 

3 

https://github.com/morphometry/karambola
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.9. Standard bone morphometric analyses 

The mean intercept length (MIL) analysis was performed by 

pplying the algorithms implemented in BoneJ (version BoneJ2), 

hich is an ImageJ plug-in, to the binary image stacks of the 

rabecular specimens [42] . While the earlier implementations of 

he MIL could suffer from significant deviations in the predicted 

nisotropy due to sampling bias [ 38 , 43 ], the current implemen- 

ation draws test lines through the entire image stack, offering a 

ore uniform sampling. A convergence analysis was performed to 

ssess the influence of the number of the parallel test lines and 

he number of different test line directions. For the final analyses, 

0 0 0 directions and 10 0 0 0 lines per direction were used. More-

ver, the MIL results for every sample were taken as the average of 

hree runs of the MIL algorithm. The Euler characteristic ( χ ) was 

lso estimated using BoneJ, on the same binary image data as was 

sed for the MIL analysis. Since the estimation of the Euler char- 

cteristic assumes a single connected component, the images were 

urified (using the Purify command in BoneJ) prior to the connec- 

ivity computation. The other reported morphometric indices ( i.e. , 

S and ∂ S/∂ r ) were obtained from the Scanco micro-CT scanner 

oftware (Scanco Medical AG, Switzerland). 

.10. Statistical analysis 

The Kruskal-Wallis H test was used to detect significant differ- 

nces between the means of the different groups of data. Post hoc 

omparisons of the means were performed using the two-sided 

ann-Whitney U tests. The two-sample Kolmogorov-Smirnov test 

as used to assess the differences between the probability distri- 

utions of the q s and w s metrics, and the age-related curvature 

robability distributions. The obtained results were considered to 

e statistically significant when p < 0 . 01 . All statistical analyses 

ere performed using the python library Scipy. 

. Results 

.1. Surface curvature of the trabecular bone interface 

We started our geometric analysis at the most local scale, by es- 

imating the mean ( H), Gaussian ( K), and net ( D ) curvatures of the

rabecular bone interfaces from their triangulated mesh represen- 

ations. The mean curvature describes how much a surface is lo- 

ally convex or concave. The Gaussian curvature quantifies the type 

f the surface: K < 0 signifies a saddle-shaped region (hyperbolic), 

 = 0 implies an intrinsically flat region (such as a plane, cylinder 

r cone), and K > 0 describes a sphere-shaped region ( Fig. 1 ). The

et curvature is less common and describes how much a surface 

ocally deviates from a planar region ( Fig. 1 ). 

Fig. 2 depicts the mesh representations of three representative 

rabecular bone specimens from the femoral head (FH), iliac crest 

IC), and second lumbar vertebra (L2), color-coded by their curva- 

ure (representative visualizations of the calcaneus (CA) and fourth 

umbar vertebra (L4) are provided in Supplementary Fig. 1). The 

H samples typically exhibited an apparently uniform dispersion 

f regions with positive and negative values of the mean curva- 

ure. Comparing this to the L2 specimen, we observed that the 

atter showed much more regions of highly negative mean curva- 

ure. This is the consequence of the many rod-like elements that 

re typically present in specimens from the lumber spine, as op- 

osed to the more sheet-like architecture in FH specimens [5] . The 

aussian curvature distributions clearly showed that the geome- 

ry of trabecular bone is, on average, hyperbolic in nature ( K < 0 ).

his has been reported before for a few bone biopsies [26] . This 

revalence of negative Gaussian curvature is consistent with the 

igh topological complexity ( i.e. , high genus) of trabecular bone, 
347 
ccording to the Gauss-Bonnet theorem [27] . The net curvature 

aptures regions where the trabecular surface is strongly bent, 

ithout distinguishing between the saddle- or sphere-like nature 

f these bends. In FH specimens, such regions corresponded pri- 

arily to arc-like transitions between plate-like elements, while 

igh net curvature in IC or L2 specimens was concentrated in the 

ylindrically-shaped rod-like elements. 

As described before, trabecular bone has often been character- 

zed on the basis of its plate-like or rod-like nature, and the SMI 

as developed to quantify this nature. To relate this characteriza- 

ion to our curvature analysis, we estimated the curvatures of ide- 

lized rod, plate, and mixed plate-rod lattices of 3 × 3 × 3 unit 

ells. Visualizing the curvatures reveals that these idealized lattices 

xhibit a much narrower curvature spectrum than typical trabecu- 

ar bone specimens, irrespective of the anatomical site ( Fig. 2 d–

). In particular, the Gaussian curvature spectrum is very limited, 

ince both the cylindrical rods and the plates have K = 0 . For these

dealized lattices, non-zero Gaussian curvature only appears at the 

od-rod, rod-plate and plate-plate intersections. These curvature vi- 

ualizations indicate that the plate vs. rod paradigm, though rele- 

ant for general discussions, only provides a limited ability to char- 

cterize the local shape variations that are present in trabecular 

one. 

.2. Curvature distributions 

Due to the inherently local nature of surface curvature, the av- 

rage values of curvature are not of much descriptive use. In fact, 

he average mean and Gaussian curvatures are already captured in 

he structure model index (SMI ∼ 〈 H〉 ) and Euler-Poincaré charac- 

eristic ( χ ∼ 〈 K〉 ), respectively [26] . Instead, it is important to con- 

ider the distribution of curvature throughout the trabecular speci- 

ens. Therefore, we computed the 1D and 2D probability distribu- 

ions of the different curvature measures, obtained from more than 

0 subjects at every anatomical location. The 1D probability densi- 

ies of the mean curvature ( Fig. 3 ) confirmed the above-mentioned 

bservation that predominantly plate-like specimens ( i.e. , FH) ex- 

ibit a more uniform distribution of the normalized mean curva- 

ure, with a peak close to H/ S v ≈ 0 , than predominantly rod-like 

pecimens ( i.e. , L2 and L4). The latter displayed a flattened and 

ore negatively skewed distribution, centered around H/ S v ≈ −0 . 5 . 

he mean curvature density also reflected the intermediate nature 

f the iliac crest (IC) and calcaneus (CA) specimens, containing 

oth plate-like and rod-like elements. As expected, the Gaussian 

urvature density functions were negatively skewed, with a sharp 

eak around K/S 2 v ≈ 0 . 

Since a full description of surface curvature is typically built on 

wo variables, such as the pair of principal curvatures, we quan- 

ified the interface shape distributions (ISD) for different curva- 

ure measures. These types of 2D probability density maps have 

een used to characterize the morphological evolution of spinodal 

ecomposition systems during coarsening [ 28 , 29 ]. The ISD of the 

rincipal curvatures provides a density map of all possible shapes 

hat could be encountered on the trabecular surface, such as pla- 

ar cylindrical, spherical, or saddle shapes ( Fig. 4 a). The horizontal 

xes contain all purely cylindrical shapes, and the upper left quad- 

ant contains all saddle shapes. The predominantly convex sad- 

les ( i.e. , where | κ1 | > | κ2 | ) are situated below the diagonal dotted

ine, while the predominantly convex saddles are situated above. 

he demarcation line between those saddles contains the so-called 

inimal surfaces, where κ1 = −κ2 . While the ISD of the principal 

urvatures captures all the possible shapes, the SMI was originally 

efined for predominantly convex shapes, excluding a substantial 

ortion of the curvature spectrum ( Fig. 4 b). We plotted the ISD 

f the principal curvatures, as well as the ISD of the net ( D ) vs.

ean ( H) curvatures for the idealized rod structure that was in- 
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Fig. 2. Curvature estimation on triangle meshes. (a–c) The normalized mean, Gaussian, and net curvature visualizations of some representative (regarding morphology) 

trabecular samples from the femoral head (FH) the iliac crest (IC) the second lumbar vertebra (L2). The scale bars represent 1 mm. (d–f) The same curvature visualizations 

for idealized rod, plate-rod and plate structures ( 3 × 3 × 3 lattices), respectively. 
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roduced earlier ( Fig. 4 c–d). These curvature density maps confirm 

hat the idealized rod structure exhibits a very narrow curvature 

pectrum, with the primary peak in Fig. 4 c and 4 d corresponding 

o the curvature of the cylindrical rods. In the case of the plate 

nd plate-rod structures (data not shown), this spectrum would be 

ven narrower, with most data points located at the origin. 
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Next, we computed the ISD of the principal curvatures, the ISD 

f the net vs. mean curvature, and the ISD of the Gaussian vs. mean 

urvature for all the bone meshes, grouped by anatomical site 

 Fig. 5 ). For example, the principal curvature ISD of the FH spec- 

mens showed that most of the interface corresponds to saddle- 

haped regions, and that sphere-like indentations (top right quad- 
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Fig. 3. 1D curvature distributions. (a) Probability density distribution of the normalized mean (left), Gaussian (middle) and net (right) curvature per bone type. Each curve 

contains data from several samples ( n CA = 66 , n FH = 62 , n IC = 68 , n L 2 = 65 , n L 4 = 68 ). 

Fig. 4. Interpretation of the interface shape distributions. (a) A schematic drawing outlining the localization of various curved shapes on the 2D curvature distribution plot 

that is referred to as the interface shape distribution (ISD). The shapes are colored by their Gaussian curvature K. (b) The relation between the ISD of principal curvatures and 

the SMI. The horizontally hatched region is theoretically unfeasible ( κ1 > κ2 ). The dotted region contains shapes that are on average concave, while the SMI was originally 

defined for convex shapes. (c–d) The normalized ISD of principal curvatures and of the net vs. mean curvatures respectively, for the idealized rod structure of Fig. 2 d. 
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ant), and not protrusions (bottom left quadrant), were the primary 

ource of positive Gaussian curvature in these specimens. The ISD 

f the principal curvatures captured the progressive transition from 

rimarily plate-like to primarily rod-like bone specimens ( Fig. 5 ). 

hile the FH specimens exhibited a relatively concentrated, circu- 

ar distribution of curvatures, the rod-like specimens of L2 and L4 

ere characterized by a much broader distribution with a horizon- 

al orientation. These rod-like elements were not perfect cylinders, 

owever, but were slightly saddle-shaped. The IC samples exhib- 

ted a principal curvature distribution that was similar to that of 

he FH, indicating primarily plate-like elements. For the CA sam- 

les, a horizontal orientation of the distribution was apparent, in- 

icating a higher proportion of rod-like elements in the structures. 

he morphological differences between bone types were also ob- 

erved in the joint probability distributions of the normalized net 

 D/ S v ) and mean curvature ( H/ S v ), and the transition from plate-

ike to rod-like specimens was clearly visible ( Fig. 3 ). Moreover, 

hese distributions again showed that the mean curvature of tra- 

ecular bone is, in general, not uniformly centered around zero. 
349 
or our FH specimens, the peak of the mean curvature was situ- 

ted slightly above H = 0 , indicating shapes that were more con- 

ave than they were convex. This peak transitioned towards nega- 

ive values for rod-like specimens, due to the convex nature of the 

ods. The ISD of the mean and Gaussian curvatures also captured 

his distinction between the different bone types, again showing a 

roader distribution for more rod-like specimens. Taken together, 

hese curvature density maps confirm that the trabecular bone ex- 

ibits a broad curvature spectrum, much broader than that of ide- 

lized rod or plate structures, and that all types of local shapes can 

e found on the trabecular interface, although the majority is of a 

yperbolic nature. Additionally, the plots confirm that the shape 

f the curvature distributions can act as a fingerprint for the type 

f the bone (anatomical site), and that these plots are sensitive to 

radual changes in the bone shape, as opposed to the binary clas- 

ification of rod-like vs. plate-like. 

In an effort to explore the potential effects of age on the cur- 

ature distributions and, thus, the local shape changes, we plot- 

ed the various normalized ISDs for the FH and L4 specimens from 
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Fig. 5. 2D curvature distributions of trabecular bone. The interface shape distributions (ISD) for specimens from every anatomical site, showing the normalized curvature 

probability densities. Left column displays the ISD of the principal curvatures ( κ1 and κ2 ). Middle column displays the ISD of the net ( D ) and mean ( H) curvatures. Right 

column displays the ISD of the Gaussian ( K) and mean ( H) curvatures. Each plot contains data from several specimens ( n CA = 66 , n FH = 62 , n IC = 68 , n L 2 = 65 , n L 4 = 68 ). 
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ifferent age groups. Specifically, we included 15 specimens from 

he donors younger than 60 and 15 specimens from the donors 

lder than 80 ( Fig. 6 ), and we kept the color bars constant for

oth age groups. Considering the FH specimens, we did not ob- 

erve substantial changes in the shape and magnitudes of the cur- 

ature density plots between both age groups ( Fig. 6 a–b). For the 

4 specimens, however, the ISD plots of the donors older than 80 

howed a much broader curvature density distribution than those 

f the donors younger than 60, implying that the curvatures are 

pread out more, and that locally higher curvatures are reached 

hroughout the specimens (note that these plots represent proba- 

ility densities and should all integrate to 1). 
o
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The age-dependent changes in the ISDs of the L4 specimens 

re in line with the earlier observations indicating that the tra- 

ecular bone in the vertebrae is more prone to noticeable struc- 

ural changes with advancing age, as opposed to the bone from 

he FH [30] . Local analyses of the trabecular elements revealed that 

od-like elements in the vertebrae progressively thin and eventu- 

lly vanish, leaving only thicker rods. Additionally, plate-like ele- 

ents become perforated, and eventually transition into rod-like 

lements [30] . The thinning, splitting, and perforating adaptations 

ould result in local curvature concentrations ( Fig. 7 ), hence con- 

ributing to the more spread-out curvature distributions in the 

SDs. Moreover, individual variations in trabecular bone morphol- 

gy are known to increase with age, leading to larger variations 
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Fig. 6. The effect of age on the 2D curvature distributions. The left column displays the normalized ISD of the principal curvatures ( κ1 and κ2 ). The middle column 

displays the normalized ISD of the net ( D ) and mean ( H) curvatures. The right column displays the normalized ISD of the Gaussian ( K) and mean ( H) curvatures. Every plot 

contains the data from 15 specimens. (a–b) Specimens from the femoral head from donors ≤ 60 years old and ≥ 80 years old, respectively. (c–d) The specimens from the 

fourth lumbar vertebra from donors ≤ 60 years old and ≥ 80 years old, respectively. 
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n curvature distribution and rendering it challenging to detect 

ge-related bone changes with these metrics alone. An important 

ote regarding these ISDs is that the curvatures are normalized us- 

ng the characteristic length, which is based on the bone surface 

rea, which is also affected by age. Hence, these results should 

e interpreted as area-normalized curvature changes with advanc- 

ng age. Non-normalized 1D curvature probability distributions are 

rovided in Supplementary Fig. 2, and also confirm that the most 

oticeable curvature change with age are observed in the trabecu- 

ar bone from the vertebrae. 

.3. Radial distribution function 

The ISD characterizes the local shape of trabecular bone by pro- 

iding insight into the range and frequencies of the different types 

f curvature. However, it does not provide information about the 
351 
ay these curvatures are distributed in space and how the curva- 

ures at different locations in the structure are related. Knowledge 

f this spatial correlation is relevant, since two structures could 

theoretically) exhibit the same ISD, while having their curvatures 

istributed differently throughout space [22] . Therefore, we quan- 

ified the spatial correlation of the mean and Gaussian curvatures, 

sing a curvature-based radial distribution function (RDF). Tradi- 

ionally, the RDF has been employed in the analysis of granular 

ystems, where it quantifies the likelihood of finding particles at a 

ertain distance from a reference particle, relative to what would 

e expected based on the overall density of the system [31] . De- 

ending on the type of the particle system and the associated in- 

eractions, the (excess) probability of finding neighboring particles 

ill vary as a function of distance. The RDF has also gained popu- 

arity to quantify the spatial correlation in non-particulate systems 

2] . When defined on the basis of the mean curvature, the RDF has 
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Fig. 7. Expected surface curvature changes during age-related bone adaption. (a) A section of the trabecular bone from the second lumbar vertebra of a 68-year-old 

female donor, color-coded by net curvature (D). The scale bar represents 1 mm. (b) The close-ups of a plate-like region that shows perforations, resulting in some additional 

regions of increased net curvature and negative Gaussian curvature. (c) A close-up of the thinning and disappearing rods, resulting in some localized peaks of the positive 

net and Gaussian curvatures at the end caps. 
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een used to complement the ISD in characterizing the coarsening 

ynamics of spinodal decomposition systems [ 22 , 32 ]. In this sense, 

he RDF provides a slightly more global interpretation of curvature 

han the ISD. Here, we used a similar approach to compute the 

DF of the mean and Gaussian curvature for the trabecular bone 

pecimens from the different anatomical sites. In case of the mean 

urvature, we define the RDF as: 

 ( H 2 | r, H 1 ) = 

A H 2 ,S ( r ) / A S ( r ) 

A H 2 ,T / A T 

Here, A H 2 ,S 
(r) is the total area of faces with a mean curvature of 

 2 within a spherical shell of radius r, centered around a reference 

oint with a mean curvature of H 1 . A S (r) represents the total area 

f all faces inside the spherical shell, A H 2 ,T 
is the total area of faces 

ith the mean curvature H 2 in the entire specimen, and A T is the 

otal face area of the entire specimen. Hence, G ( H 2 | r, H 1 ) describes 

he area-density of the faces with H 2 at a distance r from a face 

ith H 1 , relative to the overall area-density of the faces with H 2 . 

s such, the RDF captures how much more ( G > 1 ) or less ( G < 1 )

ikely it is to find pairs of faces with a certain combination of mean

urvature at a given distance from each other as compared to a 

andom distribution throughout the specimen [32] . 

We plotted the RDF of the normalized mean ( Fig. 8 ) and 

aussian (Supplementary Fig. 3) curvature at several character- 

stic distances. Taking the mean curvature RDF as the running 

xample, the plots should be symmetric about the line H 1 / S v = 

 2 / S v , since G ( H 2 r, H 1 ) = G ( H 1 | r, H 2 ) [22] . Considering the RDF

lots for ˜ r = 0 . 06 (left column in Fig. 8 ), several observations could

e made. For example, distinct positive correlations ( G > 1 ) and 

nti-correlations ( G < 1 ) were observed in all specimens. The pos- 

tive correlations increased for the more extreme values of cur- 

ature, indicating that those strongly curved regions are highly 

oncentrated in the structure. In other words, points with high 

ean curvature values are likely to have neighbors with high 

ean curvature as well. On the other hand, it is less likely to en-

ounter neighbors with curvatures on the opposite sides of the 

pectrum (anti-correlation). For the FH, IC, and CA samples, a rel- 

tively stronger positive correlation was observed along the entire 

ine H = H than for the L2 and L4 samples. Additionally, stronger 
1 2 
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nti-correlations were observed in the FH, IC and CA specimens. 

t is also noteworthy that the range of curvatures is substantially 

arger for the rod-like samples (L2 and L4) than for the plate-like 

amples (FH), indicating that the positive correlations in the rod- 

ike samples occur at more extreme locations (relatively speaking) 

han for the plate-like samples. At the larger values of ˜ r the corre- 

ations and anti-correlations gradually dissipated, and the RDF be- 

ame more uniform and approached G = 1 . The most extreme val- 

es of curvature maintained some positive correlation at ˜ r = 0 . 14 , 

or all specimens. However, the correlation dissipation occurred 

aster in the L2 and L4 specimens, showing a more uniform distri- 

ution of G around unity than the FH, IC, and CA samples. The RDF 

f the Gaussian curvature (Supplementary Fig. 3) exhibited a simi- 

ar effect, although the positively correlated region had a more tri- 

ngular shape. Moreover, at small and intermediate distances, high 

ositive correlations were observed for the entire range of the pos- 

tive Gaussian curvatures, indicating that locally spherical features 

re highly concentrated in trabecular bone. 

The RDF of the surface curvature was originally developed to 

tudy the time-dependent evolution, also known as coarsening or 

stwald ripening, of complex bicontinuous morphologies that are 

bserved after the spinodal decomposition of two-phase mixtures 

32] . These morphologies undergo coarsening to reduce the over- 

ll interfacial energy, through a diffusion-driven process. An anal- 

sis of the mean curvature RDF of such spinodal systems for a 

ange of distances r revealed oscillations of the correlations and 

nti-correlations between curvature pairs with equal or opposite 

igns. The distance over which this oscillating behavior is observed 

efore it decays was found to be a characteristic length that de- 

cribes the desired distance between regions of positive and nega- 

ive mean curvature to obtain the optimum diffusion gradient for 

oarsening [ 22 , 32 ]. While these spinodal morphologies visually ap- 

ear similar to trabecular bone, the fast decay of the correlations 

nd the lack of oscillatory behavior in the RDF of the trabecular 

one specimens indicate that both types of morphologies are quite 

ifferent in terms of their spatial distribution of curvatures. More- 

ver, this implies that the evolution of the trabecular bone mor- 

hology follows a different process than that of other, seemingly 

imilar bicontinuous morphologies. 
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Fig. 8. Radial distribution function. Plots showing the radial distribution function of normalized mean curvature ( G ) for representative (regarding morphology) specimens 

from the five anatomical sites, at different values of the characteristic distance ˜ r . Color bar indicates enhanced ( G > 1 ) or reduced ( G < 1 ) probability of finding mean 

curvature pairs ( H 1 − H 2 ) at a given distance ( ̃ r ) from each other, with respect to randomly distributed curvatures. Left column: ˜ r = 0 . 06 , middle column: ˜ r = 0 . 1 , right 

column: ˜ r = 0 . 14 . 
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.4. Scalar Minkowski functionals 

The ISD presents the most local measure of trabecular shape, 

y characterizing the curvatures at individual points along the in- 

erface. Two-point correlation functions, such as the RDF presented 

bove, provide a slightly more global picture by considering pairs 

f points throughout the structure. Nevertheless, it is useful to 

omplement these approaches with truly global, or integral, met- 

ics that describe the shape as a whole. From an integral geometric 

iewpoint, the most fundamental indices to characterize the global 

hape are the Minkowski functionals. Their fundamental nature for 

hape description is described in Hadwiger’s theorem (generalized 

o tensors by Alesker), stating that any other motion-covariant, 

onditionally continuous, additive functional on a body is a linear 

ombination of the Minkowski functionals [ 19 –21 ]. In addition to 

heir fundamental nature, Minkowski shape indices are also highly 

ersatile, meaning that they can be applied to a broad spectrum of 

omplex structures, and are robust against noise [ 2 , 20 ]. 

The simplest types of Minkowski functionals are of a scalar na- 

ure and are further referred to as the Minkowski scalars (see Sup- 

lementary Note 1 for the mathematical formulations and back- 

round). For a 3D body B ( Fig. 1 f), four scalar MF can be defined,

hich are proportional to the volume ( W 0 (B ) ), the total area of

he bounding surface ( W 1 (B ) ), the area-integrated mean curvature 

 W 2 (B ) ), and the area-integrated Gaussian curvature ( W 3 (B ) ). The

atter is proportional to the Euler-Poincaré index, a topological in- 

ariant describing connectivity. The Minkowski scalars have been 

pplied in the analysis of various spatial architectures, including 

oxelized representations of trabecular bone [33] . Here, we com- 

uted the Minkowski scalars W 1 , W 2 , and W 3 on the smoothed 

riangle meshes of the trabecular bone interface, and compared 

hem to traditional bone morphometric indices that characterize 

he global trabecular shape ( Fig. 9 ) [ 5 , 12 ]. The scalar W 0 was omit-

ed, since it is not defined for open surfaces. The scalar W 1 and 

he bone surface area (BS) were relatively well correlated ( Fig. 9 a). 

he strongest correlation was observed for the L4 specimens ( ρ = 

 . 91 ), while the weakest correlation was attained in the CA speci-

ens ( ρ = 0 . 66 ). The deviations between the computed W 1 and BS

ould potentially be attributed to different underlying meshes (BS 

as directly calculated on a marching cubes mesh [5] ). The scalar 

 2 , which captures the area-integrated mean curvature, is plotted 

gainst the morphometric parameter ∂ S/∂ r, showing strong corre- 

ations for all bone types ( ρ > 0 . 87 , Fig. 9 b). The parameter ∂ S/∂ r
epresents a surface area derivative, and is estimated as the change 

n surface area ( dS) when the surface is dilated by a small amount, 

ivided by the length of that dilation ( dr). The area of such a di-

ated parallel surface ( S r ) is related to the area of the original sur-

ace ( S 0 ) and its curvature by [26] : 

 r = S 0 
(
1 + 2 〈 H〉 r + 〈 K〉 r 2 )

here r is the signed distance from the original surface, 〈 H〉 is the 

rea-averaged mean curvature, and 〈 K〉 is the area-averaged Gaus- 

ian curvature. The dilation-based parameter ∂ S/∂ r appears in two 

ell-known bone morphometric indices: the SMI and the 3D tra- 

ecular bone pattern factor (TBPf) [ 13 , 34 , 35 ]: 

MI = 6 

BV · ∂S 
∂r 

B S 2 

 BP f = 

∂S 
∂r 

BS 

In that sense, both SMI and TBPf are proportional to the average 

ean curvature ( 〈 H〉 ) of the surface (for small dilations (r ²≈0), the

econd-order Gaussian curvature contribution can be neglected), 

ssentially meaning that the 〈 H〉 is a global morphometric index 

 26 , 30 ]. Overall, the correlation between W and the Euler-Poincaré
3 
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ndex ( χ ) is lower ( 0 . 42 < ρ < 0 . 76 ) than the correlations between

he previous Minkowski scalars and their corresponding morpho- 

etric indices ( Fig. 9 c). This could again be attributed to the dif- 

erent calculation approaches: W 3 is based on the integral Gaussian 

urvature of the triangle meshes, while χ is computed on 3D bi- 

ary images. Finally, an important observation is that W 3 captures 

he differences between the specimens from different anatomi- 

al sites, while these are not reflected in the χ values ( Fig. 9 c).

his implies that W 3 could potentially be more sensitive to subtle 

hanges in connectivity than χ ( e.g., in case of a disease). Com- 

ined, these scalar Minkowski functionals capture the different as- 

ects of global trabecular bone geometry, and unify the traditional 

etrics within a single framework, using the same data represen- 

ation and computation approach. 

.5. Tensorial Minkowski functionals 

A relatively novel extension of the Minkowski scalars for global 

hape quantification is provided by the so-called Minkowski ten- 

ors (MT). Due to their tensorial nature, these MT capture the 

rientation-dependent aspects of morphology, a feature that is 

ighly relevant for the study of heterogeneous materials such as 

rabecular bone [ 23 , 24 ]. While the MT have been employed to 

haracterize granular packings, galaxies, or foams [ 17 , 36 , 37 ], we

re the first to apply these tensors to the study of trabecular bone. 

s a natural consequence of their mathematical foundation, many 

ifferent MT can be defined, each characterizing a different aspect 

f morphology. In principle, the MT can be defined for any ar- 

itrary rank, but we primarily focused on rank-two tensors, due 

o their intuitive physical interpretation [2] . Higher rank MT are 

riefly considered in Section 3.7 . For a 3D body, six relevant rank- 

wo MT are defined ( Fig. 1 and Supplementary Note 1). As an ex- 

mple, the tensor W 

2 , 0 
0 

(B ) is a measure of the spatial distribution 

f mass for a solid body B , in some sense analogous to the moment

f inertia tensor. The tensor W 

2 , 0 
1 

(B ) , on the other hand, mea- 

ures the mass distribution when the entire mass of B is homo- 

eneously distributed on the surface ( i.e. , a “hollow” body). Here, 

e considered the aforementioned (translation-covariant) tensor 

 

2 , 0 
1 

as well as two other (translation-invariant) Minkowski ten- 

ors, namely W 

0 , 2 
1 

and W 

0 , 2 
2 

. The tensor W 

0 , 2 
1 

describes the dis- 

ribution of the surface normal vectors, while W 

0 , 2 
2 

describes the 

istribution of the mean curvature (surface normals weighted by 

urvature). 

Every MT can be used to quantify anisotropy with respect to 

hat particular tensor. We define the degree of anisotropy (DA) for 

 tensor W 

r,s 
v as: 

A 

r,s 
v = 1 −

∣
∣λr,s 

v 

∣
∣

min ∣
∣λr,s 

v 
∣
∣

max 

Here, | λr,s 
v | min and | λr,s 

v | max are the absolute values of the min- 

mum and maximum eigenvalues of the tensor W 

r,s 
v . As such, we 

ere able to quantify the different types of anisotropy of the 

rabecular bone samples, including the anisotropy of the inter- 

ace orientation ( DA 

0 , 2 
1 

) or the anisotropy of the mean curvature 

 DA 

0 , 2 
2 

). For trabecular bone, a classical and popular approach to 

uantify anisotropy has been based on the mean intercept length 

MIL) method [ 12 , 38 , 39 ]. However, the MIL is limited to interfa-

ial anisotropy (by definition) and is known to suffer from some 

onceptual shortcomings, such as noise sensitivity, sampling bias, 

nd poor data fitting in specific cases, that could invalidate the 

nisotropy results [40] . Instead, Minkowski tensors are robust al- 

ernatives, showing higher sensitivity to anisotropy in 2D boolean 

odel systems [41] . To assess the potential of Minkowski tensors 

s alternatives to the MIL tensor for bone anisotropy quantifica- 

ion, we computed the DA of both approaches on 259 trabecular 
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Fig. 9. Scalar and tensorial Minkowski functionals applied to trabecular bone. (a–c) Results for the three Minkowski scalars, plotted versus their equivalent standard 

morphometric index: (a) W 1 versus bone surface (BS), (b) W 2 versus surface area derivative ( ∂ S/∂ r), (c) W 3 versus Euler-Poincaré characteristic ( χ ). (d–f) The distribution plots 

for the degree of anisotropy (DA) with respect to the different Minkowski tensors, plotted per anatomical site and split between the specimens from male (M) and female 

(F) donors: d) DA for tensor W 

0 , 2 
1 

, e) DA for tensor W 

2 , 0 
1 

, and f) DA for tensor W 

0 , 2 
2 

. ∗: p < 0.01 . g-j) Ellipticity with respect to the different Minkowski tensors, shown as the 

ratio of the median to the maximum eigenvalue versus the ratio of the minimum to the maximum eigenvalue: (g) an illustration of the various degrees of ellipticity, (h) 

ellipticity with respect to W 

0 , 2 
1 

, (i) ellipticity with respect to W 

2 , 0 
1 

, and (j) ellipticity with respect to W 

0 , 2 
2 
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l

one specimens. The relevant Minkowski tensor for this compar- 

son is W 

0 , 2 
1 

, as it describes the interfacial orientation. We found 

hat, with the most recent algorithm for the calculation of D A MIL 

in BoneJ [42] ), all the data for D A MIL and DA 

0 , 2 
1 

were strongly cor-

elated (Spearman’s ρ = 0 . 957 , Pearson’s ρ = 0 . 963 ) and centered

round the identity line (Supplementary Fig. 4). Both methods also 

redicted similar principal directions with most angle differences 

elow 10 ◦ (Supplementary Fig. 4b). While theoretical predictions 

n 2D model systems have indicated that the MIL approach can 

ail to detect clear anisotropies in certain cases, our analysis indi- 

ates that both approaches yield similar results on high-resolution 

rabecular bone scans [41] . Despite these similar results for our 

ata set, it must be emphasized that D A MIL is highly dependent 

n the specific MIL implementation, which has been shown to 

e a potential source of significant variation in classical MIL al- 

orithms [ 15 , 43 , 44 ]. Moreover, the MT approach is inherently less

ensitive to noise as it relies on surface and volume integrals (im- 

lying that the contributions of surface roughness are canceled 

ut in the overall computation), while the MIL approach relies on 

he intersections of test lines with the bone interface (which can 

e strongly affected by the surface roughness). Additionally, reli- 
t

355 
ble MIL analyses require several runs of the algorithm (due to 

ts stochastic nature), and its algorithmic complexity (computation 

ime) is of the order O( N p · N l ) where N p is the number of pixels 

nd N l is the number of test lines. The complexity of the MT ap- 

roach, on the other hand, is only of the order O( N p ). Finally, the

T approach enables more than one measure of anisotropy, while 

he MIL is limited to interfacial anisotropy. For a detailed compar- 

son and a theoretical account of both metrics, the reader is re- 

erred to a recent study by Klatt et al. [41] . 

Comparing the DA 

0 , 2 
1 

distributions ( Fig. 9 d), we observed that 

ll bone types exhibit a distinct level of interfacial anisotropy, 

ith significant differences between the means of the different 

one types (Supplementary Table 1). Higher mean values were ob- 

ained in the CA ( 〈 DA 

0 , 2 
1 

〉 = 0 . 59) and FH ( 〈 DA 

0 , 2 
1 

〉 = 0 . 58 ) spec-

mens, as opposed to the IC ( 〈 DA 

0 , 2 
1 

〉 = 0 . 49 ), the L2 ( 〈 DA 

0 , 2 
1 

〉 =
 . 45 ), and L4 ( 〈 DA 

0 , 2 
1 

〉 = 0 . 48 ) samples. Moreover, a wider spread in

he anisotropy values was observed in the L2 and L4 specimens. In 

ll cases, the degree of anisotropy with respect to the tensor W 

2 , 0 
1 

, 

hich characterizes the mass distribution of the “hollow” trabecu- 

ar bone, was much lower ( Fig. 9 e). Significant differences between 

he different bone types were detected, and higher mean values 
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ere attained for the IC ( 〈 DA 

2 , 0 
1 

) 〉 = 0 . 20 ), the L2 ( 〈 DA 

2 , 0 
1 

〉 = 0 . 20 )

nd the L4 ( 〈 DA 

2 , 0 
1 

= 0 . 21 ) samples as opposed to the CA ( 〈 DA 

2 , 0 
1 

〉 =
 . 13 ) and the FH ( 〈 DA 

2 , 0 
1 

= 0 . 09 ) samples. Finally, DA 

0 , 2 
2 

quantifies

he anisotropy of the curvature-weighted surface normals ( Fig. 5 f), 

gain displaying significant differences in the means between the 

one types. The CA ( 〈 DA 

0 , 2 
2 

〉 = 0 . 25 ), L2 ( 〈 DA 

0 , 2 
2 

〉 = 0 . 21 ), and L4

 〈 DA 

0 , 2 
2 

〉 = 0 . 18 ) specimens exhibited narrower distributions than

he FH ( 〈 DA 

0 , 2 
2 

〉 = 0 . 61 ) and IC ( 〈 DA 

0 , 2 
2 

〉 = 0 . 33 ) specimens. Inter-

stingly, there were statistically significant differences between the 

ean DA 

0 , 2 
2 

values calculated for the specimens harvested from 

ale and female donors in the case of the CA ( n 1 = 25 , n 2 = 27 ,

ann-Withney U = 179, p = 0.004) and L2 ( n 1 = 25 , n 2 = 30 ,

ann-Whitney U = 179, p = 0.001) bone types. 

In reporting DA, only the extremal tensor eigenvalues were con- 

idered. To extend our characterization of the Minkowski tensors, 

e also plotted the ratio of the median to the maximum eigen- 

alue against the ratio of the minimum to the maximum eigen- 

alue. Since rank-2 tensors can be represented by the surface of 

n ellipsoid (Materials & Methods), these plots provide insight into 

he “ellipticity” of the bone specimens with respect to a particu- 

ar tensor ( Fig. 9 g). Data for which 

λmedian 
λmax 

= 1 are represented by

rolate spheroids, while data on 

λmin 
λmax 

= 

λmedian 
λmax 

are represented by 

blate spheroids. When 

λmin 
λmax 

= 

λmedian 
λmax 

= 1 , a perfect sphere is ob- 

ained and the data is considered fully isotropic with respect to 

hat particular tensor. For the tensor W 

0 , 2 
1 

, the data was clustered 

etween the oblate and prolate shapes on the ellipsoid spectrum 

 Fig. 9 h). Moreover, the ellipticity of the W 

0 , 2 
1 

data was in good

greement with the ellipticity of the MIL data (Supplementary Fig. 

d). In the case of the W 

2 , 0 
1 

tensor, most of the specimens were 

ighly concentrated in the nearly isotropic region, with some data 

oints (IC, L2, and L4) exhibiting higher ellipticity ( Fig. 5 i). For the

 

0 , 2 
2 

tensor, the data for the CA, L2 and L4 specimens was again 

oncentrated in the nearly isotropic region, but the data for the 

H and IC specimens were scattered over the entire ellipsoid spec- 

rum. For example, the FH specimens covered both highly oblate 

nd prolate ellipticity, with various degrees of anisotropy ( Fig. 5 j). 

aken together, these plots underscore that interfacial orientation 

s only one of several sources of bone anisotropy and ellipticity, 

nd that other sources can be quantified by considering a different 

inkowski tensor ( e.g. W 

2 , 0 
1 

or W 

0 , 2 
2 

). 

.6. Age-dependency of Minkowski functionals 

We plotted the Minkowski scalars ( Fig. 10 a–c) and the various 

inkowski tensor DA’s ( Fig. 10 d–f) vs. donor age, for the trabec- 

lar bone from the femoral head and the fourth lumbar vertebra, 

n order to assess whether these metrics could detect age-related 

hanges in the global bone geometry. LOWESS fits were included to 

id in visualizing the trends of the data points, similarly to a pre- 

ious study on age-related bone changes [30] . For both anatomical 

ites, the Spearman’s correlation coefficient ( ρ) was computed on 

he data points of male and female donors separately, as well as 

n the combination of those data points (Supplementary Tables 2 

nd 3). 

We observed statistically significant and weak to moderate cor- 

elations in some of the data sets. Specifically, we found negative 

orrelations in the combined (male and female) L4 data between 

he age and W 1 ( ρ = −0 . 51 , p = 0 . 0 0 01 ), and between the age

nd W 3 ( ρ = −0 . 42 , p = 0 . 002 ). In addition, positive correlations

ere observed in the male L4 data between the age and DA 

0 , 2 
1 

 ρ = 0 . 43 , p = 0 . 021 ), and between the age and DA 

2 , 0 
1 

( ρ = 0 . 37 ,

p = 0 . 047 ). Finally, a weak negative correlation was found in the

ombined FH data between DA 

0 , 2 
2 

and age ( ρ = −0 . 33 , p = 0 . 021 ).

he fact that these correlations are primarily detected in the L4 
356 
pecimens confirms the earlier observations that bone from the 

ertebrae seems to exhibit more pronounced age-related structural 

hanges than bone from the femoral head. Nevertheless, our anal- 

sis shows that the correlations are relatively weak, in part due to 

he large individual variations at advanced age, making it challeng- 

ng to use these (and other) global metrics to robustly detect age- 

elated changes ( e.g., within the context of osteoporosis). However, 

ven more localized analyses have struggled to detect clear age- 

elated trends [30] , underscoring the inherent difficulty of captur- 

ng the complex morphological changes in aging trabecular bone 

sing single metrics. 

.7. Anisotropy in spatially decomposed bone 

The Minkowski functionals provide a global (integral) interpre- 

ation of trabecular shape, by assigning either a scalar or a ten- 

or to the entire region of interest. However, the shape and size 

f this region could be chosen arbitrarily within the cubic speci- 

en volume. Hence, it is possible to apply the Minkowski analysis 

o several smaller substructures, in order to create a Minkowski 

ap that quantifies the intra-specimen variations of the integral 

hape indices [2] . In that sense, such a spatially decomposed anal- 

sis of the Minkowski functionals occupies an intermediate posi- 

ion between the highly localized analysis of curvature distribu- 

ions and the whole-specimen shape characterization presented in 

ections 3.2 . and 3.4 . 

To quantify the intra-specimen anisotropy changes, we decom- 

osed 100 trabecular specimens into a set of smaller components. 

n order to maintain representative trabecular substructures, we 

sed a 3 × 3 × 3 cubic grid for this spatial subdivision (Sup- 

lementary Fig. 10b). We computed the two translation-invariant 

inkowski tensors W 

0 , 2 
1 

and W 

0 , 2 
2 

on the resulting 2700 substruc- 

ures, enabling a local characterization of the ellipticity with re- 

pect to those tensors. We found that, in general, the ellipticity 

aries throughout the specimens and is different for both tensors 

 Fig. 6 a–d). To quantify the spatial variation, we calculated the rel- 

tive difference between the anisotropy of a substructure and that 

f the entire specimens ( ˜ λr,s 
v , Materials & Methods), as well as 

he angle difference between the local and global principal orien- 

ations ( V̄ r,s v ). For both tensors, the local DA varied substantially 

ith respect to the whole-sample value and led to different distri- 

utions for both tensors ( Fig. 6 e). Distinct angle differences in the 

ocal and global principal directions were also observed for both 

ensors, and wider variations were detected in the L2 and L4 spec- 

mens ( Fig. 6 f). 

Finally, we asked whether higher-rank Minkowski tensors (be- 

ond rank two) could provide additional insight into the struc- 

ural and anisotropy differences between the different bone types. 

o this end, we calculated the quadratic ( q s ) and cubic ( w s ) ro-

ational invariants of the so-called irreducible Minkowski tensors 

Supplementary Note 1) for the spatially decomposed specimens. 

his analysis was motivated by the recent results in particulate 

atter, where these scalar invariants have been used as efficient 

tructure metrics to detect local crystalline states in disordered 

ackings of convex shapes [ 45 , 46 ]. Due to their higher-rank nature, 

owever, the physical significance of these structure metrics is less 

asily understood than for the rank-2 Minkowski tensors. Plotting 

he probability distributions of q s and w s for the FH and L4 speci- 

ens (540 data points each, Supplementary Figs. 5 and 6), we ob- 

erved globally smooth distributions for q s and w s that are qualita- 

ively similar to those obtained for hyperuniform amorphous cel- 

ular solids [46] . Sharp peaks in the distribution would indicate 

he presence of a locally crystalline region with a certain structural 

ymmetry. Significant differences between the structure metric dis- 

ributions of the FH and L4 specimens were detected (two-sample 

olmogorov-Smirnov, p < 0.01), except for q , indicating that these 
5 
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Fig. 10. Scalar and tensorial Minkowski functionals for FH and L4 vs age. (a–c) Results for the three Minkowski scalars, plotted vs. age. The circular and triangular data 

points correspond to the specimens from male and female donors, respectively.(d–f) The DA for the three Minkowski tensors, plotted vs. age. The curves are LOWESS fits 

through the corresponding data points. 
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igher-order structure metrics are sensitive to the structural differ- 

nces between the plate-like and rod-like specimens ( Fig. 11 ). 

. Discussion 

The aim of this study was to provide a more fundamen- 

al geometric viewpoint on the quantification of trabecular bone 

hape. Such a geometry-centered approach not only offers a more 

athematical foundation to the longstanding field of trabecular 

one morphometry, but also provides a framework to study other 

patially complex materials, including bone-mimicking architected 

caffolds and biomaterials ( e.g. metabiomaterials [47] ). At the local 

erspective, this geometric characterization could be accomplished 

y quantifying the surface curvature of the trabecular interface. In 

act, curvature is the defining characteristic when it comes to dis- 

inguishing between local structural features, such as rods ( K = 0 , 

 < 0 ), plates ( K = 0 , H = 0 ), and saddle-shaped arcs ( K < 0 ), or to

dentify primarily convex ( H < 0 ) or concave ( H > 0 ) regions. We

uantified the complex curved landscapes of trabecular bone using 

he ISD, finding that these density maps serve as effective shape 

ngerprints for trabecular bone from different anatomical sites. In- 

eed, the ISD captured the morphological differences between so- 

alled plate-like (FH) and rod-like (L2 and L4) specimens, but were 

lso sensitive to intermediate morphologies along the plate-rod 

pectrum (IC and CA). In fact, the ISD analysis demonstrated that 

he morphology of trabecular bone is much more complex, con- 

aining many local shape variations, than what is implied when 

sing the qualitative descriptions of plate-like and rod-like samples 
357 
48] . Additionally, earlier attempts at quantifying this plate-like or 

od-like behavior were based on the SMI, which does not capture 

ll possible shapes ( Fig. 4 b) [14] . Furthermore, we found that the 

urface curvature distributions of the bone from the lumbar verte- 

rae showed age-dependencies, and that surface curvatures could 

e good descriptors of local changes in age-related bone adaptions, 

uch as perforations and rod thinning ( e.g. , for simulated bone at- 

ophy [49] ). 

Due to the generality of studying surface curvature distribu- 

ions, this type of analysis could easily be extended to quantify the 

nterface of other geometrically and topologically complex mor- 

hologies, such as those of porous bone scaffolds. As a demonstra- 

ion, we applied the curvature analysis to 3 × 3 × 3 lattices of 

he octet truss and gyroid minimal surface, as well as a stochastic 

spinodoid” [50] based on a Gaussian random field (GRF, Fig. 12 ). 

he principal curvature ISD of the octet truss demonstrated the 

imited curvature spectrum, containing primarily cylindrical ele- 

ents and only exhibiting non-zero Gaussian curvature at the strut 

ntersections. The gyroid minimal surface, which has often been 

laimed to be a “bone-mimicking” morphology, is characterized by 

 vanishing mean curvature and a negative (or zero) Gaussian cur- 

ature along the surface, resulting in a very narrow ISD spectrum. 

owever, the stochastic GRF scaffold shows a broader curvature 

pectrum that more closely approximates that of trabecular bone, 

specially of the FH specimens. However, this ISD is symmetric 

round the line κ1 = −κ2 , which was not observed in any of the 

one specimens. While this type of analysis could be applied to 

ssess the “bone-mimicking” nature of various scaffold morpholo- 
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Fig. 11. Minkowski tensor analysis on spatially decomposed samples. (a) A visualization of a full FH trabecular bone specimen. (b) Ellipticity with respect to the normal 

density tensor ( W 

0 , 2 
1 

) of the sample in (a) in 27 subdomains. The ellipsoids are oriented in their principal direction. (c) Ellipticity with respect to the curvature density tensor 

( W 

0 , 2 
2 

) of the sample in a) at 27 subdomains. (d) An overlay of the ellipticities of (b and c). (e) The relative differences in the local and global anisotropy for W 

0 , 2 
1 

and W 

0 , 2 
2 

, 

plotted for each anatomical site. (f) The differences in the local and global principal orientations for W 

0 , 2 
1 

and W 

0 , 2 
2 

, plotted for each anatomical site. 
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ies, it should be noted that a bone-matching ISD does not neces- 

arily imply successful scaffold functionality, since this would de- 

end upon a myriad of mechanical, mass transport, and biological 

equirements [51] . 

We also performed a global shape analysis of the trabecular 

one interface. To this end, we employed the scalar and tensorial 

inkowski functionals, since these are fundamental, highly versa- 

ile, and robust indices for integral shape quantification. We found 

hat the Minkowski scalars, which were computed directly on the 

riangulated bone meshes, correlated with traditional bone mor- 

hometric indices, such as BS, ∂ S/∂ r, or χ . Moreover, we found 

hat W 3 was more sensitive to differences in bone microarchitec- 

ure than the corresponding traditional metric χ . Our work was 

he first to apply the Minkowski tensors to the quantification of 

rabecular bone shape. This analysis revealed different degrees of 

nisotropy and ellipticity, depending on the morphological aspect 

hat is being considered. Moreover, anisotropy differences between 

one specimens harvested from different anatomical sites could be 

etected. An important aspect of this Minkowski functional ap- 

roach is that it unifies several traditional morphometric indices 

ithin the same geometrical theory. For example, interfacial and 

olume anisotropy are traditionally characterized using different 

ethods ( e.g., the MIL and SVD methods), while both can be de- 

cribed within the Minkowski tensor framework by using a dif- 

erent tensor. We investigated changes in the Minkowski scalars 

nd tensors with age, and detected moderate (significant) corre- 

ations in some datasets, particularly those pertaining to the ver- 

ebrae. However, large variations between individuals make it dif- 

cult to detect age-related changes using global metrics, and more 

etailed investigations would be required to assess whether some 

f these Minkowski metrics could serve as robust detectors of age- 
358 
elated changes. We also applied higher-rank Minkowski metrics 

o the shape quantification of spatially-decomposed bone speci- 

ens, showing that they are also sensitive to morphological dif- 

erences in bone from different anatomical sites. However, we note 

hat these higher-rank metrics are usually applied to disordered as- 

emblies of discrete convex bodies, such as the Voronoi diagram 

f a granular packing [ 45 , 46 ]. Such materials are naturally well-

uited for this type of domain-wise analysis, since the basic defi- 

ition of these structure metrics is centered around decomposing 

he normal density of convex bodies into spherical harmonics. As 

uch, analyses using these metrics might be more compatible with 

onvex particle systems than with non-convex, smooth trabecular 

one structures. In this regard, it would be interesting to apply 

his analysis to specimens that are decomposed into (almost) con- 

ex units, for example by volumetric decomposition into rods and 

lates [34] , or by approximate convex decomposition [52] . Addi- 

ionally, the use of clustering algorithms ( e.g. k-means or DBSCAN) 

ould shed light on the classification sensitivity of such higher- 

rder metrics. 

The key characteristic of our metrics is their fundamental geo- 

etric nature, which offers a unifying view and geometrical foun- 

ation for traditional bone morphometric indices. This geomet- 

ic perspective could advance the understanding of morphologi- 

al changes in aging and disease, such as the elusive plate-to- 

od transition in osteoporosis [48] . Our approaches could also pro- 

ide a framework for shape description within the context of bone 

ealing, for example, to characterize the structure of the develop- 

ng callus in vivo [ 53 , 54 ]. Since these metrics are not bound by

cale, they could also readily be applied to high-resolution im- 

ges of much smaller structures within bone, such as the lacuno- 

analicular network [55] . Moreover, our insights into trabecular 
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Fig. 12. Curvature visualizations and ISD for several scaffold morphologies. The left column displays the normalized mean curvature, the middle column displays the 

normalized Gaussian curvature, and the right column displays the principal curvature ISD. (a) The interface of the octet truss lattice. (b) The interface of a gyroid minimal 

surface lattice. (c) The interface of a stochastic lattice based on a Gaussian random field (GRF). 
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one curvature are relevant for recent investigations into the role 

f substrate curvature as a mechanobiological cue at the cell and 

issue levels [ 7 , 56 ], which could be leveraged in tissue engineer-

ng applications. Finally, it would be interesting to couple these 

eometrical analyses to mechanics-driven bone simulation frame- 

orks, for example, to investigate whether this type of geometric 

ata could provide additional insights for bone remodeling algo- 

ithms or fracture predictions. 

. Conclusion 

In summary, we have provided a geometric approach to tra- 

ecular bone morphometry, quantifying both the local and global 

hape of trabecular bone, and unifying several traditional mor- 

hometric indices within the mathematical language of geom- 

try. Our analyses were centered around surface curvature and 

inkowski functionals, which proved to be sensitive fingerprints 

o site-specific differences in bone morphology. These approaches 

ould facilitate the geometrical characterization of a broad spec- 

rum of spatially-complex materials beyond bone, ultimately ad- 

ancing the development of accurate structure-property relation- 

hips for such materials. 
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