

Delft University of Technology

Fault Tolerant Control for Autonomous Surface Vehicles via Model Reference
Reinforcement Learning

Zhang, Qingrui; Zhang, Xinyu; Zhu, Bo ; Reppa, V.

DOI
10.1109/CDC45484.2021.9683461
Publication date
2021
Document Version
Final published version
Published in
Proceedings of the 60th IEEE Conference on Decision and Control (CDC 2021)

Citation (APA)
Zhang, Q., Zhang, X., Zhu, B., & Reppa, V. (2021). Fault Tolerant Control for Autonomous Surface Vehicles
via Model Reference Reinforcement Learning. In Proceedings of the 60th IEEE Conference on Decision and
Control (CDC 2021) (pp. 1536-1541). IEEE. https://doi.org/10.1109/CDC45484.2021.9683461

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CDC45484.2021.9683461
https://doi.org/10.1109/CDC45484.2021.9683461

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Fault Tolerant Control for Autonomous Surface Vehicles via Model
Reference Reinforcement Learning

Qingrui Zhang1, Xinyu Zhang1, Bo Zhu1, and Vasso Reppa2

Abstract— A novel fault tolerant control algorithm is pro-
posed in this paper based on model reference reinforcement
learning for autonomous surface vehicles subject to sensor
faults and model uncertainties. The proposed control scheme
is a combination of a model-based control approach and a
data-driven method, so it can leverage the advantages of both
sides. The proposed design contains a baseline controller that
ensures stable tracking performance at healthy conditions, a
fault observer that estimates sensor faults, and a reinforcement
learning module that learns to accommodate sensor faults
using fault estimation and compensate for model uncertainties.
The impact of sensor faults and model uncertainties can be
effectively mitigated by this composite design. Stable tracking
performance can also be ensured even at both the offline
training and online implementation stages for the learning-
based fault tolerant control. A numerical simulation with gyro
sensor faults is presented to demonstrate the efficiency of the
proposed algorithm.

I. INTRODUCTION

With the impressive advancement in guidance, naviga-
tion, and control technologies, autonomous surface vehicles
(ASVs) are becoming a possible alternative solution to
human-operated vessels in diverse applications [1], [2]. In
particular, the sudden burst of the COVID-19 pandemic
makes it more urgent to develop ASVs for global shipping.
In most applications, ASVs are expected to be running
safely with little human intervention for a long period of
time. It requires ASVs to have enough safety and reliability
attributes for both avoiding catastrophic consequences and
securing the deliverance of correct service [3]. However,
ASVs are susceptible to malfunctions, degradation in system
components, and sensor faults, etc., thereby experiencing
performance deterioration, instability, and even disastrous loss.
Those issues motivate the extensive study of fault tolerant
control (FTC), an efficient technique that can recover system
performance or keep systems operational after encountering
faults, and thus enhance the system safety significantly [4].

FTC algorithms are generally divided into two categories,
namely passive and active FTC [5]. In passive FTC, a reliable
controller is developed, which has sufficient robustness against
all expected faults of low magnitude either by using a robust
control approach or an adaptive control method [6]. Passive
FTC algorithms demand no controller reconfiguration, so they
need to accommodate both the healthy and faulty conditions

1School of Aeronautics and Astronautics, Sun Yat-sen University,
Guangzhou, Guangdong, China (zhangqr9@mail.sysu.edu.cn;
zhangxy385@mail2.sysu.edu.cn;
zhubo5@mail.sysu.edu.cn)

2Department of Maritime and Transport Technology, Delft University of
Technology, Delft, the Netherlands (V.Reppa@tudelft.nl)

[7]. However,faults would not occur most time in real-life
applications. Hence, passive FTC is conservative and has
limited fault tolerant capabilities [5], [8]. Different from
passive FTC, active FTC algorithms can react actively to
system faults by monitoring system health using a fault
diagnosis and identification (FDI) mechanism [9]. Once a fault
is detected, an active fault tolerant controller can reconfigure
itself efficiently to recover the system performance. Most
FTC algorithms belong to model-based approaches. Passive
FTC needs to know the "worst-case" system faults for the
design of robust control [10]. Active FTC needs the degraded
system model under faults for control reconfiguration [11].

To reduce the dependence on system modelling, reinforce-
ment learning (RL) has been discussed as an option for the
design of FTC [12]–[14]. The major advantage of RL is the
learning of an optimal control law from data samples without
using models. Such an advantage is very suitable for ASVs
subject to significant model uncertainties and environmental
disturbances [15]. However, it is demanding for model-free
RL to ensure closed-loop stability, if no extra assumption is
made on the initial choices of control laws. Many existing RL
algorithms for FTC learn a robust optimal FTC that ensures
system stability under the “worst-case” faults [16], although
model information is not necessary.

In this paper, we present a novel FTC algorithm for
autonomous surface vehicles subject to sensor faults and
model uncertainties based on reinforcement learning. Via
the integration of RL with a model-based control approach,
the proposed control scheme, termed as model reference
reinforcement learning [17], [18], can ensure the closed-
loop stability. It can also avoid learning the “worst-case”
controller by incorporating a fault diagnosis and estimation
mechanism to signal the occurrence and magnitude of sensor
faults. Hence, our FTC algorithm can actively react to sensor
faults, mitigate the impact of both sensor faults and model
uncertainties on the trajectory tracking performance of ASVs,
and ensure stable and safe tracking performance at both
the offline training and the online implementation stages. In
summary, two major contributions of this work are identified.

1) A new formulation framework following the model-
reference structure is presented for the design of
reinforcement learning-based control. With this new
formulation, it is possible to combine model-based
approaches with data-driven methods, and leverage the
advantages from both sides.

2) A novel RL-based active FTC algorithm is presented for
ASVs subject to sensor faults and model uncertainties.
Numerical simulations show that the proposed FTC

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 1536

20
21

 6
0t

h
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

is
io

n
an

d
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

34
61

Authorized licensed use limited to: TU Delft Library. Downloaded on March 04,2022 at 10:48:05 UTC from IEEE Xplore. Restrictions apply.

algorithm can efficiently mitigate the influence of sensor
faults and model uncertainties.

The rest of the paper is organized as follows. Problem
formulation is provided in Section II. Section III presents
the reinforcement learning-based FTC scheme. In Section
IV, we describe details on the real-life implementation of the
proposed algorithm. Numerical simulations are provided in
Section V. Concluding remarks are given in Section VI.

II. PROBLEM FORMULATION

According to [19], [20], the ASV dynamics are
{

η̇ = R (η)ν
M ν̇ + (C (ν) +D (ν))ν + G (ν) = Bu (1)

where η = [xp, yp, ψp]
T ∈ R3 is a generalized coordinate

vector with xp and yp denoting the horizontal position
coordinates of an ASV in the inertial frame and ψp the
heading angle, ν = [up, vp, rp]

T ∈ R3 is the generalized
speed vector with up and vp being the linear velocities in
surge (x-axis) and sway (y-axis), respectively, and rp the
heading angular rate, u = [τu, τr]

T ∈ R2 is the control forces
and moments, G (ν) = [g1 (ν) ,g2 (ν) ,g3 (ν)]

T ∈ R3 is
unmodeled dynamics due to gravitational and buoyancy forces

and moments [19], B =
[

1, 0, 0
0, 0, 1

]T
is the input matrix.

M =M T ∈ R3×3 is the inertia matrix,

M = [Mij] =

[
M11 0 0

0 M22 M23
0 M32 M33

]
(2)

where M11 = m−Xu̇, M22 = m−Yv̇ , M33 = Iz−Nṙ, and
M32 = M23 = mxg − Yṙ. The matrix C (ν) = −C T (ν)
contains the Coriolis and centripetal terms, so

C = [Cij] =

[
0 0 C13 (ν)
0 0 C23 (ν)

−C13 (ν) −C23 (ν) 0

]
(3)

where C13 (ν) = −M22v −M23r, C23 (ν) = M11u. The
damping matrix D (ν) is

D (ν) = [Dij] =

[
D11 (ν) 0 0

0 D22 (ν) D23 (ν)
0 D32 (ν) D33 (ν)

]
(4)

where D11 (ν) = −Xu −X|u|u|u| −Xuuuu
2, D22 (ν) =

−Yv − Y|v|v|v| − Y|r|v|r|, D23 (ν) = −Yr − Y|v|r|v| −
Y|r|r|r|, D32 (ν) = −Nv −N|v|v|v| −N|r|v|r|, D33 (ν) =
−Nr − N|v|r|v| − N|r|r|r|, and X(·), Y(·), and N(·) are
hydrodynamic coefficients [19]. The rotation matrix R is

R (η) =

[
cosψp − sinψp 0
sinψp cosψp 0

0 0 1

]

By defining x =
[
ηT ,νT

]T
, it yields

ẋ =

[
0 R (η)
0 H (ν)

]
x+

[
0
N
]
u+

[
0

−M−1G (ν)

]
(5)

where H (ν) = −M−1 (C (ν) +D (ν)) and N =
−M−1B . The state measurement of the ASV system (1) is
corrupted by noises and sensor faults, so it is expressed as

y = x+ n+ f (t)

where n ∈ R6 is the measurement noise and f (t) ∈ R6

denotes the possible sensor fault. In this paper, we only
consider sensor faults on the measurement of the heading
angular rate rp, so f (t) = [0, 0, 0, 0, 0, fr (t)]

T . The sensor
fault fr (t) is given by

fr (t) = β (t− Tf)φ (t− Tf)

where φ (t− Tf) is the unknown function of the sensor fault
that occurs at the time instant Tf , and β (t− Tf) is the time
profile with β (t− Tf) = 0 for t ≤ Tf and β (t− Tf) =
1 − e−k(t−Tf) for t > Tf where k is the evolution rate of
the fault [21], [22]. Note that k →∞, if the occurrence of a
sensor fault is abrupt, e.g., bias fault.

III. REINFORCEMENT LEARNING-BASED FAULT
TOLERANT CONTROL SCHEME

This section starts with the presentation of a model-
reference control structure, then provides preliminaries on
RL, and eventually, presents the new FTC scheme.

A. Model-reference control structure
For most ASV systems, accurate nonlinear dynamic model

is rarely available. Major uncertainties come from M ,
C (ν), and D (ν) due to hydrodynamics, and G (ν) due
to gravitational and buoyancy forces and moments. Although
the ASV dynamics are subject to uncertainties, a nominal
model is still available based on the known information on
the ASV dynamics (5). The nominal model of (5) is

ẋm =
[

0 R (ηm)
0 H m

]
xm +

[
0
N m

]
um (6)

where N m and H m contain all the known constant param-
eters of the ASV dynamics (5), and ηm = [xm, ym, ψm]

T ∈
R3 is a generalized coordinate vector of the nominal model. In
this paper,Mm is given byMm = diag {M11,M22,M33},
H m = M−1

m Dm with Dm = diag {−Xu,−Yv,−Nr},
and N m = M−1

m B . Hence, in the nominal model, all
the nonlinear terms in the inne-loop dynamics are ignored,
so we end up with a linear and decoupled model for the
dynamic equations of the generalized velocity vector ν. As
the dynamics of the nominal model (6) are known, it is
possible to design a control law um allowing the states of the
nominal system (6) to converge to a reference signal xr, i.e.,
‖xm − xr‖2 → 0 as t→∞. The control law um can also
be used by the full ASV dynamics (5) as a baseline control.

In the model-reference control structure, the objective is to
design a control law allowing the states of (5) to track those
of the nominal model (6), so the overall control law is

u = ub + ul (7)

where ub is a baseline controller, and ul is a control
policy from the deep RL module. The baseline control ub
is employed to ensure some basic performance, i.e., local
stability, while ul is employed to compensate for system
uncertainties and sensor faults. The baseline control ub is
designed based on the nominal model (6), so it has the same
expression as um in (6). Note that ub or um can be designed
by any existing model-based method. Hence, we focus on
the development of ul using RL.

1537

Authorized licensed use limited to: TU Delft Library. Downloaded on March 04,2022 at 10:48:05 UTC from IEEE Xplore. Restrictions apply.

B. Reinforcement learning

The formulation of RL is based on a Markov decision pro-
cess (MDP) denoted by a tupleMDP :=

〈
S, U , P, R, γ

〉
,

where S is the state space, U specifies the action/input
space, P : S × U × S → R defines a transition probability,
R : S × U → R is a reward function, and γ ∈ [0, 1) is a
discount factor. In MDP, s ∈ S contains all available signals
affecting the RL control ul ∈ U . In this paper, the transition
probability is characterized by (1) and a reference signal, xr.

Let st be the state signal s at the time step t, and
accordingly, ul,t be the input from the RL-based control.
The RL algorithm aims to maximize an action-value function,
a.k.a., Q-function, given as

Qπ (st,ul,t) = Rt + γEst+1
[Vπ(st+1)] (8)

where Rt is the reward function with Rt = R(st,ul,t),
Est+1

[Vπ(st+1)] =
∑
st+1
Pt+1|t [Vπ(st+1)], and Vπ(st+1)

is called state value function for st+1, where

Vπ (st) =
∑

ul,t

π (ul,t|st)Est+1

[
Rt + γVπ(st+1) +

+ αH (π (ul,t|st))
]

(9)

=Eπ
[
Est+1

[Rt + γVπ(st+1)]− α log π (ul,t|st)
]

where H (π (ul,t|st)) = −Eπ [log (π (ul,t|st))] is the en-
tropy of the policy, α is a temperature parameter, and
π (ul,t|st) is the control policy that is the probability of
choosing an action ul,t ∈ U at a state st ∈ S [18].

The objective in RL is to solve the optimization problem
below.

π∗ = arg maxQπ (st,ul,t) (10)

C. Fault diagnosis and estimation

For the clarity of the presentation, we only consider
sensor faults in the measurement of inner-loop states that
are ν. Hence, only the inner-loop dynamics of ASVs are
considered in the development of the fault diagnosis and
estimation. However, the proposed algorithm can be extended
to more generic situations, for instance, sensor faults in the
measurement of positions.

The overall control design is based on the model-reference
control structure given in Section III-A, so the uncertain
inner-loop dynamics of the ASV model (5) is rewritten as

ν̇ =H mν +N m (ub + ul) + β (ν) (11)

where β (ν) is the aggregation of all uncertainties in the
inner-loop dynamics. Assume that β (ν) is bounded. Let
eν = ν − νm. According to (6) and (12), one has

ėν =H meν +N m (ub − um) +N mul + β (ν) (12)

Under healthy conditions, the model uncertainty term β (ν)
can be fully compensated using a learning-based control ul
according to [17], [18]. It implies that ‖eν (t) ‖2 ≤ ε as t→
∞, where ε is a certain positive small constant. If sensor faults
happened, the error signal eν will be large than ε. A naive
idea for the learning-based FTC is to treat the sensor faults

ub

ul
xr

xm

xm

um

Fault Observer
ub

y

<latexit sha1_base64="wubkIOIfND+7uyw/KIYhQOjhXqw=">AAAB+XicdVBLSwMxGMzWV62vVY9egkXwtOxW0fZW9OKxgn1AdynZbLYNzSZLki2Upf/EiwdFvPpPvPlvzLYVfA6EDDPfRyYTpowq7brvVmlldW19o7xZ2dre2d2z9w86SmQSkzYWTMheiBRhlJO2ppqRXioJSkJGuuH4uvC7EyIVFfxOT1MSJGjIaUwx0kYa2LYfChapaWKu3OfZbGBXXafWqLtnDfibeI47RxUs0RrYb34kcJYQrjFDSvU9N9VBjqSmmJFZxc8USREeoyHpG8pRQlSQz5PP4IlRIhgLaQ7XcK5+3chRoopwZjJBeqR+eoX4l9fPdFwPcsrTTBOOFw/FGYNawKIGGFFJsGZTQxCW1GSFeIQkwtqUVTElfP4U/k86Nce7cLzb82rzallHGRyBY3AKPHAJmuAGtEAbYDAB9+ARPFm59WA9Wy+L0ZK13DkE32C9fgDXZJR4</latexit>⌫
y

<latexit sha1_base64="LxPfZhEtAGOmllysiHeyQduvlhk=">AAAB+3icdVDNS8MwHE39nPOrzqOX4BA8lXaKbrehF48T3AespaRpuoWlaUlScZT+K148KOLVf8Sb/43pNsHPByGP934/8vKClFGpbPvdWFpeWV1br2xUN7e2d3bNvVpPJpnApIsTlohBgCRhlJOuooqRQSoIigNG+sHksvT7t0RImvAbNU2JF6MRpxHFSGnJN2tukLBQTmN95S7PCj/2zbptNVpN+6QFfxPHsmeogwU6vvnmhgnOYsIVZkjKoWOnysuRUBQzUlTdTJIU4QkakaGmHMVEevksewGPtBLCKBH6cAVn6teNHMWyjKcnY6TG8qdXin95w0xFTS+nPM0U4Xj+UJQxqBJYFgFDKghWbKoJwoLqrBCPkUBY6bqquoTPn8L/Sa9hOWeWc31ab18s6qiAA3AIjoEDzkEbXIEO6AIM7sA9eARPRmE8GM/Gy3x0yVjs7INvMF4/AGTplVg=</latexit>⌫m

<latexit sha1_base64="7MtW0Q1gcgQSfth3Ig/ekDMLLig=">AAAB+XicdVBLSwMxGMzWV62vVY9egkXwtOxW0fZW9OKxgn1AuyzZbLYNzSZLki2Upf/EiwdFvPpPvPlvzLYVfA6EDDPfRyYTpowq7brvVmlldW19o7xZ2dre2d2z9w86SmQSkzYWTMheiBRhlJO2ppqRXioJSkJGuuH4uvC7EyIVFfxOT1PiJ2jIaUwx0kYKbHsQChapaWKunM+CSWBXXafWqLtnDfibeI47RxUs0Qrst0EkcJYQrjFDSvU9N9V+jqSmmJFZZZApkiI8RkPSN5SjhCg/nyefwROjRDAW0hyu4Vz9upGjRBXhzGSC9Ej99ArxL6+f6bju55SnmSYcLx6KMwa1gEUNMKKSYM2mhiAsqckK8QhJhLUpq2JK+Pwp/J90ao534Xi359Xm1bKOMjgCx+AUeOASNMENaIE2wGAC7sEjeLJy68F6tl4WoyVruXMIvsF6/QDdspR8</latexit>nv

<latexit sha1_base64="pBEJMxLakiNe/d3IzDtFfgjr4Fw=">AAAB+XicdVBLSwMxGMzWV62vVY9egkXwtOxW0fZW9OKxgn1AuyzZbLYNzSZLki2Upf/EiwdFvPpPvPlvzLYVfA6EDDPfRyYTpowq7brvVmlldW19o7xZ2dre2d2z9w86SmQSkzYWTMheiBRhlJO2ppqRXioJSkJGuuH4uvC7EyIVFfxOT1PiJ2jIaUwx0kYKbHsQChapaWKuPJ4Fk8Cuuk6tUXfPGvA38Rx3jipYohXYb4NI4CwhXGOGlOp7bqr9HElNMSOzyiBTJEV4jIakbyhHCVF+Pk8+gydGiWAspDlcw7n6dSNHiSrCmckE6ZH66RXiX14/03HdzylPM004XjwUZwxqAYsaYEQlwZpNDUFYUpMV4hGSCGtTVsWU8PlT+D/p1BzvwvFuz6vNq2UdZXAEjsEp8MAlaIIb0AJtgMEE3INH8GTl1oP1bL0sRkvWcucQfIP1+gHRepR0</latexit>

fv

<latexit sha1_base64="I9bUKQBBHKAuSxuDPN39y1Yj4jE=">AAAB+XicdVBLSwMxGMzWV62vVY9egkXwtOxW0fZW9OKxgn1AuyzZbLYNzSZLki2Upf/EiwdFvPpPvPlvzLYVfA6EDDPfRyYTpowq7brvVmlldW19o7xZ2dre2d2z9w86SmQSkzYWTMheiBRhlJO2ppqRXioJSkJGuuH4uvC7EyIVFfxOT1PiJ2jIaUwx0kYKbHsQChapaWKuPJsFSWBXXafWqLtnDfibeI47RxUs0Qrst0EkcJYQrjFDSvU9N9V+jqSmmJFZZZApkiI8RkPSN5SjhCg/nyefwROjRDAW0hyu4Vz9upGjRBXhzGSC9Ej99ArxL6+f6bju55SnmSYcLx6KMwa1gEUNMKKSYM2mhiAsqckK8QhJhLUpq2JK+Pwp/J90ao534Xi359Xm1bKOMjgCx+AUeOASNMENaIE2wGAC7sEjeLJy68F6tl4WoyVruXMIvsF6/QDav5R6</latexit>um

Nominal System

RL-based
Control

Baseline
Control

Baseline
Control

ẋm =


0 R (⌘)
0 Am

�
xm +


0

Bm

�
um

Autonomous Surface Vehicle

<latexit sha1_base64="R0H6VWzuBgduN6TuwthC4evHaQM=">AAACPnicdVA9SwNBEN3z2/gVtbRZDIKFhDsVPwpBtLFUSFTInWFvM5cs7u0du3NCOO6X2fgb7CxtLBSxtXQTIxg/BpZ9vPeGmXlhKoVB131wRkbHxicmp6ZLM7Nz8wvlxaVzk2SaQ50nMtGXITMghYI6CpRwmWpgcSjhIrw+7ukXN6CNSFQNuykEMWsrEQnO0FLNct0PE9ky3dh+ebc48CVE2PhO+oCsuKptDBub+ZBHZYX1+Fq0Oxhc1Zrlilvd3N9zt/bpb+BV3X5VyKBOm+V7v5XwLAaFXDJjGp6bYpAzjYJLKEp+ZiBl/Jq1oWGhYjGYIO+fX9A1y7RolGj7FNI++70jZ7HpLWqdMcOO+an1yL+0RobRXpALlWYIin8OijJJMaG9LGlLaOAouxYwroXdlfIO04yjTbxkQ/i6lP4Pzjer3k7VO9uuHB4N4pgiK2SVrBOP7JJDckJOSZ1wckseyTN5ce6cJ+fVefu0jjiDnmUyVM77B0Bxs2I=</latexit>

y =
⇥
⌘T , yT

⌫

⇤T

<latexit sha1_base64="gDiSUVPzfcRq2PG0FXCNOYbnUTI=">AAACCnicdVC7TsMwFHV4lvIKMLIYKiSmKikI2q2ChbFI9CE1UeS4bmvVsSPbQaqizCz8CgsDCLHyBWz8DU5bpPI6kuXjc+6V7z1hzKjSjvNhLSwuLa+sFtaK6xubW9v2zm5LiURi0sSCCdkJkSKMctLUVDPSiSVBUchIOxxd5n77lkhFBb/R45j4ERpw2qcYaSMF9oEXCtZT48hc6TgL0vm3x5MsC+ySU67Uqs5JDf4mbtmZoARmaAT2u9cTOIkI15ghpbquE2s/RVJTzEhW9BJFYoRHaEC6hnIUEeWnk1UyeGSUHuwLaQ7XcKLOd6QoUvl0pjJCeqh+ern4l9dNdL/qp5THiSYcTz/qJwxqAfNcYI9KgjUbG4KwpGZWiIdIIqxNekUTwtem8H/SqpTds7J7fVqqX8ziKIB9cAiOgQvOQR1cgQZoAgzuwAN4As/WvfVovViv09IFa9azB77BevsEI/ScfQ==</latexit>y⌫

y

<latexit sha1_base64="RXT8NoDbaWNx5CgIb7IO1GIpJUk=">AAACEXicdVDLSsNAFJ34rPUVdelmsAhdhaSKtruiG5cV7AOaECaTSTt0MgkzE6GE/IIbf8WNC0XcunPn3zh9CNbHgWEO59zLvfcEKaNS2faHsbS8srq2Xtoob25t7+yae/sdmWQCkzZOWCJ6AZKEUU7aiipGeqkgKA4Y6Qajy4nfvSVC0oTfqHFKvBgNOI0oRkpLvll1h0jlbpCwUI5j/eWkKPwFweVZUUDfrNhWrVG3TxrwN3Ese4oKmKPlm+9umOAsJlxhhqTsO3aqvBwJRTEjRdnNJEkRHqEB6WvKUUykl08vKuCxVkIYJUI/ruBU/d6Ro1hO1tOVMVJD+dObiH95/UxFdS+nPM0U4Xg2KMoYVAmcxANDKghWbKwJwoLqXSEeIoGw0iGWdQhfl8L/SadmOWeWc31aaV7M4yiBQ3AEqsAB56AJrkALtAEGd+ABPIFn4954NF6M11npkjHvOQALMN4+AYgBn2A=</latexit>

ê⌫

Fig. 1: RL-based FTC scheme

as part of external disturbances. However, treating sensor
faults as disturbances will result in a conservative learning-
based control like the robust control. Hence, we introduce
a fault diagnosis and estimation mechanism that allows the
learning-based control to adapt to different scenarios: healthy
and unhealthy conditions.

Let yν = ν+nν+fν , where nν denotes the measurement
noise and fν is the sensor fault. Furthermore, we define
eyν = yν−νm = eν +nν +fν as the faulty residual vector.
In real applications, eyν is measurable instead of eν . The
fault diagnosis and estimation mechanism is, therefore,

˙̂eν =H mêν +N m (ub − um) +L (eyν − êν) (13)

where L is chosen such that H m−L is Hurwitz. The signal
êν performs as the indicator of the occurrence and strength
of the sensor faults. Let εν = eν − êν , and we have

ε̇ν = (H m −L) εν+N mul+β (ν)+L (nν + fν) (14)

The following lemma exists for (14)
Lemma 1: Suppose that the model uncertainty term β (ν)

can be fully compensated using a RL-based control ul.The
error dynamic model (14) is input-to-state stable with respect
to the sensor fault fν .

Proof: Let εν = ε1
ν + ε2

ν with

ε̇1
ν = (H m −L) ε1

ν +N mul + β (ν)

ε̇2
ν = (H m −L) ε2

ν +L (nν + fν)

If β (ν) is fully compensated by ul, it implies that N mul +
β (ν) together can be treated as a bounded negligible external
signal. Since H m −L is Hurwitz, ε1

ν will be input-to-state
stable with respect to N mul +β (ν). It implies that ε1

ν will
be negligible as well. Hence, the magnitude of εν mainly
results from ε2

ν . Since H m −L is Hurwitz, ε2
ν is input-to-

state stable with respect to fν . Hence, we can conclude that
εν is input-to-state stable with respect to fν .

D. RL-based fault tolerant control

The RL-based fault tolerant control is developed using the
output from the fault diagnosis and estimation mechanism
(13) as shown in Figure 1. RL learns the control policies using
data samples, including input and state data, at discrete time
steps. Assume that the sample time step is fixed and denoted
by δt. Without loss of generality, let yt, ub,t, ul,t, and êν,t be
the ASV state, the baseline control action, the control action

1538

Authorized licensed use limited to: TU Delft Library. Downloaded on March 04,2022 at 10:48:05 UTC from IEEE Xplore. Restrictions apply.

Input layer Hidden layers
Output
layer

Actor
Neural

Network

State

State

Input layer Hidden layers
Output
layer

Critic
Neural
Network

Input

st

ul,t

Q✓

st

ul,�

Fig. 2: MLP networks for Qθ and πφ

from RL, and the output of the fault diagnosis and estimation
mechanism at the time step t, respectively. The state signal

s at the time step t is thus st =
[
xTm,t − yTt ,uTb,t, êTν,t

]T
.

The learning-based fault tolerant robust control ul will be
learned instead of designed based on RL according to Section
III-B. The training/learning process of RL will repeatedly
execute policy evaluation and policy improvement. In the
policy evaluation, the Q-value in (8) is computed by applying
a Bellman operation Qπ (st,ul,t) = T πQπ (st,ul,t) where

T πQπ (st,ul,t) = Rt + γEst+1
{Eπ [Qπ (st+1,ul,t+1)

−α ln (π (ul,t+1|st+1))]} (15)

In the policy improvement, the policy is updated by

πnew = arg min
π′∈Π

DKL

(
π′ (·|st)

∥∥∥Zπolde 1
αQ

πold (st,·)
)

(16)
where Π denotes a policy set, πold denotes the policy
from the last update, Qπold is the Q-value of πold, DKL

denotes the Kullback-Leibler (KL) divergence, and Zπold is
a normalization factor. The objective can be transformed into

π∗ = arg min
π∈Π

Eπ
[
α ln (π (ul,t|st))−Q (st,ul,t)

]
(17)

More details on how (17) is obtained can be found in [23].

IV. ALGORITHM IMPLEMENTATION USING DEEP NEURAL
NETWORKS

In this paper, both Qπ (st,ul,t) and π (ul,t|st) are ap-
proximated by fully connected multiple layer perceptrons
(MLP) with rectified linear unit (ReLU) nonlinearities as the
activation functions. The ReLU function is

relu (z) = max {z, 0}

The ReLU activation function outperforms other activation
functions like sigmoid functions [24]. For a vector z =
[z1, . . . , zn]T , relu (z) = [relu (z1) , . . . , relu (zn)]T . More
details on the MLP can be found in [18].

The whole training process will be offline. At each time
step t + 1, we collect data samples, such as an input from
the last time step ul,t, a state from the last time step st, a
reward Rt, and a current state st+1. Those historical data will
be stored as a tuple (st,ul,t, Rt, st+1) at a replay memory
D [25]. At each policy evaluation or improvement step, we
randomly sample a batch of historical data, B, from the
replay memory D for the training of the parameters θ and
φ. Starting the training, we apply the baseline control policy

ub to an ASV system to collect the initial data D0 as shown
in Algorithm 1. The initial data set D0 is used for the initial
fitting of Q-value functions. When the initialization is over,
we execute both ub and the latest updated reinforcement
learning policy πφ (ul,t|st) to run the ASV system.

The parameters θ are trained to minimize

JQ (θ) = E(st,ul,t)∼D

[
1

2
(Qθ (st,ul,t)− Ytarget)2

]
(18)

where (st,ul,t) ∼ D implies that we randomly pick data
samples (st,ul,t) from a replay memory D, and

Ytarget = Rt+γEst+1

[
Eπ [Qθ̄ (st+1,ul,t+1)− α log (πφ)]

]

where θ̄ is the target parameter which will be updated slowly.
The DNN parameters θ are obtained by applying the stochastic
gradient descent. to (18) on a data batch B with a fixed size
denoted by |B|. In the final implementation, we use two
critics which are parameterized by θ1 and θ2, respectively.
The two critics are introduced to reduce the over-estimation
issue in the training of critic neural networks [26], so

Ytarget = Rt + γmin
{
Qθ̄1 (st+1,ul,t+1) ,

Qθ̄2 (st+1,ul,t+1)
}
− γα log (πφ) (19)

The policy improvement is to minimize the following ob-
jective function using data samples from the replay memory.

Jπ (φ) = E(st,ul,t)∼D

(
α log(πφ)−Qθ (st,ul,t)

)
(20)

Parameter φ is trained using a stochastic gradient descent
technique. At the training stage, the actor neural network is

ul,φ = ūl,φ + σ
1
2

φ � ξ (21)

where ūl,φ is the parameterized control law to be learned,
σ

1
2

φ is the standard deviation of the exploration noise, ξ ∼
N (0, I) is the Gaussian noise, and “�” is the Hadamard
product. The exploration noise ξ is only applied to the training
stage. Once the training is done, we only need ūl,φ in the
implementation. Hence, at the training stage, ul in Figure 1 is
equal to ul,φ. Once the training is over, we have ul = ūl,φ.

The temperature parameter α is also updated by minimizing

Jα = Eπ
[
−α log π (ul,t|st)− αH̄

]
(22)

where H̄ is a target entropy. The entire algorithm is sum-
marized in Algorithm 1, where ιQ, ιπ, and ια are positive
learning rates (scalars), and κ > 0 is a constant scalar.

V. NUMERICAL SIMULATIONS

In this section, the proposed learning-based control algo-
rithm is implemented to the trajectory tracking control of a
supply ship model presented in [20]. Model parameters can be
found in [18]. The unmodeled dynamics in the simulations
are given by g1 = 0.279uv2 + 0.342v2r, g2 = 0.912u2v,
and g3 = 0.156ur2 + 0.278urv3, respectively. The baseline
control ub is designed based on a nominal model in (6) in

1539

Authorized licensed use limited to: TU Delft Library. Downloaded on March 04,2022 at 10:48:05 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Reinforcement learning for fault tolerant control

1: Initialize parameters θ1, θ2 for Qθ1 and Qθ2 , respectively,
and φ for the actor network (21).

2: Assign values to the the target parameters θ̄1 ← θ1,
θ̄2 ← θ2, D ← ∅, D0 ← ∅,

3: Get data set D0 by running ub on (5) with ul = 0
4: Turn off the exploration and train initial critic parameters
θ0

1 , θ0
2 using D0 according to (18).

5: Initialize the replay memory D ← D0

6: Assign initial values to critic parameters θ1 ← θ0
1 , θ2 ←

θ0
2 and their targets θ̄1 ← θ0

1 , θ̄2 ← θ0
2

7: repeat
8: for each data collection step do
9: Choose an action ul,t according to πφ (ul,t|st)

10: Run both (5), (6), and (13) & collect st+1 =
{xt+1,xm,t+1,ub,t+1}

11: D ← D
⋃
{st,ul,t, R (st,ul,t) , st+1}

12: end for
13: for each gradient update step do
14: Sample a batch of data B from D
15: θj ← θj − ιQ∇θJQ (θj), and j = 1, 2
16: φ← φ− ιπ∇φJπ (φ),
17: α← α− ια∇αJα (α)
18: θ̄j ← κθj + (1− κ) θ̄j , and j = 1, 2
19: end for
20: until convergence (i.e. JQ (θ) < a small threshold)

TABLE I: RL configurations

Parameters Values

Learning rate ιQ 0.001
Learning rate ιπ 0.0001
Learning rate ια 0.0001

κ 0.01
Actor neural network fully connected with three hidden layers

(256× 128× 64 neurons)
critic neural networks fully connected with two hidden layers

(256× 256× 32 neurons)
Replay memory capacity 1.5× 106

Sample batch size 512
γ 0.998

Training episodes 1500
Steps per episode 1000
time step size δt 0.1

terms of the PID control method. The reference signal is
assumed to be produced by the following motion planner,

η̇r = R (ηr)νr ν̇r = ar (23)

where ηr = [xr, yr, ψr]
T , νr = [ur, 0, rr]

T , and ar =

[u̇r, 0, ṙr]
T . The initial position vector is ηr (0) =

[
0, 0, π4

]T
.

We set ur (0) = 0.4 m/s, rr (0) = 0 rad/s, and u̇r = 0.
The derivative of the reference angular rate ṙr is

ṙr =





π
300 rad/s

2 if 25 s ≤ t < 35 s
− π

300 rad/s
2 if 35 s ≤ t < 45 s

− π
300 rad/s

2 if 65 s ≤ t < 75 s
π

300 rad/s
2 if 75 s ≤ t < 85 s

0 rad/s2 otherwise

(24)

Fig. 3: Learning curves of the RL-based FTC

Fig. 4: Sensor fault and its estimation

The bias sensor faults of interest are defined as

fr (t) = β (t− Tf) (φ (t− Tf) + nφ) (25)

where nφ is a random noise with a uniformly random
distribution. In the simulation, Gaussian measurement noises
n ∼ N (0,σn) are added to the measurement, where
σn = diag {0.025, 0.025, 0.01, 0.01, 0.005, 0.005}.

At the training stage, we run the ASV system for 100 s, and
the training processes are repeated for 1500 times (i.e., 1500
episodes). Figure 3 shows the learning curves of the proposed
algorithm. At each episode, we uniformly randomly sample
x (0) and y (0) from (−1.5, 1.5), ψ (0) from (−0.25π, 0.25π)
and u (0) from (0.1, 0.6), and we choose v (0) = 0 and
r (0) = 0. The proposed control algorithm is compared with

Fig. 5: Trajectory tracking performance

1540

Authorized licensed use limited to: TU Delft Library. Downloaded on March 04,2022 at 10:48:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Position tracking error in the x coordinate

Fig. 7: Position tracking error in the y coordinate

a benchmark design in which only the baseline control ub
is considered. Configurations for the training and neural net-
works are found in Table I. The matrix G and H are chosen
to be G = diag {0.025, 0.025, 0.0016, 0.005, 0.001, 0} and
H = diag

{
1.25e−4, 1.25e−4, 8.3e−5

}
, respectively.

At the evaluation stage, the sensor fault profile shown in
Fig. 4 is implemented to the ASV. The simulation results
are summarized in Figs. 5–7. With our new design, the ASV
learns to adapt to a bias sensor fault that happens to the
measurement of the angular rate rp. The trajectory tracking
under faulty scenario is significantly improved.

VI. CONCLUSIONS

In this paper, a novel reinforcement learning-based fault tol-
erant control algorithm is presented for ASV systems subject
to model uncertainties and sensor faults. The new algorithm
is obtained by combining a model-reference reinforcement
learning with a fault diagnosis and estimation mechanism.
With the new RL-based fault tolerant control, we ensured the
ASV can learn to adapt to bias faults in the gyro and recover
the trajectory tracking performance under faulty conditions.

REFERENCES

[1] P. Švec, A. Thakur, E. Raboin, B. C. Shah, and S. K. Gupta,
“Target following with motion prediction for unmanned surface vehicle
operating in cluttered environments,” International Journal of Robotics
Research, no. 36, pp. 383 – 405, Apr. 2014.

[2] D. D. Bloisi, F. Previtali, A. Pennisi, D. Nardi, and M. Fiorini,
“Enhancing automatic maritime surveillance systems with visual
information,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 4, pp. 824 – 833, Apr. 2017.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, Mar. 2004.

[4] X. Jin, “Fault tolerant finite-time leader-follower formation control
for autonomous surface vessels with los range and angle constraints,”
Automatica, vol. 68, pp. 228–236, Jun. 2016.

[5] R. J. Patton, “Fault-tolerant control,” in Encyclopedia of Systems and
Control, J. Baillieul and T. Samad, Eds., Jul. 2015, pp. 201–213.

[6] H. Yang, B. Jiang, H. H. T. Liu, H. Yang, and Q. Zhang, “Attitude
synchronization for multiple 3-DoF helicopters with actuator faults,”
IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 597 –
608, Apr. 2019.

[7] K. Zhou and Z. Ren, “A new controller architecture for high per-
formance, robust, and fault-tolerant control,” IEEE Transactions on
Automatic Control, vol. 46, no. 1, pp. 1613–1618, Oct. 2001.

[8] M. Blanke, M. Kinnaert, M. Staroswiecki, and J. Lunze, Diagnosis and
Fault-Tolerant Control, 2nd ed. Heidelberg, Germany: Springer-Verlag
Berlin Heidelberg, 2006.

[9] S. Yin, H. Gao, J. Qiu, and O. Kaynak, “Descriptor reduced-order
sliding mode observers design for switched systems with sensor and
actuator faults,” Automatica, vol. 76, pp. 282–292, Feb. 2017.

[10] H. Hamadi, B. Lussier, I. Fantoni, C. Francis, and H. Shraim,
“Comparative study of self tuning, adaptive and multiplexing ftc
strategies for successive failures in an octorotor uav,” Robotics and
Autonomous Systems, vol. 133, Nov. 2020.

[11] J. Jiang and Y. Zhang, “Accepting performance degradation in fault-
tolerant control system designg,” IEEE Transactions on Control Systems
Technology, vol. 14, no. 2, pp. 156–172, Mar. 2006.

[12] Z. Wang, L. Liu, Y. Wu, and H. Zhang, “Optimal fault-tolerant control
for discrete-time nonlinear strict-feedback systems based on adaptive
critic design,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 6, pp. 2179–2191, Jun. 2018.

[13] I. Ahmed, H. Khorasgani, and G. Biswas, “Comparison of model
predictive and reinforcement learning methods for fault tolerant control,”
IFAC-Papers OnLine, vol. 51, no. 24, pp. 233–240, Dec. 2018.

[14] H. Zhang, K. Zhang, Y. Cai, and J. Han, “Adaptive fuzzy fault-tolerant
tracking control for partially unknown systems with actuator faults via
integral reinforcement learning method,” IEEE Transactions on Fuzzy
Systems, vol. 10, no. 7, pp. 1986 – 1998, 2019.

[15] W. Shi, S. Song, C. Wu, and C. L. P. Chen, “Multi pseudo q-learning-
based deterministic policy gradient for tracking control of autonomous
underwater vehicles,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 12, pp. 3534 – 3546, Dec. 2019.

[16] D. Mguni, “Cutting your losses: Learning fault-tolerant control and
optimal stopping under adverse risk,” arXiv:1902.05045, 2019.

[17] Q. Zhang, W. Pan, and V. Reppa, “Model-reference reinforcement
learning control of autonomous surface vehicles,” in Proc. of 59th
IEEE Conference on Decision and Control, Jeju, Korea (South), Dec.
2020.

[18] ——, “Model-reference reinforcement learning for collision-free
tracking control of autonomous surface vehicles,” IEEE Transac-
tions on Intelligent Transportation Systems, 2021, (Early access,
doi:10.1109/TITS.2021.3086033).

[19] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, Inc., 2011.

[20] R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Adaptive maneuvering,
with experiments, for a model ship in a marine control laboratory,”
Mathematics of Operations Research, vol. 41, pp. 289 – 298, 2005.

[21] V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Decentralized
isolation of multiple sensor faults in large-scale interconnected nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 60, no. 6, pp.
1582 – 1596, Mar. 2015.

[22] ——, Sensor Fault Diagnosis. Now Foundations and Trends, 2016.
[23] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. of the 35th International Conference on Machine
Learning, vol. 80, Stockholmsmässan, Stockholm Sweden, Jul. 2018,
pp. 1861–1870.

[24] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for lvcsr using rectified linear units and dropout,” in Proc. of
2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, May 2013.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, and et. al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, pp. 529–533,
Feb. 2015.

[26] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in Proc. of the 35th
International Conference on Machine Learning Conference, vol. 80,
Stockholmsmässan, Stockholm Sweden, Jul. 2018, pp. 1587–1596.

1541

Authorized licensed use limited to: TU Delft Library. Downloaded on March 04,2022 at 10:48:05 UTC from IEEE Xplore. Restrictions apply.

