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You know that I write slowly. This is chiefly because I am never satisfied
until I have said as much as possible in a few words, and writing briefly

takes far more time than writing at length.

Carl Friedrich Gauss
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Summary

In this thesis, several phase retrieval methods are discussed. Since the focus will
mainly be on theory rather than experiment, the structure has been determined by
the similarities and differences of the mathematics of these methods. For example,
a distinction is made between non-iterative and iterative methods, and between
single-shot iterative phase retrieval and multiple-shot iterative phase retrieval (pty-
chography). However, it must be noted that phase retrieval methods that are math-
ematically similar, are suitable for fundamentally different experimental setups. For
example, one can consider setups for lensless imaging, of which an interesting
application is metrology using Extreme Ultraviolet (EUV) radiation. In such setups,
no focusing optics are used, and one typically computes an image from far-field
intensity patterns. On the other hand, there are setups for aberrated imaging.
In these setups, one does use focusing optics to form images, but by introducing
some sort of variations or perturbations, one can generate a set of images from
which a complex-valued field can be computed. For example, regular ptychogra-
phy and Fourier ptychography are mathematically the same, but the former is used
for lensless imaging, while the latter is used for aberrated imaging. Mathematically,
the only difference between these two ptychographic approaches is that the roles
of object space and Fourier space are interchanged.

In Chapter 1 we give a broad overview of the different phase retrieval methods
that exist. We discuss several non-iterative methods and iterative methods, and
explain how they are related to each other. This provides the context in which the
contents of the subsequent chapters can be placed.

In Chapter 2 we discuss a new non-iterative phase retrieval method that can be
understood using three-dimensional autocorrelation functions. First, we illustrate
as an example how in Fourier Transform Holography (typically used for lensless
imaging) one manipulates the sample in such a way that its autocorrelation func-
tion allows for a straightforward extraction of the reconstruction. Then, it is ex-
plained how one can obtain a three-dimensional data set by varying an optical
parameter (which can in principle be used for both aberrated imaging and lensless
imaging), and how the reconstruction can be extracted from the corresponding
three-dimensional autocorrelation function.

In Chapter 3 the theory behind iterative phase retrieval algorithms is discussed
in more detail. For single-shot Coherent Diffractive Imaging, it is explained how
the problem can either be tackled using projections or cost-minimization schemes.
Then, it is explained how these techniques can be applied to ptychographic phase
retrieval, where one aims to reconstruct an image of a sample from multiple mea-
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xvi Summary

surements. The differences between sequential and global updates are explored,
after which new variants of the ptychographic reconstruction algorithm are pro-
posed and tested.

In Chapter 4 it is recalled how ptychography can be modeled as a cost-minimization
problem, after which we explore how one can choose the cost functional that is to
be minimized. We review how the cost functional can be chosen depending on
the assumed noise model. We explain the maximum-likelihood approach, the vari-
ance stabilization approach, and how they are related. Then, we test different
cost-functionals for their robustness to noise, and conclude that the maximum-
likelihood approach does not necessarily yield optimal results. We propose and test
through simulations and experiment a new method that aims to improve the noise-
robustness by adapting the measurement constraints.

In Chapter 5 we discuss a relatively new phase retrieval problem called Diffractive
Shearing Interferometry (DSI). In this problem, the measurement constraint differs
from the familiar far-field intensity constraint, and therefore new reconstruction al-
gorithms must be developed. We analyze the already existing DSI reconstruction
algorithm and propose a novel algorithm using the theory that was laid out in Chap-
ter 3.

In Chapter 6 a new approach for calculating the exit wave beyond the multiplicative
approximation is presented, which may help in developing a ptychographic recon-
struction algorithm for samples whose thickness are not negligible. It is shown how
the multiplicative approximation (used in regular ptychography) can be derived by
applying a zeroth-order approximation to the scattering integral, and how one can
derive a more accurate first-order approximation. This improvement is an area for
future research.



Samenvatting

In dit proefschrift worden verscheidene faseverkrijgingsmethodes besproken. Aan-
gezien het meer over theorie dan experiment zal gaan, is de structuur bepaald
door de overeenkomsten en verschillen van de wiskunde achter deze methodes. Er
wordt bijvoorbeeld onderscheid gemaakt tussen niet-iteratieve en iteratieve metho-
des, en tussen methodes die een enkel intensiteitspatroon gebruiken of meerdere
(zoals ptychografie). Het moet echter opgemerkt worden dat faseverkrijgingsme-
thodes die in wiskundig opzicht op elkaar lijken toepasbaar zijn op fundamenteel
verschillende experimentele opstellingen. Men kan bijvoorbeeld opstellingen voor
afbeelden zonder lenzen beschouwen, waarvan metrologie met Extreme Ultravi-
olet (EUV) straling een interessante toepassing is. In dergelijke opstellingen wordt
geen focusserende optiek gebruikt, en men berekent gebruikelijk een afbeelding
uit verre veld intensiteitspatronen. Anderzijds zijn er opstelling voor geaberreerd
afbeelden. In deze opstellingen gebruikt men focusserende optiek om afbeeldin-
gen te vormen, maar door een bepaald soort variatie of perturbatie te introduceren
kan men een set afbeeldingen genereren waaruit een complexwaardig veld bere-
kend kan worden. Normale ptychografie en Fourier ptychografie zijn bijvoorbeeld
wiskundig hetzelfde, maar de eerste wordt voor afbeelden zonder lenzen gebruikt,
terwijl de tweede wordt gebruikt voor geaberreerd afbeelden. Wiskundig gezien
is het enige verschil tussen deze twee ptychografische aanpakken dat de object-
ruimte en Fourier-ruimte zijn uitgewisseld.

In hoofdstuk 1 wordt een breed overzicht gegeven van bestaande faseverkrijgings-
methodes. We behandelen enkele niet-iteratieve en iteratieve methodes, en leggen
uit hoe ze aan elkaar gerelateerd zijn. Dit geeft ons de context waarin de inhoud
van de navolgende hoofdstukken geplaatst kan worden.

In hoofdstuk 2 behandelen we een niet-iteratieve faseverkrijgingsmethode die be-
grepen kan worden met behulp van driedimensionale autocorrelatiefuncties. Eerst
gebruiken we Fourier Holografie (wat gebruikt wordt voor afbeelden zonder lenzen)
als voorbeeld om te laten zien hoe een monster bewerkt kan worden zodat uit diens
autocorrelatiefunctie direct een gereconstrueerd beeld gehaald kan worden. Ver-
volgens wordt uitgelegd hoe een driedimensionale dataset verkregen kan worden
door een optische parameter te variëren (wat in principe gebruikt kan worden voor
zowel geaberreerd afbeelden als afbeelden zonder lenzen), en hoe uit de bijbeho-
rende autocorrelatiefunctie de reconstructie gehaald kan worden.

In hoofdstuk 3 wordt de theorie achter faseverkrijgingsalgoritmes in meer detail
besproken. Voor het geval van Afbeelden middels Coherente Diffractie (Coherent
Diffractive Imaging, CDI) met een enkele meting wordt uitgelegd hoe het probleem
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aangepakt kan worden met projecties of met het minimaliseren van een kostenfunc-
tionaal. Daarna wordt uitgelegd hoe deze technieken toegepast kunnen worden op
ptychografische faseverkrijging, waarbij men probeert een afbeelding van een mon-
ster te reconstrueren uit meerdere metingen. De verschillen tussen sequentiële en
globale bijwerkingen worden beschouwd, waarna nieuwe varianten van het ptycho-
grafische reconstructiealgoritme worden voorgesteld en getest.

In hoofdstuk 4 wordt herhaald hoe ptychografie beschouwd kan worden als een
kostenminimalisatieprobleem, waarna we kijken hoe de te minimaliseren kosten-
functionaal gekozen kan worden. We beschouwen de manieren waarop de kos-
tenfunctionaal gekozen kan worden op basis van het aangenomen ruismodel. We
leggen de aanpak van de meest aannemelijke schatter uit, de aanpak van variantie-
stabilisatie, en hoe deze methodes aan elkaar gerelateerd zijn. Vervolgens testen
we verschillende kostenfunctionalen om kijken hoe ruisbestendig ze zijn, waarna
we tot de conclusie komen dat de aanpak van de meest aannemelijke schatter niet
per se de beste resultaten oplevert. We stellen een nieuwe methode voor die meer
ruisbestendig is doordat het de metingen (die als randvoorwaarden in het algoritme
worden gebruikt) aanpast, en we testen deze methode met simulaties en experi-
ment.

In hoofdstuk 5 behandelen we een vrij nieuw faseverkrijgingsprobleem genaamd
Diffractieve Shearing Interferometrie (DSI). In dit probleem verschilt de meting
die in het algoritme wordt gebruikt van de gebruikelijke intensiteitsmeting, waar-
door nieuwe reconstructiealgortimes ontwikkeld moeten worden. We analyseren
het al bestaande DSI reconstructiealgoritme en ontwikkelen een nieuw algoritme,
gebruikmakend van de theorie die eerder was behandeld in hoofdstuk 3.

In hoofdstuk 6 wordt een nieuwe methode gepresenteerd voor het berekenen van
het getransmitteerde veld dat verder gaat dan de multiplicatieve benadering, wat
kan helpen in het ontwikkelen van een ptychografisch reconstructiealgoritme voor
monsters met diktes die niet verwaarloosbaar zijn. Het wordt aangetoond dat de
multiplicatieve benadering (die gebruikt wordt in de gangbare ptychografie) afge-
leid kan worden door een nulde-orde benadering toe te passen op de verstrooi-
ingsintegraal, en hoe een nauwkeurigere benadering afgeleid kan worden door een
eerste-orde benadering toe te passen. Deze methode is een onderwerp voor toe-
komstig onderzoek.



1
Introduction

Any intelligent fool can make things bigger, more complex, and more violent.
It takes a touch of genius — and a lot of courage to move in the opposite

direction.

E.F. Schumacher
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2 1. Introduction

1.1. Motivation for phase retrieval
A monochromatic scalar optical field in an (𝑥, 𝑦)−plane may be described by the
complex-valued function 𝜓(x) , where x = [𝑥 𝑦]ፓ. However, one can only directly
measure its intensity |𝜓(x)|ኼ, while its phase information is lost. In phase retrieval,
one aims to find the phase of the field from intensity measurements. There are
several reasons why one may want to do this:

• Retrieving aberrations: wave front aberrations may degrade the quality
of an imaging system. One can correct for this using adaptive optics, but in
order to correct for the aberrations, one must first characterize them. One
way to do this is by using a Shack-Hartmann wave front sensor. By looking at
a set of displaced focal spots generated by a lenslet array, one can infer the
gradient of the wave front, which one can integrate to find the phase of the
field.

• Aberration correction: one can compensate for aberrations in the experi-
mental setup using adaptive optics as mentioned previously, but one can also
measure an aberrated image and correct for the aberrations afterwards. In
that case, in addition to characterizing the aberrations, one must also retrieve
the phase of the field in the image plane so that the complex-valued field can
be deconvolved using the imaging point-spread function.

• Imaging phase samples: highly transparent samples (such as weakly scat-
tering biological samples) tend to only affect the phase of the field while leav-
ing the amplitude unchanged, i.e. their transmission function is of the form
𝑇(x) = 𝑒።Ꭻ(x) (which is known as a phase grating). If one were to image 𝑇(x)
directly, one would only measure |𝑇(x)|ኼ = 1, while the relevant phase in-
formation 𝜙(x) is lost entirely. One way to measure information about 𝜙(x)
is by using Zernike phase-contrast microscopy, where one phase shifts the
unscattered light before forming the image.

• (Back-)propagating fields: if one wants to propagate from one plane to
another, one needs to know both the amplitude and phase of the field. If one
measures a far field intensity |𝜓̂(k)|ኼ (where 𝜓̂(k) denotes the spatial Fourier
transform of 𝜓(x), and k denotes denotes the 2D Fourier space coordinate
vector), then one requires a method to find the far field phase in order to
back-propagate 𝜓̂(k) to find the near field 𝜓(x). This is the application that
is central to this thesis, and it is commonly known as Coherent Diffractive
Imaging (CDI). It is especially useful for wavelengths for which no high-quality
focusing optics are available (such as the Extreme Ultraviolet, or EUV, regime,
also often referred to as the Soft X-Ray, or SXR, regime), which makes it
difficult to form direct images.

A more elaborate list of the possible applications of phase retrieval is given in [1].
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3

1.2. Phase retrieval from a single far field intensity
pattern

Given is a scalar monochromatic field 𝜓(x) of wavelength 𝜆 that is restricted by an
aperture with radius 𝑅. For example, 𝜓(x) can be the field transmitted by a sample
of size 𝑅. If we let the field propagate a distance 𝑧 such that

𝑅ኼ
𝜆𝑧 < 1, (1.1)

(i.e. if we consider Fraunhofer propagation) then we can calculate the far-field as

𝜓፳(𝑥, 𝑦) = ∬𝜓(𝑥ᖣ, 𝑦ᖣ)𝑒ዅኼ᎝።(፱ᖤ
ᑩ
ᒐᑫዄ፲

ᖤ ᑪ
ᒐᑫ ) d𝑥ᖣ d𝑦ᖣ, (1.2)

where we ignored an irrelevant multiplicative constant and a quadratic phase factor
which is irrelevant since we only measure intensities. If we write the spatial Fourier
transform as

𝜓̂(k) = ∫𝜓(x)𝑒ዅኼ᎝።x⋅k dx, (1.3)

then the far field of 𝜓(x) is given by 𝜓̂(k), with k = [ ፱᎘፳
፲
᎘፳ ]

ፓ
. The question is

how to retrieve 𝜓(x) from |𝜓̂(k)|ኼ.

1.2.1. Ambiguities and unicity
Let us assume we know a priori that 𝜓(x) is restricted by a radius 𝑅 (i.e. we assume
we have a support constraint). Is 𝜓(x) uniquely defined if we know (approximately)
its support and |𝜓̂(k)|? There are three obvious ambiguities:

• Global phase shift: if 𝜓(x) is a solution, then so is 𝜓(x)𝑒።᎕, because then
𝜓̂(k) is multiplied by a constant phase factor, which does not affect |𝜓̂(k)|.

• Translation: if 𝜓(x) is a solution, then so is 𝜓(x+xኺ) (provided it does not
violate the support constraint), because then 𝜓̂(k) is multiplied by a linear
phase function 𝑒ኼ᎝።xᎲ⋅k which does not affect |𝜓̂(k)|.

• Twin image: if 𝜓(x) is a solution, then so is its twin image 𝜓(−x)∗ (provided
it does not violate the support constraint), because then 𝜓̂(k) is conjugated
(i.e. it becomes 𝜓̂(k)∗), which does not affect |𝜓̂(k)|.

These are trivial ambiguities since they do not fundamentally affect the relevant fea-
tures of 𝜓(x). So aside from these ambiguities, is 𝜓(x) uniquely defined by |𝜓̂(k)|
and a support constraint? While this is not true in the 1D case, it has been shown
that in the discrete 2D case the solution is unique, except for a set of objects 𝜓(x)
whose Z-transforms are reducible (meaning that the Z-transform can be written as
the product of two polynomials), which is a very uncommon property for real-life
samples [2–4]. However, it has also been demonstrated that the presence of noise
and the existence of near-alternative solutions (i.e. solutions that almost but not
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exactly match the measurement constraints) can cause significant problems for the
convergence of phase retrieval algorithms [5, 6]. It has been proposed that using
randomly phased illumination would eliminate alternative solutions and consider-
ably improve convergence [7, 8]. Moreover, using such illumination would result in
less sharply peaked diffraction patterns, which eliminates the problem of dynamic
range: using a beam stop or stitching together recordings of different exposure
times would become unnecessary [9].

1.2.2. Sampling requirements
In practice, we cannot measure |𝜓̂(k)|ኼ for all k, but rather we sample k on a
discrete grid defined by the pixels of the detector. How finely should we sample
|𝜓̂(k)|ኼ in order to be able to retrieve 𝜓(x) from it? If 𝜓(x) is restricted to a square
aperture of dimension 𝑅, then it is sufficient to sample 𝜓̂(k) on a grid with interval
1/𝑅, as prescribed by the Nyquist criterion. However, we are not sampling 𝜓̂(k), but
|𝜓̂(k)|ኼ, which when inverse Fourier transformed gives the autocorrelation of 𝜓(x),
which has a support of dimension 2𝑅. Therefore, as was remarked by Sayre in 1952
[10], one should sample the intensity at the Nyquist interval of |𝜓̂(k)|ኼ, which is
half the Nyquist interval of 𝜓̂(k), namely ኻ

ኼፑ , to recover the autocorrelation of 𝜓(x)
without aliasing, which should give the information to recover 𝜓(x). Given that
Δ𝑘 ≤ 1/2𝑅, and that 𝑘 = 𝑥/𝜆𝑧 (see Eq. (1.2)), where 𝑥 is the spatial coordinate on
the detector, we find for the required pixel spacing

Δ𝑥 ≤ 𝜆𝑧
2𝑅 . (1.4)

We can also look at the issue by using the Discrete Fourier Transform (DFT). The
DFT of a discrete 1D array 𝜓፧ with 𝑁 entries is given by

𝜓̂፦ =
ፍዅኻ

∑
፧዆ኺ

𝜓፧𝑒ዅኼ᎝።፦፧/ፍ , 𝑚 = 0, 1… ,𝑁 − 1. (1.5)

In this expression, 𝜓፧ and 𝜓̂፦ are just arrays of numbers, unrelated to any physical
axes. We can write

𝜓̂፦ =
ፍዅኻ

∑
፧዆ኺ

𝜓፧𝑒
ዅኼ᎝። ᑞ

ᑅᏺᑩ
፧ጂᑩ

=
ፍዅኻ

∑
፧዆ኺ

𝜓፧𝑒ዅኼ᎝።፤ᑞ፱ᑟ ,

(1.6)

where we defined the axes in real and reciprocal space as

𝑥፧ = 𝑛Δ፱ , 𝑛 = 0, 1, … ,𝑁 − 1,

𝑘፦ =
𝑚
𝑁Δ፱

, 𝑚 = 0, 1, … ,𝑁 − 1. (1.7)
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So we see that:

• If we have a high resolution in 𝑥-space (i.e. Δ፱ is small), we have a large field
of view in 𝑘-space (i.e. the maximum 𝑘፦ is large).

• If we have a large field of view in 𝑥-space (i.e. 𝑁Δ፱ is large), we have a high
resolution in 𝑘-space (i.e. Δ፤ = 1/𝑁Δ፱ is small).

So we see once more that the sampling Δ፤ in 𝑘-space should be sufficiently fine
so that the support of the object (or its autocorrelation) fits in the field of view
in 𝑥-space defined by Δ፤. Moreover, we see that it is convenient to reconstruct
a sample 𝜓(x) from its far-field diffraction pattern, because for large enough dis-
tances 𝑧 the resolution of the reconstruction does not depend on the pixel size of
the detector (which is difficult to make smaller), but on the numerical aperture (NA)
of the detector: if higher spatial frequencies are captured, the resolution of the re-
construction increases. The farther the field propagates, the more it expands, so
the larger the pixels and their spacing may be, as is also seen in Eq. (1.4).

In 1998, Miao et al. [11] presented the following argument with regard to the
required oversampling: if we measure

|𝜓̂፦|ኼ = |
ፍዅኻ

∑
፧዆ኺ

𝜓፧𝑒ዅኼ᎝።፦፧/ፍ|

ኼ

, 𝑚 = 0, 1, … ,𝑀 − 1, (1.8)

then we have a set of 𝑀 equations with 2𝑁 unknowns: each 𝜓፧ has a real and
imaginary part (or there are 2𝑁ኻ unknowns if the global phase is irrelevant). If we
sample according to the Nyquist criterion of 𝜓̂(k) (as opposed to |𝜓̂(𝑏𝑘)|ኼ), we have
𝑀 = 𝑁 equations, which means that the system of equations is underdetermined
by a factor of 2. Note that this is the case regardless of the number of dimensions:
for a 1D object we have 𝑁 equations and 2𝑁 unknowns, for a 2D object we have
𝑁ኼ equations and 2𝑁ኼ unknowns, etc. This is a departure from the autocorrelation
argument, from which would follow that for a 2D object we should oversample by
a factor of 2 in each dimension, giving 4𝑁ኼ equations.

1.2.3. Coherence requirements
Given a maximum allowed distance between adjacent pixels on a detector, one can
derive requirements for the spatial and temporal coherence in order for reconstruc-
tion algorithms that assume full coherence to work [12].

Spatial coherence
Consider an extended spatially incoherent quasi-monochromatic source. If the
source is sufficiently far removed from the sample, each point of the source gen-
erates a plane wave with a certain angle in the sample plane. In the Fraunhofer
approximation, illuminating the sample at a different angle yields an identical but
translated far-field diffraction intensity pattern. To be able to use reconstruction al-
gorithms that assume full coherence, we require that the translation of the diffrac-
tion patterns is smaller than the detector pixel spacing, which is given by Eq. (1.4).
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Therefore, if the extended source subtends an angle 𝜃፜ at the sample, and two
adjacent pixels subtend an angle 𝛼, we require 𝜃፜ < 𝛼. See Fig. 1.1a.

Temporal coherence
Consider a normally incident field with wavelengths ranging from 𝜆 to 𝜆 + Δ𝜆. We
assume that the sample has a wavelength-independent transmission function 𝜓(𝑥)
(at least within the relevant wavelength range). Each wavelength yields a scaled
diffraction pattern

𝐼᎘(𝑥ᖣ) = |𝜓̂ (
𝜃
𝜆 )|

ኼ
, (1.9)

where 𝜃 = 𝑥ᖣ/𝑧 is the diffraction angle, and 𝐼 denotes intensity. Let us say there is
a maximum relevant diffraction angle 𝜃max, which may be defined by the detector
NA or by the noise level. We can consider two detector points 𝑥ᖣmax = 𝑧𝜃max and
𝑥ᖣmax,ጂ = 𝑧𝜃max

᎘ዄጂ᎘
᎘ which for different wavelengths 𝜆 and 𝜆+Δ𝜆 correspond to the

same intensity value in the diffraction pattern: 𝐼᎘(𝑥ᖣmax) = 𝐼᎘ዄጂ᎘(𝑥ᖣmax,ጂ). If we want
to assume full coherence, we require that 𝑥ᖣmax and 𝑥ᖣmax,ጂ differ by less than the
pixel spacing ᎘፳

ኼፑ

𝑧𝜃max
𝜆 + Δ𝜆
𝜆 − 𝑧𝜃max ≤

𝜆𝑧
2𝑅 . (1.10)

Rearranging this expression and defining the coherence length as 𝐿፜ = 𝜆ኼ/Δ𝜆, we
find

2𝜃max𝑅 ≤ 𝐿፜ . (1.11)

See Fig. 1.1b.

1.3. Non-iterative phase retrieval methods
• Phase contrast microscopy: In the early 1930’s, Frits Zernike invented
the phase contrast microscope for which he would later receive the Nobel
Prize in 1953 [13, 14]. The purpose of such a microscope is to image weakly
scattering pure phase objects, i.e. objects with transmission functions of the
form 𝜓(x) = 𝑒።Ꭻ(x) with small real-valued phase 𝜙(x). If one would image
such a sample directly, one would only measure the intensity |𝜓(x)|ኼ = 1,
and none of the relevant features defined by the phase function 𝜙(x) would
be observed. They could be revealed in a slightly out-of-focus plane, but
then the resolution would be poor. One common solution was to stain the
sample, which converts the phase sample to an amplitude sample that can
be imaged directly. Zernike’s phase contrast method on the other hand could
reveal 𝜙(x) by phase-shifting the scattered field by 90 degrees with respect
to the unscattered field (or vice versa) before the two fields interfere in the
image plane. Mathematically it can be described as follows. If we assume
𝜙(x) is so small that 𝜙(x)ኼ is negligible, we can approximate the transmission
function as

𝜓(x) ≈ 1 + 𝑖𝜙(x). (1.12)
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(a) Spatial coherence

(b) Temporal coherence

Figure 1.1: Requirements for spatial and temporal coherence. The coherence should be such that the
blur of the diffraction pattern is smaller than the pixel spacing as defined by the Nyquist criterion.
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Here, the first term ‘1’ corresponds to the unscattered light, and the second
term ‘𝑖𝜙(x)’ corresponds (mostly) the scattered light. When the sample is
illuminated by a normally incident plane wave, one would observe in the image
plane

𝐼(x) ≈ |1 + 𝑖𝜙(x)|ኼ
= 1 + |𝜙(x)|ኼ. (1.13)

Because we assumed that 𝜙(x)ኼ is negligible, no phase information is ob-
served in the image (of course technically 𝐼(x) is exactly equal to 1, and no
approximation needs to be made in order to conclude no phase information is
observed). In the phase contrast microscope on the other hand, we shift the
unscattered light by 90 degrees (which can for example be done in the back
focal plane of the lens where the scattered and unscattered light are spatially
separated). We then observe in the image plane

𝐼(x) = |𝑖 + 𝑖𝜙(x)|ኼ
= 1 + 𝜙(x)ኼ + 2𝜙(x). (1.14)

The term 2𝜙(x) is not negligible compared to 1, which demonstrates that
phase information is observed in the image. A more exact treatment will be
discussed in the next point on quantitative phase contrast microscopy.

• Quantitative phase contrast microscopy: With the advent of digital cam-
eras, one can perform quantitative measurements that can be used to com-
putationally reconstruct a sample. Thus, one can extend Zernike’s phase con-
trast method by applying multiple phase shifts 𝜃, and computing the trans-
mission function from the corresponding measurements 𝐼᎕(x) [15]. Given is
an arbitrary transmission function 𝜓(x), with spatial Fourier transform 𝜓̂(k).
We can phase-shift the unscattered light (given by 𝜓̂(0)) by 𝜃

𝜓̂(k) → 𝜓̂(k) + 𝛿(k)𝜓̂(0)(𝑒።᎕ − 1). (1.15)

In the image plane we then measure

𝐼᎕(x) = |𝜓(x) + 𝜓̂(0)(𝑒።᎕ − 1)|ኼ

= |𝜓(x)|ኼ + 2Re {𝜓(x)𝜓̂(0)∗(𝑒ዅ።᎕ − 1)} + |𝜓̂(0)(𝑒።᎕ − 1)|ኼ.
(1.16)

For 𝜓(x) = 𝑒።Ꭻ(x) and 𝜃 = 𝜋/2 one can obtain the more exact expression
for the measured intensity for Zernike phase contrast microscopy (compare
with Eq. (1.14)). Without loss of generality we can assume that 𝜓̂(0) is
real-valued, which allows us to write

𝐼᎕(x) = 𝑓ኻ(x) + 𝑐ኼ,᎕𝑓ኼ(x) + 𝑐ኽ,᎕𝑓ኽ(x), (1.17)
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where

𝑓ኻ(x) = Re{𝜓(x)}ኼ + Im{𝜓(x)}ኼ,
𝑓ኼ(x) = 𝜓̂(0)Re{𝜓(x)} − 𝜓̂(0)ኼ

𝑓ኽ(x) = 𝜓̂(0)Im {𝜓(x)} ,
𝑐ኼ,᎕ = 2(cos 𝜃 − 1), 𝑐ኽ,᎕ = 2 sin 𝜃.

(1.18)

By choosing three 𝜃 one constructs a system of three equations with which
one can solve for the three unknowns 𝑓ኻ,ኼ,ኽ(x). One can choose the values
of 𝜃 such that the inversion of the system is most stable (i.e. the matrix of
coefficients defined by 𝑐ኼ,ኽ has the highest possible determinant) and there-
fore is most robust against noise. Numerical calculations suggest the optimal
values are 𝜃 = 0, 2𝜋/3, 4𝜋/3, which makes sense intuitively. Given 𝑓ኻ,ኼ,ኽ(x),
one can solve for 𝜓̂(0)ኼ using the equation

𝜓̂(0)ኾ + [2𝑓ኼ(x) − 𝑓ኻ(x)] 𝜓̂(0)ኼ + 𝑓ኼ(x)ኼ + 𝑓ኽ(x)ኼ = 0, (1.19)

after which one can solve for Re{𝜓(x)} and Im{𝜓(x)}.

Note that in principle this scheme is not limited to a conventional imaging
setup, but it can be applied to a CDI setup as well. If we interpret 𝜓̂(k) as
the sample’s transmission function, and let 𝐼᎕(x) denote the far-field intensity
measurements, the same scheme can be performed to find 𝜓̂(k).

• Holography and interferometry: In interferometry, one lets a field of in-
terest 𝜓(x) interfere with a reference field 𝜓ኺ(x), and record the intensity of
the sum

𝐼(x) = |𝜓(x) + 𝜓ኺ(x)|ኼ
= |𝜓(x)|ኼ + |𝜓ኺ(x)|ኼ + 2Re {𝜓(x)∗𝜓ኺ(x)} .

(1.20)

The interference term Re {𝜓(x)∗𝜓ኺ(x)} gives information about the phase of
𝜓(x) which would be inaccessible if we measure |𝜓(x)|ኼ directly. The ref-
erence field should be a simple and known field, typically a plane wave. If
we choose the reference field to be an on-axis plane wave to which we can
introduce phase shifts 𝜃, i.e. 𝜓ኺ(x) = 𝑒።᎕, then Eq. (1.20) becomes

𝐼᎕(x) = |𝜓(x)|ኼ + 1 + Re {𝜓(x)} cos 𝜃 + Im {𝜓(x)} sin 𝜃. (1.21)

By choosing three phase shifts 𝜃, one can obtain three equations that are lin-
ear in the three unknowns |𝜓(x)|ኼ, Re {𝜓(x)}, and Im {𝜓(x)} (though these
unknowns are obviously not independent), and solve for them. This is known
as phase-shifting interferometry, and is very similar to the quantitative
phase contrast scheme explained previously. Indeed, if we modulate the
phase in a single point 𝜓̂(0) and then apply a Fourier transform to go to the
image plane, we are basically shifting the phase of a reference plane wave
that interferes with another field.
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Another method is off-axis holography. If we choose the reference wave
to be an off-axis plane wave 𝜓ኺ(x) = 𝑒።ኼ᎝q⋅x, then Eq. (1.20) becomes

𝐼(x) = |𝜓(x)|ኼ + 1 + 𝜓(x)𝑒ዅ።ኼ᎝q⋅x + 𝜓(x)∗𝑒።ኼ᎝q⋅x. (1.22)

If one Fourier transforms this intensity pattern, one identifies three terms:

1. The Fourier transform of |𝜓(x)|ኼ +1, which is called the central band of
the hologram, and tends to be fairly localized since |𝜓(x)|ኼ + 1 has no
phase variation.

2. The Fourier transform of 𝜓(x)𝑒ዅ።ኼ᎝q⋅x, which gives the sideband 𝜓̂(k +
q). This is the Fourier transform of 𝜓(x), 𝜓̂(k), shifted by −q. If this
term is isolated, shifted back to the origin, and inverse Fourier trans-
formed, one finds 𝜓(x).

3. The Fourier transform of𝜓(x)∗𝑒።ኼ᎝q⋅x, which gives the sideband 𝜓̂ (−(k− q))∗.
This is the twin image of 𝜓̂(k) shifted by q. If this term is isolated, shifted
back to the origin, and inverse Fourier transformed, one finds 𝜓(x)∗.
However, note that one does not gain any extra information or achieve a
higher signal to noise ratio by using both sidebands as opposed to using
only one.

We previously found that phase-shifting interferometry is analogous to quan-
titative phase contrast imaging, except that in the latter the reference plane
wave is generated by modulating the field in one point in a Fourier plane.
Similarly, off-axis holography is analogous to Fourier Transform Hologra-
phy (FTH), except that in FTH the off-axis reference plane wave is introduced
by introducing a point source in a Fourier plane. In FTH, one has a sample
𝜓(x) with a finite size. One can introduce a pinhole sufficiently far removed
from the sample, which gives the transmission function 𝜓(x)+𝛿(x+q). One
can measure the far-field intensity

𝐼(k) = |𝜓̂(k) + 𝑒ኼ᎝።q⋅k|ኼ , (1.23)

which will give the same expression as Eq. (1.22), but this time in Fourier
space. Thus, one can reconstruct 𝜓(x) by measuring the far field intensity
pattern, inverse Fourier transforming it, and isolating one of the two sidebands
which correspond to 𝜓(x) and its twin image 𝜓(−x)∗.

• Transport of Intensity Equation (TIE): A monochromatic optical field
𝜓(x) in vacuum satisfies the Helmholtz equation

(∇ኼ + 𝑘ኼ)𝜓(x) = 0, (1.24)

where ∇ኼ denotes the Laplacian, and 𝑘 is the wave number ኼ᎝᎘ , where 𝜆 is
the wavelength. In the paraxial approximation with the 𝑧-axis as the optical
axis, one can derive the paraxial Helmholtz equation

∇ኼዊ𝜓(x) + 2𝑖𝑘
𝜕𝜓(x)
𝜕𝑧 + 2𝑘ኼ𝜓(x) = 0, (1.25)
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where

∇ኼዊ =
𝜕ኼ
𝜕𝑥ኼ +

𝜕ኼ
𝜕𝑦ኼ . (1.26)

Solving the paraxial Helmholtz equation gives the Fresnel diffraction integral.
If one writes the field in terms of intensity 𝐼(x) and phase 𝜙(x)

𝜓(x) = √𝐼(x)𝑒።Ꭻ(x), (1.27)

then one can derive the Transport of Intensity Equation [16]

𝑘 𝜕𝜕𝑧 𝐼(x) = −∇ ⋅ [𝐼(x)∇𝜙(x)] . (1.28)

By measuring the intensity in two planes 𝑧 and 𝑧 + Δ𝑧, one can approximate
Ꭷ
Ꭷ፳ 𝐼(x), and solve the differential equation for the phase 𝜙(x). Uniqueness
theorems have been proven for this problem, but they break down when
zeros are present in the intensity distributions [17]. The effects of noise, the
defocus distance, and using multiple defocus planes have been investigated
in [18]. Instead of measuring the intensity at different planes that are related
by free-space propagation, one can also measure the far field intensity while
varying the phase curvature of the illumination that is incident on the sample
[19, 20].

• Wigner distribution deconvolution method (WDDM): Consider an ob-
ject 𝑂(x) that is illuminated by a probe function 𝑃(x). One can shift the probe
to different positions X, and for each X one can record the far field intensity
pattern1

𝐼(k,X) = |ℱ {𝑂(x)𝑃(x−X)} (k)|ኼ , (1.29)

where ℱ denotes the forward Fourier transform. The four-dimensional data
set 𝐼(k,X) can be inverse Fourier transformed with respect to k, and Fourier
transformed with respect to X. Let us use K to denote the reciprocal space
coordinate of X. It can be shown that the result is the product of the Wigner
distribution functions (WDFs, denoted 𝑊(x,K)) of the object and the probe
[21, 22]

ℱዅኻk {ℱX {𝐼(k,X)}} (x,K) = 𝑊ፏ(x, −K)𝑊ፎ(x,K), (1.30)

where

𝑊 (x,K) = ∫𝑓(y + x)𝑓(y)∗𝑒ኼ᎝።y⋅K dy, (1.31)

and ℱዅኻ denotes the inverse Fourier transform. Assuming the illumination
function 𝑃(x) is known, we can divide out𝑊ፏ(x, −K) to find𝑊ፎ(x,K), which

1Note that in Refs. [21, 22] the authors define the forward Fourier transform using the positive expo-
nential: ̂፟(፤) ዆ ∫፟(፱)፞ᎼᎴᒕᑚᑩᑜ d፱.
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basically means applying a deconvolution. Then, we can find the object 𝑂(x)
by (inverse) Fourier transforming 𝑊ፎ(x,K) to x (or K)

ℱx{𝑊ፎ(x,K)}(k,K) = 𝑂̂(k)𝑂̂(k−K)∗,
ℱዅኻK {𝑊ፎ(x,K)}(x,X) = 𝑂(X+ x)𝑂(X)∗, (1.32)

where 𝑂̂(k) denotes the Fourier transform of 𝑂(x). Note that from Eq.
(1.30) it follows that 𝑊ፎ(x,K) can only be reconstructed in the region where
𝑊ፏ(x, −K) is nonzero. If the probe has a sharp cut-off, 𝑊ፏ(x, −K) has a
finite support in the x direction, so the retrieved 𝑊ፎ(x, −K) is cut-off in the
x direction as well, so one would reconstruct 𝑂(x) by Fourier transforming
𝑊ፎ(x,K) in the K direction (second option in Eq. (1.32)). However, if the
spectrum of the probe has a sharp cut-off, 𝑊ፏ(x, −K) has a finite support in
the K direction, so the retrieved 𝑊ፎ(x, −K) is cut-off in the K direction as
well, so one would reconstruct 𝑂̂(k) by Fourier transforming 𝑊ፎ(x,K) in the
x direction (first option in Eq. (1.32)).

• Focus variation, the parabola method: Consider an exit wave 𝜓(x) with
Fourier transform 𝜓̂(k) which is sharply peaked at k = 0, i.e. |𝜓̂(0)| ≫ |𝜓̂(k)|
for k ≠ 0. We can take a set of images 𝐼(x, 𝐴) for different values of the
paraxial defocus parameter 𝐴

𝐼(x, 𝐴) = |ℱ {𝜓̂(k)𝑒ዅኼ᎝።ፀ|k|Ꮄ} (x)|
ኼ
. (1.33)

Inverse Fourier transforming this with respect to x gives the autocorrelation
of 𝜓̂(k)𝑒ዅኼ᎝።ፀ|k|Ꮄ

ℱዅኻ {𝐼(x, 𝐴)} (k) = ∫ 𝜓̂(kᖣ)∗𝜓̂(k+ kᖣ)𝑒ኼ᎝።ፀ|kᖤ|Ꮄ𝑒ዅኼ᎝።ፀ|kᖤዄk|Ꮄ dkᖣ. (1.34)

Because of the assumption that |𝜓̂(0)| ≫ |𝜓̂(k)| for k ≠ 0, we can approxi-
mate the autocorrelation integral by considering only the terms involving 𝜓̂(0)

ℱዅኻ {𝐼(x, 𝐴)} (k) ≈ 𝜓̂(0)∗𝜓̂(k)𝑒ዅኼ᎝።ፀ|k|Ꮄ + 𝜓̂(−k)∗𝜓̂(0)𝑒ኼ᎝።ፀ|k|Ꮄ . (1.35)

In principle two different 𝐴 are sufficient to generate a system of equations
that can be solved, but for a better signal-to-noise ratio, more values for 𝐴 are
needed. We can retrieve approximations of 𝜓̂(k) and its twin image 𝜓̂(k)∗ by
applying a Fourier transform with respect to 𝐴

𝜓̂(0)∗𝜓̂(k) ≈ 1
𝑁 ∑

ፀ
ℱዅኻ {𝐼(x, 𝐴)} (k)𝑒ኼ᎝።ፀ|k|Ꮄ ,

𝜓̂(−k)∗𝜓̂(0) ≈ 1
𝑁 ∑

ፀ
ℱዅኻ {𝐼(x, 𝐴)} (k)𝑒ዅኼ᎝።ፀ|k|Ꮄ ,

(1.36)

where 𝑁 denotes the number of images taken, i.e. the number of different 𝐴
used. This is the simplest reconstruction formula, which applied in the limit
𝑁 → ∞, but more sophisticated restoring filters have also been developed
[23–26].
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• Extraction from autocorrelation functions: If we have a field 𝜓(x) and
measure its far field intensity pattern 𝐼(k) = |𝜓̂(k)|ኼ, we can inverse Fourier
transform 𝐼(k) to find the autocorrelation of 𝜓(x)

ℱዅኻ{𝐼(k)}(x) = 𝜓(x) ⊗ 𝜓(x)

= ∫𝜓(y)∗𝜓(x+ y) dy,
(1.37)

where ⊗ denotes the autocorrelation operator. Thus, to reconstruct 𝜓(x)
from 𝐼(k) non-iteratively, one needs to manipulate 𝜓(x) such that its auto-
correlation function allows for an easy extraction of the sample’s transmission
function. FTH does this by adding a point source 𝛿(x+q), but it is possible to
extend this principle as is done in for example HERALDO (Holography with
Extended Reference by Autocorrelation Linear Differential Operator) [27], or
as in [28–30], or by using Double Blind Fourier Holography (DBFH) [31, 32].
We will go into more detail in Chapter 2.

• Other non-iterative phase retrieval methods include the use of shiftingGaus-
sian filters [33, 34], scanning a slit aperture [35, 36], or using an aper-
ture array [37–39].

1.4. Iterative phase retrieval methods
The first iterative computational phase retrieval algorithm was introduced by Ger-
chberg and Saxton in 1972 [40]. In this method, one measures the field amplitudes
|𝜓(x)|, |𝜓̂(k)| at two planes in the image plane and Fourier plane respectively. The
Gerchberg-Saxton algorithm (GS) works by defining an estimated field 𝑓(x),
and propagating it back and forth between the two planes, each time setting the
amplitude equal to the measured amplitude while keeping the phase of the esti-
mated far field ̂𝑓(k). Mathematically, the 𝑛th iteration is applied as follows:

̂𝑓፧(k) = ℱ{𝑓፧(x)}(k),

𝑓upd፧ (x) = ℱዅኻ {
̂𝑓፧(k)

| ̂𝑓፧(k)|
|𝜓̂(k)|} (x),

𝑓፧ዄኻ(x) = |𝜓(x)|
𝑓upd፧ (x)
|𝑓upd፧ (x)|

.

(1.38)

In 1978, Fienup proposed a reconstruction method that uses as constraints the
far field amplitude |𝜓̂(k)| and the object support (as opposed to the object ampli-
tude |𝜓(x)| like in the GS algorithm) [41]. The support constraint states that we
know a priori that there is a region 𝛾 outside which 𝜓(x) = 0. Several methods
to find an estimate for the object support from its autocorrelation function are dis-
cussed in [42]. Other possible object-space constraints include the non-negativity
constraint, realness constraint, histogram constraint, and atomicity constraint [43].
Fienup proposed the Error Reduction algorithm (ER), which alternately applies
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the measurement constraint and the support constraint

𝑓፧ዄኻ = {
𝑓upd፧ (x) if x ∈ 𝛾,
0 if x ∉ 𝛾, (1.39)

where 𝑓upd፧ (x) is defined in Eq. (1.38). However, this algorithm tends to suf-
fer from stagnation, so in order to speed up convergence, Fienup proposed the
Basic Input-Output Algorithm, the Output-Output Algorithm, and most im-
portantly the Hybrid Input-Output algorithm (HIO) [41, 44]

𝑓፧ዄኻ = {
𝑓upd፧ (x) if x ∈ 𝛾,
𝑓፧(x) − 𝛽𝑓upd፧ (x) if x ∉ 𝛾.

(1.40)

The principle that is used to update the object estimate outside its support is similar
to that of negative feedback: if the output 𝑓upd፧ violates the support constraint, the
input is compensated by −𝛽𝑓upd፧ , where 𝛽 is the feedback parameter, and it is
typically chosen to be around 0.9 [45]. One can explain to some degree why HIO
outperforms ER by observing that ER suffers from stagnation, and that the negative
feedback used by HIO avoids such stagnation. However, one might still wonder why
the HIO algorithm should have the specific form that it does. In ‘Phase retrieval
algorithms: a personal tour’ (2012) [1], Fienup remarks the following about finding
the HIO algorithm:

উI [...] tried mixing and matching different operations from different ap-
proaches to handling the values where the output image either satisfies
or violates the constraints. This was not the beautiful mathematics of
an Einstein that predicted what would happen long before an experi-
ment was performed; this was the trial and error approach that Edison
used to invent a practical light bulb: keep trying different things (guided
by physics, mathematics, and intuition) until you find something that
works; and then refine that. There is beautiful mathematics surround-
ing the phase retrieval problem, and it is centered around the zeros of
the Fourier transform analytically extended to the complex plane; but
that beautiful mathematics had yielded no practical phase retrieval al-
gorithms.উ

In 1978, it was explained by Youla how the GS and ER algorithms can be interpreted
in terms of alternating projections (AP) onto constraints sets [46] (we will go
into more detail in Chapter 3). In 1984 it was pointed out how certain properties
of the constraint sets, such as their non-convexity, can lead to stagnation [47]. In
2002, Bauschke identified the HIO-algorithm as the Douglas-Rachford algorithm,
and explained how it can be interpreted in terms of projection and reflection op-
erators [48]. Since then many other projection- and reflection-based algorithms
have been developed, such as the Difference Map (DM) algorithm [43] or the
Relaxed Averaged Alternating Reflections (RAAR) algorithm [49]. They have
been compared in 2007 by Marchesini [50]. Alternatively, the ER algorithm can
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be interpreted as the minimization of a cost functional using a steepest de-
scent scheme, as demonstrated in 1982 by Fienup [44]. Several other variants of
the phase retrieval algorithms have been proposed. For example, the Shrinkwrap
algorithm updates the support constraint estimate during the reconstruction [45],
and theOversampling Smoothness (OSS)method [51] and theModified HIO
(M-HIO) algorithm [52] aim to improve the noise-robustness of the reconstruc-
tion algorithm.

An entirely different approach to the phase retrieval problem was presented by
Candès et al. in 2012. They introduce a method called PhaseLift, in which one
applies a convex relaxation by lifting the problem in a higher dimension, and which
is solved through rank minimization [53, 54]. We go into a bit more detail in Sec-
tions 3.1.3 and 3.2.1, but otherwise this method does not play a major role in this
thesis.

1.4.1. Ptychography
The history of ptychography goes back to as early as 1969 when Hoppe first pro-
posed the method [55, 56] for crystallography using transmission electron mi-
croscopy. However, the foundations for ptychography in the form that is popular
today were laid by Faulkner and Rodenburg in 2004 [57]. For a more detailed his-
torical overview of the developments prior to 2004, we refer the reader to a review
article by Rodenburg [58].

We have seen that one could reconstruct an object 𝑂(x) non-iteratively from far-
field intensity patterns obtained by illuminating it with a shifting probe 𝑃(x − X)
using the Wigner Distribution Deconvolution Method (as explained in Section 1.3).
We have also seen that one could reconstruct a wave function 𝜓(x) iteratively from
only a single far-field intensity pattern and a support constraint using algorithms
such as HIO. One could wonder whether these two methods can be combined: in
that case 𝑂(x) could be reconstructed using a smaller data set than what would
be required for WDDM, and the reconstruction algorithm would be more robust to
noise than the single-intensity algorithms [58].

In 2004, Rodenburg and Faulkner proposed such an algorithm [59], which was
later termed the Ptychographic Iterative Engine (PIE) [60]. In this algorithm,
it is assumed that the illumination probe 𝑃(x) is known, and is shifted to differ-
ent positions X፣. The exit waves are given by 𝜓፣(x) = 𝑃(x − X፣)𝑂(x), and the
measured far-field intensities are given by 𝐼፣(k) = |𝜓̂፣(k)|ኼ. The probes at adja-
cent positions should overlap: the interconnections between the reconstructed exit
waves is what makes this reconstruction algorithm robust. Briefly put, the algorithm
works as follows: given an estimated object, one calculates for a certain position
X፣ the estimated exit wave 𝑓፣(x), calculates the updated exit wave 𝑓upd፣ (x) by ap-
plying the intensity constraint (just like in the GS, ER, and HIO algorithms, see Eq.
(1.38)), and updates the object by factoring the probe 𝑃(x) out of 𝑓upd፣ (x). Doing
this for all probe positions completes an iteration of the algorithm.
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Just like the ER algorithm could be interpreted as an alternating projections scheme
or a cost functional minimization scheme, so too is the case for PIE. In 2008, Guizar-
Sicairos and Fienup demonstrated that PIE is closely related to a steepest-descent
cost functional minimization scheme [61], and in 2009 Thibault et al. formulated a
reconstruction algorithm in terms of projections [62]. One advantage is that these
frameworks allow one to improve the reconstruction algorithm using other well-
known methods such as the Conjugate Gradient (CG) scheme, or the HIO and DM
algorithms [61–63]. Another major advantage is that one now can formulate re-
construction schemes that reconstruct not only 𝑂(x), but also 𝑃(x) (one particular
algorithm being the extended PIE, or ePIE [64]) and X፣ [61, 62, 64]. The ability
to correct for aberrations in the illumination and uncertainties in the probe positions
have made ptychography a particularly robust reconstruction method. Reconstruc-
tion schemes have also been developed to deal with partially coherent illumination
[65, 66] or thick samples (which is known as 3PIE) [67].

For single-intensity phase retrieval, we defined three ambiguities: global phase
shift, translation, and twin image (see Section 1.2.1). In the case of ptychography
where both 𝑂(x) and 𝑃(x) are reconstructed, one also encounters global phase
shift and translation ambiguities, but no twin image ambiguity. Another ambiguity
that is present in the reconstruction is the raster grid pathology [62]. If 𝑂(x)
and 𝑃(x) are functions such that the exit waves 𝜓፣(x) = 𝑃(x − X፣)𝑂(x) yield
the desired far-field intensity patterns, then so are 𝑓(x)𝑂(x) and ፏ(x)

፟(x) , as long as
𝑓(x) = 𝑓(x−X፣) for all probe positions X፣. So if the probe positions are chosen to
be on a regular, periodic grid, then 𝑓(x) can be any function with the same period,
which means periodic artifacts may arise in the reconstruction. One can reduce
the effects of this ambiguity by using a non-regular grid of probe positions [68], or
one can eliminate this ambiguity by having an additional measurement constraint
|𝑃̂(k)|ኼ, which is known as the Modulus Enforced Probe (MEP) method [69].

In Section 1.2.2 we discussed several sampling requirements for the far-field in-
tensity patterns for single-intensity phase retrieval. For ptychography, the analysis
becomes more complicated. It has been demonstrated that if there is a sufficient
amount of overlap between adjacent probes, object reconstruction is still possible
even if the far-field intensity patterns are undersampled according to the criteria of
Section 1.2.2 [70, 71]. Moreover, it has been demonstrated that the far-field in-
tensity patterns can be extrapolated if they are significantly cut off by the detector,
thus achieving a higher resolution than what would be imposed by the detector NA
[72]. Also, just like in single-intensity phase retrieval, it has been observed that
one tends to obtain better reconstructions if the illumination is ‘wilder’ (i.e. con-
tains more spatial frequencies), leading to more diffuse far-field intensity patterns
[9, 73, 74].
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1.5. Experimental results
So far, we have discussed the developments of the theory behind various phase
retrieval methods. In the following, we briefly highlight several achievements in
the experimental implementation of these methods to give an impression of what
these methods are capable of in practice (without the ambition of providing an
exhaustive list).

• Wigner-distribution deconvolution in a scanning transmission X-ray
microscope (STXM): In 1996, Chapman used X-rays with a wavelength of
𝜆 = 3.1nm to reconstruct images of a 1D grating with 146nm pitch, a 0.5𝜇m
diameter latex sphere, and a sample consisting of 5 such latex spheres [75].
For the grating, the data set was obtained by shifting the illumination 128
times in one direction with an interval of 22nm. For the sphere, the illumi-
nation was shifted across a 32 × 32 grid with 45nm intervals. For the set of
five spheres, 64 × 64 illumination positions were used. In all these cases,
images were successfully reconstructed using Wigner-distribution deconvolu-
tion. This was the first deterministic and non-iterferometric recovery of phase
information in X-ray imaging [76].

• Single shot CDI for Soft X-Ray imaging using synchrotron radiation:
The first experimental demonstration of single-shot CDI for Soft X-ray imaging
of a non-periodic microscopic object was performed by Miao et al. in 1999
[77]. Using monochromatic X-rays with wavelength 𝜆 = 1.7nm generated by
the National Synchrotron Light Source, they demonstrated imaging at 75nm
resolution of a sample that consisted of a collection of gold dots, each 100nm
in diameter and 80nm thick, which formed a set of six letters.

• High-resolution ptychography with a table-top EUV source: In 2015,
Zhang et al. used a table top 30nm high harmonic source to image a reflective
sample with 40nm by 80nm lateral resolution. The phase of the reconstructed
image was used to determine the height profile of the sample with a resolution
of 6Å[78]. In 2017, Gardner et al. used tabletop 13.5 nm high-harmonic
beams to image an extended, nearly periodic sample at a subwavelength
resolution of 12.6 nm. They achieved this using the Modulus Enforced Probe
(MEP) method [69]. Also in 2017, Porter et al. demonstrated reflection-mode
lensless imaging using a 13 nm tabletop source [79].

• Ptychographic tomography: 3D reconstructing an integrated circuit
using hard X-rays: In 2017, Holler at al. used 6.2 keV (𝜆 = 2Å) X-ray
radiation generated by the SAXS beamline of the Swiss Light Source to create
three-dimensional images of an integrated circuit with a lateral resolution in all
directions down to 14.6 nm [80]. The reconstruction was performed using a
mixed real-space/reciprocal-space imaging technique, called ptychographic X-
ray computed tomography (PXCT), which had been developed by Dierolf et al.
in 2010 to create a 3D image of a bone sample [81]. For the tomography, 1200
projections were acquired. The experimental challenges for ptychography and
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tomography and possible ways to deal with them were outlined by Odstrcil in
2018 [82].

• Bragg ptychography using hard X-rays: In 2016, Hruszkewycz et al.
introduced 3D Bragg projection ptychography (3DBPP), a method to obtain
three-dimensional images of nanoscale lattice behaviour and strain fields in
crystalline materials [83]. Using 9 keV energy X-rays with wavelength 𝜆 =
0.137nm generated by the Hard X-ray Nanoprobe beamline, they imaged pe-
riodic embedded SiGe crystals with a resolution of 12, 29, and 35 nm respec-
tively in the 𝑥, 𝑦, 𝑧 dimensions from 707 coherent Bragg diffraction patterns.

• Fourier ptychography using an optical microscope: In 2013, Zheng et
al. introduced Fourier ptychography, a method to reconstruct high-resolution,
wide field-of-view (FOV), complex-valued images using a regular low-NA opti-
cal microscope, without requiring any mechanically moving components [84].
Using an LED array, a microscopic sample is illuminated at different angles,
each illumination yielding a low-resolution intensity image, which are stitched
together using the ptychographic algorithm. A conventional optical micro-
scope (using a ×2 objective, 0.08 NA) was transformed into a high-resolution
(0.78𝜇m half-pitch resolution, 0.5 NA), wide-FOV (∼120 mmኼ) microscope
with a final space-bandwidth product (SBP) of 0.23 gigapixels. For compari-
son, a standard ×20 microscope objective has a resolution of 0.8 𝜇m and a
1.1-mm-diameter FOV, corresponding to an SBP of ∼7 megapixels.

• Single-shot ptychography: In 2015, Sidorenko and Cohen performed single-
shot ptychography, where all diffraction patterns are recorded at once us-
ing a single detector. They illuminated a pinhole array with a plane wave
(𝜆 = 405nm), and focused the transmitted field with a lens. This creates
an array of overlapping probes in the defocus plane of the lens, where they
put the sample. With a second lens, they generated an array of diffraction
patterns, which are all recorded on a single detector. A ptychographic re-
construction was performed successfully from this data. This method exploits
the robustness of ptychography, while avoiding long acquisition times. Sev-
eral other single-shot ptychography schemes are also proposed [85].

• High resolution scanning transmission electron (STEM) ptychogra-
phy: In 2018, Jiang et al. used ptychography to achieve an Abbe diffraction-
limited resolution of 0.39Å with an 80 keV (4.2pm wavelength) electron beam
[86]. To achieve the improved resolution and dose efficiency, an electron
microscope pixel-array detector (EMPAD) with a high quantum efficiency and
dynamic range was designed, which allowed for acquisition of the full 4D pty-
chographic data set in typically a minute. The method was demonstrated by
imaging single-atom defects in MoSኼ.

1.6. Conclusion
In this chapter, we gave a broad outline of the theory of phase retrieval, and men-
tioned a few important experimental milestones in this field. Unicity, sampling



References

1

19

requirements, and coherence requirements for phase retrieval were discussed, and
theory and interconnections of several phase retrieval methods were explained.
These discussions provide the context in which the contents of the following chap-
ters can be placed.
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2
Non-iterative phase retrieval

Several non-iterative methods for reconstructing a transmitted near field from
far-field intensity patterns are discussed (though these methods can also be
applied in an imaging setup). We review methods such as Fourier Transform
Holography, where one reconstructs the transmitted near field from a sin-
gle two-dimensional intensity pattern. We then discuss non-iterative meth-
ods based on three-dimensional data sets obtained through single-parameter
modulation.

Parts of this chapter have been published in Ultramicroscopy 174, 70-78 (2018) [1], and Optics Express
26:7, 9332-9343 (2018) [2].
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2.1. Problem statement
Let us denote the transmitted near field of an object as 𝜓(x), where x is a two-
dimensional position vector. The far field is given by its Fourier transform, which
we denote as 𝜓̂(k). What we measure experimentally in the ideal noise-free case
is the far field intensity

𝐼(k) = |𝜓̂(k)|ኼ. (2.1)

The problem is to find 𝜓(x) from 𝐼(k).

2.2. Far field intensity and autocorrelation
One important observation that we will heavily rely on in this chapter, is that the
inverse Fourier transform of 𝐼(k) gives the autocorrelation of 𝜓(x)

ℱዅኻ {𝐼(k)} (x) = ∫𝜓(y)∗𝜓(x+ y) dy. (2.2)

The fact that we want to reconstruct 𝜓(x) from 𝐼(k) non-iteratively is equivalent
to requiring that we should be able to extract 𝜓(x) directly from its autocorrelation
function [3]. As an example, we will discuss Fourier Transform Holography, where
an object is extracted directly from a two-dimensional autocorrelation function.

If we generate a three-dimensional data set 𝐼(k, 𝐴) by varying an optical pa-
rameter 𝐴, we want to be able to extract 𝜓(x) from a three-dimensional autocor-
relation function of a fictitious mathematical object that is constructed using 𝜓(x).
The trick is to shape 𝜓(x) and/or define the optical parameter 𝐴 in such a way that
𝜓(x) is straightforwardly encoded in the autocorrelation function. This is what we
aim to do in this chapter. Typically, one reconstructs the object by isolating a single
contribution to the autocorrelation integral: for example 𝜓(P)∗𝜓(x + P) (so only
the contribution y = P) or 𝜓(P − x)∗𝜓(P) (so only the contribution x + y = P),
where P is some fixed reference point.

An example of a non-iterative reconstruction method using a four-dimensional
autocorrelation function (of a fictitious mathematical object that is constructed us-
ing the object 𝜓(x) and probe 𝑃(x), see Appendix A) is the Wigner Distribution
Deconvolution Method (WDDM), which is closely related to ptychography and pre-
dates the iterative ptychographic reconstruction algorithms [4, 5].

2.3. Robustness to spatial partial coherence
The obvious advantages of explicit non-iterative reconstruction methods (such as
Fourier Transform Holography) over iterative reconstruction methods (such as Pty-
chography) or implicit non-iterative reconstruction methods (such as the Transport
of Intensity Equation) are the significantly lower computational expenses and the
guarantee of a unique solution. A less obvious advantage is its robustness to spatial
partial coherence [6–8]. A spatially partially coherent field in a plane is described
by a four-dimensional mutual intensity function 𝐽(x,y) which gives the correlation
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between the fields at any two points x,y. This function can be decomposed in
coherent modes 𝜓፧(x) [9]

𝐽(x,y) =∑
፧
𝜓፧(x)𝜓፧(y)∗. (2.3)

Here, the modes 𝜓፧(x) are unnormalized. One could also represent the decom-
position using normalized modes with some weight per mode. The less coherent
the field is, the more modes are required. This is a useful representation, because
one can now straightforwardly compute the far field intensity by propagating each
mode coherently, and summing their intensities incoherently

𝐼(k) =∑
፧
|𝜓̂፧(k)|ኼ. (2.4)

Therefore, inverse Fourier transforming a spatially partially coherent far field in-
tensity will give the sum of autocorrelations of all modes. Assuming that in the
coherent case extracting 𝜓(P)∗𝜓(x +P) or 𝜓(P)𝜓(P − x)∗ from the autocorrela-
tion is a linear operation, we extract in the spatially partially coherent case from the
sum of autocorrelations

∑
፧
𝜓፧(x+P)𝜓፧(P)∗ = 𝐽(x+P,P),

∑
፧
𝜓፧(P)𝜓፧(P− x)∗ = 𝐽(P,P− x).

(2.5)

Thus, using non-iterative reconstruction methods one will find a two-dimensional
cross-section of the four-dimensional mutual intensity function. So if a sample with
transmission function 𝜓(x) is illuminated with a field with constant intensity and a
Gaussian correlation structure

𝐽(x,y) = 𝜓(x)𝜓(y)∗𝑒ዅ
|xᎽy|Ꮄ
ᎴᒗᎴ , (2.6)

one would reconstruct

𝐽(x+P,P) = 𝜓(x+P)𝜓(P)∗𝑒ዅ
|x|Ꮄ
ᎴᒗᎴ , (2.7)

which is 𝜓(x) shifted to −P, multiplied by a Gaussian function centered around
0 (one can intuitively imagine the mutual intensity function to be a spotlight that
illuminates the object around the reference point P, which has been shifted to the
origin). Thus, without making any assumptions on the number of required modes
𝜓፧(x), one still straightforwardly obtains an accurate impression of the sample,
though with a limited field of view that depends on the degree of coherence. This
is in stark contrast with iterative methods, where one needs to guess how many
more modes need to be introduced as additional degrees of freedom, which in-
creases the computational requirements significantly, and complicates the conver-
gence behaviour of the reconstruction algorithm.
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Figure 2.1: Pictorial explanation of Fourier Transform Holography. By introducing a pinhole sufficiently
far away from a sample with finite size, one can straightforwardly extract an image of the sample from its
autocorrelation function, which is found by inverse Fourier transforming the measured far field intensity
pattern.

2.4. Fourier transform holography
As an example of a non-iterative retrieval scheme, we consider Fourier Transform
Holography (FTH). In this method, one assumes that the sample 𝜓(x) has a finite
support, and that we can introduce a pinhole at a point P sufficiently far away from
the sample. The total transmitted field reads 𝜓(x)+𝑎𝛿(x−P). The autocorrelation
of this field (which we assume to be fully coherent) is given by

ℱዅኻ {𝐼(k)} (x) = ∫ [𝜓(y)∗ + 𝑎∗𝛿(y −P)∗] [𝜓(x+ y) + 𝑎𝛿(x+ y −P)] dy

= |𝑎|ኼ𝛿(x) + 𝑎∗𝜓(x+P) + 𝑎𝜓(P− x)∗ +∫𝜓(y)∗𝜓(x+ y) dy.
(2.8)

The last term represents the autocorrelation of 𝜓(x), which one would obtain if
the pinhole at P were absent. The middle two terms represent the reconstructed
object shifted by −P, and its twin image 𝜓(−x)∗ shifted by P. If the shift P is
sufficiently large, then the retrieved object and its twin image do not overlap with
the autocorrelation of 𝜓(x), so it can be extracted straightforwardly. See Fig. 2.1.

Note that this raises a problem in the case of spatial partial coherence. Recall
that the mutual intensity function acts as a ‘spotlight’ that we shine at the refer-
ence point P (in this case the pinhole)1, but the object of interest 𝜓(x) has to be
1It should be noted that the coherence function is independent of the illumination breadth. A more
precise way of formulating this would be to say that the coherence width determines the field of view
around the reference point.
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sufficiently far removed from P in order for FTH to work. This means that our
retrieved object has to be far away from the ‘spotlight’, which becomes a prob-
lem if the coherence width (i.e. the size of the spot light) is small. Quantitatively
speaking, the coherence width should be at least four times the radius of the object.

One can move the reference point closer to the sample, in which case the terms
𝜓(x+P) and 𝜓(P− x)∗ will overlap with the autocorrelation term, and additional
intensity patterns should be recorded to generate a set of equations from which the
reconstruction terms can be solved [6]. In particular, if P lies inside the sample, it
does not any longer represent the position of a pinhole, but rather a point where we
can modulate the phase of 𝜓(x). By shifting the phase three times we can sepa-
rate the terms 𝜓(x+P) and 𝜓(P−x)∗ from the autocorrelation term. This method
is closely related to phase shifting holography, phase shifting interferometry, and
quantitative Zernike phase-contrast microscopy, which are explained in more detail
in Section 1.3.

2.5. Non-iterative phase retrieval by varying a single
parameter2

Having discussed how one can retrieve 𝜓(x) under certain conditions using a single
two-dimensional intensity measurement, let us now introduce an optical parame-
ter 𝐴 with which we can define a three-dimensional data set 𝐼(k, 𝐴) [1]. Let us
modulate the transmitted exit wave 𝜓(x) by a phase function 𝑒ዅኼ᎝።ፀ፟(x), where 𝐴
is a parameter which we can vary freely, and 𝑓(x) is a to be defined modulation
function. We can calculate the Fourier transform as

𝜓̂ፀ(𝑘፱ , 𝑘፲) = ∫𝜓(𝑥, 𝑦)𝑒ዅኼ᎝።ፀ፟(፱,፲)𝑒ዅኼ᎝።(፤ᑩ፱ዄ፤ᑪ፲) d𝑥 d𝑦

= ∫𝜓(𝑥, 𝑦)𝛿(𝑧 − 𝑓(𝑥, 𝑦))𝑒ዅኼ᎝።(፤ᑩ፱ዄ፤ᑪ፲ዄፀ፳) d𝑥 d𝑦 d𝑧

= ℱ፱,፲,፳ {𝜓(𝑥, 𝑦)𝛿(𝑧 − 𝑓(𝑥, 𝑦))} (𝑘፱ , 𝑘፲ , 𝐴).

(2.9)

What we have demonstrated in the final expression is that we can find the three-
dimensional data set 𝐼(k, 𝐴) by taking the squared modulus of the 3D-Fourier trans-
form of a fictitious three-dimensional function 𝜓(𝑥, 𝑦)𝛿(𝑧−𝑓(𝑥, 𝑦)). The advantage
of this is that we can now formulate an intuitive line of reasoning of what it means
to perform a non-iterative reconstruction with a data set 𝐼(k, 𝐴). Just like in FTH
we manipulated our object 𝜓(x) such that it can be easily extracted from its au-
tocorrelation function, in the case of single-parameter variation we must choose
our modulation function 𝑓(𝑥, 𝑦) such that 𝜓(𝑥, 𝑦) can be easily extracted from the
three-dimensional autocorrelation function of 𝜓ኽD(𝑥, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦)𝛿(𝑧 − 𝑓(𝑥, 𝑦)).
Moreover, using Fourier sampling theorems we can get an intuitive picture of how
the sampling of 𝐴 will affect the quality of the retrieved object.
2The following is original work by the candidate, which has been published in Ultramicroscopy 174,
70-78 (2018) [1]
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It is important to emphasize though, that while it may be helpful to think of the
retrieval procedure as evaluating the autocorrelation function on some surface 𝑠(x)
(the choice of which will be explained in the next section) from a 3D autocorrelation
function, it would be unnecessarily cumbersome and computationally expensive in
practice to define a 3D array containing all the data 𝐼(k, 𝐴), 3D inverse Fourier
transforming it, and extracting the desired data on the selected surface out of it.
Rather, it is much more practical to compute the autocorrelation on a surface 𝑠(x)
by summing 2D inverse Fourier transforms of 𝐼(k, 𝐴) with respect to k

𝑅(x) ∝∑
ፀ
ℱዅኻk {𝐼(k, 𝐴)} (x)𝑒ኼ᎝።ፀ፬(x), (2.10)

or if one wants to use a sampling window 𝐻̂(𝐴) to mitigate the effects of a finite
sampling range of 𝐴

𝑅ፇ(x) ∝∑
ፀ
ℱዅኻk {𝐼(k, 𝐴)} (x)𝑒ኼ᎝።ፀ፬(x)𝐻̂(𝐴). (2.11)

2.5.1. Intuitive line of reasoning
To get a feeling for which choices of 𝑓(x) may be suitable and which ones are not,
consider 𝑓ኼ(x) = |x|ኼ and 𝑓ኺ.኿(x) = √|x|. The subscripts 2 and 0.5 refer to the
power that |x| is raised to. Note that 𝑓ኼ(x) corresponds to paraxial focus varia-
tion. 𝑓ኺ.኿(x) = √|x| describes a less natural sort of phase modulation, which could
for example be implemented using a Spatial Light Modulator (SLM). In the case
of 𝑓ኼ(x), 𝜓(x) is stretched out onto a parabola, which can be interpreted as Mc-
Cutchen’s generalized pupil (which is conceptually related to the Ewald sphere) in
the paraxial approximation [10–12]. When sketching the autocorrelation function,
we find that the shifted copies of 𝜓ኽD(𝑥, 𝑦, 𝑧) intersect each other in lots of places
(as illustrated in Fig. 2.2c), which makes extracting 𝜓(x) difficult, except if |𝜓(0)| is
very large (as explained in Section 1.3: focus variation with the parabola method),
or if 𝜓(x) has a convenient support shape, as we will see in Section 2.6. On the
other hand, in the case of 𝑓ኺ.኿(x), 𝜓(x) is stretched out onto a surface with a sharp
cusp. When sketching the autocorrelation function, we find that we can identify
surfaces 𝑧 = ±𝑓ኺ.኿(x) where the copies of 𝜓ኽD(𝑥, 𝑦, 𝑧) do not interfere, allowing for
an easy extraction of 𝜓(x). See Fig. 2.2.

Moreover, we know from the Fourier convolution theorem that if the range along
which we sample 𝐴 is smaller, the more blurred the autocorrelation functions be-
comes in the 𝑧 direction (it gets convolved with a sinc-function). If we choose a
function with a sharper cusp, e.g. 𝑓ኺ.ኻ = |x|ኺ.ኻ, we see that the reconstruction be-
comes more robust to this blurring. In order to mitigate the blurring effect due to
a finite sampling range of 𝐴, one might introduce a sampling window 𝐻̂(𝐴). In the
next section, we will derive more rigorously the results we found here intuitively,
and we will discuss how this reconstruction method is related to the phase shifting
holography method that was mentioned previously.
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(a) ᎥᎵD(፱, ፲, ፳) and its autocorrelation function for Ꮄ፟(x) ዆ |x|Ꮄ.
Note that the illustration of ᎥᎵD(x) should be interpreted as a
surface, not a solid.

(b) ᎥᎵD(፱, ፲, ፳) and its autocorrelation function for Ꮂ፟.Ꮇ(k) ዆
√|x|. Note that the illustration of ᎥᎵD(x) should be interpreted
as a surface, not a solid.

(c) Intersecting copies in the
autocorrelation function for
Ꮄ፟(k) ዆ |x|Ꮄ.

(d) Intersecting copies in the
autocorrelation function for
Ꮂ፟.Ꮇ(k) ዆ √|x|.

Figure 2.2: Sketches of the autocorrelation functions of ᎥᎵD(፱, ፲, ፳) for Ꮂ፟.Ꮇ(x) and Ꮄ፟(x). In the case of
Ꮂ፟.Ꮇ(x), we can obtain direct reconstructions of ᎥᎵD(፱, ፲, ፳) on the red and black dotted surfaces (note
that the other copies intersect the green copy only at (፱, ፲, ፳) ዆ (ኺ, ኺ, ኺ), as shown in Fig. 2.2d). In the
case of Ꮄ፟(x), the red and black dotted surfaces contain lots of other contributions that impede a direct
extraction of ᎥᎵD(፱, ፲, ፳).
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2.5.2. Mathematical derivation
To find the retrieved object 𝑅(x) of the actual object 𝜓(x), we evaluate the 3D
autocorrelation of 𝜓ኽD(𝑥, 𝑦, 𝑧) on the surface 𝑧 = 𝑓(x), which according to Fig. 2.2
is the correct surface if 𝑓(0) = 0 (if 𝑓(0) ≠ 0, then we can consider the function
𝑓(x) − 𝑓(0) which yields the same data set 𝐼(k, 𝐴)):

𝑅(x) = ∬𝐼(k, 𝐴)𝑒ኼ᎝።x⋅k𝑒ኼ᎝።ፀ፟(x) dk d𝐴. (2.12)

We know∬𝐼(k, 𝐴)𝑒ኼ᎝።x⋅k dk gives the autocorrelation of 𝜓(x)𝑒ዅኼ᎝።ፀ፟(x), so we can
write

𝑅(x) = ∬𝜓(y)∗𝜓(x+ y)𝑒ኼ᎝።ፀ[፟(x)ዄ፟(y)ዅ፟(xዄy)] dy d𝐴. (2.13)

If we apply a window function 𝐻̂(𝐴), we get

𝑅ፇ(x) = ∬𝜓(y)∗𝜓(x+ y)𝑒ኼ᎝።ፀ[፟(x)ዄ፟(y)ዅ፟(xዄy)]𝐻̂(𝐴) dy d𝐴

=∬𝜓(y)∗𝜓(x+ y)𝐻[𝑓(x) + 𝑓(y) − 𝑓(x+ y)] dy
(2.14)

where 𝐻 denotes the inverse Fourier transform of 𝐻̂. In the case of ideal sampling,
so 𝐻̂(𝐴) = 1, 𝐻 reduces to a delta function (which equivalently follows from the
integration over 𝐴 in Eq. (2.13))

𝑅(x) = ∬𝜓(y)∗𝜓(x+ y)𝛿[𝑓(x) + 𝑓(y) − 𝑓(x+ y)] dy. (2.15)

In order to have a direct retrieval of 𝜓(x) we require that the argument of the delta
function vanishes for only one value of y. Note that this requires x ≠ 0, because
if x = 0, all y will contribute to the integral (since we assumed 𝑓(0) = 0). So
henceforth we only consider x ≠ 0. We can require that 𝑓(x) + 𝑓(y) − 𝑓(x + y)
vanishes only for y = 0. In that case 𝑅(x) = 𝜓(0)∗𝜓(x). Had we chosen to eval-
uate the surface 𝑧 = −𝑓(x) instead, we would require that the argument of the
delta function only vanishes for x + y = 0, in which case the reconstruction would
contain the twin image of 𝜓(x): 𝑅(x) = 𝜓(−x)∗𝜓(0).

For brevity, let us define

𝑔(x,y) = 𝑓(x) + 𝑓(y) − 𝑓(x+ y). (2.16)

How do we choose 𝑓(x) such that 𝑔(x,y) vanishes only for y = 0? We demonstrate
that a function of the following form satisfies the requirement:

𝑓(x) = ℎ(𝑛(x)), (2.17)

where 𝑛(x) is a vector norm (e.g. the Euclidean norm |x| = √x ⋅ x), and ℎ(𝑎) is a
monotonically increasing subadditive function, i.e.

ℎ(𝑎 + 𝑏) ≤ ℎ(𝑎) + ℎ(𝑏), (2.18)
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where equality only holds when 𝑎 = 0 or 𝑏 = 0. An example of such a function is
ℎ(𝑎) = 𝑎ፊ with 𝐾 ∈ (0, 1). To see why a function 𝑓(x) of the form ℎ(𝑛(x)) works,
consider the inequality

𝑓(x+y) = ℎ(𝑛(x+y)) ≤ ℎ(𝑛(x)+𝑛(y)) ≤ ℎ(𝑛(x))+ℎ(𝑛(y)) = 𝑓(x)+𝑓(y). (2.19)
The first inequality holds because of the triangle inequality (which holds by definition
of a vector norm) and because ℎ(𝑎) is a monotonically increasing function. The
second inequality holds because ℎ(𝑎) is a subadditive function. Note that equality
only holds when 𝑛(x) = 0 or 𝑛(y) = 0, which by definition of a vector norm holds
only when x = 0 or y = 0. Thus, 𝑔(x,y) only vanishes when x = 0 (which we chose
not to consider) or y = 0, which is what we required. Therefore, phase modulation
functions of the form 𝑓ፊ(x) = |x|ፊ with 𝐾 ∈ (0, 1) allow for a non-iterative retrieval
of 𝜓(x).

2.5.3. Relation to phase shifting holography
Previously, we observed that if the cusp of 𝑓(x) is sharper, the reconstruction
method suffers less from the finite sampling range of 𝐴. So let us consider what
happens in the extreme case 𝐾 → 0 where we modulate the phase everywhere
except in a single point (or equivalently: where we modulate the phase in only a
single point)

𝑓(x) = {0 if |x| = 0,
1 if |x| ≠ 0. (2.20)

In this case, if x ≠ 0, we get

𝑔(x,y) = {
0 if y = 0,
2 if y = −x,
1 otherwise.

(2.21)

We want 𝐻(𝑔(x,y)) to give a contribution to the integral of Eq. (2.14) only if y = 0,
but since 𝑔(x,y) can only take three values, it is sufficient to require

𝐻(0) = 1 𝐻(1) = 0 𝐻(2) = 0. (2.22)

A solution would be
𝐻(𝑎) = 1

3 (1 + 𝑒
ኼ᎝። ᎳᎵፚ + 𝑒ኼ᎝።

Ꮄ
Ꮅፚ) , (2.23)

which would correspond to a sampling function of

𝐻̂(𝐴) ∝ 𝛿(𝐴) + 𝛿 (𝐴 − 13) + 𝛿 (𝐴 −
2
3) , (2.24)

which means one only has to take three measurements, and for each measurement
shift the phase of a single pixel, which is what is done in quantitative Zernike phase
contrast microscopy [13]. Realizing that the single pixel in which the field is mod-
ulated is a reference plane wave when taking the Fourier transform, one can also
find analogies with phase-shifting interferometry and phase-shifting holography, as
explained in Section 1.3.
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(a) (b)

Figure 2.3: Object Ꭵ(x) used for the simulation to test the non-iterative phase retrieval method using
phase modulation of the form ፟(x) ዆ |x|ᑂ, ፊ ∈ (ኺ, ኻ).

2.5.4. Simulation results
In this section, we simulate the proposed method for a lensless imaging setup.
This means that we apply the phase modulations 𝑒ዅኼ᎝።ፀ፟(x) to 𝜓(x) (i.e. in ob-
ject space), and measure the intensity patterns in Fourier space (i.e. in a far field
plane). However, it is also possible to simulate the method for an aberrated imaging
setup (as is done in [1]), which means that the phase modulations 𝑒ዅኼ᎝።ፀ፟(k) are
applied to 𝜓̂(k) (the Fourier transform of the sample), and the measurements are
performed in image space. In that case, fewer measurements are needed to get a
good reconstruction of 𝜓(x), since |𝜓̂(k)| tends to be sharply peaked at k = 0 (the
reason why this is beneficial has been explained in Section 1.3: Focus variation, the
parabola method).

The simulated object is shown in Fig. 2.3. The actual sample consists of 256×256
pixels, but the array has been padded to a size of 512×512 pixels to prevent alias-
ing when computing the sample’s autocorrelation function, as explained in Section
1.2.2. The units of 𝑥 and 𝑦 are chosen such that the sample has width 2, and
the entire array has width 4. The (𝑥, 𝑦)-grid must be carefully chosen such that
the point (𝑥, 𝑦) = (0, 0) falls exactly on a pixel, rather than in between two pixels,
which could for example happen if you define your axis symmetrically (i.e. going
from −𝐴max to 𝐴max) while having an even number of pixels. The reason is that
in the reconstruction, there will be a large peak at (𝑥, 𝑦) = (0, 0), and if this point
does not correspond to a certain pixel, its energy will be spread out over the rest
of the reconstruction, making the reconstruction completely unrecognizable.

In Fig. 2.4 the effect of the sampling window 𝐻̂(𝐴) is investigated. The modu-
lation function 𝑓ፊ(x) = |x|ፊ is fixed at 𝐾 = 0.1, the sampling grid −𝐴max ∶ Δፀ ∶ 𝐴max
is fixed at sampling range 𝐴max = 20 and sampling interval Δፀ = 0.65, giving a total
of 𝑁 = 62 intensity measurements. The sampling window 𝐻̂(𝐴) is chosen to be a
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(a)

(b)

(c)

Figure 2.4: Effect of the sampling function ፇ̂(ፀ). The amplitude of the central region of the reconstruc-
tion is set to 0 to get rid of the peak at x ዆ 0.

Gaussian, of which we vary the width. We observe that the role of the sampling
window is significant.

In Fig. 2.5 the effect of the sampling range 𝐴max is investigated. We see that
as the sampling range is reduced, the reconstruction gets corrupted at the corners
first. This can be understood by looking at the 3D autocorrelation function in Fig.
2.2a. The inverse of Δፀ determines the distance between aliases of the autocor-
relation function in the 𝑧-direction, while the sampling range 𝐴max determines the
degree of blurring in the 𝑧-direction. In Fig. 2.5c, the sampling is chosen optimally,
so that the aliases of the autocorrelation function almost touch each other at the
corners. If the range 𝐴max is reduced, and the autocorrelation gets blurred in the
𝑧-direction, the aliases will affect the reconstruction first at the corners. In Fig.
2.6, where the sampling interval Δፀ is increased, the same effect can be observed.
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(a) (b) (c)

Figure 2.5: Effect of the sampling range ፀmax

In Fig. 2.7 the effect of the modulation function 𝑓ፊ(x) = |x|ፊ is investigated. We
see that if 𝐾 is increased, the autocorrelation function gets stretched out in the
𝑧-direction, causing the aliases to overlap.

2.6. Non-iterative phase retrieval using a star-shaped
mask and through-focus scanning3

By examining the 3D autocorrelation function for 𝑓ኼ(x) = |x|ኼ, we found that if
𝜓(x) has a suitable support (which will be described more precisely in Section
2.6.2), it should be possible to extract 𝜓(x) straightforwardly from the boundary
of the autocorrelation function [2]. The reason why it is attractive to consider
𝑓ኼ(x) = |x|ኼ is because it corresponds to focus variation in the paraxial limit. As
opposed to phase modulation of the sort 𝑓ፊ(x) = |x|ፊ with 𝐾 ∈ (0, 1), which would
require a spatial light modulator to implement, focus variation can be achieved in
a natural way. For example, one can move the detector through focus, or vary
the strength of a liquid lens (when using visible light) or an electromagnetic lens
(when using electrons). Note that in order to assign negative values to the defocus
parameter 𝐴, one needs to scan the field at both sides of the focal plane. If 𝜓(x)
is real-valued, the focal field is symmetric in the axial direction, so it is sufficient to
consider only positive 𝐴. In that case, one can vary 𝐴 by considering different free-
space propagation distances in the Fresnel approximation, and no focusing optics
are required in principle.

3The following is original work by the candidate, which has been published in Optics Express 26:7,
9332-9343 (2018) [2]
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(a) (b) (c)

Figure 2.6: Effect of the sampling interval ጂᐸ

(a) (b) (c)

Figure 2.7: Effect of ፊ.
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2.6.1. Finding the correct surface of the autocorrelation func-
tion

To find the reconstruction 𝑅(x) of 𝜓(x), we evaluate the 3D autocorrelation of
𝜓ኽD(𝑥, 𝑦, 𝑧) on some surface 𝑧 = 𝑠(x)

𝑅(x) = ∬𝐼(k, 𝐴)𝑒ኼ᎝።x⋅k𝑒ኼ᎝።ፀ፬(x) dk d𝐴

=∬𝜓(y)∗𝜓(x+ y)𝛿[𝑠(x) + 𝑓(y) − 𝑓(x+ y)] dy

=∬𝜓(y)∗𝜓(x+ y)𝛿[𝑠(x) − |x|ኼ − 2x ⋅ y] dy.

(2.25)

From our illustration of the autocorrelation function in Fig. 2.8 (which is a more
annotated version of Fig. 2.2a), we see that if we want to evaluate the copy
𝜓ኽፃ(𝑥, 𝑦, 𝑧) that is shifted to the edge of the autocorrelation function, we must
choose a reference point P that lies on the edge of the support of 𝜓(x), and choose
the surface

𝑧 = −𝑓(P− x) + 𝑓(P)
= −|x|ኼ + 2P ⋅ x, (2.26)

or its mirrored surface

𝑧 = 𝑓(x+P) − 𝑓(P)
= |x|ኼ + 2P ⋅ x, (2.27)

We can also derive mathematically why 𝑠(x) = −|x|ኼ+2P⋅x and 𝑠(x) = |x|ኼ+2P⋅x
are the surfaces on which we should evaluate the autocorrelation function: we want
to choose 𝑠(x) such that the argument of the delta function is zero when y = P (in
the next section we will make sure the argument of the delta function is zero only
when y = P). If we define

v = 𝜇x− 2y, 𝜇 = 𝑠(x)
|x|ኼ − 1, (2.28)

we can write the argument of the delta function as x ⋅ v. So the argument of the
delta function is zero when x ⋅ v = 0, which means

v = 𝜆 [ 𝑦−𝑥] , (2.29)

where x = [𝑥, 𝑦]ፓ, and for any constant 𝜆. Combining this with the definition of v
for y = P, we can equate the two expressions for v, yielding the matrix equation

[𝑥 −𝑦
𝑦 𝑥 ] [

𝜇
𝜆] = 2 [

𝑃፱
𝑃፲] , (2.30)

where P = [𝑃፱ , 𝑃፲]ፓ. Solving this equation gives 𝜇 = 2P⋅x
|x|Ꮄ , and solving for 𝑠(x)

from the definition of 𝜇 gives 𝑠(x) = |x|ኼ + 2P ⋅ x, which is the desired result. If
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Figure 2.8: Illustration of the 3D autocorrelation function for focus variation, indicating on which surfaces
one can find a direct reconstruction ofᎥ(x), given thatᎥ(x) has an appropriate support with a reference
point P, as explained in Fig. 2.9.

we had required instead that the argument of the delta function is zero only when
y + x = P, which would correspond to finding the twin image of the object, we
would have found the other surface 𝑠(x) = −|x|ኼ + 2P ⋅ x.

2.6.2. Finding the requirements for the object support
We have chosen the surface of evaluation 𝑠(x) such that the argument of the delta
function vanishes for y = P. For 𝑠(x) = |x|ኼ + 2P ⋅ x, Eq. (2.25) reduces to

𝑅(x) = ∬𝜓(y)∗𝜓(x+ y)𝛿[2x ⋅ (P− y)] dy. (2.31)

Now we must shape the support of the object 𝜓(x) such that the integrand con-
tributes to the integral only for y = P. For this we require

1. 𝜓(P)∗ ≠ 0 (and preferably |𝜓(P)| is large, to guarantee robustness to noise)

2. 𝜓(x+P) ≠ 0

3. 𝜓(y)∗ = 0 or 𝜓(x+ y) = 0 when P− y is perpendicular to x and y ≠ P.

We can make sure that these requirements hold by imposing a certain support on
𝜓(x) (which one can do physically by introducing a mask). We can check these
requirements visually as follows:

• Sketch 𝜓(x) and check that 𝜓(P)∗ ≠ 0, i.e. P should lie within the support
of 𝜓(x). This fulfills requirement 1.
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Figure 2.9: Illustration showing that a star-shaped mask (blue) satisfies the three requirements for
Ꭵ(x): P (red) is such that Ꭵ(P)∗ ጽ ኺ; the relevant x are those for which Ꭵ(xዄP) ጽ ኺ, i.e. all x which
lie in the dotted blue star; we require for all relevant x that Ꭵ(y)∗ ዆ ኺ or Ꭵ(x ዄ y) ዆ ኺ when P ዅ y is
perpendicular to x (orange dotted line) and y ጽ P. Since for all x in the dotted blue star, the line that
goes through P and is perpendicular to x intersects the blue star only in P, the requirements are met.

• Sketch 𝜓(x +P) and see for which x it holds that 𝜓(x +P) ≠ 0. These are
the x which are relevant for the reconstruction. This fulfills requirement 2.

• For all the directions of x that are relevant for the reconstruction, draw lines
perpendicular to x through P, and lines perpendicular to x through x + P.
These lines make up the collection of y and x + y respectively for which
x ⋅ (P − y) = 0. Verify that there is no y except for y = P for which both
𝜓(x+ y) and 𝜓(y)∗ are nonzero. This fulfills requirement 3.

Through this procedure one can demonstrate that a star-shaped mask is suitable
for non-iterative focus-variation reconstruction, see Fig. 2.9. Because of the sharp
protrusions of the star, the line that is perpendicular to any relevant x and goes
through P will intersect 𝜓(x) only in a small region, even if the line has a finite
thickness due to the finite sampling range of 𝐴. Therefore, only a small region of
y around P will contribute to the integral in Eq. (2.31). Just like in Eq. (2.14), it
may be convenient to use a sampling function 𝐻̂(𝐴) (such as a Hamming window)
to make sure that in case of a finite sampling range of 𝐴, the delta function in Eq.
(2.31) does not change to a sinc-function with significant side lobes,

𝑅(x) = ∬𝜓(y)∗𝜓(x+ y)𝑊sinc[2𝜋𝑊x ⋅ (P− y)] dy, (2.32)

(where 𝑊 denotes the sampling range), but rather to a slightly broader function
with fewer side lobes, as shown in Fig. 2.10.

In this proposed method, we require a mask and a through focus scan to obtain a
direct reconstruction of 𝜓(x). In Fourier Transform Holography, we also require a
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(a)

(b)

Figure 2.10: Illustration of how the side lobes of the sinc-function in Eq. (2.32) can be suppressed
using an appropriate sampling function ፇ̂(ፀ), which is in this case a Hamming window. Note that
according to Eq. (2.32), the sinc-function becomes narrower as |x| increases. The dimensions on the
axes correspond to the physical dimensions of the pattern assigned to the SLM in the experiment, as
shown in Fig. 2.12.

mask, but we only need to take a single measurement to perform a reconstruction.
So what is the advantage of the proposed method? For FTH, it was pointed out in
Section 2.3 that one encounters problems when using spatially partially coherent
illumination, because the reference point P (i.e. the pinhole) needs to be far re-
moved from the sample, which means the sample may lie outside the field of view
defined by the coherence width of the illumination. In the proposed method how-
ever, P can be on the edge of the sample, and one can define multiple reference
points P (i.e. the different points of the star shaped mask) using the same data set
𝐼(k, 𝐴), hence allowing for a large field of view even for narrow coherence widths.
Because of these considerations, the proposed method was tested experimentally
using spatially partially coherent light, as is discussed in the following section.
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Figure 2.11: Illustration of the experimental setup. RGGD=Rotating Ground Glass Disk, GAF=Gaussian
Amplitude Filter, BS=Beam Splitter, SLM=Spatial Light Modulator.

2.6.3. Experimental results
To test the method in a proof-of-principle experiment4, the setup as shown in Fig.
2.11 was used. In this setup, we use green laser light (𝜆 = 532nm) which is ex-
panded in the beam expander. The beam is made partially coherent by focusing
it on a rotating ground-glass disk, after which the beam is approximately colli-
mated again with a second lens. By varying the position of the first lens, we can
vary the spot size on the rotating disk, thereby changing the degree of coherence.
The resulting beam has a Gaussian correlation structure. The partially coherent
beam is incident on a reflective liquid crystal phase-only SLM (HOLOEYE-GAEA-VIS,
3840×2160 resolution, 3.74 𝜇m pixel size), on which a pattern is assigned that
serves as the phase object 𝜓(x) that is to be reconstructed. The radius of the
object on the SLM is 𝑅 = 2.62mm, see Fig. 2.12. Using a third lens with focal
length 𝑓 = 15cm, the modulated light is focused, and in the back focal plane of the
lens, the intensity pattern is recorded with a CCD camera. In order to generate the
through-focus data set, quadratic phase factors are added to the pattern assigned

to the SLM. The defocus parameter 𝐴 = ፳ᑗፑᎴ

ኼ᎘፟Ꮄ (see Eq. (B.5)) is varied from -7 to 7
in 100 steps, which for the given parameters is equal to physically scanning through
the focal field from 𝑧፟ = −2.45cm to 𝑧፟ = 2.45cm.

With this experimental setup, we take two data sets each consisting of 100
through-focus images, where for each data set a different degree of coherence has
been used. The coherence widths of the Gaussian-correlated beam with constant
amplitude at the SLM-plane are 𝜎 = 2.3mm (high coherence) and 𝜎 = 0.5mm (low
coherence). In Fig. 2.13 the non-iterative reconstructions are plotted, and com-
pared to the simulated amplitudes which are obtained by multiplying the amplitude
of 𝜓(x + P) with the Gaussian correlation function with respect to the reference
point P:

𝐽(x+P,P) = 𝜓(x+P)𝜓(P)∗𝑒ዅ|(xዄP)ዅP|Ꮄ/ኼ᎟Ꮄ

∝ 𝜓(x+P)𝑒ዅ|x|Ꮄ/ኼ᎟Ꮄ
(2.33)

It is thus shown that the coherence structure of the illuminating field limits the
4The experiment described in this section was performed by Xingyuan Lu at Soochow University under
supervision of Chengliang Zhao. The candidate first performed a similar experiment in Delft to verify
the method works for coherent illumination. The setup in Soochow was used to introduce partial
coherence.
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Figure 2.12: The image that is assigned to the SLM, which serves as the object that is to be reconstructed.
The grayscale values denote the phase shift in radians.

field of view of the reconstruction (as explained in Section 2.3), and conversely, the
degree of coherence can be inferred directly from the non-iterative reconstruction.

For each P, a coherence function 𝐽ኺ(x) = 𝐽(0,x) ‘illuminates’ a different part of
the object 𝜓(x). In the example of Eq. (2.33), we have 𝐽ኺ(x) = 𝑒ዅ|x|

Ꮄ/ኼ᎟Ꮄ . So by
shiftingP around, we ‘illuminate’ different parts of the object, thereby extending the
field of view, which shares similarities with ptychography. In Fig. 2.14 it is shown
how the field of view can be extended by considering multiple reference points P.
In order to synthesize an object reconstruction 𝜓(x) with an extended field of view
from the set of reconstructions for different P, we use the factorization method as
is explained in Eqs. (3.23) and (3.24), where we factorize the ‘exit waves’

Ψ፣(x) = 𝜓(x)𝐽ኺ(x−P፣) (2.34)

into 𝜓(x) and 𝐽ኺ(x). These Ψ፣(x) are the reconstructions we obtain using the non-
iterative method as shown in Fig. 2.14, except that we have shifted them by P
to the center. Also, we have multiplied the reconstructions with a window function
to eliminate the artifacts of the non-iterative reconstruction, as shown in the top
two rows of Fig. 2.15. Note that in the coherence function 𝐽ኺ, the values of the
prefactors 𝜓(P)∗ (see Eq. (2.33)) are absorbed. In this case this is possible because
the ‘scanned positions’ do not overlap (see Fig. 2.15, bottom row, third figure from
the left), so the factorization is not unique. To still get a plausible factorization,
one needs a sensible initial guess when applying the factorization method of Eqs.
(3.23) and (3.24).
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(a) High coherence, ᎟ ዆ ኼ.ኽmm.

(b) Low coherence, ᎟ ዆ ኺ.኿mm.

Figure 2.13: Non-iterative reconstructions for different degrees of coherence. The simulated amplitudes
are obtained by multiplying the shifted object amplitude with a Gaussian function ፞Ꮍ|x|Ꮄ/ᎴᒗᎴ . Because
the amplitude of the non-iterative reconstruction blows up for small |x|, their colorbars have been
truncated. To ensure a fair comparison, the cut-off value for each plot is determined by its value at the
position of the red dot as indicated in the top image.

(a) Amplitude (logarithm) in arbitrary units (b) Phase in radians

Figure 2.14: Non-iterative reconstructions for low coherence for various choices of the reference point
P. It is illustrated how the coherence width affects the field of view, and how using multiple reference
points P can help in creating a more complete picture of the object.
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Figure 2.15: Demonstration of how reconstructions for different reference points Pᑛ can be synthesized
into a reconstruction of Ꭵ(x) with an extended field of view. In the top two rows are the amplitude
and phase of the non-iterative reconstructions ጕᑛ(x) for four different Pᑛ that correspond to the four
different protrusions of the star-shaped mask as shown in Fig. 2.14. In the bottom row are the amplitude
and phase of the reconstructed object Ꭵ(x) and coherence function ፉᎲ(x). Note that the coherence
function is reconstructed only in the regions that are covered by Ꭵ(x ዄPᑛ).

2.7. Summary
• We observed that measuring the far field intensity pattern 𝐼(k) of a field
𝜓(x) is equivalent to measuring its autocorrelation function. Therefore,
in order to non-iteratively reconstruct 𝜓(x) from 𝐼(k), we must somehow
make sure that the autocorrelation is shaped in such a way that it allows for
straightforward extraction of 𝜓(x).

• For example, in Fourier Transform Holography a pinhole is introduced
so that the autocorrelation function contains an isolated copy of the original
object 𝜓(x), as well as its twin image 𝜓(−x)∗.

• We noted that if the extraction of 𝜓(x) from the autocorrelation function is
a linear operation, the reconstruction method is robust to spatial partial
coherence, and the degree of coherence affects the field of view of the
reconstruction.

• This idea is extended to three-dimensional autocorrelation functions:
by modulating 𝜓(x) with a phase function 𝑒ዅኼ᎝።ፀ፟(x), where 𝐴 is an optical
parameter that one can vary freely, we can obtain a three-dimensional data
set 𝐼(k, 𝐴), which in turn gives a three-dimensional autocorrelation function.
If the modulation function 𝑓(x) is chosen properly, one can identify a surface
in the 3D autocorrelation function from which 𝜓(x) or its twin image can be
extracted directly.
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• We have found that 𝑓(x) = |x|ፊ with 𝐾 ∈ (0, 1) is a suitable modulation
function. The reconstruction formula is given by

𝑅(x) =∑
ፀ
ℱዅኻk {𝐼(k, 𝐴)} (x)𝑒ኼ᎝።ፀ፟(x)𝐻̂(𝐴), (2.35)

where 𝐻̂(𝐴) is a sampling window that mitigates the effects of a finite sampling
range of 𝐴.

• In the limit of 𝐾 → 0, and with an appropriately chosen sampling window
𝐻̂(𝐴), this method reduces to phase shifting holography or quantitative
Zernike phase-contrast microscopy.

• We also found that a non-iterative reconstruction is possible using focus vari-
ation (𝑓(x) = |x|ኼ) and a star-shaped mask. In this case, the reconstruc-
tion formula is given by

𝑅(x) =∑
ፀ
ℱዅኻk {𝐼(k, 𝐴)} (x)𝑒ኼ᎝።ፀ፬(x)𝐻̂(𝐴), (2.36)

where 𝑠(x) = |x|ኼ+2P ⋅x, where P is a reference point that must lie on one
of the protrusions of the star-shaped mask.
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3
Iterative phase retrieval

We discuss iterative algorithms for phase retrieval. Starting from basic Co-
herent Diffractive Imaging (CDI) methods which use a single intensity con-
straint and a support constraint, we review the different ways in which the
phase retrieval problem can be formulated. Then we consider the case of
ptychography, where multiple intensity constraints are used. We will see
how we can apply CDI methods to ptychography, and what variations in al-
gorithmic approaches we can construct. In addition to examining the large
collection of already existing ptychographic algorithms, we propose new vari-
ants which help in accelerating the convergence, and improve the noise-
robustness of simultaneous probe and object retrieval.

Parts of this chapter have been published in Advanced Optical Technologies, 6:6 (2017) [1] and Ultra-
microscopy 171, 43 (2016) [2].
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We have seen in Chapter 2 how one can reconstruct an image of a sample non-
iteratively from one or multiple diffraction intensity patterns. The advantages of
non-iterative reconstruction methods over iterative methods are that the non-iterative
reconstruction tends to be faster because it is less computationally expensive, the
reconstruction is unambiguous (an iterative algorithm might converge to different
solutions for different initial guesses), and under certain conditions (as explained
in Section 2.3) it is robust to spatial partial coherence.

Nevertheless, there are also disadvantages to the non-iterative methods which may
motivate the study of iterative methods. One disadvantage is that for non-iterative
methods one requires certain assumptions to hold, but these assumptions tend to
be only true in approximation. For example, in the case of Fourier Transform Holog-
raphy, one can reconstruct the object perfectly in case the pinhole can be modeled
as a delta function, but in practice, the pinhole must always be sufficiently large in
order to transmit enough light. The resolution of the non-iterative reconstruction
will therefore be limited by the size of the pinhole and accurate knowledge of the
shape of the pinhole, but it can be improved by applying iterative reconstruction
methods that do not rely on the assumption that the pinhole is small or that the
shape of the pinhole is accurately known [3]. Generally speaking, iterative algo-
rithms allow for more flexibility. For example, in the case of ptychography, there
are many variations of the basic reconstruction algorithm for object reconstruction,
allowing for probe reconstruction [4–6], probe position correction [4, 7–11], re-
construction under partially coherent illumination [12, 13], reconstruction of thick
samples [14], interpolation [15] or extrapolation [16] of diffraction patterns, etc.

Another disadvantage is that because the non-iterative methods require more spe-
cial conditions to hold than iterative methods, non-iterative methods tend to require
more complicated experimental setups, involving e.g. specially designed masks or
phase modulators. The iterative methods bring more computational complexity,
but this is a trade-off that is tempting to make, given the increasing computational
power that is at our disposal.

3.1. Phase retrieval methods using a single intensity
pattern

Just like in the non-iterative case, we aim to reconstruct a transmission function
(or reflection function) 𝜓(x) from its far field intensity 𝐼(k) = |𝜓̂(k)|ኼ. Clearly,
the intensity constraint 𝐼(k) is not sufficient to uniquely define 𝜓(x), since a trivial
reconstruction 𝑓(x) that would always satisfy the intensity constraint is given by
𝑓(x) = ℱዅኻ {√𝐼(k)} (x). This means we need an additional constraint to solve the
phase retrieval problem. Typically, in case we use only a single intensity constraint,
this would be a support constraint [17]: we assume a priori that there is a region
𝛾 outside which 𝜓(x) = 0. One can define the following function indicating the
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support constraint

𝑠(x) = {1 if x ∈ 𝛾
0 if x ∉ 𝛾. (3.1)

In the following sections, we will discuss three different ways to formulate the phase
retrieval problem, which will lead to different insights and different ways to solve it.

3.1.1. Intersection of sets
We can define two sets corresponding to the two constraints. Let 𝑆 denote the set
containing all functions 𝑓(x) that satisfy the support constraint

𝑆 = {𝑓(x) ∶ 𝑠(x)𝑓(x) = 𝑓(x)} . (3.2)

Let𝑀 denote the set containing all functions 𝑓(x) that satisfy the intensity constraint
(also called the modulus constraint)

𝑀 = {𝑓(x) ∶ | ̂𝑓(k)| = |𝜓̂(k)|} , (3.3)

where ̂𝑓(k) denotes the Fourier transform of 𝑓(x). Since 𝜓(x) satisfies both con-
straints, we can formulate the phase retrieval problem as follows:

Find 𝑓(x) ∈ 𝑆 ∩ 𝑀. (3.4)

The most straightforward method to find the intersection is to start with some initial
guess 𝑓ኺ(x), and repeatedly applying the two constraints. Applying a constraint can
be described mathematically by introducing a projection operator 𝒫. The projection
operator for the support constraint is

𝒫ፒ ∶ 𝑓(x) → 𝑠(x)𝑓(x). (3.5)

The projection operator for the modulus constraint is

𝒫ፌ ∶ 𝑓(x) → ℱዅኻ {
̂𝑓(k)

| ̂𝑓(k)|
|𝜓̂(k)|} (x). (3.6)

The most straightforward algorithm, called the Alternating Projections (AP) al-
gorithm, can be formulated as follows:

𝑓፧ዄኻ(k) = 𝒫ፒ𝒫ፌ𝑓፧(k). (3.7)

This can be visualized as shown in Fig. 3.1a. This iterative scheme would converge
to the correct solution if the two constraint sets 𝑆 and 𝑀 were convex. The support
constraint set 𝑆 is convex: if 𝑓ኻ(x) ∈ 𝑆 and 𝑓ኼ(x) ∈ 𝑆, then 𝜆𝑓ኻ(x)+(1−𝜆)𝑓ኼ(x) ∈ 𝑆,
where 𝜆 ∈ [0, 1]. However, the modulus constraint set𝑀 is not convex: for example,
if |𝜓̂| = 1, then ̂𝑓ኻ = 1 and ̂𝑓ኼ = −1 both lie in 𝑀, but the convex combination
ኻ
ኼ ( ̂𝑓ኻ + ̂𝑓ኼ) = 0 does not. This can be visualized as shown in Fig. 3.1b. One can
see that the algorithm can stagnate at a wrong 𝑓(x). Therefore, we need more
sophisticated algorithms that avoid stagnation. Examples of such algorithms are
[18, 19]:
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(a) Convex constraints (b) Non-convex constraint

Figure 3.1: Illustration of the convergence behaviour of the Alternating Projections algorithm for convex
and non-convex constraints.

• the Hybrid Input-Output (HIO) algorithm [20]

𝑓፧ዄኻ(k) = [𝒫ፒ𝒫ፌ + (𝐼 − 𝒫ፒ)(𝐼 − 𝛽𝒫ፌ)]𝑓፧(k), (3.8)

• the Difference Map (DM) algorithm [21]

𝑓፧ዄኻ(k) = [𝐼 + 𝛽𝒫ፒ ([1 +
1
𝛽 ]𝒫፦ −

1
𝛽𝐼) − 𝒫ፌ ([1 −

1
𝛽 ]𝒫፬ +

1
𝛽𝐼)] 𝑓፧(k),

(3.9)

• the Relaxed Averaged Alternating Reflections (RAAR) algorithm [22]

𝑓፧ዄኻ(k) = [2𝛽𝒫ፒ𝒫ፌ + (1 − 2𝛽)𝒫ፌ + 𝛽(𝐼 − 𝒫ፒ)]𝑓፧(k). (3.10)

Here, 𝐼 denotes the identity operator, and 𝛽 is a feedback parameter that is typically
chosen to be around 0.9 for HIO [23], but one can try to find per application which
value gives the best result. Note that for 𝛽 = 1 all the algorithms reduce to the
same update scheme

𝑓፧ዄኻ(k) =
ℛፒℛፌ + 𝐼

2 𝑓፧(k), (3.11)

where ℛ denotes the reflection operator

ℛ = 𝒫 + (𝒫 − 𝐼)
= 2𝒫 − 𝐼. (3.12)

So intuitively, one can say that these algorithms avoid stagnation by reflecting
around the constraints instead of projecting onto them. To prevent the algorithm
from becoming too unstable, one averages the reflected function ℛፒℛፌ𝑓 with the
current estimate of the function 𝑓 (as in Eq. (3.11)), and one can introduce fur-
ther relaxations through the parameter 𝛽. Typically, stagnation-avoiding algorithms
such as HIO, DM, or RAAR are used for the initial convergence of the algorithm, but
for the final refinement of the reconstruction, several iterations of AP are applied.
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3.1.2. Cost minimization
If 𝑓(x) is an estimate of the object, then we can define the estimated far field as

̂𝑓(k) =∑
x

𝑓(x)𝑠(x)𝑒ዅኼ᎝።x⋅k. (3.13)

We use a sum rather than an integral because in practice the measurement and
the reconstruction will always be pixelated. We want to find that 𝑓(x) for which
the estimated far field amplitude is most similar to the measured amplitude |𝜓̂(k)|.
Mathematically, we can introduce a cost functional

𝐿[𝑓(x)] =∑
k

(| ̂𝑓(k)| − |𝜓̂(k)|)ኼ, (3.14)

which we want to minimize (an explanation of why this particular cost function is
chosen is given in Chapter 4). The most straightforward method to do this is by
using the gradient descent or steepest descent method. One can demonstrate
that if 𝑓(x) is a complex-valued optimization variable, and 𝐿 is a real-valued cost-
function, the direction of steepest ascent is given by the Wirtinger derivative Ꭷፋ

Ꭷ፟(x)∗
[24]. Therefore, for a certain step size 𝜇 the update scheme is given by

𝑓፧ዄኻ(x) = 𝑓፧(x) − 𝜇
𝜕𝐿

𝜕𝑓፧(x)∗
. (3.15)

One can calculate from Eqs. (3.13) and (3.14) that the Wirtinger derivative is given
by

𝜕𝐿
𝜕𝑓(x)∗ = 𝑠(x) (𝑓፧(x) − ℱ

ዅኻ {
̂𝑓(k)

| ̂𝑓(k)|
|𝜓̂(k)|} (x)) . (3.16)

Assuming that 𝑓፧(x) = 𝑠(x)𝑓፧(x), we see that for a step size of 𝜇 = 1 this update
scheme is identical to the previously discussed Alternating Projection scheme [20].
Because in each iteration the Fourier-space reconstruction error (i.e. the value of
the cost functional) reduces, this scheme is also referred to as the Error Reduction
(ER) algorithm.

The advantages of formulating the phase retrieval problem in this manner are that
it gives insight in what it means to vary the step size 𝜇 (which can be useful for
accelerating the rate of convergence, or for refining the reconstruction in case noise
is present in the measurement, as will be discussed in Section 3.2.2), it allows us
to experiment with different kinds of cost functionals (for example a maximum-
likelihood cost function in case noise is present, as will be discussed in Section 4.1),
and it allows us to experiment with different minimization schemes [19] (such as
the Conjugate Gradient method).

In Fig. 3.1 we illustrated using the projection-based view how the non-convex
modulus constraint can cause the Alternating Projection algorithm to stagnate. The
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stagnation of the Steepest Descent method (which is equivalent to the Alternating
Projections method) can be explained using the cost-functional-based view by stat-
ing that there are local minima in the cost functional landscape, in which the Steep-
est Descent algorithm can easily get trapped. Using this picture, one can intuitively
imagine how such stagnation can be prevented by introducing ‘momentum’. A ball
rolling down a hill at high velocity does not get stuck in shallow pits due to its mo-
mentum. Similarly, if we imagine our object estimate 𝑓፧(x) as ‘rolling down’ the cost
functional landscape when we are performing updates, we can add ‘momentum’ to
the updates to prevent stagnation [25]. This idea is applied to ptychographic phase
retrieval in [26].

3.1.3. Convex relaxation and rank minimization
What makes the phase retrieval problem difficult is the fact that it is non-convex:
if 𝜓ኻ(x) and 𝜓ኼ(x) give the same intensity 𝐼(k), then the convex combination
𝜆𝜓ኻ(x) + (1 − 𝜆)𝜓ኼ(x), 𝜆 ∈ (0, 1), generally does not. However, we can write

𝐼(k) = |∫𝜓(x)𝑒ዅኼ᎝።x⋅k dx|
ኼ

=∬𝜓(x)𝜓(y)∗𝑒ዅኼ᎝።(xዅy)⋅k dx dy,

= ∬𝐽(x,y)𝑒ዅኼ᎝።(xዅy)⋅k dx dy,

(3.17)

where 𝐽(x,y) = 𝜓(x)𝜓(y)∗. Note that 𝐽(x,y) is a four-dimensional function that
corresponds to the mutual intensity function of a coherent field (see Eq. (2.3)). If
our optimization variable is 𝐽(x,y) instead of 𝜓(x), the problem becomes convex,
because if 𝐽ኻ(x,y) and 𝐽ኼ(x,y) give the same 𝐼(k), then the convex combination
𝜆𝐽ኻ(x,y) + (1 − 𝜆)𝐽ኼ(x,y) does so as well. However, this convex combination in
general does not correspond to a coherent field, but rather to a partially coherent
field. In order to obtain a coherent field, one must minimize the rank of 𝐽(x,y),
which means minimizing the number of modes 𝐽(x,y) is expanded in as according to
Eq. (2.3). So mathematically speaking, we applied a convex relaxation by lifting the
problem in a higher dimension by going from 𝜓(x) to 𝐽(x,y), and the phase retrieval
problem becomes a rank minimization problem [27, 28]. Physically speaking, we
have extended the solution space from all coherent solutions to all partially coherent
solutions, and we aim to find the most coherent solution within this space. However,
in this thesis this method will be of less importance than the projections method
and the cost-functional minimization method.

3.2. Ptychography
While methods such as HIO help to prevent stagnation, these phase retrieval meth-
ods still have significant limitations: they only work if a sample with a known finite
support (although methods such as Shrinkwrap try to alleviate this requirement
[23]) is illuminated with a flat wave front. Moreover, while HIO can give good results
for very low noise levels, it tends to diverge for moderate noise levels. Therefore,
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we require a more robust method, which is ptychography, where multiple intensity
patterns are recorded by shifting the illumination, and the set of intensity patterns
is used to robustly reconstruct an image of the sample. Another advantage is that
ptychography can extend the field of view of the reconstruction without sacrificing
resolution, although in principle that could also be achieved by applying HIO sepa-
rately multiple times if the illumination is a step function.

In ptychography, we illuminate an object 𝑂(x) with a probe function 𝑃(x) which
is shifted to different positions X፣ across the sample. These probe positions are
chosen such that the probes for adjacent positions overlap. For each probe position
we measure an intensity pattern 𝐼፣(k). Assuming the sample is thin, the exit wave
𝜓፣(x) is given by

𝜓፣(x) = 𝑂(x)𝑃(x−X፣), (3.18)

although experimentally it might be more convenient to keep the illumination fixed
and shift the sample. However, if we assume far-field propagation this does not
affect the intensity patterns, which are given by

𝐼፣(k) = |𝜓̂፣(k)|ኼ. (3.19)

In the first ptychographic reconstruction algorithm, called the Ptychographic Itera-
tive Engine (PIE) [29, 30], this set of intensity measurements is used to reconstruct
the object 𝑂(x), assuming the probe 𝑃(x) and the probe positions X፣ are known.
Later, the algorithm was extended to Extended PIE (ePIE), which reconstructs both
the object and the probe simultaneously [4–6]. Other extensions aim to deal with
correcting uncertainties in the probe positions X፣ [4, 7–11, 31, 32], partially co-
herent illumination [12, 13], or thick samples [14].

3.2.1. Basic reconstruction algorithms
Having seen how we can solve the single-intensity pattern phase retrieval problem
using different approaches, we will now see how we can use these approaches to
solve the ptychographic phase retrieval problem.

Intersection of sets
Let us denote the collection of estimated exit waves 𝑓፣(x) as f , and let |𝜓̂፣(k)|ኼ be
the measured (noise-free) intensity patterns. We can define two sets corresponding
to the two constraints that we have. Let 𝑆 denote the set of all f that can be
factorized into an object and a probe

𝑆 = {f ∶ there exists an 𝑂(x) such that 𝑓፣(x) = 𝑂(x)𝑃(x−X፣) for all 𝑗}. (3.20)

Note that we assume here that 𝑃(x) and X፣ are known. Let 𝑀 denote the set of f
whose far field intensities match the measurements

𝑀 = {f ∶ | ̂𝑓፣(k)| = |𝜓̂፣(k)| for all 𝑗}. (3.21)
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We can define the projection operators 𝒫ፌ and 𝒫ፒ, that project f onto 𝑀 and 𝑆
respectively [6]

(𝒫ፒf)፣(x) = 𝑂f (x)𝑃(x−X፣),

(𝒫ፌf)፣(x) = ℱዅኻ {
̂𝑓፣(k)

| ̂𝑓፣(k)|
|𝜓̂፣(k)|} (x),

(3.22)

where

𝑂f (x) =
∑፣ᖤ 𝑓፣ᖤ(x)𝑃(x−X፣ᖤ)∗
𝛼 + ∑፣ᖤ |𝑃(x−X፣ᖤ)|ኼ

, (3.23)

where 𝛼 is a small parameter to prevent division by 0. In case the probe 𝑃(x) is
unknown, we can estimate the probe from the exit waves f and the object 𝑂(x) as
follows

𝑃f (x) =
∑፣ᖤ 𝑓፣ᖤ(x+X፣ᖤ)𝑂(x+X፣ᖤ)∗
𝛼 + ∑፣ᖤ |𝑂(x+X፣ᖤ)|ኼ

. (3.24)

If both the object and the probe are unknown, they can both be updated using the
updated exit waves f by alternately applying Eqs. (3.23) and (3.24) several times,
which would constitute a single application of the projection operator 𝒫ፒ. 𝑃f (x) and
𝑂f (x) are computed using the estimates 𝑂f (x) and 𝑃f (x) from the previous iteration
respectively. With these projection operators, one can define algorithms such as
AP, HIO, DM, and RAAR using Eqs. (3.7), (3.8), (3.9), (3.10).

Cost functional minimization
We can define a cost functional 𝐿[𝑂፧(x), 𝑃፧(x)] that for the 𝑛th object estimate
𝑂፧(x) and probe estimate 𝑃፧(x) quantifies the difference between the estimated
far field amplitudes | ̂𝑓፣(k)| and the measured far field amplitudes |𝜓̂፣(k)|

𝐿[𝑂፧(x), 𝑃፧(x)] =∑
፣
∑
k

(| ̂𝑓፧,፣(k)| − |𝜓̂፣(k)|)ኼ, (3.25)

where
̂𝑓፧,፣(k) =∑

x

𝑂፧(x)𝑃፧(x−X፣)𝑒ዅኼ᎝።x⋅k. (3.26)

If we want to minimize 𝐿 using the gradient descent scheme, the updates of 𝑂፧(x)
and 𝑃፧(x) (if 𝑃(x) is unknown) are defined as

𝑂፧ዄኻ(x) = 𝑂፧(x) − 𝜇ፎ
𝜕𝐿

𝜕𝑂፧(x)∗

= 𝑂፧(x) − 𝜇ፎ∑
፣
𝑃(x−X፣)∗ (𝑓፧,፣(x) − 𝑓upd፧,፣ (x))

𝑃፧ዄኻ(x) = 𝑃፧(x) − 𝜇ፏ
𝜕𝐿

𝜕𝑃፧(x)∗

= 𝑃፧(x) − 𝜇ፏ∑
፣
𝑂(x+X፣)∗ (𝑓፧,፣(x+X፣) − 𝑓upd፧,፣ (x+X፣)) ,

(3.27)
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where

𝑓upd፧,፣ (x) = ℱዅኻ {
̂𝑓፧,፣(k)

| ̂𝑓፧,፣(k)|
|𝜓̂፣(k)|} (x). (3.28)

𝜇 is the step size of the respective updates. To prevent divergence, it is recom-
mended to take

𝜇ፎ ≤
1

maxx ∑፣ |𝑃(x−X፣)|
ኼ ,

𝜇ፏ ≤
1

maxx ∑፣ |𝑂(x+X፣)|
ኼ .

(3.29)

Just like in the case of single-intensity pattern phase retrieval, one can choose dif-
ferent cost functions, and different minimization schemes [4, 19]. One can also
obtain different update functions by choosing certain preconditioners or regulariza-
tion schemes [19, 26], e.g.

𝑂፧ዄኻ(x) = 𝑂፧(x) − 𝜇
∑፣ 𝑃(x−X፣)∗ (𝑓፧,፣(x) − 𝑓upd፧,፣ (x))

𝛼 + ∑፣ |𝑃(x−X፣)|ኼ
, (3.30)

where 𝛼 is a small constant to prevent division by 0. This makes the update more
similar to the alternating projections scheme, as one can see from the similarities
with Eq. (3.23). In Fig. 3.2 the difference between the global alternating pro-
jections scheme and the global steepest descent scheme has been investigated,
which is equivalent to investigating the effect of introducing a preconditioner as
in Eq. (3.30). One finds that the final reconstruction error is the same for both
approaches, but the alternating projections scheme converges faster.

Rank minimization
In [33], ptychography is performed using a convex relaxation, which is referred
to as Convex Lifted Ptychography (CLP). To reduce the computational expense,
another method is proposed where the solution space does not include all partially
coherent fields, but rather only the partially coherent fields with a low rank, i.e.
fairly coherent fields. This method is termed Low-Rank Ptychography (LRP). While
in this method the problem is not fully convex, the relaxation does yield improved
results at only moderately higher computational requirements. In this thesis, we
will not focus on this method.

3.2.2. Global and Sequential updates
The ptychographic algorithms that were derived previously using projection-based
methods or cost-functional minimization methods all involved global updates: in
each update, all the measurements are used simultaneously to update the object
estimate (and probe estimate, if the probe is unknown). However, in the first pty-
chographic reconstruction algorithm, PIE, the updates were sequential: the object
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Figure 3.2: Comparison of the steepest descent and alternating projections global algorithms for noisy
simulated data, as shown in Fig. 3.3. The global steepest descent algorithm has been tested for step
sizes ᎙ ዆ Ꮃ

maxx ∑ᑛ |ᑇ(xᎽXᑛ)|
Ꮄ and ᎙ ዆ ኺ.኿ Ꮃ

maxx ∑ᑛ |ᑇ(xᎽXᑛ)|
Ꮄ .

is updated using the measurement of a single probe position X፣, before updating
the object again at the next probe position X፣ዄኻ

𝑂፧(x) → 𝑂፧(x) + 𝑔(x,X፣)𝜇𝑃(x−X፣)∗(𝑓upd፧,፣ (x) − 𝑓፧,፣(x)), (3.31)

where 𝑛 → 𝑛+1 when an update has been applied for all probe positions 𝑗. 𝜇 is the
step size, and 𝑔(x,X፣) is a function that can take different forms. In the original
PIE update scheme [30], it is chosen to be

𝑔(x,X፣) =
|𝑃(x−X፣)|

maxx|𝑃(x−X፣)|
1

|𝑃(x−X፣)|ኼ + 𝛼
, (3.32)

where 𝛼 is a small parameter to prevent division by 0. The reasoning behind this
factor is that ኻ

|ፏ(xዅXᑛ)|Ꮄዄᎎ
divides out the |𝑃(x−X፣)|ኼ| that is in 𝑃(x−X፣)∗𝑓፧,፣(x)

and 𝑃(x − X፣)∗𝑓upd፧,፣ (x), while
|ፏ(xዅXᑛ)|

maxx|ፏ(xዅXᑛ)|
makes sure that the area that is illu-

minated the most gets updated the most. However, later it is was argued that
𝑔(x,X፣) =

ኻ
maxx|ፏ(xዅXᑛ)|Ꮄ

may be a more convenient choice [5, 34], which may

have to do with the fact that it is more closely related to the steepest descent up-
date for a single probe position (also see Eq. (3.27)). Therefore, this is the choice
we will use here (or equivalently, we choose 𝑔(x,X፣) = 1 assuming that 𝑃(x) is
defined such that it is normalized to 1). A more detailed study of the role of the
weighting function is found in [26]. We will look at the difference between the
sequential and global update schemes, and introduce other possible variations of
the ptychographic reconstruction algorithm. To quantify the reconstruction errors
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𝐸 in our simulations, we use the quantity

𝐸[𝑂፧(x)] =
∑x |𝑐𝑂፧(x) − 𝑂(x)|ኼ

∑x |𝑂(x)|ኼ
, (3.33)

where 𝑂፧(x) denotes the 𝑛th estimated object, 𝑂(x) denotes the reference object,
and 𝑐 is a complex-valued constant that minimizes 𝐸. 𝑐 is necessary to compensate
for any global phase offsets in the reconstruction, i.e. 𝑂፧(x) = 𝑂(x)𝑒።᎕ should still
give 𝐸 = 0. 𝑐 is found by solving dፄ

d፜ = 0, which gives

𝑐∗ =
∑x 𝑂(x)∗𝑂፧(x)
∑x |𝑂፧(x)|ኼ

. (3.34)

If 𝑐 is only to correct for global phase offsets, one would require |𝑐| = 1. How-
ever, since multiplying 𝑂፧(x) with any non-zero global constant does not give a
fundamentally different object reconstruction (since the same features will still be
visible), it seems redundant to enforce any additional constraints on 𝑐.

Convergence rate and noise robustness of sequential and global updates
Using sequential updates (see Eq. (3.31)) or global updates (see Eqs. (3.7) and
(3.22), or equivalently, Eq. (3.30) with 𝜇 = 1) affects how quickly the algorithm
converges and how sensitive it is to noise. If there is no noise, using a sequen-
tial update tends to converge faster because in one iteration (which means going
through all probe positions once) a single point may be updated multiple times de-
pending on how many probes cover that point, whereas in a global update scheme
each point is only updated once per iteration. This is demonstrated in the simula-
tion results shown in Fig. 3.4a, using simulated data shown in Fig. 3.3 1. However,
if a significant amount of noise is present, a global update scheme tends to give
better results because when updating a certain point, the noise from multiple mea-
surements is averaged out [4], which is demonstrated in Fig. 3.4b. One way to
achieve both fast convergence and robustness to noise is to use a sequential up-
date scheme with an adaptive step size [35]: by using a large step size initially one
achieves rapid convergence, and by reducing the step size in later iterations one
achieves a better final reconstruction quality if noise is present. This is also shown
in Fig. 3.4b.

One should keep in mind though that the convergence speed cannot be charac-
terized completely just by counting the required number of iterations. Rather, one
also has to consider the computation time per iteration. A global update scheme
has the advantage that the updates for all exit waves can be computed in parallel,
whereas in a sequential scheme one has to first update probe position 𝑗 before one
can update probe position 𝑗+1 (although one can somewhat parallelize the sequen-
tial update scheme by simultaneously updating the fields at non-overlapping probe
1The object and probe were chosen to be pure phase functions because it was more convenient to use
the same object and probe that were used in the proof-of-principle experiments that were performed
with a phase-only SLM (see Chapter 4). There is no further significance behind this particular choice.
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(a) Object, probe, and probe positions. ኽ × ኽ probe positions are used (note that in
many practical situations typically more probe positions are used).

(b) Two different levels of Poissonian noise (i.e. shot noise), plotted in logarithmic scale
for visibility. In this section, only the data with a low noise level is used. In Section 4.3
both noise levels are used.

Figure 3.3: Simulated data that is used to compare the noise robustness and convergence speed of
global and sequential algorithms.
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(a) Convergence plot for noise-free data. (b) Convergence plot for noisy data.

Figure 3.4: Comparison of sequential and global algorithms for noise-free and noisy simulated data, as
shown in Fig. 3.3

positions). Global update schemes for HIO, DM, and RAAR have the disadvantage
that they require more memory: one needs to store all the exit waves 𝑓፣, whereas
in a sequential or global AP update scheme one in principle only needs to store one
exit wave at a time (if one does not use parallel computation). The reason why a
global AP update scheme does not need to store all the exit waves, is because one
can compute sums such as ∑፣ 𝑃(x −X፣)∗ (𝑓፧,፣(x) − 𝑓upd፧,፣ (x)) (which are required
for the update) by adding one term at a time: i.e. once 𝑓፧,፣(x) and 𝑓upd፧,፣ (x) have
been computed, they can be added to the sum and then immediately discarded
from memory.

3.2.3. Combining HIO and ptychography2
We have seen that for single-shot phase retrieval, HIO outperforms the steepest
descent and alternating projections algorithms, since it avoids stagnation in local
minima. However, HIO is rather sensitive to noise, so M-HIO has been developed
to make it more robust [36]. M-HIO works by setting a certain threshold level 𝑡,
below which the HIO feedback function is set to 0.

Alternatively, one may instead introduce a ptychographic reconstruction scheme
which is more reliable and robust. The ptychographic algorithms we discussed once
more relied on the steepest descent and alternating projection schemes. One may
wonder whether it is possible to improve ptychography by combining it with HIO.
One straightforward way to do this, is to take the expression for the HIO update of
Eq. (3.8), and substitute the projection operators with their ptychographic coun-
terparts as defined in Eqs. (3.23) and (3.24), which yields a global ptychographic
HIO algorithm [19]. Yet, there are still two problems:

2The following is original work by the candidate, part of which has been published in Ultramicroscopy
171, 43 (2016) [2].
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1. We have seen that sequential ptychographic algorithms tend to converge
faster than global ptychographic algorithms. It is not obvious how the global
ptychographic HIO algorithm can be adapted to become a sequential ptycho-
graphic HIO algorithm.

2. M-HIO is a convenient way to make HIO more noise robust, while retaining its
stagnation-avoiding properties. It is not obvious how the global ptychographic
HIO algorithm can be adapted to become a ptychographic M-HIO algorithm.

In this section, we propose a way to define sequential ptychographic (M)-HIO and
global ptychographic M-HIO. The key point is that if the probe has a practically
finite support (i.e. it has a negligibly low value outside a certain region), we can
define a feedback function for each probe position. When applying the factorization
constraint (i.e. decomposing the estimated exit waves in an object and a probe
using either a global or a sequential update), we only update the exit waves, while
leaving the feedback functions unaltered.

Sequential ptychographic (M)-HIO for accelerated convergence
Since sequential update schemes tend to converge faster (i.e. using fewer iter-
ations) than global update schemes, and HIO tends to converge faster than AP
(assuming there is not too much noise), it would be interesting to see whether
one can design a sequential HIO update, as opposed to the global HIO update of
Eq. (3.8) where the projection operators are substituted with their ptychographic
counterparts as defined in Eqs. (3.23) and (3.24). To do this, let us reconsider the
problem of single-intensity pattern phase retrieval with a support constraint, and
rewrite Eq. (3.8) in terms of an updated exit wave 𝑓upd(x) inside the support 𝛾
(which for a probe may be defined as the region where |ፏ(xዅX)|

maxx|ፏ(xዅX)|
is higher than

a certain threshold value), and a feedback function 𝐵(x) outside the support [2]

𝑓፧ዄኻ = {
𝑓upd፧ (x) if x ∈ 𝛾,
𝐵(x) if x ∉ 𝛾, (3.35)

where 𝑓upd፧ (x) is defined in Eq. (3.28), and

𝐵(x) = 𝑓፧(x) − 𝛽𝑓upd፧ (x). (3.36)

If we consider multiple probe positions X፣, and we assume the probe 𝑃(x) has a
(practically) finite and known support, then we can define for each position an exit
wave estimate 𝐹፣(x) and a feedback function 𝐵፣(x), which are updated as

𝐹upd፧,፣ (x) = 𝑓
upd
፧,፣ (x)𝑠(x−X፣),

𝐵፧ዄኻ,፣(x) = [𝐵፧,፣(x) − 𝛽𝑓upd፧,፣ (x)][1 − 𝑠(x−X፣)],
(3.37)

where 𝑠(x) is defined in Eq. (3.1), and

𝑓፧,፣(x) = 𝐹፧,፣(x) + 𝐵፧,፣(x). (3.38)
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One can find 𝐹፧ዄኻ,፣(x) from 𝐹upd፧,፣ (x) either through a global update like in Eqs.
(3.23) and (3.24), i.e. apply several times

𝑂፧(x) →
∑፣ᖤ 𝐹፧,፣ᖤ(x)𝑃፧(x−X፣ᖤ)∗
𝛼 + ∑፣ᖤ |𝑃፧(x−X፣ᖤ)|ኼ

,

𝑃፧(x) →
∑፣ᖤ 𝐹፧,፣ᖤ(x+X፣ᖤ)𝑂፧(x+X፣ᖤ)∗

𝛼 + ∑፣ᖤ |𝑂፧(x+X፣ᖤ)|ኼ
,

(3.39)

and calculate the updated exit wave as

𝐹፧ዄኻ,፣(x) = 𝑃፧ዄኻ(x−X፣)𝑂፧ዄኻ(x), (3.40)

or through a sequential update where 𝑂፧(x) and 𝑃፧(x) are updated for each probe
position

𝑂ᖣ፧(x) = 𝑂፧(x) + 𝑃፧(x−X፣)∗[𝐹upd፧,፣ (x) − 𝐹፧,፣(x)],
𝑃ᖣ፧(x) = 𝑃፧(x) + 𝑂፧(x+X፣)∗[𝐹upd፧,፣ (x+X፣) − 𝐹፧,፣(x+X፣)],

(3.41)

where the prime ’ indicates that this update is an intermediate step in an iteration,
and that the iteration is only completed (i.e. 𝑛 → 𝑛 + 1) when all probe posi-
tions X፣ have been evaluated. In either case, note how the factorization constraint
only affects the estimated exit waves 𝐹፧,፣(x) through Eq. (3.40), while leaving the
feedback functions 𝐵፧,፣(x) untouched, as opposed to the global variant of HIO as
defined in Eq. (3.8) where the projection operators are substituted with their pty-
chographic counterparts as defined in Eqs. (3.23) and (3.24).

We can also combine Modified HIO (M-HIO) with ptychography. M-HIO is a noise-
robust variant of HIO [36], which works by setting a certain threshold level 𝑡, below
which the feedback function is set to 0

𝐵ᖣ(x) = {𝐵(x) if |𝐵(x)| > 𝑡,
0 if |𝐵(x)| ≤ 𝑡. (3.42)

If the noise level is higher, 𝑡 should be increased as well. Note that if 𝑡 = 0, M-
HIO reduces to HIO, and if 𝑡 → ∞, M-HIO reduces to ER/AP. This adaptation can
be implemented straightforwardly in the update function of Eq. (3.37). Here, we
choose to express 𝑡 in terms of a parameter 𝛼 ∈ [0, 1]

𝑡 = 𝛼 ⋅maxx|𝐵(x)|, (3.43)

where M-HIO reduces to HIO if 𝛼 = 0, and to ER/AP if 𝛼 = 1. Note that for the
global variant of HIO as defined in Eq. (3.8), it is not obvious how it can be altered
to yield a noise-robust ptychographic analogue of M-HIO.

In Fig. 3.5a we see that in the noise-free case, sequential HIO converges sig-
nificantly faster than sequential PIE in the first several iterations. By the time PIE
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(a) Convergence plot for noise-free data. (b) Convergence plot for noisy data.

Figure 3.5: Comparison of sequential MHIO and sequential PIE for noise-free and noisy simulated data,
as shown in Fig. 3.3

overtakes M-HIO, the reconstruction error is already negligibly small. In Fig. 3.5b
we see that if noise is present, sequential HIO fails to converge, but M-HIO with
𝛼 = 0.2 does converge, and it does so faster than sequential PIE with adaptive step
size. However, the final reconstruction error for PIE is lower than for M-HIO, so it
is recommended to use sequential M-HIO for initial convergence (especially if few
probe positions are used), and sequential PIE with reduced step size (or global AP)
for final refinement.

Global ptychographic M-HIO for noise-robust simultaneous object and probe
retrieval
So far, we have assumed in the simulations that the probe 𝑃(x) is known, and
we only want to reconstruct the object 𝑂(x). However, if we want to reconstruct
𝑃(x) and 𝑂(x) simultaneously, the problem becomes more difficult. Especially if
the probe has a complicated structure (which may be desirable [37–39]) and no
good initial guess is available, the ePIE algorithm [5] can stagnate. The global Dif-
ference Map (DM) algorithm [6] has the ability to escape local minima, but such
stagnation-avoiding algorithms tend to become unstable if noise is present. We
have seen that combining M-HIO with ptychography can provide a compromise
between stagnation prevention and noise robustness, so here we investigate how
M-HIO ptychography compares to DM (as defined in Eq. (3.9) with 𝛽 = 1) when
simultaneously retrieving the object and probe if noise is present. However, while
making the comparison one must keep in mind that M-HIO requires a support con-
straint for the probe, while DM requires no such assumption or prior knowledge.

In Fig. 3.6 the data that was used for the simulations are shown. In Fig. 3.7 the DM
reconstructions are shown. We see that DM is succesful only for low noise levels.
In Fig. 3.8 successful MHIO-reconstructions are shown. For these reconstructions,
𝛼 has been chosen carefully such that the reconstruction is successful. In Fig. 3.9
it is shown how sensitive the reconstruction is to the choice of 𝛼. For the highest
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noise level, even a small change in 𝛼 can cause the reconstruction to fail. One can
find the correct 𝛼 in a trial-and-error fashion by evaluating the reconstructions: if
the reconstruction appears too chaotic, 𝛼 is too low and it should be increased,
while if the reconstruction appears to have stagnated at a local minimum, 𝛼 is too
high and it should be decreased.

3.3. Summary
• In the basic phase retrieval problem, one has two constraints with which
one tries to reconstruct the object: an intensity (or modulus) constraint
which is found by measuring the diffracted far-field intensity pattern, and a
support constraint which is known a priori.

• There are three main ways to solve this problem

1. Cost functional minimization: one defines a cost functional that
quantifies the difference between the estimated far field amplitude and
the measured amplitude. The reconstruction is found by minimizing the
value of this cost functional.

2. Finding the intersection of sets: one defines two sets corresponding
to the two constraints. Each set contains all functions satisfying that
constraint. Since the reconstruction should satisfy both constraints, a
reconstruction is found by finding the intersection of these sets.

3. Rank minimization: in order to make the problem convex, one ‘lifts’
the problem in a higher dimension, which physically corresponds to con-
sidering all partially coherent solutions. One solves the problem by min-
imizing the rank of the reconstruction, which physically corresponds to
finding the most coherent solution.

• The most relevant phase retrieval algorithms that have been designed are

– Error Reduction (ER), also called Alternating Projections (AP), gradient
descent, or steepest descent: this is the most straightforward algorithm.
It tends to suffer from stagnation because the phase retrieval problem is
non-convex, but it is suitable for final refinement of the reconstruction.

– Hybrid Input-Output (HIO), Difference Map (DM), Relaxed Av-
eraged Alternating Reflections (RAAR): these different algorithms
are the same for a certain parameter choice. They avoid stagnation,
which makes them more effective, but it also makes their convergence
behaviour less predictable. They are typically used for initial conver-
gence, after which ER is used for final refinement.

• A more robust method for phase retrieval is ptychography. In this method,
we do not use a support constraint on the object, but rather we record multiple
far field diffraction patterns by shifting the illumination, which is called the
probe function. Because the probes at different positions overlap with each
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(a) Object and probe used for the simulations. ኿ × ኿ probe positions are
used.

(b) Different levels of Poissonian noise (i.e. shot noise), displayed in logarithmic scale
for visibility.

(c) Probe size (small circle)
and support constraint size
(large circle) for MHIO.

Figure 3.6: Simulated data that is used to compare the DM algorithm with the proposed global MHIO
algorithm for simultaneous probe and object retrieval.



3.3. Summary

3

69

Figure 3.7: DM reconstructions for the different noise levels. The reconstructions were refined using
global AP, and phase ramps that were present due to the raster grid pathology have been manually
removed.
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Figure 3.8: Successful MHIO reconstructions for the different noise levels. The reconstructions were
refined using global AP, hence no probe support constraint is visible. Phase ramps that were present
due to the raster grid pathology have been manually removed.
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Figure 3.9: MHIO reconstructions for the different noise levels, and for different MHIO parameters ᎎ.
The reconstructions were refined using global AP, hence no probe support constraint is visible. Phase
ramps that were present due to the raster grid pathology have been manually removed.
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other, the phase retrieval problem becomes significantly more constrained,
which allows for a more robust reconstruction.

• One can apply ptychographic reconstruction algorithms using global up-
dates or sequential updates. Global updates tend to be more robust to
noise, while sequential updates tend to convergence faster, especially if little
noise is present.

• We designed a way to apply HIO updates sequentially in ptychography,
and to combine M-HIO with ptychography (M-HIO is a more noise ro-
bust variant of HIO). In these methods, the key point is that if the probe has
a practically finite support, we can define a feedback function for each probe
position. When applying the factorization constraint (i.e. decomposing the
estimated exit waves in an object and a probe using either a global or a se-
quential update), we only update the exit waves, while leaving the feedback
functions unaltered. Sequential ptychographic M-HIO can be used for accel-
erating convergence in the first several iterations, while global ptychographic
M-HIO can be used to increase the noise robustness of simultaneous object
and probe retrieval.
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4
Noise robust ptychography

We review and investigate several methods to make the ptychographic al-
gorithm more noise robust, including the maximum likelihood method and
variance stabilization. We find that for Poissonian noise, the optimal object
reconstruction is not necessarily found with the maximum likelihood method.
Therefore, we propose a novel method to improve noise robustness, which in-
volves iteratively updating the intensity constraints.

Parts of this chapter have been published in Optics Express, 26:5 5857-5874 (2018) [1].
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We saw in Chapter 3 that one can formulate the phase retrieval problem as a cost
functional minimization problem. In Eq. (3.14) we gave a cost functional for single-
shot phase retrieval, which can be used to reconstruct the exit wave 𝜓(x) by using
the steepest descent method as described in Eq. (3.15). In Eq. (3.25) we gave
a ptychographic cost functional that can be minimized using the steepest descent
method as described in Eq. (3.27) (or Eq. (3.30) if one uses a preconditioner). By
doing so, one finds a reconstruction for the object 𝑂(x) for a given probe 𝑃(x), or
one can reconstruct 𝑂(x) and 𝑃(x) simultaneously if both are unknown.

In Eqs. (3.14) and (3.25) we defined the cost functional 𝐿 that quantifies the recon-
struction error using the squared difference of the reconstructed far field amplitude
and the measured amplitude. However, this is just one of many cost functionals
that can be chosen. For example, why not define the cost functional using the
estimated and reconstructed far field intensities, as opposed to the amplitudes? In
the following we discuss how one might use different cost functionals depending on
the noise model that is assumed. In these discussions, it is important to distinguish
three different quantities:

• The noise-free diffraction patterns

𝑚፣(k) = |𝜓̂፣(k)|ኼ

= |ℱ{𝑂(x)𝑃(x−X፣)}(k)|
ኼ .

(4.1)

These are the far-field intensity patterns that would be measured if no noise
is present. 𝑂(x) denotes the actual, but unknown, object. 𝑃(x) denotes the
actual probe, which may or may not be known.

• The measured diffraction patterns 𝑦፣(x). These are the same as 𝑚፣(k),
except they are corrupted by a certain type of noise.

• The estimated diffraction patterns

𝑧፧,፣(k) = | ̂𝑓፧,፣(k)|ኼ
= |ℱ{𝑂፧,፣(x)𝑃፧,፣(x−X፣)}(k)|ኼ.

(4.2)

These are the far-field intensity patterns that are calculated from the esti-
mated object (and probe, if it is unknown). For a correct reconstruction, one
requires 𝑧፣(k) = 𝑚፣(k) for all probe positions 𝑗.

4.1. Maximum likelihood cost function
Let us say that given a noise-free intensity value 𝑚 at a certain pixel k, the prob-
ability to measure a noise-corrupted value 𝑦 is given by a probability distribution
𝑃(𝑦|𝑚). If we measure an entire data set y that contains noise, we want to find the
object 𝑂(x) that would give an estimated noise-free data set z that is most likely
to yield y. Thus, we must express the probability 𝑃tot to measure y as a function of
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z (which is a function of 𝑂(x))

𝑃tot[z] =∏
፣,k
𝑃(𝑦፣(k)|𝑧፣(k)), (4.3)

where we assumed that noise at different pixels is uncorrelated. We want to find
𝑂(x) that maximizes 𝑃tot[z]. Since the logarithm preserves order, we can also min-
imize − log𝑃tot[z]. This means we can define the cost functional [2–4]

𝐿[𝑂(x)] = −∑
፣,k
log 𝑃(𝑦፣(k)|𝑧፣(k)). (4.4)

If we have Gaussian noise

𝑃(𝑦|𝑚) = 1
√2𝜋𝜎ኼ

𝑒ዅ
(ᑪᎽᑞ)Ꮄ
ᎴᒗᎴ , (4.5)

then we obtain the intensity-based cost functional

𝐿[𝑂(x)] =∑
፣,k
(𝑦፣(k) − 𝑧፣(k))

ኼ , (4.6)

where we have ignored irrelevant constant additive terms and multiplicative factors.

If we have Poissonian noise, then 𝑦 (which is a non-negative integer) follows a
Poissonian distribution with mean value 𝑚 (which is a non-negative real number)

𝑃(𝑦|𝑚) = 𝑚፲𝑒ዅ፦
𝑦! . (4.7)

The cost functional is then given by

𝐿[𝑂(x)] =∑
፣,k
𝑧፣(k) − 𝑦፣(k) log 𝑧፣(k), (4.8)

where we have ignored irrelevant constant additive terms. We can find the following
Taylor expansion in terms of √𝑧 around the point √𝑧 = √𝑦

𝑧 − 𝑦 log 𝑧 ≈ 𝑦 − 𝑦 log 𝑦 + 2 (√𝑧 − √𝑦)
ኼ . (4.9)

Thus, ignoring irrelevant additive and multiplicative constants, we can define the
cost functional [4]

𝐿[𝑂(x)] =∑
፣,k
(√𝑦፣(k) − √𝑧፣(k))

ኼ
. (4.10)

This is the amplitude-based cost functional that is used to derive regular PIE and
ePIE.
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4.2. Variance stabilizing transforms
Another way to look at the problem is from the perspective of variance stabiliza-
tion. For example, consider the intensity-based cost function of Eq. (4.8). If we
assume that the noise is Poissonian, then for larger measured intensities 𝑦 we
expect a larger error (𝑦 − 𝑚)ኼ. We therefore find that the intensity-based cost
weighs the pixels with high intensity more strongly than pixels with low intensity
(assuming that the algorithm converges to a solution 𝑧 ≈ 𝑚). If we want each
pixel to have equal weight regardless of its intensity, we need to apply a transfor-
mation so that the expected error is independent of the measured intensity, which
is a variance-stabilizing transform [5]. For Poisson noise, this transformation is
taking the square-root, which leads to the amplitude-based cost function of Eq.
(4.10). It has been proposed to use other variance-stabilizing transforms, such as
the Anscombe transform [6].

Indeed, we can show that the maximum likelihood approach as outlined in the
previous section is in fact also a method to make the variance the same for each
pixel regardless of its measured intensity 𝑦. If 𝑃(𝑦|𝑚) denotes the probability we
measure a noisy value 𝑦 given a noise-free value 𝑚, then we can use Bayes’ rule
to calculate the probability 𝑃(𝑚|𝑦) that 𝑚 is the noise-free value if we measure a
noisy value 𝑦

𝑃(𝑚|𝑦) = 𝑃(𝑦|𝑚)𝑃(𝑚)
𝑃(𝑦) . (4.11)

We now want to find a transformation 𝑇፲ such that 𝑇፲(𝑚) is normally distributed
with mean 0 and standard deviation 1, independently of the measured intensity
value 𝑦

𝑃(𝑚|𝑦) = 1
2𝜋𝑒

ዅᑋᑪ(ᑞ)
Ꮄ

Ꮄ . (4.12)

The cost function we then want to minimize is

𝐿[𝑂(x)] =∑
፣,k
𝑇፲ᑛ(k)(𝑧፣(k))ኼ. (4.13)

We can use Eq. (4.12) solve for 𝑇፲(𝑚)ኼ

𝑇፲(𝑚)ኼ = −2(log√2𝜋 + log𝑃(𝑚|𝑦))

= −2 (log√2𝜋 + log𝑃(𝑦|𝑚) + log 𝑃(𝑚) − log𝑃(𝑦)) .
(4.14)

We can plug this expression into Eq. (4.13). If we assume we have no prior
information about𝑚 (so 𝑃(𝑚) is independent of𝑚), and we ignore all the irrelevant
additive constants that are independent of 𝑧, and we ignore global multiplicative
constants, we find once more the maximum likelihood cost function of Eq. (4.4).
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4.3. Testing different cost functions for noise robust-
ness

We have seen that according to the maximum-likelihood approach, an amplitude-
based cost functional should give optimal results if the measurements are corrupted
by Poisson noise, and an intensity-based cost function should give optimal results
if there is Gaussian noise. In order to further investigate these predictions, we
introduce the cost functional

𝐿ᎎ[𝑓(x)] =∑
k

(𝑧(k)ᎎ − 𝑦(k)ᎎ)ኼ

=∑
k

(| ̂𝑓(k)|ኼᎎ − 𝑦(k)ᎎ)ኼ
(4.15)

where for simplicity we consider only a single probe position X፣. For 𝛼 = 0.5 we
obtain the amplitude-based cost functional, and for 𝛼 = 1 we obtain the intensity-
based cost functional. For 𝛼 = 0.5, we find for the Wirtinger derivative

𝜕𝐿ኺ.኿
𝜕𝑓(x)∗ = ℱ

ዅኻ {(| ̂𝑓(k)| − √𝑦(k))
̂𝑓(k)

| ̂𝑓(k)|
} (x). (4.16)

As noted in Chapter 3, applying the gradient descent scheme using this cost func-
tional gives the same update scheme as the method of Alternate Projections, which
is stable. For arbitrary 𝛼, the derivative is
𝜕𝐿ᎎ
𝜕𝑓(x)∗ = ℱ

ዅኻ {2𝛼 (| ̂𝑓(k)|ኼᎎ −√𝑦(k)
ኼᎎ
) | ̂𝑓(k)|ኼᎎዅኼ ̂𝑓(k)} (x)

= ℱዅኻ {(| ̂𝑓(k)| − √𝑦(k)√𝑦(k)
ኼᎎዅኻ

| ̂𝑓(k)|ኼᎎዅኻ
)

̂𝑓(k)
| ̂𝑓(k)|

(2𝛼| ̂𝑓(k)|ኾᎎዅኼ)} (x).
(4.17)

The expression in the last line highlights that compared to the case of 𝛼 = 0.5, the
derivative is approximately multiplied by 2𝛼| ̂𝑓(k)|ኾᎎዅኼ (we assume that the impact
of the scaling factor with which √𝑦(k) is multiplied is less relevant, since it should be
close to 1 if the estimated amplitude | ̂𝑓(k)| approximately matches the measured
amplitude √𝑦(k)). Since we know that for 𝛼 = 0.5 the global steepest descent
update as defined in Eq. (3.30) is stable for a step size 𝜇 = 1 (reducing the step
size is relevant for sequential updates, not so much for global updates), we define
for different 𝛼 the steepest descent update as Eq. (3.30), except we substitute
𝑓፧,፣(x) − 𝑓upd፧,፣ (x) with

1
maxk (2𝛼| ̂𝑓፧,፣(k)|ኾᎎዅኼ)

𝜕𝐿ᎎ,፣
𝜕𝑓፧,፣(x)∗

. (4.18)

We assume the probe 𝑃(x) is known, so only 𝑂(x) needs to be updated.
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Figure 4.1: Reconstruction error for different cost functions ፋᒆ as defined in Eq. (4.17).

In simulations it has been tested how the object reconstruction error as defined
in Eq. (3.33) varies as a function of 𝛼. The simulated data that are used for test-
ing different 𝐿ᎎ are shown in Fig. 3.3. To compare the different 𝐿ᎎ, we first run
the standard global ptychographic algorithm (i.e. 𝛼 = 0.5) to ensure we have a
good object estimate, to which only final refinement needs to be applied. Then,
we apply several updates using 𝛼 = 0.4 to make sure we have minimized 𝐿ኺ.ኾ.
Then, we incrementally increase 𝛼 by 0.01 and run the algorithm for 100 iterations
to make sure the algorithm has converged. By repeating this process every 100
iterations, we find how the reconstruction error changes as a function of 𝛼. The
results are shown in Fig. 4.1. The minimal reconstruction error is not found for
𝛼 = 0.5, even though we simulated Poisson noise1. Moreover, the optimal 𝛼 is
different for different noise levels (around 𝛼 = 0.7 for the low noise level, and 0.6
for the high noise level). Fundamentally, the problem is that we need to find a cost
functional 𝐿[𝑓(x)] which, when minimized, yields a minimized reconstruction error
𝐸[𝑓(x)] as defined in Eq. (3.33). Apparently, finding the reconstruction for which
the measured data set is most likely to occur given a certain noise model (by using
a maximum-likelihood approach), does not generally give a reconstruction with the
lowest reconstruction error. In Appendix C this problem is explored in more detail.

1Gaussian noise has not been tested, because it gives problems when the intensity is low. For Gaussian
noise with a certain standard deviation, there should be a probability to measure negative intensi-
ties at points where the noise-free intensity is close to zero. Since negative intensities are physically
impossible, Gaussian noise cannot be modelled in such a way that the claims of maximum-likelihood
refinement can be tested fairly. One could test the hypothesis for exponentially distributed noise, but
that noise model has never been seriously considered for ptychography, so testing it would be of lesser
practical value.
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4.4. Noise-robustness by adaptingmeasurement con-
straints2

4.4.1. Problems with the maximum likelihood scheme
We have seen that the maximum-likelihood cost functionals do not necessarily yield
the optimal reconstruction, which means that there is some room for improvement.
Another indication that one might be able to improve the algorithm, is the fact that
we typically do not achieve 𝐿 = 0 if noise is present: it means that the reconstruc-
tion does not match the constraints, which means we know something is wrong
with the reconstruction or the constraints, but we do not use this information to
improve the reconstruction. Moreover, all these algorithms push the solution to-
wards 𝑧፣(k) = 𝑦፣(k), which we almost certainly know to be wrong, because if 𝑦፣(k)
is randomly distributed, the probability that 𝑦፣(k) = 𝑚፣(k) for all 𝑗,k is extremely
small.

One argument for why the maximum likelihood method will not give the optimal
object reconstruction, is that the wrong quantity is maximized. In Eq. (4.4), we de-
fined the cost functional such that when it is minimized, the quantity 𝑃(y|z) is maxi-
mized. In other words, we try to find the object for which it is most likely to measure
y. However, it would make more sense to maximize 𝑃(z|y): given our measure-
ments y, we want to find the object that yields diffraction patterns z that are most
likely implied by y. Note that 𝑃(y|z) and 𝑃(z|y) are very dissimilar. 𝑃(y|z) is sim-
ply given by the product of probabilities for all pixels if the noise at different pixels
is uncorrelated (see Eq. (4.3)). On the other hand, 𝑃(z|y) cannot be expressed as
such a straightforward product, because of the redundancy of information in y due
to the overlap between probes. If 𝑦ኻ(k) and 𝑦ኼ(k) denote the measured intensity
patterns for two adjacent probe positions, then 𝑃(𝑧ኻ, 𝑧ኼ|𝑦ኻ, 𝑦ኼ) ≠ 𝑃(𝑧ኻ|𝑦ኻ)𝑃(𝑧ኼ|𝑦ኼ),
because 𝑃(𝑧ኻ|𝑦ኼ) and 𝑃(𝑧ኼ|𝑦ኻ) are nontrivial functions: the measurement for probe
position 1 contains information about the diffraction pattern for probe position 2,
and vice versa.

Another way to think about it is that in Eq. (4.14) we assumed that we have
no prior information about the noise-free intensity value 𝑚(k), so 𝑃(𝑚(k)) would
be independent of 𝑚(k). However, given the overlap constraints in ptychography,
one might argue that due to the redundancy in the data, there is in fact some prior
information available if we only consider one single intensity pattern at a time. For
example, consider a single probe positionX፣Ꮂ and all its adjacent probe positions. If
we measure the noisy intensity patterns 𝑦፣(k) for all adjacent probe positions X፣,
then the noise-free pattern 𝑚፣Ꮂ(k) for probe position X፣Ꮂ is not arbitrary. More
specifically, one could reconstruct the object using all probe positions except X፣Ꮂ ,
and use the reconstruction to compute a fairly accurate estimate of 𝑚፣Ꮂ(x), even
though we did not actually measure an intensity pattern for X፣Ꮂ: therefore, one
could argue that in some sense we have prior information that is not used in the

2The following is original work by the candidate, which has been published in Optics Express, 26:5
5857-5874 (2018) [1]
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variance stabilization method.

4.4.2. An alternative noise robust scheme
In order to improve the reconstruction quality in the presence of noise, we use the
reconstructed object to update the estimate of the noise-free intensity patterns,
which we in turn use to update the object reconstruction. We can come up with
the following scheme [1]:

1. Choose the initial estimated noise-free intensity patterns to be 𝑚፣,est,ኺ(k) =
𝑦፣(k) or some denoised version of 𝑦፣(k).

2. Run the reconstruction algorithm (PIE, ePIE, or some other variant) with a
small step size for a certain number of iterations, using 𝑚፣,est,፧(k) as the
intensity constraints. We denote the resulting estimated diffraction patterns
as 𝑧፣,፧(k).

3. Set
𝑚፣,est,፧ዄኻ(k) = 𝜇𝑧፣,፧(k) + (1 − 𝜇)𝑚፣,est,፧(k), (4.19)

where 𝜇 > 0 is a small step size (i.e. much smaller than 1).

4. Repeat steps 2 and 3 until 𝑧፣,፧(k) ≈ 𝑚፣,est,፧(k).

Note that in case 𝜇 = 0 the algorithm reduces to regular (e)PIE, and generally
speaking the algorithm fails to achieve 𝐿 = 0 if noise is present. If 𝜇 = 1 the
algorithm achieves 𝐿 = 0 and stagnates immediately when Eq. (4.19) is applied,
making this scheme redundant. If we choose 𝜇 to be small but nonzero, the inten-
sity constraints are gradually updated until the estimated intensity patterns match
the constraints, and 𝐿 = 0 is achieved. Whether this scheme actually improves
the reconstruction quality depends on the noise level of the measurements 𝑦፣(k):
if the measurements are too noisy, the reconstruction is too poor to update the
constraints reliably, and this scheme will fail to improve the reconstruction quality.
However, if the noise level is low enough to yield a decent object reconstruction,
this scheme can be used as final refinement to slightly improve the reconstruction.
Regardless of whether the improvement is significant enough to be of major prac-
tical value, this method may shed light on the possible limits of noise-robustness of
ptychographic reconstruction algorithms. Moreover, this proposed method is also
in line with the observation made in Appendix C, that the cost functional should be
adapted according to the specific realization of noise, rather than the general noise
statistics.

4.4.3. Experimental results
3To create and shift a phase object on which to test our proposed algorithm exper-
imentally, we use a phase-only Spatial Light Modulator (SLM) to which we assign
an image that we want to reconstruct. The SLM in which the object is created is
3The experiment was performed by the candidate, using an experimental setup that was built by MSc.
student Ruben Biesheuvel.
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(a) Phase of object 1 in radians. Am-
plitude is constant.

(b) Phase of object 2 in radians. Am-
plitude is constant.

(c) Amplitude and phase of the probe, which have been retrieved
experimentally using phase shifting holography.

Figure 4.2: The phase objects and the illuminating probe used for the ptychography experiment.

a reflective liquid crystal phase-only PLUTO SLM by Holoeye, with a resolution of
1920 × 1080 pixels, and a pixel pitch of 8.0𝜇m. With a lens with a focal length of
15cm we create the Fourier transform of the field that is reflected by the SLM. To
reduce the dynamic range of the diffraction patterns [7–9], a fixed rapidly spatially
varying phase pattern as shown in Fig. 4.2(c) is added with the SLM on top of the
shifted object, which more or less defines the probe 𝑃(x). The illuminated area of
the SLM (which corresponds to the size of the probe) is a circle with a radius of
250 pixels. The object, which is 800 × 800 pixels, is shifted along a 7 × 7 square
grid with a period of 50 pixels with some random offsets to reduce the raster grid
pathology in the reconstruction [10]. The images are recorded with an 8-bit SVS-
VISTEK eco204MVGE CCD camera with a resolution of 1024 × 768 pixels and a
pixel size of 4.65𝜇m× 4.65𝜇m. For each intensity measurement, we take the aver-
age of 50 pictures. The object is then reconstructed using ePIE4 [11] and a probe
position correction scheme [12]. Another reconstruction is then performed which
uses, in addition to ePIE and the probe position correction scheme, the proposed
noise-robust scheme where the intensity constraints are updated as in (4.19). The
experimental setup is shown in Fig. 4.3.

4Since this study is about the final refinement of the reconstruction, it is sufficient to use a local minimizer
such as ePIE as opposed to DM or RAAR.
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Figure 4.3: Experimental setup to generate ptychographic data sets to test the proposed algorithm on.

In Fig. 4.2 the phase objects that are applied to the SLM are shown. The
object should in principle have a constant amplitude, but the contours of the phase
pattern become apparent in the amplitude if the object is low-pass filtered. In the
experiment, low-pass filtering of the object is inevitable since the information of the
higher spatial frequencies that is present in the diffraction patterns is lost due to the
finite size and limited dynamic range of the detector. Also, in Fig. 4.2 the probe with
which the reconstruction was performed is shown. This probe was reconstructed
using phase-shifting holography and refined using ePIE [11].

Before performing the reconstruction on the noisy data set using ePIE and the
proposed algorithm, the intensity measurements were denoised. To do this, mea-
surements that were taken in the dark (i.e. when the laser is completely blocked)
were subtracted from the ptychographic measurements. Then, a rectangular region
in the measurements was selected where the images should be practically zero, as
shown in Fig. 4.4. In this region, the mean and standard deviation of the noise
level were determined. The mean value was subtracted from the entire image, and
everything below three times the standard deviation was set to zero. This denoising
method as well as others are described in [13]. We run two reconstruction algo-
rithms: ePIE with a reduced step size combined with a probe position correction
scheme, and the proposed adaption of this algorithm. For the first algorithm we
eventually use a step size of 0.1, although in the initial iterations a larger step size
can be used. For the position correction update scheme [12], we use a step size
of 0.1. For the proposed noise-robust algorithm we do the same, but after 150
iterations, we update the intensity constraints according to (4.19) each 10 itera-
tions with a step size of 𝜇 = 0.05. In Fig. 4.5 the reconstruction for the object 1
is shown. For object 1 we observe in some regions an increase in contrast. In Fig.
4.6 it is shown how adapting the intensity measurements causes a stronger pres-
ence of higher spatial frequencies, thus indeed leading to an increased resolution
in the object reconstruction. In Fig. 4.7 it is shown that for the amplitude-based
cost function 𝐿 as defined in Eq. (4.10) 𝐿 cannot converge to 0 when using regular
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Figure 4.4: A measured intensity pattern (log scale) where a region is selected (red rectangle in the top
left corner) to calculate the mean and the standard deviation of the noise.

ePIE, whereas when we adapt the amplitude constraints the value of 𝐿 gradually
approaches 0. For object 2, which is a binary image, we see in Fig. 4.8 that the
smaller structures become more clearly visible by applying the proposed algorithm.
The structured nature of object 2 causes the differences in the reconstructions to
be more easily visible, so we choose this object to perform further tests of the algo-
rithm. In Fig. 4.9 only a single measurement is taken per probe position, meaning
that the signal-to-noise ratio is significantly lower than in Fig. 4.8. Additionally, in
Fig. 4.10 we use incorrect initial probe guesses (with errors ranging from -5 pixels
to +5 pixels in both the 𝑥 and 𝑦 dimensions) and use probe position correction.
One can observe that in Fig. 4.10 the reconstruction quality is significantly lower
than in 4.9, which is because the algorithm fails to find the correct probe positions
due to the high noise levels. Nonetheless, in both cases the noise-robust extension
appears to improve the reconstruction quality in some points, as evidenced by the
zoomed-in images where the phase along the vertical lines are more uniform when
the proposed algorithm is used5.

4.4.4. Simulations
To quantify the benefit of the proposed algorithm more accurately, we performed
reconstructions with simulated data that closely resembled the measured data, i.e.
we used the same object and probe as the ones that were assigned in the SLM in
the experiment, and we used an oversampling rate that approximately matches the

5Unfortunately, it is difficult to perform further quantitative analysis on these reconstructions. Even
though we know the test-object that has been assigned to the SLM, there are still small uncertainties in
the magnification factor between the assigned image and the reconstructed image, the rotation angle
between the SLM and the detector which causes the reconstructed image to be slightly rotated, and
the way the SLM converts assigned grayscale values into phase shifts. Even though the uncertainties
may be small, the differences between the reconstruction errors for the two algorithms are small as
well, so it is difficult to use the test-object that is assigned to the SLM for quantitative analysis.
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(a) Reconstruction results for the ePIE algorithm and the proposed algorithm where the
intensity constraints are updated.

(b) Zoom with reduced phase range to in-
crease contrast. Increased contrast can be ob-
served between and below the lips.

Figure 4.5: Reconstructions of object 1.
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Figure 4.6: A comparison of the estimated diffraction patterns (log scale) of object 1 using standard
ePIE and the proposed algorithm. One can observe that in the proposed algorithm the higher spatial
frequencies have a stronger presence, thus causing the reconstructed object to have a higher resolution.

Figure 4.7: Plot of the amplitude-based cost function ፋ as a function of the number of iterations. For the
regular ePIE algorithm, the estimated amplitudes are compared with the measured amplitudes ፲X(k),
while for the proposed algorithm the estimated amplitudes are compared with the adapted amplitude
constraints ፦X,est(k).
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(a) Reconstruction results

(b) Zoom with reduced phase range to increase contrast

(c) Zoom

Figure 4.8: Reconstructions of object 2. For each probe position, 50 measurements were averaged.
Position correction was used.
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(a) Reconstruction results

(b) Zoom

(c) Zoom

Figure 4.9: Reconstructions of object 2. For each probe position, a single measurement was taken.
Correct probe positions were used in the reconstruction and no position correction was used.
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(a) Reconstruction results

(b) Zoom with reduced phase range to increase contrast

Figure 4.10: Reconstructions of object 2. For each probe position, a single measurement was taken.
Position correction was used.
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one from the experiment. We multiplied the simulated noise-free intensity patterns
with a certain value to change the photon count6. Then, Poisson noise was intro-
duced to simulate shot noise. This process was performed for different values of
the photon count, and for each value we compared the PIE reconstruction with the
reconstruction obtained with the proposed algorithm (we assumed no uncertainty
in the probe or probe positions). The reconstruction error is calculated using the
error metric as defined in Eq. (3.33).

The results are shown in Fig. 4.11. We see that for higher photon counts (higher
than 10ኾ) the proposed algorithm gives the same reconstruction error as using the
regular PIE algorithm at a photon count that is 10ኺ.኿ ≈ 3.2 times higher. In practice
this would mean that one could reduce the radiation dose to which the sample is
exposed by a factor of 3 without sacrificing reconstruction quality, which would be
desirable in X-ray imaging where the radiation can damage the sample. The reason
why the benefit of the proposed algorithm is lower for higher noise levels is because
it uses the reconstructed object to update the intensity constraints. If the noise lev-
els are higher, the reconstructed object is worse, and the intensity constraints are
updated in a less reliable manner. While this may appear as a major drawback for
the proposed scheme (it works worse when it is needed more), one could argue
that this trend is inevitable for any denoising scheme that exploits the redundancy
of information in ptychographic data sets. If the scheme exploits the redundancy
of information, then naturally the scheme has to perform worse if that information
is more corrupted by noise.

With these simulations it was also investigated how many PIE updates should
be applied each time after the intensity constraints have been updated according
to Eq. (4.19). For an update parameter of 𝜇 = 0.05, the reconstruction error has
been plotted for different numbers of PIE updates in Fig. 4.12. One can observe
that for this situation, applying just one PIE update after the intensity constraints
are updated gives the same reconstruction error as applying 20 PIE updates, and
significantly fewer iterations are needed.

To demonstrate that the proposed method is not restricted to one specific noise
model, simulations with different amounts of additive Gaussian noise were per-
formed. After normalizing the set of intensity patterns such that the overall max-
imum value is 1, Gaussian noise with standard deviations of 10ዅኽ.኿, 10ዅኽ, 10ዅኼ.኿
was added. The resulting simulated intensity patterns were then denoised using
the same procedure as described in Fig. 4.4. The reconstruction results shown in
Fig. 4.13 indicate that the proposed method also works for additive Gaussian noise,
provided that the noise level is not too high.

Lastly, we consider Fourier ptychography. We have seen that the maximum-
likelihood schemes and variance-stabilizing schemes aim to construct a cost function
that gives equal weight to pixels with low intensity and pixels with high intensity.

6’Photon count’ means the photon count per diffraction pattern. Each noise-free diffraction pattern
፦ᑛ(k) is multiplied with the same gain factor ፆ so that ∑k ፆ፦ᑛ(k) yields approximately the defined
photon count. Per pixel k, the noisy intensity value ፲ᑛ(k) is found by drawing from a Poisson distribution
with mean ፆ፦ᑛ(k).
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Figure 4.11: Error plots of simulated ptychographic reconstructions of object 1. Left: the reconstruction
errors as a function of the number iterations for different photon counts which are indicated on the
horizontal axis of the plot on the right. The dotted blue curves correspond to the standard PIE algorithm,
and the solid red curves correspond to the proposed algorithm. Right: the reconstruction errors after
1000 iterations for different photon counts.

Figure 4.12: Plots showing the reconstruction errors for the proposed method for different levels of Pois-
son noise when different numbers of PIE iterations are applied after the intensity constraint is updated.

It has been demonstrated that this is especially important in Fourier ptychogra-
phy because the dark-field images which carry information about the high spatial
frequencies of the object have a very low intensity compared to the bright-field im-
ages [2]. However, in regular ptychography such a distinction is absent (although
there may be a large dynamic range in each single measurement, depending on
what illuminating probe function one uses), and it has even been suggested to give
pixels with a higher signal-to-noise ratio (which for Poisson noise are the pixels
with higher intensity) more weight [14]. Therefore, simulations were performed to
test if the proposed method also works for Fourier ptychography. As shown in Fig.
4.14, a phase object with constant amplitude was used for the simulations. The
simulation results presented in Fig. 4.15 indicate that also in this case the proposed
method is capable of improving the reconstruction results. For example, one can
visually observe that by using the proposed extension, the reconstructed amplitude
becomes more constant, as it should be since the object is a pure phase object.
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(a) Logarithm of the simulated intensity patterns with different amounts of additive Gaussian
noise.

(b) Plots of the reconstruction error

Figure 4.13: Simulation results for ptychography with Gaussian noise. Left: the reconstruction errors
as a function of the number iterations for different standard deviations of the noise which are indicated
on the horizontal axis of the plot on the right. The dotted blue curves correspond to the standard PIE
algorithm, and the solid red curves correspond to the proposed algorithm. Right: the reconstruction
errors after 300 iterations for different standard deviations.
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Figure 4.14: Figures showing the amplitude and phase of the object, as well as the probe positions that
were used to simulate the Fourier ptychography dataset.

4.5. Summary
• Ptychography can be formulated as a cost-minimization problem. In the pres-
ence of noise that obeys a certain noise model, one can use the maximum-
likelihoodmethod or variance stabilizing transforms to find a cost func-
tional that is optimized for that noise model. We showed that these two ap-
proaches are equivalent.

• Using these approaches, one finds that an intensity-based cost func-
tional is most suited for Gaussian noise, while an amplitude-based
cost functional is most suited for Poisson noise.

• We tested the accuracy of these claims by introducing a parametrized cost
functional 𝐿ᎎ, where 𝛼 = 0.5 corresponds to an amplitude-based cost func-
tional, and 𝛼 = 1 corresponds to an intensity-based cost functional

𝐿ᎎ =∑
፣,k
(𝑧፣(k)ᎎ − 𝑦፣(k)ᎎ)

ኼ . (4.20)

For each 𝛼, we compared the reconstructed object to the reference object. We
found that the optimal cost-functionals are not necessarily the ones
predicted by the maximum-likelihood method.

• We proposed a noise-robust method that works by using the reconstruc-
tion to update the measurement constraints. We verified that this
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(a) Simulated intensity patterns with different amounts of Poisson noise.

(b) Plots of the reconstruction error

(c) Amplitude reconstruction

Figure 4.15: Simulation results for Fourier ptychography. One can observe a visible improvement in the
amplitude of the reconstruction: since the object is a pure phase object, the amplitude should show as
few features as possible.
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method works using both simulations and experiment. Since the method
exploits the redundancy of information in the ptychographic data set, the per-
formance becomes worse when this information is more corrupted by noise.
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5
Diffractive Shearing

Interferometry

We discuss the problem of Diffractive Shearing Interferometry (DSI), where
the measurement constraint consists of an interference term of two shifted
far fields. In case the two far fields overlap, the problem reduces to regu-
lar Coherent Diffractive Imaging (DSI). We investigate how we can apply the
tools and insights of CDI to solve and understand the DSI problem. We inves-
tigate the requirements for the support constraint in the case of single-shot
CDI, and as an addition to the standard DSI algorithm (which is more simi-
lar to reflection-based CDI algorithms such as HIO), we propose a new DSI
algorithm which is based on projections (more similar to ER).
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In conventional CDI, one uses monochromatic illumination to illuminate the sample,
and records the intensity of the far field, which is given by a straightforward Fourier
transform

𝐼(k) = |𝜓̂(k)|ኼ. (5.1)

However, when using Extreme Ultraviolet (EUV) light that is generated by a High
Harmonic Generator (HHG), the illumination is by nature not monochromatic (though
it can be made so using a monochromator, if one chooses), but rather it exists of
several harmonic frequencies 𝜈. As a result, the far field diffraction pattern is an
incoherent sum of monochromatic far-field intensities

𝐼(k) =∑
᎚
|𝜓̂᎚(k)|ኼ. (5.2)

To separate the different frequencies, one can apply Fourier Transform Spectroscopy
(FTS) [1]. In FTS, one splits the illuminating beam in two, and introduces a variable
path length difference between the two beams which results in a time delay 𝜏.
These two beams illuminate the sample at slightly different angles (though it is not a
fundamental requirement for FTS), thereby creating two shifted far field wavefronts
that interfere with each other

𝐼(k) =∑
᎚
|𝜓̂᎚ (k+

Δk
2 ) + 𝑒

ኼ᎝።᎚Ꭱ𝜓̂᎚ (k−
Δk
2 )|

ኼ

=∑
᎚
|𝜓̂᎚ (k+

Δk
2 )|

ኼ
+ |𝜓̂᎚ (k−

Δk
2 )|

ኼ

+ 𝜓̂᎚ (k+
Δk
2 ) 𝜓̂᎚ (k−

Δk
2 )

∗
𝑒ዅኼ᎝።᎚Ꭱ

+ 𝜓̂᎚ (k+
Δk
2 )

∗
𝜓̂᎚ (k−

Δk
2 ) 𝑒

ኼ᎝።᎚Ꭱ .

(5.3)

By taking the inverse Fourier transform with respect to 𝜏, one can extract for dif-
ferent frequencies 𝜈 the monochromatic measurement constraint [2]

𝑀᎚(k) = 𝜓̂᎚ (k+
Δk
2 ) 𝜓̂᎚ (k−

Δk
2 )

∗
. (5.4)

Reconstructing 𝜓(x) from this constraint has been termed Diffractive Shearing In-
terferometry (DSI). Note that if the shear vector Δk goes to 0, one finds once more
the regular CDI intensity constraint of Eq. (5.1). One important difference between
the CDI constraint and the DSI constraint is that the DSI constraint is a complex-
valued function that contains phase information of 𝜓̂(k), while the CDI constraint
is a real-valued function. In the following sections, we examine how we can use
insights from CDI and ptychography as described in Chapter 3 to understand and
solve the DSI problem. In particular, we consider the following two cases:
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1. We have a measurement constraint for only one shear Δk. In this case we
need a support constraint to reconstruct the object. In the direction per-
pendicular to the shear, we have a similar situation as in regular CDI, so
we assume a tight support constraint. In the direction parallel to the shear,
a support constraint is needed to eliminate alternative solutions. We investi-
gate how the required tightness of the support constraint parallel to the shear
direction depends on the shear size |Δk|.

2. We have multiple shears Δk፣ with the same size but different directions. This
case is referred to as Rotational DSI (R-DSI). We investigate whether it is
possible to reconstruct the object from the measurement constraints without
any additional constraints obtained from prior knowledge.

As a result of our investigations, a new algorithm for phase-retrieval in DSI will be
derived in the next section.

5.1. Intersection of sets: applying the constraints1
We have seen that we can solve the CDI problem by defining two constraint sets,
and using an update scheme that uses projections onto these sets. In single-
intensity pattern CDI these two constraints were the support constraint and inten-
sity constraint. In ptychography these two constraints were the factorization or
overlap constraint (all exit waves 𝑓፣(x) can be factorized as 𝑂(x)𝑃(x − X፣)) and
the intensity constraint.

In DSI, if we consider multiple shears Δk፣, we have the measurement constraint

𝑀፣(k) = 𝜓̂ (k+
Δk፣
2 ) 𝜓̂ (k−

Δk፣
2 )

∗
, (5.5)

which we can write more briefly as

𝑀፣(k) = 𝜓̂፣,ዄ(k)𝜓̂፣,ዅ(k)∗. (5.6)

Therefore, we can define as optimization variables ̂𝑓፣,±(k), and these have to satisfy
the measurement constraint

𝑀፣ = ̂𝑓፣,ዄ(k) ̂𝑓፣,ዅ(k)∗, (5.7)

and they have to satisfy the object constraint

ℱዅኻ { ̂𝑓፣,ዄ (k−
Δk፣
2 )} (x) = ℱዅኻ { ̂𝑓።,ዅ (k+

Δk።
2 )} (x) ∀𝑖, 𝑗, (5.8)

or equivalently
𝑓፣,ዄ(x)𝑒᎝።ጂkᑛ⋅x = 𝑓።,ዅ(x)𝑒ዅ᎝።ጂkᑚ⋅x ∀𝑖, 𝑗. (5.9)

We will now see how we can apply the constraints.
1The following is original work by the candidate.
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5.1.1. Object constraint
One can straightforwardly estimate the exit wave by averaging all the 𝑓፣,±(x) after
a proper linear phase correction

𝑓est(x) =
1
2𝐽

ፉ

∑
፣዆ኻ
𝑓፣,ዄ(x)𝑒᎝።ጂkᑛ⋅x + 𝑓፣,ዅ(x)𝑒ዅ᎝።ጂkᑛ⋅x. (5.10)

This estimate is then used to calculate the updated ̂𝑓፣,±(k)

̂𝑓upd፣,± (k) = ℱ {𝑓est,፣,±(x)𝑒∓᎝።ጂkᑛ⋅x} (k). (5.11)

5.1.2. Measurement constraint
To apply the measurement constraint, we need to find ̂𝑓upd± (k) such that

̂𝑓upd፣,ዄ (k) ̂𝑓
upd
፣,ዅ (k)∗ = 𝑀፣(k), (5.12)

and
𝐿(k) = | ̂𝑓upd፣,ዄ (k) − ̂𝑓፣,ዄ(k)|

ኼ
+ | ̂𝑓upd፣,ዅ (k) − ̂𝑓፣,ዅ(k)|

ኼ
(5.13)

is minimized. One can calculate (see Appendix D) that if the difference between
̂𝑓upd፣,± (k) and ̂𝑓upd፣,∓ (k) is small, the update reads approximately

̂𝑓upd፣,ዄ (k) = ̂𝑓፣,ዄ(k) +
(𝑀፣(k) − 𝑀est,፣(k)) ̂𝑓፣,ዅ(k)
| ̂𝑓፣,ዄ(k)|ኼ + | ̂𝑓፣,ዅ(k)|ኼ

,

̂𝑓upd፣,ዅ (k) = ̂𝑓፣,ዅ(k) +
(𝑀፣(k) − 𝑀est,፣(k))∗ ̂𝑓፣,ዄ(k)
| ̂𝑓፣,ዄ(k)|ኼ + | ̂𝑓፣,ዅ(k)|ኼ

,
(5.14)

where 𝑀est,፣(k) = ̂𝑓፣,ዄ(k) ̂𝑓፣,ዅ(k)∗. One can add a small constant to the denomina-
tors in order to prevent division by 0.

5.1.3. The standard DSI algorithm
The formula we found for applying the measurement constraint is only valid when
the correction is small. Therefore, this formula is only suitable for final refinement
of the reconstruction, but not for initial convergence. So what update do we use
for the initial convergence of the algorithm? It turns out that the standard DSI
algorithm [2] is surprisingly suitable for this.

In standard DSI the measurement constraint is applied as outlined in [2]

̂𝑓upd፣,ዄ (k) =
𝑀፣(k)
̂𝑓፣,ዅ(k)∗

,

̂𝑓upd፣,ዅ (k)∗ =
𝑀፣(k)
̂𝑓፣,ዄ(k)

.
(5.15)
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Normally, regularization is applied to prevent division by 0, but for conceptual clarity
this is omitted in the above expression. Notice that we are not actually applying
a projection on the measurement constraint in the sense that ̂𝑓upd፣,ዄ (k) ̂𝑓

upd
፣,ዅ (k)∗ =

𝑀፣(k). Rather

̂𝑓upd፣,ዄ (k) ̂𝑓
upd
፣,ዅ (k)∗ =

𝑀፣(k)ኼ
̂𝑓፣,ዄ(k) ̂𝑓፣,ዅ(k)∗

=
𝑀፣(k)ኼ
𝑀፣,est(k)

.
(5.16)

We are only applying the correct constraint when we already have the correct solu-
tion, i.e. when𝑀፣,est(k) = 𝑀፣(k). When this is not the case, we are overcorrecting:
if 𝑀፣,est(k) is too large, we apply a constraint that is smaller than the actual 𝑀፣(k)
and vice versa. It is reminiscent of phase retrieval algorithms that use reflection
operators in addition to projection operators in order to prevent the algorithm from
getting stuck in local minima: a reflection around a constraint 𝐶 reduces to a pro-
jection only if the optimization variable 𝑥 already lies in 𝐶. If 𝑥 does not lie in 𝐶, you
are overcorrecting. From the simulation results shown in Fig. 5.4 one can see how
standard DSI can be used for initial convergence, while an Alternating Projections
scheme as defined by Eq. (5.14) is used for final refinement, analogously to how in
CDI one typically uses HIO for initial convergence and ER/AP for final refinement.
Alternatively, a gradient-based method has been proposed in [3].

5.2. Alternative solutions
We will start by considering the ideal case where k is a continuous variable with an
infinite range. However, in practice k is pixelated and has a finite range due to the
finite detector size. This has consequences for our analysis: for example, while in
the continuous case we can choose different Δk with arbitrarily small differences,
it is not obvious what it means in the discrete case to have differences in Δk that
are smaller than the pixel size.

Let 𝜓̂(k) be the solution that satisfies Eq. (5.5). Then 𝐴̂(k)𝜓̂(k) is an alterna-
tive solution as long as

𝐴̂ (k+
Δk፣
2 ) 𝐴̂ (k−

Δk፣
2 )

∗
= 1 for all 𝑗, for all k where 𝑀፣(k) ≠ 0. (5.17)

Let us assume that 𝑀፣(k) is nonzero everywhere. If we write
𝐴̂(k) = |𝐴̂(k)|𝑒።᎕(k), (5.18)

then we find that the requirement in Eq. (5.17) becomes

𝜃 (k−
Δk፣
2 ) − 𝜃 (k+

Δk፣
2 ) = 0 ∀k

|𝐴̂ (k−
Δk፣
2 )| |𝐴̂ (k+

Δk፣
2 )| = 1 ∀k.

(5.19)
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From this it follows for 𝜃(k) that

𝜃 (k) = 𝜃 (k+ Δk፣) ∀k. (5.20)

It follows for |𝐴̂(k)| that

|𝐴̂(k)| = 1
|𝐴̂(k+ Δk፣)|

,

|𝐴̂(k+ Δk፣)| =
1

|𝐴̂(k+ 2Δk፣)|
,

(5.21)

so after substituting the second equation in the first one, we get

|𝐴̂(k)| = |𝐴̂(k+ 2Δk፣)|, (5.22)

Combining the results for 𝜃(k) and |𝐴̂(k)|, we can conclude that

𝐴̂(k) = 𝐴̂(k+ 2Δk፣). (5.23)

Note that this statement is weaker than the combination of Eqs. (5.20) and (5.21).
By applying these equalities repeatedly for different Δk፣, we can write for any set
of integers 𝑁፣

𝐴̂(k) = 𝐴̂ (k+∑
፣
𝑁፣2Δk፣) . (5.24)

However, keep in mind that this argument only holds when 𝑀፣(k) is non-zero ev-
erywhere. If 𝑀፣(k) is zero somewhere, one cannot continue to use this recursive
argument. Since in practice the detector size is finite, this will always be an is-
sue, which complicates the search for alternative solutions. However, also near-
alternative solutions (i.e. estimates that almost match the constraints) are of great
interest since they can manifest themselves as local minima in which the algorithm
can get trapped. Especially in the presence of noise, it may be difficult to distin-
guish such local minima from the actual global minimum.

Eq. (5.24) indicates that there is a grid of points set up by the Δk፣ where 𝐴̂(k)
should be equal to each other. If this grid covers all k, 𝐴̂(k) is constant (and by
Eq. (5.21) this constant equals 1), so any alternative solution 𝜓̂(k)𝐴̂(k) would be
trivial, which means there is a non-ambiguous solution. However, because we aim
to use a limited number of shears Δk፣, and we ignored the finite pixel and detector
size, the grid does not necessarily cover all k. Even if they technically do, near-
alternative solutions may also pose problems in the reconstruction. Since 𝐴̂(k) is
expected to be periodic (with a periodicity defined by the grid points), 𝐴(x) is ex-
pected to consist of a periodic array of delta functions, so the alternative solutions
𝐴(x)⊗𝜓(x) are expected to be a sum of a series of copies of the actual solution. In
Fig. 5.4 one indeed sees multiple copies of the actual object in the reconstruction.
The reason why these lie along the −45∘ direction, is because the shears are in the
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0∘, 45∘, and 90∘ directions, so the grid described by Eq. (5.24) consists of lines
along the 45∘ direction. Therefore, the inverse Fourier transform of 𝐴̂(k) consists
of delta peaks along the −45∘ direction.

5.2.1. Support constraint requirements
Let us consider the case of having a measurement constraint for a single shear Δk
which is in the 𝑘፱-direction, i.e.

Δk = [Δ𝑘፱0 ] . (5.25)

We want to find how the required width of the support constraint 𝑆፱ (to eliminate
alternative solutions) depends on the shear size Δ𝑘፱. From Eqs. (5.20) and (5.22)
it follows that 𝐴̂(𝑘፱ , 𝑘፲) can be written as

𝐴̂(𝑘፱ , 𝑘፲) =Xኼጂ፤ᑩ(𝑘፱) ⊗ 𝑔̂(𝑘፱ , 𝑘፲), (5.26)

where ⊗ denotes a convolution with respect to 𝑘፱, Xኼጂ፤ᑩ(𝑘፱) denotes a Delta
comb with period 2Δ𝑘፱, and 𝑔̂(𝑘፱ , 𝑘፲) should be such that the requirements of Eq.
(5.19) are met. Inverse Fourier transforming 𝐴̂(k) gives

𝐴(𝑥, 𝑦) =X Ꮃ
Ꮄᏺᑜᑩ

(𝑥)𝑔(𝑥, 𝑦), (5.27)

where 𝑔(𝑥, 𝑦) is the inverse Fourier transform of 𝑔̂(𝑘፱ , 𝑘፲). This means that 𝐴(x)
can consist of streaks in the 𝑦-direction, spaced at intervals of ኻ

ኼጂ፤ᑩ
. Now let us

assume that 𝜓(x) has a finite support with width Δ𝑥. Let 𝑆፱ be the width of the
support constraint that we impose during the reconstruction (so not the actual sup-
port of 𝜓(x)). How large does 𝑆፱ have to be in order to rule out all alternative
solutions 𝐴(x) ⊗ 𝜓(x)?

For all 𝐴(𝑥, 𝑦) = X Ꮃ
Ꮄᏺᑜᑩ

(𝑥)𝑔(𝑥, 𝑦) that have an infinitely large support, any finite
support constraint should in principle be sufficient to rule out the corresponding
alternative solutions. However, let us assume that there are alternative solutions
for which 𝐴(𝑥, 𝑦) = X Ꮃ

Ꮄᏺᑜᑩ
(𝑥)𝑔(𝑥, 𝑦) has non-negligible values only for 𝑥 = 0 and

𝑥 = ± ኻ
ኼጂ፤ . We assume that the values of 𝐴(𝑥, 𝑦) for 𝑥 = ±𝑛

ኻ
ኼጂ፤ with |𝑛| > 1 are

very small (compared to the noise level of the measurement). Under this assump-
tion, we require that 𝑆፱ is tight enough so that the presence of these copies would
violate the support constraint. In particular it means the following:

• If ኻ
ኼጂ፤ᑩ

> Δ𝑥, then the copies in the 𝑥-direction do not overlap, so there is no
real need to eliminate those using a support constraint (see Fig. 5.1).

• If ኻ
ኼጂ፤ᑩ

< Δ𝑥, the width of the support constraint should satisfy

Δ𝑥 ≤ 𝑆፱ <
1
Δ𝑘፱

+ Δ𝑥, (5.28)
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Figure 5.1: Support constraint requirements for single-constraint DSI. The sampleᎥ(x) has support with
width ጂ፱ in the shearing direction. The width of the support constraint ፒᑩ that is applied during the
reconstruction must be such that the alternative solutions ፀ(x)⊗Ꭵ(x) are excluded by the constraint.
The alternative solutions consist of copies of ፀ(x), spaced Ꮃ

Ꮄᏺᑜᑩ
apart. Assuming that alternative solu-

tions exist for which there are only the nearest copies, ፒᑩ should be tight enough so that the presence
of these copies would violate the support constraint.

so as the shear Δ𝑘፱ becomes larger, the support constraint 𝑆፱ should become
tighter. This has been verified with simulations, as shown in Figs. 5.2 and
5.3.

5.2.2. Introducing synthetic constraints to eliminate alterna-
tive solutions

We saw that alternative solutions are of the form 𝐴̂(k)𝜓̂(k), where 𝐴̂(k) has a
small period that is defined by the shears Δk፣. Therefore, a non-trivial alternative
solution should have rapid fluctuations, especially in the phase. So in order to
eliminate alternative solutions, we can introduce an additional synthetic constraint,
that forces the phase of ̂𝑓(k) to be smooth. We can do this as follows: if we write
the constraint 𝑀ጂk(k) as

𝑀ጂk(k) = 𝜓̂ (k+
Δk
2 ) 𝜓̂ (k−

Δk
2 )

∗

= |𝜓̂ (k+ Δk2 )| |𝜓̂ (k−
Δk
2 )| 𝑒

።[᎕(kዄᏺkᎴ )ዅ᎕(kዅ
ᏺk
Ꮄ )],

(5.29)
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(a) Reference object (purely amplitude, ዀዂኺ × ዀዂኺ pixels).

(b) Amplitude (log scale) of the simulated
measurement constraint as defined in Eq.
(5.5) (shear size of 12 pixels).

(c) Phase of the simulated measurement con-
straint as defined in Eq. (5.5) (shear size of
12 pixels).

Figure 5.2: The simulated data that was used to test the DSI algorithm using a single measurement
constraint and a support constraint. (see Fig. 5.3)
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Figure 5.3: (Figure is ዃኺ∘ rotated) Top row: DSI reconstructions of Fig. 5.2 with a shear size of 18
pixels. Middle row: DSI reconstructions with a shear size of 12 pixels. Bottom row: support constraints
enforced in the reconstruction. The results show how the support constraint should become tighter as
the shear size becomes larger, as predicted by Eq. (5.28). Because for larger shears the alternative
solutions lie closer together (see Fig. 5.1), one can see that in the top row the reconstruction can shift
more freely around without violating the enforced support constraint.
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then if 𝜓̂(k) is smooth, and 𝛼 is a number close to 1, we estimate 𝑀ᎎጂk(k) to be

𝑀ᎎጂk(k) ≈ |𝜓̂ (k+
Δk
2 )| |𝜓̂ (k−

Δk
2 )| 𝑒

።ᎎ[᎕(kዄᏺkᎴ )ዅ᎕(kዅ
ᏺk
Ꮄ )]

= |𝑀ጂk(k)|𝑒።ᎎ᎕ᑄ(k),
(5.30)

where 𝜃ፌ(k) is the phase of 𝑀ጂk(k). So without performing any additional mea-
surements, we can generate an additional synthetic constraint 𝑀ᎎጂk(k) that en-
forces the smoothness of ̂𝑓(k), thereby eliminating alternative solutions 𝐴̂(k)𝜓̂(k)
that have rapid oscillations. In Fig. 5.5 it is shown how the use of synthetic con-
straints eliminates alternative solutions.

5.3. Experimental data
The algorithms that have been explained in this chapter have been tested on exper-
imental data2 obtained using an EUV high-harmonic generator [4, 5]. More detailed
information on the experiment can be found in [2]. The frequency that has been
picked out using FTS is 8.7 PHz, which corresponds to a wavelength of 34 nm. The
shearing angles of Δk are 0, 10, 15, 80, and 90 degrees, and the corresponding
shear sizes vary from 4.3 to 5 pixels on the detector. An electron microscope (SEM)
image of the sample is shown in Fig. 5.6. The sample acts as a purely absorbing
amplitude sample, but this prior knowledge has not been used in the reconstruction
algorithm.

Let us denote the three algorithms as

• DSI: The standard DSI algorithm as explained in Section 5.1.3.

• AP: The alternating projections scheme as explained in Section 5.1.2.

• SDSI: The standard DSI algorithm using additional synthetic constraints as
explained in Section 5.2.2.

To test these algorithms, we performed several reconstructions using 20,000 iter-
ations which are distributed over the three algorithms. The following cases have
been tested:

1. Only DSI: 20,000 DSI.

2. DSI and AP final refinement: 18,000 DSI + 2,000 AP.

3. DSI, alternately DSI and AP, and AP final refinement: 2,000 DSI + 80×(100
AP + 100 DSI) + 2,000 AP.

4. 2,000 SDSI + 18,000 DSI.

5. 2,000 SDSI + 16,000 DSI + 2,000 AP.
2The experiment was performed by Anne de Beurs at the VU in Amsterdam under supervision of Stefan
Witte.
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(a) Reference object
(purely amplitude),
ዀዂኺ × ዀዂኺ pixels. (b) Reconstruction using standard DSI.

(c) Reconstruction using standard DSI fol-
lowed by Alternating Projection refinement as
defined in Eq. (5.14).

Figure 5.4: Demonstration using simulated noise-free data of how standard DSI can be used for initial
convergence, and alternating projections for final refinement. The reconstruction error is defined in
Fourier space (i.e. it compares the estimated ፌest(k) with the measured ፌ(k)). The shear size is 6
pixels, and the shear angles are 0, 45, and 90 degrees.
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(a) Reconstruction with DSI and synthetic constraints.

(b) Reconstruction with DSI and synthetic constraints, followed
by alternating projections (as defined in Eq. (5.14)) without syn-
thetic constraints.

Figure 5.5: Demonstration of how synthetic constraints can push the algorithm towards a better solution
(compare to Fig. 5.4). DSI with synthetic constraints serves to find the correct local minimum, while
the final refinement with alternating projections serves to achieve the actual minimal value of that local
minimum.
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Figure 5.6: Electron microscope (SEM) image of the sample. The sample fades at the edges because it
was fabricated with the intention of it having different transmission amplitudes, but it turned out only
the central part transmitted light.

6. 1,000 SDSI + 80×(100 DSI + 100 AP) + 3,000 AP.

Case 1 serves as a reference, with which the results of the proposed AP and SDSI
can be compared. Case 2 is used to test the added value of the AP refinement,
while Case 3 tests whether there is any added value to alternately using DSI and
AP (since analogously in regular CDI it is common to alternate between HIO and
ER). In the reconstruction results in Fig. 5.7 one can see that in Cases 1-3 (and
Case 3 especially) the algorithm tries to reconstruct the sample at two different
locations. In Cases 4-6 it is tested whether SDSI can improve the reconstruction
reconstruction result by eliminating this ambiguity.

The reconstructed amplitudes for these cases are shown in Figs. 5.7, 5.8, and
the reconstruction errors are shown in Fig. 5.9. From the Case 3 reconstruction,
one clearly sees in Fig. 5.7 that there are two solutions between which the algorithm
must choose. In the Case 1 and Case 2 reconstruction, traces of the alternative
solution are quite visible, whereas in Cases 4, 5, and 6 (where SDSI is used) such
traces are less obvious. By comparing Case 1 with Case 2, and Case 4 with Cases
5 and 6, one sees that the AP refinement reduces the amplitude surrounding the
reconstructed object. In the error plots of Fig. 5.9, it is seen that the AP refinement
indeed reduces the reconstruction error. However, from Fig. 5.8 it is difficult to
conclude whether AP refinement gives a visually better reconstruction.
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Figure 5.7: Reconstructed amplitudes obtained from the experimental DSI data using different combi-
nations of algorithms.
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Figure 5.8: Zoom of the reconstructed amplitudes of Fig. 5.7.
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(a) Reconstruction errors.

(b) Reconstruction errors (zoom).

(c) Reconstruction errors (different y-offsets).

Figure 5.9: Reconstruction errors for the DSI reconstructions. The reconstruction error is defined in
Fourier space (i.e. it compares the estimated ፌest(k) with the measured ፌ(k)).
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5.4. Summary
• The DSI problem uses as a measurement constraint the product of two
shifted far field wavefronts. In case the shift (or shear) is equal 0, the problem
reduces to the regular phase retrieval (CDI) problem.

• Like in CDI, we can tackle the problem by defining two constraint sets, and
finding the corresponding projection operators. We found the formula for
a projection onto the measurement constraint set, under the approximation
that the difference between the initial estimate and its projection is small.
Therefore, this projection is suitable for final refinement.

• For initial convergence, the standard DSI algorithm turns out to be very
suitable since it avoids getting trapped in local minima. This is because the
measurement constraint is applied in such a way that it is overcorrecting,
which is similar to the reflection operations that one uses in regular CDI to
avoid stagnation.

• We investigated the alternative solutions to the DSI problems. These al-
ternative solutions consist of multiple displaced copies of the actual object,
the locations of which depend on the shear size and direction. In the case of
a single DSI-constraint these alternative solutions can be eliminated by en-
forcing a sufficiently tight support constraint. In the case of Rotational
DSI, one can attempt to eliminate the alternative solution by taking measure-
ments for more shears, or by introducing synthetic constraints (that do not
require additional measurements) which enforce the phase of the far-field to
be smooth.
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6
3D ptychography

Having investigated phase retrieval for the reconstruction of two-dimensional
transmission and reflection functions, in this chapter we turn to the case of
three-dimensional samples. After briefly reviewing the reconstruction meth-
ods in the literature that reconstruct three-dimensional samples, we propose
a method that adds a correction term for the two-dimensional reconstruction
of samples whose thickness is not negligible.
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So far, we have only looked at thin samples for which the transmitted field 𝜓(x) is
found by simply multiplying the incident field 𝑃(x) with a complex-valued transmis-
sion function 𝑂(x). For samples for which this multiplicative approximation does
not hold one needs a more sophisticated forward model. One such model is the
multislice model (for a transmission setup), where a sample is modeled as a se-
quence of thin samples 𝑂፬(x) spaced a distance Δ𝑧 apart, and for each slice the
multiplicative approximation holds [1]. The advantage of performing ptychography
using this model is that multiple scattering is taken into consideration, because the
incident field at one slice is given by the propagated scattered field of the previous
slice. A disadvantage is that it is not immediately clear what the appropriate dis-
tance Δ𝑧 between the slices should be. If Δ𝑧 is too large then it is not appropriate
to use the multiplicative approximation. If Δ𝑧 is too small then the multiplicative
approximation holds for two subsequent slices together, which means that if 𝑂፬(x)
and 𝑂፬ዄኻ(x) are the actual transmission functions of the two slices, then

ኻ
፟(x)𝑂፬(x)

and 𝑓(x)𝑂፬ዄኻ(x) are also solutions since either way the total transmission function
of the two slices is given by 𝑂፬(x)𝑂፬ዄኻ(x). The problem of finding the right slice
separation has been further explored in [2], where an algorithm is proposed that
updates the slice separations during the reconstruction. Another ambiguity in the
reconstruction, regardless of the choice of Δ𝑧, is that each slice 𝑠 can be multiplied
by a constant 𝑐፬ such that ∏፬ 𝑐፬ = 1, because in that case the exit wave after the
sample is still the same. Moreover, it is not obvious how this method can be ex-
tended to reflective samples.

In this chapter, we propose a different method for dealing with samples whose
thickness is not negligible. The method is based on the scattering integral under
the single-scattering approximation (i.e. Born approximation). This integral de-
scribes how a three-dimensional optical contrast function 𝜒(r) (where r denotes
the 3D real space coordinate vector) scatters light when illuminated by a three-
dimensional incident field 𝑃(r), assuming that multiple scattering is negligible. If
the sample is thin (i.e. the extent of 𝜒(r) is limited in the 𝑧-direction), then one
can apply a zeroth-order approximation under which the integral reduces to the
familiar product 𝑃(x)𝑂(x), where 𝑃(x) and 𝑂(x) are two-dimensional functions.
In our newly proposed method we make a first-order approximation, rather than
a zeroth-order approximation, which leads to a second transmission function 𝑂̃(x)
that needs to be taken into account in the forward calculation. In doing so, we aim
to reduce the error as a consequence of approximating a thick sample as a two-
dimensional function. It is a subject for future research, outside the scope of this
PhD thesis, to investigate how significant the contribution of the correction term is,
and how it could be implemented in a reconstruction algorithm.
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6.1. Deriving the scattering integral
Let us define r = [𝑥 𝑦 𝑧]ፓ as a 3D position vector, and let 𝑈(r) be the total field.
The field should obey the Helmholtz equation

(∇ኼ + 𝑘ኼ𝑛(r)ኼ)𝑈(r) = 0, (6.1)

where 𝑘 = ኼ᎝
᎘ is the wave number in vacuum, and 𝑛(r) is the refractive index that

varies in space. We can write 𝑘ኼ𝑛(r)ኼ as a known quantity 𝑘ኼ𝑛፛(r)ኼ that depends
on the known background refractive index 𝑛፛(r), minus an unknown contrast 𝜒(r)

𝑘ኼ𝑛(r)ኼ = 𝑘ኼ𝑛፛(r)ኼ − 𝜒(r). (6.2)

This allows us to rewrite Eq. (6.1) as

(∇ኼ + 𝑘ኼ𝑛፛(r)ኼ)𝑈(r) = 𝜒(r)𝑈(r). (6.3)

The Green’s function 𝐺(r) is defined as the solution to

(∇ኼ + 𝑘ኼ𝑛፛(r)ኼ) 𝐺(r) = 𝛿(r). (6.4)

The Green’s function 𝐺(r − rᖣ) can be interpreted as the impulse response to an
excitation at the point rᖣ. Eq. (6.3) says that at each point r there is an excitation
with amplitude 𝜒(r)𝑈(r). Summing all these impulse responses together gives an
expression for the scattered field 𝑈፬(r)

𝑈፬(r) = ∫𝐺(r− rᖣ)𝜒(rᖣ)𝑈(rᖣ) drᖣ

= ∫𝐺(r− rᖣ)𝜒(rᖣ)[𝑃(rᖣ) + 𝑈፬(rᖣ)] drᖣ,
(6.5)

where in the last line we wrote the total field 𝑈(r) as the incident field 𝑃(r) plus
the scattered field 𝑈፬(r). The result is a complicated implicit equation for the scat-
tered field 𝑈፬(r). If we apply the first Born approximation (or the single-scattering
approximation), we assume that only the incident field is scattered by 𝜒(r), while
the scattered field itself is not scattered again by 𝜒(r) (i.e. we ignore multiple
scattering), which results in the explicit equation for 𝑈፬(r)

𝑈፬(r) = ∫𝐺(r− rᖣ)𝜒(rᖣ)𝑃(rᖣ) drᖣ. (6.6)

If we assume the background medium to be vacuum, i.e. 𝑛(r) = 1, then the Green’s
function is a spherical wave

𝐺(r) = 𝑒።፤|r|
4𝜋|r| . (6.7)
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We can approximate the argument of 𝐺(r− rᖣ) in the far field (i.e. |r| ≫ |rᖣ|) using
the approximation

|r− rᖣ| = √|r|ኼ + |rᖣ|ኼ − 2r ⋅ rᖣ

= |r|√1 + |r
ᖣ|ኼ − 2r ⋅ rᖣ
|r|ኼ

≈ |r| (1 + |r
ᖣ|ኼ − 2r ⋅ rᖣ
2|r|ኼ )

= |r| + |r
ᖣ|ኼ − 2r ⋅ rᖣ
2|r| Fresnel

≈ |r| − r ⋅ rᖣ
|r| Fraunhofer.

(6.8)

In the Fraunhofer approximation we can thus write (apart from a factor 𝑒።፤|r|)

𝐺(r− rᖣ) ≈ 𝑒።K⋅r
4𝜋|r|𝑒

ዅ።K⋅rᖤ , (6.9)

where K indicates the observation direction

K = 𝑘 r

|r| . (6.10)

Since |K| = 𝑘, we can write

K = [𝐾፱ 𝐾፲ √𝑘ኼ − 𝐾ኼ፱ − 𝐾ኼ፲]
ፓ
, (6.11)

where we assumed 𝐾፳ ≥ 0. Plugging Eq. (6.9) into Eq. (6.6) yields [3]

𝑈፬(r) ≈
𝑒።K⋅r
4𝜋|r| ∫ 𝑒

ዅ።K⋅rᖤ𝜒(rᖣ)𝑃(rᖣ) drᖣ, (6.12)

which says that under the single-scattering approximation and the far-field approx-
imation, the scattered field is given by the 3D Fourier transform of the contrast
function 𝜒(r) evaluated on a sphere with radius 𝑘 = ኼ᎝

᎘ , namely the Ewald sphere.

6.2. Approximating the 3D potential as 2D objects
We can write for the incident field

𝑃(𝑥, 𝑦, 𝑧) = ∫ 𝑃̂(𝑘፱ , 𝑘፲)𝑒።(፤ᑩ፱ዄ፤ᑪ፲ዄ፤ᑫ፳) d𝑘፱ d𝑘፲ , (6.13)

where 𝑃̂(𝑘፱ , 𝑘፲) denotes the Angular Spectrum of 𝑃(𝑥, 𝑦, 0), and 𝑘፳ = −√𝑘ኼ − 𝑘ኼ፱ − 𝑘ኼ፲
if we assume that the field propagates in the negative 𝑧-direction. If we shift the
probe laterally by

X = [𝑋 𝑌 0]ፓ , (6.14)
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we can write

𝑃(r−X) = ∫ 𝑃̂(𝑘፱ , 𝑘፲)𝑒።(፤ᑩ(፱ዅፗ)ዄ፤ᑪ(፲ዅፘ)ዄ፤ᑫ፳) d𝑘፱ d𝑘፲ . (6.15)

If we write the total field for a certain shift X as the sum of the incident field and
scattered field

𝑈X(r) = 𝑃(r−X) + 𝑈፬,X(r), (6.16)

we can write Eq. (6.12) (writing 𝑈፬(r) as a function of K = 𝑘 r

|r| ) as

𝑈፬,X(K)
=
𝑒።K⋅r
4𝜋|r| ∬𝑒ዅ።(ፊᑩ፱ᖤዄፊᑪ፲ᖤዄፊᑫ፳ᖤ)𝜒(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝑃̂(𝑘፱ , 𝑘፲)𝑒።(፤ᑩ(፱

ᖤዅፗ)ዄ፤ᑪ(፲ᖤዅፘ)ዄ፤ᑫ፳ᖤ) d𝑥ᖣ d𝑦ᖣ d𝑧ᖣ d𝑘፱ d𝑘፲
=
𝑒።K⋅r
4𝜋|r| ∫𝑉(𝐾፱ , 𝐾፲ , 𝑘፱ , 𝑘፲ , 𝑥

ᖣ, 𝑦ᖣ)𝑒ዅ።((ፊᑩዅ፤ᑩ)፱ᖤዄ(ፊᑪዅ፤ᑪ)፲ᖤ)𝑃̂(𝑘፱ , 𝑘፲)𝑒ዅ።(፤ᑩፗዄ፤ᑪፘ) d𝑥ᖣ d𝑦ᖣ d𝑘፱ d𝑘፲ ,
(6.17)

where
𝑉(𝐾፱ , 𝐾፲ , 𝑘፱ , 𝑘፲ , 𝑥ᖣ, 𝑦ᖣ) = ∫𝜒(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝑒ዅ።(ፊᑫዅ፤ᑫ)፳

ᖤ
d𝑧ᖣ. (6.18)

Recall that

• 𝐾፱ , 𝐾፲ denote the observation angles,

• 𝑘፱ , 𝑘፲ denote the incident angles of the illumination 𝑃(r),

• 𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ denote the coordinates in the scattering potential 𝜒(r).

We want to make certain approximations so that 𝑉(𝐾፱ , 𝐾፲ , 𝑘፱ , 𝑘፲ , 𝑥ᖣ, 𝑦ᖣ) can be sim-
plified.

6.2.1. Zeroth order approximation
Suppose the main direction of incidence is given by

kኺ = [𝑘ኺ፱ 𝑘ኺ፲ −√𝑘 − 𝑘ኼኺ፱ − 𝑘ኼኺ፲]
ፓ
, (6.19)

and the main scattering direction is given by

Kኺ = [𝐾ኺ፱ 𝐾ኺ፲ √𝑘 − 𝐾ኼኺ፱ − 𝐾ኼኺ፲]
ፓ
, (6.20)

and the angle between the two vectors is 2𝜃. The sign difference between 𝑘፳ and
𝐾፳ indicates we are assuming a reflective sample. If we assume the spreads of
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𝑘፱ , 𝑘፲ and 𝐾፱ , 𝐾፲ are small enough, we can assume 𝑘፳(𝑘፱ , 𝑘፲) and 𝐾፳(𝐾፱ , 𝐾፲) to
be approximately constant around kኺ and Kኺ, and in particular one can make the
zeroth-order approximation

𝐾፳ − 𝑘፳ ≈ 𝐾ኺ፳ − 𝑘ኺ፳ = 2𝑘 cos(𝜃). (6.21)

In this case, 𝑉(𝐾፱ , 𝐾፲ , 𝑘፱ , 𝑘፲ , 𝑥ᖣ, 𝑦ᖣ) will lose its dependence on 𝐾፱ , 𝐾፲, and can be
reduced to a two-dimensional function 𝑂(𝑥ᖣ, 𝑦ᖣ) which we define as

𝑂(𝑥ᖣ, 𝑦ᖣ) = ∫𝜒(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝑒ዅ።ኼ፤ ዧዳዷ(᎕)፳ᖤ d𝑧ᖣ, (6.22)

and the scattered field as described by Eq. (6.17) can be found using the familiar
multiplicative approximation

𝑈ᖣ፬,X(𝐾፱ , 𝐾፲) ≈
𝑒።K⋅r
4𝜋|r|ℱ{𝑂(𝑥, 𝑦)𝑃(𝑥 − 𝑋, 𝑦 − 𝑌)}(𝐾፱ , 𝐾፲). (6.23)

However, one must note the differences with the conventions used in ptychography:

• In ptychography, 𝑂(𝑥, 𝑦) is a dimensionless transmission function, but 𝑂(𝑥, 𝑦)
as defined in Eq. (6.22) is not dimensionless. This is compensated for by the
fact that the prefactor ኻ

|r| in Eq. (6.23) differs in dimension from the prefactor
ኻ
᎘፳ for Fraunhofer propagation, which is used in ptychography.

• The result in Eq. (6.23) describes only the scattered field, whereas in pty-
chography ℱ{𝑂(𝑥, 𝑦)𝑃(𝑥 − 𝑋, 𝑦 − 𝑌)}(𝐾፱ , 𝐾፲) describes the total propagated
field, which includes both the scattered and the unscattered field.

6.2.2. First order approximation1

If we want a more accurate approximation, we can expand 𝐾፳(𝐾፱ , 𝐾፲) − 𝑘፳(𝑘፱ , 𝑘፲)
around (𝑘ኺ፱ , 𝑘ኺ፲), (𝐾ኺ፱ , 𝐾ኺ፲) by defining

𝑘፱ = 𝑘ኺ፱ + 𝑘ᖣ፱ 𝑘፲ = 𝑘ኺ፲ + 𝑘ᖣ፲ ,
𝐾፱ = 𝐾ኺ፱ + 𝐾ᖣ፱ 𝐾፲ = 𝐾ኺ፲ + 𝐾ᖣ፲ ,

(6.24)

1The following is original work by the candidate.
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which gives

𝐾፳ − 𝑘፳ = √𝑘 − 𝐾ኼኺ፱ − 𝐾ኼኺ፲ − 𝐾ᖣኼ፱ − 𝐾ᖣኼ፲ − 2𝐾ᖣ፱𝐾፱ኺ − 2𝐾ᖣ፲𝐾፲ኺ

+√𝑘 − 𝑘ኼኺ፱ − 𝑘ኼኺ፲ − 𝑘ᖣኼ፱ − 𝑘ᖣኼ፲ − 2𝑘ᖣ፱𝑘፱ኺ − 2𝑘ᖣ፲𝑘፲ኺ

= 𝐾ኺ፳√1 −
𝐾ᖣኼ፱ + 𝐾ᖣኼ፲ + 2𝐾ᖣ፱𝐾፱ኺ + 2𝐾ᖣ፲𝐾፲ኺ

𝐾ኼኺ፳
− 𝑘ኺ፳√1 −

𝑘ᖣኼ፱ + 𝑘ᖣኼ፲ + 2𝑘ᖣ፱𝑘፱ኺ + 2𝑘ᖣ፲𝑘፲ኺ
𝑘ኼኺ፳

≈ 𝐾ኺ፳ − 𝑘ኺ፳ −
𝐾ᖣኼ፱ + 𝐾ᖣኼ፲ + 2𝐾ᖣ፱𝐾፱ኺ + 2𝐾ᖣ፲𝐾፲ኺ

2𝐾ኺ፳
+
𝑘ᖣኼ፱ + 𝑘ᖣኼ፲ + 2𝑘ᖣ፱𝑘፱ኺ + 2𝑘ᖣ፲𝑘፲ኺ

2𝑘ኺ፳
= 𝐾ኺ፳ − 𝑘ኺ፳ − 𝑓(K) + 𝑔(k),

(6.25)

where we can use the definitions of Eq. (6.24) to define

𝑓(K) =
𝐾ኼ፱ + 𝐾ኼ፲ − 𝐾ኼኺ፱ − 𝐾ኼኺ፲

2𝐾ኺ፳
,

𝑔(k) =
𝑘ኼ፱ + 𝑘ኼ፲ − 𝑘ኼኺ፱ − 𝑘ኼኺ፲

2𝑘ኺ፳
.

(6.26)

Thus we can approximate

𝑒ዅ።(ፊᑫዅ፤ᑫ)፳ᖤ ≈ 𝑒ዅ።(ፊᎲᑫዅ፤Ꮂᑫ)፳ᖤ𝑒ዅ።(፠(k)ዅ፟(K))፳ᖤ

≈ 𝑒ዅ።(ፊᎲᑫዅ፤Ꮂᑫ)፳ᖤ (1 − 𝑖 (𝑔(k) − 𝑓(K)) 𝑧ᖣ) .
(6.27)

Defining

𝑂̃(𝑥, 𝑦) = ∫𝜒(𝑥, 𝑦, 𝑧ᖣ)𝑒ዅ።ኼ፤ ዧዳዷ(᎕)፳ᖤ𝑧ᖣ d𝑧ᖣ, (6.28)

we can approximate 𝑉(𝐾፱ , 𝐾፲ , 𝑘፱ , 𝑘፲ , 𝑥, 𝑦) as

𝑉(𝐾፱ , 𝐾፲ , 𝑘፱ , 𝑘፲ , 𝑥, 𝑦) ≈ 𝑂(x) − 𝑖(𝑔(k) − 𝑓(K))𝑂̃(x) (6.29)

We saw that the term 𝑂(x) led to the familiar multiplicative approximation. For the
second term of 𝑉 we find we can approximate Eq. (6.17) as

𝑖𝑓(K)∫ 𝑂̃(𝑥ᖣ, 𝑦ᖣ)𝑒ዅ።((ፊᑩዅ፤ᑩ)፱ᖤዄ(ፊᑪዅ፤ᑪ)፲ᖤ)𝑃̂(𝑘፱ , 𝑘፲)𝑒ዅ።(፤ᑩፗዄ፤ᑪፘ) d𝑥ᖣ d𝑦ᖣ d𝑘፱ d𝑘፲

− 𝑖∫ 𝑂̃(𝑥ᖣ, 𝑦ᖣ)𝑔(k)𝑒ዅ።((ፊᑩዅ፤ᑩ)፱ᖤዄ(ፊᑪዅ፤ᑪ)፲ᖤ)𝑃̂(𝑘፱ , 𝑘፲)𝑒ዅ።(፤ᑩፗዄ፤ᑪፘ) d𝑥ᖣ d𝑦ᖣ d𝑘፱ d𝑘፲
= 𝑖𝑓(K)ℱ{𝑂̃(𝑥, 𝑦)𝑃(𝑥 − 𝑋, 𝑦 − 𝑌)}(𝐾፱ , 𝐾፲)

− 𝑖 ∫ 𝑂̃(𝑥ᖣ, 𝑦ᖣ)𝑒ዅ።((ፊᑩዅ፤ᑩ)፱ᖤዄ(ፊᑪዅ፤ᑪ)፲ᖤ)𝑃̂(𝑘፱ , 𝑘፲)𝑔(k)𝑒ዅ።(፤ᑩፗዄ፤ᑪፘ) d𝑥ᖣ d𝑦ᖣ d𝑘፱ d𝑘፲ .
(6.30)
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Observing that from Eq. (6.26) it follows

𝑔(k)𝑒ዅ።(፤ᑩፗዄ፤ᑪፘ) = − 1
2𝑘ኺ፳

( d
ኼ

d𝑋ኼ +
dኼ

d𝑌ኼ) 𝑒
ዅ።(፤ᑩፗዄ፤ᑪፘ) −

𝑘ኼኺ፱ + 𝑘ኼኺ፲
2𝑘ኺ፳

𝑒ዅ።(፤ᑩፗዄ፤ᑪፘ),

(6.31)

we can write (apart from a factor ፞
ᑚK⋅r

ኾ᎝|r| )

𝑈ᖣ፬,X(K) ≈ ℱ{𝑂(𝑥, 𝑦)𝑃(𝑥 − 𝑋, 𝑦 − 𝑌)}(𝐾፱ , 𝐾፲)

+ 𝑖 (𝑓(K) +
𝑘ኼኺ፱ + 𝑘ኼኺ፲
2𝑘ኺ፳

+ 1
2𝑘ኺ፳

dኼ

d𝑋ኼ +
1
2𝑘ኺ፳

dኼ

d𝑌ኼ)ℱ{𝑂̃(𝑥, 𝑦)𝑃(𝑥 − 𝑋, 𝑦 − 𝑌)}(𝐾፱ , 𝐾፲).

(6.32)

Note that to compute the total far field, one must add the unscattered field ℱ{𝑃(𝑥−
𝑋, 𝑦 − 𝑌)}(𝐾፱ , 𝐾፲). Thus, we see that under the approximations

• the spread of incident angles k is small,

• the spread of scattered angles K is small,

• the integration range of 𝑧ᖣ is small,

• the effects of multiple scattering are small,

we can reconstruct a 3D object by reconstructing a 2D object 𝑂(𝑥, 𝑦) (which is a
zeroth order approximation), the phase of which contains information about the
height 3D structure [4]. It is important to observe that the same assumptions that
make the 2D approximation hold (small spread of incident and scattered angles) also
limit the resolution with which the object can be reconstructed. As an improvement
to that approximation, 𝑂̃(𝑥, 𝑦) can be introduced.

6.3. A real-space derivation
In Eq. (6.32) we presented the approximate result for the scattered far field as-
suming single scattering. This result was derived in Fourier space (i.e. K-space).
In this section, we present another derivation for the case of a transmissive sample
that is performed in real space (i.e. r-space). To do this, let us first make some
simplifying assumptions that allow us to rewrite Eq. (6.32):

• We assume a transmissive sample, so that Eqs. (6.22) and (6.28) become

𝑂(𝑥, 𝑦) = ∫𝜒(𝑥, 𝑦, 𝑧ᖣ) d𝑧ᖣ,

𝑂̃(𝑥, 𝑦) = ∫𝜒(𝑥, 𝑦, 𝑧ᖣ)𝑧ᖣ d𝑧ᖣ.
(6.33)

• We assume that the incident field propagates in the 𝑧-direction so that 𝑘ኺ፱ =
𝑘ኺ፲ = 𝐾ኺ፱ = 𝐾ኺ፲ = 0 and 𝑘ኺ፳ = 𝐾ኺ፳ = 𝑘.
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• We consider only a single probe position X = 0.

• We define 𝐾ኼዊ = 𝐾ኼ፱ + 𝐾ኼ፲.

• We define Δ̄ = ።
ኼ፤ (

dᎴ

d፱Ꮄ +
dᎴ

d፲Ꮄ )

Under these assumptions, we can rewrite Eq. (6.32) as

𝑈ᖣ፬(K) ≈ ℱ{𝑂(x)𝑃(x)}(K)+(𝑖
𝐾ኼዊ
2𝑘ℱ{𝑂̃(x)𝑃(x)}(K) + ℱ{𝑂̃(x)Δ̄𝑃(x)}(K)) . (6.34)

Note that in the final term, Δ̄ acts only on 𝑃 because the second derivatives are
taken with respect to the probe position 𝑋, 𝑌 in Eq. (6.32). Taking the inverse
Fourier transform of this expression gives the transmitted exit wave

Ψ(x) ≈ 𝑂(x)𝑃(x) − Δ̄ [𝑂̃(x)𝑃(x)] + 𝑂̃(x)Δ̄𝑃(x). (6.35)

We will reproduce this expression using a real-space derivation. The derivation con-
sists of finding an approximate solution to the inhomogeneous paraxial Helmholtz
equation for a scattering potential 𝜒(r). We will compare two different methods to
solve the equation: one is by explicitly applying the single-scattering approximation,
the other is by Picard iterations, which is the same method as used in [5].

6.3.1. Paraxial Helmholtz equation
We assume that an optical monochromatic scalar field 𝜓(r) is propagating mainly
in the 𝑧-direction, so that we can write it as a modulation 𝜙(r) to the incident plane
wave 𝑒።፤፳

𝜓(r) = 𝜙(r)𝑒።፤፳ , (6.36)

where r = [𝑥 𝑦 𝑧]ፓ, and where 𝑘 denotes the wave number 𝑘 = 2𝜋/𝜆, where
𝜆 is the wavelength. Under the paraxial approximation and in the absence of a
scattering potential, the field obeys the free-space paraxial Helmholtz equation [6]

Δ𝜓 + 2𝑖𝑘𝜕𝜓𝜕𝑧 + 2𝑘
ኼ𝜓 = 0,

Δ𝜙 + 2𝑖𝑘𝜕𝜙𝜕𝑧 = 0,
(6.37)

where Δ denotes the Laplacian in the transverse coordinates

Δ = 𝜕ኼ
𝜕𝑥ኼ +

𝜕ኼ
𝜕𝑦ኼ . (6.38)

This equation can be derived from the regular Helmholtz equation (Δ + 𝑘ኼ)𝜓 = 0
by substituting Eq. (6.36) and neglecting the term ᎧᎴᎫ

Ꭷ፳Ꮄ . The Fresnel diffraction
integral is an exact solution to the paraxial Helmholtz equation [6].
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In case we do not assume free-space propagation, but rather propagation through
a potential (or optical contrast) 𝜒(r), the equation becomes

Δ𝜙 + 2𝑖𝑘𝜕𝜙𝜕𝑧 − 𝜒𝜙 = 0. (6.39)

We can rewrite this as
𝜕𝜙
𝜕𝑧 = (Δ̄ + 𝜒̄)𝜙, (6.40)

where

Δ̄ = 𝑖
2𝑘Δ,

𝜒̄ = − 𝑖
2𝑘𝜒.

(6.41)

Free-space propagation is described by

𝜙(𝑥, 𝑦, 𝑧) = 𝑒ጂ̄፳𝜙(𝑥, 𝑦, 0). (6.42)

Propagation through a potential 𝜒 is given by

𝜙(𝑥, 𝑦, 𝑧) = 𝑒ጂ̄፳ዄ∫
ᑫ
Ꮂ Ꭴ̄(፱,፲,፳ᖤ) d፳ᖤ𝜙(𝑥, 𝑦, 0). (6.43)

6.3.2. Single scattering approximation2
Let us assume that we have an incident field 𝜙(r) propagating in the 𝑧-direction. In
the plane 𝑧 = 0, the field is described by 𝜙(𝑥, 𝑦, 0) = 𝑃(x), where x = [𝑥 𝑦]ፓ. The
field is incident on a slice with thickness 𝜖 that has a scattering potential 𝜒(𝑥, 𝑦, 𝑧),
as shown in Fig. 6.1. To calculate the scattered exit wave in the single-scattering
approximation, we must do the following:

1. Propagate the incident field to a plane 𝑧 assuming free-space propagation.
This yields 𝑒ጂ̄፳𝜙(𝑥, 𝑦, 0).

2. Multiply the propagated field by the potential in that plane 𝜒̄፳(𝑥, 𝑦) = 𝜒̄(𝑥, 𝑦, 𝑧)
(the reason why we multiply with 𝜒̄ instead of 𝜒 is explained in Appendix E).
This yields 𝜒̄፳(𝑥, 𝑦)𝑒ጂ̄፳𝜙(𝑥, 𝑦, 0).

3. Propagate the multiplied field by the remaining distance 𝜖−𝑧 to the end of the
slice assuming free-space propagation. This yields 𝑒ጂ̄(Ꭸዅ፳)𝜒̄፳(𝑥, 𝑦)𝑒ጂ̄፳𝜙(𝑥, 𝑦, 0)

4. Do steps 1-3 for all 𝑧 in [0, 𝜖] and add the results together. The resulting exit
wave in the Fresnel approximation and single-scattering approximation is

𝜙(𝑥, 𝑦, 𝜖) = ∫
Ꭸ

ኺ
𝑒ጂ̄(Ꭸዅ፳)𝜒̄፳(𝑥, 𝑦)𝑒ጂ̄፳ d𝑧 𝜙(𝑥, 𝑦, 0). (6.44)

2The following is original work by the candidate.
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One can approximate for small 𝑧 and 𝜖 − 𝑧

𝑒ጂ̄፳ ≈ 1 + Δ̄𝑧,
𝑒ጂ̄(Ꭸዅ፳) ≈ 1 + Δ̄𝜖 − Δ̄𝑧.

(6.45)

We can define 𝑂(x) and 𝑂̃(x) as in Eq. (6.33) (apart from a factor ።
ኼ፤ ), and addition

we can define ̃𝑂̃(x) as

𝑂(x) = ∫
Ꭸ

ኺ
𝜒̄(𝑥, 𝑦, 𝑧ᖣ) d𝑧ᖣ,

𝑂̃(x) = ∫
Ꭸ

ኺ
𝜒̄(𝑥, 𝑦, 𝑧ᖣ)𝑧ᖣ d𝑧ᖣ,

̃𝑂̃(x) = ∫
Ꭸ

ኺ
𝜒̄(𝑥, 𝑦, 𝑧ᖣ)𝑧ᖣኼ d𝑧ᖣ.

(6.46)

Using the fact that 𝜙(𝑥, 𝑦, 0) = 𝑃(x), we can approximate Eq. (6.44) to find

𝜙(𝑥, 𝑦, 𝜖) ≈ (1+𝜖Δ̄) [𝑂(x)𝑃(x)]−Δ̄ [𝑂̃(x)𝑃(x)]+(1+𝜖Δ̄) [𝑂̃(x)Δ̄𝑃(x)]−Δ̄ [ ̃𝑂̃(x)Δ̄𝑃(x)] .
(6.47)

If we ignore the terms with 𝜖 and ̃𝑂̃(x), we find

𝜙(𝑥, 𝑦, 𝜖) ≈ 𝑂(x)𝑃(x) − Δ̄ [𝑂̃(x)𝑃(x)] + 𝑂̃(x)Δ̄𝑃(x), (6.48)

which is the same as Eq. (6.35), apart from a factor ።
ኼ፤ that is absorbed in the

definitions of 𝑂, 𝑂̃, ̃𝑂̃.

6.3.3. Picard Iterations
Another method to solve Eq. (6.40) is by using Picard Iterations [5], which is the
same method that is used to derive the Born series. In this method, one rewrites
Eq. (6.40) as an integral equation

𝜙(𝑥, 𝑦, 𝑧) = 𝜙(𝑥, 𝑦, 0) + ∫
፳

ኺ
(Δ̄ + 𝜒̄(𝑥, 𝑦, 𝑧))𝜙(𝑥, 𝑦, 𝑧ᖣ) d𝑧ᖣ, (6.49)

(where one can substitute 𝜙(𝑥, 𝑦, 0) with 𝑃(𝑥, 𝑦)) and iteratively compute estimates
of 𝜙(𝑥, 𝑦, 𝑧) as follows

𝜙፧ዄኻ(𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦) + ∫
፳

ኺ
(Δ̄ + 𝜒̄(𝑥, 𝑦, 𝑧))𝜙፧(𝑥, 𝑦, 𝑧ᖣ) d𝑧ᖣ. (6.50)

We choose
𝜙ኺ(𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦), (6.51)
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Figure 6.1: Illustration of how to calculate the transmitted field through a slice of width Ꭸ in the single-
scattering approximation.

and we introduce the following shorthand notation

𝜙፧(𝑥, 𝑦, 𝑧) → 𝜙,
𝑃(𝑥, 𝑦) → 𝑃,

𝜒̄(𝑥, 𝑦, 𝑧) → 𝜒̄፳ ,

𝑂፳ = ∫
፳

ኺ
𝜒̄(𝑥, 𝑦, 𝑧ᖣ) d𝑧ᖣ,

𝑂̃፳ = ∫
፳

ኺ
𝜒̄(𝑥, 𝑦, 𝑧ᖣ)𝑧ᖣ d𝑧ᖣ.

(6.52)

Note that here 𝑂፳ and 𝑂̃፳ are functions of 𝑧, as opposed to the definitions introduced
in Eq. (6.46). We find the following sequence

𝜙ኺ = 𝑃, (6.53)

𝜙ኻ = 𝑃 +∫
፳

ኺ
(Δ̄ + 𝜒̄፳ᖤ)𝑃 d𝑧ᖣ (6.54)

= (1 + 𝑧Δ̄)𝑃 + 𝑂፳𝑃 (6.55)

𝜙ኼ = 𝑃 +∫
፳

ኺ
(Δ̄ + 𝜒̄፳ᖤ) [(1 + 𝑧ᖣΔ̄)𝑃 + 𝑂፳ᖤ𝑃] d𝑧ᖣ (6.56)

= (1 + 𝑧Δ̄ + (𝑧Δ̄)
ኼ

2 )𝑃 + (1 + Δ̄𝑧)𝑂፳𝑃 + 𝑂̃፳Δ̄𝑃 − Δ̄(𝑂̃፳𝑃) +
1
2𝑂

ኼ
፳ 𝑃. (6.57)
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To obtain the final line, we have used the following results [5]

∫
፳

ኺ
𝑂፳ᖤ d𝑧ᖣ = 𝑧𝑂፳ − 𝑂̃፳ ,

∫
፳

ኺ
𝜒̄፳ᖤ𝑂፳ᖤ d𝑧ᖣ =

1
2𝑂

ኼ
፳ .

(6.58)

In the final expression for 𝜙ኼ, one recognizes in the first term the start of the Taylor
expansion of 𝑒ጂ̄፳𝑃, which corresponds to the unscattered propagated field. The
following three terms are also found in Eq. (6.47), and can be associated with
single-scattering effects since they depend linearly on 𝜒. The final term depends
quadratically on 𝜒̄, and can therefore be associated with second-order multiple
scattering effects.

6.3.4. Application to inverse problems: multislice method3
Let us assume we have a sample with thickness 𝑇, i.e. 𝜒(𝑥, 𝑦, 𝑧) is nonzero from
𝑧 = 0 to 𝑧 = 𝑇. By illuminating it with a field 𝑃(𝑥, 𝑦) and measuring the scattered
field, we want to reconstruct 𝜒. However, according to Eq. (6.43), the field in the
plane immediately behind the sample is given by

𝜙(𝑥, 𝑦, 𝑇) = 𝑒ጂ̄ፓዄ∫
ᑋ
Ꮂ Ꭴ̄(፱,፲,፳ᖤ) d፳ᖤ𝑃(𝑥, 𝑦)

= 𝑒ጂ̄ፓዄፎᑋ𝑃(𝑥, 𝑦).
(6.59)

Since the propagation operator depends only on 𝑂ፓ, which is the integral of 𝜒̄(𝑥, 𝑦, 𝑧)
over the total thickness 0 < 𝑧 < 𝑇, one can only hope to reconstruct 𝑂ፓ but not
𝜒̄(𝑥, 𝑦, 𝑧), no matter how many different 𝑃(𝑥, 𝑦) are used. Nevertheless, many
successful ptychographic reconstructions using the multislice method have been
reported in the literature [1, 7–9]. How can this be the case?

A possible reason could be that the multislice model makes an assumption that
in fact imposes an additional constraint (i.e. prior knowledge) that eliminates al-
ternative solutions. The slice width 𝜖 has to be chosen carefully so that the correct
constraint is enforced. To explain this argument, consider the following expression

𝑒ጂ̄ፓዄፎᑋ ≈ 𝑒∫
ᑋ
ᑋᎽᒠ Ꭴ̄ᑫ d፳𝑒ጂ̄Ꭸ𝑒∫

ᑋᎽᒠ
ᑋᎽᎴᒠ Ꭴ̄ᑫ d፳𝑒ጂ̄Ꭸ …𝑒ጂ̄Ꭸ𝑒∫

Ꮄᒠ
ᒠ Ꭴ̄ᑫ d፳𝑒ጂ̄Ꭸ𝑒∫

ᒠ
Ꮂ Ꭴ̄ᑫ d፳ . (6.60)

This expression formulates the multislice model: it says that to a good approxima-
tion one can propagate the field through the sample by alternately applying free
space propagation over a distance 𝜖 (which is done by applying 𝑒ጂ̄Ꭸ), and multiply-
ing the field with a transmission function (which is done by applying 𝑒∫

ᑫᎲᎼᒠ
ᑫᎲ Ꭴ̄ᑫ d፳).

In this expression lies the assumption that propagation over a distance 𝜖 through
the potential 𝜒̄ can be approximated as

𝑒ጂ̄Ꭸዄፎᒠ ≈ 𝑒ጂ̄Ꭸ𝑒ፎᒠ . (6.61)
3The following is original work by the candidate.
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However, the Baker-Campbell-Haussdorf (BCH) formula states that

𝑒ጂ̄Ꭸ𝑒ፎᒠ = 𝑒ጂ̄Ꭸዄፎᒠዄ
ᒠ
Ꮄ [ጂ̄,ፎᒠ]ዄ…, (6.62)

where the straight brackets [⋅] denote the commutator. Thus, the multislice model
implicitly enforces the constraint that Ꭸኼ [Δ̄, 𝑂Ꭸ] is negligible. If 𝜖 is chosen too large,
then this constraint is invalid, so it eliminates the actual solution from the set of
allowed solutions. If 𝜖 is chosen too small, then the constraint becomes trivial, so it
fails to eliminate alternative solutions. For example, the Lie product formula states

𝑒ጂ̄ፓዄፎᑋ = lim
ፍ→ጼ

(𝑒ጂ̄
ᑋ
ᑅ 𝑒

ᑆᑋ
ᑅ )

ፍ
, (6.63)

so if one chooses 𝜖 = ፓ
ፍ , with 𝑁 → ∞, then we can write

𝑒ጂ̄ፓዄፎᑋ = lim
Ꭸ→ኺ

(𝑒ጂ̄Ꭸ𝑒Ꭸ
ᑆᑋ
ᑋ )

ᑋ
ᒠ

= lim
Ꭸ→ኺ

(𝑒ጂ̄Ꭸ𝑒∫
ᑫᎲᎼᒠ
ᑫᎲ

ᑆᑋ
ᑋ d፳)

ᑋ
ᒠ
,

(6.64)

from which we see that 𝜒̄፳ =
ፎᑋ
ፓ is a trivial alternative solution.

In [5], an improved multislice model is proposed

𝑒ጂ̄Ꭸዄፎᒠ ≈ 𝑒ፎ̃ᒠ/Ꭸ𝑒ጂ̄Ꭸ𝑒ፎᒠዅፎ̃ᒠ/Ꭸ . (6.65)

While this scheme may make the forward calculation more accurate or less compu-
tationally expensive, it remains to be seen whether such a scheme will be benefi-
cial for solving the inverse problem. After all, we just argued that an exact forward
model allows for many alternative solutions, and that an approximate forward model
must be used in order to enforce a constraint that eliminates those alternative so-
lutions. In that light, one may question the added value of an improved forward
model (such as reducing the slice thickness 𝜖).

One way to eliminate alternative solutions is by performing measurements at dif-
ferent angles. In [3] this was done in a Fourier ptychographic setup to reconstruct
a thick sample in the single scattering approximation, and in [10, 11] the multi-
slice method was combined with a tilt-series measurement. By performing mea-
surements at different angles, one can in principle reconstruct ∫ 𝜒̄፳ d𝑧 for different
𝑧-axes, and essentially perform limited-angle tomography using these projections
to reconstruct 𝜒̄. If the projections ∫ 𝜒̄፳ d𝑧 are reconstructed with the multislice
method, one can take multiple scattering into account. In such a case, where one
does not completely rely on the multislice approximation to eliminate alternative
solutions, an improved multislice model may help in improving the reconstruction
quality or reducing the computation time.
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6.4. Summary
• In regular ptychography, the transmitted exit wave is calculated using the
multiplicative approximation 𝜓(x) = 𝑃(x−X)𝑂(x), which holds for thin
samples. In this chapter, we have looked at higher-order approximations
which may be useful for samples whose thickness is not negligible. All the
results are derived using the single-scattering (i.e. first Born) approxi-
mation.

• The first derivation is a Fourier-space derivation. The scattered far field is
expressed as a function of the scattering potential and the incident field. By
Taylor expanding the 𝑧-components of the wave vectors of incident
and scattered fields in terms of the 𝑥- and 𝑦-components, we can simplify
the expression. A zeroth order expansion results in the familiar multiplicative
approximation, while a first order expansion yields additional correction terms.
The derivation applies to both reflective and transmissive samples.

• The second and third derivations are real-space derivations for transmis-
sive samples. It consists of finding an approximate solution to the paraxial
inhomogeneous Helmholtz equation.

• One way to approximately solve the paraxial inhomogeneous Helmholtz equa-
tion is by explicitly applying the single-scattering approximation. The
solution is found by propagating the incident field to a plane 𝑧 inside the sam-
ple, multiplying it with the scattering potential, and propagating the result to
the exit plane of the sample. By adding the results for all 𝑧 inside the sample,
one finds the scattered exit wave.

• Another way to approximately solve the paraxial inhomogeneous Helmholtz
equation is by using Picard iterations. By rewriting the differential equation
as an integral equation, one can iteratively improve the solution through a
recursion relation.

• It has been demonstrated that the three methods give very similar re-
sults, which is evidence for their validity.

• It has been briefly discussed how the derived results may play a role in solving
inverse problems. Some remarks have been made regarding the multislice
method (in particular about how the multislice approximation imposes
a constraint that eliminates alternative solutions if the slice thickness
is chosen appropriately), but it remains a topic of further research whether
and how the results presented in this chapter can implemented in a practical
manner.
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7
Conclusion

In this thesis, we have investigated different aspects of phase retrieval. We gave an
overview of several non-iterative and iterative phase retrieval methods, explained
their interconnections, and their advantages and drawbacks. We examined sev-
eral methods in more detail, laid out some new insights and proposed some new
methods, namely

• a non-iterative phase retrieval method by variation of a single optical param-
eter (Section 2.5);

• a non-iterative phase retrieval method using focus variation and a star-shaped
mask (Section 2.6);

• a method that combines (M)-HIO with ptychography, either through sequen-
tial or global updates (Section 3.2.3);

• a method to make ptychographic phase retrieval more noise robust, that works
by adapting the measurement constraints (Section 4.4.2);

• an alternate projections algorithm for DSI that is suitable for final refinement
(Section 5.1.2);

• an algorithm for DSI that uses synthetic constraints to eliminate alternative
solutions (Section 5.2.2);

• a method to more accurately compute the field scattered by a thick sample
(Section 6.2.2).

These may help us in better understanding and improving phase retrieval methods,
which are used in various imaging applications. In particular, it may be useful
for lensless imaging using EUV radiation, which can be applied in the inspection
of semiconductor samples. Thus, the researched topic may for example help in
producing better computer chips more efficiently, in line with Moore’s famous law
of IC manufacturing.
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7.1. Future work
The major limitation of the methods discussed so far, is that they are diffraction-
limited, i.e. the imaging resolution one can achieve is limited by the wavelength
of the illumination and the acceptance angle of the detector in the far field. This
is because if one uses the scalar model of light fields, and models the transmis-
sion through a sample using the multiplicative approximation, the high-resolution
information of the sample is encoded in the evanescent field that does not propa-
gate to the far field. There are two ways to achieve super resolution from far field
measurements.

• Super resolution through sparsity constraints: One can compensate for
the loss of high-resolution information by introducing prior information about
the sample, which can be formulated as a sparsity constraint of some sort.
For example, one might know that the object can be parametrized in a certain
manner using few coefficients [1], or otherwise significantly limit the solution
space [2]. When inspecting semiconductor samples, one typically knows what
the sample should ideally look like according to its design, and only needs to
check for a certain set of deviations from that design. Therefore, lots of prior
information is available that can be incorporated in the form of a sparsity
constraint.

• Super resolution through multiple scattering: By making the single-
scattering assumption (which is traditionally made in ptychography when mak-
ing the multiplicative approximation that assumes the exit wave can be com-
puted by multiplying the probe with the object’s transmission or reflection
function), one assumes that all the high-resolution information of the sam-
ples is encoded in the evanescent field, which does not propagate to the far
field. However, if one takes into account that the evanescent scattered field
may interact once more with the sample and be converted to a propagating
field, one realizes that there may in fact be super resolution information avail-
able in the far field. Therefore, by taking multiple scattering into account, one
might achieve super resolution from far-field measurements. [3, 4].
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Epilogue

Western civilization, it seems to me, stands by two great heritages. One is
the scientific spirit of adventure — the adventure into the unknown, an
unknown which must be recognized as being unknown in order to be

explored; the demand that the unanswerable mysteries of the universe
remain unanswered; the attitude that all is uncertain; to summarize it —
the humility of the intellect. The other great heritage is Christian ethics —

the basis of action on love, the brotherhood of all men, the value of the
individual — the humility of the spirit.

Richard Feynman

It is said that where there is a will, there is a way. This phrase serves to remind us
that if one is to put a significant amount of effort in some endeavor, one ought to
be able to answer, at least to themselves, the question: ’why?’ So having spent all
this effort on doing a PhD, let us now ask: why?

Reasons for doing science

More broadly we can ask: why should one do science? From my experience, the
reasons people tend to have can be divided into four categories:

1. Idealism: Being a good scientist is about following certain ideals: examine
all claims critically, draw conclusions only from the facts, not from what you
want to be true. We do science because there is something inherently good
about following scientific ideals.

2. Productivity: Science has greatly improved productivity and human well-being
on a global scale. We do science because it is an excellent tool to improve
the world.

3. Earning a living: Our modern economy relies heavily on technology, so if you
want to have a good job, you should be scientifically literate. We do science
because we need to make money.

4. Status: Personal achievements in scientific research demonstrate a superior
work ethic and intellect, which elevates one as an individual. We do science
to earn the respect of ourselves and of others.

The scientific enterprise started from the ideals as posed in Reason 1. Over time, by
following the scientific method we discovered that the universe can be explained in
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purely materialistic terms. The universe is indifferent, there is no higher purpose,
and there are no ’true’ ideals. There are only ideals we choose to follow if we
happen to like them, and ideals that are enforced if sufficiently many people with
power happen to like them. Therefore, the result of adhering to scientific ideals is
that the belief that scientific ideals are a fundamental truth has become obsolete.

Rather, it would be more appropriate to speak of a scientific toolkit. As inhabi-
tants of a meaningless, indifferent universe, we are free to choose what our goals
are (especially in Western liberal, individualistic societies), and it turns out that sci-
ence is an effective tool to achieve many of them. So if you choose your goal to be
to change the world, make money, or attain status, then Reasons 2, 3, 4 would be
rational reasons to do science.

So it seems that if I should have any reason to do science, it should not be
Reason 1. It is hopelessly self-contradictory, as is (possibly unintentionally) made
explicit by the words of Carl Sagan: ’The sacred truth of science is that there are no
sacred truths’. One might even consider these ideals to be a self-righteous excuse
for self-indulgence, as if one would say: ’I want to do science because I like it.
I do not want to take any responsibility for practical matters, but I still want to
feel morally superior’. Another might regard holding on to these ideals as a sign of
weakness: it is naive wishful thinking by those who cannot handle the idea of an
indifferent universe.

Without expecting to perfectly resolve all these issues, let us further explore the
question: what are the reasons to stick to ideals that transcend the individual?

The role of transcendent ideals

The success of scientific ideals allowed for criticizing scientific ideals. An anal-
ogy can be made with Christianity, which is all about following the highest ideal,
namely God. The Judeo-Christian foundations on which Western civilization allowed
Enlightenment values to develop (though this claim could spark an entire discussion
by itself), which were subsequently used to heavily criticize religion. In Democracy
in America (1835), Alexis De Tocqueville states:

’By the side of these religious men I discern others whose looks are turned to the
earth more than to Heaven; they are the partisans of liberty, not only as the source
of the noblest virtues, but more especially as the root of all solid advantages; and
they sincerely desire to extend its sway, and to impart its blessings to mankind.
It is natural that they should hasten to invoke the assistance of religion, for they
must know that liberty cannot be established without morality, nor morality without
faith; but they have seen religion in the ranks of their adversaries, and they inquire
no further; some of them attack it openly, and the remainder are afraid to defend it.’

Later, in 1983 Aleksandr Solzhenitsyn commented on the atrocities that had tran-
spired in the communist Soviet Union:

’If I were asked today to formulate as concisely as possible the main cause of
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the ruinous Revolution that swallowed up some sixty million of our people, I could
not put it more accurately than to repeat: Men have forgotten God; that’s why all
this has happened.’

The point is that while traditional ideals may appear obsolete or even backward
at first sight, and a more rational alternative seems available, one abandons the
former at one’s own peril, and one ought not to underestimate the magnitude of
the potential consequences. So is there a danger lurking when we make the sci-
entific enterprise increasingly more pragmatic and abandon traditional ideals? Is
there a danger to maintaining that there is nothing intrinsically meaningful to doing
science, and that it only serves as a tool to achieve individual goals?

The risks of doing science without reverence for higher ideals

Suppose we maintain that there is nothing fundamentally valuable about doing
science, but that it is simply an effective means to an end. The steps to reaching
that end seem straightforward:

1. Define the goal with some quantifiable metric.

2. Incentivize researchers to reach that goal.

Therefore, we define the quality of research output by metrics such as the num-
ber of publications, the number of citations, and the impact factors of the journals
one publishes in. We incentivize researchers through rankings, awards, and hon-
ours. It seems simple enough, but experience with optimization methods teaches
us that the most straightforward optimization algorithm can be far from the best
one. Especially the issue of motivation and incentives is tricky.

Social media have aimed to harness the power of motivation. Through ’likes’
and similar rewards they try to keep the consumer hooked. That ’motivation’ has
now been more properly identified as ’addiction’ and a cause of stress and anxiety.
But when researchers try to rack up their number of publications and citations,
how different is that from racking up the number of ’likes’ on your social media
accounts? Where lies the boundary between motivating someone and encouraging
an unhealthy obsession?

Moreover, relying on one’s research output to find motivation is inherently un-
reliable. The point of doing research is exploring the unknown, which by definition
means it is uncertain whether the outcome will be positive or negative, regard-
less of the competence of the researcher. If the competence of a researcher is
determined by their ability to generate positive research results, researchers gain
an incentive to neglect scientific integrity, as scientific integrity only makes it more
difficult to obtain positive results. Of course scientific integrity can be enforced
through rules and regulations, but it should concern one when integrity is seen as
a burden rather than a goal. The guarantee for positive results and the demand for
scientific integrity are incompatible.

If, however, one maintains that adhering to scientific ideals has intrinsic value,
one does not have to rely on addictive rewards generated by positive research out-
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put to find motivation, and scientific integrity becomes less of a burden and more
of a reward by itself. Paradoxically, moving the focus away from producing output
results in a resilience to failure, while the serving of a greater ideal will help gener-
ate better output in the long term. Victor Frankl worded this excellently:

’Don’t aim at success. The more you aim at it and make it a target, the more
you are going to miss it. For success, like happiness, cannot be pursued; it must
ensue, and it only does so as the unintended side effect of one’s personal dedication
to a cause greater than oneself or as the by-product of one’s surrender to a person
other than oneself. [...] In the long-run, [...] success will follow you precisely
because you had forgotten to think about it.’

This is ancient wisdom, as it was already articulated in the New Testament in
Matthew 6:31-33

’So do not worry, saying, ’What shall we eat?’ or ’What shall we drink?’ or ’What
shall we wear?’ [...] Seek first his kingdom and his righteousness, and all these
things will be given to you as well.’

Indeed, one finds hints of this dedication to a greater cause in some of the great-
est scientists. Johannes Kepler said: ’Truth is the daughter of time, and I feel no
shame in being her midwife.’ Isaac Newton said: ’Plato is my friend ঁ Aristotle is
my friend ঁ but my greatest friend is truth.’ However, in an individualistic, secular
society, where quality metrics, awards, and honors are routinely used to incentivize
researchers, it appears that researchers are not encouraged to serve scientific ide-
als, but rather the remnants of scientific ideals are made to serve the glorification
of individual researchers.

Why did I do a PhD?

So with all that in mind, let us return to the original question: why did I spend
so much effort on getting a PhD?

I try not to be too motivated by ’likes’: the publications that I can put on my
CV, or the title that I can put in front of my name (though I am not too naive to
recognize the practical utility of these). I do not wish to take pride in ’being smart’
or ’working hard’. These qualities are not commendable in and of themselves, for
they are worthless if they do not serve the right purpose. Personally, I feel proudest
of conducting research and educational activities in a way that is mostly in line with
my ideals.

Even so, one must not overestimate the value of following scientific ideals. There
is something beautiful about doing science, but if it in some way causes human mis-
ery (e.g. by insisting on moral relativism and existential nihilism ad nauseam), one
should have one’s priorities in order. Carl Friedrich Gauss put it as follows:

’There are problems to whose solution I would attach an infinitely greater impor-
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tance than to those of mathematics, for example touching ethics, or our relation to
God, or concerning our destiny and our future; but their solution lies wholly beyond
us and completely outside the province of science.’

Feynman articulated it more succinctly:

’Tell your son to stop trying to fill your head with science - for to fill your heart
with love is enough�’

I am grateful to those who inspired me to examine my own beliefs, values, and
motivations more carefully, whether they did it by helping me, challenging me, or
otherwise. Perhaps more importantly than contributing to scientific research, I think
doing a PhD has helped me to develop more as an individual. I hope that others
who do a PhD find the opportunity to experience the same.

We do not ask for what useful purpose the birds do sing, for song is their
pleasure, since they were created for singing. Similarly, we ought not to ask

why the human mind troubles to fathom the secrets of the heavens.

Johannes Kepler as quoted by Carl Sagan





A
Wigner Distribution

Deconvolution Method and
the autocorrelation function

Consider an object 𝑂(x) that is illuminated by a shifted probe function 𝑃(x −X).
We denote the transmitted exit wave as

𝜓(x,X) = 𝑂(x)𝑃(x−X). (A.1)

The far field is given by 𝜓̂(k,X), where 𝜓̂ denotes the Fourier transform of 𝜓(x,X)
with respect to x, and k is the corresponding reciprocal space coordinate. By
measuring the far field intensity for different probe positions X, we obtain the
four-dimensional data set

𝐼(k,X) = |𝜓̂(k,X)|ኼ. (A.2)

We follow the line of reasoning as outlined in [1] to write 𝜓̂(k,X) as a four-
dimensional Fourier transform of a four-dimensional function 𝑓(x,K), so that the
four-dimensional inverse Fourier transform of 𝐼(k,X) can be interpreted as the au-
tocorrelation of 𝑓(x,K).

We can write 𝜓̂(k,X) explicitly as

𝜓̂(k,X) = ∫𝑂(x)𝑃(x−X)𝑒ዅኼ᎝።k⋅x dx. (A.3)

We can rewrite 𝑃(x−X) as

𝑃(x−X) = ∫ 𝑃̂(K)𝑒ኼ᎝።(xዅX)⋅K dK, (A.4)
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A. Wigner Distribution Deconvolution Method and the autocorrelation
function

where 𝑃̂(K) denotes the Fourier transform of 𝑃(X). Plugging this expression in
Eq. (A.3) gives

𝜓̂(k,X) = ∬𝑂(x)𝑃̂(K)𝑒ዅኼ᎝።k⋅x𝑒ኼ᎝።(xዅX)⋅K dx dK

=∬𝑂(x)𝑃̂(K)𝑒ኼ᎝።x⋅K𝑒ዅኼ᎝።k⋅x𝑒ዅኼ᎝።X⋅K dx dK

=∬𝑓(x,K)𝑒ዅኼ᎝።k⋅x𝑒ዅኼ᎝።X⋅K dx dK,

(A.5)

where we defined
𝑓(x,K) = 𝑂(x)𝑃̂(K)𝑒ኼ᎝።x⋅K. (A.6)

So we see that 𝜓̂(k,X) can be written as the four-dimensional Fourier transform
of the four-dimensional function 𝑓(x,K). Therefore, inverse Fourier transforming
𝐼(k,X) with respect to both k and X yields the four-dimensional autocorrelation
function of 𝑓(x,K)

ℱዅኻk,X {𝐼(k,X)}(x,K) = ∬𝑓(xᖣ,Kᖣ)∗𝑓(x+ xᖣ,K+Kᖣ) dxᖣ dKᖣ

= 𝑒ኼ᎝።x⋅K∫𝑂(xᖣ)∗𝑂(x+ xᖣ)𝑒ኼ᎝።K⋅xᖤ dxᖣ ∫𝑃̂(Kᖣ)∗𝑃̂(K+Kᖣ)𝑒ኼ᎝።Kᖤ⋅x dKᖣ

= 𝑒ኼ᎝።x⋅K𝑊ፎ(x,K)𝑊ፏ̂(K,x),
(A.7)

where 𝑊፠(x,K) denotes the Wigner distribution function

𝑊፠(x,K) = ∫𝑔(xᖣ)∗𝑔(x+ xᖣ)𝑒ኼ᎝።xᖤ⋅K dxᖣ. (A.8)

We see that the four-dimensional autocorrelation function (which is the 4D inverse
Fourier transform of the 4D measured data set) separates the contributions from
𝑂(x) and 𝑃̂(K), so if the illumination 𝑃(x) is known, one can divide out 𝑊ፏ̂(K,x)
to find the Wigner distribution 𝑊ፎ(x,K) of the object 𝑂(x), which can be inverted
to find 𝑂(x).

The final expression of Eq. (A.7) differs slightly from Eq. (1.30), because there
we defined the forward Fourier transform using the positive exponential ̂𝑓(𝑘) =
∫𝑓(𝑥)𝑒ዄኼ᎝።፱፤ d𝑥 (while here we use the negative exponential), and because in Eq.
(1.30) we take one forward and one inverse Fourier transform (while here we apply
two inverse Fourier transforms), and because in Eq. (1.32) the result is written in
terms of the Wigner distribution function of 𝑃(x) (while here we use the Wigner
distribution function of 𝑃̂(K)). Nevertheless, the fundamental result that the mea-
surements 𝐼(k,X) allow for a factorization of the Wigner distributions of the object
and the probe remains apparent.

One reason why it is useful to think about the WDDM in terms of an autocorre-
lation function of 𝑂(x)𝑃̂(K)𝑒ኼ᎝።x⋅K is that it allows one to apply general arguments
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that hold for any direct reconstruction method based on autocorrelation functions,
such as the one presented in Section 2.3. Another reason is that one can intuitively
understand how the choice of the illumination function 𝑃(x) and sampling of the
probe positions X affect the reconstruction quality of 𝑂(x). To see how this works,
let us consider a 1D object and probe so that 𝑓(𝑥, 𝐾) = 𝑂(𝑥)𝑃̂(𝐾)𝑒ኼ᎝።፱ፊ becomes
a 2D function which can easily be visualized in an 𝑥, 𝐾-plot, just like its autocorre-
lation function Aut{𝑓}(𝑥, 𝐾) as shown in Fig. A.1.

If the probe has a high spatial frequency content, 𝑃̂(𝐾), 𝑊ፏ̂(𝐾, 𝑥), 𝑓(𝑥, 𝐾), and
Aut{𝑓}(𝑥, 𝐾) will be elongated in the 𝐾-direction. This is beneficial for the recon-
struction [2], because the Wigner distribution function of 𝑂(𝑥) is given by

𝑊ፎ(𝑥, 𝐾) =
Aut{𝑓}(𝑥, 𝐾)
𝑊ፏ̂(𝐾, 𝑥)

𝑒ዅኼ᎝።፱ፊ , (A.9)

and 𝑂(𝑥) is found by inverse Fourier transforming 𝑊ፎ(𝑥, 𝐾) along 𝐾 (or the Fourier
transform of 𝑂(𝑥) is found by inverse Fourier transforming 𝑊ፎ(𝑥, 𝐾) along 𝑥 and
evaluating it in 𝐾). Thus, 𝑊ፎ(𝑥, 𝐾) needs to be well defined along 𝐾, which means
we need to avoid Aut{፟}(፱,ፊ)

ፖᑇ̂(ፊ,፱)
= ኺ

ኺ , which is done by giving the probe a sufficiently

high spatial frequency content.

To understand the effect of sampling the probe position 𝑋 along a discrete grid
with interval Δ𝑋, one must note that this corresponds to multiplying 𝐼(𝑘, 𝑋) with
a delta comb Xጂፗ(𝑋), which means that Aut{𝑓}(𝑥, 𝐾) is convolved with a delta
comb Xኻ/ጂፗ(𝐾). Thus, aliases of Aut{𝑓}(𝑥, 𝐾) will appear along the 𝐾-direction
with interval ኻ

ጂፗ . If 𝑃(x) has a high spatial frequency content, Δ𝑋 must be smaller
to prevent overlap between the aliases. This can be interpreted intuitively: if 𝑃(x)
is a focal spot, it has a high spatial frequency content, and it must be scanned with
a very small step size Δ𝑋 across the sample to ensure overlap between the adjacent
probes.

One might ask what these observations about WDDM (non-iterative ptychography)
can tell us about the limitations of iterative ptychography. The constraint that one
uses in iterative ptychography that is not used in WDDM, is that Aut{፟}(x,K)ፖᑇ̂(K,x)

𝑒ዅኼ᎝።x⋅K

must be a Wigner distribution: in WDDM it is merely assumed that this is the
case, but it is not enforced as a separate constraint. Iterative ptychographic algo-
rithms have demonstrated that by enforcing such a constraint, one can reconstruct
𝑂(x) even for large (but not too large) ΔX [3] (which means one can correct for
aliasing of Aut{𝑓}(x,K) in the K-direction), one can reconstruct 𝑂(x) and 𝑃(x)
simultaneously [4, 5], and one can correct for errors in the probe positions X [6].
However, iterative schemes cannot compensate for the loss of information due to
Aut{፟}(፱,ፊ)
ፖᑇ̂(ፊ,፱)

= ኺ
ኺ . For example, in the extreme case that 𝑃(x) is a plane wave, then

its spatial frequency content is minimal, and one is unable to find a reconstruction
using WDDM. If one uses an iterative ptychographic algorithm, it is still not possible
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Figure A.1: Illustration of ፟(፱, ፊ) ዆ ፎ(፱)ፏ̂(ፊ)፞Ꮄᒕᑚᑩᑂ and its autocorrelation function which is used in
the WDDM.

to reconstruct 𝑂(x) because one measures the same intensity pattern for all probe
positions X.
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B
Fresnel propagation of the

focal field

The focal field of a coherent pupil field 𝜓(𝑥, 𝑦) is given by

𝜓̂(𝑥፟ , 𝑦 ) = ℱ{𝜓(𝑥, 𝑦)} (
𝑥፟
𝜆𝑓 ,

𝑦
𝜆𝑓) , (B.1)

where (𝑥፟ , 𝑦 ) denote the coordinates in the back focal plane, 𝜆 is the wavelength,
𝑓 is the focal length of the lens, and (𝑥, 𝑦) are the coordinates in the front focal
plane. We propagate this field by 𝑧፟ using the Angular Spectrum method. The
spectrum of 𝜓̂(𝑥፟ , 𝑦 ) is

ℱ{𝜓̂(𝑥፟ , 𝑦 )}(𝑓፱ , 𝑓፲) = ∬𝜓(𝑥, 𝑦)𝑒ዅኼ᎝።(፱
ᑩᑗ
ᒐᑗዄ፲

ᑪᑗ
ᒐᑗ )𝑒ዅኼ᎝።(፱ᑗ ᑩ፟ዄ፲ᑗ ᑪ፟) d𝑥 d𝑦 d𝑥፟ d𝑦

= (𝜆𝑓)ኼ𝜓(−𝜆𝑓𝑓፱ , −𝜆𝑓𝑓፲).
(B.2)

In the Fresnel approximation the propagator is given by

𝑒።፳ᑗ√፤
Ꮄዅ፤Ꮄᑩዅ፤Ꮄᑪ ≈ 𝑒።፳ᑗ፤𝑒ዅ።፳ᑗ

ᑜᎴᑩᎼᑜᎴᑪ
Ꮄᑜ ,

= 𝑒።፳ᑗ፤𝑒ዅ።፳ᑗ
(Ꮄᒕ)Ꮄ
Ꮄᑜ (፟Ꮄᑩ ዄ፟Ꮄᑪ )

= 𝑒።፳ᑗ፤𝑒ዅ።፳ᑗ᎝᎘(፟Ꮄᑩ ዄ፟Ꮄᑪ ).

(B.3)
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Thus, for the propagated field we get

𝜓̂(𝑥፟ , 𝑦 , 𝑧፟) ≈ 𝑒።፳ᑗ፤(𝜆𝑓)ኼ∬𝜓(−𝜆𝑓𝑓፱ , −𝜆𝑓𝑓፲)𝑒ዅ።፳ᑗ᎝᎘(፟
Ꮄᑩ ዄ፟Ꮄᑪ )𝑒ኼ᎝።( ᑩ፟፱ᑗዄ ᑪ፟፲ᑗ) d𝑓፱ d𝑓፲

= 𝑒።፳ᑗ፤∬𝜓(𝑥ᖣ, 𝑦ᖣ)𝑒ዅ።
ᑫᑗᒕ
ᒐᑗᎴ (፱

ᖤᎴዄ፲ᖤᎴ)𝑒ዅኼ᎝።(፱
ᖤ ᑩᑗ
ᒐᑗዄ፲

ᖤ ᑪᑗ
ᒐᑗ ) d𝑥ᖣ d𝑦ᖣ

= ℱ {𝜓(𝑥, 𝑦)𝑒ዅ።
ᑫᑗᒕ
ᒐᑗᎴ (፱

Ꮄዄ፲Ꮄ)} (
𝑥፟
𝜆𝑓 ,

𝑦
𝜆𝑓) .

(B.4)

If we define 𝑅 to be the size of the object, so that (𝑋, 𝑌) = ( ፱ፑ ,
፲
ፑ) are normalized

coordinates, we can write

𝜓̂(𝑥፟ , 𝑦 , 𝑧፟) ≈ 𝑅ኼℱ {𝜓(𝑋, 𝑌)𝑒
ዅ።

ᑫᑗᒕ
ᒐ (ᑉᑗ )

Ꮄ
(ፗᎴዄፘᎴ)} (

𝑥፟
𝜆𝑓 ,

𝑦
𝜆𝑓) . (B.5)



C
Reconstruction error and cost

functional

The question that we consider is the following: if the measured far-field intensity
patterns are corrupted by noise, what cost functional 𝐿 should we choose such that
when minimized, the object reconstruction error 𝐸 is minimized? Let 𝑓(x) denote
the estimated object, and 𝜓(x) the actual object. We define the reconstruction
error as

𝐸[𝑓(x)] =∑
x

|𝑓(x) − 𝜓(x)|ኼ. (C.1)

For simplicity we omit the normalization and compensation for global phase shifts
that we used in Eq. (3.33). Using Parseval’s theorem, we can write 𝐸 in terms of
the diffracted fields ̂𝑓(k) and 𝜓̂(k)

𝐸[𝑓(x)] =∑
k

| ̂𝑓(k) − 𝜓̂(k)|ኼ

=∑
k

| ̂𝑓(k)|ኼ + |𝜓̂(k)|ኼ − 2| ̂𝑓(k)||𝜓̂(k)| cos 𝜃(k),
(C.2)

where 𝜃(k) denotes the phase difference between the estimated diffracted field
̂𝑓(k) and the actual diffracted field 𝜓̂(k). As we saw in Section 4.3, the specific
choice of the cost functional 𝐿[𝑓(x)] is only used for the final refinement of the
estimated object 𝑓(x). Therefore, we only need to consider 𝐸[𝑓(x)] for 𝑓(x) close
to 𝜓(x). If 𝑓(x) ≈ 𝜓(x), then we can expect 𝜃(k) to be very small, since the phase
of the far field ̂𝑓(k) affects 𝑓(x) far more than its amplitude (𝜃 can be large when
|𝜓̂| is small, but then the term containing 𝜃 is negligible anyway). For small 𝜃(k),
we can apply the first-order Taylor expansion to cos 𝜃(k), which gives cos 𝜃(k) ≈ 1,
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which allows us to approximate 𝐸[𝑓(x)] by

𝐸[𝑓(x)] ≈∑
k

| ̂𝑓(k)|ኼ + |𝜓̂(k)|ኼ − 2| ̂𝑓(k)||𝜓̂(k)|

=∑
k

(| ̂𝑓(k)| − |𝜓̂(k)|)ኼ ,
(C.3)

which is reminiscent of the amplitude-based cost functional in Eq. (4.10). However,
we do not measure |𝜓̂(x)|, but a noise-corrupted version of it |𝜓̂(k)|+𝑛(k), where
𝑛(k) ≥ −|𝜓̂(k)|. Therefore, we can define the cost functional 𝐿[𝑓(x)] as

𝐿[𝑓(x)] =∑
k

(| ̂𝑓(k)| − (|𝜓̂(k)| + 𝑛(k)))ኼ

=∑
k

| ̂𝑓(k)|ኼ + |𝜓̂(k)|ኼ − 2| ̂𝑓(k)||𝜓̂(k)| + |𝑛(k)|ኼ + 2|𝜓̂(k)||𝑛(k)| − 2| ̂𝑓(k)|𝑛(k)

≈ 𝐸[𝑓(x)] +∑
k

|𝑛(k)|ኼ + 2|𝜓̂(k)||𝑛(k)| − 2| ̂𝑓(k)|𝑛(k).

(C.4)

Since |𝑛(k)|ኼ + 2|𝜓̂(k)||𝑛(k)| is independent of 𝑓(x), one can equivalently define
the cost functional

𝐿[𝑓(x)] = 𝐸[𝑓(x)] −∑
k

2| ̂𝑓(k)|𝑛(k). (C.5)

We wanted to know how to define 𝐿[𝑓(x)] such that when minimized, 𝐸[𝑓(x)] is
minimized. We see that for our current choice of 𝐿[𝑓(x)] (the amplitude-based
cost functional), there is an extra term −∑k 2| ̂𝑓(k)|𝑛(k). The problem arises when
𝐿[𝑓(x)] can be made smaller by making −∑k 2| ̂𝑓(k)|𝑛(k) smaller at the expense of
making 𝐸[𝑓(x)] bigger: in this case minimizing 𝐿[𝑓(x)] does not minimize 𝐸[𝑓(x)].
In order to find an appropriate 𝐿[𝑓(x)], one must know something about the partic-
ular realization of 𝑛(k), rather than its statistics (which is in a sense a trivial remark:
if you know 𝑛(k) you can simply denoise the measurement and reconstruct 𝜓(x)
perfectly). While the statistics of 𝑛(k) may allow one to find a 𝑓(x) for which mea-
suring |𝜓̂(k)| + 𝑛(k) is most likely (using a maximum likelihood cost functional), it
is not obvious how such an 𝑓(x) affects 𝐸[𝑓(x)], which is ultimately the quantity
of interest.

This analysis also explains why it makes sense to use the amplitude-based cost
functional when applying the noise-robust scheme of Section 4.4: not because such
a cost function implicitly assumes Poissonian noise (it was demonstrated in Fig. 4.1
that the amplitude-based cost function does not necessarily yield the optimal re-
sult), but because Eq. (C.5) reveals that compared to other cost functionals, the
amplitude-based cost functional is most directly related to the object reconstruc-
tion error, which is what matters in the end. The fact that the amplitude-based
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cost functional is closely related to the Alternating Projections method, and the fact
that the steepest descent method may diverge (if a poor initial guess is chosen) for
other cost functionals even if no noise is present, also indicate that there is more to
the amplitude-based cost functional than it just being the maximum-likelihood cost
functional for Poissonian noise.





D
Measurement constraint

projection for DSI

Suppose you have two complex-valued optimization variables 𝑥, 𝑦 that should satisfy
the constraint

𝑥𝑦∗ = 𝐶. (D.1)

Given initial estimates 𝑥ኺ, 𝑦ኺ, how do we project them onto the constraint 𝐶? We
should find 𝑥, 𝑦 that satisfy the constraint, such that the distance between 𝑥, 𝑦 and
𝑥ኺ, 𝑦ኺ is minimized. So we should find 𝛿, 𝜖 such that

(𝑥ኺ + 𝛿)(𝑦ኺ + 𝜖)∗ = 𝐶 (D.2)

and
𝐿 = |𝛿|ኼ + |𝜖|ኼ (D.3)

is minimized. Expanding Eq. (D.2) gives

𝑥ኺ𝑦∗ኺ + 𝛿𝑦∗ኺ + 𝜖∗𝑥ኺ + 𝛿𝜖∗ = 𝐶. (D.4)

Let us say the correction is small, so that we can neglect the term 𝛿𝜖∗, and get

𝛿𝑦∗ኺ + 𝜖∗𝑥ኺ = 𝐷, (D.5)

where 𝐷 = 𝐶 − 𝑥ኺ𝑦∗ኺ . We find
𝛿 = 𝐷 − 𝜖∗𝑥ኺ

𝑦∗ኺ
. (D.6)

Substituting this into Eq. (D.3) gives

𝐿 = |𝜖|ኼ + |𝐷 − 𝜖
∗𝑥ኺ|ኼ

|𝑦∗ኺ |ኼ

= |𝜖|ኼ (1 + |𝑥ኺ|
ኼ

|𝑦ኺ|ኼ
) − 2Re{𝐷𝜖𝑥

∗
ኺ}

|𝑦ኺ|ኼ
+ |𝐷|ኼ
|𝑦ኺ|ኼ

.
(D.7)
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To minimize 𝐿, we should choose the phase of 𝜖 such that Re{𝐷𝜖𝑥∗ኺ} is as large as
possible, which means

𝐷𝜖𝑥∗ኺ = |𝐷𝜖𝑥∗ኺ|, (D.8)

so

𝜖 = |𝐷𝜖𝑥∗ኺ|
𝐷𝑥∗ኺ

. (D.9)

We should now minimize with respect to |𝜖|

𝐿 = |𝜖|ኼ (1 + |𝑥ኺ|
ኼ

|𝑦ኺ|ኼ
) − 2|𝐷||𝑥ኺ||𝑦ኺ|ኼ

|𝜖| + |𝐷|ኼ
|𝑦ኺ|ኼ

. (D.10)

Setting dፋ
d|Ꭸ| = 0 gives

|𝜖| =
|ፃ||፱Ꮂ|
|፲Ꮂ|Ꮄ

1 + |፱Ꮂ|Ꮄ
|፲Ꮂ|Ꮄ

= |𝐷||𝑥ኺ|
|𝑦ኺ|ኼ + |𝑥ኺ|ኼ

.

(D.11)

Plugging this into Eq. (D.9) gives

𝜖 = 𝐷∗𝑥ኺ
|𝑦ኺ|ኼ + |𝑥ኺ|ኼ

. (D.12)

For 𝛿 we find
𝛿 = 𝐷𝑦ኺ

|𝑦ኺ|ኼ + |𝑥ኺ|ኼ
. (D.13)



E
Scattering in the paraxial

approximation

If we apply the single-scattering approximation to Eq. (6.5), the scattered field is
found by multiplying the incident field with the scattering potential 𝜒. However, in
Eq. (6.44), where we worked with the paraxial Helmholtz equation, the scattered
field is computed by multiplying the incident field with 𝜒̄ = ።

ኼ፤𝜒. In the following,
we explain why there is an additional factor of ።

ኼ፤ present.

In Eq. (6.5) we stated that for a scattering potential 𝜒(r), the scattered field 𝑈፬(r)
is given by

𝑈፬(r) = ∫𝐺(r− rᖣ)𝜒(rᖣ) (𝑈፬(rᖣ) + 𝑃(rᖣ)) drᖣ, (E.1)

where 𝑃(r) is the incident field, and the Green’s function 𝐺(r) is given by

𝐺(r) = 𝑒።፤|r|
4𝜋|r| . (E.2)

In the single-scattering approximation, the expression becomes

𝑈፬(𝑥, 𝑦, 𝑧) =∭𝐺(𝑥 − 𝑥ᖣ, 𝑦 − 𝑦ᖣ, 𝑧 − 𝑧ᖣ)𝜒(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝑃(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ) d𝑥ᖣ d𝑦ᖣ d𝑧ᖣ. (E.3)

Now we assume the paraxial approximation holds, which means that freely propa-
gating fields satisfy the paraxial Helmholtz equation as given by Eq. (6.37)

Δ𝜙(𝑥, 𝑦, 𝑧) + 2𝑖𝑘𝜕𝜙(𝑥, 𝑦, 𝑧)𝜕𝑧 = 0, (E.4)

where 𝜙 is related to the actual field 𝑃(𝑥, 𝑦, 𝑧) as the modulation of the plane wave
𝑒።፤፳

𝑃(𝑥, 𝑦, 𝑧) = 𝜙(𝑥, 𝑦, 𝑧)𝑒።፤፳ , (E.5)
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and Δ denotes the Laplacian in the transverse coordinates

Δ = 𝜕ኼ
𝜕𝑥ኼ +

𝜕ኼ
𝜕𝑦ኼ . (E.6)

It can be shown that the paraxial Helmholtz equation is satisfied by fields that are
propagated using the Fresnel diffraction integral [1]

𝜙(𝑥, 𝑦, 𝑧) = ∬𝜙(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝐹(𝑥 − 𝑥ᖣ, 𝑦 − 𝑦ᖣ, 𝑧 − 𝑧ᖣ) d𝑥ᖣ d𝑦ᖣ, (E.7)

where
𝐹(𝑥, 𝑦, 𝑧) = 1

𝑖𝜆𝑧𝑒
ᑚᑜ
Ꮄᑫ (፱

Ꮄዄ፲Ꮄ). (E.8)

Note that for 𝑧ኼ ≫ 𝑥ኼ + 𝑦ኼ

𝐺(𝑥, 𝑦, 𝑧) ≈ 𝑖
2𝑘𝑒

።፤፳𝐹(𝑥, 𝑦, 𝑧). (E.9)

Substituting this in Eq. (E.3) gives

𝑈፬(𝑥, 𝑦, 𝑧) ≈∭
𝑖
2𝑘𝑒

።፤(፳ዅ፳ᖤ)𝐹(𝑥 − 𝑥ᖣ, 𝑦 − 𝑦ᖣ, 𝑧 − 𝑧ᖣ)𝜒(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝜙(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝑒።፤፳ᖤ d𝑥ᖣ d𝑦ᖣ d𝑧ᖣ

= 𝑒።፤፳∭𝐹(𝑥 − 𝑥ᖣ, 𝑦 − 𝑦ᖣ, 𝑧 − 𝑧ᖣ) 𝑖2𝑘𝜒(𝑥
ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝜙(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ) d𝑥ᖣ d𝑦ᖣ d𝑧ᖣ

(E.10)

The integration over 𝑥ᖣ and 𝑦ᖣ corresponds to propagating the field ።
ኼ፤𝜒(𝑥

ᖣ, 𝑦ᖣ, 𝑧ᖣ)𝜙(𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ)
from plane 𝑧ᖣ to plane 𝑧. Thus, to find the scattered field in a plane 𝑧, one must
multiply the incident field 𝜙 in each plane 𝑧ᖣ with 𝜒̄, propagate the product from
plane 𝑧ᖣ to plane 𝑧, and sum over all 𝑧ᖣ.

Note that convolution with 𝐹(𝑥, 𝑦, 𝑧) is equivalent to applying the operator 𝑒
ᑚ
Ꮄᑜ(

ᒟᎴ
ᒟᑩᎴ ዄ

ᒟᎴ
ᒟᑪᎴ )፳,

as in Eq. (6.42). This can be seen by observing that both expressions are solutions
to the paraxial Helmholtz equation, or more explicitly by noting that

ℱ {( 𝜕
ኼ

𝜕𝑥ኼ +
𝜕ኼ
𝜕𝑦ኼ)𝜙(𝑥, 𝑦)} (𝑓፱ , 𝑓፲) = −(𝑓

ኼ
፱ + 𝑓ኼ፲ )ℱ{𝜙(𝑥, 𝑦)}(𝑓፱ , 𝑓፲), (E.11)

so

ℱ {𝑒
ᑚ
Ꮄᑜ(

ᒟᎴ
ᒟᑩᎴ ዄ

ᒟᎴ
ᒟᑪᎴ )፳𝜙(𝑥, 𝑦)} (𝑓፱ , 𝑓፲) = 𝑒ዅ

ᑚ
Ꮄᑜ (፟

Ꮄᑩ ዄ፟Ꮄᑪ )፳ℱ{𝜙(𝑥, 𝑦)}(𝑓፱ , 𝑓፲), (E.12)

which can be inverse Fourier transformed to give

𝑒
ᑚ
Ꮄᑜ(

ᒟᎴ
ᒟᑩᎴ ዄ

ᒟᎴ
ᒟᑪᎴ )፳𝜙(𝑥, 𝑦) = ℱዅኻ {𝑒ዅ

ᑚ
Ꮄᑜ (፟

Ꮄᑩ ዄ፟Ꮄᑪ )፳} (𝑥, 𝑦) ⊗ 𝜙(𝑥, 𝑦)

∝ 𝐹(𝑥, 𝑦, 𝑧) ⊗ 𝜙(𝑥, 𝑦),
(E.13)

where ⊗ denotes a convolution.
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