
 
 

Delft University of Technology

Distributed Robust Optimization Method for AC/MTDC Hybrid Power Systems with DC
Network Cognizant

Li, Haixiao; Lekić, Aleksandra

DOI
10.1109/SEST61601.2024.10694436
Publication date
2024
Document Version
Final published version
Published in
2024 International Conference on Smart Energy Systems and Technologies

Citation (APA)
Li, H., & Lekić, A. (2024). Distributed Robust Optimization Method for AC/MTDC Hybrid Power Systems with
DC Network Cognizant. In 2024 International Conference on Smart Energy Systems and Technologies:
Driving the Advances for Future Electrification, SEST 2024 - Proceedings (2024 International Conference
on Smart Energy Systems and Technologies: Driving the Advances for Future Electrification, SEST 2024 -
Proceedings). IEEE. https://doi.org/10.1109/SEST61601.2024.10694436
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SEST61601.2024.10694436
https://doi.org/10.1109/SEST61601.2024.10694436


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Distributed Robust Optimization Method for 

AC/MTDC Hybrid Power Systems with DC 

Network Cognizant 
Haixiao Li1,2, Aleksandra Lekić1 

1Faculty of Electrical Engineering, Mathematics & Computer Science, Delft University of Technology, Delft, The Netherlands 
2School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China  

{H.Li-16, A.Lekic}@tudelft.nl  

Abstract—AC/multi-terminal DC (MTDC) hybrid power 

systems have emerged as a solution for the large-scale and long-

distance accommodation of power produced by renewable 

energy systems (RESs). To ensure the optimal operation of such 

hybrid power systems, this paper addresses three key issues: 

system operational flexibility, centralized communication 

limitations, and  RES uncertainties. Accordingly, a specific 

AC/DC optimal power flow (OPF) model and a distributed 

robust optimization method are proposed. Firstly, we apply a set 

of linear approximation and convex relaxation techniques to 

formulate the mixed-integer convex AC/DC OPF model. This 

model incorporates the DC network-cognizant constraint, 

enabling DC topology reconfiguration. Next, generalized 

Benders decomposition (GBD) is employed to provide 

distributed optimization. Enhanced approaches are 

incorporated into GBD to achieve parallel computation and 

asynchronous updating. Additionally, the extreme scenario 

method (ESM) is embedded into the constructed AC/DC OPF 

model to provide robust decisions to hedge against RES 

uncertainties. ESM is further extended to align the GBD 

procedure. Numerical results are finally presented to validate 

the effectiveness of our proposed optimization method. 

Keywords—Multi-terminal DC grid, DC network cognizance, 

distributed robust optimization, generalized benders 

decomposition, extreme scenario method. 

I. INTRODUCTION 

Nowadays, the multi-terminal DC (MTDC) grid composed 
of voltage-source converters (VSCs) has emerged as a 
promising solution for transmitting a large amount of power 
produced by renewable energy systems (RESs) to distant AC 
grids. Optimal power flow (OPF) is a powerful technique that 
can benefit VSC-interconnected AC/MTDC hybrid power 
systems in their economical operation [1]. It is well-known 
that the fundamental AC/DC OPF problem is nonconvex. The 
meta-heuristic algorithm [2] and interior point method [3] can 
be selected to solve such problems. However, the solved 
results might be stuck in the local optimum. In this regard, 
convex AC/DC OPF models are developed with a series of 
linearization and convexification techniques [4]-[6], which 
can be efficiently solved by off-the-shelf convex solvers. 
Nevertheless, AC/MTDC hybrid power systems do not favor 
such a centralized problem-solving approach in practice, due 
to the substantial communication efforts required for 
centralized data processing. 

Compared to centralized optimization, distributed 
optimization is preferred. It enables independent decision-
making among AC systems (including AC grids and RESs) 
and DC systems, facilitating coordination through sharing of 
boundary information. Various well-known distributed 
optimization algorithms were employed in follow-up works to 
solve AC/DC OPF problems, such as the alternating direction 
method of multipliers (ADMM) in [7], analytical target 
cascading (ATC) in [8], and alternating direction inexact 

newton method (ALADIN) in [9]. However, it is worth noting 
that the constructed AC/DC OPF problems overlook the issue 
regarding the DC network cognizance, which would benefit 
the AC/MTDC hybrid power system in flexible operation [2], 
[10]. Once DC network cognizance is involved, 0-1 binary 
variables are inevitably introduced to describe the connection 
status of DC network lines, resulting in the mixed-integer 
convex OPF problem. ADMM and ATC lack rigorous 
convergence behavior in handling such problems, and 
ALADIN is not scalable to them. Generalized Benders 
decomposition [11] provides an alternative to solve the mixed-
integer AC/DC OPF problem in a distributed manner. 
Although GBD is archival, its application in hybrid systems 
still necessitates consideration of some emerging potential 
issues, such as convergence rate and communication delay. 

Additionally, addressing uncertainties from RESs is 
imperative. A recent popular solution for handling these 
uncertainties is the two-stage robust optimization based on 
column and constraint generation (CCG) [12]. Despite CCG 
involving an iterative solving procedure, it is essentially 
centralized optimization and requires integration with other 
distributed optimization algorithms to provide distributed 
robust solutions, thereby complicating the optimization 
process. In contrast, the extreme scenario method (ESM)-
based two-stage robust optimization is more intuitive and 
easier to combine with various distributed optimization 
methods [13], including GBD. 

According to the above research review, despite the 
progress made in OPF modeling, distributed problem solving, 
and uncertainty handling, comprehensive studies that address 
all these aspects together are limited. As previously 
mentioned, the OPF model for hybrid power systems is 
expected to be mixed-integer convex when considering the 
DC network cognizance. Hence, it is highly desirable to 
combine GBD and ESM to achieve distributed robust 
optimization. Accordingly, our main contributions can be 
summarized as: 
 A mixed-integer convex AC/DC OPF model is explicitly 
formulated considering the DC network-cognizant constraint. 
 GBD is employed to offer distributed optimization, and we 
enhance the traditional GBD procedure in the aspects of 
parallel computation and asynchronous updating. 
 ESM is employed for robust solutions, and we extend the 
ESM application to align the GBD procedure.   

The paper begins with the mathematical formulation of the 
AC/DC OPF model that incorporates the DC network-
cognizant constraint in Section II. Then, improved GBD is 
introduced in Section III and ESM with its extended 
application is presented in Section IV. Numerical studies are 
presented and discussed in Section V, followed by the 
conclusion drawn in Section VI. 

II. MIXED-INTEGER CONVEX AC/DC OPF MODEL 

In this section, a mixed-integer convex AC/DC OPF model 

is formulated. This is necessary because the convergence of  
This work was supported by CRESYM project Harmony 
(https://cresym.eu/harmony/). 
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Fig. 1.  Equivalent impedance model of the VSC station. 

GBD and robustness of ESM cannot be guaranteed if solving 

nonlinear OPF models.  

A. Linear AC Grid Constraints 

The well-known nonlinear AC power flow can be 
linearized by the successive linear approximation [14]: 

��� = ����� − ����,
 ��
��
� − ����,
���� − ���
 � + ����,
 ���,��

� , (1a) 

��� = ����,
 ��
��
� −����� − ����,
���� − ���
 � − ����,
 ���,��

� , (1b) 

�� = ∑ ��� + �� ∑ ����(�,�) , �� = ∑ ��� − �� ∑ ��� ,�(�,�)  (1c) 

∀ ∈ "#$ , ∀( , %) ∈ &#$  
where "#$  and &#$  are used to denote the node and branch 
sets for the AC grid. (⋅)�� and (⋅)� represent the varaible or 

parameter linked with branch ( , %) and node   of the AC grid, 
respectively. (1) is the linearized AC power flow equation. ���/ ���  is the real/reactive power flowing on the branch. 

��/ �� is the nodal real/reactive power injection. �� ≔ +�� is 
the squared nodal voltage. ���  denotes the phase difference 

along the branch. ���/���  is the conductance/susceptance of 

the branch. ���/��� corresponds to the real/imaginary parts of 

the nodal admittance matrix. ����,
, ����,
, ����,
, ����,
, +��,,- , ���
  

are the determined parameters that are associated with the 
initial power flow points of the AC grid, whose details can be 
found in [14, Sec. 3].  

In addition, some other operational constraints need to be 
taken into account, including: 

 �� = ��. − ��, − ��/�� , �� = ��. − ��, − ��/��, (2a) 

0 ≤ ��. ≤ ��
. , ��. tan(56/7) ≤ ��. ≤ ��. tan(5�89), (2b) 

 −:�� ≤ cos >8?
@ A ��� + sin >8?

@ A ��� ≤ :�� , (2c) 

 �� ≤ �� ≤ �� , (2d) ∀ ∈ "#$ , ∀( , %) ∈ &#$ , C ∈ D1, ⋯ , GH 
where (⋅)/(⋅) represents the upper/lower bound of variables. 

(2a) specifies contributions of the AC nodal power injection, 

including generation production ��. , ��. , load consumption ��, , ��,, and power transmission from the AC grid to the VSC 

station ��/�� , ��/��. (2b) regulates the allowable range of the 

generator production. 56/7/5�89 is the capacitive/indunctive 

power factor. (2c) indicates the linearization of ���� + ���� ≤
:��� , using C -polygon approximation [15] to represent the 

capacity constraint linked with the branch apparent power :�� . 

(2d) indicates the range of the squared nodal voltage ��. 
B. Linear RES Constraints 

RES #  is modeled as an integrated node while the detailed 
layout is neglected. Hence, we have the below constraints: 

 −:#�J ≤ cos >8?
@ A �#�J + sin >8?

@ A �#�J ≤ :#�J , (3a) 

 0 ≤ �#�J ≤ �#�
J , �#�J = �#�K�� , �#�J = �#�K��, (3b) 

∀# ∈ D#1, ⋯ , #LH, ∀C ∈ D1, ⋯ , GH 

where (⋅)#� represents the varaible or parameter linked with 

 
1SOC relaxation [4] can be an option for handling the nonlinear power flow 

of the AC grid. However, commonly used off-the-shelf optimizers 

sometimes might fail to return duals in solving SOC programming (SOCP) 
problems (https://github.com/jump-dev/Gurobi.jl/issues/217). which affects 

the application of GBD in the proposed AC/DC OPF model. 

RES # . �#�J /�#�J  is the real/reactive power produced by the 

RES. Similar to (2c), (3a) indicates the linearized capacity 

constraint regarding the RES apparent power output :#�J . (3b) 

indicates that �#�J  is bounded by the maximum available 

power �#�
J

, which is affected by natural factors. RES is 

operated in the grid-connected mode, thus the power outputs �#�J , �#�J  equal to the power transmition �#�K�� , �#�K�� that flows 

from the RES to the VSC station. 

C. Mixed-Integer Convex MTDC Grid Constraints 

The well-known nonlinear DC power flow can be 
convexfied by the second-order cone (SOC) relaxation [5]: 

 �� = ∑ ���(�,�) , ��� + ��� = M��N�� ,  ���� ≤ N���� (4a) 

 �� − �� = M������ − ����, (4b)  ∈ "OPQ$ , ∀( , %) ∈ &OPQ$  
where "OPQ$  and &OPQ$  are used to denote the node and 
branch sets for the MTDC grid. M��  is the resistance of the 

branch. N�� ≔  ���  represents the squared branch current. (4) 

forms the SOC-relaxed power flow constraint by relaxing the 
inherent equation that  ��� =  ��+�. 

Some operational constraints need to be considered: 

 �� ≤ �� ≤ �� , �� = −��9�� (5)  ∈ "OPQ$  
where (5) regulates the allowable range of the squared MTDC 

nodal voltage ��  and specifies the contribution of MTDC 

nodal power injection �� , containing the power transmission ��9�� that flows from the MTDC grid to the VSC station. 
Besides, DC network cognizance is given consideration. 

The binary variable R�� ∈ D0,1H is introduced to represent the 

connection status of the DC line. R��  is enabled (binary-1) 

means the DC line ( , %) is connected and otherwise (binary-
0) is disconnected. R��  has the inherent characteristics that R�� = 0, R�� = R�� . In this case, (4b) needs to be modified, 

such that: 
 −MR�� ≤ ��� ≤ MR�� , (6a) 

 ��� − ���� − ��� − T��� = M������ − ����, (6b) 

 ��(1 − R��) ≤ ��� ≤ ��(1 − R��), (6c) 

 ��(1 − R��) ≤ T�� ≤ ��(1 − R��), (6d) 

−��R�� ≤ �� − ��� ≤ ��R�� , −��R�� ≤ �� − T�� ≤ ��R�� ,(6e) 

 ∈ "OPQ$ , ∀( , %) ∈ &OPQ$  
where M  represents a large positive number. ��� , T��  are 

auxiliary variables. It can be deduced that when R�� = 1 , 

�� − �� = M������ − ���� is activated and when R�� = 0, �� −
�� = M������ − ���� is disabled. 

D. Mixed-Integer Convex VSC Constraints 

The nonlinear AC power flow at the AC side of the VSC 
station ( refers to the PCC bus to the AC terminal, as shown 
in Fig. 1), can be convexfied by the SOC relaxation1 proposed 
in [4]: 

 �� = U����� + ∑ �U����� − :������,(�,�)  (7a) 

 �� = −U����� − ∑ �U����� + :������,(�,�)  (7b) 

 U�� = U�� , :�� = −:�� , U��� + :��� ≤ U��U�� , (7c) 

∀ ∈ "VW$ , ∀( , %) ∈ &VW$  
where "VW$  and &VW$  are used to denote the node and branch 
sets for the AC side of the VSC station. U�� , U�� , :��  are the 

introduced variables that have links with the squared nodal 

voltage ��. Given that ��: = Y��+Z��, then we have that �� =U�� : = Y�� + Z��, U�� : = Y�Y� + Z�Z�, :�� : = Y�Z� − Y�Z� . SOC 

relaxation of the AC power flow is achieved by relaxing the  

Authorized licensed use limited to: TU Delft Library. Downloaded on November 06,2024 at 13:06:35 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2.  Illustration regarding the hybrid power system decomposition. 

inherent equation that U��� + :��� = U��U�� . 
Some operational constraints at the AC side of the VSC 

station need to be considered, such that: 

 �- = �
/�� \M �#�K�� ,  �] = 0,  �6 = ��9�� − ��̂_-- , (8a) 

 �- = �
/�� \M �#�K��,  �] = �]�] , (8b) ∀` ∈ "#$ , D:, Z, UH ∈ "VW$ , ∀% ∈ "OPQ$  ∀# ∈ D#1, ⋯ , #LH 
where (8) specifies the power injection at the AC side of the 

VSC station. ��̂_--  represents the power loss inside the VSC 

station. 
In addition to the aforementioned constraints, a set of 

constraints are included to characterize the couplings 
between the AC terminal and DC terminal of the VSC station. 
The original nonlinear expression is presented below: 

 +6 = a+� , 0 ≤ a ≤ a, �6 + �� + ��̂_-- = 0, (9a) 

 ��̂_-- = bc6 6� + b�6 6 + bd6 , (9b) 

  6 = e(�6� + �6�) +6�⁄ , 0 ≤  6 ≤  6 ,            (9c) U ∈ "VW$ , ∀% ∈ "OPQ$  

where (9a) indicates the voltage and power couplings 

between the VSC’s AC and DC terminals. a  denotes the 

PWM modulation factor. (9b) and (9c) indicate that the power 

loss inside the VSC station is the quadratic function with 

respect to  6, which is the current injection at the VSC’s AC 

terminal. bc6 , b�6 , bd6  are the coefficients of the quadratic 

power loss function. The nonlinear constraints (9) can be 

handled by piece-wise convex relaxation, and we have that:  

 �6 ≤ �a����, �6 + �� + ��̂_-- = 0, (10a) 

 ��̂_-- = bc6N6 + b�6 6 + bd6 , (10b) 

N6 ≥ ∑  6,
�
 ,  6 ≤ ∑ D 6,
 6,
 +
  6,
 6,
 −  6,
 6,
�
H, (10c) 

 ∑ �

 = 1, ∑  6,
 =  6
 ,  6,
�
 ≤  6,
 ≤  6,
�
 , (10d) 

  6,
 = �h(
ic)
j ,  6,
 = �h


j , (10e) 

 �6� + �6� ≤ N6�6, (10f) U ∈ "VW$ , ∀% ∈ "OPQ$ , ∀` ∈ D1, ⋯ , kH 
where the voltage terms +6 , +�  in (9a) is replaced by the 

squared voltage terms �6 , �� in (10a) to keep being consistent 

with the counterparts in (4) and (7). (10a)-(10e) forms a tight 
quadratic envelope [16] to approximate N6 ≔  6� in (9b).  6,
 

denotes the variable within the subrange [ 6,
   6,
], and the 

binary variable �
 ∈ D0,1H is used to denote the status of each 
subrange, whether it is enabled (binary-1) or disabled 
(binary-0). (10f) is the SOC relaxation of the equation that 

 6 = e(�6� + �6�) +6�⁄  in (9c). 

E. Optimization Objective of the Hybrid Power System 

Minimizing the generation costs and the total power losses 
(including power losses on lines and inside VSC stations) is 
considered to be the optimization objective for the 
AC/MTDC hybrid power system, such that: 

n C o∑ DUc�(��.)� + U����. + Ud�H�pqqqqqqqrqqqqqqqs
�YCYMbT \C U\:T: +∑ D��. − ��,H + ∑ �#�J#��pqqqqqqrqqqqqqs

T\TbN �\tYM N\::Y: u, 
 ∀ ∈ "#$ , ∀# ∈ D#1, ⋯ , #LH  (11) 

where the generation cost is a quadratic function with respect 

to ��. . Uc� , U�� , Ud�  are the corresponding coefficients. Total 
power losses equal the total power generation minus total 
load demands. 

III. GBD-BASED DISTRIBUTED OPTIMIZATION 

Considering the issues regarding the centralized 
communication burden and data privacy, the AC grid, RESs, 
and the VSC-MTDC grid should be governed individually. 
GBD is employed to provide distributed optimization for the 
coordination among the decomposed sub-systems. 

A. System Decomposition and Multi-Cut Generation 

As shown in Fig. 2, the original integrated system can be 
decomposed into one DC system and several AC systems 
(refer to the AC grid or RESs). Under this condition, the 
constructed mixed-integer convex AC/DC OPF model can be 
reformulated as the below general compact expression: n C D∑ ℱ#8/6(w#8#8 , x#8) : y#867 (x#8 , x#8z ) = 0,  w#8 ∈ {#8 , | ∈ }H, (12) ∀#C ∈ D#1, ⋯ , #GH 
where w#8  represents the variables associated with the AC 
system #C and | represents the variable associated with the 
VSC-MTDC grid. {#8  denotes the feasible region of w#8 . 
For the AC system, {#8 is determined by constraints (1)-(3). } denotes the feasible region of ~, which is determined by 
constraints (4)-(10). x#8 represents the boundary variables at 
PCC. As indicated in (11), the AC system #C has its own 
optimization objective ℱ#8/6 , whereas the VSC-MTDC grid 
does not. (⋅)z denote the replicated variables generated after 

the hybrid power system decomposition, and y#867 = 0 is the 

coupling constraints, enforcing consistency among the 
boundary variables. For instance, the AC grid has the 

boundary coupling constraints that ��/�� = ��z/�� , ��/�� =��z/��, �� = ��z, ∀ ∈ "#$ .  
Furthermore, (12) can be divided into several slave 

problems (SPs) related to the AC systems and one master 
problem (MP) related to the VSC-MTDC grid. During GBD 
procedure, the original SP #C is formulated below: 

��� ≝ n C Dℱ#8/6 (w#8 , x#8): y#867 >x#8 , x�#8z[�]A = 0| �#8, 
 w#8 ∈ {#8H, (13) 

where (⋅̂)[�]  denotes the determined variables at the n th 
iteration. �#8  are the dual multipliers corresponding to the 

constraint y#867
=0. (13) provides the upper bound (��) of 

(12). However, (13) might have no feasible solutions, and 
then the relaxed SP #C takes the place of (13), such that: 

��� ≝ n C D‖�#8‖c + ‖�#8‖c: y#867 >x#8 , x�#8z[�]A ≤
�#8 | �#8� , −�#8 ≤ y#867 >x#8 , x�#8z[�]A | �#8� , 

 �#8� ≽ 0, �#8� ≽ 0, w#8 ∈ {#8H,  (14) 
where �#8� ,  �#8�  are respectively the dual multipliers 

corresponding to the constraints y#867 ≤ �#8, −�#8 ≤ y#867
. 

The archival GBD procedure requires that if arbitrary SP #C  has no feasible solution, all SPs should transform into 
relaxed forms. This necessitates rendering SPs unable to be 
handled in parallel. To address this issue, we employ the 
multiple-cut generation [17] in GBD (MGBD). In this case, 
each SP can generate either one Benders optimality cut 
originating from (13) or one Benders feasibility cut 
originating from (14). Consequently, multiple cuts are genera 
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Algorithm 1 Asynchronous update of multi-cut GBD (A-MGBD) 

1.  Initialize n ← 0, x�#8z[�]
, ��#8[�]

, ��#8[�]
 

2.  Repeat 

 /* SPs Optimization */ 

3. for all #C ∈ D#1, ⋯ , #GH do 
4.  if (13) is feasible then 

5.   Obtain w�#8[�], x�#8[�]
 by solving (13). Generate Benders 

optimality cuts to MP, and update ℱ#8/6[�
c]
 

6.  else 
7. 
 

 Obtain w�#8[�], x�#8[�]
 by solving (14). Generate Benders 

feasibility cuts to MP, and keep ℱ#8/6[�
c] ← ℱ#8/6[�]
 

8.  end 

9. end 

10. ��[�
c] = ∑ ℱ#8/6[�
c]#8   

 /* MP Optimization */ 
11. while #C ∈ �[�] finish returning Benders cuts do 

  
 

Add Benders optimality and feasibility cuts according to (15). 

Obtain x�#8z[�
c]
 by solving (16) and update �#8[�
c]

 

12. end 
13. ��[�
c] = ∑ �#8[�
c]#8   

14. n + 1 ← n 
15. Until the threshold is met 

-ted in each iteration, such that: 

 �#8 ≥ ℒ�#8[�] + ∇ℒ#8(x#8z − x�#8z[�]), (15a) 

 0 ≥ ℋ�#8[�] + ∇ℋ#8(x#8z − x�#8z[�]), (15b) 

 ℒ#8 ≔ ℱ#8/6(w#8 , x#8) + �#8⊺ y#867 (x#8 , x#8z ) (15c) 

 ℋ#8 ≔ �#8�⊺ �#867 (x#8 , x#8z ) − �#8�⊺ y#867 (x#8 , x#8z ) (15d) 

Consequently, MP is formulated with the returened Benders 
cuts, providing the lower bound (��), such that: 
 �� ≝ n C D∑ �#88 : ��:. (15a) bC  (15b), | ∈ }H,(16) ∀#C ∈ D#1, ⋯ , #GH, ∀[n] ∈ D[1], ⋯ , [�]H 

Eventually, the GBD procedure is implemented by 
iteratively solving SPs and MP. The update process is 
terminated until the residuals of coupling constraints for SPs 
and MP are smaller than the threshold. 

B. Asynchronous Updating 

We further consider the communication delay during the 
GBD procedure. As shown in Fig. 3, affected by different 
communication delays, MP is unable to receive all returned 
Benders cuts simultaneously. Synchronous and asynchronous 
updating can be selected to respond to this situation. The 
synchronous updating requires waiting for all SPs to return 
Benders cuts. In this way, the total computation time is limited 
by the “slowest” SP problem solving. In contrast, the 
asynchronous updating only needs a minimum number of C ≥1 SPs to finish Benders cut-returning. To ensure sufficient 
freshness, every SP must finish updating at least once every n ≥ 1  iteration. For the asynchronous updating steps of 
MGBD, we denote the set of SPs that finish returning Benders 

cuts at the n th iteration as �[�]  and remainings as ¢[�] . 

Accordingly, �[�]⋂¢[�] = ∅,  �[�]⋃¢[�] = D#1, ⋯ , #GH 
hold. The update steps are described in Algorithm 1. 

IV. ESM-BASED ROBUST SOLUTION 

To address uncertainties from RESs, the aforementioned 
deterministic OPF (DOPF) model (formulated by (1)-(11)) is 
expanded into the ESM-based two-stage robust OPF (ROPF) 
model. Furthermore, this ESM-based two-stage ROPF model 
is further extended to align the GBD procedure.  

A. Two-Stage Robust Decision Making with ESM 

The DOPF model is expanded into the two-stage ROPF 
model, such that: 

n C ¦ c
|§| ∑ ℱD-H¨©ª(«D-H, ¬, ­D-H)- : yD-H¨©ª�«D-H, ¬, ­D-H� = 0,  

 ®D-H¨©ª�«D-H, ¬, ­D-H� ≤ 0¯ (17) 

∀: ∈ § 
where (⋅)D-H  denotes the variables linked with the possible 

scenario : . ℱD-H¨©ª , yD-H¨©ª , ®D-H¨©ª
 respectively represent the 

optimization objective, equality constraints, and inequality 
constraints of the hybrid power system in the possible 
scenario : . «D-H  refers to the uncertain variables in the 

possible scenario :, i.e., the RES maximum available power 

�#�D-H
J

. ¬ refers to the “here-and-now” variables determined in 

the first stage before «D-H is revealed, including DC network 

connection status R��  and generator power outputs ��. , ��. . 

The remaning variables are “wait-to-see” variables 
determined in the second stage after «D-H is revealed. They are 

uniformly denoted as ­D-H. The robust ¬ can be obtained if 

we solve (17) by adding constraints involving the collection 
of all possible scenarios §, but it is computationally massive.  

ESM provides an alternative approach to solve (17) by 
considering the collection of all extreme scenarios ° instead 
of all possible scenarios §. In this case, (17) is reduced to: 

n C ¦ c
|°| ∑ ℱD±H¨©ª(«D±H, ¬, ­D±H)± : yD±H¨©ª�«D±H, ¬, ­D±H� = 0,  

 ®D±H¨©ª�«D±H, ¬, ­D±H� ≤ 0¯ (18) 

∀Y ∈ ° ⊆ § 

where (⋅)D±H  denotes the variables linked with the extreme 

scenario Y. We can know that solving (18) requires much less 

computaitnal effort compared to solving (17) due to |°| ≪|§| . The effectivness of ESM holds rquiring that y¨©ª  is 

linear and ®¨©ª  is linear or SOC relaxed. The proof can be 

found in [13, Sec. 4]. According to (1)-(10), our proposed 

AC/DC OPF model meets this requirement.  

B. Extension of ROPF for Distributed Problem Solving 

With ESM, the original SP #C  in (13) is modified by 

considering all extreme scenarios °, such that: 

 ��� ≝ n C ¦ c
|°| ∑ ℱ#8/6± �«#8D±H/6 , ¬#8/6 , ­́#8D±H/6 , x#8D±H�:  

y#8D±H67 >x#8D±H, x�#8D±Hz[�] A = 0, y#8D±H/6 �«#8D±H/6 , ¬#8/6 , ­́#8D±H/6 � = 0,
 ®#8D±H/6 �«#8D±H/6 , ¬#8/6 , ­́#8D±H/6 � ≤ 0µ, (19) 

∀#C ∈ D#1, ⋯ , #GH, ∀Y ∈ ° 

where «D±H, ¬, ­D±H  are extended to «#8D±H/6 , ¬#8/6 , ­#8D±H/6 ≔
[­́#8D±H/6 , x#8D±H] , respectively representing the uncertain 

variables, first-stage varaibles, and second-stage variables 

related to the AC system #C , in the extreme scenario Y . 

Particularly, ­́#8D±H/6  refers to the second-stage vairables 

­#8D±H/6  exclude the boundary variables x#8D±H. (14) and (16) 

can also be modified by this kind of variable extension. 

However, from the perspective of distributed problem 

solving, GBD solving (19) needs extra communication. We  

Authorized licensed use limited to: TU Delft Library. Downloaded on November 06,2024 at 13:06:35 UTC from IEEE Xplore.  Restrictions apply. 



#1

#4

#2

#3

#5

#8

#6

#7

#9

RES #1

VSC #1

Gen. #1

Gen. #3

Gen. #2 RES #2

VSC #4

VSC #2 VSC #3

#4 #6

AC grid

VSC-MTDC

G G

G

1.04∠0°p.u.
90MW*

90MW*

1.02p.u.

90MW*

90MW+30MVar 100MW+35MVar

120MW+50MVar

0p.u.+

j0.0576p.u.

0.017p.u.
+j0.092p.u.

0
p
.u
.

+
j0
.0
5
8
6
p
.u
.

0.085p.u.
+j0.072p.u

.

0p.u.+
j0.0652p.u.

0.032p.u.+
j0.161p.u.

0.01p.u.+
j0.085p.u.

50MVar* 50MVar*

0
.0
5
2
p
.u
.

0.073p.u.

0.073p.u.

0
.0
5
2
p
.u
.

1.02p.u.

Fig. 4.  Test system of the AC/MTDC hybrid power system. 

TABLE I.  COMPARISON BETWEEN DOPF ROPF AND E-ROPF 

MODELS IN HANDLING POSSIBLE SCENARIOS 

Optimization 

model 

Optimization objective in 100 possible scenarios 

Feasible ratio Maximum Minimum Average 

DOPF 73% - - - 

ROPF 100% 8.3114 8.3109 8.3110 

E-ROPF 100% 8.3117 8.3117 8.3117 

 Models are solved via centralized optimization. The feasible ratio means 
the proportion of possible scenarios that have feasible solutions. 

TABLE II.  COMPARISON OF E-ROPF WITH AND WITHOUT DC 

NETWORK-COGNIZANT CONSTRAINT 

Network-cognizant 
constraint 

DC 
topology 

VSC connection 
Nodal voltage 

constraint 

Without Fixed 
(1,2), (2,3), (3,4) 

(4,1) 
Violate 

With Flexible 
(1,2), (2,3), (3,4), 
(4,1), (1,3), (2,4) 

Satisfy 

 Models are solved via centralized optimization.  

TABLE III.  COMPARISON OF GBD AND MGBD IN SOLVING E-ROPF 

Approaches Iterations |�� − ��|/|��| × 100% ¸ × 100% 

GBD 23 0.0240% 0.0172% 

MGBD 15 1.4584% 0.0181% 

 ¸  refers to the relative error between the solved result by distributed 
optimization and the benchmark, which is obtained by solving the E-
ROPF via centralized optimization. 

denote °#8  as the local extreme scenarios induced by the 

uncertain variables «#8/6  related to AC system #C. In this way, 

we have that |°| = ∏ |°#8|#8 , where ° can be interpreted as 

the arrangement of °#8. It implies that in addition to the local °#8, AC system #C must be informed the remaining extreme 

scenarios °#K , #M ≠ #C. Considering this issue, a consensus 

condition is designed, i.e., the boundary variables of each AC 

system need to remain consistent across the collection of all 

extreme scenarios °. Consequently, (19) is transformed: 

��� ≝ n C ¦ c
|°#»| ∑ ℱ#8/6± �«#8D±H/6 , ¬#8/6 , x#8 , ­́#8D±H/6 �:  

y#867 >x#8 , x�#8z[�]A = 0, y#8D±H/6 �«#8D±H/6 , ¬#8/6 , ­́#8D±H/6 � = 0,  

®#8D±H/6 �«#8D±H/6 , ¬#8/6 , ­́#8D±H/6 � ≤ 0µ, (20) 

∀#C ∈ D#1, ⋯ , #GH, ∀Y ∈ °#8 

where the boundary variables x#8D±H , as the second-stage 

variables, are coverted into x#8, as the first-stage variables. x#8D±H in (14) and (15) can also be converted in the similary 

way. Such distributed problem solving is equivalent to adding 

an additional compulsory constraint that x#8D±H =
x#8D±∗H ⋯ = x#8D±∗⋯∗H, Y, Y∗, Y∗⋯∗ ∈ °  in (18), forming an 

extended ROPF (E-ROPF) model. 

Comparing (19) and (20), we can know that the E-ROPF 

model enables SP #C  to consider the collection of local 

extreme scenarios °#8 instead of the collection of all extreme 

scenarios ° , avoiding extra communication costs. The 

effectiveness of the E-ROPF model is presented in detail in 

[13, Sec. 4]. 

V. CASE STUDY 

We use the test system shown in Fig. 4. The base power and 
voltage are respectively 100MW and 345kV. The system-
wide power and voltage are in the calculation of per-unit value. 
We set the tighter voltage bounds as ��: = 0.955�. �., ��: =1.045�. �., ∀ ∈ "#$⋃"VW$⋃"OPQ$ , for preventing the 
voltage violations indused by errors of power flow model. 

Other key bounds are set as arcos(56/7) = arcos(5�89): =
0.9, :�� : = 1�. �. , ( , %) ∈ &#$ ,  6: = 1�. �. , U ∈ "VW$ , a: = 1. 

For GBD, MGBD, A-MGBD, the residual threshold is set to 1

×10-5. The case study is coded on the MATLAB platform. 

YALMIP toolbox is utilized to provide a mathematic 

modeling environment. CPLEX is selected as the solver. 

A. Validation of ESM-Based ROPF Model 

We assume that the uncertain variables �̅#cJ  and �̅#�J  are 
respectively within the interval that [0.3, 0.5]�. �.  and [0.2, 0.5]�. �.. 100 possible scenarios related to �̅#cJ , �̅#�J  are 
randomly generated. The conventional DOPF model 

considers one deterministic scenario that is (�̅#cJ , �̅#�J ) ≔(0.5, 0.5)�. �.. In contrast, the ROPF model considers four 

extreme scenarios that are (�̅#cJ , �̅#�J ) ∈ D(0.5, 0.5), (0.5,0.2),  (0.3, 0.5), (0.3,0.2)H�. �. E-ROPF model considers two sets 

of local extreme scenaiors that are �̅#cJ ∈ D0.3, 0.5H�. �.,  �̅#�J ∈ D0.2, 0.5H�. �.. As presented in Table I, the decision-
making based on DOPF model is not suitable for all generated 
possible scenarios, and it will result in infeasible solutions in 
27% scenarios. In contrast, the decision-making based on 
both ROPF and E-ROPF models are feasible for all generated 
possible scenarios by only considering extreme scenarios, 
and the computation cost is cheap. Taking the determined RÃ�� , ∀( , %) ∈ &OPQ$  and �̂�. , �Ã�.  ∀ ∈ "#$  as constants into 

the generated possible scenarios to validate the performances 
of ROPF and E-ROPF models on hedging against 
uncertainties (the E-ROPF model additionally take the 

determined boundary variables x�#8  as constants into the 
generated possible scenarios). We find that the E-ROPF 
model provides the slightly more conservative results than the 
ROPF model. This is because the E-ROPF model has one 
additional compulsory constraint. However, the E-ROPF 
model guarantees feasibility for the arbitrary possible 
scenarios and benefits reducing the communication burden 
when using GBD. 

B. Influence of the DC Network-Cognizant Constraint 

We investigate the influence of the DC network-cognizant 

constraint formulated in (6) on the E-ROPF model. As 

presented in Table II, if the DC network cognizance is not 

considered, it means that the DC network topology is fixed. 

In this case, the E-ROPF model has no feasible solution since 

the nodal voltage constraint is violated. When considering 

network-cognizant constraint, the E-ROPF model enables 

flexibly reconfiguring DC topology to satisfy the nodal 

voltage constraint, and feasible solutions can be found. 

C. Discussion of Multi-Cut Generation and Asynchronous 

Updating in GBD 

We first compare GBD and MGBD in solving the E-ROPF 

model to investigate the effect of multi-cut generation in 

GBD. As shown in Table III, MGBD converges faster than 

GBD, thanks to MGBD returning more Benders cuts in each 

iteration. Regarding the optimality, for the given case study, 

it can be considered that GBD and MGBD exhibit almost eq 
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Fig. 5.  GBD iteration process in different communication delay situations. 
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Fig. 6.  The calculated system-wide voltage profiles (based on the 
deterministic scenario and the fixed DC topology). The actual values are 

computed by using IPOPT to solve the original nonconvex AC/DC OPF 

model with dertermined �̂�. , �Ã�. , �̂#cJ , �Ã#cJ , �̂#�J , �Ã#�J , a�  which are obtained by 

solving the proposed mixed-integer convex AC/DC OPF model. 

-uivalent performance as their ¸ are pretty close. 

We further discuss the asynchronous updating in GBD. 

Particularly, we set three specific communication delay 

situations. Situation1: In every iteration, all SPs must have 

already been solved and returned cuts to MP, and then the 

iteration is activated. This situation can be regarded as 

synchronous updating. Situation2: In every iteration, at least 

two SPs have already been solved, and then the iteration is 

activated. The time cost for solving SPs associated with the 

AC grid, RES#1, RES#2 are assumed to be 1:1:2. Situation3: 

In every iteration, at least two SPs have been solved, and then 

the iteration is activated. The time cost for solving SPs 

associated with the AC grid, RES#1, RES#2 are assumed to 

be 1:2:4. Situation2 and Situation3 both belong to the 

asynchronous updating. As presented in Fig. 5, asynchronous 

updating still converges successfully, and compared with 

synchronous updating, it needs more iterations but saves time 

in every iteration. Hence, in terms of the whole iteration 

process, the total time consumed by A-MGBD might be less. 

However, we can observe that the converged result in 

Situation3 exhibits an unignorable deviation. It implies that 

as communication delays increase, the optimality of A-

MGBD is substantially affected. 

D. Test of System-Wide Power Flow Accuracy 

Our work employs a series of approximations to handle the 

nonlinear power flow constraints, and it is necessary to test 

the system-wide power flow accuracy after approximations. 

The initial power flow points in (1) are obtained with the base 

power flow status and then changed to the updated power 

flow status (power injection at AC nodes #4 and #6 are 

changed from zeros to the optimized value. Generation power 

outputs are changed from the base values to the optimized 

value). As shown in Fig. 6, after three updates of initial power 

flow points, the proposed mixed-integer convex AC/DC OPF 

model exhibits satisfied power flow accuracy. However, it is 

a trade-off between power flow accuracy and computation 

burden induced by updates of initial power flow points. 

VI. CONCLUSION 

In this paper, a mixed-integer convex AC/DC OPF model 
considering DC network cognizance is constructed for the 
AC/MTDC hybrid power system. The system-wide flexible 
operation is achieved through optimal DC topology 
reconfiguration. The improved GBD and extended ESM are 
combined to achieve distributed robust decision-making when 
confronted with uncertain scenarios related to RESs. However, 
this current work does not consider the impacts of VSC local 
control on the hybrid power system. In future work, we will 
further expand the OPF model, embedding the VSC droop 
control constraint. 
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