
Improvements in Imitation Learning for Overcooked

Duuk Niemantsverdriet1

Supervisor(s): Frans Oliehoek1, Robert Loftin1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Duuk Niemantsverdriet
Final project course: CSE3000 Research Project
Thesis committee: Frans Oliehoek, Robert Loftin, Klaus Hildebrand

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Arguably the main goal of artificial intelligence is
to create agents that can collaborate with humans
to achieve a shared goal. It has been shown that
agents that assume their partner to be optimal can
converge to protocols that humans do not under-
stand. Taking human suboptimality into consid-
eration is imperative to perform well in a coordi-
nation task. One way to achieve this is imitation
learning, where you train an agent on recorded data
from a human playing optimally. I created sev-
eral agents using different implementations of be-
havioral cloning, by reducing the dataset to state-
action pairs and training a neural network on this.
To evaluate their performance, I used an environ-
ment that poses a coordination challenge based on
the popular game Overcooked. Neither expanding
nor reducing the feature space that the agents are
trained on yielded any significant improvement in
the performance of the agents. In fact, expanding
the feature space to include some historical data
made the agent less generalizable and especially
failed to perform when paired with agents with un-
familiar strategies. These limitations were mostly
posed by the available dataset, which was not big
enough to support more features and of too low
quality of gameplay to create agents that perform
exceptionally well.

1 Introduction
Over the last few years, there have been considerable ad-
vances in creating artificial intelligence that can play video
games. These AI agents are often trained using self-play,
where they are matched up against different versions of them-
selves. This method has yielded great results in various com-
petitive zero-sum games such as Go [1; 2] and Quake [3].
Despite not encountering any accurate human behavior dur-
ing their training, these agents still perform well when play-
ing against a human. In most cases, they even perform better
against humans. This tendency stems from the AI expecting
its opponent to play optimally like itself, so when the human
makes an unexpected move, that is usually in favor of the AI
agent.

However, one of the main goals of artificial intelligence is
to train agents that help people achieve what they want, and
augment their capabilities [4]. Collaborative video games are
excellent, low-stakes environments that we can use to test out
different approaches to human-AI collaboration. They can
provide us with interesting challenges that a team of a human
and an AI have to overcome. It seems tempting to rely on
self-play again. This has been successfully done on a few oc-
casions, such as in Capture the Flag [3], but the high scores
could also have resulted from the AI’s sheer skill instead of
collaboration. Pairing up artificial intelligence with a copy
of itself fails to take into account human behavior, and incor-
porating human data or models in the training process yields
significantly better results on collaborative tasks [5]. In that

particular paper, they used a few different approaches to ex-
ploiting human data to train the AI agent, such as proximal
policy optimization, coupled planning, and imitation learn-
ing, to train agents that could collaborate with humans in an
environment that was based on the popular game Overcooked
[6].

In this paper, I used imitation learning to train collaborative
AI agents for Overcooked, to replicate and improve on the
results of paper [5]. To this end, I formulated the following
research question:

How well can a collaborative AI agent that was
trained by directly imitating human-generated data
perform in Overcooked?

To guide me in the process of answering these questions, I
compiled the following sub-questions:

• What properties should a good collaborative agent have?

• Which approach to imitation learning yields the best
agent?

• How well does an agent that was trained using this ap-
proach perform?

To answer this question, I used the same simple environ-
ment based on Overcooked (Figure 1), which is designed
specifically as a challenge for humans to coordinate in. I
use this environment to compare experimental collaborative
agents trained with different variants of behavioral cloning
[7] against agents with different strategies. For the latter, I
used another behavioral cloning agent, an agent trained using
self-play, and a scripted agent.

I find that different variations of behavioral cloning, where
the agents are trained on different features, do not signifi-
cantly improve their results in the given challenge. Especially
agents that are also trained on some features that are based
on their previous actions perform considerably worse against
agents whose strategy they are not familiar with. These
agents also likely suffered from the curse of dimensionality,
since the dataset that was available was quite small. Experi-
ments that used smaller feature vectors did not markedly im-
prove performance either. This is due to limitations imposed
by the quality of the dataset.

2 Background
The Overcooked environment that I worked with [8] was
originally made by the authors of [5]. It is a simplified version
of the original game Overcooked [6], a game where you must
work together to run a kitchen and serve as many dishes as
possible within a time limit. It was specifically created to be
a coordination challenge for humans. A simplified version
of the game was created to shrink the state space, such that
training an agent is achievable within a reasonable amount of
time. This version of the game has discrete movement and
time steps, as well as fewer distinct recipes. It is shown in
Figure 1.

Imitation learning is an approach to machine learning
where you train an AI agent to replicate the behavior of a
human [9]. There are a few different approaches to imitation
learning:



Figure 1: The simplified Overcooked environment. The goal is to
place three onions into a pot (dark gray), wait for the soup to cook,
and serve it at a soup serving location (light gray) to get points.
Within a set amount of time, you need to get as many points as pos-
sible. Picture taken from [5].

• Behavioral Cloning (BC) exploits supervised machine
learning algorithms to directly teach an AI agent human
behavior [7]. It requires a dataset of expert demonstra-
tions, which is then reduced to state-action pairs and
used as training data for a supervised machine learning
algorithm, commonly a neural network.

• Direct Policy Learning is an iterative version of behav-
ioral cloning [10]. First, a policy is created using regu-
lar behavioral cloning. Then, an interactive expert gives
feedback on the performance and the decisions made by
the agent. Then the new data is incorporated into the
agent, and this is repeated a few times.

• Inverse Reinforcement Learning (IRL) is an approach
to imitation learning that uses the power of reinforce-
ment learning. There are many tasks for which defining
a reward function manually is too complex, such as au-
tonomous driving. When doing IRL, only expert demon-
strations for different situations are given, and the goal
is to learn what the reward function is [11]. This func-
tion can then be used in a regular reinforcement learning
algorithm.

• Cooperative Inverse Reinforcement Learning
(CIRL) is a similar approach to IRL, but specifically
tailored to collaborative settings. Instead of working
under the assumption that the human would be optimal
by itself and attempting to learn their reward function
for itself, CIRL allows for easier value alignment due to
behaviors of active teaching and learning [12].

The largest benefit of using imitation learning for coordina-
tion is that by using human examples, the AI agent is aware
of how a human would play and will react to its partner’s
actions the same way a human would. On the other hand,
training agents on human data, especially by means of behav-
ioral cloning, could limit their performance at the skill level
of the expert demonstrations, as the AI cannot ever discover
strategies that may be better than what the expert has shown
them.

3 Imitation Learning in Overcooked
This study is an extension of the one that originally worked
with this Overcooked environment to develop collaborative
AI, [5]. For that study, they used imitation learning to train a
sort of ”proxy human” that is supposed to behave similarly to
a real human player. Next to each of their experiments, they

ran a test where two behavioral cloning agents completed the
same challenge as a control condition to compare the other re-
sults with. However, they did not attempt to exploit imitation
learning for the development of a better AI agent.

The purpose of my research is to see if I can match or even
improve on the results of [5] using an imitation learning ap-
proach. First, I reproduced the results that the original paper
used as control conditions. This is important to create a base-
line of performance. I used a dataset of human players play-
ing the game that they collected, which has been anonymized.
This data has been reduced to state-action pairs. A behavioral
cloning agent is implemented using a neural network, with
the state as input and the next action to take as output. How-
ever, the state needs to be transformed into a feature vector
to be able to input it into a neural network. A featurization
function is defined for this purpose. This function reduces
each state to features that keep track of the player locations,
the object that they are holding, how many onions are in the
pots, etc.

To iterate on the application of behavioral cloning, I
changed the featurization function. Since humans use their
memory when making decisions on what to do next, I attempt
to reflect that in my BC algorithm. There are two options.
The first is to take into account one or more complete past
states. Since every extra state that is included must double
the size of the neural network, this can get overly computa-
tionally heavy. It is also subject to the curse of dimension-
ality, which tells us that in order to obtain a reliable result,
the amount of data needed often grows exponentially with its
dimensionality [13]. The other option is to select only a few
features from past states, such as the past actions of the other
player, and add those to our input vector. If present decisions
always rely on the same kind of historical data, this can yield
great results, since we can encode a lot of history if we do not
need to incorporate every detail.

Additionally, since the provided dataset is somewhat lim-
ited, it is possible that the standard behavioral cloning agent
already suffers from the curse of dimensionality. To test this,
I also tried to alter the featurization function in such a way
that we only take into account the features that are useful for
the BC models to decide which action to take next. Although
it seems counterproductive for a collaborative application, I
tried to limit the number of features that gave information
about the other player. I hypothesize that by being more se-
lective about which features to keep and which to leave out,
I can get the most mileage out of the limited data that I was
provided.

I will evaluate each agent that I develop against an array
of different agents, to somewhat emulate the fact that differ-
ent human players can have radically different playstyles. In
addition to the standard human proxy agent, I will test my
agents against an agent that was trained using self-play and a
manually programmed scripted agent.

4 Experimental Setup and Results
4.1 Environment and Data
The environment comes with 5 predefined layouts, which test
different challenges that arise in cooperative settings. The



Figure 2: The 5 different experiment layouts in the Overcooked en-
vironment. From left to right: Cramped Room has mainly low-level
challenges in movement planning, as it is easy to run into each other
in this confined space. Asymmetric Advantages gives both players
the opportunity to work on their own, but an optimal strategy would
see the player on the right supply the onions, as they are closer to
the pot on their side, and the player on the left should deliver the
dishes. Coordination Ring presents more complex movement plan-
ning challenges since players cannot walk past each other easily.
Forced Coordination is all about devising a high-level coordination
strategy since neither player can complete an order by themself. Fi-
nally, Counter Circuit presents a non-obvious way to work together
more efficiently, which involves passing onions over the counter in-
stead of walking around.

different maps are displayed in Figure 2. Each approach that
I tried was tested on all 5 of these maps, to test their perfor-
mance under different challenges, ranging from low-level in-
teractions and movement challenges to more high-level strat-
egy challenges.

The authors of [5] put together a dataset of human play-
ers playing the game, which I used as my source of hu-
man data. It was crowdsourced through Amazon Mechani-
cal Turk. They filtered out very suboptimal trajectories that
got fewer points than a single player could achieve and ones
that did not fit their minimum length of 1200 timesteps. Each
trajectory with two agents is split into two single-agent trajec-
tories, which contain information relative to each respective
agent. In training, 85% of the data is used as training data and
15% for validation.

4.2 Agents
I trained my agents using behavioral cloning on the afore-
mentioned dataset. Their performance was evaluated against
three different types of other agents: the human proxy model,
an agent trained using self-play, and a scripted agent.1 The
human proxy model is also a behavior cloning agent, trained
to the same specifications that [5] used for their human proxy
model. To train two distinct agents on this dataset, I split the
data into two parts. One of these parts was used to train the
human proxy models, while I used the other part for my ex-
perimental agents. I did this to prevent any advantage that the
agents would have by being trained on the exact same exam-
ples, which simulates a situation where the human’s strategy
is unknown more accurately.

A behavior cloning agent has a neural network at its core,
with two hidden layers of size 64. The learning rate was
1e-3 and the number of epochs differed per layout: 100 for
Cramped Room, 120 for Asymmetric Advantages and Co-
ordination Ring, 90 for Forced Coordination and 110 for
Counter Circuit. These are the same parameters used in [5],
and they account for the differing size of datasets across the

1I did not make this scripted agent myself. It was developed by
Anton Mihai Cosmin for his research project, which we did along-
side each other.

maps. Fewer epochs were used if there was less data available
to mitigate the effects of overfitting. The behavior cloning
agents are trained on a manually created 96-dimensional fea-
turization of each state, to incentivize the generalization of
policies in spite of the limited available data. The standard
featurization contains the relative positions from the player to
the other player, the closest onion, dish, soup, serving loca-
tion, and pot, the states of each pot in the layout, the absolute
position of the player and which direction they’re facing, and
all of this information for the other player as well. Some-
times agents can get stuck in their coordination of low-level
actions, such as continually running into each other. To cor-
rect this tendency, a hardcoded behavior was added where the
model will choose a random action if it is stuck in the same
position for three consecutive timesteps.

To train agents using self-play, I used Proximal Policy Op-
timization (PPO). Unlike behavioral cloning, this model was
trained with a lossless state encoding consisting of 20 masks
that had the same size as the grid of the map. Each mask con-
tains information about a specific aspect of the state, includ-
ing the positions and orientations of players and the locations
of various types of objects. In order to speed up training, the
reward function was shaped to give agents some reward when
placing an onion into the pot, when picking up a dish while
soup was cooking, and when picking up soup with a dish. The
amount of reward shaping is reduced to 0 over the course of
training, with a linear schedule. The policy is parameterized
with a convolutional neural network with three convolutional
layers of size 5×5, 3×3, and 3×3 respectively with 25 filters
each, followed by 3 fully connected layers of hidden size 32.
The hyperparameters used are reported in Table 1. These are
the default parameters in the GitHub repository that I worked
with and were optimized by an anonymous contributor.

The scripted agent uses a greedy approach to the challenge.
Its default behavior is to deliver onions to the best possible
place, which is either the pot that already contains the most
onions or a counter to pass it to the other player if the soup
is too far or unreachable. When a soup has finished cooking,
the agent will try to pick up the soup and deliver it, unless the
other player is clearly closer. If there is no plate in reach of a
finished soup, this agent will try to bring a plate to a counter
that is reachable from the pot.

4.3 Experiments
The first step was to establish a baseline for the performance
of different agents. Two groups of five behavioral cloning
agents were trained on each map. I picked one agent out of
each group. One of the groups would produce the human
proxy model for all of the experiments, and the other the BC
agent that I test against all of the different agents as a baseline
test. To simulate the tendency of imitation learning agents
to produce an agent that is not quite as good as a real hu-
man player, I picked the agents such that the human proxy
model is slightly better than the BC agent I compare to. Then
I evaluated the performance of these agents. The results of
this can be found in Figure 3. We can see that this agent es-
pecially lacks performance on the Forced Coordination and
Counter Circuit layouts, both of which have mostly strategic
challenges.



PPO hyperparameters
Parameter Cr. Room Asym. Adv. Coord. Ring Forced Coord. Counter Circ.
Training iterations 550 650 650 650 650
Learning rate 1.63e-4 2.1e-4 1.6e-4 2.77e-4 2.29e-4
Clipping 0.132 0.229 0.069 0.258 0.146
Gamma 0.964 0.964 0.975 0.972 0.978
Maximum gradient norm 0.247 0.256 0.359 0.295 0.229
Entropy coefficient 0.197 0.185 0.156 0.31 0.299
Lambda 0.6 0.5 0.5 0.6 0.6
Reward shaping horizon 4.5e6 5e6 5e6 4e6 5e6
VF loss coefficient 0.00995 0.022 0.00933 0.016 0.00992

Table 1: Hyperparameters for self-play PPO across the 5 layouts.

Figure 3: The results of a basic BC agent with the same specification
as the human proxy agent. Shown is the mean reward with standard
error over 100 simulated games.

To try to improve my agents, I started making changes to
the featurization function. The standard function that was
used for this contains all data from both players in this cur-
rent state. I hypothesized that having fewer features to train
the neural network on could lead to better performance since
we have limited training data. I tried two different featur-
ization functions that don’t take all of the data of the other
player. BC1 only trains on data relative to itself (the complete
set of all distances to pots, onions, dishes, etc., and the sta-
tuses of the pots) and the relative distance to the other player.
BC2 has four additional features that represent what the other
player is holding so they can anticipate the other player’s ac-
tions better. This is likely to pay off most in situations where
strategy is important. The dimensions of the feature vectors
are 50 and 54 respectively. Figure 4 shows the results of these
experiments, grouped by the type of agent they were paired
with.

It is visible that these two alterations to the function did not
significantly improve the performance of these agents over
the one that uses the standard featurization. Looking at rel-
ative differences in the means, the scores of both agents are
rarely more than one or two standard errors off from the base-
line. However, BC2 seems to consistently have a slight edge
over BC1 across the board, which is especially visible in the
human proxy trials. From this, we can conclude that at least
some of the information of the other player is valuable knowl-
edge for a BC agent.

On the other side of the spectrum, I trained some agents
that have a larger featurization than the standard agent. I hy-
pothesized that if an agent has more input, and therefore more
variables, perhaps it can find patterns in data that it was not

Figure 4: The results that agents BC1 and BC2 were able to ob-
tain in the game when paired with a human proxy agent (top), a
self-play agent (middle), and a scripted agent (bottom). Means and
standard errors were computed from the rewards obtained in 100
simulated games. In orange are the results from the agent that trains
only on data relative to itself, and in blue those of the agent that
is also trained on what the other player is holding. In white is the
comparison with the standard BC agent. Neither agent shows strong
improvement, although BC2 is consistently slightly better than BC1.



getting before. Especially giving the agents some historical
data to work with may yield more accurate representations
of human players since humans tend to use their short-term
memory when deciding what action to take next. However,
it is possible that, by giving the neural network more fea-
tures on such limited data, we might run into the curse of
dimensionality, and the agent cannot distinguish which fea-
tures are actually important to look at. I trained three more
agents with different featurization functions. BC3 is trained
using the same set of features as BC1, with additionally the
actions taken by both players for the past 5 timesteps. BC4

also trains on these past actions, but also on all the features
of both players, much like the standard featurization function.
Finally, BC5 is trained on the standard featurization from both
the current and the previous state, including the previous ac-
tion that was taken by each player. The dimensionalities of
these vectors are 114, 156, and 204 respectively. To account
for these feature vectors being significantly larger than those
from the standard featurization function, I opted to increase
the number of epochs by 50%, 100%, and 150% respectively
on each map. Figure 5 shows the results of these trials.

BC3 and BC4 do significantly worse when paired with the
self-play and scripted agents. This can be explained by the
fact that this agent was basing choices on the previous actions
of the other player, which was always a human in the training
data. Therefore, when paired with an agent with an unfa-
miliar strategy, who might take different actions to achieve
something similar, this agent gets confused and makes in-
correct decisions about the next action to take. This result
suggests that the previous few actions add little useful infor-
mation for deciding which action to take next. BC5 did better
than the other two experimental agents, but it also did not
improve on previously attained results. This is likely caused
by the overwhelming number of features, which this some-
what small dataset cannot support. Additionally, it seems that
taking into account some historical data seems to harm the
performance more than it helps it, due to becoming less gen-
eralizable.

5 Responsible Research
5.1 Human Data
The human player data that I had access to for this study was
collected by the authors of [5]. No information was collected
about the participants, besides their assigned anonymized
identifier, which can be used to distinguish between two dif-
ferent playing styles if this is desired.

5.2 Reproducibility
All of the code that I used to produce my results is available
at https://github.com/DuukPN/overcooked ai. By using this
code and following the descriptions in this paper, the results
I got should be reproducible. Since the behavioral cloning
agents are not deterministic, I evaluated each pair of agents
100 times to account for fluctuations in the obtained rewards.

5.3 Ethical Considerations
My artificial intelligence agents have no way of displaying
undesired bias if they would be deployed. The most serious

Figure 5: The results that agents BC4 and BC5 were able to obtain
in the game when paired with a human proxy agent (top), a self-play
agent (middle), and a scripted agent (bottom). Means and standard
errors were computed from the rewards obtained in 100 simulated
games. In gray are the results of the agent that on top of that also
knows what actions were taken for the previous five timesteps. In
orange are the results of the agent that had all the features of the
standard agent plus the previous five actions of each player, and in
blue are those of the agent that had a complete standard featuriza-
tion of both the current and the previous state. These results are
compared to the baseline test in white. BC3 did much worse in ev-
ery test and has likely suffered from seeking patterns in the wrong
features. We see the same pattern in the performance of BC4 con-
firming that basing decisions on past actions of both players only
makes them less versatile. BC5 was nearly as good as the baseline,
but likely suffered from the curse of dimensionality to some extent.

https://github.com/DuukPN/overcooked_ai


effect that the discussed agents can have is that people with
certain playstyles may obtain worse results in the game for
which this agent was produced. The technologies discussed
in this study are merely designed to learn from human behav-
ior by trying to imitate it, so negative effects can only arise
from unrepresentative or maliciously cherrypicked datasets.

6 Related Work
The paper on which this study expands, [5], is a study that in-
vestigated the importance of incorporating human data into
training a collaborative AI agent. It compared the perfor-
mance of different AI techniques, such as population-based
training (PBT), proximal policy optimization (PPO), and cou-
pled planning (CP), to that of classic self-play agents. They
used behavioral cloning to create a human proxy model,
which was used to measure the quantitative performance of
the AI agents. There was also a separate behavioral cloning
model which they paired with the human proxy model to cre-
ate a baseline for how well a pairing of two humans would
perform. However, they did not attempt to exploit imitation
learning by itself as a technique to create a collaborative agent
that rivals the performance of other well-performing agents
that their study produced. There have been several other stud-
ies in this field that used the same environment, which inves-
tigated e.g. introducing diversity into training partners [14],
testing the robustness of collaborative agents [15], and gener-
ating environments to train in [16].

7 Discussion
7.1 Reflection
None of the achieved results were significantly better than the
basic behavioral cloning agent. It is clear that just changing
the featurization function can only do so much to improve
the performance of behavioral cloning. The lack of improve-
ment with smaller feature vectors was likely due to the limited
quality of the provided dataset. On the other hand, because
the set is so small, adding more features is more likely a curse
than a blessing. That can be most clearly seen in the subpar
performance of agent BC4. It also seems that including the
previous few actions for each player makes the agents too spe-
cialized in working together with specific playstyles. Other
approaches to collaborative artificial intelligence are consid-
erably more effective [5].

7.2 Limitations
This study had some obvious limitations, the most prominent
of them being time. The provided codebase was very difficult
to work with, so it took several weeks before I could even
train my first agent, and another few before I managed to eval-
uate it. It was only then that I could start altering the code to
work with my experimental agents. I only obtained quantita-
tive data, but to draw a more complete picture it would have
been worth it to seek out some qualitative results obtained by
manually playing with the agents.

However, even without qualitative analyses, it seems un-
likely that we can improve the agents on the dataset that I was
provided with. If the resources were available, I would have

collected my own dataset of expert demonstrations. The in-
creased volume of data would also allow me to choose stricter
criteria to filter the already existing dataset, leading to higher-
quality observations on which the BC agents can base their
behavior.

Additionally, I wanted to investigate some other ap-
proaches to imitation learning that I discussed in Chapter
2. Especially cooperative inverse reinforcement learning
(CIRL) seems like a promising approach. It does not assume
that the human is optimal and follows a specific reward func-
tion, but instead tries to help the human in optimizing their
(unknown) reward function. That, in addition to the active
teaching and learning behaviors that this method can some-
times show, suits the challenges that Overcooked brings to
the table.

8 Conclusions and Future Work
Trying to improve collaborative AI agents using behavioral
cloning alone did not yield any significantly improved results.
Shrinking the dimension of the feature vector by leaving out
as many features of the other player as possible did not sig-
nificantly change the performance of the agent. This is due to
the somewhat low quality of human player data in the dataset
that I received to work with. It shows that the quality of the
expert demonstrations is the main limiting factor for behav-
ioral cloning. On the other hand, encoding more information
about the state of the field by including some historical data
seemed to only hurt the performance of the agent, especially
against agents with unfamiliar strategies. This is most likely
caused by basing the next action to take on patterns that ap-
pear in the actions of the human players in the dataset, which
has a tendency to confuse the agents when they are paired
with a player that has a different strategy.

If this study was less limited in time, I would have tried to
collect more, better data to train the agents on. The dataset
was the single most important limiting factor for the perfor-
mance of behavioral cloning agents. On better data, the BC
agents would have had more of a chance to be competitive
with other approaches to collaborative AI.

While I have shown that behavioral cloning has little po-
tential to create good collaborative agents, some future work
is required that investigates the use of other forms of imitation
learning. One technique that especially stands out as having
a lot of potential is cooperative inverse reinforcement learn-
ing. This technique does not assume the human is optimal
but instead tries to align its values with its partner by trying
to optimize their value function.

Acknowledgements
I would like to thank Robert Loftin and Frans Oliehoek for the
guidance and feedback during the project, and Anton Mihai
Cosmin for providing me with his scripted AI agent.

References
[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,



M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hass-
abis, “Mastering the game of go with deep neural net-
works and tree search,” 2016.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis,
“Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” 2017.

[3] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Mar-
ris, G. Lever, A. G. Castañeda, C. Beattie, N. C. Ra-
binowitz, A. S. Morcos, A. Ruderman, N. Sonnerat,
T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Hassabis,
K. Kavukcuoglu, and T. Graepel, “Human-level perfor-
mance in 3d multiplayer games with population-based
reinforcement learning,” 2019.

[4] S. Carter and M. Nielsen, “Using artificial intelligence
to augment human intelligence,” Distill, vol. 2, Dec.
2017.

[5] M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Se-
shia, P. Abbeel, and A. Dragan, “On the utility of learn-
ing about humans for human-ai coordination,” NeurIPS,
2019.

[6] Ghost Town Games, “Overcooked.” https://store.
steampowered.com/app/448510/Overcooked/, 2018.

[7] C. Sammut, Behavioral Cloning, pp. 93–97. Boston,
MA: Springer US, 2010.

[8] M. Carroll and N. Miller, “Overcooked-ai.” https://
github.com/HumanCompatibleAI/overcooked ai, 2019.

[9] Y. Yue and H. M. Le, “Icml2018: Imitation
learning tutorial.” https://sites.google.com/view/
icml2018-imitation-learning/, 2018.

[10] S. Ross, G. Gordon, and D. Bagnell, “A reduction of
imitation learning and structured prediction to no-regret
online learning,” in Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and
Statistics, vol. 15 of Proceedings of Machine Learning
Research, pp. 627–635, PMLR, 2011.

[11] S. Russell, “Learning agents for uncertain environments
(extended abstract),” COLT, 1998.

[12] D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Rus-
sell, “Cooperative inverse reinforcement learning,”
NeurIPS, 2016.

[13] R. E. Bellman, Dynamic programming. Princeton, NJ:
Princeton University Press, Oct. 1957.

[14] R. Charakorn, P. Manoonpong, and N. Dilokthanakul,
“Investigating partner diversification methods in co-
operative multi-agent deep reinforcement learning,”
ICONIP, 2020.

[15] P. Knott, M. Carroll, S. Devlin, K. Ciosek, K. Hofmann,
A. D. Dragan, and R. Shah, “Evaluating the robustness
of collaborative agents,” 2021.

[16] M. C. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and
S. Nikolaidis, “On the importance of environments in
human-robot coordination,” 2021.

https://store.steampowered.com/app/448510/Overcooked/
https://store.steampowered.com/app/448510/Overcooked/
https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/HumanCompatibleAI/overcooked_ai
https://sites.google.com/view/icml2018-imitation-learning/
https://sites.google.com/view/icml2018-imitation-learning/

	Introduction
	Background
	Imitation Learning in Overcooked
	Experimental Setup and Results
	Environment and Data
	Agents
	Experiments

	Responsible Research
	Human Data
	Reproducibility
	Ethical Considerations

	Related Work
	Discussion
	Reflection
	Limitations

	Conclusions and Future Work

