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Abstract 
Foam can divert flow from higher- to lower-permeability layers and thereby improve vertical sweep 

efficiency in gas-injection enhanced oil recovery.  Recently, Kapetas et al. (2015) measured foam properties 

in cores from four sandstone formations ranging in permeability from 6 to 1900 md, and presented parameter 

values for a foam-model fit to those data.  Permeability affects the limiting capillary pressure at which foam 

collapses in the "high-quality regime". Kapetas et al. showed how foam would divert injection between 

layers of these formations if all layers were full of foam at a given quality (gas fractional flow). Here we 

examine the effects of SAG (surfactant-alternating-gas) injection method on diversion in a dynamic foam 

process using fractional-flow modelling and the model parameters derived by Kapetas et al. We consider a 

hypothetical reservoir containing non-communicating layers with the properties of the four formations in that 

study. 

The effectiveness of diversion varies greatly with injection method.  In a SAG process, diversion of the first 

slug of gas depends on foam behaviour at high foam quality. Foam mobility in the foam bank during gas 

injection depends on the nature of a shock front that bypasses most foam qualities usually studied in the 

laboratory. The foam with the lowest mobility at fixed foam quality does not necessarily give the lowest 

mobility in a SAG process. In particular, diversion depends on how and whether foam collapses at low water 

saturation; this property varies greatly among the foams reported by Kapetas et al. Moreover, diversion 

depends on the size of the surfactant slug received by each layer before gas injection.  This of course favours 

diversion away from high-permeability layers that receive a large surfactant slug, but there is an optimum 

surfactant slug size: too little surfactant and diversion from high-permeability layers is not effective; too 

much and mobility is reduced in low-permeability layers, too. Using a model based directly on laboratory 

data, this study shows how diversion between layers differs with injection method.  
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1 Introduction & Problem Statement  
1.1. Introduction  
 

Foam as technique for gas diversion has been proven useful in several enhanced oil recovery (EOR) 

practices (Rossen and Wang, 1999; Cheng et al., 2001). There are many economic and technical challenges 

in gas flooding EOR processes. Economic challenges mainly include matching an affordable, convenient 

source of gas with a viable candidate field. Although gas can displace oil efficiently wherever it sweeps 

(good micro displacement), many technical challenges arise due to its poor volumetric sweep efficiency 

caused by reservoir heterogeneities, viscous instabilities, and gravity override (Lake et al., 2014). Foam can 

tackle the technical challenges in order to improve sweep efficiency by reducing gas mobility (Schramm, 

1994; Kovscek and Radke, 1994; Rossen, 1996). The variation of permeabilities in layered reservoirs causes 

the displacing fluid to advance faster in zones of higher permeability, resulting in an earlier breakthrough 

into those layers. Once preferential paths have formed, little sweep improvement is expected in an 

immiscible displacement. In this paper, we show that SAG is superior to preformed foam injection in 

minimizing the effect of reservoir heterogeneity in terms of permeability contrast in non-communicating 

layered reservoirs (i.e. better diversion).  

Foam is a dispersion of gas bubbles in a continuous liquid medium where bubbles are separated by thin films 

called lamellae. Foam dramatically reduces the mobility of the gas phase. Foam quality is the gas volume 

percentage at a specified pressure and temperature. In the absence of oil, steady-state strong foam exists in 

two flow regimes: low-quality and high-quality (Osterloh and Jante, 1992; Alvarez and Rossen, 2001). In the 

low-quality regime, foam has relatively fixed bubble size and is strongly shear-thinning; as foam quality fg 

increases, foam mobility decreases, because the more viscous gas occupies a larger fraction of total flow, up 

to the transition foam quality fg
*
. The transition marks the start of the high quality regime that describes the 

effect of foam coalescence at the limiting capillary pressure, Pc
*
 that corresponds to the limiting water 

saturation, Sw
*
, as foam quality increases (Khatib et al., 1988, Zhou et. al., 1995). The limiting capillary 

pressure is a function of surfactant formulation and concentration, gas velocity, permeability of the porous 

medium, and presence of oil (Khatib et al., 1988). In the high-quality regime, foam can be moderately shear-

thinning, shear-thickening, or Newtonian (Hirasaki and Lawson, 1985; Falls et al., 1989; Alvarez et al., 

2001; Xu and Rossen, 2003; Tang and Kovscek, 2006). Foams tend to promote larger mobility reductions in 

high-permeability porous media, as compared to lower-permeability porous media, mainly due to foam’s 

sensitivity to capillary pressure (Khatib et al., 1988). The higher capillary pressure in low-permeability 

layers tends to destabilize foam and slow its generation.  

There are two common approaches for modelling foam flow in porous media: population balance (PB) 

(mechanistic) models and implicit-texture (IT) (empirical) models (sometimes called local-equilibrium (LE) 

models). The local equilibrium models assume that foam processes occur very quickly compared to the 

timescale of the overall displacement. The two types of models represent the reduction of gas mobility due to 

the presence of foam differently. PB models reduce gas mobility based on the evolution of foam texture (i.e. 

bubble size, number of lamella, etc.). The model takes into account the dynamic processes involved such as 

lamella generation and destruction (Falls et al., 1988; Patzek, 1988; Kovscek et al., 1995; Kovscek et al., 

1995; Bertin, 2000; Zitha, 2006; Kam et al., 2007; Chen et al., 2010). The model might seem complete in 

theory, but the main challenge is obtaining the parameters needed. The IT approach represents the effect of 
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foam implicitly through gas mobility-reduction factor that is a function of saturations, superficial velocities, 

etc. (Law et al., 1989; Patzek and Myhill, 1989; Kular et al., 1989; Fisher et al., 1990; Islam and Farouq-Ali, 

1990; Mohammadi and Coombe, 1992; Cheng et al., 2000). In principle, the IT models are simpler and can 

fit steady-state data. Furthermore, the two models are generally in good agreement (Kam et al., 2007; Chen 

et al., 2010) even in fitting dynamic foam displacements except in at the entrance region of a porous medium 

and any shock fronts (Ettinger and Radke, 1992; Chen et al., 2010; Ashoori et al., 2011). More details about 

the different approaches used to model foam flow in porous media could be found in a recent review by Ma 

et al. (2015).  

A widely used application of the IT model is the STARS model (CMG, 2012). The model can fit both 

steady-state strong foam regimes using parameters such as fmmob, fmdry, epdry, epcap (Alvarez and Rossen, 

2001). fmmob is the reference mobility reduction factor, i.e., the maximum reduction in gas mobility at full 

foam strength. fmdry represents water saturation around which foam weakens or collapses, i.e. Sw
*
. epdry 

governs how abruptly foam collapses in vicinity of Sw = fmdry. epcap governs non-Newtonian behaviour in 

the low-quality regime. However, the model does not represent non-Newtonian behaviour in the high-quality 

regime. Additionally, despite the high capillary pressure at residual water saturation (Swr), the STARS model 

does not allow for complete foam collapse at Sw=Swr. Therefore, Namdar Zanaganeh et al. (2011) proposed a 

simple modification to the STARS model to allow for complete foam collapse at Swr. 

There are three different methods for foam injection that are used depending on the intended purpose:  

 Sequential injection: alternating slugs of surfactant and gas, commonly known as SAG, (Kibodeaux 

and Rossen, 1997). 

 Co-injection: co-injection of surfactant solution with gas (Stone, 2004; Rossen et al., 2010). 

 Dissolved surfactants injected with supercritical CO2. The foam forms as the CO2 meets formation 

water (Le et al., 2008; Ashoori et al., 2010).  

However, due to the substantial effective viscosities of preformed foams and the associated poor injectivity, 

and corrosion issues, SAG is preferred in field applications. 

Recently, Kapetas et al. (2015) fitted the STARS foam model parameters to measured data for pressure 

gradient (P) vs. foam quality for cores from four sandstone formations ranging in permeability from 6 to 

1900 md using the least-squares method of Eftekhari as shown in Figure 150. The least-square method is 

summarized in Farajzadeh et al. (2015). The formations are Bentheimer, Berea, Sister Berea, and Bandera 

Gray with permeabilities of 1900, 90, 160, and 6 md respectively. They also fitted the water and gas relative 

permeabilities to measured lab data using Corey parameters. The parameters for the foam model and Corey 

relative permeabilities can be found in Table 1 and Table 2 in Appendix A. In their paper, Kapetas et al. 

(2015) represented hypothetical scenarios for foam diversion at different qualities fg into three non-

communicating layers as shown in Figure 1. It should be noted that the y-axis is logarithmic, because 

superficial velocities in the different layers vary greatly in magnitude. Also, the diversion behaviour varies 

significantly for different pressure gradients due to the difference in the extent of shear-thinning behaviour 

among the three formations. The graph shows that in all cases (varying P & fg), foam flows at larger 

velocity in the highest-permeability layer (Bentheimer) with varying degrees of diversion. The highest 

diversion occurs when foam reaches its strongest condition at a critical foam quality of fg
*
=95% in the 

Bentheimer layer.  
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Figure 1: Total Superficial Velocity at Different Foam Qualities for Bentheimer, Berea and Bandera 

Gray for Pressure Gradients of (A) 400 bar/m, (B) 40 bar/m and (C) 4 bar/m. 

In this paper, we evaluate the magnitude of diversion using the SAG injection scheme. Fractional-flow 

theory is used to predict SAG performance. Details about the method can be found in Chapter 2. The low-

quality regime is not experienced during SAG injection, and since shear-thinning is mainly important in 

describing the low-quality regime, it is ignored in this paper.  

In order to predict injectivity in a SAG process, it is crucial to predict mobilities near the injection wellbore 

(Kibodeaux and Rossen, 1997; Leeftink et al, 2013; Rossen and Boeije, 2015). The mobilities near the 

wellbore are highly influenced by whether foam completely collapses at high capillary pressures near the 

wellbore (Namdar Zanaganeh et al., 2011; Rossen and Boeije, 2015). Even though mobility is low at the 

front of the foam bank, fractional-flow theory predicts that the mobility near the wellbore is high during gas 

injection, allowing for both mobility control at the flood front and good injectivity (Leeftink et al, 2013; 

Rossen and Boeije, 2015). In idealized circumstances, a single-slug SAG process is predicted to have the 

best performance since it improves injectivity and minimizes the effects of gravity override (Shan and 

Rossen, 2004; Faisal et al., 2009; Kloet et al., 2009; Boeije and  Rossen, 2014).  

In this paper, the model fits of Kapetas et al. (2015) for foam without oil are used to illustrate the diversion 

of gas in a single-slug SAG process in a hypothetical four-layer reservoir with equal pore volume in each 

A 

B 

C 
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layer. A one-dimensional fractional-flow model for radial flow is used. Gravity override and viscous 

fingering are not examined here. The effect of foam on oil displacement is complex in nature and is still 

unresolved; therefore, it is ignored in this paper. Additionally, it is likely that oil, in the near wellbore region, 

has already been swept. The fractional-flow approach can be used if there is immobile oil present, but it is 

not addressed here. Some authors extended the fractional-flow theory to model foam displacements with 

mobile oil (Ashoori et al., 2010; Namdar Zanganeh et al., 2011).  

In this paper, diversion of gas is studied as a function of surfactant slug size, in a single-slug SAG process, 

using the STARS model and the proposed modification by Namdar Zanganeh et al. (2011). The results show 

that diversion depends on injection method (SAG vs. preformed foam), surfactant-slug size, and whether 

foam completely collapses at residual water saturation Swr. In order to illustrate the challenge of diverting 

flow in the presence of extreme differences in permeability, we also study the effect of sealing off the 

lowest-permeability layer (Bandera Gray) during surfactant injection prior to gas injection.  

Other chemical and physical factors that affect foam are described elsewhere. For example, the effect of 

liquid and gas composition (Mannhardt et al.1993, Liu et al. 2005, Farajzadeh et al. 2010, Farajzadeh et al. 

2012), the effect of oil composition and saturation (Nikolov et al. 1986, Lau et al. 1988, Kuhlman 1990, 

Simjoo et al. 2009, Simjoo and Zitha 2013), and the effect of miscibility, pressure or temperature (Chabert et 

al. 2014, Kapetas et al. 2015). Additionally, for communicating layers where cross-flow is possible, Bertin et 

al. (1998) found that the foam front moves at matching velocities in consolidated and unconsolidated sand 

medium. The effect of hysteresis is not considered here since a single-cycle SAG flood is modelled.  

1.2. Problem Statement  
For the reservoir configuration shown in Figure 2, we investigate the effect of reservoir heterogeneity, with 

the intention to estimate injectivity during a single-cycle SAG flood for different surfactant slug sizes to find 

the optimum volume that favours maximum diversion away from the highest-permeability layer. We use a 

one-dimensional radial reservoir model with formation properties based on laboratory data for four 

sandstones measured recently by Kapetas et al. (2015). The model assumes that each layer is homogeneous 

(isotropic and uniform permeability), uniform in height, and capillary isolated. A vertical injection well that 

penetrates the entire reservoir interval is assumed. The SAG flood process involves the high-quality regime 

only; therefore, the dryout function, commonly referred to as F2 or Fw, in the STARS model and the Namdar 

Zanganeh et al. (2011) modification are modelled in this paper as discussed in Chapter 2. The layers have 

equal pore volume, with different heights (Table 3); individual and total pore volumes are 7,540 and 30,159 

m
3
 respectively.  

 

Figure 2: Problem Description 
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2 Methodology  
2.1. Introduction  

In reservoir simulation, mathematical models for foam flow are used in order to gain insight on key 

parameters controlling its flow in porous medium. The mathematical models are based on conservation of 

mass, momentum, and energy, in addition to an equation of state (EOS) that describes a fluid’s reaction to 

changes in physical parameters. In this paper, isothermal and incompressible flow is assumed. Therefore, the 

model is simplified by ignoring the conservation of energy and the EOS equations. 

In this section, the geometry of flow is described along with important notations including Darcy’s law, 

Corey relative permeabilities, and mobility. The fractional-flow theory (FFT) for gas injection into a 100% 

water-saturated reservoir is then introduced. In order to simplify the system of equations, the FFT is put in 

dimensionless form. The solution using the method of characteristics (MOC), which is a mathematical 

technique for solving first-order partial differential equations (PDE), is then introduced for a single-layered 

reservoir and extended to a multi-layered reservoir. In addition, the solution of the FFT for a SAG process is 

introduced. The model is then developed to predict the diversion performance of a single-slug SAG process 

for various surfactant slug sizes. Cases are run for gas injection without surfactant, SAG in a fully surfactant-

saturated reservoir, and SAG with finite slug of surfactant. Calculations are performed by a MATLAB code 

presented in Appendix B. Finally, details about the model’s limitation and range of validity are highlighted. 

2.2. Geometry of Flow 

Fluid flow through porous media is greatly influenced by geometry. Most analytical models are developed 

on the basis of simplified flow geometries. The geometries relevant for fluid flow in porous media are: 

 Linear flow: occurs in core floods and might be a good approximation to flow far from wells.  

 Radial flow: occurs around most wells. 

 Spherical flow: occurs near the tips of wells, and near perforations. 

Spherical flow is not relevant in our case; therefore a comparison is only made between linear and radial 

flow. In this study, the drainage area is assumed to be cylindrical; therefore, the flow from an injection 

wellbore is radial. The main difference between linear and radial flow is that the flow area remains constant 

in linear flow while it changes as a function of radius in radial flow as shown in Figure 3. As a consequence, 

the pressure dissipates linearly in a linear flow and logarithmically in a radial flow. Because all fluids 

entering the wellbore have to pass through the narrow area around the wellbore, the highest superficial 

velocities (therefore highest pressure drop) in the reservoir occur there as shown in Figure 4. It is also 

assumed that the displacement occurs mainly in the radial direction. Therefore, the analysis is narrowed to 

one-dimensional radial flow. 
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Figure 3: Linear vs. Radial Flow 

 

Figure 4: Pressure Dissipation for a Single-Layer Reservoir in Radial Flow 

2.3. Darcy’s Law 

2.3.1. Darcy’s Law for Single-Phase 

 

Fluid flow through porous media is often described using Darcy’s empirical relationship (Darcy, 1856). 

Darcy’s law in differential form for flow of a single phase 𝛼 in radial reservoir reads 

 
r

k Pk d Z
u g

dr r

Q

A r

 
 

 

 
 

  
      

  
  (0.1) 

The volumetric flow rate (Q𝛼) divided by the radial flow area (Ar) gives the superficial velocity of a fluid 

(u𝛼) that is proportional to the fluid’s potential gradient (d/dr) and permeability (k) of the medium, and 

inversely proportional to the fluid’s viscosity (𝛼). The fluid’s potential includes the pressure gradient 
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(dP/dr) along with the elevation head gradient (g dP/dr), where (𝛼) is the fluid’s density and (g) is the 

universal gravitational constant. The law is analogous to Fourier's law in the field of heat conduction, Ohm's 

law in the field of electrical networks, and Fick's law in diffusion theory. If gravity is ignored equation (0.1) 

reads  

 
k P

u
A r

Q





  


  (0.2) 

Darcy’s law assumes that viscous forces are dominant (low Reynolds’s number), and there is no turbulence. 

Applying Darcy’s law to gas flow in porous media at low pressure is complicated and requires additional 

modifications.  

2.3.1. Darcy’s Law for Multiphase Flow 

Darcy’s law could be extended to describe multiphase flow in porous media as follows  

 
 r

Q kk S P
u

A r





 






  


  (0.3) 

The same notations in equation (0.2) hold for phase 𝛼 with the introduction of the relative permeability of 

phase 𝛼 (kr𝛼), which is a function of the phase’s saturation (S𝛼). kr𝛼 is a dimensionless term devised to adapt 

Darcy’s law to multiphase flow conditions. It describes the ratio of effective permeability of a particular 

fluid at a particular saturation to absolute permeability of that fluid at total saturation. Therefore, if a single 

fluid is present in a rock, its relative permeability is one. Calculation of relative permeability allows 

comparison of the different abilities of fluids to flow in the presence of each other, since the presence of 

more than one fluid generally inhibits flow. Relative permeability is generally a nonlinear, path-dependent, 

function of the phase saturations.  

2.4. Corey Relative Permeabilities 

Essentially all calculations of EOR process performance are based on the use of relative-permeability 

functions that describe the local movement of phases based on their saturations. Corey’s semi-empirical 

relations are commonly used to describe the relationship of relative permeability to the given phase 

saturation. An underlying assumption of Corey’s relative permeabilities is that the flow of one phase is only 

affected by its own saturation and not by the flow of other phases. For two-phase flow, water and gas in our 

case, the relative permeabilities are described by 

           1
1

wn

w wr
rw w rwe wr w gr

wr gr

S S
k S k S S S

S S

 
       

  (0.4) 

  
1

        1
1

gn

w wr
rg w rge gr g wr

wr gr

S S
k S k S S S

S S

  
       

  (0.5) 

where krwe and krge refer to the end-point relative permeabilities, i.e., the relative permeability of one phase at 

irreducible saturation of the other phase. Sw, Swr, and Sgr refer to the water saturation, residual water 

saturation, and residual gas saturation respectively. The permeability of a phase increases monotonically 

with an increase of its saturation. The terms nw and ng are the water and gas saturation exponents that define 

the shape of relative-permeability curves. The higher the saturation exponent, the more non-linear the 

associated change in relative permeability to the phase’s saturation. When the exponent is equal to one, the 
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relationship becomes linear. Water is the wetting phase in the sandstone cores used in this paper. Due to 

differences in wetting properties, the two functions are different. Small amounts of water have little effects 

on the relative permeability of gas (non-wetting-phase), whereas small amounts of gas considerably reduce 

the relative permeability of water. The wetting phase tends to retreat in the small pores, which does not 

interfere with the non-wetting phase permeability. However, a small amount of the non-wetting phase 

occupies the large pores, blocking the flow of wetting phase in those pores. Therefore, nw is larger (krw is 

more nonlinear) than ng, as shown in Table 2. For gas injection, drainage curves are used since the gas phase 

saturation is increasing. The relative permeability curves as a function of water saturation for the 

Bentheimer, Berea, Sister Berea, and Bandera Gray layers can be found in Figure 126, Figure 132, Figure 

138, and Figure 144 respectively.  

2.5. Mobility 

Mobility describes the ease with which a particular fluid moves through porous medium under the influence 

of a pressure gradient. It is the ratio of effective permeability (k𝛼) to phase viscosity (𝛼), and could be 

written as  

 
( ) ( )

( ) ( )w w rw w
w w rw w

w w

k S kk S
S k S 

 
     (0.6) 

 
( ) ( )

( ) ( )
g w rg w

g w rg w

g g

k S kk S
S k S 

 
     (0.7) 

where λw and λg are the water and gas mobilities; also, λrw and λrg are the water and gas relative mobilities. 

Equation (0.3) could be expressed in terms of relative mobility as follows  

 ( )r w

P
u k S

r
 


 


  (0.8) 

The total relative mobility is defined as the summation of the relative mobilities of the various phases at 

specific water saturation as follows    

 ( ) ( ) ( )rt w ww wr rgS S S      (0.9) 

The total relative mobility curves as a function of water saturation for the Bentheimer, Berea, Sister Berea, 

and Bandera Gray layers can be found in Figure 128, Figure 134, Figure 140 and Figure 146 respectively. 

The mobility ratio at a displacement front (M) is defined as the mobility of the displacing fluid divided by 

the mobility of the displaced fluid both taken at their saturations upstream and downstream of the front.  

 rt

rt

M







   (0.10) 

Where 
+
 and 

–
 denote saturations upstream and downstream of the front respectively. If the mobility ratio is 

unfavourable (greater than unity), the upstream bank tends to finger through and bypass the displaced fluid 

downstream. The mobility ratios for gas with and without surfactant can be found in Table 7.  
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2.6. Pressure Difference  

2.6.1. Pressure Difference for Single-Phase Flow 

For single phase flow, the pressure difference between the wellbore radius rw and the outer radius re is 

obtained by integrating equation (0.2) as follows  

 
   
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r ee

P r r

r rP r r
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dP dr dr

A r kk A r k
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

 




       (0.11) 

where area of flow is based on the radial distance r as A(r) =2πrh. Since the phase mobility for single phase 

flow is constant, the solution reads  

 ln
2w e

e
r r

r w

Q r
P P P

hk r




 

 
     

 

  (0.12) 

2.6.2. Pressure Difference for Multiphase Flow 

Since the flow is incompressible, the total flow rate is equal to 

 t
t w gu u u

A

Q
     (0.13) 

Expanding the term using (0.8) leads to  
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  (0.14) 

If capillary forces are neglected, the pressure gradient in both phases is equivalent. Additionally, 

incorporating equation (0.9) gives  

 ( )t rt w

dP
u k S

dr
    (0.15) 

Integrating equation (0.14) to get the pressure difference between the wellbore radius rw and the outer radius 

re leads to  
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After integration, the pressure difference is  
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1

2w e

e
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t
r r

rt wr

Q
P P dr

hk r S r 
     (0.17) 

The total relative mobility in this case changes as a function of water saturation that also changes with 

injection as a function of radius. In general, analytical integration of equation (0.17) is not possible. If, for 

any saturation, the radial position is known as is the case in fractional-flow theory, one can estimate the total 

relative mobility at every radius r. Therefore, the solution could be obtained using numerical integration.  
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2.7. Fractional-Flow Theory 

2.7.1. Introduction and Assumptions 

Buckley and Leverett (1942) derived the formulation for the fractional flow theory (FFT) for the purpose of 

estimating the efficiency of water floods. Since then, the theory has proven useful for a variety of EOR 

processes (Pope, 1980; Welsh and Lake, 1989; Lake et al., 2014). In this case, the application of the theory 

for foam EOR processes is discussed (Zhou and Rossen, 1994; Zhou and Rossen, 1995). The beauty of the 

fractional flow theory is that it simplifies the prediction of multiphase flow in porous media by using the 

fractional-flow function fw. The theory makes many simplifying assumptions:  

1) The flow is one-dimensional, through an isothermal permeable medium. There are no phase changes.  

2) The rock and fluids, including gas, are incompressible.  

3) The fluids do not react chemically with rock, except for surfactant adsorption  

4) The phases immediately take the steady-state mobilities dictated by their saturations, fractional flows 

and the presence or absence of surfactants.  

5) Dispersion and viscous fingering can be ignored.  

6) The initial conditions are uniform in the medium.  

7) At most there are two phases:  

o A gas phase that contains gas only 

o An aqueous phase, which contains water, or water and surfactant only.  

8) At most, three components are present: water, gas, and surfactant.  

9) The fractional-flow curve applies 

10) Newtonian mobilities for all phases 

Despite the simplifying assumptions, the theory has proven very useful in evaluating flooding processes. 

2.7.2. Water Fractional-Flow Notation 

For two-phase flow of water and gas, the fractional-flow of water fw is defined as the fraction of water flow 

relative to the total flow rate. It could be written as follows  
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  (0.18) 

The term could be expanded using equation (0.8) to give 
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  (0.19) 

The fractional flow function can be further simplified to 
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  (0.20) 

Fractional-flow curves for the Bentheimer, Berea, Sister Berea, and Bandera Gray are shown in Figure 127, 

Figure 133, Figure 139 and Figure 145 respectively.  

2.7.3. Mass Balance 

The principle of mass conservation states that for an incompressible system, the mass must remain constant. 

This could be translated into the following  
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   –    Flow in Flow Out Accumulation   (0.21) 

The terms in the equation (0.21) for water flow are   

    Flow in 2   w wr r
rh u Qt t        (0.22) 

      Flow out 2   w wr r r r
r r h u t Q t  

 
       (0.23) 

    Accumulation 2 2w wt t t
r rh S r rh S   


      (0.24) 

where the terms, and t refer to porosity, density and time respectively. Combining the terms lead to  

        2 2w w w wr r r t t t
t t r rh S r r SQ Q h     

 
         (0.25) 

Dividing by the radial and time increments combined with the assumption that the fluids and matrix are 

incompressible leads to  
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Taking the limit when r and t are approaching zero leads to the differential form that is  

 
   

2
w wQ

r
r

S
h

t
 









  (0.27) 

Incorporating equation (0.18) and rearranging leads to  
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  (0.28) 

2.7.4. Dimensionless Parameters  

2.7.4.1. Dimensionless Position 

The dimensionless position is defined as the fraction of pore volume back to injection point; for radial flow, 

it is written as 

    
2 2

2 2
       0,1w

D D

e w

r r
x x

r
r

r





   (0.29) 

The quadratic nature of the dimensionless position can be seen in Figure 5.   
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Figure 5: Reservoir Radius (r) vs. Dimensionless Position (xD) 
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2.7.4.2. Dimensionless Time  

The dimensionless time is defined as the cumulative pore volume injected divided by the pore volume of the 

region of interest, and can be written as 

 2 2
        0

( )

t
D D

e w

Q dt
t t

r r h 
 

   (0.30) 

2.7.4.3. Dimensionless Pressure  

In order to simplify the calculations, the total pressure difference in each layer is normalized here by the 

pressure difference caused by injecting water at the same volumetric rate into a fully water-saturated layer, 

i.e., Sw=1. The resulting value is dimensionless and is written as 
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  (0.31) 

The relative water mobility for a water-saturated reservoir is 1/w =1,000 [Pa.s]
-1

. Cancelling out similar 

terms in equation (0.31) leads to  
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2.7.5. FFT in Dimensionless Notations   

The derivative of the dimensionless position with respect to radius is  

 2 2

2D

e w

dx r

rdr r



  (0.33) 

The derivative of the dimensionless time with respect to physical time is 

 2 2( )

tD

e w

Qdt

dt r r h 
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
  (0.34) 

Rearranging equation (0.33-0.34) and applying them into equation (0.28) leads to 
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The terms cancel out, and the equation in dimensionless terms becomes 

 0w w

D Dt x

S f 


 


  (0.36) 

The fractional-flow is a function of water saturation only, and is independent of position and time; therefore, 

applying the chain rule to the partial differential equation leads to 
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t d xS
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
 


  (0.37) 

The above equation is a first-order hyperbolic PDE; this means that saturation waves travel with a finite 

speed of propagation through the medium from a “source” or upstream boundary only in downstream 

direction (no information downstream of wave is needed). The saturation depends only on dimensionless 

position and time . Therefore, for a constant saturation, the total derivative dSw could be written as  

     0, w w
w D D

D D

D D

S S
dS dtx t dx

t x

 
  
 

  (0.38) 

Rearranging equation (0.37) and using equation (0.38) leads to  
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  (0.39) 

This equation expresses the velocity at which a particular value of saturation propagates through the 

medium, i.e., the saturation velocity, vs, that is equal to the slope of the fractional-flow curve. For constant 

saturations, the PDE is reduced to a family of ordinary differential equations (ODE) along which the solution 

can be integrated from some initial conditions. This is called the method of characteristics (MOC), which is a 

technique typically used for solving first-order hyperbolic PDEs.  

The initial condition I is assumed here to be at Sw=1 with uniform surfactant concentration. The gas injection 

condition J is at Sw=Swr because the injected gas fraction fg=1 (i.e. fw=0). The solution for the displacement is 

represented as a path along the fractional-flow curve from J to I with monotonically increasing slopes of the 

fw curve (i.e. velocities). For a constant saturation, the equation implies that the velocity, vs, is constant along 

a ‘characteristic’ path. If the velocities are not monotonically increasing from J to I, a portion of the solution 

is replaced by a tangent line that represents a discontinuity or shock from a value of fw at Sw,shock to the initial 

condition I. The cause of the shock is that the material upstream is travelling faster than downstream, which 

leads to an accumulation and therefore a “shock”. Only saturations below the point of tangency are actually 

observed in the displacement. The shock saturation moves with the highest velocity and behind it is a 

spreading wave (i.e. rarefaction) of progressively drier saturations with decreasing speed back to the 

injection condition J at the wellbore. This can be seen in the dimensionless time-distance diagrams in 

Appendix B for the gas injection without surfactant and for SAG using the STARS model and the modified 

model of Namdar Zanganeh et al. (2011).  

2.8. Solution Method   

2.8.1. For Gas Injection in a Single-Layer Reservoir    

The goal is to estimate the dimensionless pressure PD for every dimensionless pore volume injected tD. The 

shock saturation is calculated using the derivative of the fractional flow curve to determine the range of 

saturations observed in the displacement process. The velocities of the saturation waves are then calculated 

to determine their radial position along with their total relative mobilities. Then the pressure is integrated 

from the injection well outward. A simplistic view for this flooding process is shown in Figure 6. The 

solution procedure is outlined below.    
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The derivative of the water fractional flow for gas and water without surfactant is given by  
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Simplifying equation (0.40) leads to 

 
       

    

' '

,

2

w g rg w rw w rw w rg w

w rw w rg w

df S S S S

dS S S

   

 





  (0.41) 

The derivatives for gas and water relative mobilities with respect to water saturation are  
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Furthermore, the shock saturation is obtained by solving for the point of tangency to the fw curve for a line 

passing through point (1, 1) as follows 

  
 
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1 1 0

w g w

w w w
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f S S

dS
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The shock saturations for the Bentheimer, Berea, Sister Berea, and Bandera Gray layers are shown in Figure 

127, Figure 133, Figure 139 and Figure 145 respectively. The saturation values of the shocks for gas 

flooding without surfactant and for SAG using the STARS model and the modified model of Namdar 

Zanganeh et al. are found in Table 4, Table 5, and Table 6.  

The dimensionless positions of the characteristics are based on their velocities and PV of gas injected (tD). In 

order to eliminate any characteristics that have reached the production well, the minimum function is used. 

For a specific dimensionless time tD, the dimensionless position for each value of Sw is 
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The dimensional position for each characteristic is calculated using equation (0.29) as follows  

     2 2 2
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Using the average mobilities between two consecutive radii (ri and ri+1), the pressure difference is estimated 

by 
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We calculate positions and pressures for 200 characteristics (M) of saturations between the injection 

condition J and the shock saturation. Then, the pressure difference between the wellbore to the shock radii 

( ) is calculated by the summation of all the pressure increments. Therefore, the numerical 

integration of equation (0.17) is 
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where P1 and r1 are the pressure and radius at the wellbore. Similarly, PM and rM are the pressure and radius 

at the shock. Ahead of the gas bank, the pressure difference caused by the water bank at initial conditions 

(Sw=1), is calculated using equation (0.12) 
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  (0.49) 

Therefore, the total pressure difference between the wellbore and outer radii is  
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The dimensionless pressure in this case is  
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Figure 6: Gas Injection into a Water-Saturated Reservoir 

2.8.2. For Gas Injection in a Multi-Layer Reservoir    

In the hypothetical reservoir scenario studied here, the four sandstone non-communicating layers are 

assumed to have equal pore volume. The calculated height of each layer is shown in Table 3 in Appendix A. 

The pressure difference between the boundaries at the wellbore radius rw and the external radius re is 

assumed to be the same for all layers. In a multi-layered reservoir, the positions of the various waves reflect 

the cumulative injection into layers and in turn control the respective injection rates. In order to estimate 

injectivity in a layered-reservoir, we increment in small steps (n) of total dimensionless time . For 

every step (n), the volumetric flow ratio injected into each layer is estimated based on: permeability k, height 

h, and dimensionless pressure PD. The cumulative injectivity ratio (R), the average dimensionless pressure 

 for the entire reservoir, and the relative time are introduced below. Details of solution procedure are 

outlined below as well.  

The pore volume (PV) of an individual layer (j) is  

  2 2

j j je wPV r r h     (0.52) 

The total pore volume is calculated by summing the pore volumes of all layers as follows  
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The dimensionless pore volume tD for an individual layer (j) is defined by the total pore volume of gas 

injected into each layer divided by the layer’s pore volume. It could be written as 
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The total dimensionless time is defined by the total pore volume injected into all layers divided by the 

total reservoir volume 
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The gas injection into the reservoir is calculated using increments of total dimensionless time , 

defined as 
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In order to track the dimensionless pore volume injected into a certain layer, the following need to be 

calculated. First, the fraction (Fj) of an individual layer’s pore volume relative to the total reservoir volume 

is calculated as follows  
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For all layers in this study, Fj = ¼.  The fraction of the dimensionless time increment  for an individual 

layer divided by the total dimensionless time increment  is   
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where the flow ratio for each time increment is calculated by 
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Therefore, the individual layer’s increment in PV injected ( ) is equivalent to  
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The mobilities into each layer change with injection as the saturation of the injected fluid increases. 

Therefore, a time counter in increments of total dimensionless time (1 n  N) is introduced where N 

represents the total number of dimensionless time increments. For the first time step (n=1), the 

dimensionless time for layer (j) is 
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We increment forward in dimensionless time by using the previously outlined procedure for each layer 

individually in order to calculate the dimensionless pressure PD at the next time step; the individual pore 

volume in each layer increases as follows  
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This shows that the volume received by each layer is proportional to the layer’s permeability and height and 

inversely proportional to the dimensionless pressure of that layer at any given dimensionless time. For each 

total dimensionless time increment, the dimensionless time and the associated dimensionless pressure for 

each layer is calculated in order to estimate injectivity.  

The ratio of cumulative injection into each layer (j) at each dimensionless time step (n) is  
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This is a measure of how much injection a layer has received relative to the other layers at a specific 

dimensionless time step (n). The total dimensionless pressure  of the reservoir is defined as the 

injectivity of gas into all layers divided by the injectivity of water at the same volumetric rate. For each 

dimensionless time step (n), it is 
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2.8.2.1. Relative Time Derivation 
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Since the injection rates into different layers vary during simultaneous injection according to the mobilities 

in each layer, a given dimensionless time in the various layers does not necessarily correspond to the same 

physical time. Relative time is defined as the ratio of time it takes to inject a given volume of gas to the time 

it takes to inject the same volume of water into a water-saturated reservoir (Sw=1).  

The injection rate scales with 1/PD when injection pressure is fixed, and the advance of physical time scales 

to the integral of PD with respect to tD. The relative time is given by 
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This is relative time for a single-layered reservoir. Similarly, for a multi-layered reservoir, the relative time is 

obtained through the integration of the total dimensionless pressure  (equation 0.64) over the total 

dimensionless time  as follows 
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2.8.3. For SAG Using Single Surfactant-Slug 

 

Similarly, the FFT theory could also be applied to foam flow in porous media. To simplify the problem, 

several assumptions are imposed. First, fixed residual oil saturation can be assumed; however, we assume 

that only water and gas are present in the reservoir. Second, the reservoir is fully saturated with surfactants 

solution. Third, foam doesn’t alter the water relative permeability function krw(Sw). Fourth, the reduction of 

gas phase mobility is represented by modifying gas relative permeability only. Fifth, foam is present in the 

reservoir wherever there is surfactant and gas. Finally, surfactant adsorption is neglected. A simplistic view 

for this flooding process for a single-layered reservoir is displayed in Figure 7. 

In the STARS model, the reduction of the gas relative permeability due to the presence of foam is expressed 

through a foam mobility-reduction factor (FM) multiplied by the gas relative permeability (krg) in the 

absence of foam. This is given by  

      f

rg w w rg wk S FM S k S   (0.67) 

FM is a dimensionless modifier that represents the factor by which gas mobility is reduced due to the 

presence of foam relative to the gas mobility at the same water saturation in the absence of foam. It is 

defined as 
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       0 1
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w iFM S F

fmmob F F F F F F
  


  (0.68) 

where fmmob represents the reference mobility reduction factor; it is the reduction in gas mobility at 

maximum foam strength. Each Fi is a dimensionless coefficient that represents the effect of surfactant 

concentration, water saturation, oil saturation, capillary number, gas velocity, and critical capillary number, 

respectively, on foam behaviour (CMG, 2012).  

In this paper, we only use the F2 function, which represents the effect of water saturation on foam behaviour. 

It is commonly known as the dryout function or Fw. This function controls foam behaviour in the high-

quality regime (Cheng et al., 2000), which is crucial to SAG processes. Therefore, the foam mobility-

reduction factor (FM) becomes  
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  (0.69)  

In the STARS model, the dryout function is written as  
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epdry controls the abruptness of foam collapse as a function of water saturation; small values give a gradual 

transition between the two regimes, while larger values yield a sharper transition. However, according to 

equation (0.70), foam does not fully collapse at any water saturation including Swc. fmdry is the water 

saturation near which foam abruptly weakens.  

Similar to equation (0.9), the total relative mobility of gas in the presence of foam  is  
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The superscript (
f
) indicates the presence of foam. The total relative mobility curves as a function of water 

saturation for the Bentheimer, Berea, Sister Berea, and Bandera Gray layers can be found in Figure 128, 

Figure 134, Figure 140 and Figure 146 respectively. The fractional flow function in this case is  
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  (0.72) 

Fractional-flow curves for the Bentheimer, Berea, Sister Berea, and Bandera Gray layers are shown in 

Figure 127, Figure 133, Figure 139 and Figure 145 respectively. The analytical derivative of the fractional 

flow is  
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The derivative of the foam relative mobility is  
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The derivative of the foam mobility reduction factor (FM) is  

  
  

2

22

'

1
w

w

FM fmmob epdry
FM S

epdry S fmdry

 
 

 
  (0.75) 

The same solution procedure outlined earlier for fractional-flow theory for gas without foam is followed. 

Similar to equation (0.48), the pressure difference in the foam bank is 

 
1

1

1
( )

2 ( )shock

w

w

e

r M
t

r r i if
irt wr

f

q
P P P dr P P

kh r S 




       (0.76) 

The main difference here is that the mobilities and speed of characteristics behind the shock are modified by 

the presence of foam. The dimensionless pressure in the case of gas injection into a fully surfactant saturated 

reservoir becomes  
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2.8.4. Modification of Fw by Namdar Zanganeh et al. 

In the STARS model, foam doesn’t completely collapse at residual water saturation, i.e. Fw 0 at Swr.  

Therefore, Namdar Zanganeh et al. (2011) suggested a simple modification to the dryout function, Fw  
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Note that in equation (0.78), Fw (Swr) = 0. The extension does not alter the solution procedure except for the 

calculation of the dryout function. The derivative of FM remains the same since only a constant is added to 

the function.  

 

Figure 7: Gas Injection into a Single Layer Surfactant-Saturated Reservoir 

2.8.5. For SAG Using Different Surfactant Slug Sizes 

Initially, the layers in this case are fully saturated with water (Sw=1) without surfactant. We inject different 

surfactant slug sizes with the assumption that the density and relative permeability do not change due to the 

presence of surfactant. The surfactant slug sizes are represented as fractions of the total reservoir pore 

volume . Before gas breaks through the foam bank, the solution procedure for SAG remains the same 

as outlined earlier. After gas breakthrough, there are three regions in each layer foam bank, gas bank, and 

water at initial condition. In this case, the FFT for SAG and gas injection are combined. Details of the 

solution procedure are presented below.    

Since the mobilities are constant during the injection of the surfactant slugs, the volume that goes into each 

layer (j), for a given surfactant slug is given by   
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  (0.79) 

Where  represents the surfactant slug size, and  represents the amount of surfactant that goes into each 

layer (j). The volume of the surfactant bank in layer (j) is  

  2 2

j js js w jv r r h     (0.80) 

Re-arranging the equation to solve for the radius of the surfactant bank (rs) into layer (j) prior to gas injection 

is given by   
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During gas injection in a SAG process, the water saturation profile is nearly uniform, at values similar to that 

at the point of tangency, i.e. shock, throughout almost the entire length of the foam bank. This is because 

almost all the change in slope (dfw/dSw) from the value at the shock to zero occurs near fmdry as shown in 

Figure 127 in Appendix B. For simplicity, at gas breakthrough, we assume that the foam bank has uniform 

water saturation Sw= fmdry. Using a material balance on surfactant and ignoring adsorption, the radius of the 

foam bank into each layer (j) is 
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Although the radius of the foam bank rf would slowly increase a little after gas breakthrough as foam dries 

out, we assume that it remains constant. In order to calculate pressure drop after gas breaks though the foam 

bank, the characteristics that have passed beyond the edge of the foam bank rf are ignored, because they do 

not contribute to the pressure difference. Therefore, the dimensionless position of the foam bank  is 

calculated relative to the outer radius of the reservoir in each layer (j) using equation (0.29)  
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For a specific volume of surfactant slug Vs, this value is constant for each layer (j). However, it changes for 

different surfactant slug sizes. marks the boundary at which gas breaks through the foam bank. Similar 

to equation (0.45), the dimensionless position for the characteristics in the foam bank is given by 
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The radial position  corresponding to this dimensionless position is calculated using equation (0.46). The 

water saturation is assumed to be Sw=fmdry. Within the boundary of the foam bank, a certain PV of gas  is 

injected into each layer (j) that is  
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The pressure drop in the foam bank (Pf) is calculated using equation (0.76). Beyond the surfactant bank, a 

second displacement begins where gas displaces water at the initial condition (Sw=1) without surfactants. For 

simplicity, the injection condition J is assumed to be at fg=1. There is a shock to I and a spreading wave 

behind it back to J where Sw=Swc. The position of characteristics in this wave are given by  
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  (0.86) 

The dimensionless position of the foam bank is added to the first term in equation (0.86) in order for the radii 

of gas characteristics to start at the boundary where gas breaks through. The dimensionless time is modified 
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by subtracting the dimensionless time needed to fill the foam bank for a specific layer (j). The radii are 

calculated using equation (0.46). After gas breakthrough, three regions (banks) influence the pressure 

difference in each layer (j) (foam, gas, and water). Therefore, three equations are needed to calculate the 

pressure differences Pf, Pg, Pw. The pressure difference in the water bank ahead of the gas bank is 

calculated using equation (0.49). The dimensionless pressure for every dimensionless time step (n) for layer 

(j) is  
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  (0.87) 

Prior to gas breakthrough from the foam bank, the displacement is identical to gas injection into a fully 

surfactant-saturated reservoir as shown in Figure 7. After breakthrough, Figure 8 and Figure 9 show the 

above mentioned boundaries.  

 

Figure 8: Radii for Boundaries after Gas Breakthrough 

 

Figure 9: Dimensionless Positions after Gas Breakthrough  

2.9. Pseudo Algorithm    

In computer science, the pseudo codes are written in flow charts using symbols shown in Figure 10. In this 

paper, three algorithms are used for gas injection without surfactant, gas injection for a SAG process in fully 

surfactant-saturated layered reservoir, and gas injection for a SAG process with finite volume of surfactant 

slug, respectively. The third algorithm combines the first two to account for the pressure difference caused 

by gas after it breaks through the foam bank. In each case, the algorithm is divided into a Driver and a 

Function.  

The total dimensionless time steps are logarithmic; the first total dimensionless time increment  is in 

the order of 10
-12

 PVtotal. For the first total dimensionless time increment , the dimensionless pressure 

PD=1. The Driver calculates dimensionless time for each layer (j) , i.e. how much volume each layer 

receives for the first step, as shown in equation (0.61). For every time step (n) and for each layer (j), the 

Driver sends the needed parameters (petrophysical, foam model, etc.) along with dimensionless time  to 

the Function. The Function uses the fractional-flow theory to construct a saturation profile for every 

individual dimensionless time at every total dimensionless time step (n) for each layer (j) . Additionally, 

the Function constructs the corresponding total relative mobility λrt profile and integrates it, as shown in 

equation (0.48), to predict the next dimensionless pressure that is sent back to the Driver. The Driver 

uses the kh-ratio and the predicted dimensionless pressures to calculate the next individual 
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dimensionless time for each layer (j) using equation (0.62). The process continues until the specified 

volume, 10 PVtotal in this paper, is completely injected into the reservoir. Afterwards, the Driver calculates 

the cumulative injectivity ratio . The actual algorithms can be found in the Appendix C, and the pseudo 

algorithms are shown in Figure 11 through Figure 16.  

 

Figure 10: Flow Chart Symbols  



      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Function, Gas Injection Case (No Surfactant) 

 

 

 

 

Figure 12: Driver, Gas Injection Case (No Surfactant) 
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Figure 13: Function, SAG in Surfactant Saturated Reservoir 

 

 

Figure 14: Driver, SAG in Surfactant Saturated Reservoir 
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Figure 15: Function, SAG in Discrete Surfactant Slugs 

Figure 16: Main, SAG in Discrete Surfactant Slugs



      

 

2.10. Validity of the Model     

In general, analytical solutions are based on various simplifying assumptions involving the idealized 

depiction of a reservoir. For example, a classification of flow as steady state is highly idealized, and in 

reality a reservoir is nearly always in a continuous pressure transient situation. Although these idealizations 

are rarely encountered in the real world, the solutions are instrumental in visualizing the dynamics of flow in 

the porous media and the overall reservoir behaviour. In this section, the limitations, assumptions, and range 

of validity of the used models are discussed.  

The models used here are one-dimensional. Therefore, they cannot capture fingering or gravity effects that 

occur in 2D and 3D flows. Mobility ratio for gas injection without surfactants is unfavourable (M>1) in all 

layers as shown in Table 7; this indicates that the injected gas would finger through the water bank at initial 

conditions. In real reservoirs, the pressure drop due to gas injection into a water bank is lower than that 

predicted by the one-dimensional model due to viscous fingering and gravity override. Moreover, for SAG 

processes, the mobility ratio at the front is favourable (M<1) as shown in Table 7; this indicates that 

fingering at the flood front, where mobility control is maintained, is not likely. However, there can be 

fingering within the foam bank, where mobility increases toward the injection well. Whether fingering in the 

foam bank is important is an on-going topic of research.   

Additionally, the model ignores gravity. Since there is less hydrostatic pressure to overcome at the top of the 

reservoir, gas propagates faster there as shown in Figure 17. Gravity override occurs due to a competition 

between gravity (due to density differences) and horizontal pressure gradients. The horizontal pressure 

gradient is a crucial factor in in controlling gravity override in SAG processes. If injection rate and injection 

pressure are sufficiently high, gravity override is less severe (Boeije & Rossen, 2013).  

The foam model contains different functions that control foam behaviour by modifying the FM factor as 

shown in equation (0.68). F1 models the effect of surfactant concentration; in our case, we simply assume 

that surfactant concentration is higher than CMC and is constant wherever the surfactant has flooded. F2 or 

Fw models the effect of water saturation, which is thoroughly investigated in our research. F3 models the 

effect of oil saturation; this has a detrimental effect on foam strength, but is ignored in this research for 

simplicity. Also, the foam scans in Kapetas et al. (2015) were conducted for foam without oil. In the vicinity 

of near-wellbore region, the combination of surfactant and gas injection drives oil saturation to very low 

values, which in that case can be ignored. F4 models the effect of gas velocity; in the high quality regime the 

pressure gradient is independent of gas velocity (ug); therefore, it is ignored. F5 models the effect of capillary 

number; the function takes into account the shear-thinning rheology of foam. Since the high-quality regime 

is generally Newtonian, the effect of capillary number is ignored. In the models used here, gas diversion in a 

SAG process is independent of flow rate or pressure gradient. This could be challenged since high-quality 

foam can be shear-thinning. 

Although foam scans were carried for sandstone formations that are similar in porosities and residual 

saturations, one would like to use cores taken from the same formation with ranging permeabilities. The 

foam scans were carried out at room temperature; therefore, the foam model parameters may not be fully 

representative at reservoir conditions. Although surfactant-formulation controls the effect of temperature on 

foam, foam mobility is generally higher at higher temperatures. The foam scans by Kapetas et al. (2015) 

show strong foams; in field applications, foam is likely to be less strong (more mobile). Furthermore, 

petrophysical data along with Corey parameters were measured for different cores than the ones used for the 

foam scans. Although the samples were taken from the same formation, there was a noticeable variation in 

permeability as shown in Table 9. The difference in permeability might affect the model fit parameters. 
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However, it is expected that relative permeability is not very sensitive to permeability, and therefore the 

relative-permeability curves apply. 

Another problem for modelling SAG processes with confidence is that they occur at very low water 

fractional-flow fw values (Rossen and Boeije, 2015). However, current foam scans generally lack density of 

data at this range leading to uncertainties regarding the model fit. Unfortunately, grossly different results are 

predicted depending on how these data are extrapolated to very low fw (Rossen and Boeije, 2015). The 

scarcity of data at high fg values, in the foam scans used here, is displayed in Figure 150 in Appendix 

B.Additionally, the foam model parameters, for the Bandera Gray formation, do not fit the foam scan data 

properly as shown in Figure 150. However, it is used here to illustrate cases with extreme permeability 

contrast.  

Due to the simplifying assumption, the application of fractional-flow theory for foam has some 

disadvantages. FFT is approximate when applied to compressible phases, which may be slow to reach their 

steady-state mobilities. If the period of foam generation is significant on reservoir scale, then modelling 

foam using FFT would be invalid. Furthermore, capillarity is not ignored in the models used here since it is 

accounted for in Corey relative-permeability functions, krw and krg. However, gradient of capillary pressure is 

ignored since the viscous pressure gradient is much larger than the capillary pressure gradient in the field. 

The models used here do not account for diffusion or adsorption; the effects might be important since the 

predicted optimal slug size results in small foam banks in the near wellbore region. In field applications, the 

predicted optimal surfactant slug sizes need to be larger to account for diffusion or adsorption. The 

displacement is also assumed to be immiscible. For nitrogen foams, this is a very good assumption, because 

the dissolvability of the gas phase into the liquid phase and vice versa is very small.  

Uniform initial condition is assumed here. However, if gas is present initially, the surfactant slug will slump 

down during injection and the problem of gravity override is more severe. After gas breakthrough the foam 

bank, gas is modelled using FFT with an injection of fg =1. This is a simplifying assumption that allows for a 

continuous solution. The error is expected to be minimal since the pressure drop in the foam bank is orders 

of magnitude higher than that caused by gas displacement. Water evaporation in the near wellbore region 

due to gas injection is also ignored. Since evaporation increases the gas relative-permeability, the effect is 

dependent on the range of values of gas relative-permeability. Moreover, the minimum resolution in our 

scheme is 0.5 m. Such resolution can hardly be obtained using conventional reservoir simulators. This gives 

an advantage of the FFT over the Peaceman equation commonly used in reservoir simulators (Leeftink et al., 

2013).  

 

Figure 17: Gravity Override Due to Density Differences for M>1 
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3 Results   
The results of the following scenarios are shown here.     

I. Base Case: gas injection without surfactant  

II. Surfactant saturated reservoir  

A. STARS Model  

B. Namdar Zanganeh et al. (2011) modification 

III. Discrete Surfactant Slug Size 

A. STARS Model  

B. Namdar Zanganeh et al. (2011) modification 

IV. No Surfactant Injection into Bandera Gray 

A. All other layers are fully Saturated  

i. STARS Model  

ii. Namdar Zanganeh et al. (2011) modification 

B. Discrete Surfactant Slug Size 

i. STARS Model  

ii. Namdar Zanganeh et al. (2011) modification  

 

For the different scenarios investigated, the results are displayed in four different graphs.  

1. Injectivity Ratio ( ) vs. Total Pore Volume Injected ( )  

This graph displays the ratio of cumulative flow into each layer out of the total pore volume 

injected on a semi-log plot. The starting value for each layer (j) is equivalent to the kh-ratio for 

that layer. The graph displays how injectivity changes overtime based on mobilities predicted by the 

model.  

2. Individual Pore Volume Received ( ) vs. Total Pore Volume injected ( )  

This graph is shown for 3 total pore volumes injected , and describes how much each layer 

receives in each scenario.  

3. The average dimensionless pressure ( ) vs. Total Pore Volume injected ( )  

This graph displays the average dimensionless pressure of all layers as it changes with total 

pore volume injected . This is an indication of injectivity; values above 1 indicate that the 

injected fluid experiences more resistance than water injection in a water-saturated reservoir and vice 

versa. This is displayed in a semi-logarithmic plot.   

4. Total Pore Volume injected ( ) vs. Relative Injection Time  

This graph displays the time it take to inject one reservoir pore volume of  gas relative to the time it 

would take to inject the same volume of water in water-saturated reservoir, i.e. with  Sw=1.   



      

 

I. Base Case: Gas Injection without Surfactant 
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Figure 18: Injectivity Ratio vs. Total logarithmic PV Injected (Base 

Case)  
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Figure 19: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Base Case) 
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Figure 20: Total Dimensionless Pressure vs. Total Pore Volume 

injected (Base Case) 
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Figure 21: Relative Injection Time vs. PV of Gas Injected (Base 

Case) 

 

 

 



      

 

II. Surfactant-Saturated Reservoir (A.STARS Model)  
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Figure 22: Injectivity Ratio vs. log of Total Pore Volumes (Case II.A) 
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Figure 23: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Case II.A) 
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Figure 24: Total Dimensionless Pressure vs. Total Pore Volume 

Injected (Case II.A) 
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Figure 25: Relative Injection Time vs. PV of Gas Injected (Case II.A)  
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II. Surfactant-Saturated Reservoir (B. Namdar Zanganeh et al. Modified Model)  
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Figure 26: Injectivity Ratio vs. log of Total Pore Volumes (Case II.B) 
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Figure 27: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Case II.B)  
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Figure 28: Total Dimensionless Pressure vs. Total Pore Volume 

Injected (Case II.B) 
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Figure 29: Relative Injection Time vs. PV of Gas Injected (Case II.B) 

 



      

 

III. Discrete Surfactant Slug Sizes (A. STARS Model) 
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Figure 30: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-8

) (Case III.A) 
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Figure 31: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-7

) (Case III.A) 
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Figure 32: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-6

) (Case III.A) 
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Figure 33: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-5

) (Case III.A)
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Figure 34: Injectivity Ratio vs. Total Pore Volume of Gas injected 

(Vs=1.0
-4

) (Case III.A) 
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Figure 35: Injectivity Ratio vs. Total Pore Volume of Gas injected 

(Vs=1.0
-3

) (Case III.A) 

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Total Pore Volume Injected

In
je

c
ti
v
it
y
 R

a
ti
o

 

 

Bentheimer

Berea

Sister Berea

Bandera

 

Figure 36: Injectivity Ratio vs. Total Pore Volume of Gas injected 

(Vs=1.0
-2

) (Case III.A) 
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Figure 37: Injectivity Ratio vs. Total Pore Volume of Gas injected 

(Vs=1.0
-1

) (Case III.A) 
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Figure 38: Injectivity Ratio vs. Total Pore Volume of Gas injected 

(Vs=1.0) (Case III.A) 
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Figure 39: Injectivity Ratio vs. Total Pore Volume of Gas injected 

(Vs=10.0) (Case III.A) 
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Figure 40: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-8

) (Case III.A) 
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Figure 41: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-7

) (Case III.A) 
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Figure 42: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-6

) (Case III.A) 
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Figure 43: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-5

) (Case III.A) 
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Figure 44: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-4

) (Case III.A) 
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Figure 45: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-3

) (Case III.A) 
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Figure 46: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-2

) (Case III.A) 
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Figure 47: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0
-1

) (Case III.A) 
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Figure 48: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=1.0) (Case III.A) 
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Figure 49: Individual Pore Volume vs. Total Pore Volume of Gas 

injected (Vs=10.0) (Case III.A) 
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Figure 50: Total Dimensionless Pressure vs. Total Pore Volume 

Injected for Different Surfactant Slug Sizes (Case III.A) 

 

Figure 51: Relative Injection Time vs. PV of Gas Injected for Various 

Surfactant-Slug Sizes (Case III.A) 

 

 

 

 

 



      

 

III. Discrete Surfactant Slug Sizes (B. Namdar Zanganeh et al. Modified Model) 
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Figure 52: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-8

) (Case III.B) 
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Figure 53: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-7

) (Case III.B) 
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Figure 54: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-6

) (Case III.B) 
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Figure 55: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-5

) (Case III.B) 
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Figure 56: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-4

) (Case III.B) 
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Figure 57: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-3

) (Case III.B) 
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Figure 58: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-2

) (Case III.B) 
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Figure 59: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-1

)(Case III.B)  
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Figure 60: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0) (Case III.B) 
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Figure 61: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=10.0) (Case III.B) 
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Figure 62: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-8

) (Case III.B) 
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Figure 63: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-7

) (Case III.B) 
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Figure 64: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-6

) (Case III.B) 
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Figure 65: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-5

) (Case III.B) 
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Figure 66: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-4

) (Case III.B) 
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Figure 67: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-3

) (Case III.B) 
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Figure 68: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-2

) (Case III.B) 
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Figure 69: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-1

) (Case III.B) 
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Figure 70: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0) (Case III.B) 

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Total Pore Volume Injected

In
d
iv

id
u
a
l 
P

o
re

 V
o
lu

m
e

 

 

Bentheimer

Berea

Sister Berea

Bandera

 

Figure 71: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=10.0) (Case III.B) 
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Figure 72: Total Dimensionless Pressure vs. Total Pore 

Volume Injected for Different Surfactant Slug Sizes Model 

(Case III.B) 

 

Figure 73: Relative Injection Time vs. PV of Gas Injected 

for Various Surfactant-Slug Sizes (Case III.B)



      

 

IV. No Surfactant Injection into Bandera Gray (A. Other Layers are Surfactant-
Saturated i. STARS Model) 
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Figure 74: Injectivity Ratio vs. log of Total Pore Volumes 

(Case IV.A.i) 

0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

Total Pore Volume Injected

In
d
iv

id
u
a
l 
P

o
re

 V
o
lu

m
e

 

 

Bentheimer

Berea

Sister Berea

Bandera

 

Figure 75: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Case IV.A.i) 
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Figure 76: Total Dimensionless Pressure vs. Total Pore 

Volume injected (Case IV.A.i) 
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Figure 77: Relative Injection Time vs. PV of Gas Injected 

(Case IV.A.i)



      

 

IV. No Surfactant Injection into Bandera Gray (A. Other Layers are Surfactant-
Saturated ii. Namdar Zanganeh et al. Modified Model) 
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Figure 78: Injectivity Ratio vs. log of Total Pore Volumes 

(Case IV.A.ii) 

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Total Pore Volume Injected

In
d
iv

id
u
a
l 
P

o
re

 V
o
lu

m
e

 

 

Bentheimer

Berea

Sister Berea

Bandera

 

Figure 79: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Case IV.A.ii) 
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Figure 80: Total Dimensionless Pressure vs. Total Pore 

Volume injected (Case IV.A.i) 
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Figure 81: Relative Injection Time vs. PV of Gas Injected 

(Case IV.A.i) 



      

 

IV. No Surfactant Injection into Bandera Gray (B. Discrete Surfactant Slugs ii. STARS 
Model)
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Figure 82: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-8

) (Case IV.B.i) 
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Figure 83: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-7

) (Case IV.B.i) 
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Figure 84: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-6

) (Case IV.B.i) 
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Figure 85: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-5

) (Case IV.B.i) 
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Figure 86: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-4

) (Case IV.B.i) 
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Figure 87: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-3

) (Case IV.B.i) 
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Figure 88: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-2

) (Case IV.B.i) 
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Figure 89: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-1

) (Case IV.B.i) 
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Figure 90: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0) (Case IV.B.i) 
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Figure 91: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=10.0) (Case IV.B.i)
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Figure 92: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-8

) (Case IV.B.i) 
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Figure 93: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-7

) (Case IV.B.i) 
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Figure 94: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-6

) (Case IV.B.i) 
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Figure 95: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-5

) (Case IV.B.i) 
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Figure 96: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-4

) (Case IV.B.i) 
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Figure 97: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-3

) (Case IV.B.i) 
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Figure 98: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-2

) (Case IV.B.i) 
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Figure 99: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-1

) (Case IV.B.i) 
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Figure 100: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0) (Case IV.B.i) 
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Figure 101: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=10.0) (Case IV.B.i) 
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Figure 102: Total Dimensionless Pressure vs. Total Pore 

Volume Injected for Different Surfactant Slug Sizes Model 

(Case IV.B.i) 

 

Figure 103: Relative Injection Time vs. PV of Gas Injected 

for Various Surfactant-Slug Sizes (Case IV.B.i) 
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IV. No Surfactant Injection into Bandera Gray (B. Discrete Surfactant Slugs ii. Namdar 
Zanganeh et al. Modified Model) 
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Figure 104: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-8

) (Case IV.B.ii) 
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Figure 105: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-7

) (Case IV.B.ii) 
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Figure 106: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-6

) (Case IV.B.ii) 
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Figure 107: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-5

) (Case IV.B.ii) 
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Figure 108: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-4

) (Case IV.B.ii) 
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Figure 109: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-3

) (Case IV.B.ii) 
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Figure 110: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-2

) (Case IV.B.ii) 
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Figure 111: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0
-1

) (Case IV.B.ii) 
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Figure 112: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=1.0) (Case IV.B.ii) 
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Figure 113: Injectivity Ratio vs. Total Pore Volume of Gas 

injected (Vs=10.0) (Case IV.B.ii) 
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Figure 114: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-8

) (Case IV.B.ii) 
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Figure 115: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-7

) (Case IV.B.ii) 
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Figure 116: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-6

) (Case IV.B.ii) 
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Figure 117: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-5

) (Case IV.B.ii) 
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Figure 118: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-4

) (Case IV.B.ii) 
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Figure 119: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-3

) (Case IV.B.ii) 
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Figure 120: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-2

) (Case IV.B.ii) 
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Figure 121: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0
-1

) (Case IV.B.ii) 
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Figure 122: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=1.0) (Case IV.B.ii) 
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Figure 123: Individual Pore Volume vs. Total Pore Volume 

of Gas injected (Vs=10.0) (Case IV.B.ii) 
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Figure 124: Total Dimensionless Pressure vs. Total Pore 

Volume Injected for Different Surfactant Slug Sizes Model 

(Case IV.B.ii) 

 

Figure 125: Relative Injection Time vs. PV of Gas Injected 

for Various Surfactant-Slug Sizes (Case IV.B.ii) 



      

 

4 Discussion    
The base case (case I) studies gas injection without surfactant. In the envisaged reservoir setting, the highest 

permeability layer (Bentheimer) receives about 86% of the injected gas and presents the highest level of 

recycling as shown in Figure 18. Gas is injected in fractions of the total reservoir volume , and it is 

tracked into each individual layer as a ratio of the individual layer’s pore volume . We can compare 

between the volumes received by each layer since all layers have equivalent pore volume. Figure 19 shows 

that if 3 total pore volumes (equivalent to 12 individual layer pore volumes) are injected, the majority of 

flow goes to the Bentheimer (about 11 PVj) while the Berea and Sister Berea receive less than an individual 

pore volume. The Bandera layer barely receives any noticeable flow. The dynamic change in the injectivity 

ratio is due to changes in mobility as gas saturation increases and due to gas breakthrough. Figure 20 shows 

that the total dimensionless pressure  as a function of total pore volume injected  is much less 

than 1 demonstrating that gas is easier to inject than water. Furthermore, the relative injection time for a 

single total pore volume  of gas in this case is about 6% of the time it would take to inject the same 

volume of water in single-phase flow as shown in Figure 21.  

In case (II.A), for the STARS model where all layers are filled with surfactant, the graphs show different 

behaviour than that for gas injection without surfactant. Due to foam forming in-situ, the change in total 

relative mobility in each layer is based on foam model parameters (fmdry, epdry and fmmob) and the amount 

of gas it receives . Therefore, injectivity ratio changes as a function of . For the highest-

permeability layer (Benteheimer), the ratio drops from 86% to 30% after the injection of 1 PVtotal and 

continues to drop over 10 PVtotal of injection as shown in Figure 22. Figure 23 shows how much each layer 

would receive if 3 PVtotal (12 PVj) are injected: Bentheimer, Berea, and sister Berea would approximately 

receive 2.8, 7.5, and 1.5 individual pore volumes. This indicates that the Sister Berea layer receives more 

flow than the Benteheimer layer, in spite of the large difference in the kh-ratio. As shown in Table 7, the 

model predicts that the total relative mobility at the shock front is around 4, 20, 43, 9 [Pa.s]
-1

 for Bentheimer, 

Berea, Sister Berea, and Bandera respectively. Additionally, the total relative mobility at Swr is around 16, 

369, 2755, 23 [Pa.s]
-1

 for Bentheimer, Berea, Sister Berea, and Bandera respectively. Total relative mobility 

for Bentheimer, Berea, Sister Berea, and Bandera increases about 4, 18, 60, and 3 times between Sw,shock and 

Swr. The extent to which gas mobility in the foam bank increases depends on a combination of epdry and 

fmmob parameters. For the Sister Berea layer, the manner at which the total relative mobility increases from 

the shock front to residual water saturation at the wellbore allows it to receive more flow than the other 

layers as displayed in Figure 23. Figure 24 shows that the total dimensionless pressure as function of 

total pore volume injected rises to about 26, indicating low injectivity. Figure 25 shows that the relative time 

to inject 1 PVtotal of gas in this scenario is about 25 times longer than it would take to inject the same volume 

of water in single-phase flow.  

In case (II.B), for the Namdar Zanganeh et al. modification, where all layers are filled with surfactants, the 

results are different than those predicted by the STARS model. In Figure 26, injectivity decreases less than 

that predicted by the STARS model (86% vs. 50%) after 1 PVtotal of gas injection. This is due to the fact that 

the model allows for foam breakage at Swr. In this case, the predicted total relative mobilities at the shock 

front are slightly higher than those predicted by the STARS model as shown in Table 5 and Table 6. 

However, the modified model of Namdar Zanganeh et al. predicts that the total relative mobility at Swr is 

equivalent to the total gas relative mobility at Swr without surfactant as shown in Table 4 and Table 6. 
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Figure 26 shows that the individual pore volume intake  for the Bentheimer and Sister Berea layers is 

almost equivalent. Figure 28 shows that the rise in  as a function of is significantly lower than 

that predicted by STARS model;  rises up to around 17 (almost 30% lower than case II.A). Figure 29 

shows that the relative time to inject 1 PVtotal of gas in this scenario is about 14 times (almost 45% lower 

than case II.A) longer than it would take to inject a single total pore volume of water in single-phase flow.  

For cases (III.A and III. B), the diversion performance of different surfactant slug sizes, injected prior to gas, 

is evaluated in order to determine the optimum surfactant slug size. For both models, the injectivity ratio 

changes significantly as the surfactant slug size changes as shown in Figure 30 through Figure 39 and 

Figure 52 through Figure 61. However, for the modified model of Namdar Zanganeh et al., the injectivity in 

all layers tends to rise after the highest mobility reduction is reached as displayed in Figure 52 through 

Figure 61. As highlighted earlier, this is the main difference between cases A and B; the effect of foam 

coalescences is observed when using the Namdar Zanganeh et al. modification. A better diversion is 

achieved as the surfactant slug size increases until the optimal size is reached. The optimal surfactant slug 

size for a single-cycle SAG process in order to divert gas away from the highest permeability layer is about 

1.0
-7

 PVtotal (≈0.003 m
3
) for the STARS model and 1.0

-4
 PVtotal (≈3 m

3
) for the modified model  by Namdar 

Zanganeh et al. as shown in Figure 41 and Figure 66 respectively. The optimal slug size, for both cases, is 

small. The difference in the optimal slug size between the two cases indicate that the slug size heavily 

depends on whether and how foam breaks as it dries out during gas injection. Additionally, the actual slug 

would be larger since the models used do not account for adsorption and dispersion. For the same surfactant 

slug size, the STARS model show higher total dimensionless pressure  rise as shown in Figure 50 and 

Figure 72. The trends in the two graphs indicate that injectivity decreases as the surfactant slug size 

increases. This is also reflected in the relative injection time as it takes longer to inject gas as the surfactant 

slug size increases as shown in Figure 51 and Figure 73. For the optimal volumes in the two cases, the 

relative injection time for 1 PVtotal of gas is less than the time it would take to inject a single pore volume of 

water in single-phase flow. This indicates that the suggested slug sizes are feasible and do not raise concerns 

with regard to fracturing the near wellbore region.  

In case IV, zonal isolation is used during surfactant injection to isolate the lowest permeability layer 

(Bandera). The STARS model suggests that diversion toward the 6-md layer is feasible if all layers are filled 

with surfactants as displayed in Figure 74. Since the dimensionless pressure PD is very high in the other 

layers, the 6-md layer receives the highest volume of gas as shown in Figure 75. However, the model 

predicts that the total dimensionless pressure  is around 20 and injecting 1 PVtotal takes 12 times longer 

than it takes to inject single phase water for the same volume. For the same scenario, the modified model of 

Namdar Zanganeh et al. also shows that diversion toward the Bandera layer is also feasible when all layers 

are filled with surfactants as displayed in Figure 78. Gas intake is almost uniform for the Bentheimer, Sister 

Berea, and the Bandera Gary layers, while the Berea layer receives the lowest volume of injected gas. The 

total dimensionless pressure  is around 15 and the time it takes to inject 1 PVtotal is about 10 times 

longer than water injection for the same volume in single-phase flow as shown in Figure 80 and Figure 81 

respectively.  

The STARS model for case IV where discrete surfactant slug sizes are injected, into all layers except 

Bandera, indicates that injectivity for the Bandera layer improves as the surfactant slug size increases as 

shown in Figure 82 through Figure 91. The larger the surfactant slug, the larger the dimensionless pressure 

PD build up in the other layers. A better diversion is achieved as the surfactant slug size increases until the 

optimal size is reached. This suggests that the larger the permeability contrast, the larger the surfactant slug 
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size needed for optimal diversion. The gas intake curves, Figure 92 through Figure 100, show that the gas 

intake into the Bandera layer is almost equivalent to that in the Bentheimer layer when 1.0
-4

 PVtotal of 

surfactant is used. For this surfactant slug size, the total dimensionless pressure  rises to about 17 and 

the relative injection time is about 2.5 as shown in Figure 102 and Figure 103 respectively. The pattern that 

the total dimensionless pressure and relative time increase as the surfactant slug size increases remains 

similar to the previous cases.  

Case IV, the modified model of Namdar Zanaganeh et al., where discrete surfactant slug sizes are used, 

indicates that injectivity for the Bandera layer improves much more slowly as the surfactant slug size 

increases compared to that predicted by the STARS model as shown in Figure 104 through Figure 113. The 

intake curves for this case, Figure 114 through Figure 123, show a similar trend. The gas intake into the 

Bandera layer becomes similar to that of the Bentheimer layer when 1.0
-1

 PVtotal of surfactant is used as 

shown in Figure 121; this is about 10
3
 larger than the volume predicted by the STARS model when the flow 

between the two layers is almost equivalent. For this surfactant slug size, the total dimensionless pressure 

 rises to about 15 and the relative injection time is about 6.5 as shown in Figure 124 and Figure 125 

respectively. The results in Case IV show that it is very challenging to overcome extreme permeability 

differences with foam. In a SAG process, if one can introduce sufficiently strong foam (highly viscous) to 

divert flow away from high permeability layers, injectivity is very poor.  

The diversion in Kapatas et al. (2015) is modeled for linear flow as shown in Figure 1. For co-injection, the 

results are comparable to radial flow if all the layers are assumed to be filled with foam. In Kapetas et al., 

only 3 layers are used. The results show that superficial velocity in the Bentheimer layer is higher for all 

pressure gradients and for all foam qualities. Here, we show that a single-cycle SAG has much better 

diversion capacity as we have shown that the other layers can receive more flow than the Bentheimer, i.e. 

higher superficial velocities.  

The goal of any EOR process is to improve the overall recovery of the field in an economically and 

technically feasible manner. In layered reservoirs where gas injection is implemented as a development 

strategy, the goal is to enhance vertical conformance by directing gas flow toward lower-permeability layers. 

The redistribution of gas injection improves sweep efficiency deep in the reservoir leading to higher 

recovery factors. However, the volumetric sweep efficiency is an overall result that depends on the injection 

pattern selected, off-pattern wells, fractures in the reservoir, position of gas-oil and oil/water contacts, 

reservoir thickness, permeability and areal and vertical heterogeneity, mobility ratio, density difference 

between the displacing and the displaced fluid, and flow rate.  

In general, there are two mechanisms that give SAG superior performance over other foam injection 

methods. First, the injected surfactant slug goes into each layer according to the kh-ratio. This mechanism 

places larger surfactant slugs in higher-permeability zones leading to larger foam banks in these layers. 

However, in radial flow the near wellbore region influences flow behaviour, and this advantage decreases as 

the size of the slug increases. Therefore, there is an optimum slug size in our results. Second, foam is 

generally stronger in high-permeability zones. This allows foam to partially restrict flow in high 

permeability-zones resulting in gas-flow diversion toward lower-permeability zones.  

One needs to keep in mind that the 1D layered radial reservoir model discussed here is highly ideal. The 

proposed model is not predictive. However, it is intended to give qualitative insight into the optimal design 

of SAG processes in layered reservoirs and highlight certain issues in the current STARS model. For foam 

EOR processes, the mobilities in the crucial near-well region greatly affect injectivity (Leeftink et al, 2013; 

Rossen and Boeije, 2015). Therefore, understanding the manner at which foam dries out during gas injection 
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is very crucial for correctly modelling SAG processes. In this thesis, we show how different model fits 

would differ from each other in their prediction of injectivity.  

Field data (Ocampo et al., 2013; Rossen et al., 2014) suggest that foam behaviour for Sw close to Swr is not 

fully captured by either model. The STARS model does not show foam collapse at Swr. Additionally, the 

modified model of Namdar Zanganeh et al. overestimates foam collapse, leading to weaker foam and higher 

injectivity. We expect that foam behaviour in the field would lie in between and closer to the predicted 

behaviour by the modified model of Namdar Zanganeh et al. than the STARS model.  
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5 Conclusion and Recommendations  

5.1. Conclusion  

The application of real data for similar sandstone formations of different permeability to hypothetical case of 

four non-communicating layers, at conditions in which foam properties were measured in the lab, illustrates 

strengths and weaknesses of different injection methods. The effect of permeability on foam bank’s mobility 

is different when using SAG or co-injection. Diversion in SAG depends on mobility behind shock front, 

which depends on foam model parameters fmmob, fmdry, epdry, etc. The total relative mobilities behind 

shock front in the four layers are different due to difference in foam model parameters. Furthermore, SAG 

processes have two advantages. First, prior to gas injection, the surfactant slug goes into each layer 

according to the kh-ratio. This places more surfactant into the high-permeability layers, leading to larger 

foam banks there, which improves diversion. In radial flow, since the region near wellbore becomes filled in 

all layers, this advantage decreases as the size of the slug increases.  Therefore, there is an optimal surfactant 

slug size in our results. Second, foam is generally stronger in high-permeability layers, which partially 

restricts flow there allowing for diversion toward lower-permeability formations. 

SAG process has much greater injectivity over foam injection. In SAG processes, foam effectiveness, in a 

given layer, decreases once gas breaks through the foam bank. The extent to which gas mobility increases 

depends on a combination of "epdry" and “fmmob” parameters. For example, the Sister Berea formation has 

a considerably large epdry is (2
nd

 largest) and a small fmmob (the smallest). This allows the Sister Brea 

formation to receive higher flow than the other layers. In co-injection, greater foam strength (lower total 

relative mobility) in high-perm layers diverts flow toward other layers. In radial flow, this effect decreases as 

time goes on and foam fills near-well region in all layers.  

The optimal surfactant slug size needed for diversion, in the envisaged reservoir setting, is small. The 

predicted optimum slug size for the modified model of Namdar Zanganeh et al. is about 10
3
 times larger than 

that for the STARS model. The results show that injectivity is not an issue for both models when using the 

optimal slug size. The STARS model and the modified model by Namdar Zanaganeh et al. give different 

prediction for the optimal slug size due to the fact that the predicted foam behavior for the two models is 

radically different at saturations close to Swr. Whether foam completely collapses at Swr is still under 

research. 

Flow diversion in a layered reservoir against high permeability contrast is feasible using SAG injection 

method. However, the needed surfactant slug size is larger and injectivity is poor. To optimize the use of 

surfactants and improve injectivity in low-permeability layers, it is best to isolate these zones during 

surfactant injection.  

5.2. Recommendations  

One of the major issues in the current STARS model is that foam does not collapse at residual water 

saturation Swr. To model foam behavior appropriately, the issue of whether foam breaks at high capillary 

pressure needs to be resolved. Additionally, the model parameters used here were taken for foam scans 

conducted at room temperature. For the model to be representative, it is recommended that the scans are 

taken at reservoir conditions. Furthermore, the use of different initial conditions can highly affect diversion 

in a SAG process and should be further investigated.  



       

 

74 

 

 

Nomenclature  
 

 Potential     [Pa] 

 Porosity    [%] 

µα Viscosity of phase α   [Pa.s] 

A Area     [m
2
] 

CMC Critical micelle concentration         [mol/L] 

F1 Effect of surfactant concentration [-] 

F2 Effect of water saturation   [-] 

F3 Effect of oil saturation   [-] 

F4 Effect of gas superficial velocity [-] 

F5 Effect of capillary number   [-] 

fg Gas fractional-flow (quality)  [-] 

fg
*
 Transition foam quality   [-] 

Fj Volume fraction of layer ‘j’  [-] 

fw Water fractional-flow   [-] 

g Gravitational constant             [m
2
/s] 

h Height     [m] 

krge Gas relative permeability at Swc  [-] 

krwe Water relative permeability at Sgr [-] 

krα Relative permeability of phase α [-] 

kα Absolute permeability of phase α [m
2
]  

M Mobility ratio     [-] 

nα Corey parameter for phase α  [-] 

P Pressure    [Pa] 

Pc Capillary pressure    [Pa] 

Pc
*
 Critical capillary pressure   [Pa] 

PD Dimensionless Pressure   [-] 

PV Pore volume     [m
3
] 

Qα Volumetric flow of phase α             [m
3
/s] 

R Cumulative Injectivity Ratio  [-] 

r Radius     [m]  

re External reservoir radius   [m] 

rf Radius of foam bank    [m] 

rw Wellbore radius    [m] 

Sα Saturation of phase α   [-] 

Sgr Residual gas saturation  [-] 

Sw
*
 Critical water saturation   [-] 

Swc Connate water saturation  [-] 

tD Dimensionless time    [-] 

uα Superficial velocity of phase α [m/s] 

ut Total superficial velocity   [m/s] 

vs volume of surfactant slug   [m
3
] 

λrt Total relative mobility  [-] 

λrt
f
 Total relative mobility (foam)  [-] 

λrα Relative mobility phase α  [-] 

λα Mobility phase α           [Pa.s]
-1

 

ρ Density                [kg/m
3
] 

FM Foam mobility reduction modifier  [-] 

epcap  Controls non-Newtonian behavior in the 

low quality regime 

epdry  controls abruptness of foam collapse 

fmdry  Water saturations around which foam 

weakens  

fmmob Reference mobility reduction factor  

IT Implicit Texture 

I.C. Initial condition  

B.C. Boundary conditions 

J  Injection Condition 

j Layer counter  

LE Local equilibrium  

M Number of characteristics (saturation 

increments) 

n Increment counter of total dimensionless 

time 

N Number of total dimensionless time 

increments 

ODE  Ordinary Differential Equations  

PDE  Partial Differential Equations  

PB Population balance  
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Appendix A: Tables   
Layer fmmob epdry fmdry 

1 Bentheimer 47,700 400 0.271 

2 Berea 869,000 19,600 0.336 

3 Sister Berea 30,700 8,890 0.396 

4 Bandera 68,200 152 0.549 

Table 1: Foam Model Parameters (Kapetas et al., 2015) 

Layer     

1 Bentheimer 0.39 2.86 0.59 0.70 

2 Berea 0.39 4.09 0.99 1.97 

3 Sister Berea 0.14 5.25 0.47 1.22 

4 Bandera 1.00 3.56 0.73 2.43 

Table 2: Corey Relative Permeability Parameters  

Layer  [md]  [-]  [m] 
 

1 Bentheimer 1900 0.24 1.000 0.8648 

2 Berea 90 0.20 1.200 0.0492 

3 Sister Berea 160 0.21 1.143 0.0832 

4 Bandera Gray 6 0.23 1.043 0.0028 

Table 3: Permeability, Porosity, Height, and kh-ratio  

Layer 
 

 

 

Swr 
 

Bentheimer 0.78 4.06 
3,195 0.25 

29,500 

Berea 0.79 3.94 1,268 0.23 49,500 

Sister Berea 0.71 3.18 1,132 0.25 23,500 

Bandera Gray 0.88 5.82 1,391 0.46 36,500 

Table 4: Shock Saturation, Total Relative Mobilities and Velocities (gas without surfactant) 

Layer 
 

 

 

Swr 
 

Bentheimer 0.26603 1.35719 4.10101 0.25 16.4 

Berea 0.32820 1.47577 19.96683 0.23 369.0 

Sister Berea 0.39294 1.63988 43.43829 0.25 2755.3 

Bandera Gray 0.50728 1.98985 8.77428 0.46 22.8 

Table 5: Shock Saturation, Total Relative Mobilities and Velocities for SAG Injection 
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Layer 
 

 

 

Swr 
 

Bentheimer 0.26634 1.35856 5.10093 0.25 29,500 

Berea 0.32827 1.47670 21.32684 0.23 49,500 

Sister Berea 0.39295 1.64003 44.31117 0.25 23,500 

Bandera Gray 0.51139 2.01160 13.49425 0.46 36,500 

Table 6: Shock Saturation, Total Relative Mobilities and Velocities for SAG Injection – Namdar 

Zanganeh et al. Modified Model 

Layer (M)Gas w/o surf. (M)SAG-STARS (M)SAG-N.Z. et al. 

Bentheimer 3.195 0.004 0.005 

Berea 1.268 0.020 0.021 

Sister Berea 1.132 0.043 0.044 

Bandera Gray 1.391 0.009 0.013 

Table 7: Mobility Ratio at Flood Front for all Formations 

Layer (λrt)shock krw (fmdry) fmdry epdry fmmob 

Bentheimer 4.1 3.43E-05 0.271 400 47,700 

Berea 20.0 2.34E-04 0.336 19,600 869,000 

Sister Berea 43.4 2.18E-04 0.396 8,890 30,700 

Bandera Gray 8.8 1.60E-03 0.549 152 68,200 

Table 8: Total Relative Mobility at the Shock for the STARS Model, Water Relative Permeability at 

fmdry, and Foam Model Parameters 

Formation 
Permeability [md] 

SCAL Foam Scan 

Bentheimer 773 1900 

Berea 137 90 

Sister Berea 116 160 

Bandera Gray 13 6 

Table 9: Differences in Permeability between Cores used for SCAL Measurements and Foam Scans   
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Table 10: Radii of Surfactant Bank and Foam Bank for Different Surfactant Slug Sizes 



      

 

Appendix B: Diagrams  
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Figure 126: Relative Permeabilities vs. Water Saturation 

(Bentheimer) 
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Figure 127: Fractional Flow Curves and Shocks 

(Bentheimer) 
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Figure 128: Total Relative Mobility vs. Water Saturation 

(Bentheimer) 
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Figure 129: Time-Distance Diagram for Gas without 

Surfactant (Bentheimer) 
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Figure 130: Time-Distance Diagram for SAG STARS 

Model (Bentheimer) 
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Figure 131: Time-Distance Diagram for SAG N.Z. et al. 

Modified Model (Bentheimer) 
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Figure 132: Relative Permeabilities vs. Water Saturation 

(Berea) 
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Figure 133: Fractional Flow Curves and Shocks (Berea) 
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Figure 134: Total Relative Mobility vs. Water Saturation 

(Berea) 
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Figure 135: Time-Distance Diagram for Gas without 

Surfactant (Berea) 



       

 

86 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 t
D

 x
D

 

  
rt
(0.328)= 20.0

 
rt
(0.325)= 27.3

 
rt
(0.323)= 34.8

 
rt
(0.320)= 42.5

 
rt
(0.317)= 50.3

 
rt
(0.314)= 58.3

 
rt
(0.311)= 66.3

 
rt
(0.309)= 74.6

 
rt
(0.289)= 136.5

 
rt
(0.269)= 206.0

 
rt
(0.250)= 283.4

 
rt
(0.230)= 369.0

 

Figure 136: Time-Distance Diagram for SAG STARS 

Model (Berea) 
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Figure 137: Time-Distance Diagram for SAG N.Z. et al. 

Modified Model (Berea) 



       

 

87 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-8

10
-6

10
-4

10
-2

10
0

S
w

R
e
la

ti
v
e
 P

re
m

e
a
b
ili

ty

 

 







Water

Gas No Surf.

Foam Original

Foam N.Z.et.al.

 

Figure 138: Relative Permeabilities vs. Water Saturation 

(Sister Berea) 
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Figure 139: Fractional Flow Curves and Shocks (Sister 

Berea) 
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Figure 140: Total Relative Mobility vs. Water Saturation 

(Sister Berea)  
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Figure 141: Time-Distance Diagram for Gas without 

Surfactant (Sister Berea) 
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Figure 142: Time-Distance Diagram for SAG STARS 

Model (Sister Berea) 
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Figure 143: Time-Distance Diagram for SAG N.Z. et al. 

Modified Model (Sister Berea) 
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Figure 144: Relative Permeabilities vs. Water Saturation 

(Bandera Gray) 
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Figure 145: Fractional Flow Curves and Shocks (Bandera 

Gray) 
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Figure 146: Total Relative Mobility vs. Water Saturation 

(Bandera Gray)  
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Figure 147: Time-Distance Diagram for Gas without 

Surfactant (Bandera Gray) 
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Figure 148: Time-Distance Diagram for SAG STARS 

Model (Bandera Gray) 
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Figure 149: Time-Distance Diagram for SAG N.Z. et al. 

Modified Model (Bandera Gray) 
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Figure 150: Steady-State Foam Scans for Cores Taken from all Formations at Different Total 

Superfecial Velocities Kapetas et al. (2015) 
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Appendix C: Matlab Code   
Function I: Dimensionless Pressure Estimation for Gas Injection without surfactant 

function [ PD ] = F1(tD,krwe,nw,krge,ng,swr,sgr,re,rw,j) 

mug = 2e-5; 

muw = 1e-3; 

swe  = @(sw)(sw-swr)/(1-swr-sgr);   % effective water saturation 

krw  = @(sw)(krwe*swe(sw).^nw);     % water relative permeability 

lambda_w = @(sw)(krw(sw)./muw);     % water relative mobility 

krg  = @(sw)(krge*(1-swe(sw)).^ng); % gas relative peremeability 

lambda_g = @(sw)(krg(sw)./mug);     % gas relative mobility 

% fractional Flow of Water for Gas Injection 

fw2  = @(sw)(1./(1+(lambda_g(sw))./(lambda_w(sw)))); 

% derivative of water relative permeability 

dkrw = @(sw)((nw*krwe*swe(sw).^(nw-1))./(1-swr-sgr)); 

% derivative of water relative mobility 

dlambda_w = @(sw)(real(dkrw(sw)./muw)); 

% derivative of gas relative permeability 

dkrg = @(sw)(-(krge*ng*(1-swe(sw)).^(ng-1))./(1-swr-sgr)); 

% derivative of gas relative mobility 

dlambda_g = @(sw)(dkrg(sw)./mug); 

% derivative of the fractional flow curve for gas (dfw,g/dSw) 

dfw2 = @(sw)((lambda_g(sw).*dlambda_w(sw)-

lambda_w(sw).*dlambda_g(sw))./(lambda_g(sw)+lambda_w(sw)).^2); 

% total relative mobility for gas injection 

lambda_rt2 =@(sw)(lambda_w(sw)+lambda_g(sw)); 

% shock saturation determination 

F2 = @(sw)(fw2(sw)+ dfw2(sw).*(1-sw)-1); 

% water saturation at the shock gas injection 

sw_shock2 = fzero(F2, [swr+eps, 1-sgr-0.001]); 

 % range of water saturation experienced for gas injection 

m2 = linspace(swr,sw_shock2(j),201); 

N2 = length (m2); 

i=1; 

% dimensionless position gas injection 

xD2 = @(sw)(min((tD).*dfw2(sw),1)); 

% radial position gas injection 

r2  = @(sw)(sqrt(xD2(sw).*(re^2-rw^2)+rw^2)); 

 % Pressure drop in the gas bank 

P2(i:N2-1) = log(r2(m2(i+1:N2))./r2(m2(i:N2-

1))).*(0.5*(1./lambda_rt2(m2(i+1:N2))+1./lambda_rt2(m2(i:N2-1)))); 

% Pressure drop in the water bank 

P2(N2)     = log(re./r2(m2(N2)))*muw; 
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% dimensionless pressure calculation 

PD = (sum(P2))/(muw*log(re/rw)); 

end 

Function II: Dimensionless Pressure Estimation for SAG Injection  

function [ PD ] = F2(tD,krwe,nw,krge,ng,swr,sgr,fmmob,fmdry,epdry,rw,re,j) 

 %% fluid properties 

muw = 1e-3; 

mug = 2e-5; 

swe  = @(sw)(sw-swr)/(1-swr-sgr);      % effective water saturation 

krw  = @(sw)(krwe*swe(sw).^nw);        % water relative permeability 

lambda_w = @(sw)(krw(sw)./muw);        % water relative mobility 

krg  = @(sw)(krge*(1-swe(sw)).^ng);    % gas relative peremeability 

lambda_g = @(sw)(krg(sw)./mug);        % gas relative mobility 

% foam Mobility Reduction Factor (STARS Model) 

FM   = @(sw)(1+fmmob*(0.5+ atan(epdry.*(sw-fmdry))/pi())); 

% foam Mobility Reduction Factor (N.Z.et al. Model) 

% FM   = @(sw)(1+fmmob*((0.5+ atan(epdry.*(sw-fmdry))/pi())-(0.5+ atan(epdry.*(swr-

fmdry))/pi()))); 

krgf = @(sw)(krg(sw)./FM(sw));         % foam relative permeability 

lambda_f = @(sw)(real(krgf(sw)./mug)); % foam relative mobility 

% fractional Flow of Water for SAG 

fw   = @(sw)(1./(1+(lambda_f(sw))./(lambda_w(sw)))); 

% derivative of water relative permeability 

dkrw = @(sw)((nw*krwe*swe(sw).^(nw-1))./(1-swr-sgr)); 

% derivative of water relative mobility 

dlambda_w = @(sw)(real(dkrw(sw)./muw)); 

% derivative of gas relative permeability 

dkrg = @(sw)(-(krge*ng*(1-swe(sw)).^(ng-1))./(1-swr-sgr)); 

% derivative of gas relative mobility 

dlambda_g = @(sw)(dkrg(sw)./mug); 

% derivative of foam mobility reduction factor 

dFM  = @(sw)((fmmob*epdry)./(pi*(1+(epdry^2*(sw-fmdry).^2)))); 

% derivative of foam relative permeability 

dkrgf = @(sw)((dkrg(sw).*FM(sw)-dFM(sw).*krg(sw))./FM(sw).^2); 

% derivative of foam relative mobility 

dlambda_f = @(sw)(dkrgf(sw)./mug); 

% derivative of the fractional flow curve for foam (dfw,f/dSw) 

dfw = @(sw)((lambda_f(sw).*dlambda_w(sw) - 

dlambda_f(sw).*lambda_w(sw))./(lambda_f(sw)+lambda_w(sw)).^2); 

% total relative mobility for SAG injection 

lambda_rt =@(sw)(lambda_w(sw)+lambda_f(sw)); 

% determination of the shock saturations 

F = @(sw)(fw(sw)+ dfw(sw).*(1-sw)-1); 

% water saturation at the shock SAG injection 
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sw_shock = fzero(F, [swr+eps,0.6]); 

  

% range of water saturation experienced for SAG injection 

m = linspace(swr,sw_shock(j),101); 

N = length (m); 

i=1; 

 % dimensionless position for SAG 

xD = @(sw)(min(tD.*dfw(sw),1)); 

% radial position for SAG 

r  = @(sw)(sqrt(xD(sw).*(re^2-rw^2)+rw^2)); 

% Pressure Drop in the foam bank 

P(i:N-1) = log(r(m(i+1:N))./r(m(i:N-

1))).*(0.5*(1./lambda_rt(m(i+1:N))+1./lambda_rt(m(i:N-1)))); 

% Pressure drop in the water bank 

P(N)     = log(re./r(m(N)))*muw; 

% dimensionless pressure calculation 

PD = sum(P)/(muw*log(re/rw)); 

end 

 

Function III: Dimensionless Pressure Estimation for SAG Injection (Discrete Surfactant Slug Size) 

function [ PD ] = F3(tD,krwe,nw,krge,ng,swr,sgr,fmmob,fmdry,epdry,rw,re,xDf,rf,tDf,j) 

mug = 2e-5; 

muw = 1e-3; 

swe  = @(sw)(sw-swr)/(1-swr-sgr);      % effective water saturation 

krw  = @(sw)(krwe*swe(sw).^nw);        % water relative permeability 

lambda_w = @(sw)(krw(sw)./muw);        % water relative mobility 

krg  = @(sw)(krge*(1-swe(sw)).^ng);    % gas relative peremeability 

lambda_g = @(sw)(krg(sw)./mug);        % gas relative mobility 

% foam Mobility Reduction Factor (STARS Model) 

FM   = @(sw)(1+fmmob*(0.5+ atan(epdry.*(sw-fmdry))/pi())); 

% foam Mobility Reduction Factor (N.Z.et al. Model) 

% FM   = @(sw)(1+fmmob*((0.5+ atan(epdry.*(sw-fmdry))/pi())-(0.5+ atan(epdry.*(swr-

fmdry))/pi()))); 

krgf = @(sw)(krg(sw)./FM(sw));         % foam relative permeability 

lambda_f = @(sw)(real(krgf(sw)./mug)); % foam relative mobility 

% fractional Flow of Water during SAG 

fw   = @(sw)(1./(1+(lambda_f(sw))./(lambda_w(sw)))); 

% fractional Flow of Water during Gas Injection 

fw2  = @(sw)(1./(1+(lambda_g(sw))./(lambda_w(sw)))); 

% derivative of water relative permeability 

dkrw = @(sw)((nw*krwe*swe(sw).^(nw-1))./(1-swr-sgr)); 

% derivative of water relative mobility 

dlambda_w = @(sw)(real(dkrw(sw)./muw)); 

% derivative of gas relative permeability 
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dkrg = @(sw)(-(krge*ng*(1-swe(sw)).^(ng-1))./(1-swr-sgr)); 

% derivative of gas relative mobility 

dlambda_g = @(sw)(dkrg(sw)./mug); 

% derivative of foam mobility reduction factor 

dFM  = @(sw)((fmmob*epdry)./(pi*(1+(epdry^2*(sw-fmdry).^2)))); 

% derivative of foam relative permeability 

dkrgf = @(sw)((dkrg(sw).*FM(sw)-dFM(sw).*krg(sw))./FM(sw).^2); 

% derivative of foam relative mobility 

dlambda_f = @(sw)(dkrgf(sw)./mug); 

% derivative of the fractional flow curve for foam (dfw,f/dSw) 

dfw = @(sw)((lambda_f(sw).*dlambda_w(sw) - 

dlambda_f(sw).*lambda_w(sw))./(lambda_f(sw)+lambda_w(sw)).^2); 

% derivative of the fractional flow curve for gas (dfw,g/dSw) 

dfw2 = @(sw)((lambda_g(sw).*dlambda_w(sw)-

lambda_w(sw).*dlambda_g(sw))./(lambda_g(sw)+lambda_w(sw)).^2); 

% total relative mobility for SAG injection 

lambda_rt =@(sw)(lambda_w(sw)+lambda_f(sw)); 

% total relative mobility for gas injection 

lambda_rt2 =@(sw)(lambda_w(sw)+lambda_g(sw)); 

% determination of the shock saturations 

F  = @(sw)(fw(sw) + dfw(sw) .*(1-sw)-1); 

F2 = @(sw)(fw2(sw)+ dfw2(sw).*(1-sw)-1); 

% water saturation at the shock SAG injection 

sw_shock = fzero(F, [swr+eps,0.6]); 

% water saturation at the shock gas injection 

sw_shock2 = fzero(F2, [swr+eps, 1-sgr-0.001]); 

% range of water saturation experienced for SAG injection 

m = linspace(swr,sw_shock(j),201); 

N = length (m); 

% range of water saturation experienced for gas injection 

m2 = linspace(swr,sw_shock2(j),201); 

N2 = length (m); 

i=1; 

% dimensionless position SAG 

xD = @(sw)(min(tD.*dfw(sw),xDf)); 

% radial position SAG 

r  = @(sw)(sqrt(xD(sw).*(re^2-rw^2)+rw^2)); 

% dimensionless position gas injection 

xD2 = @(sw)(min(xDf+(tD-tDf).*dfw2(sw),1)); 

% radial position gas injection 

r2  = @(sw)(sqrt(xD2(sw).*((re-rf)^2-rw^2)+rw^2)); 

xDD = @(sw)(min(tD.*dfw(sw),1)); %Dimensionless position of the shock 

rr  = @(sw)(sqrt(xDD(sw).*(re^2-rw^2)+rw^2)); % Radius of the shock 

R  = rr(sw_shock(j)); %Radius of the shock 
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if R<=rf 

    % Pressure Drop in the foam bank 

    P(i:N-1) = log(r(m(i+1:N))./r(m(i:N-

1))).*(0.5*(1./lambda_rt(m(i+1:N))+1./lambda_rt(m(i:N-1))));  

    P(N)     = log(re./r(m(N)))*muw;% Pressure drop in the water bank 

    PD = sum(P)/(muw*log(re/rw)); % dimensionless pressure calculation 

else 

    % Pressure Drop in the foam bank 

    P(i:N-1) = log(r(m(i+1:N))./r(m(i:N-

1))).*(0.5*(1./lambda_rt(m(i+1:N))+1./lambda_rt(m(i:N-1)))); 

    % Pressure drop in the gas bank 

    P2(i:N2-1) = log(r2(m2(i+1:N2))./r2(m2(i:N2-

1))).*(0.5*(1./lambda_rt2(m2(i+1:N2))+1./lambda_rt2(m2(i:N2-1)))); 

    % Pressure drop in the water bank 

    P2(N2)     = log((re)./(r2(m2(N2))))*muw; 

    % dimensionless pressure calculation 

    PD = (sum(P)+sum(P2))/(muw*log(re/rw)); 

end 

end 

 

Main File (Driver)  

close all 

clear all 

clc 

  

Layer = {'Bentheimer', 'Berea', 'Sister Berea', 'Bandera'}; 

 %% Corey Model Paramters 

krwe  = [0.39 0.39 0.14 1]; 

nw    = [2.86 4.09 5.25 3.56]; 

krge  = [0.59 0.99 0.47 0.73]; 

ng    = [0.7 1.97 1.22 2.43]; 

 %% Petrophysical Model Parameters 

swr   = [0.25 0.23 0.25 0.46]; 

sgr   = [0.2 0.12 0.25 0]; 

phi   = [0.24 0.20 0.21 0.23]; 

k     = [1900e-15 90e-15 160e-15 6e-15]; 

 %% Foam Model PArameters 

fmmob = [4.77e4 8.69e5 3.07e4 6.82e4]; 

fmdry = [0.271 0.336 0.396 0.549]; 

epdry = [4.0e2 1.96e4 8.89e3 1.52e2]; 

 %% Fluid Property Parameters 

muw = 1e-3; % water viscosity 

mug = 2e-5; % gas viscosity 

 %% Inner and Outer Radii 
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rw = 0.1; % Wellbore radius [m] 

re = 100; % Reservoir outer radius [m] 

 %% Height Calculation 

h     = phi(1)./phi; 

kh    = k.*h; 

 %% Pore Volume Calculation 

PV = pi()*phi.*h.*(re^2-rw^2); % Pore Volumes of all layers 

PVt = sum(PV);  % Total Pore Volume 

 %% calculate the fraction of pore volumes to the total 'reservoir' pore volume (Fi) 

F1 = (h(1)*phi(1))/(h(1)*phi(1)+h(2)*phi(2)+h(3)*phi(3)+h(4)*phi(4)); 

F2 = (h(2)*phi(2))/(h(1)*phi(1)+h(2)*phi(2)+h(3)*phi(3)+h(4)*phi(4)); 

F3 = (h(3)*phi(3))/(h(1)*phi(1)+h(2)*phi(2)+h(3)*phi(3)+h(4)*phi(4)); 

F4 = (h(4)*phi(4))/(h(1)*phi(1)+h(2)*phi(2)+h(3)*phi(3)+h(4)*phi(4)); 

 %% Define Simulation Time and Surfactant Slug Sizes 

V = logspace(-8,1,10);    % Relative Volume of Surfactant Slugs 

TD  = logspace(-8,1,1e5); % Define the time 

dTD = diff(TD);           % Define the Time increments 

TDplot = cumsum(dTD);     % the cumulative sum of time increments 

 %% Pre-allocation of the calculated parameters 

%Dimensionless Pressure 

PD1 = zeros (length(V),length(dTD)); 

PD2 = zeros (length(V),length(dTD)); 

PD3 = zeros (length(V),length(dTD)); 

PD4 = zeros (length(V),length(dTD)); 

PDtot = zeros(length(V), length(TD)-1); % total dimensionless Pressure 

% Dimensionless Time 

tD1 = zeros (length(V),length(dTD)); 

tD2 = zeros (length(V),length(dTD)); 

tD3 = zeros (length(V),length(dTD)); 

tD4 = zeros (length(V),length(dTD)); 

 v   = zeros (length(V),length(krwe)); % volume of surfactant slug into each layer 

rf  = zeros (length(V),length(krwe)); % radius of the foam bank into each layer 

rs  = zeros (length(V),length(krwe)); % radius of the surfactant bank 

xDf = zeros (length(V),length(krwe)); % dimensionless position of the foam bank 

tDf = zeros (length(V),length(krwe)); % dimensionless time of the foam bank 

%% Initializing Dimensionless Pressure (I.C.) 

PD1(:,1)=1; PD2(:,1)=1; PD3(:,1)=1; PD4(:,1)=1; 

 %% Calculating the Dimensionless Time at (I.C.) 

tD1(:,1)= 

(kh(1)./PD1(1,1))./(kh(1)./PD1(1,1)+kh(2)./PD2(1,1)+kh(3)./PD3(1,1)+kh(4)/PD4(1,1))*(dT

D(1)/F1); 

tD2(:,1)= 

(kh(2)./PD2(1,1))./(kh(1)./PD1(1,1)+kh(2)./PD2(1,1)+kh(3)./PD3(1,1)+kh(4)/PD4(1,1))*(dT

D(1)/F2); 
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tD3(:,1)= 

(kh(3)./PD3(1,1))./(kh(1)./PD1(1,1)+kh(2)./PD2(1,1)+kh(3)./PD3(1,1)+kh(4)/PD4(1,1))*(dT

D(1)/F3); 

tD4(:,1)= 

(kh(4)./PD4(1,1))./(kh(1)./PD1(1,1)+kh(2)./PD2(1,1)+kh(3)./PD3(1,1)+kh(4)/PD4(1,1))*(dT

D(1)/F4); 

  

%% Calculatio for the various parameters for each relative volume of the surfactant 

slug 

for i= 1:length(V); 

    v(i,:)  = [kh(1)/sum(kh) kh(2)/sum(kh) kh(3)/sum(kh) kh(4)/sum(kh)]*V(i)*PVt; 

    rs(i,:) = sqrt(v(i,:)./(pi()*phi.*h)+rw^2); 

    rf(i,:) = sqrt(v(i,:)./(pi()*phi.*h.*fmdry)+rw^2); 

    xDf(i,:) = ((sqrt(v(i,:)./(pi()*phi.*h.*fmdry)+rw^2)).^2-rw^2)/(re^2-rw^2); 

end 

rs(rs > re) = re; % Maximum radius of the surfactant bank 

rf(rf > re) = re; % Maximum radius of the foam bank 

xDf(xDf > 1) = 1; % Maximum Dimesnionless Position 

  

for i= 1:length(V); 

    tDf(i,:) = (rf(i,:).^2-rw^2)./(re^2-rw^2).*(1-fmdry); %dimensionless time of the 

foam bank calculation 

end 

 % Dimensionless Pressure and time calculation 

 for i =1:length(V) 

    for t= 1:length(dTD)-1 

        [ PD1(i,t+1) ] = 

F3(tD1(i,t),krwe(1),nw(1),krge(1),ng(1),swr(1),sgr(1),fmmob(1),fmdry(1),epdry(1),rw,re,

xDf(i,1),rf(i,1),tDf(i,1),1); 

        [ PD2(i,t+1) ] = 

F3(tD2(i,t),krwe(2),nw(2),krge(2),ng(2),swr(2),sgr(2),fmmob(2),fmdry(2),epdry(2),rw,re,

xDf(i,2),rf(i,2),tDf(i,2),2); 

        [ PD3(i,t+1) ] = 

F3(tD3(i,t),krwe(3),nw(3),krge(3),ng(3),swr(3),sgr(3),fmmob(3),fmdry(3),epdry(3),rw,re,

xDf(i,3),rf(i,3),tDf(i,3),3); 

        [ PD4(i,t+1) ] = 

F3(tD4(i,t),krwe(4),nw(4),krge(4),ng(4),swr(4),sgr(4),fmmob(4),fmdry(4),epdry(4),rw,re,

xDf(i,4),rf(i,4),tDf(i,4),4); 

        tD1(i,t+1)= 

(kh(1)./PD1(i,t+1))./(kh(1)./PD1(i,t+1)+kh(2)./PD2(i,t+1)+kh(3)./PD3(i,t+1)+kh(4)/PD4(i

,t+1))*(dTD(t+1)/F1)+tD1(i,t); 

        tD2(i,t+1)= 

(kh(2)./PD2(i,t+1))./(kh(1)./PD1(i,t+1)+kh(2)./PD2(i,t+1)+kh(3)./PD3(i,t+1)+kh(4)/PD4(i

,t+1))*(dTD(t+1)/F2)+tD2(i,t); 

        tD3(i,t+1)= 

(kh(3)./PD3(i,t+1))./(kh(1)./PD1(i,t+1)+kh(2)./PD2(i,t+1)+kh(3)./PD3(i,t+1)+kh(4)/PD4(i

,t+1))*(dTD(t+1)/F3)+tD3(i,t); 

        tD4(i,t+1)= 

(kh(4)./PD4(i,t+1))./(kh(1)./PD1(i,t+1)+kh(2)./PD2(i,t+1)+kh(3)./PD3(i,t+1)+kh(4)/PD4(i

,t+1))*(dTD(t+1)/F4)+tD4(i,t); 
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    end 

end 

  

% Flow Ratio Calculation 

for i=1:length(V) 

    R1(i,:)=tD1(i,:)./(tD1(i,:)+tD2(i,:)+tD3(i,:)+tD4(i,:)); 

    R2(i,:)=tD2(i,:)./(tD1(i,:)+tD2(i,:)+tD3(i,:)+tD4(i,:)); 

    R3(i,:)=tD3(i,:)./(tD1(i,:)+tD2(i,:)+tD3(i,:)+tD4(i,:)); 

    R4(i,:)=tD4(i,:)./(tD1(i,:)+tD2(i,:)+tD3(i,:)+tD4(i,:)); 

end 

  

% Total Dimensionless Pressure calculation 

for i=1:length(V) 

    PDtot(i,:)= 

sum(kh)./(kh(1)./PD1(i,:)+kh(2)./PD2(i,:)+kh(3)./PD3(i,:)+kh(4)./PD4(i,:)); 

end 

  

% Relative time calculation 

for i=1:length(V) 

    I(i,:) = PDtot(i,:).*dTD; 

    RT(i,:) = cumsum(I(i,:)); 

end 

 

 

 


