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Abstract—AC/multi-terminal DC (MTDC) hybrid power
systems have emerged as a solution for the large-scale and long-
distance accommodation of power produced by renewable
energy systems (RESs). To ensure the optimal operation of such
hybrid power systems, this paper addresses three key issues:
system operational flexibility, centralized communication
limitations, and RES uncertainties. Accordingly, a specific
AC/DC optimal power flow (OPF) model and a distributed
robust optimization method are proposed. Firstly, we apply a set
of linear approximation and convex relaxation techniques to
formulate the mixed-integer convex AC/DC OPF model. This
model incorporates the DC network-cognizant constraint,
enabling DC topology reconfiguration. Next, generalized
Benders decomposition (GBD) is employed to provide
distributed  optimization. @ Enhanced approaches are
incorporated into GBD to achieve parallel computation and
asynchronous updating. Additionally, the extreme scenario
method (ESM) is embedded into the constructed AC/DC OPF
model to provide robust decisions to hedge against RES
uncertainties. ESM is further extended to align the GBD
procedure. Numerical results are finally presented to validate
the effectiveness of our proposed optimization method.

Keywords—Multi-terminal DC grid, DC network cognizance,
distributed  robust  optimization,  generalized  benders
decomposition, extreme scenario method.

I. INTRODUCTION

Nowadays, the multi-terminal DC (MTDC) grid composed
of voltage-source converters (VSCs) has emerged as a
promising solution for transmitting a large amount of power
produced by renewable energy systems (RESs) to distant AC
grids. Optimal power flow (OPF) is a powerful technique that
can benefit VSC-interconnected AC/MTDC hybrid power
systems in their economical operation [1]. It is well-known
that the fundamental AC/DC OPF problem is nonconvex. The
meta-heuristic algorithm [2] and interior point method [3] can
be selected to solve such problems. However, the solved
results might be stuck in the local optimum. In this regard,
convex AC/DC OPF models are developed with a series of
linearization and convexification techniques [4]-[6], which
can be efficiently solved by off-the-shelf convex solvers.
Nevertheless, AC/MTDC hybrid power systems do not favor
such a centralized problem-solving approach in practice, due
to the substantial communication efforts required for
centralized data processing.

Compared to centralized optimization, distributed
optimization is preferred. It enables independent decision-
making among AC systems (including AC grids and RESs)
and DC systems, facilitating coordination through sharing of
boundary information. Various well-known distributed
optimization algorithms were employed in follow-up works to
solve AC/DC OPF problems, such as the alternating direction
method of multipliers (ADMM) in [7], analytical target
cascading (ATC) in [8], and alternating direction inexact
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newton method (ALADIN) in [9]. However, it is worth noting
that the constructed AC/DC OPF problems overlook the issue
regarding the DC network cognizance, which would benefit
the AC/MTDC hybrid power system in flexible operation [2],
[10]. Once DC network cognizance is involved, 0-1 binary
variables are inevitably introduced to describe the connection
status of DC network lines, resulting in the mixed-integer
convex OPF problem. ADMM and ATC lack rigorous
convergence behavior in handling such problems, and
ALADIN is not scalable to them. Generalized Benders
decomposition [11] provides an alternative to solve the mixed-
integer AC/DC OPF problem in a distributed manner.
Although GBD is archival, its application in hybrid systems
still necessitates consideration of some emerging potential
issues, such as convergence rate and communication delay.

Additionally, addressing uncertainties from RESs is
imperative. A recent popular solution for handling these
uncertainties is the two-stage robust optimization based on
column and constraint generation (CCG) [12]. Despite CCG
involving an iterative solving procedure, it is essentially
centralized optimization and requires integration with other
distributed optimization algorithms to provide distributed
robust solutions, thereby complicating the optimization
process. In contrast, the extreme scenario method (ESM)-
based two-stage robust optimization is more intuitive and
easier to combine with various distributed optimization
methods [13], including GBD.

According to the above research review, despite the
progress made in OPF modeling, distributed problem solving,
and uncertainty handling, comprehensive studies that address
all these aspects together are limited. As previously
mentioned, the OPF model for hybrid power systems is
expected to be mixed-integer convex when considering the
DC network cognizance. Hence, it is highly desirable to
combine GBD and ESM to achieve distributed robust
optimization. Accordingly, our main contributions can be
summarized as:

* A mixed-integer convex AC/DC OPF model is explicitly
formulated considering the DC network-cognizant constraint.
* GBDisemployed to offer distributed optimization, and we
enhance the traditional GBD procedure in the aspects of
parallel computation and asynchronous updating.

* ESM is employed for robust solutions, and we extend the
ESM application to align the GBD procedure.

The paper begins with the mathematical formulation of the
AC/DC OPF model that incorporates the DC network-
cognizant constraint in Section II. Then, improved GBD is
introduced in Section III and ESM with its extended
application is presented in Section IV. Numerical studies are
presented and discussed in Section V, followed by the
conclusion drawn in Section VI.

II. MIXED-INTEGER CONVEX AC/DC OPF MODEL

In this section, a mixed-integer convex AC/DC OPF model
is formulated. This is necessary because the convergence of
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Fig. 1. Equivalent impedance model of the VSC station.

GBD and robustness of ESM cannot be guaranteed if solving
nonlinear OPF models.
A. Linear AC Grid Constraints

The well-known nonlinear AC power flow can be
linearized by the successive linear approximation [14]

ujtuj , $
pij = gijti — gfjk — b'P'k(GU—Qk)+ng BiL (1a)

uj+u; f
q; = b%* L —biju; — g% (6, — 0F) - bQ" ’L . (1b)
Di =Z(i,j)pij +u12] ij qi _Z(l,]) ql.] u] Z] BL]'(IC)
Vi € m4¢, v(i,j) € I4¢
where m4¢ and 14€ are used to denote the node and branch

sets for the AC grid. (+);; and (-); represent the varaible or
parameter linked with branch (i, j) and node i of the AC grid,
respectively. (1) is the linearized AC power flow equation.
pij/ qij is the real/reactive power flowing on the branch.
p;i/ q; is the nodal real/reactive power injection. u; = v? is
the squared nodal voltage. 8;; denotes the phase difference
along the branch. g;;/b;; is the conductance/susceptance of
the branch. G;;/B;; corresponds to the real/imaginary parts of
the nodal admittance matrix. gsk, bP k,gu s bS k, f] L ok
are the determined parameters that are associated with the
initial power flow points of the AC grid, whose details can be
found in [14, Sec. 3].

In addition, some other operational constraints need to be
taken into account, including

pi =pf —pt =0, @i =4qf —af —af**,  (2a)

0<pf <p;, pf tan(p*) < qf <pf tan(p™®),  (2b)
—5;j <cos( )pu+sm( )q” < Sij (2¢)
i S U S U, (2d)

Vi € mAC, V(l j)€E HAC n€{1,-,N}

where (7)/(-) represents the upper/lower bound of variables.
(2a) specifies contributions of the AC nodal power injection,
including generation production pf, qf, load consumption
pF, qF, and power transmission from the AC grid to the VSC
station pf2”, q?¥. (2b) regulates the allowable range of the
generator productlon. @° /@™ is the capacitive/indunctive
power factor. (2¢) indicates the linearization of pf; + qf; <
Eizj , using n-polygon approximation [15] to represent the
capacity constraint linked with the branch apparent power s;;.
(2d) indicates the range of the squared nodal voltage u;.

B. Linear RES Constraints

RES #i is modeled as an integrated node while the detailed
layout is neglected. Hence, we have the below constraints:

i < cos( )pm + sm( )qm < s#l, (3a)

0 < pf; < Py Pk = PR afii = 4i”, (3b)
V#i € {#1,.--, #1}, vn € {1,---,N}
where (+)4; represents the varaible or parameter linked with

1SOC relaxation [4] can be an option for handling the nonlinear power flow
of the AC grid. However, commonly used off-the-shelf optimizers
sometimes might fail to return duals in solving SOC programming (SOCP)
problems (https://github.com/jump-dev/Gurobi.jl/issues/217). which affects
the application of GBD in the proposed AC/DC OPF model.

RES #i. pfi/qf; is the real/reactive power produced by the
RES. Similar to (2c), (3a) indicates the linearized capacity
constraint regarding the RES apparent power output s%;. (3b)
indicates that pf; is bounded by the maximum available
power 5;, which is affected by natural factors. RES is
operated in the grid-connected mode, thus the power outputs
p&;, qf; equal to the power transmition p}2Y, g4V that flows
from the RES to the VSC station.

C. Mixed-Integer Convex MTDC Grid Constraints

The well-known nonlinear DC power flow can be
convexfied by the second-order cone (SOC) relaxation [5]:
Pi = X Pij» Pij +Pji = 1ijlip f < Ljug  (4a)
w; —w; =15 (pyy = pj), (4b)
i € mMTDC v (i, j) € IMTPC
where mM7P¢ and 1M7P¢ are used to denote the node and
branch sets for the MTDC grid. r;; is the resistance of the
branch. [;; = lej represents the squared branch current. (4)
forms the SOC-relaxed power flow constraint by relaxing the
inherent equation that p;; = i;;v;.
Some operational constraints need to be considered:
u S up Sy, p = —pit (5)
i € pMTDC
where (5) regulates the allowable range of the squared MTDC
nodal voltage u; and specifies the contribution of MTDC
nodal power injection p;, containing the power transmission
p2Y that flows from the MTDC grid to the VSC station.
Besides, DC network cognizance is given consideration.
The binary variable a;; € {0,1} is introduced to represent the
connection status of the DC line. @;; is enabled (binary-1)
means the DC line (i, j) is connected and otherwise (binary-
0) is disconnected. a;; has the inherent characteristics that
a; = 0,@;; = @j;. In this case, (4b) needs to be modified,
such that:

_Maij < pij < Maij' (63)

(wi = byy) = ( — tiy) =1 (pij —pji),  (6b)

w(1—a;) < by <w(1— ay)), (6¢)

uj(l—aij)Stij Sﬁj(l—a”) (6d)

—wa;j < w; — by Sway;, —uja; < up -t < wjagg,(6e)
l € ]mMTDC V(l ]) € HMTDC

where M represents a large positive number. b;j,t;; are
auxiliary variables. It can be deduced that when «a;; = 1,
u; — 'U.]' = rij (p” - p]l) is activated and when al']' = 0, u; —
uj =1y (pij - pji) is disabled.
D. Mixed-Integer Convex VSC Constraints

The nonlinear AC power flow at the AC side of the VSC
station ( refers to the PCC bus to the AC terminal, as shown

in Fig. 1), can be convexfied by the SOC relaxation' proposed
in [4]:

pi = Gy + Xy(cijGij — 5iByj), (72)

q; = —¢;iB; — Z(i})(cuBu +5i;Gyj), (7b)

Cij = Cji, Sij = —s]l,c + SL] < GiGjj, (7¢)
viemn”S¢,  v(,j) el

where m"5¢ and 1VS¢ are used to denote the node and branch

sets for the AC side of the VSC station. cy;, ¢;j, 5;; are the
introduced variables that have links with the squared nodal
voltage u;. Given that u;: = e?+f;%, then we have that u; =
Cii:=ei2+ﬁ2,cij:=eiej+fifj,sij:=eifj—ejfi . SOC
relaxation of the AC power flow is achieved by relaxing the
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Fig. 2. Illustration regarding the hybrid power system decomposition.

inherent equation that c + s = €y Cjj-
Some operational constramts at the AC side of the VSC
station need to be considered, such that:

ps = P2’ or pi’, by = 0, pe = PP’ —pi°*°, (8a)
qs = qi*" or qi¥, qp = usby, (8b)
vk € m4C, {s, f,c} € m"S¢, vj € mMTPC

V#i € {#1,---,#I}
where (8) specifies the power injection at the AC side of the
VSC station. p]l-oss represents the power loss inside the VSC
station.

In addition to the aforementioned constraints, a set of
constraints are included to characterize the couplings
between the AC terminal and DC terminal of the VSC station.
The original nonlinear expression is presented below:

Ve =8v,0 <8 <8, pc+p +p =0, (%)

p]loss - alcic2 + aZCiC + Qazc, (9b)
= Pé+qd)/vé,0<i. < lc' (%0
cE ]mVSC V] € ]mMTDC

where (9a) indicates the voltage and power couplings
between the VSC’s AC and DC terminals. § denotes the
PWM modulation factor. (9b) and (9¢) indicate that the power
loss inside the VSC station is the quadratic function with
respect to i., which is the current injection at the VSC’s AC
terminal. a,., a,., as. are the coefficients of the quadratic
power loss function. The nonlinear constraints (9) can be
handled by piece-wise convex relaxation, and we have that:

ue < (3) w, pe +p; +plo =0, (10a)
p]loss = aycle + agcic +ag, (10b)
> Yy ily,ic < Zk{zc,kic,k Fickicr — Zc,ki'c,kbk}' (10c)
b = L kick = ic)lexbi < ey < icicbi, (10d)
b =R T =, (10¢)
pé +q; <l.u,, (10f)

c € m’S¢ vj € mMTPC, vk e{1,-,K}

where the voltage terms v, v; in (9a) is replaced by the
squared voltage terms u,, u; in (10a) to keep being consistent
with the counterparts in (4) and (7). (10a)-(10e) forms a tight
quadratic envelope [16] to approximate I, := iZ in (9b). i,y
denotes the variable within the subrange [i. Zc,k]s and the
binary variable by, € {0,1} is used to denote the status of each
subrange, whether it is enabled (binary-1) or disabled
(binary-0). (10f) is the SOC relaxation of the equation that

= J (@& + q&)/v¢ in (9c).

E. Optimization Objective of the Hybrid Power System

Minimizing the generation costs and the total power losses
(including power losses on lines and inside VSC stations) is
considered to be the optimization objective for the
AC/MTDC hybrid power system, such that:

n {Zi{cu(PiG)z + Cpf + c3i} +Zi{pl —pi}+ L P#l}

generation costs total power losses '

Vi € m4C, V#i € (#1,--, #I} (11)

where the generation cost is a quadratic function with respect

to pf. ¢y, Cai, C3; are the corresponding coefficients. Total

power losses equal the total power generation minus total
load demands.

III. GBD-BASED DISTRIBUTED OPTIMIZATION

Considering the issues regarding the centralized
communication burden and data privacy, the AC grid, RESs,
and the VSC-MTDC grid should be governed individually.
GBD is employed to provide distributed optimization for the
coordination among the decomposed sub-systems.

A. System Decomposition and Multi-Cut Generation

As shown in Fig. 2, the original integrated system can be
decomposed into one DC system and several AC systems
(refer to the AC grid or RESs). Under this condition, the
constructed mixed-integer convex AC/DC OPF model can be
reformulated as the below general compact expression:

min {Yyn Fin (Xan, byn) h;?q (byn, byy) =0,
Xun € X#n' y € Y}' (12)
v#n € {#1,---,#N}

where x4, represents the variables associated with the AC
system #n and y represents the variable associated with the
VSC-MTDC grid. Xy, denotes the feasible region of xy,.
For the AC system, Xy, is determined by constraints (1)-(3).
Y denotes the feasible region of y, which is determined by
constraints (4)-(10). by, represents the boundary variables at
PCC. As indicated in (11), the AC system #n has its own
optimization objective Fgy, whereas the VSC-MTDC grid
does not. (-)’ denote the replicated variables generated after
the hybrid power system decomposition, and 4> = 0 is the
coupling constraints, enforcing consistency among the
boundary variables. For instance, the AC grid has the
boundary couphng constrarnts that pf2Y = p[*??,qf*’ =
q/**’,u; = ul,vi € m4

Furthermore, (12) can be divided into several slave
problems (SPs) related to the AC systems and one master
problem (MP) related to the VSC-MTDC grid. During GBD
procedure, the original SP #n is formulated below:

—~

OSP & min {F{ (Xyn, byn): A (Ban Bin”’) = 0] Ay,
Xyn € X#n}: (13)
where (9)[™ denotes the determined variables at the mth
iteration. Ay, are the dual multipliers corresponding to the
constraint A5, =0. (13) provides the upper bound (UB) of
(12). However, (13) might have no feasible solutions, and
then the relaxed SP #n takes the place of (13), such that:

RSP % min {|[gyll; + oyl A5, (b#n. by <

<h#n(b#n. o) |

ﬂ#n z 0, u#n z 0, Xin EX#n}' (14)
where Mg, UG, are respectively the dual multipliers
corresponding to the constraints A < &4, —0y4, < A,

The archival GBD procedure requires that if arbitrary SP
#n has no feasible solution, all SPs should transform into
relaxed forms. This necessitates rendering SPs unable to be
handled in parallel. To address this issue, we employ the
multiple-cut generation [17] in GBD (MGBD). In this case,
each SP can generate either one Benders optimality cut
originating from (13) or one Benders feasibility cut
originating from (14). Consequently, multiple cuts are genera

Eun | llf;w -
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Fig. 3. Illustration regarding the synchronous and asynchronous updates.

Algorithm 1 Asynchronous update of multi-cut GBD (A-MGBD)
1. Initialize m < 0, %', LBY), UBL!
2. Repeat

/* SPs Optimization */

3. for all #n € {#1,---,#N} do

4. if (13) is feasible then

5. Obtain x[m] b[m] by solving (13). Generate Benders
optimality cuts to MP, and update T#ff[mﬂ]

6. else

7. Obtain x[m] b[m] by solving (14). Generate Benders

ac[m+1] - Tac[m]
#n

feasibility cuts to MP, and keep F,,,
8. end

. end

10. UB [m+1] — Z Tac [m+1]

/* MP Optlmlzatlon */

11. | while #n € A™ finish returning Benders cuts do

Add Benders optimality and feasibility cuts according to (15).
Obtain E;},T *1] by solving (16) and update z,, m+1]

12. | end

13. LBM+1l = Z nZ#:’lH'l]

4. | m+1em

15. Until the threshold is met

-ted in each iteration, such that:

Zin = LT + VL (Bl — B, (15a)
0= Am 4 Vﬂ-[#n(b#n b, (15b)
Ly = T#n (Xirs Byn) + Ayl (Byn, Blyn)  (150)

Hin = Win #n(b#n' byn) — ﬂ ’le n (Dyn, Dl (15d)
Consequently, MP is formulated with the returened Benders
cuts, providing the lower bound (LB), such that:

MP & min {}, z4,, : Eqs. (15a) and (15b), y € Y},(16)

v#n € {#1,---,#N}, v[m] € {[1],---, [M]}

Eventually, the GBD procedure is implemented by
iteratively solving SPs and MP. The update process is
terminated until the residuals of coupling constraints for SPs
and MP are smaller than the threshold.

B. Asynchronous Updating

We further consider the communication delay during the
GBD procedure. As shown in Fig. 3, affected by different
communication delays, MP is unable to receive all returned
Benders cuts simultaneously. Synchronous and asynchronous
updating can be selected to respond to this situation. The
synchronous updating requires waiting for all SPs to return
Benders cuts. In this way, the total computation time is limited
by the “slowest” SP problem solving. In contrast, the
asynchronous updating only needs a minimum number of n >
1 SPs to finish Benders cut-returning. To ensure sufficient
freshness, every SP must finish updating at least once every
m > 1 iteration. For the asynchronous updating steps of
MGBD, we denote the set of SPs that finish returning Benders
cuts at the mth iteration as A™ and remainings as ¢,
Accordingly, AMNeM™ =@, AMyet™ = {#1, .-, #N}
hold. The update steps are described in Algorlthm 1.

IV. ESM-BASED ROBUST SOLUTION

To address uncertainties from RESs, the aforementioned
deterministic OPF (DOPF) model (formulated by (1)-(11)) is
expanded into the ESM-based two-stage robust OPF (ROPF)
model. Furthermore, this ESM-based two-stage ROPF model
is further extended to align the GBD procedure.

A. Two-Stage Robust Decision Making with ESM

The DOPF model is expanded into the two-stage ROPF
model, such that:

. 1 hyb hyb
mn {EZS ‘T{siz (f{s}'v' W{s}): ’h’{g (f{s}' v, W{s}) =0,

hyb
9 (Gispv.wis) < 0} (17)
Vs€Es
where (+)(5; denotes the variables linked with the possible
scenario S . T{Z}y b h ?gb,g,{s} respectively represent the

optimization objective, equality constraints, and inequality
constraints of the hybrid power system in the possible
scenario s . §; refers to the uncertain variables in the
possible scenario s, i.e., the RES maximum available power
5;:!. sV refers to the “here-and-now” variables determined in
the first stage before &, is revealed, including DC network
connection status @;; and generator power outputs pf, qf .
The remaning variables are “wait-to-see” variables
determined in the second stage after §(5 is revealed. They are
uniformly denoted as w(;. The robust v can be obtained if
we solve (17) by adding constraints involving the collection
of all possible scenarios s, but it is computationally massive.

ESM provides an alternative approach to solve (17) by
considering the collection of all extreme scenarios e instead
of all possible scenarios s. In this case, (17) is reduced to:

. 1 hyb hyb
min {EZET{e}y Gy v Wep): Ay (e v Wiey) = 0,

g0 (§rep v, wiey) < 0} (18)
VeeecCs

where ()¢} denotes the variables linked with the extreme
scenario e. We can know that solving (18) requires much less
computaitnal effort compared to solving (17) due to |e| K
|s|. The effectivness of ESM holds rquiring that A" is
linear and g™? is linear or SOC relaxed. The proof can be
found in [13, Sec. 4]. According to (1)-(10), our proposed
AC/DC OPF model meets this requirement.

B. Extension of ROPF for Distributed Problem Solving

With ESM, the original SP #n in (13) is modified by
considering all extreme scenarios €, such that:

OSP & min { Ze T (f#n{e}' v#n' i)T/#n{e}' b#n{e}):

h#n{e} (b#n{e}' b#[n{]e}) 0, h#n{e}(f#n{e}' Vi W#n{e}) =0

g#n{e} (f#n{e}'v%'v wg‘fl{e}) < 0}' (19)
V#n € {#1,---,#N}, Ve € @

where §(ey, v, Wy are extended to §47ie) Vin Winge =
[Winiep Dingey] » respectively representing the uncertain
variables, first-stage varaibles, and second-stage variables
related to the AC system #n, in the extreme scenario e.
Particularly, Wiy, refers to the second-stage vairables
Win(e) €xclude the boundary variables byp(.y. (14) and (16)
can also be modified by this kind of variable extension.
However, from the perspective of distributed problem
solving, GBD solving (19) needs extra communication. We
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Fig. 4. Test system of the AC/MTDC hybrid power system.

TABLE L COMPARISON BETWEEN DOPF ROPF AND E-ROPF

MODELS IN HANDLING POSSIBLE SCENARIOS

Optimization Optimization objective in 100 possible scenarios
model Feasible ratio | Maximum | Minimum | Average
DOPF 73% - - -
ROPF 100% 8.3114 8.3109 8.3110

E-ROPF 100% 8.3117 8.3117 8.3117

< Models are solved via centralized optimization. The feasible ratio means
the proportion of possible scenarios that have feasible solutions.

TABLE II. COMPARISON OF E-ROPF WITH AND WITHOUT DC

NETWORK-COGNIZANT CONSTRAINT

Network-cognlzant DC VSC connection Nodal Vol.tage
constraint topology constraint
Without Fixed (1,2). 23), 3.4) Violate
. : (1,2),(2,3), 3.,4), .
With Flexible @.1). (13), 2.4) Satisty

< Models are solved via centralized optimization.

TABLE III. COMPARISON OF GBD AND MGBD IN SOLVING E-ROPF

Approaches | Iterations |UB — LB|/|LB| X 100% o X 100%
GBD 23 0.0240% 0.0172%
MGBD 15 1.4584% 0.0181%

< o refers to the relative error between the solved result by distributed
optimization and the benchmark, which is obtained by solving the E-
ROPF via centralized optimization.

denote ey, as the local extreme scenarios induced by the
uncertain variables &g, related to AC system #n. In this way,
we have that |€| = [y, |€4,|, Where @ can be interpreted as
the arrangement of @y,,. It implies that in addition to the local
@un, AC system #n must be informed the remaining extreme
scenarios @y, #r # #n. Considering this issue, a consensus
condition is designed, i.e., the boundary variables of each AC
system need to remain consistent across the collection of all
extreme scenarios €. Consequently, (19) is transformed:
OSP = min {@Ze Fite (Ebngey Vin Din, Wiey):
A (B DY) = 0, A5 ) (85500, VS, WS ) = 0,
Finie)(Eingey Vi, Wingey) < 0}, (20)
V#n € {#1,---,#N}, Ve € @y,
where the boundary variables by, as the second-stage
variables, are coverted into by,, as the first-stage variables.
by ey in (14) and (15) can also be converted in the similary
way. Such distributed problem solving is equivalent to adding
an additional compulsory constraint that bypgy =
byniery -+ = Dyner+y, €,e%,e"" €@ in (18), forming an
extended ROPF (E-ROPF) model.

Comparing (19) and (20), we can know that the E-ROPF
model enables SP #n to consider the collection of local
extreme scenarios @y, instead of the collection of all extreme
scenarios @ , avoiding extra communication costs. The

effectiveness of the E-ROPF model is presented in detail in
[13, Sec. 4].

V. CASE STUDY

We use the test system shown in Fig. 4. The base power and
voltage are respectively 100MW and 345kV. The system-
wide power and voltage are in the calculation of per-unit value.
We set the tighter voltage bounds as u;: = 0.955p. u., u;: =
1.045p.u., Vi € nA°Un"S¢UnMTP¢ | for preventing the
voltage violations indused by errors of power flow model.
Other key bounds are set as arcos(¢°®?) = arcos(@™%): =
0.9,5;:=1p.u., (i,j) €14, i = 1p.u.,c € m5¢, §: = 1.
For GBD, MGBD, A-MGBD, the residual threshold is set to 1
X107, The case study is coded on the MATLAB platform.
YALMIP toolbox is utilized to provide a mathematic
modeling environment. CPLEX is selected as the solver.

A. Validation of ESM-Based ROPF Model

We assume that the uncertain variables pf, and pX, are
respectively within the interval that [0.3,0.5]p.u. and
[0.2,0.5]p.u.. 100 possible scenarios related to p&,, p&, are
randomly generated. The conventional DOPF model
considers one deterministic scenario that is (Pi, Di) =
(0.5,0.5)p. u.. In contrast, the ROPF model considers four
extreme scenarios that are (p5, pf,) € {(0.5,0.5), (0.5,0.2),
(0.3,0.5),(0.3,0.2)}p. u. E-ROPF model considers two sets
of local extreme scenaiors that are pg, € {0.3,0.5}p.u.,
P, € {0.2,0.5}p. u.. As presented in Table I, the decision-
making based on DOPF model is not suitable for all generated
possible scenarios, and it will result in infeasible solutions in
27% scenarios. In contrast, the decision-making based on
both ROPF and E-ROPF models are feasible for all generated
possible scenarios by only considering extreme scenarios,
and the computation cost is cheap. Taking the determined
@;;,V(i,j) € IM™C and pf,§f Vi € mA as constants into
the generated possible scenarios to validate the performances
of ROPF and E-ROPF models on hedging against
uncertainties (the E-ROPF model additionally take the
determined boundary variables by, as constants into the
generated possible scenarios). We find that the E-ROPF
model provides the slightly more conservative results than the
ROPF model. This is because the E-ROPF model has one
additional compulsory constraint. However, the E-ROPF
model guarantees feasibility for the arbitrary possible
scenarios and benefits reducing the communication burden
when using GBD.

B. Influence of the DC Network-Cognizant Constraint

We investigate the influence of the DC network-cognizant
constraint formulated in (6) on the E-ROPF model. As
presented in Table II, if the DC network cognizance is not
considered, it means that the DC network topology is fixed.
In this case, the E-ROPF model has no feasible solution since
the nodal voltage constraint is violated. When considering
network-cognizant constraint, the E-ROPF model enables
flexibly reconfiguring DC topology to satisfy the nodal
voltage constraint, and feasible solutions can be found.

C. Discussion of Multi-Cut Generation and Asynchronous
Updating in GBD

We first compare GBD and MGBD in solving the E-ROPF
model to investigate the effect of multi-cut generation in
GBD. As shown in Table III, MGBD converges faster than
GBD, thanks to MGBD returning more Benders cuts in each
iteration. Regarding the optimality, for the given case study,
it can be considered that GBD and MGBD exhibit almost eq
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Fig. 6. The calculated system-wide voltage profiles (based on the
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model with dertermined p¢, 4%, p5,, 45, Pk, 45,, 8 which are obtained by
solving the proposed mixed-integer convex AC/DC OPF model.

-uivalent performance as their ¢ are pretty close.

We further discuss the asynchronous updating in GBD.
Particularly, we set three specific communication delay
situations. Situationl: In every iteration, all SPs must have
already been solved and returned cuts to MP, and then the
iteration is activated. This situation can be regarded as
synchronous updating. Situation2: In every iteration, at least
two SPs have already been solved, and then the iteration is
activated. The time cost for solving SPs associated with the
AC grid, RES#1, RES#2 are assumed to be 1:1:2. Situation3:
In every iteration, at least two SPs have been solved, and then
the iteration is activated. The time cost for solving SPs
associated with the AC grid, RES#1, RES#2 are assumed to
be 1:2:4. Situation2 and Situation3 both belong to the
asynchronous updating. As presented in Fig. 5, asynchronous
updating still converges successfully, and compared with
synchronous updating, it needs more iterations but saves time
in every iteration. Hence, in terms of the whole iteration
process, the total time consumed by A-MGBD might be less.
However, we can observe that the converged result in
Situation3 exhibits an unignorable deviation. It implies that
as communication delays increase, the optimality of A-
MGBD is substantially affected.

D. Test of System-Wide Power Flow Accuracy

Our work employs a series of approximations to handle the
nonlinear power flow constraints, and it is necessary to test
the system-wide power flow accuracy after approximations.
The initial power flow points in (1) are obtained with the base
power flow status and then changed to the updated power
flow status (power injection at AC nodes #4 and #6 are
changed from zeros to the optimized value. Generation power
outputs are changed from the base values to the optimized
value). As shown in Fig. 6, after three updates of initial power
flow points, the proposed mixed-integer convex AC/DC OPF
model exhibits satisfied power flow accuracy. However, it is
a trade-off between power flow accuracy and computation
burden induced by updates of initial power flow points.

VI. CONCLUSION

In this paper, a mixed-integer convex AC/DC OPF model
considering DC network cognizance is constructed for the
AC/MTDC hybrid power system. The system-wide flexible
operation is achieved through optimal DC topology
reconfiguration. The improved GBD and extended ESM are
combined to achieve distributed robust decision-making when
confronted with uncertain scenarios related to RESs. However,
this current work does not consider the impacts of VSC local
control on the hybrid power system. In future work, we will
further expand the OPF model, embedding the VSC droop
control constraint.
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