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Small, intermittently open or closed estuaries are characteristic of the coasts of South Africa, Australia,
California, Mexico and many other areas of the world. However, modelling attention has tended to focus
on big estuaries that drain large catchments and serve a wide diversity of interests e.g. agriculture, urban
settlement, recreation, commercial fishing. In this study, the development of a simple, parametric, sys-
tem dynamics model to simulate the opening and closure of the mouths of small, wave-dominated
estuaries is reported. In the model, the estuary is conceived as a basin with a specific water volume to
water level relationship, connected to the sea by a channel of fixed width, but variable sill height.
Changes in the form of the basin are not treated in the model, while the dynamics of the mouth channel
are central to the model. The magnitude and direction of the flow through the mouth determines
whether erosion or deposition of sediment occurs in the mouth channel, influencing the sill height. The
model is implemented on the Great Brak Estuary in South Africa and simulations reveal that the raised
low water levels in the estuary during spring tide relative to neap tide, are occasioned by the constriction
of the tidal flow through the shallow mouth. Freshwater inflows to the estuary are shown to be sig-
nificant in determining the behaviour of the inlet mouth, a factor often ignored in studies on tidal inlets.
Further it is the balance between freshwater inflows and wave events that determines the opening or

closure of the mouth of a particular estuary.
© 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Intermittently open or closed estuaries characterize the coasts
of South Africa, Australia, west Africa, California, Mexico and many
other areas of the world (Cooper, 2001; Taljaard et al., 2009; Roy
et al.,, 2001; Ranasinghe et al., 1999; Ranasinghe and Pattiaratchi,
2003; Goodman, 1996; Anthony et al., 2002; Jacobs et al., 2011;
McLaughlin et al, 2013; Mendoza et al., 2009). These wave-
dominated estuaries tend to be small in comparison with river-
or tidally-dominated systems (Dalrymple et al., 1992), and the inlet
mouths are highly dynamic. Modelling attention has focused on
larger estuaries, serving many powerful sectoral interests such as
navigation, agriculture, urban settlement, commercial fishing, rec-
reation and tourism. Existing 2-D and 3-D process-based models
represent the circulation and sedimentation in large estuaries
reliably (e.g. Lesser et al., 2004), but have difficulty in accurately
simulating the complex processes involved in the closure and
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opening of inlet mouths. Recent research has focussed on
improving the prediction of sedimentation near the inlet mouths
with success (Elias, 2006; Tung et al., 2009; Duonga et al., 2015;
Wijnberg et al., 2015). Indeed, an innovative approach using a
process-based model in combination with measured data to
generate a reliable and complete data set on the morphological
development of a tidal inlet was developed in Portugal (Fortunatoa
et al., 2014). Unfortunately, these applications require detailed data
on sedimentation, are computationally intensive, and were pri-
marily applied to large estuaries.

Two alternative approaches have recently been developed and
applied to small Californian estuaries. These include the hydrologic
and geomorphic approach of Rich and Keller (2013) in which the
outflow over the beach of a bar-built estuary is successfully simu-
lated. Here the emphasis lies on the influence of river inflow and
groundwater on the volume flows and the influence of changing
channel location and morphometry remains problematic. The data
requirements for this approach are considerably reduced from
those of process-based models. This is also an advantage of the
parametric approach of Behrens et al. (2013, 2015), applied and
calibrated on the Russian River. The approach used by Behrens et al.
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(2013) is similar to that adopted in this paper, as originally devel-
oped and applied to South African estuaries (Slinger, 1996). The
differences lie primarily in the manner in which the (maximal)
volumetric flow through the channel is determined, and the sedi-
mentation formulae that are applied.

Another parametric modelling approach focusing on sedimen-
tation in a channel has been followed by Eysink and Vermaas
(1983) and van Rijn (2013), who developed an empirically-based
prediction tool Sedpit often used in conjunction with a harbour
siltation model to determine dredging requirements for harbours.
Recently, this model was applied to simulate sedimentation at
[jmuiden in the Netherlands with success (van Leeuwen, 2015).
However, the application of such a model requires information on
wave-current interactions in the nearshore zone, data on longshore
sediment transport, and data on different sediment fractions for
accurate application. Moreover, both the computationally intensive
process-based models such as Delft3D (Lesser et al., 2004) and the
empirical model Sedpit, have difficulty with accommodating the
complexity of the dynamic processes in an inlet mouth, and
frequently neglect the effect of freshwater inflows.

In this study, we address these limiting conditions, by devel-
oping a simple, parametric, system dynamics model to simulate the
opening and closure of the mouths of small, wave-dominated es-
tuaries. In the model, the estuary is conceived as a basin with a
specific water volume to water level relationship, connected to the
sea by a channel of fixed width, but variable sill height. Changes in
the form of the basin are not treated in the model, while the dy-
namics of the mouth channel are central to the model. As in the
approaches of Eysink and Vermaas (1983), van Rijn (2013) and
Behrens et al. (2013, 2015), the magnitude and direction of the flow

Estuary basin

through the mouth determines whether erosion or deposition of
sediment occurs in the mouth channel. Erosion reduces the sill
height, while deposition increases the sill height. We then illustrate
the application of the model with a detailed case: the Great Brak
Estuary in South Africa, a small, intermittently closed system
typical of many estuaries along the South African coast. Data on
both the opening and closure of the estuary mouth and the asso-
ciated circulation in the estuary are available from a number of
measurement campaigns. Whereas an Escoffier analysis (cf.
Goodman, 1996) simply places the case study estuary into the un-
stable, or even the normally closed, category, we are able to
establish that the estuary suffers an increase in the frequency and
persistence of mouth closure owing to reductions in freshwater
inflows.

The model further sheds light on the primary determinant of the
higher low water levels during spring tide than during neap tide in
small, wave-dominated estuaries, and confirms that the balance
between freshwater inflows and wave events plays a significant
role in mouth opening or closure.

First, the formulation of the model is described with reference to
the relevant literature in section 2. Then, the choice for simulation
method and a description of the case study are provided in the first
part of section 3. Next, the application to the case is explained in the
rest of section 3. This is followed by a discussion and conclusion in
sections 4 and 5, respectively.

2. Model formulation

The estuary is conceived as a basin with a specific hypsometry,
connected to the sea by a channel of fixed width, but variable sill

sill at the mouth

Tidal variation

L

Net rainfall evaporation

River inflow

l —

—_—

Sea Mouth channel

Estuary basin

Fig. 1. The mouth is modelled as a rectangular channel connected to an estuary basin at the sill height. The dimensions of the mouth are depicted frontally above (adapted
from Slinger 1996), and in side view below. The effective depth of flow (h), the width of the mouth (b), the length of the mouth (I) and the characteristic length scale (L), are

indicated.
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height (Fig. 1). Changes in the form of the basin are not treated in
the model, while the dynamics of the mouth channel are central to
the model. The model therefore comprises two sectors. The first
deals with factors affecting the water volume in the estuary: water
volume sector. The second covers the dynamics of the sill height at
the mouth of the estuary: sediment sector. A full listing of the
model equations and parameter names can be found in Tables A1l
and A2 in the Appendix.

2.1. Water volume sector

The volume of water in the estuary (x1) is determined by four
rates: the freshwater inflow rate (x11), the net precipitation evap-
oration rate(x1), the seepage rate (x13), and the tidal flow through
the mouth (x14). The riverine inflow to the estuary increases the
water volume, while the net precipitation evaporation usually acts
to increase the water volume apart from during hot spells. The
seepage rate is included to either reflect the loss of water from the
estuary through the sand bar at the mouth, or the presence of
freshwater seeps in the middle and upper reaches of the estuary.
However, it is the tidal flux through the estuary mouth that is of
primary interest for the dynamics of a small estuary.

The direction of the tidal flux through the mouth depends on
whether the tidal water level in the sea exceeds the water level in
the estuary or vice versa. The effects of wave set-up in elevating the
water level in the sea are not taken into account. When the water
level within the estuary exceeds the tidal water level in the sea (and
the sill height), water flows from the estuary into the sea consti-
tuting the ebb tide. Similarly, when the tidal water level exceeds
both the water level within the estuary, and the sill height, sea
water flows into the estuary, forming the flood tide. The tidal flow
rates through the mouth are formulated as directly proportional to
the head difference (h;), that is the difference between the tidal
water level (twl) and the water level in the estuary (wl). However,
for a given head difference (h; = twil-wl), the flow through the
mouth will differ according to (i) the form of the estuary basin, (ii)
the effects of bottom friction, and (iii) the effect of the estuary
mouth.

(i) The form of the estuary basin

The effects of the estuary basin are taken into account in the
model by introducing a characteristic length parameter (L) over
which the hydraulic head is assumed to act (Fig. 1), and by including
a hypsometric curve that relates water levels to water volumes
(H;(wl)). L is determined as the distance from the mouth to the
point in the small, wave-dominated estuary basin where water
level variations are most representative of the estuary dynamics.
This allows the differentiation of different estuary shapes. For
instance if two estuaries with the same water level to water volume
relationship, the same hypsometric curve, have different charac-
teristic lengths, we know that the estuary with the greater char-
acteristic length has a longer and narrower form than the shorter,
broader estuary with the lower characteristic length.

(ii) The effects of bottom friction

Friction is important in all estuarine systems and dominant in
shallow estuaries (Green, 1837; Ippen and Harleman, 1966), but
bottom friction effects are significant in small, shallow estuaries
with narrow, constricted mouths and well developed flood tidal
deltas (Aubrey and Speer, 1985; Speer and Aubrey, 1985). Distortion

in tidal fluxes and velocity asymmetries result (Lincoln and
FitzGerald, 1988; Morris and Turner, 2010). The highest current
velocities through the mouth in wave-dominated estuaries occur
during the shorter, more intense flood component of the tidal cycle.
The current velocities during ebb tend to be lower, but persist for
longer over the longer ebb component of the tidal cycle. In South
African estuaries the ebb tide may persist twice as long as the flood
tide (i.e. lasting approximately 8 h, while the flood tide lasts only a
little over 4 h (cf. Slinger et al., 1994)). The non-linear differences
between the ebb and flood tidal velocities for a given head differ-
ence are incorporated in the model via a velocity asymmetry
function (V(twl,wl)). The shape of this function may be determined
from measurements of flood and ebb flow velocities within the
basin of a particular estuary, near the mouth (cf. Lincoln and
FitzGerald, 1988; Morris and Turner, 2010).

(iii) The effect of the estuary mouth

The effects of the form of the estuary basin and bottom friction
on the tidal flux through the mouth are not of such severity as to
prevent tidal exchange. In contrast, the mouth of an estuary may be
closed or so constricted that tidal exchange is curtailed. The influ-
ence of mouth configuration on tidal exchange is modelled by first
considering the exchange that would occur without this con-
straining influence — the target tidal flux (ttflux) — and then
determining the magnitude of the reduction owing to mouth
constriction.

ttflux = %HQ(WI)V(MI, wl) (1)

In a given time period the target tidal flux (1) may not be able to
enter or exit the estuary because of the constriction or closure of
the mouth. Indeed, Officer (1976) demonstrated that for steady one
layer flow (given energy) a shallowing or constriction in a channel
exercises a limiting effect on the flow volume with the maximum
flow condition proving to be the critical flow condition. Impor-
tantly, the shallowing (decrease in depth) and/or contraction
(decrease in width) of an estuary mouth was demonstrated to ex-
ercise internal hydraulic control on two-layer exchange flow
through the mouth (Stommel and Farmer, 1953; Farmer and Armi,
1986; Armi and Farmer, 1986). Such two-layer exchange flow and
associated two-layer flow was observed to occur in the Palmiet
Estuary in South Africa (Largier and Slinger, 1991), and the occur-
rence of features associated with such control (e.g. tidal intrusion
fronts) in other small estuaries is confirmed by Schumann et al.
(1999). This means that, in contrast to tidally dominated estu-
aries, a (maximal) critical flow volume can be associated with tidal
exchange at the mouth of small, wave-dominated estuaries as
explained hereafter, to include this constraining effect of the mouth
on tidal volume exchange, we first calculate the cross-sectional area
of the mouth at a particular time, and then determine the critical
flow volume.

The estuary mouth is conceptualized as a channel of fixed width,
but variable sill height connected to the estuary basin (Fig. 1a), so
the mouth cross-sectional area (a) through which tidal flow may
occur, is calculated as the product of the width (b) and the effective
depth of flow (h). The effective depth of flow (2) is given by the
difference between the greater of the tidal water level or the water
level in the estuary, and the height of the sill at the mouth (x3).
When the height of the sill exceeds the water levels of both the sea
and the estuary, the effective depth of flow is zero, the mouth is
closed (a = bh = 0) and the tidal flux is zero.

Science (2016), http://dx.doi.org/10.1016/j.ecss.2016.10.038

Please cite this article in press as: Slinger, J.H., Hydro-morphological modelling of small, wave-dominated estuaries, Estuarine, Coastal and Shelf




4 J.H. Slinger / Estuarine, Coastal and Shelf Science xxx (2016) 1—14

twl — x5 if twl>wl and twl > x,
h=wl—-x, ifwl>twlandwl> x, (2)
0 otherwise

For a fluid flowing through a channel constriction or shoal, the
critical flow velocity is the velocity at which the Froude number is
unity (Officer, 1976). However, in the region of an estuary mouth,
where single- or two-layer flow characteristically occurs, the ex-
change of fluids with different densities takes place. The critical
flow condition then occurs when the two-layer composite Froude
number, defined as G> = F? + F2, is unity; where F? = u;/¢/g/h; and
F; is the layer densimetric Froude number, u; is the layer fluid ve-
locity, g’ is reduced gravitational acceleration, and h; is layer depth
(Largier and Slinger, 1991). However, the net volume flow is
maximum when the critical condition for uni-directional flow ap-
plies either at the seaward or landward side of the mouth. This
occurs, for instance, on the landward side of the mouth if the mouth
channel is filled with seawater pushing into the estuary on the
flood tide, and it occurs on the seaward side of the mouth if the
mouth channel is filled with estuarine water draining from the
estuary on the ebb tide. This critical condition occurs when the
densimetric Froude number for the active layer is unity, that is u; =
Y/g/h; where layer i (seawater or estuarine water) is flowing
actively. It is this condition that we use in determining a maximal
volume flux (an upper limit) that can flow through the mouth.
Because g’ < g, the critical layer velocity for uni-directional flow
over depth h is less when density differences are present than when
they are absent. A density difference of 6—15 kg m> between the
seawater entering the estuary at the height of the flood tide and the
ambient estuary water may be assumed for a number of South
African estuaries (Slinger et al., 1994; Taljaard et al., 2009). Then,
using the effective depth of flow in the mouth (h), we can calculate
a critical flow velocity, which together with the mouth cross-
sectional area (a), allows us to establish dynamically an upper
limit for the maximum critical flow volume. The actual volume flux
through the mouth is likely to be less than the maximum critical
flow volume most of the time. Therefore, if the target tidal flux is
less than a critical flow volume uca = ¢/gh.a (with g used instead of
g to yield the upper limit), no reduction of the target tidal flux
occurs, and the mouth has no constraining effect on the tidal flow.
However, if the target tidal flux exceeds the critical flow volume,
the target tidal flux is then constrained by multiplying it by the
control factor (cy), which then has a value less than unity (3,4).

uca .
——— if uca < |ttflux
Cf _ |tt:ﬂux‘ f C ‘ ﬂ | (3)
1 otherwise
X14 = ttflux.cy (4)

In conclusion, the intra-tidal momentum effect, which is a term
describing the delay in the transition from ebb to flood tide and vice
versa (slack water) over the estuary as a whole, is not included
explicitly in the tidal flux formulation as this would require the
simulation of variations in water level along the length of the es-
tuary. Given that we are explicitly modelling small estuaries, the
omission of the momentum condition and the concomitant ability
to simulate changes in the state of the mouth in response to
different wave and freshwater inflow conditions over longer time
periods, following the careful specification of model parameters,
seems an acceptable trade-off. The water volume in the estuary is
given by differential equation (A.1), completing the formulation of

the water volume sector.

dx 4
d_tl _ Zx“ (A1)
i=1

2.2. Sediment sector

The sediment responsible for the constriction or closure of a bar-
built, wave-dominated estuary mouth derives primarily from the
marine environment (Morris and Turner, 2010). The mouth clogs
with marine sand rather than the finer terrigenous material found
in the upper and middle reaches. Accordingly, the erosion or ac-
cretion of the sandy sill at the mouth of the estuary, as well as
artificial breaching, are the only aspects of estuary morphody-
namics included in the sediment sector. The sill height (x;) is
determined by three rates: the erosion rate (x1), the accretion rate
(x22), and the breaching rate (x3). Whereas the erosion rate and the
accretion rate are calculated endogenously, the breaching rate is an
input (policy) parameter in the model.

The sediment accreting or eroding in the mouth inlet is trans-
ported by the tidal flux, either as bed load or in the water column.
There are many formulae for sediment transport, each more or less
accurate depending on the particular application (Nakato, 1990;
van Rijn, 2013). Because the mouth is assumed as a rectangular
channel experiencing net uni-directional, non-oscillatory flow
during each of the ebb and flow tides, the Ackers-White sediment
transport formula (Ackers and White, 1975) is adopted. An advan-
tage of this formula is that it deals with the total sediment load and
does not consider the bed and suspended load separately. Physical
considerations and dimensional analysis were used in determining
the form of the Ackers-White formula, but the coefficients (original
and updated) were determined using empirical data. The formula is
more commonly applied to rivers, but was found to be more ac-
curate than other transport formulae in early applications on other
South African estuaries (cf. CSIR, 1991). Its success in predicting
observed mouth opening and closure events with limited calibra-
tion (Slinger, 1996; this paper) mean that it has been retained in the
formulation of the sediment sector of the model.

The well documented procedure for calculating the Ackers-
White equation begins with the determination of the dimension-
less sediment parameter dgr = d[g(s — 1)/¥%]'/ where d is the grain
diameter, g is the gravitational acceleration, s is the specific gravity
of the sediment, v is the kinematic viscosity of water. Next a
number of empirical parameters are calculated, namely the tran-
sition exponent, n, the coefficient and exponent in the sediment
transport function (c and m respectively), and the initial motion
parameter, S;. For 1 < dg; < 60 the values of all of these parameters
depend on the value of the dimensionless sediment parameter.

Then, Ackers and White define the particle mobility (Sg) as a
measure of the capacity of the flow to transport the sediment.
When the particle mobility exceeds the initial motion parameter
(Sgr > Sj), the critical threshold, the transport of sediment by the
flow can occur. The particle mobility in turn depends upon the
shear stress (u+), and is further influenced by the mean flow (i) and
the depth of flow in the mouth. As the particle mobility increases
above the threshold value, the capacity of the flow to transport
sediment (S;) increases according to a power relation utilizing the
exponents n and m (Appendix A). Finally, the volumetric sediment
transport rate, the volume of sediment that can be transported per
unit volume of water) is given by S,,; = S¢(d/h)(@i/us)" where in our
case ux = {/gh|twl — wl|/l and the mean flow is U = |x14|/ae, where
a is the mouth cross-sectional area and « is a factor converting units
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from years to seconds. Note that the shear stress relevant to sedi-
mentation in the mouth is calculated over the length of the mouth
channel, whereas the head difference determining the flux through
the mouth is determined using the characteristic length of the
estuary.

For the outflowing ebb tide, a volumetric sediment transport
rate can be derived based on the characteristics of the ebb tidal flow
through the mouth inlet and the sediment grain size in the
entrance channel. However, the configuration of the channel,
parametrized as having a fixed width (b) and length (), and the
porosity of the sandy bed (ps) of the inlet have to be taken into
account before the erosion rate of the sand sill can be determined.
Erosion is assumed to occur uniformly across the bed of the channel
at the mouth and there is no limit to the availability of sand for
erosion. Therefore, the erosion rate of the sill is given by:

_ SvulXM/bl(l —Ds) if x14<0 (5)
- 0 otherwise

In contrast to the erosion occurring on the ebb tide, the flood
tidal flux is responsible for the import of sediment into the mouth
channel. Indeed, the presence of waves is known to increase the
concentration of sediment in suspension (Nadaoka et al., 1988; van
Rijn, 2007; Héquettea et al., 2008) and to cause elevated concen-
trations to be transported into the entrance channel where
constriction and shallowing cause a sharp reduction in wave ac-
tivity (Day, 1981). Enhanced deposition of sediment results, clog-
ging the mouth and forming the flood tidal delta immediately
landward of the constricted inlet (Morris and Turner, 2010). These
effects cannot be ignored. A standard application of the Ackers-
White sediment transport formula as applied to the ebb tidal
flow is therefore not appropriate. Instead, the effects of wave stir-
ring (w) in increasing the sediment transport capacity of the
inflowing tide must be accommodated (van Rijn, 2007). It is this
additional sediment that is deposited in the mouth channel clog-
ging it and causing it to close at times, while the remaining sedi-
ment is considered to be transported beyond the mouth and into
the body of the estuary. As we are not studying changes in the form
of the estuary basin apart from the mouth channel, this sediment is
not our focus. The applicability of the model is limited to systems
where this sediment volume is insufficient to significantly alter the
basin hypsometry.

Furthermore the cross-shore profile, including the beach slope,
can influence the local availability of sediment immediately
seaward of the mouth channel (Behrens et al., 2015). Much process-
based modelling activity is devoted to an accurate determination of
sediment transport under waves and currents, and varying cross-
shore configurations, longshore drift conditions, and beach steep-
ness. Here, however, the local, shoreface topographical effects are
simply included in a parameter (. This parameter is set equal to
unity unless there are factors such as wave sheltering or a steep
beach e.g. the Mgeni Estary in South Africa, causing the enhanced
suspension of sediment immediately off the estuary mouth. The
wave stirring parameter w, is an exogenously defined variable that
allows the specification of a wave climate function and a wave
height factor for the testing of the effects of high wave events. It
may be derived from measurements of seasonal variation of the
significant wave height in the nearshore zone.

The quantity of sediment transported by the combined effect of
the flood tidal currents and waves into the mouth of the estuary is
then determined by the Ackers-White transport formula with the
sediment mobility increased by multiplying by the wave stirring
and the local, shoreface topography factors (6) (cf. Behrens et al.,

2015). The quantity of sediment deposited in the channel is then
calculated as the difference between the quantity that would have
been transported under the action of the flood tidal current alone
(i.e the standard transport formula) and the quantity transported
under the enhanced sediment mobility associated with a combined
wave and current regime and local shoreface topography (i.e. the
modified transport formula) (7). Taking into account the rectan-
gular form of the channel (parametrized as having a fixed width (b)
and length (1)) and the porosity of the deposited sandy layer, we can
determine the accretion rate of the sill (8).

_ c(wBSegr/Si— )™ if wBSer>S;
Sw = 0 otherwise (6)
Smod = Sw(d/h)(W/ux)" (7)
_ (Simod — Swo)X14/bl(1 —ps)  if x14>0
Xpp = " 70 otherwise (8)

Erosion acts to decrease the sill height, while accretion increases
the sill height. The mouth closes at a particular instance of time
when the volume of sediment deposited in the mouth is sufficient
to cause the sill height to exceed either the water level in the es-
tuary or the tidal water level at the next instance in time. This can
occur because the tide in the sea is falling or because seepage from
the estuary and net precipitation-evaporation are just sufficient
under low freshwater inflow conditions to cause the estuary water
level to fall below the sill height. Then the sill height exceeds the
greater of the tidal water level or the water level in the estuary, the
effective depth of flow becomes zero, and the mouth is closed. The
marine influence on the estuary water body is curtailed until the
mouth is breached.

Artificial breaching of the mouth is included in the model as the
exogenously specified breaching rate (x,3). Natural breaching of the
mouth is initiated when fresh water inflows cause the water level in
the estuary to increase and overtopping and scouring of the mouth
by the outflowing volume of water occurs (i.e. via X1 not xa3).
However, in our model, flows can never be supercritical, so the
natural breaching cannot be represented fully. The rate at which
natural breaching occurs in the model must necessarily be slower
than in reality, and the erosion of the sill less effective. However,
even with these limitations, the sill height can erode to decrease
below the estuarine or tidal water level allowing the effective depth
of flow to become positive - the mouth is open to tidal exchange.
The sill height in the estuary is determined by differential equation
(A.2), completing the formulation of the sediment sector.

(A2)

3. Application to the Great Brak estuary, South Africa

The equations of the model were formulated using the system
dynamics modelling method (Forrester, 1961, 2007; Slinger, 1996).
The resulting parametric model is simple, using a hypsometric
curve to parametrize the water level to volume relationship of the
estuary basin, and comprising only two differential equations.

The model applied to the Great Brak Estuary is coded in Fortran
and simulated using a double precision variable step numerical
method with error bound set to 0,01%. Results have been
compared with routines from the IMSL Fortran Numerical Library
and found to agree within the error bound when applied to both
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the Great Brak and Kromme Estuaries in South Africa (Slinger,
1996). A later version of the model is coded in Vensim DSS
(www.vensim.org) and simulated with a time step of 12,5 min to
achieve the same level of numerical accuracy when applied to the
Slufter, a small estuary in the Netherlands (D'Hont, 2014; D'Hont
et al., 2014).

3.1. Case study site description

In South Africa, the 7 km Great Brak Estuary has long been a
focus of attention (Slinger et al., 1994, 2005, 2012) as there are
pressing management issues related to the inlet mouth. The
choking of the mouth by sand deposition and the (potential)
cessation of tidal exchange for prolonged periods form an ongoing
problem in the sustainable management of the Great Brak Estuary
(Fig. 2). After all, the character and functioning of the estuary and its
associated ecosystem are determined to a large extent by mouth
closure events. The Escoffier criteria for inlet stability indicate that

Road and Railway /|
Bridges ‘

Indian Ocean

INTERMITTENTLY
CLOSED MOUTH

-7 Town of Great Brak

the estuary is ‘unstable’ at best, or falls into the ‘normally closed’
category (Goodman, 1996). This means that any event (e.g. storm
with high waves) causing the inlet cross sectional area to decrease
is accompanied by a reduction in peak velocities which causes the
cross-sectional are to decrease further, leading to inlet closure. The
mouth is breached again when the river floods or it is breached
artificially.

The Great Brak Estuary has a small town on its banks and a
residential island located near the mouth. It is used intensively
during holiday seasons for recreational purposes by tourists and,
outside of these times, less intensively by local residents. The
location of a dam, some 3 km above the head of tidal influence of
the estuary has meant that the freshwater flows to the estuary are
constrained with concomitant effects on the mouth. These include
an increased incidence, and more sustained periods, of closure and
necessitated artificial, mechanical breaching of the closed mouth (i)
to alleviate the danger of flooding of low lying properties, (ii) to
combat water quality deterioration, and (iii) to sustain the

Wolwedans Dam 3 km
upstream

-

X

0 700 m

Fig. 2. The Great Brak Estuary, South Africa, is small (high tide area 0.6 km?, tidal prism approximately 0.3 x 106 m?) and its mouth is subject to intermittent closure. Artificial

breaching of the mouth is sometimes required (photo insert: CSIR).
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estuarine ecosystem. A protocol for artificial breaching of the
mouth is set out in the review of the management plan for the
estuary (CSIR, 2003).

3.2. Calibration under low flow and flood conditions

Many of the data required for calibration are readily obtainable,
such as tidal variations in the nearshore zone, significant wave
heights in the bay, and water levels within the estuary, while other
required data could be sourced from previous measurement cam-
paigns (Slinger et al., 1994). These data were supplemented by
observations of the breadth of the mouth, for instance, and
consultation with local stakeholders and regional authorities,
where necessary (Hermans et al., 2012; Slinger et al., 2012). Full
details of the specification of the model for the Great Brak Estuary
are listed in Tables A3 and A4 in the Appendix.

A stepwise calibration procedure is used in implementing the
model on the Great Brak Estuary. This involves first calibrating the
water volume sector, and then the sediment sector. Note that the
simulation year begins on 1 October in all cases in accordance with
the austral hydrological year. The bimodal annual rainfall pattern
with enhanced evaporation over the hot summer months de-
termines the variation in the net precipitation evaporation rate
(Tables A3 and A4). No extreme rain events are simulated. Similarly
in the initial calibration, the freshwater discharge is set to a low
constant base flow of 0.1 m> s~ representative of conditions
without freshwater releases from the upstream Wolwedans Dam.
The seepage rate is set to a small constant loss of water from the
estuary (0.005 m> s~ 1), as this is the only available data. The tidal
water levels are represented for calibration purposes by a simple
cosine form with semi-diurnal and spring-neap features parame-
trized according to values from Table 2 of the Tide Tables published
annually by the South African Navy Hydrographer (Tables A3). Next,
the form of the estuary mouth is parametrized with values being
assigned to the mouth width (18 m), and an initial value to the sill
height (0,6 m to MSL). With these values in place, and the hyps-
ometry of the estuary determined from surveys (Tables A4), the
tidal flux is calibrated next. To achieve this, the velocity asymmetry
function is first specified using direct measurements of flood and
ebb velocities under low flow, open mouth conditions (cf. Lincoln
and FitzGerald, 1988; Morris and Turner, 2010). In the absence of
such measurements, water level variations indicating the duration
and form of the flood and ebb tides can be used to estimate the
velocity asymmetry function. The formulation chosen for the Great
Brak case, given in Tables A4, generates the observed behavior of
ebb tides characteristically lasting about 8 h and flood tides lasting
a little in excess of 4 h. Finally, the initial sill height may need to be
adjusted slightly so that the water level variations in the estuary
reflect measured values.

Once the water volume sector is calibrated under low fresh-
water flow conditions, the sediment sector also needs to be cali-
brated under the same conditions. For the Great Brak Estuary, we
know that the sill height at the mouth remains fairly constant over
neap tides under low flow conditions and low waves (pers. com. P
Huizinga). This information is used to determine whether the initial
sill height value needs to be adjusted or not, and a cross-check is
made with any concomitant effects on water level variations in the
estuary. Once such refinements are completed, if necessary, the
model can be calibrated for high flow conditions.

Detailed monitoring of a flood release on 29 and 30 November
1990 from the Wolwedans Dam and the associated flushing of the
Great Brak Estuary is reported in Slinger et al. (1994). These data are

1.8

S

water level (m to MSL)
N

0.8

time (days)

Fig. 3. Comparison between measured (*) and simulated water levels (—) in the Great
Brak Estuary over 6 days from 28 November following a flood release and associated
breaching of the mouth on 29, 30 November 1988.

used in calibrating the sediment sector of the model under high
flow conditions. A comparison of the simulated and measured
water levels in the estuary provides evidence that the evolution of
the sill height is adequately modelled (Fig. 3). This agreement was
achieved by reducing the volume of the bed used in the sediment
formulation by 20% i.e. only considering 80% of the length of the
mouth channel. When this adjustment was also tested under low
flow conditions, and the model outcomes were robust to this
change, it was adopted for all conditions. A final check was made by
setting the wave stirring factor to an extreme value (wave height
factor > 10), to check whether the estuary mouth would close
under such an extreme condition of high sediment loads, as ex-
pected. When this occurred, and a further feature of the estuary
was simulated under usual wave conditions, viz. a very slight
modulation in the sill height at the mouth with spring and neap
tides, the calibration of the model was deemed complete.

3.3. Opening and closure of the estuary mouth under different
freshwater flows

Prior to the construction of the Wolwedans Dam immediately
upstream of the estuary, the average annual freshwater inflow to
the estuary was 24 x 10° m? yr~! with a bimodal seasonal distri-
bution typical of the southeastern coast of South Africa (Tables A4).
With this as the freshwater discharge rate, a policy of breaching
between 1,6 and 1,85 m to MSL, and two high wave events in May
and December (Table 1), a Pre-dam simulation was conducted for a
period of 5 years. Results from the fourth year are presented in
Fig. 4, beginning in October, the first month of the austral hydro-
logical year. The representative nature of the simulation was
affirmed by the interdisciplinary team of a multi-institutional
collaborative research project (Slinger and Breen, 1995).

The mouth of the estuary closed and was breached artificially
twice in a year. Following breaching of the mouth in December
(month 3) and June (month 9), the sill height decreased to
approximately 0,6 m to MSL and remained around this level until
the next wave event transported sand into the mouth channel,
choking and closing it. When the mouth was open, water levels in
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Table 1

Input conditions associated with the Pre-dam, Post Dam with Releases, and the Post Dam with Base Flow freshwater inflows to the Great Brak Estuary.

Differences in  Pre-dam Post Dam with Releases
input

conditions

Post Dam with Base Flow

Annual volume 24 x 10° m? yr~! 2 x10°m3 yr!

Distribution of Average annual volume multiplied 3 floods of 5 x 10°> m> each on 29 November, 27 February, 15
by a bimodal seasonal distribution September respectively, and a continuous base flow of 5 x 10° m*

freshwater
inflow (rsm) throughout the year
Height at Between 1,6 and 1,85 m to MSL  Between 1,6 and 1,85 m to MSL
which
breaching

occurs
Breaching rate
Wave climate

—0,2 m/hour for 2 h —0,2 m/hour for 2 h

and Dec cause mouth closure. mid-July cause mouth closure

High waves in late April/early May High waves in November/Dec, February, late April/early May and

2 x 10°m3 yr!
Average annual volume released as a base flow
throughout the year

Breaching is initiated at the same times as it
proved necessary under the Post Dam with
Releases simulation

—0,2 m/hour for 3,5 h

High waves in November/Dec, February, late
April/early May and mid-July cause mouth
closure

Table 2
Response of the mouth of the Great Brak Estuary under different freshwater inflows
to high wave events.

Indicative wave height factor (m) Freshwater inflow (m>.yr—")

Natural Pre Dam Post Dam

34 x 10° 24 x 10° 2 x 10°
3,82 open open open
3,97 open open closed
4,00 self-breaching closed closed
4,05 self-breaching closed closed
4,25 self-breaching closed closed
4,45 self-breaching closed closed
5,00 closed closed closed

the estuary varied from a minimum of 0,67 m to MSL over neap
tides to a maximum of 0.94 m to MSL. Elevated low waters in the
estuary during spring tides (>0,67 m to MSL) are a known feature of
the Great Brak Estuary. The long duration, yet slow outflow of water
through the constricted mouth during the ebb tides as the tidal
cycle moves from the spring to the neap phase means that low
water levels decline progressively further to a minimum at neap
low tide before starting to increase again over each progressive ebb
tide as the tidal cycle moves from neap to spring. This phenomenon
of higher low water levels in the estuary during spring tide than
during neap tide can be seen to be captured effectively in the
simulation in Fig. 4.

When the mouth closed in December, tidal action ceased and
water levels gradually increased to 1,63 m to MSL. The mouth was
breached mechanically ten days after closure, reflecting the com-
mon practice of residents owing to concerns for recreation, inun-
dation of property and vegetation health (CSIR, 1990). In contrast,
when the mouth closed late in May, water levels rose to 1,82 m and
remained near this level for 15 days before mechanical breaching
was undertaken, as this is the low season for tourism and active
estuarine vegetation growth. During both mouth closure events
salinities in the estuary decreased, but rose again to maxima of 27
on the spring tides immediately following breaching,.

Following dam construction, a high proportion of the freshwater
inflow to the estuary derives from an average of three water re-
leases to the estuary per annum. These are specified in the Post Dam
with Releases simulation as flood water releases commencing on 29
November, 27 February and 15 September with volumes of
5 x 10° m?, and a low base flow of the same volume spread evenly

over the year (Table 1). In addition to the Post Dam with Releases
simulation, deemed representative of the actual post dam situation
by the interdisciplinary team of a multi-institutional collaborative
research project (Slinger and Breen, 1995), a hypothetical situation
in which the annual allocation of freshwater (2 x 10® m?) is
delivered to the estuary as continual low base flow, the Post Dam
with Base Flow (Table 1), is also simulated.

In both the Post Dam with Releases and the Post Dam with Base
Flow simulations (Figs. 5 and 6), the mouth of the estuary closed
four times per year in November, February, late April and mid-July.
The sill height attained values in excess of 1,6 m to MSL and
remained at a high level until breached artificially. During the
subsequent tidal phases, the sill height minima for both post dam
simulations were close to 0,6 m to MSL. The water level in the es-
tuary then exhibited very similar behavior to the Pre Dam simula-
tion under open mouth conditions with water levels ranging
between 0,67 m to MSL over neap tides to a maximum of 0,92 m to
MSL over spring tides. However, marked differences occurred be-
tween the post dam simulations when the mouth was closed. Un-
der the Post Dam with Base Flow situation, the water level in the
estuary rose gradually after the mouth closed attaining an overall
maximum of 1,37 m to MSL. The inflow to the system was insuffi-
cient to cause overflow or natural breaching. In contrast, under the
Post Dam with Releases situation, the water level rose rapidly to
1,85 m to MSL, providing the infrequent inundation required for the
health of elevated salt marsh, and effective breaching of the mouth
occurred before vegetation dieback could occur. Under the Post
Dam with Releases simulation, the volume averaged salinities in the
estuary are anticipated to exceed 30, but decrease to about 10 three
times a year when the flood releases occur and the mouth is still
closed. Slightly lower volume averaged salinities would occur un-
der open mouth periods for the Post Dam with Base Flow situation,
but salinities are unlikely to decline below 15 even during the
mouth closed periods.

The effects of reduced, and different, freshwater flows following
the construction of the upstream dam on water levels within the
Great Brak Estuary and the sill height at the mouth as simulated
here, are reflected by the long term monitoring of the system. This
has engendered confidence in the ability of the parametric model to
capture behaviour characteristic of the Great Brak Estuary
following the construction of the Wolwedans Dam. Unfortunately,
the detailed measurement of sedimentary and water column
changes during high flow events does not form an integral part of
the ongoing low level monitoring programme, making further and
more recent validation of the model results difficult.
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Fig. 4. Water level and sill height variations under the Pre Dam freshwater inflow regime, showing the closure and subsequent mechanical breaching of the mouth in months 3 and
4, and month 8 and 9, respectively.

2 T T T T T T T T T T T
-
%]
=
8
E
©
>
o
—
o2
®
B
05 | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 1 12
time (months)
2 T T T T T T T T T T T
o
m [—
=
o 15F :
E
5
.6 1 - -
e
%
05 | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 1 12

time (years)

Fig. 5. Water level and sill height variations under the Post Dam with Releases freshwater inflow regime showing the closure and subsequent mechanical breaching of the mouth
following flood releases (months 1—2, month 5, and months 10—12). No flood release occurred during the austral winter, instead the estuary received a continuous base flow, and
mechanical breaching at the end of month 9.
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Fig. 6. Water level and sill height variations under the Post Dam with Base Flow freshwater inflow regime showing the closure and subsequent mechanical breaching of the mouth
(months 1-2, month 5, months 7—9, and months 10—12). No flood releases occurred, instead the estuary received a continuous base flow, and mechanical breaching.

3.4. The influence of waves on mouth closure

The behavior of the Great Brak Estuary mouth and its sensitivity
to closure from the enhanced sediment transported into the mouth
channel under high wave conditions are intriguing. Accordingly,
the parametric model application is extended to an exploration of
the simulated response of the mouth to a number of high wave
events of 3 day duration, commencing on 1 June, under three
constant freshwater inflows typifying the Natural (pre-develop-
ment), Pre Dam and Post Dam run-offs. No artificial breaching of the
mouth is applied, instead the capacity of the estuary to restore an
open mouth condition is explored. The behavior of the mouth in
response to the wave events was classified as closed, open or self-
breaching (Table 2). The mouth was considered closed if tidal ex-
change ceased entirely following the high wave event, but deemed
open if tidal exchange still occurred immediately after the event
albeit of reduced magnitude. The term self-breaching describes the
situation in which tidal exchange ceases for some time after the
wave event while the water level rises to the height of the berm and
beyond and natural breaching of the mouth then occurs.

Only under freshwater flows characteristic of the natural, un-
developed catchment does the self-breaching capacity of the es-
tuary manifest itself. This reflects historical observations of the
Great Brak Estuary indicating that it closed infrequently in the past,
and could breach naturally (CSIR, 1990). In contrast, the sensitivity
of the mouth to closure is enhanced under freshwater inflows
typical of the Pre dam and Post dam situations, with the transition
between open and closed responses occurring in the range from
3,97 to 4,00 m and 3,82 to 4,00 m wave height factor, respectively.
Of course, the different responses occasioned by such slight dif-
ferences in the wave height factor are not entirely realistic — there
are many factors playing a role in the actual response of an estuary

mouth to storm events. This is simply an indication of the altered
effect of wave events on the estuary mouth when all factors other
than freshwater flow are held constant. The interpretation of these
results is limited to (i) a confirmation that the sensitivity to closure
by wave events is enhanced by anthropogenic reductions in
freshwater inflows to the estuary, and (ii) that should higher wave
events increase in frequency under climate change, more frequent
and persistent closure of the estuary mouth may result.

4. Discussion

In recent years, research attention has turned to modelling the
behavior of the inlet dynamics of small, wave-dominated estuaries
(Duonga et al., 2015; Behrens et al., 2013, 2015). Prior to 2013,
attention focused on characterizing the stability of tidal inlets using
semi empirical criteria such as the Bruun Rule or the Escoffier co-
efficient (cf. Goodman, 1996), and studies focusing specifically on
modelling the closure of such estuaries were limited to Slinger
(1996) in South Africa and Ranasinghe et al. (1999) and
Ranasinghe and Pattiaratchi (2003) in Australia. The renewed
attention may have arisen from climate change studies, or
increased anthropogenic pressures. After all, the non-linear dy-
namics of these tidal inlets present us with a tipping point in the
response of small estuaries to altered storminess, sea level rise and
increasing anthropogenic disturbance. Additionally, in a small
number of cases, there is now sufficient data for use in validating
models against measured behavior e.g. the Albufeira lagoon in
Portugal, and the Russian river, California, and potentially the
Narrabeen Lagoon, in Australia (Morris and Turner, 2010).

The parametric approach adopted in this paper means that even
in the data poor situations that characterize small, wave-
dominated estuaries, an understanding of the potential modes of
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behavior of these systems under altered physical forcing can be
obtained. This holds promise, both for the continued use of this
approach in exploring the response of such estuaries to climate
change (cf. Duonga et al., 2015), and for the use in coastal man-
agement where the system understanding of stakeholders can be
informed (cf. D'Hont et al., 2014). Indeed, the parametric approach
to sedimentation in harbour channels is currently being extended
(van Leeuwen, 2015) so as to provide a generic capability to make
an initial assessment of the potential sedimentation in harbours,
without having to undertake a detailed process-based model
analysis from the outset.

The model developed and applied in this study can be located
between the approaches of Rich and Keller (2013), and Behrens
et al. (2013), as it uses studies on layer flow through constrictions
and over sills to determine the maximum volume flux through the
mouth. This insight regarding the manner in which the mouth
channel acts to constrain tidal exchange is a strength of the Slinger
model, and represents a more general manner for calculating the
peak velocity used by Escoffier in his analysis (cf. Goodman, 1996)
even for small estuaries where the depth of the mouth channel is
small compared with the tidal range. Model outputs reveal that the
elevation of the low water levels in the estuary during spring tide
relative to neap tide — a typical feature of many small, wave-
dominated estuaries — is reliably simulated. Moreover, freshwater
inflows to the estuary are shown to be significant in determining
the behaviour of the inlet mouth, a factor often ignored in studies
on tidal inlets. Further, the study confirms that it is the balance
between freshwater inflows and wave events that determines the
opening or closure of the mouth of a particular estuary. This result
was known for seasonal systems (Ranasinghe and Pattiaratchi,
2003), but also applies to irregular intermittently closed estuaries
(Morris and Turner, 2010).

This paper has only addressed the water exchange and sediment
component of small, wave-dominated estuaries. The full model of
Slinger (1996) uses a parametric approach to provide an indicative
simulation of the stratification state of an estuary and the per-
centage flushing of the estuary volume by tidal exchange. Simula-
tion of these effects would allow for the inclusion of baroclinic
effects on the volume flux through the mouth. Although, the full
model has been implemented on the permanently open Kromme
Estuary in South Africa (Slinger, 1996), and this version has been
applied to the Slufter Estuary in the Netherlands (D'Hont, 2014),
further testing is required to establish the limits of applicability of
the approach. The applicability of the model to the Slufter under
storm conditions when elevated water levels cause extensive
flooding of the salt marshes, temporarily increasing the tidal prism
to five times its normal volume and resulting in high flow velocities
during ebb (Van der Vegt and Hoekstra, 2012), has not been
established. Further, in the Great Brak, and the Kromme estuaries
the alteration to the hypsometry of the estuary basin from the
sediment not deposited in the mouth channel but transported into
the estuary on the flood tide, was negligible. This is not always the
case, and it would be interesting to determine when this effect
could no longer be ignored and a hypsometric update step would
be required.

5. Conclusion

The parametric approach to modelling the closure and opening
of the inlet of small, wave-dominated estuaries has established that
the pumping up, or elevation, of low water levels over spring tides
relative to neap tides is primarily determined by the constraining

effect of the mouth on tidal fluxes. Indeed, the closure of the mouth
is strongly influenced by the freshwater entering the estuary, a
factor often ignored in studies on tidal inlets. In addition, model
results confirm that it is the balance between freshwater inflows
and wave events that determines the opening or closure of the
mouth of a particular estuary.

The ease of applicability of the approach has been demonstrated
on an illustrative case study. More importantly, because of the low
data demands, this approach now can be applied to more small
estuaries with limited measured data. Of interest is the coherence
between known responses, observations and model predictions.
The range of applicability of the model, and similar parametric
models, can then be established, and the understanding of the
complementary nature of parametric modelling and process-based
modelling can be deepened.
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Appendix 1. Model equations, list of symbols and parameter
values

Table A1
Model equations

Water volume sector equations Sediment sector equations

hy = twl-wil dgr = d[g(1 — s)»?]

ttflux = BH, (wl)V (ewl, wi) n =1-0.56l0g10dgr for 1 < dgr < 60

wl = Hy(x1) S;=0.23/Ydgr +1.14
a = bh m = 9.66/dg+1.34

twl—x, if twl>wland twl>x,
h= wl—x, if wl>twlandwl> x,

¢ = 10(286logiodyr—(logiody)* ~3.53)

0 otherwise
G=-F+E us = /ghewl —wijjl
F? = u;/¥/gih; U = |xq4]/ae
Ue = 2 gh @ : 1-n
Ser = Tt 5.662191%
ua C(Ser/Si — 1) if Sg>Si
if uca < |ttflux _ C(Sgr/Si or > Si
o = |etflux| if uca < |egflux| St 0 otherwise
1 otherwise
x14 = tiflux.cy Syt = Se(d/h)(@/ux)"
dx; _ 4y SyoiX14/bl(1 —ps)  if x14<0
X _ SuwoiX1a 14
at = i X1 ="" 0 otherwise
s, _ C(@BSgr/Si—1)™ if wBSgr>S;
W 0 otherwise

Smod = Sw(d/h)(@/us)"
Xoy — (Smod —Swor)X14/bl(1 =ps)  if x14>0
2 0 otherwise

dx; 3
G = 2ic1Xai
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Table A2
List of symbols

Water volume sector symbols

Sediment sector symbols

X1 = water volume (m3)

x11 = freshwater inflow rate (m>[yr)

X12 = net precipitation evaporation rate (m>[yr)

X13 = seepage rate (m>[yr)

X14 = tidal flow through the mouth (m>[yr)

wl = water level relative to mean sea level (m to MSL)
twl = tidal water level relative to mean sea level (m)
ttflux = target tidal flux (m>)

h; = hydraulic head (m)

L = characteristic length of the estuary (m)

Hg(wl) = hypsometric function of water level (m3)
Hs(x1) = hypsometric function of water level (m)
V(twl,wl) = velocity function of tidal water level, water level (dimensionless)

X, = sill height at the mouth (m to MSL)
Xo1 = sill accretion rate (m/yr)

Xoo = sill erosion rate (m/yr)

Xo7 = sill breaching rate (m/yr)

length of the mouth (m)

d = grain diameter (m)

d- = dimensionless grain diameter

v = kinematic viscosity of fluidood (m?[s)

s = mass density of sand relative to fluid (dimensionless)
& = conversion constant (3,1536 x 107 s[yr)

Sgr = particle mobility (dimensionless)

Si = initial motion parameter, critical threshold (dimensionless)

n = transition exponent (dimensionless)

X = sill height at the mouth (m to MSL)

a = cross sectional area in the mouth (m?)

b = breadth of the mouth (m)

h = effective depth of flow in the mouth (m)
G = two layer composite Froude number

F; = layer densimetric Froude number
u; = layer flow velocity (m/s)
g = gravitational acceleration (m/s?)

g = reduced gravitational acceleration (m/s?)

uc = critical layer flow velocity (m/s)
¢y = control factor (dimensionless)

m = transition exponent in sediment transport formula (dimensionless)
¢ = coefficient in sediment transport formula (dimensionless)
u« = shear stress (m/s)

u = mean flow (m/s)

S = sediment transport capacity (dimensionless)

Syor = volumetric sediment transport rate (m>sand/m>water)
ps = porosity of the sandy bed

8 = topograpic factor(dimensionless)

w = wave stirring factor(dimensionless)

Sw = volumetric sedimenttransport rate (m>sand/m>water)
Smoa = enhanced volumetric sediment transport rate (m>|m>)

Table A3

Parameter values used (at the start) in the simulation.

Parameter and symbol Value and units for the
Great Brak case

Explanation

Mean sea level (MSL) 0,24 m
Semi-diurnal tidal 0,58 m
amplitude («4)
Semi-diurnal time scale
(Th)
Semi-diurnal time scale
(Th)
Spring-neap tidal 0,509 m
amplitude (a3)
Spring-neap time scale
(T2)

Net rainfall evaporation 0,5056—1315 m/yr

Seepage rate (x13) —157680 m>[yr

Surface area (SA) 470,500 m?
Characteristic length 250 m

parameter (L)

Breadth of the mouth 18 m
(b)

Initial sill height 0,6 m to MSL
Grain size (dso) 045 x 1073 m
Porosity (ps) 0,4

Length of the mouth (I) 10 m

Shoreface topography 1,0
factor (B)

Wave stirring factor (w) 1,0

The formula used to calculate the tidal water level:

twl = MSL + a;cos (%’f) <l + ay cos (%))

The formula used to calculate the net rainfall evaporation:

X12 = 0,5056 SA rsm—1.315 SA esm

The rainfall seasonal multiplier (rsm) and the evaporation seasonal multiplier (esm) are specified in Tables A4, and the
surface area (SA) is specifies below.

Set at a constant value for the Great Brak Estuary to represent the estuarine water seeping through the permanent
sand berm that separates the estuary from the sea, whether the mouth is closed or open.

Average surface area of the estuary as first reported in Morant (1983). The surface area is included in the formula for
the Net rainfall evaporation rate

Characteristic length parameter. Determined as the distance from the mouth to the point in the estuary basin where
water level variations are most representative of the estuary dynamics. Because the Great Brak has a wide basin with
deeper parts near the sea and narrow upper reaches with only isolated deep pools, the characteristic length of the
estuary lies at the highway bridges near the mouth (Fig. 2).

Breadth of the estuary mouth, measured at the widest point.

Usually set to the sill height under conditions of low freshwater flow and low waves for which the mouth remains
open.

Measured grain size as first reported in Morant (1983)

Volumetric porosity of sand is 40%

Length of the mouth channel — best estimated during flood flows, or estimated as the length of the channel that needs
to be dug to breach the mouth artificially, as in the case of the Great Brak Estary.

A shoreface topography factor of less than unity, indicates sheltering of the nearshore zone immediately in front of the
estuary mouth from wave action e.g. by a headland or groyne. A shoreface topography factor of greater than unity
indicates increased exposure of the estuary mouth to wave action. A value of unity is assigned to the Great Brak as no
unusual shoreface topography effects are present.

The wave stirring factor is exogenously specified to represent the effects of increased wave heights in stirring
sediment up into suspension. It comprises the seasonal wave climate derived from wave measurements multiplied by
a wave height factor (nearshore significant wave height) to represent the effects of storms at times.
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Table A4

Estuary hypsometry, velocity asymmetry, and the rainfall, evaporation and wave climate functions

Water Water Hydraulic Velocity asymmetry Time (from 1 October in Rainfall seasonal Evaporation seasonal Wave climate
volume level head function months) multiplier multiplier function
(m3) (m to (twl-wi/l)
MSL)

1,0 -1 —0,006 1,05 0.0 1.233 0.825 1.139
5,0 -0,2 —0,004 1,05 0.5 1.134 0.943 1.085
15,000,0 0.0 —0,002 1,00 1.5 1.510 1375 0.950
33,000,0 0.2 —0,001 0,90 25 0.871 1.768 0.950
92,200,0 04 0,000 0,85 3.5 0.862 1571 1.085
245300,0 0.8 0,001 0,90 4.5 0.931 1375 1.085
454,000,0 1.2 0,002 1,00 5.5 1.440 1.178 1.139
706,200,0 1.6 0,003 3,15 6.5 0912 0.884 1.194
1,005,800,0 2.0 0,004 3,80 7.5 0.912 0.638 1.356
1,354,500,0 2.4 0,006 4,00 8.5 0.489 0.540 2.007

9.5 0.686 9.432 1.628

10.5 1.172 0.589 1.356

115 1.332 0.707 1.248

12.0 1.233 0.825 1.139
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