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Summary

When trains are not actively traveling on the main rail network, they to be parked and prepared for their
next journey. This is a complex problem, involving several interconnected subproblems. Additionally,
there is uncertainty in this environment which can render initial plans infeasible during their execution.
To ensure trains are able to depart in time, having finished all their required service tasks, a schedule
is created in advance.

The focus of this thesis is to address the challenges associated with generating robust initial shunting
plans in an uncertain environment. This thesis focusses on a sequential problem formulation, modeled
as a Markov Decision Process (MDP) and uses a policy optimized for this environment. The goal is
to design a method capable of deriving robust initial shunting plans from the policy that are likely to
remain feasible for a large number of possible plan executions.

The limitation addressed in this thesis, is that conventional policy-rollout techniques generate action
sequences that overlook most alternative outcomes, thereby making the overall plan not feasible for
a large number of plan realizations. To address this issue, the thesis proposes two distinct solution
methods, aimed to consider every possible state that might be encountered, either directly or indirectly.

Through experimentation on realistically generated problem instances, the research concludes that
both proposed methods significantly outperform the baseline approach, demonstrating the possibility
of extracting robust initial shunting plans from a given policy that was not explicitly designed for this
purpose.
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1
Introduction

Throughout the day, most of the trains travel the on main rail network between stations. However,
during off-peak hours and at night, when the demand for train services is low, the trains need to be
prepared for their next trips. These preparations take place at designated locations, referred to as
shunting yards, where the trains are stationed and undergo the necessary preparations to ensure their
availability for the next trips.

This thesis focuses on the train operations that take place within a single shunting yard. Trains arrive
mostly near the end of the day, where they must remain parked overnight in the yard. However, during
their stay on the yard, they must undergo several preparations before they can depart again. These
preparations include several service tasks, such as cleaning, washing, and maintenance. Figure 1.1
provides an example of a shunting yard, illustrating its layout and infrastructure.

Figure 1.1: Example of shunting yard the ”Kleine Binckhorst”. The yard consists of 8 tracks meant for parking at tracks 52 to
59. Tracks 61 and 62 are positioned alongside a cleaning platform. Track 63 contains a washing installation and track 64 an

inspection pit. Trains enter and exit at the gateway track 906b. Tracks 51b and 104a are used to connect the ”Kleine
Binckhorst” to the ”Grote Binckhorst”

To ensure each train is able to depart in time, having finished all its required tasks, a schedule is
created in advance. A shunting plan is typically created for a planning horizon of 24 hours. The plan
describes the exact locations of each train during its stay in the yard, along with the necessary track
movements required to reach each location. Additionally, the plan specifies the order in which trains
will be serviced, ensuring that all service tasks are finished on time. Lastly, an assignment is made to
each train, where each incoming train is matched to an outgoing train.

Manually creating a feasible shunting plan is a challenging and time-consuming task. As the number
of train units increases, the complexity also increases, making the task of finding a feasible solution
more difficult. Existing work has studied methods to automatically generate such shunting plan, with
varying levels of success.

1



1.1. Problem Context: the Shunting Problem 2

Ideally, the initial shunting plan should be designed to be robust against small everyday disruptions.
If the initial plan is robust, the plan is more likely to remain feasible without the need to repair the failed
plan during execution.

Existing literature has often focused on finding feasible solution in a deterministic environment with
normal circumstance This project aims to address the dynamic factors of the shunting problem and
its inherent uncertainty. The goal is to develop a solution method that is able to create robust initial
shunting plans that are able to deal with disturbances encountered during execution of the plan.

1.1. Problem Context: the Shunting Problem
To ensure every train is able to park on the yard, shunting plans are constructed in advance. The
problem of generating a feasible shunting plan is known as the Train Unit Shunting Problem (TUSP).

During their stay on the shunting yard, trains often require various service tasks, such as mainte-
nance and internal and external cleaning. These tasks must be completed within a specific timeframe
before the trains are scheduled to depart again. The exact deadline for each train is not known in
advance, because it depends on when the train is scheduled to depart. However, the availability of
service resources is limited, so there is a limit on the number of trains that can be serviced simultane-
ously. Furthermore, certain service tasks can only be performed at designated service tracks within
the shunting yard, necessitating the relocation of trains to and from these locations. The inclusion of
service scheduling in addition to the TUSP is known as the Train Unit Shunting with Servicing (TUSS)
problem or the Train Unit Shunting Problem with Service Scheduling (TUSPwSS).

For the remainder of this thesis, we just refer to the TUSS/TUSPwSS as the Shunting Problem.

1.1.1. Preliminaries
A shunting yard’s layout consists a series of connected tracks. These tracks can be dead-end tracks,
which function as Last-In-First-Out (LIFO) queues. In this configuration, the last train to enter the track
is the first that is able to exit. Figure 1.2 provides an illustration of a small example layout that contains
three LIFO tracks. Other tracks are accessible from both ends, known as ”free” tracks. Examples of
these tracks can be found in Figure 1.1. Trains enter and exit the shunting yard through designated
gateways, which connect the main rail network to the yard. Trains are not allowed to remain parked on
gateway tracks, as it would block all other trains from entering and leaving the yard.

Figure 1.2: Small example layout of a shunting yard. Trains enter the yard on the gateway track G. Tracks 1 and 2 are regular
parking tracks. Track 3 contains a cleaning platform, which allows the cleaning tasks to be performed on a train on the track.

All trains have the ability to move in both directions over the tracks. There are several types of train
units, each with their own characteristics. One of the characteristic is the train unit’s length, which is
determined by the number of carriages it contains and the length of the carriages. Figure 1.3 provides
an example showing two different train types. Trains can be composed of multiple connected train units,
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which move over the tracks as a single train. While on the shunting yard, these trains can be split can
combined to form different compositions

Figure 1.3: Example of two train units, the one of top containing three carriages; the one on the bottom containing four
carriages. [7]

Most trains have a set of required service tasks that must be completed before their departure. The
duration of each service task is dependent on the type of service and the type of train. There are some
service tasks that can be performed on any parking track, and only require an available service crew.
In contrast, there are also track-specific service tasks that can only be performed at designated service
tracks. These tasks are limited to servicing a single train per track.

1.1.2. Subproblems
The Train Unit Shunting Problem with Service Scheduling (TUSPwSS) involves multiple interconnected
subproblems: parking, matching, reconfiguration, servicing, and routing. Although some of these prob-
lem are difficult on their own, the main challenge comes from the fact that the subproblems are highly
interdependent and require a coordinated approach to solve.

• Parking When train units arrive at the shunting yard, they must be stored somewhere in the
yard until they are scheduled to depart. However, there is limited space on the parking tracks,
meaning that only a certain number of train units can be parked on the same track at the same
time. Additionally, later arriving trains may block the exit of earlier trains, and a train cannot leave
the track if it is blocked by another train.

• Matching The input of the shunting problem does not specify which incoming train units should
be used to form each outgoing train. As a result, all arriving train units have to be assigned to
a departing train such that all departing trains are able to leave in time. Arrivals and departures
can be mixed in time, so not every train unit can be used for an outgoing train. Since there are
several types of trains, which each have their own specific properties, not every train can be
used interchangeably. Matching is considered valid if all outgoing trains have assigned units of
the proper subtypes and arrive and complete their service tasks before the departure. The time
required for each service task depends on various factors, including the distance of the assigned
parking tracks, the routes that can be taken, and how long it must wait before each service task
can start.

• Reconfiguration Trains sometimes consist of multiple train units, so the trains might need to split
and combine to form the correct configurations. Train units can only be combined if they are next
to each other, which means the trains may require additional movements to reach the desired
configurations. Not all tracks allow for performing splitting and combining actions, particularly the
gateway tracks.

• Servicing All train units have a set of required service tasks that need to be completed before
they can depart from the shunting yard. Service tasks require resources, which are limited, and
each resource can only be used by a single task at a time. This means that not all service tasks
can be processed immediately upon arrival, but have to be scheduled such that all service tasks
are finished before the train unit needs to depart. Some service tasks can only be performed on
specific tracks, requiring trains to route to and from these tracks.

• Routing A path needs to be found to move the train from its position to the next one. A train can
only move over tracks that are not currently obstructed by any other train.



1.1. Problem Context: the Shunting Problem 4

1.1.3. Initial Shunting Plan
The solution to the shunting problem is typically represented as a Partial Order Schedule This schedule
consist of a set of activities A, and a set of precedence relations POS. Each activity is performed on a
specific train. The order of the activities are defined by the precedence relations.

A service activity requires a corresponding service resource. This resource cannot be used by mul-
tiple trains simultaneously. Therefore, a precedence relations imposes an ordering to each related
service activity that uses the resource. Similarly, only a single movement can be scheduled simultane-
ously.

The shunting plan can be visualized by an activity graph, where the nodes correspond to an activity,
and the edges to precedence relations. Figure 1.4 shows an example of such an activity graph.

Figure 1.4: An example of a shunting plan, visualized as an activity graph. The activities are denoted as follow: Arrivals (A),
Movement (M), Parking (P), Service (S), Departure Movement (DM) and Departure (D). The edges between the activities

indicate a precedence relation between them. The corresponding train units are indicated between the parenthesis.

1.1.4. Uncertainty
There is a lot of uncertainty in the real world during the shunting operations. This uncertainty is caused
by both minor and major disturbances from different sources and variability in the duration of each
activity. According to expert opinion, there is a small disturbance almost every on a shunting location,
where there are some days with no disturbances, and others where there are multiple. The most
common disturbances include train delays andwrong train configurations, such as trains only containing
a single unit instead of the expected two. Larger disturbances include service tasks that take longer
than expected, or, in case of a large disturbance on national level, additional arriving trains. These
larger disturbances are relatively unlikely.

Any single unconditional shunting plan has the inherent risk of becoming infeasible during execution,
as potential changes to the problem instance itself, cause by larger disturbances, could render the plan
invalid. However, in this thesis we focus on creating shunting plans that are robust to smaller, more
frequent disturbances. Therefore, we only consider two sources of uncertainty: the arrival times of
each train and the variable durations of service tasks.

While the expected arrival times of trains and the mean durations of service tasks are specified
in a given problem instance, the actual times are subject to variability, sampled from probability distri-
butions. Figure 1.5 provides an example distribution of the duration for a specific activity, where the
average duration is 30 minutes, but the actual durations during execution can take on various values
with different probabilities.

The goal of a shunting plan, therefore, is to be robust against these smaller kinds of disturbances,
where the objective is to find an initial shunting plan that is feasible for as many realizations as possible.
This reduces the need for making changes or repairs during execution.
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Figure 1.5: Example of the duration of an activity with an average duration of 30 minutes. In this example, the duration is
sampled from the probability distribution according to a log-normal distribution using a variance of σ = 0.3.

1.1.5. Small Example
In this section, we present a small example problem to demonstrate the structure of a problem and
corresponding solution. We provide two different solutions to show the contrast in robustness between
them. The first solution is feasible but lacks robustness when disturbances are considered. The second
solution is not only feasible but is also more robust towards the considered disturbances.

In Figure 1.2, a small example layout of a shunting yard is shown. The yard contains a single gateway
track where all the train enter and exit the yard. There are two Last-In-First-Out (LIFO) parking tracks,
and one service track designated for cleaning. The problem scenario has a total of three train units with
two different type of trains. All train units require a 25-minute cleaning service, as indicated in Table
1.1. The arrival and departure times of the trains are specified in Table 1.2, with the first two train units
arriving within the first five minutes, followed by the third train unit arriving after 45 minutes. For now,
no disturbances are considered, so the arrival times and service durations are assumed to be entirely
deterministic.

Train Unit Required Services
0 cleaning (25 minutes)
1 cleaning (25 minutes)
2 cleaning (25 minutes)

Table 1.1: Required services

Time Arriving Train
00:00 0 (VIRM-4)
00:05 1 (SLT-4)
00:45 2 (SLT-4)

Time Departing Train
01:30 (SLT-4)
02:15 (SLT-4)
02:30 (VIRM-4)

Table 1.2: Example timetables of the arrival and departure events

Table 1.3 presents an example of a feasible solution for the given problem scenario. The table
includes the start time and end time of each action. Upon arrival, both trains are parked on separate
tracks. Train 0 is cleaned service first, followed by train 2, and train 1 is serviced last. The specific
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movement paths of each train unit are specified in Table 1.4. The assignment of the train units to their
respective departures is indicated in Table 1.5.

Start End Action Train Tracks
00:00 00:05 Park (0) G→ 1
00:05 00:10 Park (1) G→ 2
00:10 00:15 Park (0) 1→ 3
00:15 00:40 Service (0) 3
00:40 00:45 Park (0) 3→ 1
00:45 00:50 Park (2) G→ 1
00:50 00:55 Park (2) 1→ 3
00:55 01:20 Service (2) 3
01:20 01:25 Park (2) 3→ 1
01:25 01:30 Depart (2) 1→ G
01:30 01:35 Park (1) 2→ 3
01:35 02:00 Service (1) 3
02:00 02:05 Park (1) 3→ 2
02:10 02:15 Depart (1) 2→ G
02:25 02:30 Depart (0) 1→ G

Table 1.3: Example of feasible plan (not robust)

Train unit Track locations
0 G→ 1→ 3→ 1→ G
1 G→ 2→ 3→ 2→ G
2 G→ 1→ 3→ 1→ G

Table 1.4: Sequence of each train unit’s position on the
shunting yard.

Departure Train unit
0 2
1 1
2 0

Table 1.5: The matching train units to the departure
indices.

In the previous example, we assumed a deterministic environment without any disturbances, where
the exact arrival times and service durations are known. However, in reality, this is often not the case.
Let’s modify the scenario so there is now a 20% chance of a train arriving 10minutes later than schedule
time and a 20% chance of a service duration being extended by 10 minutes.

One of the main issues with the previous solution is that train 0 is serviced first, even though it
is the last to depart. This choice makes it more difficult for the other trains to complete their service
tasks in time. Additionally, after the service tasks are completed, the trains immediately park again and
start a new service without buffer time between these actions. While the plan may work under normal
circumstances, it lacks robustness. Delays can result in some trains being unable to finish their service
tasks on time. Taking these disturbances into account, the plan is only successful approximately 37%
of the time.

A more robust plan is presented in Table 1.6. The movement of each train is indicated in Table 1.8
and the matchings in Table 1.8. One of the improvements is that all the trains are serviced in the same
order as their departure, ensuring they are ready to depart when required. Another notable aspect
is that the trains only move away from the service track after an event is completed. This minimizes
the risk of interference with the event, as the even can take place during the service activity. These
improvements causes the plan to be more robust, and is feasible about 82% of the time.
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Start End Action Train Tracks
00:00 00:05 Park (0) G→ 1
00:05 00:10 Park (1) G→ 2
00:10 00:15 Park (1) 2→ 3
00:15 00:40 Service (1) 3
00:45 00:50 Park (2) G→ 1
00:50 00:55 Park (1) 3→ 2
00:55 01:00 Park (2) 1→ 3
01:00 01:25 Service (2) 3
01:25 01:30 Depart (1) 2→ G
01:30 01:35 Park (2) 3→ 2
01:35 01:40 Park (0) 1→ 3
01:40 02:05 Service (0) 3
02:10 02:15 Depart (2) 2→ G
02:15 02:20 Park (0) 3→ 1
02:25 02:30 Depart (0) 1→ G

Table 1.6: Example of good plan (robust)

Train unit Track locations
0 G→ 1→ 3→ 1→ G
1 G→ 2→ 3→ 2→ G
2 G→ 1→ 3→ 2→ G

Table 1.7: Sequence of each train unit’s position on the
shunting yard.

Departure Train unit
0 1
1 2
2 0

Table 1.8: The matching train units to the departure
indices.

Although the the improved plan is more robust, it still fails 18% of cases. These failures occur when
train 0 is delayed while train 1 is not, causing train 1 to arrive first. It is impossible for a single sequen-
tial schedule to prevent this issue entirely, as the order of arrival actions is based on the predefined
schedule. This issue can only be resolved after the disturbance is observed. One approach to address
this is through a repair method that generates a new plan starting from the disrupted state. Another
solution method that avoids this issue entirely is by using online planning, which is able to look at the
current state and makes decisions in response to the disturbances. If a good policy is used, it becomes
possible to solve the problem 100% of the time, ensuring robustness even in the face of uncertainty.

1.2. Motivation
Themain goal of this thesis is to develop amethod for creating robust initial shunting plans that are likely
to be feasible for a large number of potential plan executions. Most existing solutions to the shunting
problem have not taken uncertainty into account, and often a fully deterministic environment is used.

We first describe the limitation of the current best solution method. Next, we discuss how previous
methods have attempted to address these limitations through the use of a policy. However, this policy-
based solution has its own limitation, which leads us to the motivation and purpose of this thesis.

1.2.1. Current Best Solution
Currently, the best solution is based on a local search algorithm, which is able to solve real-world
problem instances. The local search method tried to produce robust plans by adding a heuristic value
into its objective function, where this chosen heuristic has shown to be associated with the robustness
of shunting plans.

While the local search method has shown success in finding feasible shunting plans, it does not
have an explicit strategy in the same way that humans construct plans. No apparent strategy is found
in the generated shunting plans, which is caused by the random search operations that are used to
find the solutions. In contrast, human planners tend to follow specific strategies when creating shunting
plans, that are more understandable. For instance, in case of the shunting yard the ”Kleine Binckhorst”
(1.1), a strategy is to store incoming trains at tracks 56 to 59 upon arrival, after which the trains are
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scheduled for cleaning and washing on the dedicated tracks. When their service tasks are finished, the
trains are parked at tracks 52 to 55 until their scheduled departure.

Another limitation of existing solutions is that a fully static environment is typically assumed, where
everything is completely deterministic. In a deterministic environment, the arrival times of incoming
trains and the duration of actions are known with certainty. However, in practice, the environment
is dynamic and disturbances can occur, such as trains being delayed or actions taking longer than
expected. These disturbances that happen during the execution of the plan may cause the remainder
of the plan to become infeasible.

1.2.2. Policy Solutions
Various other solutions have been proposed to address the uncertainty in the shunting problem without
relying on an initial plan. Instead, these methods can make decisions on-the-fly, reacting to observed
outcomes. The output of such methods can be described as a policy π(s), which essentially functions
as a mapping from states to actions. This reactive decision-making approach offers a higher level of
flexibility compared to methods that create a single initial plan, as it can make more informed decisions
based on the current state.

The use of a policy framework can allow the solution to be more interpretable. Previous work has
developed policies that follow understandable rules, aligning more closely with the decision-making of
human planners. Other works have tried various machine learning techniques with the hope that the
policy is able to learn patterns for its decision-making which can be interpreted by humans, and make
the solution more predictable.

However, there are several practical advantages to having an initial shunting plan that is made in
advance. For instance, it allows for the assignment of crew members and facilitates preparations for
upcoming operations. Since reactive planners do not create a single initial plan, they cannot make these
preparations. Additionally, if the policy used during execution is suboptimal, it may lead to decisions
that result in unsolvable situations later on, without any way to resolve these problems. In contrast, an
initial plan can be validated to ensure its feasibility under normal conditions, providing some level of
confidence in the solution.

1.2.3. Extracting Shunting Plans from Policies
A policy can be used to generate an initial shunting plan through a process known as a rollout. This
process repetitively queries the policy in a simulated environment, starting from the initial state s0, and
continuing until the end of the problem instance is reached. During this process, each chosen action
by the policy is recorded, forming a sequence of actions that represents the initial shunting plan. This
sequence of action can then be repeated during the actual execution of the plan.

s0
a0=π(s0)−−−−−−→ s1

a1=π(s1)−−−−−−→ s2
a2=π(s0)−−−−−−→ ...

However, preliminary findings have indicated that shunting plans derived from such policies exhibit
limited robustness. This means that these plans are prone to becoming infeasible during execution, pri-
marily because the traditional policy-rollout process generates an action sequence without considering
the various alternative outcomes for actions that possess variability in their results. This limitation arises
from the fact that the rollout typically relies on a single realization, rendering the overall plan vulnerable
to other potential plan realizations.

1.2.4. Purpose of this Thesis
The inability of a policy to create shunting plans that are robust leads us to the purpose of this thesis. Our
overall goal is to develop a method capable of creating robust shunting plans. Although the policy itself
may not be able to directly produce such robust plans through a conventional rollout, we believe that
it still contains valuable information that could be used in a meaningful way. Our hypothesis is that the
limited robustness of plans generated via policy-rollout comes from the fact that only a single realization
is considered, thereby neglecting all alternative outcomes for each action. To test his hypothesis, we
exploring new approaches that do incorporate the alternative outcomes of each action into the planning
process.
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1.3. Contributions
We present two distinct methods for extracting robust initial shunting plans from a given policy. The
first method, referred to as the Probabilistic Action Planner (PAP), aims to take every state that may be
encountered into account. Its goal is to maximize the likelihood of successfully achieving the desired
outcome for each of these states by selecting actions that are good in most scenarios.

The second approach, referred to as the Adaptive Difficulty Algorithm (ADA), does not explicitly
account for every possible state, but tries to account for them indirectly by inserting additional buffer
times to each activity.

Figure 1.6 shows how each approach handles the outcomes of actions with probabilistic durations.
The baseline policy-rollout bases its decisions solely on the typical or average duration of these actions.

In contrast, the Probabilistic Action Planner (PAP) considers every possible outcome, and the cor-
responding states it encounters caused by the outcome. Each resulting state influences the chosen
action, with each state weighted according to its probability of occurrence. The goal is to maximize
the overall likelihood of successfully reaching the goal from the initial state. Since computing the exact
probabilities becomes intractable for a larger number of outcomes and decision moments, the approach
relies on approximation techniques instead. These approximations are derived from the given policy.

On the other hand, the Adaptive Difficulty Algorithm (ADA) adopts a different strategy. Rather than
directly considering every potential state, ADA indirectly addresses them by looking at a more delayed
outcome. This approach is expected to be more efficient because it focuses on a single state, although
it comes at the cost of overlooking a subset of potential outcomes when the duration is even longer
than what is considered. There is a limit to the delay ADA can consider, as excessively long durations
will make it impossible to schedule all the required activities within the given timeframe.

Figure 1.6: Overview of the proposed solution approaches. The baseline is a regular policy rollout, which only looks at a single
outcome for each activity. The Probabilitic Action Planner (PAP) tries to take every possible state thay be encountered into

account. The Adaptive Difficulty Algorithm (ADA) strategically focuses on a single outcome, recognizing that all other outcomes
which take less time can always wait to get to the considered state.

1.4. Research Questions
The overall goal of this thesis is to develop a method that is able to generate robust initial shunting
plans. For this thesis, we assume that there is already a policy available that has been optimized for a
deterministic environment. However, the issue is that this policy cannot directly produce initial shunting
plans that are robust. Traditional policy rollouts result in action sequences that fail to account for the
majority of potential outcomes, as they are based on a single realization. Consequently, this renders the
overall plan vulnerable to variations in its execution. Nonetheless, there is potential in using the policy
to create robust plans by using they policy in a way that considers multiple potential action outcomes
during the plan’s construction. Therefore, the main research question is:

Given a policy optimized for finding feasible solutions, to what extend is the robustness
of the initial shunting plan increased when all possible action outcomes are considered
during the construction of the plan?
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This thesis focuses on a sequential formulation of the problem, where the output is represented as
a sequence of actions, making it a Total Order Schedule. This type of schedule is not the conventional
representation of a shunting plan, which is typically represented as a Partial Order Schedule. The
issue is that simply repeating an action sequence directly would restrict the plan’s flexibility, as each
action has to be repeated in the exact same order, which may not always be necessary. Therefore, we
ask how we can interpret the resulting sequence as a Partial Order Schedule through a mapping from
action sequences to Partial Order Schedule with the following sub-question:

1. How can action sequences be used as initial shunting plans by mapping them to Partial
Order Schedules?

The main research question is about whether the robustness of initial shunting plans can be im-
proved by considering all possible outcomes during the construction of the plan. A sub-question that
we need to answer first, before the main question can be tested, is:

2. How can alternative outcomes be considered during the planning phase, either directly
or indirectly?

We introduce two distinct methods for extracting robust initial shunting plans from a given policy.
The first approach, referred to as the Probabilistic Action Planner (PAP), is designed to be problem
formulation-agnostic, with the goal of accounting for every potential state that could be encountered.
The second method, referred to as the Adaptive Difficulty Algorithm (ADA), strategically focusses on
a single state at each decision moment by exploiting the transition structure inherent in the problem
formulation. While ADA is expected to be fast since it only considers one state at a time, it may come
at the cost of potentially less robust plans, as it overlooks a subset of alternative states. We test the
performance of both methods and analyze the differences and trade-offs between them. The sub-
question is:

3. Is it better to implicitly (ADA) or explicitly (PAP) consider every possible outcome, in
terms of the robustness of the plans and the computational efficiency?

1.5. Outline
• Chapter 2 includes a review of existing literature about the shunting problem.
• Chapter 3 offers the necessary background information and explains the algorithms that are used
in subsequent chapters.

• Chapter 4 answers the first research question (1) by explaining how an action sequence is used
as an initial shunting plan.

• Chapter 5 answers the second research question (2) by proposing two distinct methods that all
possible outcomes into account, either directly or indirectly.

• Chapter 6 describes the problem instances that are used to test the proposed solution methods
on.

• Chapter 7 compares the proposed approaches to each other, which is used to answer the third
research question (3). It also provides individual analysis of the individual approaches to gain
more understanding of how they work.

• Chapter 8 gives a direct answer to each of the research questions, and discusses the limitations
of this thesis.

• Chapter 9 concludes the thesis and suggests ideas for future research.



2
Literature Review

2.1. Exact Approaches
The shunting problem was first introduced by Freling et al. [14] They only focus on the matching
and parking subproblems. They propose mathematical mixed integer models that solve these two
subproblems. First, the arriving trains are matched to the departing train. This is done while keeping
the train units together as much as possible, in order to minimize unnecessary shunting operations.
After a matching has been created, a parking track is assigned to each of the train units, such that track
length is never exceeded and no crossing occur.

Lentink et al. [20] extended the problem by also considering the routing aspect. First the matching
is determined using the method from Freling et al. Then before solving the parking, the routing time
is estimated. This estimate is then used in the next step to solve the parking subproblem. Finally the
actual routes are computed. The authors also mention that a robust solution would only park units of
the same subtype on each shunt track.

Instead of decomposing the problem into smaller subproblems, Kroon et al [18] solved the matching
and parking problem simultaneously. They introduced the concept of a mixed track, which is a track
that has multiple units of a different subtype parked. If all units of a track are the same subtype, the
order of the units would be irrelevant. In the objective function they penalize having different types on
a track to make the solution more robust.

While these methods may be effective for smaller problem instances, they are not as practical for
larger ones due to their slower processing times, which limits their usefulness in practical situations.

2.2. Local Search Heuristic
The current best solution is based on local search.

Jacobsen et al. [16] compared three different meta-heuristics, including guided local search, guided
fast search, and simulated annealing, and found that their results were similar to the previous MIP
model, but only took seconds to run instead of multiple hours. However, these results were obtained
on smaller instances with less than ten trains, only a single service task per train, LIFO tracks, and
transportation times set to zero.

Van den Broek [11] later proposed an integrated local search approach using simulated annealing,
which outperformed all previous methods and was able to solve the complete problem for real-world
instances [10]. It is currently being used by NS and several improvements have been proposed to
enhance its performance, including improvements to the initial plan, and using machine learning to
predict the feasibility of a search and decide whether to continue or abort the search [22].

In the thesis by Stelmach [26], a proactive-reactive rescheduling strategy was analyzed, where the
local search method itself is also used for repairing infeasible plans. Kleine [17] and van der Broek [9]
analyzed several robustness measures to predict the feasibility of a plan. Their findings include that
measures based on the normal approximationmethod or minimum slack showed the highest correlation
with robustness of a plan. With these findings, they were able to improve the robustness of the created
plans by adding the robustness measures into the objective function.

11
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These local search methods are effective at finding feasible solutions relatively quickly for real-world
instances. However, due to the random nature of the search operations, no apparent strategy is found
in the resulting shunting plans. The correlation between the minimum slack and the robustness of a
plan is used as the basis for the the proposed algorithm in section 5.2.3

2.3. Policies for the Shunting Problem
2.3.1. Constructing a Policy
Some research has been performed that looks at greedy heuristics to generate a solution

Van den Akker et al. proposed two solutions [1], a greedy heuristic and a dynamic programming
solution. Their approach is based on the ”be ready for departure” principle, meaning that trains should
already be combined and waiting in the correct configuration before their departure. To accomplish
this goal, the problem is solved backwards. Departed trains are assigned to a shunt track where they
came from, and later matched to arriving train units. It is able to create feasible solutions quite fast for
smaller problem instances, but as mentioned by the authors, may not be of much practical use without
additional improvements.

Haahr et al. [15] compared multiple solution approaches, including constraint programming, col-
umn generation, and a randomized construction heuristic. The construction heuristic is a two-stage
method that solves matching and parking separately, iteratively evaluating one path very quickly with
random seeds until a feasible solution is found or a time limit is reached. The randomized construction
heuristic was able to solve almost all instances within a fraction of a second. However, some harder
and artificially generated instances were left unsolved. The method also did not consider the servicing
aspect of the problem.

Beerthuizen [5] proposed two greedy strategies based on container stacking, including a Type-
Based-Strategy which stacked units based on similarity of train type, and an In-Residence-Time-Strategy
which assigned a priority to each train unit based on the departing sequence. Donker [24] looked at
the influence of resource and temporal constraints. Results indicated that temporal constraints had a
larger influence on the problem.

Greedy heuristics are useful because they run in a very short amount of time and can quickly gen-
erate plans. However, they may not always provide feasible solutions on their own and would have
to be used in combination with additional methods. In Appendix C, we look into some addition search
methods that use a greedy heuristic as the based policy An analysis of the policies based on the greedy
heuristics is given in Appendix B

2.3.2. Learning a Policy
Recently, there has been some amount of work on using machine learning to solve the shunting prob-
lem.

Peer et al. [23] modeled the problem as a Markov Decision Problem and used deep Q-learning to
learn a policy for deciding which actions to take. To incorporate uncertainty, the model only knows about
the train composition of the first m arrival and departure events, and for events further in the future, it
only knows the total number of carriages. In addition to looking at the number of solved instances,
the authors also measured the consistency of the generated plans. This work was later extended to
include servicing [19].

Another approach was taken by Zhong [27], who used supervised learning with data generated from
a local search method. A neural network was used to learn a policy and a tree search was used to find
a feasible solution. The authors asked the question what search strategy works best for the problem
using the policy network as a heuristic, and found that the Monte Carlo Tree Search method was the
best out of the three that were tested.

In his work, Bao [4] presented a solution that uses Decision Trees to train a predictive model for
determining the next action in a sequential decision-making process. This approach is able to quickly
react in the face of uncertainty. One of their main considerations is about the stability of the generated
plan. The robustness is defined as the number of unique solutions generated from the test set, with
the goal to solve more problems with fewer unique solutions.

Nieuwelaar [21] proposed a solution that involves two sequential steps: first, a deterministic agent
is trained using iterative Bayesian Optimization, and second, when the deterministic agent cannot dis-
tinguish between different actions, the Monte Carlo Tree Search method is used. They also analyzed
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the impact of problem-related contextual information, and found that it has poor generalization to unen-
countered problem instances.

The methods discussed provide a policy that can be used in every possible state to determine the
next action, making them suitable for handling disturbances. However, it should be noted that the
best action provided by the policy does not guarantee a feasible plan for the remainder of the problem.
Moreover, all of these methods still assume a deterministic environment.



3
Background

3.1. Markov Decision Process (MDP)
A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making in

environments that exhibit the Markov property. The Markov property states that the future state of a
system depends only on its current state and not on its past states.

An MDP is formally defined as a tuple M = (S,A, T,R) where

• S is the set of all possible states (the state space)
• A is the set of all possible actions (the action space)
• T (s′|s, a) is the probability that action a in state s will lead to state s′

• R(s, a) is the reward after applying action a in state s

In an MDP, an agent interacts with its environment by taking actions at each decision moment. The
agent receives a reward for each action it takes and the environment transitions to a new state as a
result of the action. The agent’s goal is to maximize its cumulative reward over time by selecting actions
that lead to states with high expected rewards.

Figure 3.1: The interaction between an agent with its environment in a Markov Decision Process

The solution to an MDP is represented by a policy, denoted as π(s). The policy is a function that
maps states to actions. It determines which actions that agents chooses. The objective is to find a
policy that maximizes the expected reward.

The value of an action a in a state s under a policy π is notated with:

Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a]

14
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3.2. Partially Observable MDP
A Partially Observable MDP (POMDP) is a framework that extends the MDP. In contrast to an MDP, the
current state is not perfectly known. The environment provides observations to the agent, which has
to be used to estimate the actual state.

A POMDP is defined as a tuple (S,A, T,R,B,O), where

• S,A, T,R are the same as in MDP
• B is belief vector of belief state, which represents the agent’s estimate of the current state
• O is the set of observations that the agent can observe about the current state from the environ-
ment

3.2.1. Belief State
The belief state represent the agent’s uncertainty about the current state of the environment. For each
possible state, the belief state assigns a corresponding probability, indicating the likelihood of the agent
being in that particular state.

The belief state b is represented as a belief vector:

b =


b1
b2
...
bN


• b is the belief vector
• bi element corresponds to the probability of being in state i

• N total elements, where N is the number of possible states

Since the belief vector b is the probability distribution over the possible states, is satisfies the prop-
erties of a probability distribution, meaning each element has to be non-negative (bi ≥ 0), and the sum
of all elements equal 1 (

∑N
i=1 bi = 1)

The value of a particular action in a belief state can be computed by the weighted sum of the action
values for each individual state in the belief vector:

Q(b, a) =
N∑
i=1

Q(si, a) · bi

The value Q(b, a) represents the expected return when taking action a in the belief state b.

3.2.2. Particle Filter
A particle filter can be used to approximate a probability distribution. This can be useful when there is
large state space, as it might be intractable to keep track of the exact probabilities in the belief state.

The particle filter is a set of particles, where each particle corresponds to a specific state. These
particles are sampled from the set of possible states, according to their probabilities. Mathematically,
the set of particles P can be represented as:

Pt = {(s1, p1), (s2, p2), ..., (sK , pK)}

• K is the total number of unique states in the set
• pi corresponds to the number of particles corresponding to state si

The particle filter is used to estimate the true probabilities in the belief state. The probability of being
in a specific state s can be estimated using the following formula:

b̂t(si) =
pi∑N
j=1 pj

• b̂t(s) is the estimated belief in state s at time step t



3.2. Partially Observable MDP 16

3.2.3. Non-Observable MDP
A Non-Observable MDP (NOMDP) is a special case of a POMDP, where the agent receives no obser-
vations during the entire process. This can be modeled by lettingO = {o}, where the same observation
is given for each observation moment, such that is reveals no information about the current state. To
solve a NOMDP, the agent has to choose its actions solely on its own predictive model, as it cannot
improve its knowledge about its current state.



4
Representation of Initial Shunting

Plans

This chapter focuses on answering the first research question (1), which is:

1. How can action sequences be used as initial shunting plans by mapping them to Partial
Order Schedules?

To answer this question, we first explain the issue of using the output of a sequential problem
formulation to create initial shunting plans compared to using the Partial Order Schedule, which is
used in practice. Next, we describe how we can map the action-sequence to a Partial Order Schedule.
Afterwards, we explain how a Partial Order Schedule is executed in a sequential problem environment.

4.1. Sequential Problem Formulation
In this thesis, we consider a sequential formulation of the shunting problem, modeled as a Markov
Decision Process (MDP). The states within this model describe the current positions of all trains on
all tracks with the required service tasks that need to be performed on each train and the ongoing
activities. The action space consists of the possible movements, service tasks and the possibility
to wait for the next decision moment. The transition function is mostly deterministic in its effect, as
movement will always transfer the related train to its chosen destination and service actions eventually
will be completed. However, the transition function introduces variability in the duration of the actions.
The MDP formulation is explained in greater detail in Appendix A.

The output of this problem formulation results in a sequence of actions denoted as τ = (a0, a1, ..., an).
This sequential nature comes from the fact that each action is chosen one after the other. Since we are
interested in creating initial shunting plans, the chosen decisions from the action sequence have to be
repeated during the execution of this plan. However, if we simply repeat the action-sequence exactly
as a total order schedule, it can become overly restrictive in practice. The conditions during executions
of the plan often deviate slightly from each other. This may lead to instances where the next action in
the sequence is infeasible, even though the overall decisions stored in the sequence would be feasible
under different circumstances, but just not in the exact same order as represented in the sequence.

In practice, an initial shunting plan is represented as a partial order schedule (POS). This POS con-
tains all the scheduled activities and their relative order of execution. This representation allows the
possibility of performing activities in parallel, as long as they don’t interfere with each other. To utilize the
benefits of a POS, we implement a mapping that transforms each action-sequence into a correspond-
ing partial order schedule. This mapping effectively decouples the action-sequence from any irrelevant
orderings within the sequence. In summary, even though the initial shunting plan is constructed as a
sequence of actions, it is subsequently interpreted and executed as a partial order schedule.

17
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4.2. Create POS from Action Sequence
The partial order schedule is represented with a set of train activitiesA and a set of precedence relations
POS. The activities consists of arrivals, departures, movements, and services, with each activity being
specific to a particular train. The precedence relations ensure that activities of the same train or activities
using same service resource are performed in the correct order. Each action that involves a movement
requires the movement-resource, as only one train can move at the same time. Each action to start a
service tasks requires the service-resource, as a crew can only service a single train simultaneously.
Actions on the same train need to be performed in their specified order.

During the planning phase within the simulated environment, the ideal next action is not always
available yet. There are cases where it is necessary to wait for a specific resource to become available
before the activity can be performed. In these cases, the agent may opt to wait until the preferred
next action becomes feasible. However, the waiting actions themselves are irrelevant in the creation
of the partial order schedule, because waiting for the completion of previous activities is implied by
the precedence relations. Therefore, all waiting actions in the action-sequence are disregarded when
converting the sequence to a partial order schedule.

To transform the action-sequence into a partial order schedule (POS), we start with an empty activity
set A and an empty precedence set POS. We add each activity with their corresponding precedence
relations by iterating over the actions in the sequence. Each waiting action is ignored. Every other
encountered action is added to the activity set A. For the resource that the action requires, we add
a precedence relation with the previous action that required the same resource. For the train that is
associated with the action, we add a precedence relation with the previous action of that train.

4.3. Execute POS sequentially
Once an initial shunting plan is formulated as a partial order schedule derived from an action-sequence,
the plan can be executed within the sequential problem environment. During each decision-making
moment, the agent receives a set of valid actions from the environment, allowing it to select the next
course of action. The agent chooses the next action action according to the POS. However, there
may be instances where none of the available action should be chosen according to the POS. For
example, it may be needed to wait for the completion of a currently ongoing movement or service task,
so the corresponding resource can be freed up In such cases, the agent chooses the the ”wait” action,
effectively delaying the next decision until the conditions for the next action in the POS are satisfied. If
the ”wait” action is also unavailable, the execution is considered to be failed, and the simulation episode
is terminated.
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4.4. Example
Figure 4.1 shows a simplified example of a Partial Order Schedule. It contains two trains with a move-
ments for each train and a service activity. Table 4.3 shows two different realizations. Although both
action sequences are almost completely different, they both correspond to the same plan.

In the first realization, the second train is immediately ready to move after the first movement is
finished. The service tasks of the first train is chosen right after the second is instructed to move.

In the second realization, the second train is yet ready to start moving after the first movement, due
to some other precedence constraint that is not yet satisfied. The service tasks of the first train can be
started without any delay. Before the second is able to move, it first needs to wait for its previous action
to be finished.

Figure 4.1: Simplified example of a Partial Order Schedule. First, train 1 makes a movement towards another track. After this
movement is finished, train 2 is allowed to move. At the same time, train 1 can start its service task.

Action Train Tracks
... ... ...
Move (1) 1→ 2
Move (2) 3→ 1
Service (1) 2 ←−

Table 4.1: Action Sequence 1

Action Train Tracks
... ... ...
Move (1) 1→ 2

−→ Service (1) 2
−→ Wait - -

Move (2) 3→ 1

Table 4.2: Action Sequence 2

Table 4.3: Two possible realizations of the same initial shunting plan shown in Figure 4.1. Since both the service action and
the second movement can start at the same time, their order in the sequence does not matter.
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Creating Robust Action-Sequences

This chapter focuses on answering the second research question (2), which is:

2. How can alternative outcomes be considered during the planning phase, either directly
or indirectly?

To answer this question, we propose two approaches for creating action sequences. Both methods
are aimed to address the limitation of using a regular policy-rollout to extract an action sequence from
a policy. The issue with a normal rollout is that most of the possible outcomes are not considered, as it
is only based on a single realization, making the overall plan not robust to other plan realizations. So
instead of doing a normal policy-rollout, we propose do it in a way such that other possible outcomes
are taken into account as well.

The first method, referred to as the Probabilistic Action Planner (PAP) aims to account for every
possible outcome directly. The second method, referred to as the Adaptive Difficulty Algorithm (ADA)
strategically focuses on a single outcome to account for most alternatives indirectly.

5.1. Probabilistic Action Planner (PAP)
During the construction of the initial shunting plan, it is not known with certainty the exact states that
are going to be encounter during the execution. This uncertainty arises from the necessity to create
the plan in advance, before any observations about the outcomes of any chosen action can be made.
This means that the problem has the characteristics of a Non-Observable Markov Decision Process
(NOMDP), because no observations can be made during the entire planning process.

By viewing the problem as a NOMDP, we can use existing techniques to solve this version of the
problem effectively. We use the notion of a belief state to represent the uncertainty during planning,
and approximate its probabilities values using a particle filter. Note that since we cannot make any
observations, the belief state is solely used for predicting future states, and can never improve its
estimation of the current state over time through observations. To solve the NOMDP, we use Monte-
Carlo planning.

First, we explain how to problem is transformed to a NOMDP, and what the differences are com-
pared to the original MDP problem. Next, we describe what the optimal action-value would be if we
would already know what the best continuation is after each action at any decision moment. However,
since we don’t know the best continuation yet during planning, we use Monte-Carlo simulations of the
given policy to approximate the action-values. Given the exponential growth in the number of possible
states with the increase in decision moments and outcomes, keeping track of the exact belief state is
computationally infeasible. Therefore, we use a particle filter-based approach to represent the belief
state. Finally, we provide the pseudocode implementation of the overall PAP procedure.

20
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5.1.1. Transform MDP to NOMDP
In this thesis, we consider a sequential formulation of the shunting problem, modeled as a Markov
Decision Process (MDP). The states within this model describe the current positions of all trains on
all tracks with the required service tasks that need to be performed on each train and the ongoing
activities. The action space consists of the possible movements, service tasks and the possibility
to wait for the next decision moment. The transition function is mostly deterministic in its effect, as
movement will always transfer the related train to its chosen destination and service actions eventually
will be completed. However, the transition function introduces variability in the duration of the actions.
The MDP formulation is explained in greater detail in Appendix A.

Sincewe cannotmake any observations during the entire planning process, the original MDP problem
can be viewed as a Non-Observable MDP (NOMDP). Despite this shift, the problem definitions can in
principle remain unchanged. The state space, the action space, the transition function and the reward
function all remain exactly the same, with the only difference being the addition of a belief state to
track the probabilities associated with being in each state. Note that the belief state itself does not
require any knowledge about the representation of the individual states. It only needs to know about
the corresponding probability of being in each particular state.

Although the action space remains the same as the original MDP, some additional definitions are
useful to include to describe how the actions interact with the newly introduced belief state. An important
note is that it may be be possible for all actions to be executed in any state. For example, a parking
action can only be selected when there is no ongoing movement. From the original MDP formulation,
we are given a set of valid actions for every state. But when the current state is uncertain, actions may
be feasible only in a subset of possible states in the belief state. The set of valid actions in a belief state
is defined to be the union of valid actions across all individual states, as mathematically expressed by

validActions(b) =
K∪
i=1

validActions(si)

The output to the NOMDP version of the problem is represented as a single sequence of actions.
This action sequence will be used as the initial shunting plan, where the sequence describes the relative
order in which activities are scheduled. Any waiting actions are therefore not relevant, as they do
not correspond to specific activities. Most waiting actions are only needed as prerequisites for other
actions, such as waiting for the completion of an ongoing movement before another movement can
start. Therefore, waiting actions are filtered out in the Partial Order Representation of the final plan, as
described in Chapter 4. What this means during the planning phases, is that any additional insertions
of waiting actions can be made, without influencing the resulting shunting plan.

POS({A,B}) = POS({A, wait, B}) = POS({A, wait, wait, B}) = ...

To use this property, we can allow actions to be chosen in states that require additional waiting actions
before the chosen action can be applied. What this means for the NOMDP definition, is that any chosen
action that is not valid for a particular state within the belief state can still be attempted by repeatedly
applying a wait-action until it becomes feasible. Only in cases where waiting does not lead to a state
where the chosen action becomes possible is the action, along with the associated rollout, considered
invalid. These cases arise due to the uncertainty of the transitions, making it impossible to know with
certainty whether the pre-conditions of an action will be met by waiting first.
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5.1.2. Optimal Action Value
The problem contains stochastic transitions that reflect the real-world, such as probabilistic durations
for the service tasks and probabilistic arrival times around their scheduled time for each train. The
optimal plan is a single sequence of actions that maximizes the probability of reaching the goal state:

τ∗ = maxτ (E[R(τ)])

The action-value function of a trajectory gives the expected return if you start in state s, take an arbitrary
action a, and then act according to the given trajectory τ in the environment

Qτ (s, a) = E[R(τ)|s0 = s, a0 = a]

For a belief state, the action-value is the weighted average of all the action-values from the belief state.

Qτ (b, a) =
N∑
i=1

Qτ (si, a) · bi

The optimal action-value of the belief state uses the best future action sequence, that maximizes the
weighted value across all states. Note that we have use the same future action sequence for each
individual state.

Qτ∗
(b, a) = maxτQ

τ (b, a)

= maxτ

N∑
i=1

Qτ (si, a) · bi = maxτ

N∑
i=1

E[R(τ)|s0 = s, a0 = a] · bi

5.1.3. Approximate Action Value
Calculating the optimal action-values leads to two significant issues.

The first issue is the number of possible states increases exponentially with the number of decision
moments and outcomes, so keeping track of the exact belief state is computationally infeasible. There-
fore, we use an method known as a particle filter, which provides an approximation of the belief state,
which we denoted as b ≈ b̂. The details about the belief state and its approximation are elaborated in
the next subsection.

The second challenge arises from the recursive relation in the optimal action-value calculation. De-
termining the value of an action requires knowledge of the optimal sequence of future actions. However,
this sequence is determined by the action value function. This makes calculating exact values an ex-
ponentially complex problem. To address this, we opt for a simpler solution, where we replace the
unknown optimal future action sequence with rollouts of the given policy, expressed as τ∗ ≈ τ ∼ π.
Since it is assumed that this policy is optimized for reaching the goal state, it might provide a reasonable
estimate of the value that the best overall plan for the current belief state would give. In other words,
we sample rollouts from the optimized policy starting from each individual current state as replacement
of the overall optimal sequence for every current state.

Combining these two changes, we get the following formula as an approximation to the optimal
action value:

Qπ(b̂, a) ≈ maxτQ
τ (b, a)

=

N∑
i=1

Qπ(si, a) · b̂i =
N∑
i=1

Eτ∼π[R(τ)|s0 = s, a0 = a] · bi

This formula allows us to make decisions by selecting the action with the highest estimated value at
each decision moment, optimizing the expected reward:

at = argmaxa(Q
π(b̂t, a))
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5.1.4. Approximate Belief State
The shunting problem has a very large state space, as there are many possible ways to assign the
trains to the tracks, and a wide range of potential value for the current time. Moreover, the number
of state in the belief vector increases exponentially with each action taken. This exponential growth
makes it impractical to calculate the exact probabilities of the belief state. To address this issue, a
particle filter is used as an approximation technique.

After selecting an action a, the belief state is updated according to the action and the possible
transitions of the environment. To obtain the updated belief state, new particles are sampled. First, a
state s is randomly sampled from the existing belief state. If the chosen action a is not feasible in the
sampled state s, the await action is first repeatedly applied until either the action becomes available, or
the await action becomes unavailable

When the chosen action a is feasible, a new state is obtained from the simulation environment by
applying the action to the state s. Since the transitions are non-deterministic, there are several potential
outcomes. The new state s′ is then added to the set of new particles. This process continues until K
new particles are added. The pseudocode of the procedure is provided in Algorithm 1.

Algorithm 1 Update Belief State
1: function updateBeliefState(P, a,M )
2: P ′ ← ∅
3: while |P ′| < M do
4: s← sampleState(P)
5: while a /∈ validAction(s) and await ∈ validAction(s) do
6: s← apply(s, await)

7: if a ∈ validAction(s) then
8: s′ ← apply(s, a)
9: P ′ ← P ′ + s′

10: return P ′

The initial state s0 is always known with certainty at the beginning of the planning phase. Therefore,
the initial belief vector can be initialized by assigning zeros to all possible states except for the initial
state s0, which is assigned a value of 1. In case of the particle filter, only a single particle corresponding
to the initial state needs to be included.

P0 = {(s0, 1)}

5.1.5. Optimize Selection
To optimize the selection of actions at each iteration, we apply the Upper Confidence Bound (UCB). In
each iteration, an actions is chosen based on a trade-off between exploration and exploitation. The
UCB selects actions based on their estimated value and exploration potential. The more rollouts are
performed after selecting a certain action, the more accurate the estimate of that action becomes. This
allows the algorithm to focus on actions with higher values, as they are more likely to be chosen as the
final action. Actions that are unlikely to be chosen as the final action do not require as much exploration.
Instead, the algorithm prioritizes exploring actions with higher values to improve their accuracy and
enable a more reliable comparison between them. The action selected in the n-th iteration is given by:

an = argmaxa(Q
π(b̂t, a) + C

√
ln(n)
N(a)

)

• ai the action selected in the n-th iteration
• C is the exploration constant
• N(a) is the number times a was selected
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5.1.6. Implementation
We apply Monte Carlo rollouts to evaluate the value of each possible action. The value of each is the
expected reward that will be received after taking the action, which in this case is the probability of
reaching the goal state without any constraint violations. The pseudocode of the algorithm is provided
in Algorithm 2

Algorithm 2 Probabilistic Action Planner
1: function ProbabilisticActionPlanner(I, s0, N,M )
2: sequence← ∅
3: P = {(s0, 1)} ▷ Initialize the particle filter
4: while P is not terminal do
5: for a ∈ validActions(P) do
6: V (a)← 0
7: N(a)← 0

8: for i← 1 to N do
9: a← maxa(

V (a)
N(a) + C

√
ln(i)
N(a) ) ▷ Use UCB to select actions

10: s← sampleState(P)
11: s′ ← apply(s, a)
12: R← rollout(s′, π)
13: V (a)← V (a) +R
14: N(a)← N(a) + 1

15: a← maxa( V (a)
N(a) )

16: sequence← sequence+ a
17: P ← updateBeliefState(P, a,K)

18: return sequence
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5.2. Adaptive Difficulty Algorithm (ADA)
In this section, we introduce the Adaptive Difficulty Algorithm (ADA). This approach is designed to
increase the efficiency of the decision-making process compared to the Probabilistic Action Planner
(PAP), which uses every possible state when choosing its actions, which can be computationally inten-
sive. At the same time, ADA also aims to address the limitation of a regular policy rollout for extracting
robust sequences. Instead of just using the expected outcomes of each action during the planning
process, ADA tries to strategically focus on a single outcome, such that most alternative outcomes are
also indirectly taken into account.

The main idea behind ADA idea relies on the fact that the transitions are entirely deterministic, except
for the variability in the durations each activity takes, and the variability in the arrival times. As a result, it
is always possible to transition to a state which is more ”delayed”, simply by waiting. By only considering
the states resulting from delayed outcomes, we indirectly account for all alternative outcomes that are
less delayed, as the state resulting from these outcomes are able to reach the considered state by
waiting for some time. However, if the amount of delay we consider is too large, the problem might
become unsolvable, because there is not enough available time to finish each required task. Therefore,
we propose a simple solution, which is to iteratively increase the delay we consider during the planning,
until we can no longer solve the problem.

5.2.1. Transition Structure
Within the formulated environment, the effect of each action is mostly deterministic in how the state
changes. Any chosen action will always be executed as specified, without impacting unrelated compo-
nents of the state. The only uncertainty about the resulting state arises from the variability in durations
of the activities and the uncertainty about the delays in arrival times. Durations are sampled from the
corresponding probability distribution, leading to some actions completing earlier than expected while
others experience delays. This variability in durations influences the time of the states at each deci-
sion moment, where the longer an action takes, the more delayed the resulting decision time in the
subsequent state becomes.

It is important to note that there is the option to choose the ”wait” action. By choosing this action, the
current time of the state is increased without making any changes to other components of the state.
This allows us to always transition from a ”less delayed” state to a ”more delayed” state simply by
waiting for some time, without choosing any other actions.

Figure 5.1: After performing an activity in state st, there are several possible resulting states, depending on the duration of the
activity. The states with a shorter duration (sc and sb) can always transition to a state with a larger duration (sb and sa

respectively) by waiting for some time.

As a result, for every path between a certain state si to the goal state, there exists a path to the goal
state from all other states sj that are identical in all aspects except for their current time t. Specifically,
the current time of these states (tj) is lower than that of si (ti). This is possible because these states
can always wait for a duration of ti − tj to transition to state si.
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The ability to transition to other states by waiting is exploited by ADA. Rather than explicitly consid-
ering every reachable state, only the states that are reached after a larger duration are looked at. By
doing so, all alternative states with lower durations are implicitly taken into account. This is because
these alternative states can always reach the more delayed state by waiting for the time difference
between them.

An important consequence of this approach, is that the environment becomes deterministic again,
as the same outcome of each action is used during planning. This deterministic property allow for the
possibility of applying additional search techniques that assume a deterministic environment. These
additional search techniques can be used to find feasible plans when a single iteration does not imme-
diately lead to a valid shunting plan.

5.2.2. Which Transitions to use?
One question that arises is which transitions should be used during the planning phase. Ideally, the
transitions with the largest durations should be selected. By using these transitions, all other possible
transitions are implicitly covered. This approach ensures that if there exists a feasible path to the goal
state from this most delayed state, all other states also have the ability to follow this path by first waiting
some time to reach the most delayed state, after which the path the goal can be followed. In this case,
the plan is guaranteed to remain feasible with respect to the considered disturbance model, since there
are no transitions that reach a state that cannot reach the goal state.

Figure 5.2: The possible transitions to new states after choosing the sequence of actions {a0, a1, ..., an}. Each action has
several possible durations ti ∈ {20, 25, 30}, which result in a different state Si.

If the most delayed transition is used to determine the decisions, a feasible path to the goal state is guaranteed for every
alternative outcome. However, there might not always be such a path, indicated by the red dotted line to the goal state Sn.

An issue arises when using the worst-case transition at every decision moment during the planning
phase. In such an environment, it may be impossible to reach the final goal state since there may not
be enough time to allow for waiting after each action. For instance, if the maximum possible duration
of every service task is used, there might not be enough total available time to finish all the required
service tasks before the given deadlines. Consequently, it may not be feasible to achieve robustness
against every possible realization of the durations. However, the objective is not to guarantee 100%
feasibly of the plans, but to be as robust as possible for the majority of scenarios.

The solution needs to use durations that cover a significant portion of the possible transitions while
still ensuring feasibility. The aim is to select the durations that cover most of the potential variations in
transitions without sacrificing the ability to generate a viable shunting plan. By striking this balance, the
resulting plan is not only valid but also likely to remain feasible for the majority of possible transitions.
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5.2.3. Find Maximum Threshold
The Adaptive Difficulty Algorithm (ADA) aims to find the optimal durations to use for the transitions
that cover the maximum number of possible outcomes while still ensuring the ability to construct a
feasible plan using these transitions. By increasing the considered durations, the algorithm effectively
increases the slack for each activity. This additional time acts as a buffer, allowing each activity to be
delayed without effecting the rest of the solution. However, if this buffer time is too high, it won’t be
possible to create a feasible plan, since the buffer time is not used to progress toward the goal state.
On the other hand, setting the buffer time too low compromises robustness against certain outcomes.
When an activity exceeds the buffer time, it affects subsequent actions by reducing their available time,
potentially risking the ability to meet a deadline.

Figure 5.3: The Adaptive Difficulty Algorithm iteratively finds a feasible solution in a deterministic environment. The durations
that used for the transitions are increased each iteration, providing more buffer time to each activity, and covering a larger

number of possible outcomes.

A shunting plan is considered valid, if it reaches the goal state under the expected circumstances.
The Adaptive Difficulty Algorithm (ADA) begins by finding an initial valid plan under these conditions.
It then proceeds to iteratively increase the durations used for the transitions. By doing so, ADA con-
tinuously pushes the boundaries of the worst possible states that the plan can handle. This process
continues until ADA is no longer able to generate a feasible plan. The last valid plan obtained during
this process is returned as the final solution. The underlying assumption is that each iteration’s plans
increase the robustness since they provide each activity with a larger buffer time, thereby covering a
larger number of possible outcomes.

Algorithm 3 Adaptive Difficulty Algorithm
1: function AdaptiveDifficultyAlgorithm(I, faugmentDifficulty) ▷ I is the problem instance level
2: bestSolution← null
3: while true do
4: solution← solve(I) ▷ Solve instance at current difficulty level
5: if solution ̸= null then
6: bestSolution← solution
7: I ← faugmentDifficulty(I) ▷ Increase difficulty level
8: else
9: break

10: return bestSolution
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5.3. Summary
In this chapter, we explained two distinct solution methods for creating robust initial shunting plans, the
Probabilistic Action Planner (PAP) and the Adaptive Difficulty Algorithm (ADA).

PAP is designed to account for every possible outcome in the shunting process directly. This ap-
proach is based in the theoretical optimal strategy, which seeks to maximize the probability of suc-
cessfully reaching the goal under probabilistic transitions. It does so by predicting the future state
probabilities with the belief state, and determining the optimal future action sequence. However, since
calculating these values exactly is computationally infeasible, PAP approximates the optimal future
action sequence through individual policy rollouts and uses a particle filter to approximate the belief
state.

On the other hand, ADA takes a different approach by not directly addressing every possible out-
come. Instead, ADA leverages the transition structure to indirectly account for a majority of potential
outcomes. It does this by augmenting the policy with additional buffer time, or slack, after each activity.
Actions are then selected based on this augmented policy. The main concept is that introducing more
slack leads to more robust plans. However, inserting too much slack may render the problem infeasible,
as there is insufficient time remaining for all required tasks. Therefore, ADA uses an iterative approach
to progressively increase the amount of slack and generate new plans until it can no longer do so. The
final plan is chosen from the last valid iteration, since it contains the maximum amount of slack.

Method Action Selection Description
baseline at = π(st) normal policy rollout. use deterministic transitions
theoretical optimum at = argmaxa(maxτQ

τ (bt, a)) maximize probability of reaching the goal
with optimal future action sequence

PAP at = argmaxa(Q
π(b̂t, a)) approximate optimal future action sequence

with rollouts from the policy
ADA at = maxx(π

′
x(st)) augment the policy by waiting additional time x

after each activity. use deterministic transitions

The resulting initial shunting plan is constructed from the sequence of actions, denoted as τ , which
can be extracted by iteratively selecting actions starting from the initial state s0.

However, for both the baseline and ADA methods, actions are determined based on a single state,
where deterministic transitions to subsequent states can be used. This enables additional search tech-
niques to find valid sequences, in case the direct rollout of the policy does not produce a valid action
sequence. In such cases, the policy is used as a guide for the search algorithm to discover a valid
sequence:



6
Experimental Setup

To evaluate the performance of the proposed algorithms, we require a set of problem instances for
testing. The problem instances are generate artificial generation based on realistic data, where we use
the same values used in prior research to maintain consistency whenever available. The first section
outlines the procedure for generating the artificial problem instances.

Afterwards, the details of how the experiments are conducted are explained. This includes a dis-
turbance model responsible for introducing uncertainty, and the settings for each algorithm with their
hyperparameters, the base-policy that is used, and the additional search method. We conclude with a
series of experiments designed to address our research questions and define the relevant metrics for
evaluating the outcomes.

6.1. Artificial Instances
We design a problem generator to create artificial problem instance that are similar to real-world sce-
narios. It uses a modified layout based on a real shunting yard, and samples each problem component
according to realistic probabilities. Whenever available, we use the same values used in prior research
to maintain consistency.

Layout The layout used as a reference for the experiments is the ”Kleine Binckhorst”, as shown in
Figure 1.1. This shunting yard is often used for evaluating solution methods for the shunting problem.
The layout in the experiments is not exactly the same, but it does share some important similarities. It
includes two designated tracks for cleaning tasks and one track for washing. The parking tracks range
from 52 to 59 and can also be used for maintenance inspection tasks. The remaining tracks are not
considered as they are not intended for parking trains. In the experimental setup, each track is modeled
as a First-In-First-Out (FIFO) track.

Figure 6.1: Caption

29
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6.1.1. Instance Generator
To simulate realistic scenarios, the problem instances are generated to resemble real-world situations.
The timetable of incoming and departing trains, the probability of each train type arriving and their
respective set of required service tasks are all sampled based on realistic distributions.

Table 6.1 contains the probabilities that are used to determine the arrival probability with their corre-
sponding service tasks. The table displays the probability of arrival, as well as the probabilities that a
specific service tasks is required for the train type. All incoming trains require internal cleaning at one
of the service tracks. The majority of trains also require a maintenance inspection. A smaller set of
trains also requires an additional service task of external washing.

Sub-type Arrival Cleaning Washing Maintenance
SLT-4 0.28 1.00 0.16 1.0
SLT-6 0.17 1.00 0.16 1.0
VIRM-4 0.41 1.00 0.16 0.58
VIRM-6 0.10 1.00 0.16 0.58
DDZ-6 0.04 1.00 0.16 0.58

Table 6.1: The train type distribution and the probability that a service task has to be performed on a train type [8].

Table 6.2 provides an overview of the properties of each train, including the length and average
service time for each service type. The washing durations are very similar between the different train
types. However, the duration for internal cleaning varies a lot, depending on the length of the train. For
all experiments, it is assumed that a single service crew is present on the shunting yard to perform
maintenance checks throughout the entire planning period, since the service crew can be scheduled
after the creation of the initial shunting plan. The walking times of the maintenance crew between the
trains is not directly taken into account. The walking times are relatively short and are not expected to
have a significant impact on the result, and including these time would increase the complexity of the
model by making it dependent on the physical layout of the tracks. It can however be viewed as being
part of the uncertainty about the duration.

(# carriages) average duration (min)
Train Subtype length Cleaning Washing Maintenance

SLT-4 3 15 23 23
SLT-6 4 20 24 27
VIRM-4 4 37 24 10
VIRM-6 6 56 26 14
DDZ-6 6 56 26 18

Table 6.2: Properties of the different train subtypes. The number of carriages and the average duration in minutes for each
train subtype [8].

Event Distribution The arrival and departure times in the problem instances are sampled from the
probability density functions displayed in Figure 6.2. The planning period always starts at 18:00, and
either ends the next day also at 18:00 in case a full day is considered, or at 06:00 in case only the night
shift is considered. The departure times are slightly biases towards later times, as they are resampled
whenever a departure would need to occur before a corresponding train has arrived.
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Figure 6.2: The probability density functions of the arrival and departure times [7]

6.2. Experimental Setup
6.2.1. Data Generation
In our experimental setup, we generate artificial problem instances with increasingly more train units in
the range from 2 to 40. These values cover a wide range of different problem sizes, so the performance
of the algorithms can be compared across problem size, along with the scalability towards larger prob-
lems. The instances are generated based on realistic distributions, as described in Section 6.1, and
cover a full 24-hour day planning horizon. The main goal of thesis thesis is to investigate the robust-
ness of shunting plans created by different methods. To ensure the generated instances are solvable,
each instance is first solved by the deterministic method. If no solution is found in the deterministic
setting, the instance is rejected and another one is generated. This guarantees that all instances used
in the experiments are solvable, and allow the approaches to create plans that can be evaluated on
robustness.

When there are more trains, it becomes more challenging to park all the trains on the yard. To get a
sense of the difficulty, we show themaximumnumber of carriages that have to be parked simultaneously
within the shunting yard for each problem size in Figure 6.3. The graph also displays the combined
capacity of the parking tracks and the total capacity of the shunting yard that includes the service tracks.
Although the service tracks are not intended for parking, they are used temporarily for trains to perform
specific service tasks. Some problem instances with 30 train units or more start to exceed the total
capacity of the parking tracks. This means that some trains will have to remain on the service tracks
for some duration to deal with the limited space. Or course, none of the generated instances exceed
the total capacity of the shunting yard, as such instances would be unsolvable and therefore rejected
during the generation process.
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Figure 6.3: The maximum number of train carriages that need to be stored on the shunting yard simultaneously for the
generated problem instances. The parking capacity is the sum of all lengths of the parking tracks. The total capacity also

includes the lengths of the service tracks and is a hard limit on the number of carriages that can be stored.

6.2.2. Disturbance Model
In this thesis we focus on creating shunting plans that are robust to smaller, more frequent disturbances.
Therefore, we only consider two sources of uncertainty: the arrival times of each train and the variable
durations of service tasks. To account for the variability in train arrivals, we sample arrival times from a
uniform distribution with a span of 10 minutes around the scheduled times. The duration of service ac-
tivities is modeled with positive values proportional to the predicted duration, drawing from a log-normal
distribution centered around the mean duration with a variance of σ = 0.3. Both these distributions are
chosen to be similar to those used in [6], which is the current state-of-the-art method for creating robust
initial shunting plans.

Any single unconditional shunting plan has the inherent risk of becoming infeasible during execution
if there are significant changes to the input, caused by some disturbance. Since a shunting plan de-
scribes the relative sequence in which trains are intended to move, a change in arrival order would also
require the movement order of the related trains to change. However, since our focus is on addressing
the smaller, stochastic variations in the environment, it does not provide much additional value to incor-
porate these scenarios in the experiments. Therefore, to avoid cases where the arrival order changes,
we re-sample the arrival times whenever it would change the arrival order for two consecutive trains.
This ensures that all trains arrive in their prescribed order.

6.2.3. Hyperparameters
The base-policy provided as input for each approach is the one chosen in Appendix B. This policy is
a greedy heuristic rule-based method, which tries to keep trains of the same type on the same tracks.
It also tries to predict the matching of the trains based on the arrival order, which is used to determine
the order in which the trains are serviced.

The environment used in our simulations is described in Appendix A, which models the shunting prob-
lem as a sequential decision problem, using the Markov Decision Process (MDP) framework. Although
some simplifications are made to the simulated environment, it still contains the core components of the
shunting problem. Therefore, we expect that the environment will be sufficient in providing meaningful
and relevant results throughout our experiments.
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Whenever a deterministic environment is used in the solution algorithms, either for the baseline or
ADA, we have the ability to apply additional search methods. This ability arises from the fact that
all transitions within a deterministic environment can be undone and retried without influencing the
outcomes. For the experiments in this thesis, the search method chosen is based on result described
in Appendix C. The chosen search method is called Monte Carlo Beam Search [2].

Probabilistic Action Planner
We determine the optimal number of particles to use for the Probabilistic Action Planner through exper-
imentation. We test a range of value for the number of particles, and select the lower value that still
demonstrates the highest level of robustness across the considered problem instances. This optimal
value is used in the final comparisons.

Adaptive Difficulty Algorithm
For this experiment, the slack is increased by 30 seconds after each iteration. A maximum computation
time of 30 seconds is allocated for each iteration to solve the problem instance within the deterministic
environment. The algorithm is terminated after three consecutive iterations without finding a feasible
plan, after which the results of the last valid iteration is returned.

6.3. Experiments
We conclude with a set of experiments that follow from the research questions, and define the relevant
metrics.

Robustness The main purpose of the experiments is to assess the extent to which the robustness
of initial shunting plans increases when more possible action outcomes are considered during the
construction of a plan. The robustness is defined as the percentage of successful plan executions. A
plan execution is successful when it manages to depart all trains on their scheduled departure time,
having finishing all their required service tasks, without violating any of the constraints or choosing
invalid actions. The robustness metric is calculated using the following formula:

robustness = 100 · 1
N

N∑
n=1

Rbinary(s0, τ, n)

• Rbinary is the binary reward {0, 1} obtained when starting in the initial state s0 using an initial
shunting plan τ in the n-th execution, where a 1 is returned in case the plan successfully reaches
the goal state.

• N is the total number of plan executions that are used in the related experiment.

In all experiments where the robustness is measured, each plan is simulated N = 10000 times, using
randomly drawn samples for each duration and arrival time according to their corresponding distribution.

Required Computation Time Since we want to determine whether it is better to implicitly (ADA) or
explicitly (PAP) consider alternative outcomes, we also need to consider the required computation time
as an important aspect. The ADA algorithm is expected to be more efficient because it focuses on a
single state. To compare the performance between the solution methods, we measure the time it takes
in seconds for each approach to create a valid initial shunting plan. The final time is averaged out over
10 different problem instance with the same number of train units.

Although no time limit is used for the available computation time of each approach, ADA is given a
maximum computation time of 30 seconds for each individual iteration to solve the augmented problem
instance within the deterministic environment. This is because the solver is unable to prove infeasibility
for a given problem instance, which would cause it to run indefinitely if not given a limit.

Both the simulation environment and solution algorithms are implemented in Python1 using the
PyPy2 compiler on an AMD Ryzen 5 3600 processor, using a single core.

1https://www.python.org/
2https://www.pypy.org/

https://www.python.org/
https://www.pypy.org/
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Scheduled Service Times To investigate the behaviour of the considered solution methods, we look
at the time service-related actions are scheduled. Service-related actions include starting service activ-
ities and actions that move trains to and from service platforms. Other action, such as parking incoming
trains and departing outgoing trains, are not directly related to any service tasks. Service-related ac-
tions provide more useful information to analyze compared to parking and departing actions, because
their scheduled times are determined by the decisions of the planner. In contrast, the schedule times
of parking and departing actions are determined by the given input timetable that describes the incom-
ing and outgoing trains. This makes the scheduled times of these actions fully outside the control of
the planner, and only a part of the problem instance itself. Since we want to analyze differences be-
tween the planning approaches, we ignore the non service-related actions from the shunting plan in
this experiment.

The starting times of each service-related action are determined by applying the shunting plan in a
deterministic environment, and remembering the current time of the system whenever a service-related
action is chosen. The deterministic environment operates under expected conditions where all trains
arrive on schedule, and where all activities take their average duration.



7
Results

This chapter presents the results of our conducted experiments. The main purpose of the result is to be
able to asses the extent to which the robustness of initial shunting plans increases when more possible
action outcomes are considered during the construction of a plan. Additionally, we want to determine
whether it is better to implicitly (ADA) or explicitly (PAP) consider alternative outcomes.

We first look at the robustness of the shunting plans, and the time required for generating these
plans. Afterwards, we investigate the scheduled time of the service activities between the different
methods to gain more understanding of their scheduling behaviour.

After showing the main results, we present additional results aimed to gain more understanding of
how both proposed method behave, with a separate analysis of both PAP and ADA with experiments
that are specific to each method.

7.1. Final Results
7.1.1. Robustness
The goal of the proposed solution approaches is to generate robust initial shunting plans that likely
remain feasible during execution, despite uncertainty about the exact durations of the activities and
arrival times. The durations are unknown in advance and are sampled from a probability distribution
for each execution. The robustness of a shunting plan is estimated by tracking the number of times
the goal state is reached, where all trains departed on time, having completed all their required service
tasks without violating any constraints. Each shunting plan is simulated 10000 times, using randomly
drawn samples for each duration and arrival time according to their corresponding distribution.

35
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The results in Figure 7.1 show a significant difference between the robustness between the deter-
ministic baseline method and both proposed solution approaches. The deterministic baseline method
performs poorly in the probabilistic environment. A possible reason for this, which is further investigated
in 7.1.3, is that it tends to schedule as many service tasks as early as possible. In contrast, both pro-
posed methods (PAP and ADA) create shunting plans that are significantly better than the deterministic
baseline. For smaller problem instances, they even achieve close to 100% robustness. This makes
sense, as there are less activities to schedule over the same time window, meaning each train can
afford a relatively larger buffer time for each activity. However, as the problem instances increase in
size, the robustness of both proposed methods decreases, even getting close to 0% for the largest size.
This outcome is reasonable, as these larger instances are often difficult to solve or may be unsolvable,
even without considering the uncertainties in durations.

Figure 7.1: The percentage of feasible shunting plan realizations, denoted as the robustness, for increasingly challenging
problem instances. The performance of the deterministic baseline method performs poorly in the realistic environment. Both
proposed approaches, the Probabilistic Action Planner (PAP) and the Adaptive Difficulty Algorithm (ADA), show significantly
higher levels of robustness, even reaching robustness measurements close to 100% for smaller instances. As the problem
instances get larger, the robustness levels decrease towards 0% for both methods, although PAP is cut-off early, since it was
unable to produce valid solutions within the time limit. ADA consistently shows a higher level of robustness compared to PAP.

In all instances, the Adaptive Difficulty Algorithm (ADA) consistently outperformed the Probabilistic
Action Planner (PAP), indicating that indirectly considering most states leads to more robust shunting
plans compared to explicitly considering every possible transition outcome. An explanation for this
result is that PAP heavily relies on approximation techniques to make each decision. When the ap-
proximated values are inaccurate, the decision may be not optimal. In contrast, ADA does not need to
make these approximations. The accuracy of the approximations in PAP and its effect on the resulting
shunting plans is further investigated in section 7.2.
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7.1.2. Required Computation Time
Figure 7.2 shows the average elapsed time for the proposed solution approaches. The deterministic
baseline method is often nearly instantaneous, with most instances taking less than a second to com-
pute. The computational time does not significantly increase with larger problem instances. In contrast,
the Probabilistic Action Planner (PAP) requires substantially more time, taking over 10 minutes to cre-
ate shunting plans for instances with 30 or more trains units. The required computation time for PAP
steadily increases with the problem size. This is expected, as the required time is primarily determined
by the total number of rollouts that are performed during its planning. Since PAP faces more decisions
with larger instances while performing the same number of rollouts for each decision, the computational
time proportionally increases.

Figure 7.2: The required computation time for each of the considered methods on increasingly larger problem instances. The
deterministic baseline method is often nearly instantaneous, with most instances taking less than a second. The Probabilistic
Action Planner (PAP) requires the most amount of time, which increases steadily with the problem size. The Adaptive Difficulty
Algorithm (ADA) requires less time than PAP, and does not have the same level of increase in required time for larger problem

sizes.

Figure 7.2 also shows the computational performance of the Adaptive Difficulty Algorithm (ADA) in
comparison to the baseline and PAP. ADA also requires significantly more computation time than the
baseline method but is notably faster than PAP. The computational time for ADA heavily relies on the
duration it takes to solve a single iteration in a deterministic environment, as the instance needs to be
solved multiple times in this environment. Given that an iteration in a deterministic environment is very
fast, as shown by the baseline method, the total required time of ADA is also relatively short.

ADA’s required time does not increase as significantly as PAP’s when dealing with larger problem
instances. This is because the deterministic solver used in ADA maintains a consistent speed, regard-
less of problem size. Furthermore, an important aspect to consider is that ADA performs a lot fewer
iterations for larger problem instances, as there are less opportunities to add buffer times. The maxi-
mum amount of buffer time that is possible for each problem size and its effect on the resulting shunting
plans is further investigated in section 7.3.

A important note is that each iteration in ADA is designed to seek a feasible solution rather than
prove infeasibility. ADA continues to search for a feasible plan until the predefined time limit is reached.
As a result, this time limit predominantly determines the final computation time for ADA. However, it
is worth noting that the plan from the previous iteration is already available before the next iteration is
started. In case there is a strict time limit, ADA could be used as an any-time algorithm which simply
returns the last valid plan found during the previous iterations.

7.1.3. Scheduled Service Times
To gain some insights into the behaviour of the different approaches, we look at the times when deci-
sions related to service tasks are scheduled. These time are determined by applying the shunting plan
in a deterministic environment, operating under expected conditions where all trains arrive on schedule,
and all activities take their average duration.
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Figure 7.3 presents the cumulative decision index of all the actions related to service tasks over
time. Several general observations can be made from the graph. Firstly, most service-related actions
are scheduled in the first part of the plan. This is because the majority of trains arrive either at the
start or after 15 hours from the start, as described in Figure 6.2. Little to no actions are scheduled,
towards the end of the plan. This makes sense, as all service tasks need to be completed before the
departures. The horizontal sections in the graph indicate intervals when no new activities are planned.
This is desirable from a robustness perspective, as it reduces the risk of the plan failing during this
interval. However, it also means that no progress is made towards finishing the required services,
which potentially impacts the robustness of future segments.

Figure 7.3: The cumulative decision index of all the actions related to service tasks over time. Results are shown off three
problem instances with a different number of train units. The deterministic baseline method generally schedules all tasks as
soon as possible. The Probabilistic Action Planner (PAP) tries to wait as long as possible before scheduling new tasks to

decrease the chances of failing the action. The Adaptive Difficulty Algorithm (ADA) uses the same strategy as the baseline, but
is forced to wait additional time before being able to choose new actions.

There are clear differences in scheduling strategies among the solution approaches. The baseline
method schedules most tasks as soon as possible, as it cannot assess the risks associated with having
no extra buffer time. However, it is able to recognize that no progress is made when no tasks are chosen
at a given decision moment. Since it is optimized to find valid plans, it almost always selects one of the
service-related actions whenever possible.

On the other hand, the Probabilistic Action Planner (PAP) is a lot slower with scheduling the service
related tasks. It causes the actions to be more spread-out over the entire planning horizon. This
strategy provides more flexibility to the shunting plan, as the actions can be delayed without causing
feasibility issues. The result of this flexibility is that the shunting plans are more robust, as reflected in
the results of Figure 7.1.

The Adaptive Difficulty Algorithm (ADA) takes a measured approach that also spreads out the tasks
more evenly across the planning horizon. It often lies between the baseline and PAP in terms of sched-
ule times. Since ADA solves the problem instances within a deterministic environment, it also has a
similar strategy to the baseline, where it tends to start the services as soon as possible. But because
the durations are longer, ADA is often forced to wait additional time before being able to choose new
service actions, causing the actions in the plan to be more spread-out.
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7.2. PAP Analysis
The performance of the Probabilistic Action Planner (PAP) heavily relies on the number of particles and
rollouts that are used. In this experiment, the aim is to analyze the impact of varying this parameter on
the algorithm’s performance. We will specifically focus on three aspects: the algorithm’s ability to find
valid plans, the robustness of the generated plans, and the required computation time to create these
plans. By analyzing the results, we can determine the optimal number of particles.

We focus on three instances with different problem sizes: a smaller instance with 10 train units, a
medium instance with 20 train units, and a larger instance with 30 train units. The algorithm is applied
several times with an increasing number of particles. For simplicity, and to only have a single variable
to change, we set the number of rollouts at each decision moment equal to the number of particles.
To test a wide range of values for the number of particles, we double the number of particles at each
measurement, starting with 20, and ending with 1280 ({20, 40, 80, 160, 320, 640, 1280}).

7.2.1. Validity
A shunting is considered to be valid, if it doesn’t violate any of the constraints. For example, trains
cannot overtake each other on the same track. Additionally, the plan should be feasible under the
expected circumstances where all transitions align with expected arrival times and service durations.
The primary objective of the solution is to generate a shunting plan that is valid and remains feasible
for a majority of possible realizations. Before evaluating the robustness of the plan, its validity must be
ensured, meaning there exists at least some feasible paths that reach the goal state.

While a solution approach in a deterministic environment may use additional search techniques to
find valid shunting plans, the PAP algorithm operates within a non-deterministic environment, prevent-
ing the use of such techniques. Therefore, there may be instances where the algorithm is unable to
produce a valid plan, especially as the problem becomes more complex.

If the PAP algorithm fails to generate a valid shunting plan, it is restarted until a valid plan is found,
with a maximum of 10 attempts allowed before termination. Figure 7.4 shows the number of attempts
required to find a valid plan. The results show that the algorithm does not always succeed in finding
a valid shunting plan on the first attempt, particularly when a small number of particles is used. For
larger problem instances, the smallest particle values are unable to produce a single valid plan within
the allowed attempts. Although a larger number of particles reduces the number of invalid attempts,
there are still instances where multiple iterations are needed before a valid plan is found.

Figure 7.4: The number of invalid solutions that the PAP algorithm returns before finding a valid shunting plan.
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7.2.2. Robustness
Figure 7.5 shows the relation between the number of particles and the robustness of the valid shunting
plans generated by the PAP algorithm. The graph shows that the robustness of the plans generally
improves with a larger number of particles. However, the robustness is not guaranteed to increase with
more particles, and there may be diminishing returns beyond a certain threshold. Interestingly, for the
problem instance with 20 trains, the shunting plan created using only 20 particles exhibits significantly
higher robustness compared to plans generated using a greater number of particles within the range
of 40 to 320. This finding emphasizes the potential unreliability of the algorithm’s performance. The
result may be attributed to the approximations used in the method, which introduces uncertainty about
what the best decisions are at a given moment.

Figure 7.5: The number of feasible executions of the shunting plans produces by the PAP algorithm with an increasing number
of particles. As the number particles increases, the robustness also increases.
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7.2.3. Value Approximation
The PAP algorithm greatly relies on approximate values for its decision making. These approximations
include determining the Q-value of each action and the probabilities of the belief state. During the
planning phase, the action with the highest value is selected. Within the context of the considered
problem, the value of an action represents the likelihood of reaching the goal state after executing
that action. However, since the actual value is unknown, it is estimated through a number of rollouts.
Accurately estimating these values can be challenging, especially in larger problem instances that
have a larger planning horizon, and thus a larger rollout. The results of the rollouts also depends on
the policy’s effectiveness and the number of iterations that is used.

Figure 7.6 displays the value associated with each selected action at the moment of decision-making.
For each decisionmoment, we look at the percentage of rollouts that successfully reached the goal state
from the current belief state. In the case of larger problem instance, only a few rollouts manage to reach
the goal state early in the process. However, as the agent progresses and moves closer to the goal
state, the value of the rollouts increases steadily, eventually reaching 100% feasibility near the end.

Conversely, for smaller problem instances, the value of the rollouts begins and ends with 100%
feasible outcomes. However, there is a dip in the middle, indicating a decrease in the percentage of
successful rollouts. This decline occurs because, initially, the agent has maximum flexibility to adapt
to uncertainties during the rollouts. But as more actions are chosen, this flexibility diminishes. The
previously chosen actions replace the first part of the rollouts, resulting in a fixed current partial plan
that cannot be changed. As a result, the agent must continue from its current belief state, only being
able to react to future outcomes.

Figure 7.6: The ratio of feasible rollouts at each decision moment for three problem instances of difference sizes. Decisions
about arrivals and departures are indicated with green and red circles respectively.
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7.3. ADA Analysis
The Adaptive Difficulty Algorithm (ADA) follows an iterative approach to increase the durations of activ-
ities in the problem instance. This additional duration can be interpreted as buffer time or slack, which
allows for some delay in the completion of a task without impacting other parts of the plan. The algo-
rithm continually increases the slack until it reaches a point where it is unable to find a feasible plan
with the current amount of slack. We expect the performance of ADA to be largely determined by the
achieved level of slack.

In our evaluation, we initially examine the maximum slack attained for progressively larger prob-
lem instances. Afterwards, we assess the assumption about the correlation between slack and plan
robustness, investigating whether increased slack leads to more robust shunting plans.

7.3.1. Maximum Possible Slack
Figure 7.7 shows the maximum slack reached by ADA for each problem size. As expected, the slack
value decreases as the problem instances become larger. This observationmakes sense since the total
available time is the same for all problems. So when there are fewer tasks to complete, the available
time can be distributed more freely, allowing for a larger amount of slack. However, the number of tasks
increases in larger instances, resulting in less available time for each activity, and a decrease in the
maximum achievable slack.

The maximum slack that ADA is able to achieve contains a lot of variation across the problem
instances of the same size. Since the search algorithm used in each iteration is unable to prove the
infeasibility of a given instance, we cannot infer from these results whether the obtained maximum slack
reached the theoretical limit or is just a result of the search algorithm’s inability to find a feasible plan
within the designated time.

Figure 7.7: The maximum achievable slack found by the Adaptive Difficulty Algorithm (ADA) for a range of problem sizes with
increasingly more train units. The area is bounded by the minimum and maximum slack from the 10 results per problem size.

As there are more train units, the slack tends to decrease.
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7.3.2. Correlation with Robustness
The Adaptive Difficulty Algorithm uses and iterative approach to generate the shunting plans, progres-
sively solving more challenging versions of the problem instance. Each iteration all arrivals are delayed
a bit more, and the durations for the service activities take more time. The algorithm continues until it
can no longer find a feasible plan for these conditions, after which the last valid plan obtained during the
process is returned as the final solution. It is based on the assumption that the robustness of the plans
increases with more iterations, since there is more slack for each activity. To verify this assumption, we
examine the robustness of plans created at each iteration.

The results, displayed in Figure 7.8, show a clear upward trend. This indicates that the robust-
ness generally increases with more iterations, although a strict improvement in not guaranteed for
consecutive iterations. The larger problem instance requires more slack to achieve the same level of
improvement as the smaller instances. This can be explained by the fact that there are more trains in
the larger problem instance, resulting in more possible points of failure due to delays. So when each
individual decision is optimized using the same amount of slack as the smaller instance, there are more
decisions in total, which causes the overall robustness to be lower comparatively. It is also worth noting
that there is a limit on the maximal robustness that can be achieved, resulting in diminishing returns
after a certain amount.

Figure 7.8: The graph shows the effect the amount of slack has on the robustness of the created solutions in three scenarios
with a different number of train units. The Adaptive Difficulty Algorithm (ADA) increases this slack after every iteration under the

assumption that the new plans get robustness. This assumption aligns with the results, that indicate a general increase in
robustness with more slack.



8
Discussion

This chapter provides an answer to the research questions. Afterwards, we discuss some notable
findings from the experiments, and address the limitations of this thesis

8.1. Answer to Research Question
Sub-Question 1 An initial shunting plan is typically represented as a Partial Order Schedule, whereas
the output to a sequential decision formulation is a sequence of actions. This action sequence can be
viewed as a Total Order Schedule, where each action follows from the previous one. This difference in
schedule representation caused us to ask the first sub-question:

1. How can action sequences be used as initial shunting plans by mapping them to Partial
Order Schedules?

To answer this question, we described a procedure for converting an action sequence into a Partial
Order Schedule (POS). This procedure goes through all the actions in the sequence, and adds all non-
waiting actions to the activity set A. Waiting actions are ignored, because their usage is implied by
the precedence constraints within the POS. Precedence relations are added by keeping track of the
previous action for each resource and for each train, and adding a precedence relation towards the
next action that uses the same resource or train.

Sub-Question 2 This thesis is motivated by the inability of an optimized policy to produce robust
initial shunting plans from a regular rollout. This limitation is hypothesized to be caused by the fact
that a rollout only considers the expected outcome during the construction of the plan. Therefore the
second sub-question is:

2. How can alternative outcomes be considered during the planning phase, either directly
or indirectly?

In this thesis, we proposed two distinct methods that consider multiple outcomes during planning.
First, we proposed the Probabilistic Action Planner (PAP), which aims to account for every possible
outcome directly. Since we cannot make any observations during the entire planning process, the
original MDP problem can be viewed as a Non-Observable MDP. By viewing the problem as a NOMDP,
we can use existing techniques to solve this version of the problem effectively. We use the notion of a
belief state to represent the uncertainty during planning, and approximate its probabilities values using
a particle filter. To solve the NOMDP, we use Monte-Carlo planning.

Secondly, we proposed the Adaptive Difficulty Algorithm (ADA), which strategically focuses on a
single outcome, and accounts for alternative outcomes indirectly. The solution idea is based on the
fact that the transitions are deterministic, except for variability in the durations, making it possible for
less delayed state to transition to a more delayed state simply by waiting. To determine the maximum
amount of delay we can afford to consider, we iteratively increases the delay until the problem becomes
unsolvable. The latest valid plan is returned as the final solution, as it considers the most delayed states.

44
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Sub-Question 3 Between both proposed solution approach, we want to know which one is better.
Given that ADA, focuses solely on a single state at each decision moment, we expect it to be faster.
However, since it also overlooks a subset of alternative states, it could result in less robust plans.
Therefore, the last sub-question is:

3. Is it better to implicitly (ADA) or explicitly (PAP) consider every possible outcome, in terms
of the robustness of the plans and the computational efficiency?

From the experimental results we confirm that ADA indeed requires less time to compute, and has
better scalability for larger problem sizes. However, the results also show that ADA consistently out-
performs PAP in terms of robustness across all problem sizes. Further analysis revealed a potential
limitation of PAP, as it occasionally struggles to produce valid plans for larger problem instances. In
contrast, ADA consistently succeeds in finding valid plans, thanks to the use of additional search tech-
niques. Based on these results, we conclude ADA is the better approach, as it is more reliably able to
find valid plans, which are also more robust, and found is less time.

Main Research Question We proposed two method for creating robust initial shunting plans that
take all possible action outcomes into consideration, either directly (PAP) or indirectly (ADA). We com-
pared their performance to the baseline method, which performs a regular policy-rollout under normal
conditions. This allows us to answer the main research question:

Given a policy optimized for finding feasible solutions, to what extend is the robustness
of the initial shunting plan increased when all possible action outcomes are considered
during the construction of the plan?

The experimental results on realistically generated problem instances showed that both the PAP
and ADA approaches significantly outperformed the baseline. The baseline only remains feasible for
only approximately 50% of realizations with six trains or fewer and almost always becomes infeasible
during execution with ten trains or more. In contrast, both PAP and ADA consistently maintained a
feasibility rate of above 90% for problem sizes up to 20 trains, only dropping in performance for larger
instances. ADA is even able to maintain a feasibility rate of over 95% for up to 22 trains.

8.2. Findings
The difference in robustness between the baseline solution and the examinedmethods can be attributed
to a fundamental conflict in strategy between the scheduling strategies. In a deterministic environment,
the strategy of ”starting each activity as soon as possible” seems to be most effective, as there is no
risk associated with executing the action. Moreover, starting an activities generally does progress the
solution towards the goal state, which causes the planner to prefer choosing the activities over waiting.
However, this strategy is not robust in the probabilistic setting, as it does not account for uncertainties
in activity durations, as there is very little buffer time between the activities. In contrast, the strategy
of ”distributing the available time between activities by waiting” is more successful in the probabilistic
setting. This approach provides each activity with buffer time, allowing delays without disrupting the
remainder of the plan.

Interestingly, despite starting almost always service tasks earlier than the Probabilistic Action Plan-
ner (PAP), ADA still achieves better robustness. Since the Adaptive Difficulty Algorithm (ADA) creates
solution in a deterministic environment, is uses the strategy of ”starting each activity as soon as possi-
ble”, which explains why it tends to start the tasks relatively early. However, because ADA is forced to
add additional buffer time to each activity, the resulting shunting plans remain robust.

Because of the scheduling strategy of ADA, there often seems to be large portions of unused time
towards the later parts of the day, where little to no activities are scheduled. This observation sug-
gests that there may still be potential to improve the robustness of the plans further. One possibility is
to strategically distribute the unused time towards the end of the plan as extra slack to the activities,
thereby increasing the robustness of the overall plan. Alternatively, another option could be to deliber-
ately leave this free time in the later parts unused. This could offer an advantage for repair strategies,
as the additional free time in later parts of the day can be used to reschedule activities in the event of
failures or unexpected disruptions.
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The performance of the Probabilistic Action Planner (PAP) algorithm depends on the accuracy of
the approximations it uses. PAP tracks the probabilities of being in a particular state using a particle
filter, which approximates the belief state. Additionally, the value of each action is determined through
a number of policy rollouts, where the number of rollouts equals the number of particles in the particle
filter. The greater the number of particles that are used, and more accurate the approximations for
the belief state and the action-values become. However, the results indicate that this estimate can be
highly unreliable (Figure 7.6), leading to suboptimal decisions.

For challenging problems, the value of the rollouts often starts near 0%, which is lower than the
actual value, as evidenced by the resulting robustness of these plans, which is above 80%. This in-
accuracy is caused by the given policy that is used, which is not optimal, making the planner overly
pessimistic about its outcome. This could cause it to prefer starting actions early to progress towards
to goal, at the cost of potentially risking early failures for some states that are unable to start these
actions.

On the other hand, for easier problems the value starts near 100%. This is an overestimate of what
the actual value should be, because the rollouts still have maximum flexibility to react to encountered
disturbances when performing them. However, once the planner commits to a single sequence, it loses
this flexibility. As a result, the planner is too optimistic about its decisions, causing it to prefer robust
actions that are unlikely to fail, at the cost of not actually making any progress towards the goal state.
If the progress is delayed to often, it may be forced to eventually resort to suboptimal actions that are
not robust. This may explain the slight decrease in performance when more particles are used in PAP,
as can be observed in Figures 7.4 and 7.5. When more particles are used, the probability of sampling
more delayed states is also increased. This causes most reasonable actions to receive scores that are
slightly less than 100%, whereas the other actions that are safer but less productive maintain a perfect
score.

8.3. Limitations
Probabilistic Action Planner The Probabilistic Action Planner (PAP) is compared to the theoretical
optimal solution. The theoretical optimal strategy chooses actions that maximize the probability of
reaching the goal by continuing with a single sequence of actions regardless of the encountered states.
Since we don’t know the optimal continuation of the future action sequence, PAP approximates this
single sequence with multiple individual rollouts. The idea is that these rollouts resemble the optimal
continuation, given that the policy is optimized to find feasible solutions. However, the difference of
using policy rollouts compared to using a single action sequence, is that the rollout is able to react
to the states it encounters. This allows each individual rollout to be different from each other. As we
can observe from the results in Figure 7.6, the usage of multiple reactive rollouts instead of a static
sequence leads to issues in accurately estimating the value of each action.

It should be mentioned that this thesis only used a single policy for all the tests. This choice of policy
might influence the results. For example, a policy that is very consistent in its choices and that tends
to make the same decisions regardless of differences in the exact state, might show different results.
This is because the individual rollouts more closely resemble the same sequence of action. Whether
this kind of policy would lead to better results remains to be investigated.

Adaptive Difficulty Algorithm Although the Adaptive Difficulty Algorithm (ADA) generally outper-
forms the alternatives, there can be cases where it does not perform well. Since ADA cannot know
during the planning phase which specific delays are going to occur during execution, it aims to opti-
mize against all possible scenarios. To accomplish this, it optimizes every decision equally. However,
this equal optimization strategy may cause problem when there is a difference in the extend of which
certain decision can be optimized. For instance, consider a scenario where one of the train needs to
perform its service tasks immediate upon arrival after which it immediately needs to depart again and
cannot afford any additional buffer time for any of these actions. The algorithm will terminate after the
first iteration, as it is unable to add any buffer time to this train. The resulting plan will not be robust,
as the other trains in the problem also do not include any buffer time. In such cases, the algorithm
should ideally prioritize increasing buffer times for the remaining trains to increase the overall plan’s
robustness, even if there is a single train that runs the risk of being delayed.
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Simulation Environment There are several assumption and simplification made in the simulation
environment that cause the model to slightly deviate from the real-world.

The problem formulation relied on static routing times for the duration of each movement. This
simplification was made to prevent cases where where movements are ongoing when a train needs to
depart, causing the departing to be delayed. However, in reality the actual duration of each movement
is uncertain and contains some variance. This variability was not taken into account in the conducted
experiments. Although the movement durations is relatively short compared to the duration of the
service tasks, the inclusion of probabilistic movement times would increase the accuracy of evaluating
and improving the robustness of the shunting plans.

Another limitation of the model is its restriction to allow only a single train to move at a time. In
practice, multiple trains are allowed to move simultaneously as long as their paths do not interfere with
each other. Allowing simultaneous moves has the potential to increase the feasibility and robustness
of the generated plans. Particularly, when movement to and from the service tracks can occur during
arrival and departure events. This would mean that even if a train is expected to arrive or depart soon,
the services within the yard can still be chosen, reducing the dependency on exact arrival times, thus
increasing the flexibility.

This thesis focused only on scenarios with trains composed of a single train unit. However, in reality,
trains often consist of multiple units, which can be of different types. Including the reconfiguration aspect
increases the complexity of the problem, and makes it more difficult to find feasible plans. Splitting and
combining trains takes a significant amount of time to perform, and also includes some variability in
the duration. Incorporating the reconfiguration aspects would provide a more realistic representation
of the problem.



9
Conclusions

This thesis aims to address the challenges of generating robust initial shunting plans in an uncertain
environment. We focus on a sequential problem formulation, modeled as a Markov Decision Process
(MDP), and using a policy framework optimized for this environment. The goal of this thesis is develop
a method that is capability of creating robust initial shunting plans that are likely to remain feasible for
a large number of possible plan executions.

An initial shunting plan can be extracted from a policy through a rollout in a simulated environment
under normal conditions. However, this conventional rollout technique leads to action sequences that
fail to account for most the alternative outcomes for actions that have variability in their outcome, caus-
ing the overall plan to not be feasible for a large number of possible realizations.

To address this limitation, we introduced two distinct solution methods, one which explicitly considers
all possible outcomes, whereas the other aims to cover most outcomes indirectly. We asked to what
extend the influence of multiple possible outcomes results in increased robustness of the generated
plans, and whether it is better to implicitly or explicitly consider every possible outcome.

The first method we proposed is the Probabilistic Action Planner (PAP), which predicts the probabil-
ities of all the possible future states the agent can encounter during execution, and makes its decisions
based on the weighted average of each action-value for each state.

The second method we proposed is the Adaptive Difficulty Algorithm (ADA). Rather than explicitly
considering every possible reachable state, ADA capitalizes on the structure of the transitions. It is
always possible to transition to a more delayed version of the state, simply by not starting a new activity
and waiting instead. By focusing on a single delayed transition at each decision point, ADA indirectly
accounts for all states that are less delayed. Since only a single transition is used for each action,
the environment effectively becomes fully deterministic, which enables ADA to utilize additional search
techniques to find feasible shunting plans.

Experiments on realistically generated problem instances showed that creating initial shunting plans
based on all possible states significantly increases the robustness towards probabilistic variations in
plan executions, as both proposed method significantly outperform the deterministic baseline method.
Furthermore, ADA performed better than PAP in every aspect, as it is more reliably able to find valid
plans, which are consistently more robust, and found in less time.

We noticed a difference the scheduling strategy between the solutions created in a deterministic
environment compared to PAP, which uses a non-deterministic environment. Both the baseline policy-
rollout and ADA follow the ”starting each activity as soon as possible” strategy, whereas PAP distributes
the available time more between the activities. The main difference between the baseline and ADA
is that ADA inserts additional buffer times to its activities, causing it to be slower in scheduling the
activities.
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Although ADA showed promising results, there may still be cases where it cannot produce robust
solutions. Additionally, certain assumptions and simplifications were made to facilitate the experiments,
which may impact some of the result. Nevertheless, this thesis showed how robust initial shunting plans
can be created using a policy optimized for feasibility in a deterministic environment.

9.1. Future Work
An important area of future work is to address the current limitations of the model, as highlighted in
Chapter 8. Most notably, the inclusion of combining and splitting, and incorporating the variability in
movement durations. By addressing these aspects, a more realistic evaluation of the proposed solution
methods can be done.

An interesting area of future research could be to expand on the concept of augmenting problem
instances to generate more robust plans. This thesis only focuses on a single augmentation technique,
which is to increasing the considered duration of each activity. However, there may be other potential
techniques that result in more robust solutions. One approach could be to impose additional restrictions
on the allowed plans. For instance, by disallowing two consecutive trains to park on the same track,
and including a simple repair mechanism in the final plan that switches the order of parking actions
when necessary ensures that both trains are always able to park on their designated tracks, regardless
of their arrival sequence.

By applying such restrictions, it may allow additional repair mechanisms to resolve a number of dis-
turbances in a predictable and consistent way. This approach could improve the overall robustness to
beyond what is achievable by only considering the slack. The reason for this, is because the additional
slack is only used to delay the start time of the next activities. This so called right-hand-shift approach
is incapable to handle certain types of disturbances, such as the earlier example where the order of
operations needs to be modified to deal with different order of train arrivals.

An aspect that was not considered in this work is the ability to repair a plan after it fails. Repairing a
plan introduces an additional dimension of preference for the repaired plan to be similar to the original
plan.

Related to this, existing research has focused on improving the robustness of plans and minimizing
the need for repairs. However, there are instances where it is impossible for a plan to remain feasible,
making repairs unavoidable. Moreover, it may be difficult or even impossible to repair the plan any-
more, as part of the plan has already been executed. Therefore, it would be worthwhile to explore the
possibility of optimizing the resilience of an initial plan, in addition to the robustness. In other words,
how easily can an initial plan can be repaired once it becomes infeasible. A hypothesis is that providing
more slack to activities later in the plan increases the ability to repair the plan following a disturbance.
An interesting note is that the plans created by the Adaptive Difficulty Algorithm generally results in
having more free time towards to end, which could work well for rescheduling purposes.
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A
Simulation Environment

In this chapter, the shunting problem is formulated as a Markov Decision Problem (MDP). The essential
components that form an MDP, including the state space, action space, transition function, and reward
function, are explained in detail. This sequential formulation of the problem is used to run simulations
of problem instances, which the proposed solution methods use to create shunting plans, and in which
experiments can be performed to test the quality of the created shunting plans.

First, a set of assumptions specific to the shunting problem is defined. Afterwards, the essential
components that form an MDP, including the state space, action space, transition function, and reward
function, are explained in detail. Finally, the behaviour of the environment is defined.

A.1. Prerequisites
Simplifications and Assumptions In the real-world, there are a lot of details that influence certain
aspect of the problem. However, modeling each of these aspects in detail would not only be challeng-
ing but could also risk the completion of this project. To effectively address the scope of the project
and develop an appropriate solution strategy, it is necessary to introduce certain assumptions and
simplifications.

The first goal behind the simplifications and assumptions is to make it easier to implement the
simulation environment within the scope of this thesis. The second goal of these simplifications is
to enable the design of a policy that can be used for the purposes of this thesis. Existing policies
that have been proposed in previous research struggle to effectively address the complexities of the
shunting problem, even in a deterministic environment. The focus of this thesis is on the uncertainty
aspects in the problem, rather than designing an improved policy that can solve the most complex
formulation of the problem.

It’s worth noting that each of these simplifications and assumptions have been made before in
previous work, although not every work has used the same set of ones.

• The first simplification made is that trains only consist of a single train unit. This means that
the trains under consideration do not require any splitting or combining of multiple units between
trains.
By excluding these operations, we make it significantly easier to design a policy that works well.
Determining which trains to split and combine can be especially difficult in this sequential problem
formulation, because the decisions regarding splitting and combining have far-reaching conse-
quences that are difficult to predict at the time of decision-making. For example, combining two
train units excludes the possibility of departing the units individually without first splitting them
again. Moreover, split and combine actions have the potential to considerably extend the plan-
ning horizon when chosen repeatedly in succession.
It’s worth noting that it is technically possible to solve real-world instances by assuming incoming
trains are split into individual units, and combined right before their departure.
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• Different trains cannot move in parallel though the shunting yard. While real-world operations
might allow multiple trains to move simultaneously as long as their routes do not intersect, we
restrict the movement of trains to ensure no collisions can occur.
This restriction aligns with the assumption made by most existing solutions, which also do not
account for simultaneous train movements. In the past this restriction was primarily implemented
due to safety considerations, meaning that the realistic problem instances should remain solvable
under this constraint.

• The time taken to move from one track to another takes a fixed amount of time. In reality, the
movement time depends on several factors such as the chosen route, the number of tracks and
switches traversed and the number of times the train needs to reverse its direction. The main
reason for this simplification is to align with the previous assumption of non-parallel movements.
By assuming a fixed movement time, it can be ensured that no other train is still in motion when
another train needs to start moving to the departing gateway, thereby avoiding simultaneous
movements.

• We assume there is always exactly one service crew available at each service track. This implies
that a dedicated crew is assigned to each service track to perform necessary servicing tasks for
the trains parked on that track. In real-world scenarios, service crew availability may vary over
time or be subject to other constraints and limitations, such as having moments of break. The
possibility of having multiple groups of service crew at the same service location does not impact
our model, as only one train can be serviced at each service location simultaneously. Furthermore,
crew members can be dynamically assigned as needed based on the shunting plan.

• Trains of the same type are interchangeable, meaning that if a train of a certain type is required
to depart, any train with the correct type configuration can be used as the departing train. This is
generally the case, although in practice there are sometimes exceptions. For instance, when a
specific train may need to travel to particular shunting yards for specialized maintenance. Most
existing policies are designed with interchangeable trains in mind. Therefore, we exclude any
pre-matchings in the problem input.

• The location of a parked train on a track remains fixed throughout the shunting process. Once
a train is parked on a track, it does not need to relocate within that track. The position of a
train is solely determined by its relative position to other trains already parked on the track. This
simplification greatly simplifies the problem, without really changing the problem significantly. The
action space is reduced, as there are no actions required for repositioning, and the planning
horizon is reduced, as these repositioning actions do not have to be chosen. This simplification is
not expected to significantly impact the results, because the repositioning can often be done while
other actions are ongoing elsewhere in the yard. It should be noted that no previous literature on
the shunting problem has taking this aspect into consideration.

Layout
The shunting yard consists of a collection of interconnected tracks where the trains can be parked and
serviced on. For the purpose of this research, only layouts are considered where the tracks are fully
connected. In other words, it is ensured that every track within the yard is reachable from every other
track. Additionally, this thesis focuses on two types of tracks: Last In First Out (LIFO) and First In First
Out (FIFO). These track configurations determine the order in which trains enter and exit the tracks.
A LIFO track stores the most recent trains at the front, blocking the exit of all existing trains currently
parked on the track, where it is the only possible train on the track to exit the track again. In contrast,
FIFO tracks park the most recent train after the existing trains on the track, making it the last train to
exit the track.

The layout of the shunting yard is assumed to remain static during execution, as scheduled changes
to the yard are known about in advance, and large disturbances that influence the availability of the yard
are unlikely to occur. This means that the initial configuration of tracks, switches, and other elements
within the yard remains unchanged throughout the solution.

In the input scenario, the following properties are described:

• The number of tracks in the yard
• The maximum length of each track
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• The type of each track (LIFO or FIFO)
• Which service tasks can be performed on which tracks
• Which train subtypes are allowed to park on which tracks

A.2. MDP formulation
In this section, a formulation is given of the shunting problem using the framework of a Markov Deci-
sion Process (MDP). The MDP formulation provides a formal framework for modeling and analyzing
sequential decision-making problems. An MDP is formally defined as a tuple M = (S,A, T,R), where
S represents the set of all possible states, A denotes the set of all possible actions, T (s′|s, a) is the
probability of transitioning from state s to state s′ after taking action a, and R(s, a) signifies the reward
received after applying action a in state s.

Each of these components is described in detail in the upcoming sections. The state space is dis-
cussed in Section A.2.1, followed by an explanation of the action space in Section A.2.2. The transition
function will be detailed in Section A.2.3, and lastly, the reward function is described in Section A.2.4.

A.2.1. State Space
The state space is the set of all possible states that the system can be in. A state encompasses all the
relevant information about the system at a given time. To satisfy the Markov property, the state should
not be dependent on the history of previous states and actions.

In the shunting problem, a state should encapsulate the current position and status of all the trains
within the yard. It provides a snapshot of the shunting yard’s configuration, including the locations of
trains on different tracks and all associated service requirements.

The following list are all the properties that together form a state:

• The current time
• A timetable of the expected events

– The expected arrival times of future trains
– The departure times of the sequence of required train subtypes

• The location of all train units on the shunting yard

– The track it is currently on
– The position on the track relative to the other trains on the track

• The service tasks that need to be performed on each train unit
• The start time of all ongoing actions

The timetable of events is derived from the specific problem instance and is provided at the begin-
ning of the planning time. Since the exact arrival time of trains is not known in advance, the expected
time is stored instead, which corresponds to the scheduled arrival time under normal circumstances.

Each train unit within the shunting yard must be assigned to a track. This can be a parking track, a
service track, the gateway track, or a connecting movement track. However, some cases may arise
where the available space in the shunting yard is insufficient to assign all the train units. This can
occur either due to an infeasible problem instance where too many trains are present on the yard
simultaneously, or due to an inefficient usage of the parking tracks in the solution.

To prevent early termination of simulation episodes, an additional track is included in the possible
locations of a train in the state. This track has an infinite capacity and can store any train unit that
does not have a valid track to move to. Because this track does not actually exist, any usage of the
track violates the space constraint, and a penalty may be applied as a result. The penalty that is given
depends on the reward function, which is explained in section A.2.4.

The ongoing actions in the shunting problem refer to the movements and service actions. These
actions are durative in nature and can take place simultaneously. However, the precise duration of
these actions may not be known in advance. Therefore, only the start time of the actions is stored,
since this value is known.
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A.2.2. Action Space
The action space is the set of all possible actions that an agent can take in a given state. An action in
an MDP is a decision that the agent makes that affects the state of the system and transitions it from
one state to another. An overview of the action space is provided in table A.1.

Symbol Description Prerequisites
Astartpark(rn) start moving train rn there will be a valid Park action available
Apark(rn, ti, tj) move train rn from track ti to tj the exit of the track is not being blocked;

there is enough space on the next track;
there is no other ongoing movement;
the move will finish before the next departure

Aservice(sa, rn, ti) start service sa on train rn at track ti the task can be performed on the track;
the train requires the service task;
there is no ongoing service on the selected train;
the service track has enough space

Adepart(rn) depart train rn the train has the correct type configuration
Await wait for the next decision moment there is no train on the gateway;

there is no departing train to be chosen;
the startpark is not the previous action

Table A.1: Overview of the action space, with a brief description of each action symbol and the prerequisites required to
execute the action

StartPark One of the actions in the action space is startpark. This action indicates that a train needs to
be parked at a different location within the shunting yard from its current location. Although the startpark
action itself does not involve any immediate movement, it forces the agent to make a subsequent
decision about the train’s next destination.

While strictly speaking, this action may not be necessary since the park action could be chosen
directly, it is included based on the concept of move-groups. By introducing this additional decision
layer, the initial branching factor is reduced, providing a more manageable set of choices for the agent.
For example, consider a scenario where there are 2 trains with 10 available destination tracks for each
train. Instead of considering all 20 possible parking actions at once, the introduction of the startpark
action allows for 2 initial actions followed by the 10 corresponding parking actions, thereby reducing the
total number of actions to consider to 12. This simplifies the decision-making process without altering
the total number of outcomes.

The only prerequisite for selecting the startpark action is that a valid park action will be available for
the agent to choose from after the startpark action is taken. This means that all the prerequisites for
the parking action also apply, although not for any particular destination track.

Park The park action describes the movement of a train from its current track to another. Several
constraints must be satisfied for the park action to be possible. Firstly, the exit of the current track must
not be obstructed by another train, allowing the train to move away from the current track. Secondly,
there must be sufficient space available on the destination track to park the relevant train. Additionally,
no other ongoing movement should be taking place in the shunting yard currently, since this is not
allowed. Moreover, the duration of the move must be such that it will be completed before the next
departure event. This requirement is critical as the departing train must reach the exiting gateway
within the specified time, and simultaneous moves are not permitted within the model.

Service The effect of the service action depends on whether the train can be serviced on its current
track or not. If the train cannot be serviced on its current track, it must first be moved to a the service
track. In that case, the same constraints as the park action also apply, meaning the train must be able
to park on the service track.

Note that the service action is still possible if the service track is currently occupied with another
train. Once the train arrives on the service track and the service crew becomes available, the service
will start automatically, eliminating the need to explicitly reapply the service action.
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The prerequisites that always apply are that the train requires the service task, and that there is no
ongoing service activity on the train.

Depart The depart action causes the chosen train to start moving towards the exiting gateway. Once
the train reaches the gateway, it is automatically departed from the shunting yard by the environment.
This action allows any train to be chosen on the yard that meets the correct type configuration for the
respective departure.

An important note is that the depart action can be chosen with trains even if the train is currently not
able to depart. The reason why a train would not be able to depart is because its exit might be blocked,
or because it still has unfinished service tasks. In such cases, a penalty may be applied to account for
the infeasibility of the move, as explained in section A.2.4. By allowing these infeasible actions at the
cost of penalties, the problem becomes more tractable as it ensures the possibility of reaching the end
state.

Only considering the actually valid actions would make the problem significantly more difficult, as
a lot of additional actions may be required to make the departure valid. Moreover, a snowball effect
could arise where one delayed departure causes subsequent trains to also experience delays. Allowing
infeasible departures allows the simulation episode to continue normally, independent of the previous
departures.

Wait The wait action is the absence of an action. Choosing to wait results in no immediate movement
or change. Instead, it allows the environment to fast-forward to the next decision moment, providing
more flexibility in the order of operations. Waiting can be useful when better decisions only become
possible at later decision moment. For instance, a train may want to wait for another train to finish their
service task so it can leave their track and free up space.

As sometimes it is necessary to make an immediate decision, it is not always possible to wait.
Waiting is not possible if there is a train occupying the gateway since it is not permitted to remain
parked at the gateway but must be moved to another location. Furthermore, waiting is not possible
when a train needs to be selected for the current departure event. When a startpark action has already
been chosen, a parking action for the train must be selected first before any waiting can occur.

A.2.3. Transition function
This section aims to provide a detailed explanation of the transition function, describing how the state
changes as different actions are executed. The transition function T (s′|s, a) describes the effect that
each action has on the current state. In the shunting problem, many actions are durative, meaning
they require a certain amount of time to complete. For example, actions such as train movements and
services take time to perform. At the same time, the model allows for the selection of new actions while
others are still in progress. This means that most actions in the shunting problem only modify the state
by adding the action to the set of ongoing activities, without completing them immediately. An overview
of how each action influences the state can be found in Table A.2.
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Action Effect on the state
Astartpark(rn) the Tparktrain(rn) trigger is activated
Apark(rn, ti, tj) the train is remove from its current track

the movement is added to the ongoing activities of the state
with a timestamp of the current time

Aservice(sa, rn, ti) if the train is already on the right track
→ the service is added to the ongoing activities

with a timestamp of the current time
else
→ a movement to the service track is added to the ongoing activities

with a timestamp of the current time
and the train is remove from its current track

Adepart(rn) a movement to the gateway track is added to the ongoing activities
with a timestamp of the current time

Await −

Table A.2: The immediate effect each action has on a given state.

Whenever an activity is added to the set of ongoing activities within a state, a timestamp of the
current time is included. This inclusion is necessary because the exact duration of an action may not
be known at the time the activity starts. The duration of each ongoing activity is determined by the
disturbance model, which handles the variability in the completion times. The disturbance model is
described in section A.3 in the next part of this section. By incorporating timestamps and accounting
for uncertain durations, the transition function captures the dynamic nature of the shunting problem,
allowing for more accurate modeling of state transitions over time.

A.2.4. Reward function
In this section, the design of the reward function is discussed. The reward R(s, a) is the value provided
by the environment after applying action a in state s. Ultimately, there is little intrinsic value of individual
actions. What matters is whether the agent can reach a goal state where all trains have arrived and
departed on time, and all service tasks have been completed, while avoiding any constraint violation.

As mentioned in Section A.2.2, certain invalid actions are allowed to be performed at the cost of
potential penalties. The following actions describe all the situations where a constraint is violated:

• Crossing Moving a train from a track when the exit is blocked by another train is referred to as a
crossing. This constraint is relaxed only for departing moves, to allow them to meet the scheduled
deadline.

• Unfinished service tasks Departing a train with unfinished service tasks is technically possible,
but is not desirable.

• Space shortage In the case that there is no available parking track on the shunting yard, the
train is kept on an imaginary track with infinite space that does not physically exist.

In principle, a solution is deemed feasible if it successfully reaches the goal state while satisfying
all the specified constraints. Therefore, a binary reward could be used, with a value of 1 for a feasible
plan and 0 for infeasible plans.

Rbinary(plan) =

{
1 if the plan is feasible
0 otherwise

In practice, finding a feasible plan can be challenging. In such cases, a binary reward is unable to
compare the quality of two infeasible plans. This limits the ability to utilize previous results to guide a
solution method to find better plans.

To address this issue, another approach is a weighted reward function. This function assigns a
weight to each type of constraint violation. By summing the weighted violations, a single reward value
is calculated. This approach allows for a better evaluation of plan quality, enabling solution approaches
to use the reward signal to produce better solutions.

Rweighted(plan) = −((Wc · c) + (Wu · |u|) + (Wp · p))
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• c: the number of crossings in the plan
• u: the set of unfinished service tasks in the plan
• p: the total number of carriages that were not able to be parked in the plan
• Wc: the weight of the crossing penalty
• Wu: the weight of the unfinished service tasks penalty
• Wp: the weight of the space shortage penalty

A.3. Environment
The environment is what the agent interacts with. In each state, the environment provides a set of
possible actions for the agent to choose from. The agent then selects an action, after which the en-
vironment updates the state accordingly based on the chosen action. However, due to the real-time
nature of the problem, some consideration has to go regarding the timing of the decision moments.

One option for decision-making is to use discrete decision points. These decision points are defined
at specific time intervals, and the agent only makes decisions at these predefined points. At each de-
cision point, the agent considers the current state chooses from the set of available action at that time.
However, if the sampling rate is too low, the agent may not have enough decision points to make all the
necessary decisions within the given time frame. On the other hand, if the sampling rate of decision
points is too high, most of the decision moments contain no possible actions other than waiting. For
instance, when all service crews are already in use or when a train is already in motion.

A more efficient strategy is reactive planning. In reactive planning, triggers are activated every time
the state changes in a specific way, indicating that the agent needs to make a decision. The simulation
environment keeps track of all the changes made to the state and detects when a triggers needs to be
activated. This allows the agent to respond immediately once the state has change and make the next
decision based on the updated state.

A.3.1. Triggers
In the context of this project, the shunting problem is simulated rather than observed directly from the
real world. The simulated environment needs to fast-forward the state until a change occurs that allow
the agent to make a new decision. At that point, the simulation pauses, and waits for the the agent’s
decision. Once the agent selects an action, the simulation resumes, and the process repeats.

A trigger is activated in response to specific events or actions taking place within the state. They
serve as the indicator for the agent to make decisions or respond to changes in the environment. An
overview of all the triggers is provided in Table A.3.

Trigger Caused by Decision to make
Tparkstarted(rn) Astartpark(rn) chosen a parking track for train rn needs to be chosen
Tservicedone service action finished which activity to do next
Tmovedone move action finished which activity to do next
Tmatchdeparture(di) departure event which train to use for departure di

Table A.3: Overview or all the triggers, with the change in state that caused the trigger to activate, and the next decision to
make

The servicedone and movedone are activated when the corresponding action is completed. These
triggers signify the availability of resources and allow the agent to select new activities that might make
use of the freed-up resources.

The matchdeparture is triggered by when a train is required for departure. At this decision moment,
the agent needs to choose which train to use for the departure event.

One notable trigger is the Tparkstarted(rn) trigger, which is unique as it is not caused by an external
event but is chosen directly by the agent through the Astartpark(rn) action. The purpose of this trigger
is to ask the agent to decide on a parking location for the given train. Note that the Astartpark(rn) action
is the only available action if there is a train on the gateway track, since trains are not allowed to stay
at the gateway track. This effectively means that the Tparkstarted(rn) trigger is also indirectly activated
by arrival events.
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A.3.2. Fast Forward
Fast-forwarding allows the environment to progress to the next relevant trigger. If a trigger has already
been activated, there is no need to fast-forward further until the agent makes a decision the chosen
action is applied. Once the action is chosen, the trigger is removed and the environment can proceed
to fast-forward again until the next decision moment and activate the new trigger.

The determine to which point the environment should fast-forward, it first needs to determine the
earliest time of the next event and the earliest finish time of the activities. Regarding the timing of the
events, departure times are known and static, while arrival times are based on the disturbance model
that is used. The determination of the timing of the next activity is similar, move times are known exactly,
and service times are based on the disturbance model. The environment then advances to whichever
event occurs first by updating the current time, activating the corresponding trigger, and updating the
state accordingly. An overview of all state changes that occur along with trigger activation is provided
in Table A.4.

Trigger Change in state
Tparktrain(rn) add train rn to the gateway track
Tservicedone remove the corresponding service action from the ongoing activities

remove the task from the set of required services of the train
Tmovedone remove the corresponding park action from the ongoing activities

add the train to the new track
Tmatchdeparture(di) −

Table A.4: The changes that are made to the state in addition to activating a trigger

It’s important to note that each fast-forward iteration may sample a different value from the distur-
bance model, potentially resulting in a sampled finish time that is lower than the current time of the
state. However, this is not possible since the previous fast-forward already established that this did not
occur. To resolve this issue, rejection sampling is used. This ensures that every sample drawn from
the disturbance model is consistent with the current state, avoiding inconsistencies in the simulation.

An example of this is shown in figure A.1. Consider two probability density functions A and B,
which describe the probability of something happening at a certain time. The first decision moment is
determined by sampling from both A and B, resulting in s1 and s0 respectively. Since s0 occurs before
s1, time in the environment is fast-forwarded to t = s0. After the agent has made a decision, and time
needs to progress again, it rejects all samples from A that are lower than the current time (≤ s0). The
possible times that will be accepted are indicated by the blue area. The disturbance model does not
need to sample from B again, since it already happened.

Figure A.1: Example of rejection sampling in the fast-forward method.



B
Policy Analysis

In this chapter, we perform an analysis of various policies to solve the shunting problem and evaluate
their performance. A series of experiments are conducted to assess the performance of each policy
under different scenarios and conditions. Based on the results of these experiments, we can conclude
the most effective policy that will be used throughout the thesis.

B.1. Policy Structure
The solution of MDP is a policy. A policy is a function that takes as input a state and set of possible
actions, and outputs the best action according to the policy.

The main difficulty of the shunting problem is due to the interconnectedness of the various subprob-
lems. However, the MDP formulation as decribed in Chapter A provides an opportunity to divide the
overall policy into smaller subpolicies. Although this division is not necessary, since each subpolicy
responds to different triggers, the modular structure makes it easier to understand the overall policy,
and analyze the effectiveness of each individual policy component. Each subpolicy is responsible for
a specific set of actions and triggers, addressing different aspects of the problem. An overview of the
different subpolicies, along with the corresponding actions and triggers, is provided in Table B.1. Each
subpolicy is explained in detail the following subsections.

sub-policy actions it is responsible for triggers it responds to
ParkingPolicy {Apark} {Tparkstarted}
ServicePolicy {Aservice, Astartpark, Await} {Tmovedone, Tservicedone}
DepartingPolicy {Adepart} {tmatchdeparture}

Table B.1: Overview of the different subpolicies and the triggers it responds to with the available actions it can take

The decisions about a single train within the shunting yard is depicted in Figure B.1. Upon arrival at
the shunting yard, the train is automatically placed on the gateway track by the environment. When the
train is on the gateway, the agent is forced to determine a parking track since trains are not permitted to
remain on the gateway track. The selection of the parking track is decided by the parking policy, which
chooses the parking track for each train.

While a train still has pending service tasks, it should not be chosen as the departing train. The
service policy is used for activities related to actions within the yard, such as deciding when to start
servicing a train. Once the service task is completed, the train must leave the service track and relocate
to a parking track again. The precise moment for this transition is determined by the service policy.
However, the parking track is chosen by the parking policy again. This process continues until the train
has finished all of its required services.

Once a train has successfully completed all of its required service tasks, it can be chosen as the
next train for departure, without getting any penalty for having unfinished tasks left. After the train is
chosen to depart, the train will automatically exit the shunting yard as soon as it arrives at the departing
gateway.
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Figure B.1: The flow of an individual train, with the actions it takes while on the shunting yard. The

B.2. Parking Policy
The parking policy is responsible for determining the parking spots for each train. It is important that the
trains are placed, such that no trains are blocked when they need to leave their parking spot. Another
relevant aspect of the parking policy is the efficiency of which it can divide the total track capacity. In
case there is a large number of trains on the yard simultaneously, there needs to be an available parking
spot for each train to avoid space shortage problems.

In this section, three rule-based policies are considered. First, a priority-based strategy, which
seeks to predict the priority of each train and assigns parking spots accordingly. Second, a type-based
strategy, which aims to group trains of the same type together on the same tracks. Finally, a combination
of the two policies is proposed.

Priority-based Parking The priority-based parking strategy assigns a priority value to each incoming
train based on its predicted position in the departing sequence. Although the exact matching of each
departure is unknown at the start, trains that arrive earlier generally have more time to complete their
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service tasks and prepare for departure. Therefore, it is likely possible to match incoming trains to the
first departing train of the same type that is not matched yet. As a result, each arriving train is given
the priority value corresponding to the index of the first non-matched departure of the same type.

This priority value is used throughout the decision making process. For this policy it is assumed
the higher priority train will leave the track before the lower priority train. However, the rules for parking
differ slightly depending on the type of track involved. In the case of LIFO (Last-In, First-Out) tracks,
the last train to arrive is the first one to leave, therefore trains are parked adjacent to trains with lower
priority values. Conversely, in the case of FIFO (First-In, First-Out) tracks, trains are parked behind
trains with higher priority values, since the parking train will only be able to leave after the already
parked train.

Type-based Parking The type-based parking strategy focuses on grouping trains of the same type
together on the same tracks. The primary objective of this policy is to minimize the number of crossings,
which occur when a train leaves its track while the exit of the track is currently blocked by another train.
By keeping trains of the same type next to each other, crossings can be easily avoided. If a train is
blocked from exiting the track due to another train of the same type that is blocking the exit, it is possible
to substitute the obstructed train and use the other train instead. This substitution is only possible when
both trains are exactly the same. However, if there are differences between the two trains, such as one
requiring a service task while the other does not, they are no longer considered identical and cannot
be used interchangeably.

Combined Parking Strategy The type-based parking policy has several instances where there may
be a tie between the possible actions. For instance, if there are multiple tracks available that all contain
the same train type, or when the train is parked on one of the empty tracks. The combined policy is
fundamentally the same as the type-based policy, but uses the priority-based policy to resolve these
ties.

B.3. Service Policy
In the shunting problem, several trains enter and exit the shunting yard. During their time in the yard, it
is necessary to perform several service tasks, such as cleaning and maintenance, to ensure the trains
are prepared for their next departure. The service policy is responsible for determining the next activity
on the shunting yard. The primary objective of the service policy is to ensure that all trains have finished
their required service tasks before its departure.

This subsection explains the implementation of three rule-based policies. The no-waiting policy,
which prioritizes avoiding waiting whenever possible, the priority-based strategy that predicts train pri-
orities for sequential service allocation, and finally the type-based strategy that assigns priority based
on train types.

No-waiting A random policy for selecting actions randomly chooses from all available actions at any
given decision point. Choosing the wait action is often possible at most decision moments, so it has
a relatively high chance to be picked by the random policy during execution. However, waiting is
generally not as useful as other actions since it does not actively contribute to completing the required
services. Waiting is mostly used in providing flexibility in the possible order in which service tasks are
performed. For a random policy, the specific order of service tasks is insignificant, because it does not
make informed decisions about the order of the service tasks. Therefore, the no-waiting policy modifies
the random policy by disallowing the wait action to be chosen when alternative options are available.
It still chooses randomly between the remaining actions.

Priority-based Service The priority-based service policy use the priority of trains to determine the
next train to service. Similar to the priority-based parking policy, the same rule is utilized for assigning
priorities. The priority of each incoming train is determined based on the index of the first non-matched
departure of the same type in the departing sequence. Trains with higher priorities are assumed to
depart before trains with lower priorities.

There are two main actions for the service policy to consider. The service action Aservice initiates
a service by starting the necessary sequence of action on the train. The startpark action Astartpark
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concludes the service by re-parking the train on the service track after completing the service tasks.
The priority-based service policy always selects the train with the highest priority for servicing, without
distinguishing between the two actions. The emphasis is solely placed on the priority of the trains to
ensure they are finished in time between their departure

B.4. Departing Policy
The departing policy is responsible for deciding which train to select for a given departure event. Gen-
erally, the chosen train should meet two essential criteria: it should not be obstructed by another train
on its route, and it should have completed all its designated service tasks. The policy should always
prioritize selecting a train that satisfies these conditions whenever possible. However, there are cases
where there are multiple trains that satisfy these conditions. Additionally, there are other cases where
no valid train can depart without getting a penalty. In both these situations, the departing policy has to
choose which train to depart.

Reward-based Departing The reward-based strategy uses a simple principle: it selects the action
that results in the least immediate penalty while randomly picking between actions of equal value.

For each train in our system, the penalty is calculated that would be given if that train were chosen
for departure. It then chooses the train with the lowest penalty.

As a result, this approach always selects a valid departure whenever possible, as no penalty will be
given. In cases where a valid departure is not possible, the train is chosen that minimizes the number
of crossings and already has completed the most service tasks.

Priority-based Departing The priority-based strategy is an extension of the reward-based strategy.
It uses the same method to determine the best trains for departure. However, in case there is a tie
between multiple trains, the priority of the trains is used. Specifically, it prioritizes the departure of
trains with higher priorities.

Similar to the priority-based parking and service policies, the same rule is used for assigning the
priorities. The priority of each incoming train is determined based on the index of the first non-matched
departure of the same type in the departing sequence

B.5. Evaluation
In this section we perform a number of experiments with several combinations of the subpolicies. We
test which overall policy performs the best, and analyze what the most likely cause of failures are for
the policies.

B.5.1. Experimental Setup
The problem instances are generated in the same way as described in Section 6.1. The instances are
modeled after realistic scenarios, using realistic distributions for the train types, their required service
and the timetable of arrival and departure times.

Layout The experiments conducted in this study are based on the layout of the ”Kleine Binckhorst”
shunting yard. The layout of the yard includes eight parking tracks, with available space ranging from
7 to 19 carriages. Additionally, there are three dedicated service tracks within the yard. One track is
designated for external washing, while the remaining two tracks are used for internal cleaning

To analyze the impact of different shunting yard layouts, each experiment is performed twice. In the
first instance, all the tracks are modeled as First-In First-Out (FIFO) tracks, while in the second instance,
all the tracks are modeled as Last-In-First-Out (LIFO). This is to analyze the different between the two
types of shunting yard layouts, and how well each policy performs on them.
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B.5.2. Analyze Parking Policies
The first experiment analyzes the performance of the different parking policies. For this experiment we
only look the night shift, which is from 8PM to 6AM. Furthermore, we assume all arrivals occur before
the first departure. Since we want to determine the best parking policy, no service tasks included.

Feasibility Both the type-based and the priority-based strategies perform significantly better than
random parking. There is however an interesting difference between the performance of the policies
on FIFO and LIFO tracks.

For the FIFO tracks, the priority-based parking strategy is slightly better than the type-based strategy.
The priority-based strategy naturally work well for FIFO track, because the priority is also determined
using a FIFO strategy, where the first arriving trains are matched to the first possible departure.

For the LIFO tracks, the type-based parking strategy starts to outperform the priority-based solution.
In general, it seems to be more challenging to find a feasible solution for LIFO tracks. A possible reason
why the type-based strategy works well for LIFO tracks, is due to the interchangeability of similar trains
that are of the same type. If two trains are parked on the same track, the train in front blocks the exit
of the other trains. However, when both trains are the same type of train, the train in front can simply
be selected when required for departure instead of the one in the back.

Figure B.2: Feasibility of each policy with increasing number of train units



B.5. Evaluation 65

Crossings Figure B.3 shows the average number of crossings each policy encountered.
We see that for the LIFO tracks the type-based strategy is able to avoid themost amount of crossings.

This aligns with the aim of the policy, which is designed to avoid crossings by parking interchangeable
trains next to each other.

Interestingly, the priority-based strategy has a higher number of crossings than the random parking
strategy on LIFO tracks. An possible reason for this, is that the priorities are assigned based on a FIFO
ordering, which is the opposite of the track ordering.

Figure B.3: Average number of crossings of each policy with increasing number of train units

Space Shortage Figure B.4 shows the average space shortage each policy encountered.
Predictably, as the number of trains reaches its limit, it becomes more likely there is not enough

total available space on the shunting yard to park all the trains. The type-based policy performs slightly
worse compared to both the priority-based and random strategy. The type-based strategy always keeps
trains of the same type on the same track, which does not lead to the most efficient use of track space
if the length of the track cannot be perfectly divided into the length of the train type.

Figure B.4: Average number of space shortage of each policy with increasing number of train units
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B.5.3. Analyze Combined Policies
In this experiment, we analyze the performance of the service policies in combination with parking. We
sample arrivals and departures according to the realistic distribution. We compare several combina-
tions of parking and service sub-policies:

name parking sub-policy service sub-policy departing sub-policy
random random random reward-based
no-wait random no-waiting reward-based
priority priority-based priority-based priority-based
type type-based no-waiting reward-based

combined combined priority-based priority-based

Night Shift We first only consider the night shift from 8PM to 6AM, where all arrivals occur before the
first departure. Figure B.5 shows the percentage of feasible simulations for each policy.

Figure B.5: Feasibility of each policy with increasing number of train units

In contrast to the parking experiment, the priority-based strategy does not perform well when ser-
vices are included into the problem. Both combinations that use the type-based strategy for parking
perform significantly better than the rest.

The no-wait policy significantly outperforms the random policy, even though the strategies are very
similar to each other. This suggest that waiting is in general not a good action to choose, which makes
sense because waiting does not progress the solution towards the desired goal.

There is no notable improvement by using the priority-based service strategy compared to no-
waiting. Since all trains arrive before departure, the service order is less important, because most
trains can be finished before the first departure. This means that servicing the trains in a random order
is good enough.
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Realistic Problem Instances Next, we look at a full planning horizon of 24 hours. This means that
arrivals and departures are mixed in time. Figure B.6 shows the percentage of feasible simulations for
each policy.

Figure B.6: Feasibility of each policy with increasing number of train units

The results are similar to the previous experiment which considered the night shift. The policies
which use a priority-based strategy are better compared to before. An explanation for this is that the
arrivals and departures are now mixed in time. This means that, in contrast to the previous experiment,
not every train can be finished before the first departure. This makes it more important to have a service
strategy that allows the necessary trains to be finished in time of departure.

B.6. Conclusions
Based on the results, the type-based parking strategy is themost impactful sub-policy to use, regardless
of the other sub-policies that are used. Even if the services are chosen randomly, the type-based
parking strategy still leads to relatively good performance.

The priority-based service policy does seem to improve the performance over randomly selecting
services in case the arrivals and departures are mixed in time. In case all trains arrive before the first
departure, there is no notable difference between priority-based strategy and random without waiting.

The biggest improvement for the service-strategy is to exclude the waiting actions, suggesting that
waiting is in general not a good action to choose.

The best overall policy is the combined policy, which consists of combined parking (type-based with
priority-based for tie-breakers), priority-based service and priority-based departures.



C
Search Methods for a Deterministic

Environment

In this chapter, we analysis various search methods that can be used to find feasible solutions to the
shunting problem. Although existing policies cannot reliably solve the problem, they may be able to
guide a search method towards the most promising direction. The goal of this chapter is to determine
whether our problem formulation allows for Monte Carlo-based search techniques to work well in finding
feasible plans, and which search method is the best one to use.

Table C.1 provides an overview of all the search methods that are considered in this chapter. It
should be noted that the search methods we consider are designed for a deterministic environments,
so they cannot be used in non-deterministic environments. Each method is explained in more detail in
the next sections.

Search Method Description Summary Search space
Randomized Iterative iteratively perform policy rollouts policy solution space
Greedy Search and keep track of the best rollout so far
Monte Carlo Tree Search iteratively perform policy rollouts full solution space in tree.

to estimate the action-value of a state policy solution space
and build a search tree from the initial state outside tree

Nested Monte Carlo Search improve the rollout quality full solution space
of higher levels (bias towards policy)
by performing rollouts of a lower level

Nested Monte Carlo same as Nested MC Search; full solution space
Beam Search but don’t commit to a single move, (bias towards policy)

instead, keep a “beam” of the best states

Table C.1: A brief description summary of the considered search methods with their respective solution space that is reachable
from the search method

C.1. Randomized Iterative Greedy Search
Although a given policy may fail to reliably generate a feasible plan, there may still be chance that it
does find a feasible solution eventually. The randomized iterative search method exploits this property
in a very simple way, by iteratively using the policy to construct solutions and keeping track of the best
solution found so far. Since the search process itself requiresminimal additional time, it is able to quickly
perform a relatively large number of iterations. Additionally, the implementation and understanding of
this method is very straightforward.
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Figure C.1: Diagram of the policy’s solution space and the space of feasible solutions.

An interesting property that arises from this method is that the final solution always remains con-
fined within the search that is reachable from the given policy. For example, if the type-based parking
policy is used, the resulting plan will always avoid parking trains next to other trains of different types
whenever possible. This means that the final plan is always restricted by the rules of the the policy.
A diagram in Figure C.1 shows the solution space that is reachable using the policy, and the feasi-
ble solution space. The randomized iterative search is restricted to the to the set of outcomes that is
reachable from policy. The set of feasible solution this search method is able to find is described by
the intersection of the policy’s solution space and the set of feasible solutions. If there exists little to no
overlap between these sets, the randomized greedy search method may never find a feasible plan, or
take a lot of time to compute.

Each iteration runs completely independently from the others. A benefit of this method is that it does
not introduce any additional bias into the algorithm. Every iteration is equally (un-)likely to produce a
feasible solution A downside, however, is that it is very computationally inefficient, since it does not use
the results from previous iterations to improve the consequent ones.

C.2. Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a heuristic search algorithm that can be used for sequential de-
cision making problems. It has proven to be a successful method for game-playing problems. The
algorithm can handle large search spaces by iteratively building a search tree in an asymmetric way
towards the most promising region. Each iteration of the MCTS algorithm consists of the following four
steps:
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Figure C.2: TODO: source https://lcalem.github.io/blog/2018/12/01/sutton-chap08

1. Selection: Starting from the initial state, actions are chosen based on the values in the current
version of the search tree. This step continues to pick actions from the tree, until a terminal state
or a leaf node is reached.

2. Expansion: Once a leaf node has been reached, the tree is expanded with at least one new
node corresponding to the new state.

3. Simulation: Actions are chosen based on a simulation policy until a terminal state is reached.
Often a random policy is used, but other policies can be used as well.

4. Backpropagation: The final result of the simulation is added to all the nodes that were chosen
during the selection phase. Each visited node also increments its counter that tracks how often
the state has been visited. These statistics are used to estimate the value of the visited state and
guide the selection of actions for future iterations.

Selection The aim of the selection step is to pick the actions from the search tree that seem to be the
best so far based on the results of previous iterations. The value of each action in a state is estimated
by the average reward of the simulations:

Q(s, a) =
vi
ni

• vi: total reward of node i

• ni: the number of visits of node i

The selection procedure however, needs tomaintain a balance between exploration and exploitation.
This is typically done by treating every node in the search tree as a multi-armed banded problem, and
minimizing the regret. The formula is called Upper Confidence Bounds applied for Trees (UCT):

UCT = Q(s, a) + C

√
lnNi

ni

• Ni: the number of visits of the parent of node i
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• C: the exploration constant, theoretically equal to
√
2, but often chosen empirically

MCTS is often used for two-player games, where there is some uncertainty on the opponent’s play
and where the rewards are indicated by either a loss, draw of win. To allow for a wider range of possible
values, and when there is no opponent, an extension can be made by adding a ”possible deviation”
term to the UCT formula [25]:

UCT' = UCT +

√
σ2 +

D

ni

• σ2: the variance of the node’s simulation results
• D: uncertainty constant, so infrequently visited nodes will be considered less certain

An accurate evaluation of a node may require a lot of simulations, as the statistics are not reliable
when a node is visited few times. To address this issue, the node can be initialized with a heuristic
value that estimates the quality of the action, without requiring any simulations. A common method to
do this is by adding a progressive bias to the value of the node [13]:

Q′(s, a) = Q(s, a) +
bi
ni

• bi: the heuristic score of node i

Expansion Once a leaf node has been reached, the tree is expanded with at least one new node
corresponding to the new state. Normally each unvisited action of a node is chosen at least once
before adding deeper layers to the tree. However, this causes less exploitation to occur with nodes
deeper in the tree, especially when the branching factor is large. One technique that aims to reduce this
effect is progressive unpruning [13], which uses heuristic knowledge to immediately prune some of the
possible actions, but eventually unprunes them after some time. This temporarily eliminates obviously
poor choices allowing the search to focus more time on better options.

Simulation Nested approaches [12] and [3] have been successful in solving single-player puzzles
and similar optimization tasks. These approaches are designed to optimize moves at all stages of the
search process, rather than just near the root of the tree where most of the search time is typically
spent. The idea behind nested approaches is to recursively use the search method itself as the rollout
policy, which leads to the higher level search producing better results.

Backpropagation The final result of the simulation is added to all the nodes that were chosen during
the selection phase. Simulations later on are generally more important, since both the tree policy and
the simulation policy improve with more iterations. Therefore the results can be weighted according
the current average performance of the simulations.

ni ← ni + pt

vi ← vi + rt · pt

• ni: the number of visits of node i

• vi: the total value of node i

• pt: the average performance of the simulations at iteration t

• rt: the return value obtained by simulation t
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C.3. Nested Search
Nested approaches [12] and [3] have been successful in solving single-player puzzles and similar
optimization tasks. These approaches are designed to optimize moves at all stages of the search
process, rather than just near the root of the tree where most of the search time is typically spent. The
idea behind nested approaches is to recursively use the search method itself as the rollout policy, which
leads to the higher level search producing better results

Figure C.3: Overview of nested search with increasingly higher levels. On the left, a regular rollout is shown, represented as a
wavy line. A level 1 nested search performs a rollout for each current possible action to estimate its value. This process is
generalized to higher level nested searches, where a level-l search performs a level-(l − 1) nested search for each action

before choosing the action and repeating the process in the next state.

A level-0 nested search is defined as the normal rollout. A level-l search performs a full simulation,
where at each step the highest scoring action is chosen based on a level-(l−1) nested search for each
possible action. The computational complexity of the algorithm is O(anhn+1), where a is the branching
factor, h the planning horizon, and n the initial nested search level.

The required runtime is not known at the start of the search. For the purpose of this thesis, the
algorithm is slighty modified to allow for more flexibility in the designated runtime, without requiring
explicit parameter tuning. It is possible to make the algorithm anytime, by wrapping the search in an
iterative loop. Each iteration, the search parameters are gradually increased. We start with a level-0
search, and increment the level with each new iteration. This means the algorithm keep restarting in the
hope to eventually find a feasible solution. Since the runtime complexity is exponential with respect to
the level that is used, a previous lower level search has a relative low impact on the runtime compared
to the new higher level search.

C.4. Beam Search
Monte Carlo Beam Search [2] is an extension of Nested Monte Carlo Search. It combines Nested
Monte Carlo Search with Beam Search. Nested Monte Carlo Search only keeps a single state at the
time, whereas Monte Carlo Beam Search remembers the best b states in a ’beam’.

The time complexity of the algorithm is O(wnanhn+1), where a is the branching factor, h is the
planning horizon, n is the nested search level and w the size of the beam.
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C.5. Evaluation
To evaluate the performance of the search methods, we conduct experiments in four different scenarios.
First, a short night shift without any service tasks is considered. Afterwards, the same experiment is
repeated, but with the inclusion of service tasks. The third experiment analyzes a full day without any
service tasks. Again, the same experiment is repeated, but with the inclusion of service tasks. These
experiments are chosen to compare with the results of the current state-of-the-art method proposed
by van den Broek [6] based on Simulated Annealing (SA). It should be noted, however, that a direct
comparison is not possible, as the problem instances are not exactly the same. The SA method also
considers trains that consist of multiple train units, which significantly increases the problem’s difficulty,
since trains need to split and combine to form the correct configurations. Nonetheless, the SA method
is included as a point of reference due to the similarity in the experimental setup

Experimental Setup In each experiment, 50 problem instances are generated for every even number
of total train units. The generation method described in Section 6.1 is used for this. A maximum time
limit is set to only 10 seconds of computation time to find the solutions. Which is very short, as the
duration for which the plans are created is much longer. But it proved to be sufficient to find most plans.

Night shift without service tasks

Figure C.4: Night shift without services
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Night shift, including service tasks

Figure C.5: Night shift including services

Full day, without service tasks

Figure C.6: Full 24 day planning, without services
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Full day, including service tasks

Figure C.7: Full 24 day planning, including services

C.6. Conclusions
The results indicate that that the search techniques are successful in finding feasible plans for the
shunting problem. The Randomized Iterative Greedy Search (RIGS) already seems sufficient for most
problem instances, although it does perform consistently slightly worse compared to the beam search
method. It also has to be noted that very little computation time was used to find the solutions, meaning
that the algorithmsmay find more solution if givenmore time. This is especially true for the beam search
method, as it should be able to search more effectively compared to RIGS when given more time.


	Summary
	Introduction
	Problem Context: the Shunting Problem
	Preliminaries
	Subproblems
	Initial Shunting Plan
	Uncertainty
	Small Example

	Motivation
	Current Best Solution
	Policy Solutions
	Extracting Shunting Plans from Policies
	Purpose of this Thesis

	Contributions
	Research Questions
	Outline

	Literature Review
	Exact Approaches
	Local Search Heuristic
	Policies for the Shunting Problem
	Constructing a Policy
	Learning a Policy


	Background
	Markov Decision Process (MDP)
	Partially Observable MDP
	Belief State
	Particle Filter
	Non-Observable MDP


	Representation of Initial Shunting Plans
	Sequential Problem Formulation
	Create POS from Action Sequence
	Execute POS sequentially
	Example

	Creating Robust Action-Sequences
	Probabilistic Action Planner (PAP)
	Transform MDP to NOMDP
	Optimal Action Value
	Approximate Action Value
	Approximate Belief State
	Optimize Selection
	Implementation

	Adaptive Difficulty Algorithm (ADA)
	Transition Structure
	Which Transitions to use?
	Find Maximum Threshold

	Summary

	Experimental Setup
	Artificial Instances
	Instance Generator

	Experimental Setup
	Data Generation
	Disturbance Model
	Hyperparameters

	Experiments

	Results
	Final Results
	Robustness
	Required Computation Time
	Scheduled Service Times

	PAP Analysis
	Validity
	Robustness
	Value Approximation

	ADA Analysis
	Maximum Possible Slack
	Correlation with Robustness


	Discussion
	Answer to Research Question
	Findings
	Limitations

	Conclusions
	Future Work

	References
	Simulation Environment
	Prerequisites
	MDP formulation
	State Space
	Action Space
	Transition function
	Reward function

	Environment
	Triggers
	Fast Forward


	Policy Analysis
	Policy Structure
	Parking Policy
	Service Policy
	Departing Policy
	Evaluation
	Experimental Setup
	Analyze Parking Policies
	Analyze Combined Policies

	Conclusions

	Search Methods for a Deterministic Environment
	Randomized Iterative Greedy Search
	Monte Carlo Tree Search
	Nested Search
	Beam Search
	Evaluation
	Conclusions


