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Abstract
Many computational models of speech recognition assume that the set of target words is already given. This implies that these 
models learn to recognise speech in a biologically unrealistic manner, i.e. with prior lexical knowledge and explicit supervi-
sion. In contrast, visually grounded speech models learn to recognise speech without prior lexical knowledge by exploiting 
statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech 
models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human 
speech recognition. We investigate the time course of noun and verb recognition as simulated by the model using a gating 
paradigm to test whether its recognition is affected by well-known word competition effects in human speech processing. 
We furthermore investigate whether vector quantisation, a technique for discrete representation learning, aids the model in 
the discovery and recognition of words. Our experiments show that the model is able to recognise nouns in isolation and 
even learns to properly differentiate between plural and singular nouns. We also find that recognition is influenced by word 
competition from the word-initial cohort and neighbourhood density, mirroring word competition effects in human speech 
comprehension. Lastly, we find no evidence that vector quantisation is helpful in discovering and recognising words, though 
our gating experiment does show that the LSTM-VQ model is able to recognise the target words earlier.

Keywords  Computational modelling · Human speech recognition · Multi-modal learning · Deep learning · Vector 
quantisation

Introduction

Infants initially have little understanding of what is being 
said around them, and yet at approximately 9 months old are 
able to produce their first words. When they start producing 
their first multi-word utterances around 18 months, they can 
already produce about 45 words and comprehend many more 
[1, 2]. One of the challenges infants face is that speech does 
not contain neat breaks between words, which would allow 

them to segment the utterance into words. To complicate 
things further, words might be embedded in longer words 
(e.g. ham in hamster) and furthermore, no two realisations 
of the same spoken word are ever the same due to speaker 
differences, accents, co-articulation and speaking rate, etc. 
[3]. In this study, we investigate whether a computational 
model of speech recognition inspired by infant learning pro-
cesses can learn to recognise words without prior linguistic 
knowledge.

Cognitive science has long tried to explain our capacity 
for speech comprehension through computational models 
(see [4] for an overview). Models such as Trace [5], Cohort 
[6], Shortlist [7], Shortlist B [8] and FineTracker [9] attempt 
to explain how variable and continuous acoustic signals 
are mapped onto a discrete and limited-size mental lexi-
con. These models all assume that the speech signal is first 
mapped to a set of pre-lexical units (e.g. phones, articula-
tory features) and then to a set of lexical units (words). The 
exact set of units is predetermined by the model developer, 
avoiding the issue of learning what these units are in the 
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first place. Even the recently introduced DIANA model [10], 
which does away with fixed pre-lexical units, uses a set of 
predetermined lexical units.

While all these models have proven successful at explain-
ing behavioural data from listening experiments, they all 
require prior lexical knowledge in the form of a fully speci-
fied set of (pre-)lexical units. In contrast, infants learn words 
without prior lexical knowledge (or, arguably, any other lin-
guistic knowledge) as well as without explicit supervision. A 
viable computational model should simulate word learning 
in a similar manner.

We take inspiration from the way infants learn language 
in order to model human word learning and recognition in a 
more cognitively plausible and ‘human-like’ manner. While 
learning language, children are exposed to a wide range of 
sensory experiences beyond purely linguistic input. On the 
other hand, current computational models of word learning 
and recognition are often limited to linguistic input. Using 
a multi-modal model, we aim to show that it is possible 
learn to recognise words without prior lexical knowledge 
and explicit supervision if the model is exposed to sensory 
experiences beyond speech. While there are many sensory 
experiences that could contribute to language learning, we 
focus on the most prominent of the human senses: vision. 
The model that we investigate in the current work exploits 
visual context in order to learn to recognise words in speech 
without supervision or prior lexical knowledge.

Visually Grounded Speech

Humans have access to multiple streams of sensory informa-
tion besides the speech signal, perhaps most prominently 
the visual stream. It has been suggested that infants learn 
to extract words from speech by repeatedly hearing words 
while seeing the associated objects or actions [11], and 
indeed speech is often used to refer to and describe the world 
around us. For instance, parents might say ‘the ball is on the 
table’ and ‘there’s a ball on the floor’ etc., while consistently 
pointing towards a ball.

Visually Grounded Speech (VGS) models are speech 
recognition models inspired by this learning process. The 
basic idea behind VGS models (e.g. [12–14]) is to make use 
of co-occurrences between the visual and auditory streams. 
For instance, from the sentences ‘a dog playing with a stick’ 
and ‘a dog running through a field’ along with images of 
these scenes, a model could learn to link the auditory signal 
for ‘dog’ to the visual representation of a dog because they 
are common to both image-sentence pairs. This allows the 
model to discover words, that is, to learn which utterance 
constituents are meaningful linguistic units. While there is 
a wide variety of VGS models, they all share the common 
concept of combining visual and auditory information in a 
common multi-modal representational space in which the 

similarity between matching image-sentence pairs is max-
imised while the similarity between mismatched pairs is 
minimised.

The potential of visual input for modelling the learning 
of linguistic units has long been recognised. In 1998, Roy 
and Pentland introduced their model of early word learning 
[15]. While many models at the time (and even today) relied 
on phonetic transcripts or written words, they implemented 
a model that learns solely from co-occurrences between the 
visual and auditory inputs. This model builds an ‘audio-visual 
lexicon’ by finding clusters in the visual input and looking 
for reoccurring units in the acoustic signal. It performs many 
tasks that are still the focus of research today: unsupervised 
discovery of linguistic units, retrieval of relevant images, and 
generation of relevant utterances. However, the model was 
limited to colours and shapes (utterances such as ‘this is a blue 
ball’) and has not been shown to learn from more natural, less 
restricted input.

The tasks performed by Roy and Pentland’s model involve 
challenges for both computer vision and natural language 
processing. Advances in both fields have led to renewed 
interest in multi-modal learning, and with it increased the 
need for multi-modal datasets. In 2013, Hodosh, Young and 
Hockenmaier introduced Flickr8k [16], a database of images 
accompanied by written captions describing their contents, 
which was quickly followed by similar databases such as 
MSCOCO Captions [17]. These datasets are now widely 
used for image-caption retrieval models (e.g. [18–24]) and 
caption generation (e.g. [19, 25]).

Harwath and Glass collected spoken captions for the 
Flickr8k database and used it to train the first neural network-
based VGS model [26]. Since then, there have been many 
improvements to the model architecture ([27–33]), as well as 
new applications of VGS models such as semantic keyword 
spotting ([14, 34, 35]), image generation [36], recovering of 
masked speech [37], and even the combination of speech 
and video [38].

Many studies have since investigated the properties of 
the representations learned by such VGS models (e.g. [13, 
39–42]). Perhaps the most prominent question is whether 
words are encoded in these utterance embeddings even 
though VGS models are not explicitly trained to encode 
words and are only exposed to complete sentences. The VGS 
model presented in [31] showed that representations of a 
speech unit and a visual patch are often most similar when 
the visual patch contains the speech unit’s visual referent. 
In [28, 29], the authors show that VGS models encode the 
presence of individual words that can reliably be detected in 
the resulting sentence representation.

Räsänen and Khorrami [43] made a VGS model that was 
able to discover words from even more naturalistic input 
than image captions: recordings from head-mounted cam-
eras worn by infants during child-parent interaction. The 



Cognitive Computation	

1 3

authors showed that their model was able to learn utterance 
representations in which several words (e.g. ‘doggy’, ‘ball’) 
could reliably be detected. Even though their model used 
visual labels indicating the objects the infants were paying 
attention to rather than the actual video input, this study is 
an important step towards showing that VGS models can 
acquire linguistic units from actual child-directed speech.

While the presence of individual words is encoded in the 
representations of a VGS model, the model does not explic-
itly yield any segmentation or discrete linguistic units. A 
technique which allows for the unsupervised acquisition of 
such discrete units is Vector Quantisation (VQ). VQ layers 
were recently popularised by [44], who showed that these 
layers could efficiently learn a discrete latent representa-
tional space. Harwath, Hsu and Glass [13] have recently 
applied these layers in a VGS model, and showed that their 
model learned to encode phones and words in its VQ layers.

Havard and colleagues went beyond simply detecting 
the presence of words in sentence representations: they 
presented isolated nouns to a VGS model trained on whole 
utterances, and showed that the model was able to retrieve 
images of the nouns’ visual referents [45]. This shows that 
their model does not merely encode the presence of these 
nouns in the sentence representations, but actually ‘recog-
nises’ individual words and learns to map them onto their 
visual referents. So, regarding the example mentioned above, 
the model learned to link the auditory signal for ‘dog’ to the 
visual representation of a dog.

However, the model by Havard and colleagues [45] was 
trained on synthetic speech. Word recognition in natu-
ral speech is known to be more challenging, as shown for 
instance by a large performance gap between VGS models 
trained on synthetic and real speech [28]. Dealing with the 
variability of speech is an important aspect of human speech 
recognition. If VGS models are to be plausible as compu-
tational models of speech recognition, it is important that 
these models implicitly learn to extract words from natural 
speech.

Current Study

The goal of this study is to investigate whether a VGS model 
discovers and recognises words from natural, as opposed to 
synthetic, speech. We furthermore go beyond earlier work 
because we investigate the model’s cognitive plausibil-
ity by testing whether its word recognition performance is 
affected by word competition known to take place during 
human speech comprehension. We aim to answer the fol-
lowing questions:

1.	 Does a VGS model trained on natural speech learn to 
recognise words, and does this generalise to isolated 
words?

2.	 Is the model’s word recognition process affected by 
word competition?

3.	 Does the model learn the difference between singular 
and plural nouns?

4.	 Does the introduction of VQ layers for learning discrete 
linguistic units aid word recognition?

Our first experiment is a continuation of our previous work 
[46] and the work by Havard et al. [45]. As in [45], we pre-
sent isolated target words to the VGS model and measure 
its word recognition performance by looking at the propor-
tion of retrieved images containing the target word’s visual 
referent. If the model is indeed able to recognise a word in 
isolation, it should be able to retrieve images depicting the 
word’s visual referent, indicating that the model has learned 
a representation of the word from the multi-modal input. 
Whereas previous work focused on the recognition of nouns, 
we also include verbs as our target words.

For this experiment, we collect new speech data, consist-
ing of words pronounced in isolation. On the one hand, such 
data can be thought of as ‘cleaner’ than words extracted from 
sentences (as in [46]) due to the absence of co-articulation. 
On the other hand, the model was trained on words in their 
sentence context, co-articulation included, and might have 
learned to rely on this contextual information too heavily to 
also recognise words in isolation. Thus, to answer our first 
research question, we investigate whether our VGS model 
learns to recognise words independently of their context. 
Furthermore, we investigate whether linguistic and acoustic 
factors affect the model’s recognition performance similarly 
to human performance. For instance, we know that faster 
speaking negatively impacts human word recognition (e.g. 
[47]).

In our second experiment we investigate the time course 
of word recognition in our VGS model. This allows us to 
test whether the model’s word recognition performance 
is affected by word competition as is known to take place 
during human speech comprehension. For this experiment, 
we look at two measures of word competition: word-initial 
cohort size and neighbourhood density. In the Cohort model 
of human speech recognition [6], the incoming speech sig-
nal is mapped onto phone representations. These activated 
phone representations activate every word in which they 
appear. As more speech information becomes available, 
activation reduces for words that no longer match the input. 
The word that best matches the speech input is recognised. 
The number of activated or competing words is called the 
word-initial cohort size and plays a role in human speech 
processing: the larger the cohort size (i.e. the more competi-
tors there are), the longer it takes to recognise a word [48]. 
Words with a denser neighbourhood of similar-sounding 
words are also harder to recognise as they compete with 
more words [49].
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We also use our model to test the interaction between 
neighbourhood density and word frequency. Several studies 
have investigated this interaction, with inconclusive results. 
In a gating study, Metsala [50] found an interaction where 
recognition was facilitated by a dense neighbourhood for 
low-frequency words and by a sparse neighbourhood for 
high-frequency words. Goh et al. [51] found that response 
latencies in word recognition were shorter for words with 
sparser neighbourhoods. They furthermore found a higher 
recognition accuracy for sparse-neighbourhood high-
frequency words as opposed to the other conditions (i.e. 
sparse-low, dense-high, dense-low). This means that, unlike 
Metsala, they found no facilitatory effect of neighbourhood 
density for low-frequency words. Others found no interac-
tion between lexical frequency and neighbourhood density 
at all [52, 53].

For this experiment, we use a gating paradigm, a well-
known technique borrowed from human speech processing 
research (e.g. [54, 55]). In the gating experiment, a word is 
presented to the VGS model in speech segments of increas-
ing duration, that is, with an increasing number of phones, 
and the model is asked to retrieve an image of the correct 
visual referent on the basis of the speech signal available 
so far. We then analyse the effects of word competition and 
several control factors on word recognition performance.

In our third experiment we investigate whether our VGS 
model learns to differentiate between singular and plural 
instances of nouns. By the same principle of co-occurrences 
between the visual and auditory streams that allows the 
model to discover and recognise nouns, it may also be able 
to differentiate between their singular and plural forms. We 
test this by presenting both forms of all nouns to the model, 
and analysing whether the retrieved images contain single 
or multiple visual referents of that noun.

Our fourth question investigates VQ, a technique that 
was recently first applied to VGS models by Harwath, Hsu 
and Glass [13]. Their model acquired discrete linguistic 
units, including words. However, it is still an unanswered 
question whether such VQ-induced word units also aid the 
recognition of words in isolation. If they do, the addition of 
VQ layers should improve word recognition results of our 
VGS model. Havard, Chevrot and Besacier [30] improved 
retrieval performance of their VGS model by providing 
explicit word boundary information, thereby showing that 
knowledge of the linguistic units is indeed beneficial to the 
model. Rather than explicitly providing word boundary 
information, VQ layers allow units to emerge in an end-to-
end fashion. Because prior knowledge of word boundaries 
is not cognitively plausible, VQ layers are a more suitable 
approach for our cognitive model. To investigate if the intro-
duction of VQ layers indeed aids word recognition, all our 

experiments compare the baseline VGS model to a VGS 
model with added VQ layers.

To foreshadow our results, we find that (1) our VGS 
model does learn to recognise words in isolation but per-
formance is much higher on nouns than on verbs; (2) word 
recognition in the model is affected by competition simi-
larly to humans; (3) the model can distinguish between 
singular and plural nouns to a limited extent; and (4) the 
use of VQ layers does not improve the model’s recognition 
performance.

Methods

Visually Grounded Speech Model

Model Architecture

Our VGS model consists of two deep neural networks as 
depicted in Fig. 1; one to encode the images and one to 
encode the audio captions. The model is trained to embed 
both input streams in a common embedding space; its train-
ing goal is to minimise the cosine distance between image-
caption pairs while maximising the distance between mis-
matched pairs. We do not fine-tune the hyper-parameters of 
the model but use the best parameters found in [18] — this 
is because it is not our current goal to improve the train-
ing task score but to perform experiments in order to learn 
more about the unsupervised discovery and recognition of 
words in a VGS model.

It is common practice to use a pre-trained image recog-
nition network for the image branch of a VGS model (e.g. 
[13, 28, 35]). We use the ResNet-152 network [56], which 
is a pre-trained convolutional network that was trained on 
ImageNet [57], to extract image features. This is done by 
taking the activations of ResNets-152’s penultimate fully 
connected layer by removing the final object-classification 
layer. Our image branch then is a single linear layer of 
size 2048 applied to these image features. Finally, we nor-
malise the results to have unit L2 norm. The goal of the 
linear projection is to map the image features to the same 
2048-dimensional embedding space as the audio represen-
tations. The image embedding � is given by:

where A and � are learned weight and bias terms, and ��� is 
the vector of ResNet-152 image features.

The audio branch consists of a 1-d convolutional neural 
network of size 6, stride 2 and 64 output channels, which 

(1)� =
���AT + �

||���AT + �||2
,
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sub-samples the signal along the temporal dimension. The 
resulting features are fed into a 4-layer bi-directional Long 
Short Term Memory (LSTM) with 1024 units.1 The 1024 
bi-directional units are concatenated to create a 2048 fea-
ture vector. The self-attention layer computes a weighted 
sum over all the hidden LSTM states:

where �t is the attention vector for hidden state �t , and W, 
V, �w , and �v indicate the weights and biases. The learn-
able weights and biases are implemented as fully connected 
linear layers with output sizes 128 and 2048, respectively. 
The applied attention is then the sum over the Hadamard 
product between all hidden states (�1, ..., �t) and their atten-
tion vector:

The resulting embeddings are normalised to have unit L2 
norm. The caption embedding � is thus given by:

(2)�t = sof tmax (V tanh(W�t + �w) + �v),

(3)Att (�1, ..., �t) =
∑

t

�t◦�t.

where �1, ..., �t indicates the caption represented as t frames 
of MFCC vectors and Att , LSTM and CNN are the atten-
tion layer, stacked LSTM layers, and convolutional layer, 
respectively.

Next, we also implement a VGS model with added VQ 
layers [44]. We will refer to our regular model and the model 
with VQ layers as LSTM and LSTM-VQ models, respec-
tively. Our implementation most closely follows [13], who 
were the first to apply these layers in a VGS model, and 
showed that their model learned discrete linguistic units. VQ 
layers consist of a ‘codebook’ which is a set of n-dimensional 
embeddings. A VQ layer discretises incoming input by map-
ping it to the closest embedding in the codebook and passing 
this embedding to the next layer:

where � is the VQ layer input and �j are the codebook 
embeddings.

For the LSTM-VQ model we insert VQ layers in the 
LSTM stack after the first and after the second LSTM layer, 
with 128 and 2048 codes, respectively. We use two layers 
because in [13] this made a hierarchy of linguistic units 
emerge: The first layer best captured phonetic identity while 

(4)� =
Att ( LSTM (CNN (�1, ..., �t)))

||Att ( LSTM (CNN (�1, ..., �t)))||2
,

(5)VQ(�) = �k, where k = argminj||� − �j||2,

Fig. 1   Model architecture: the model consists of two branches with 
the image encoder depicted on the left and the caption encoder on 
the right. The audio features consist of 13 MFCC with 1st and 2nd 
order derivatives by t frames. Each LSTM hidden state �

t
 has 1024 

features which are concatenated for the forward and backward LSTM 

into 2048-dimensional hidden states. Vectorial attention weighs and 
sums the hidden states resulting in the caption embedding. The linear 
projection in the image branch maps the image features to the same 
2048-dimensional space as the caption embedding. We calculate the 
cosine similarity between the image and caption embedding

1  In [29] we used a 3-layer Gated Recurrent Unit, but it has since 
then become practically feasible to train larger models on our hard-
ware.
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in the second layer, several codes emerged that were sensi-
tive to specific words.

We use our own PyTorch implementation of the models 
and the VQ layer described here, adapted from our pre-
vious work presented in [18, 29], which is in turn most 
closely related to, and based on, the VGS models pre-
sented in [27, 28]. Our implementation and data can be 
found on https://​github.​com/​Danny​Merkx/​speec​h2ima​ge/​
tree/​CogCo​mp2022.

Training Data

We train the model on Flickr8k [16], a well-known dataset of 
8000 images from the online photo sharing platform Flickr.
com, with five written English captions per image. Annota-
tors were asked to ‘write sentences that describe the depicted 
scenes, situations, events and entities (people, animals, other 
objects)’ [16]. We use the spoken captions Harwath and 
Glass [26] collected by having Amazon Mechanical Turk 
(AMT) workers pronounce the original written captions. We 
use the data split provided by [19], with 6000 images for 
training and a development and test set of 1000 images each.

Image features are extracted by resizing all images while 
maintaining the aspect ratio such that the smallest side is 
256 pixels. Ten crops of 224 by 224 pixels are taken, one 
from each of the corners, one from the middle and similarly 
for the mirrored image. We use ResNet-152 [56] to extract 
visual features from these ten crops and then average the fea-
tures of the ten crops into a single vector with 2048 features.

The audio input consists of Mel Frequency Cepstral Coef-
ficients (MFCCs). We compute the MFCCs using 25 ms 
analysis windows with a 10 ms shift. The MFCCs were cre-
ated using 40 Mel-spaced filterbanks. We use 12 MFCCs 
and the log energy feature, and add the first and second 
derivatives resulting in 39-dimensional feature vectors. 
Lastly, we apply per-utterance cepstral mean and variance 
normalisation.

Training

The model is trained to embed the images and captions such 
that the cosine similarity between image and caption embed-
dings is larger for matching pairs than the similarity between 
mismatching pairs. The batch hinge loss L as a function of 
the network parameters � is given by:

where (�, �) ≠ (��, ��) , B is a minibatch of matching caption-
image pairs (�, �) , and the other caption-image pairs (��, ��) in 

(6)

L(�) =
∑

(�,�),(��,��)∈B

(
max(0, cos(�, ��) − cos(�, �) + �)+

max(0, cos(�, ��) − cos(�, �) + �)

)
,

the batch serve to create mismatching pairs: (�, ��) and (��, �) . 
We take the cosine similarity and subtract the similarity of 
the mismatching pairs from the matching pairs such that the 
loss is only zero when the matching pair is more similar than 
the mismatching pairs by a margin � , which was set to 0.2.

Training task performance is evaluated by caption-to-
image and image-to-caption retrieval score Recall@N on 
the 1000-image test set. For these retrieval tasks, the caption 
embeddings are ranked by cosine distance to the image and 
vice versa, and Recall@N is the percentage of test items for 
which the correct image or caption was in the top N results. 
Furthermore, we evaluate the median rank of the correct 
image or caption.

Because the VQ operation is indifferentiable, a trick 
called straight through estimation is required to pass a learn-
ing signal to layers before the VQ layer [58]. Put simply, as 
there is no gradient for the VQ operation, the gradients for 
the VQ output are copied and used as an approximation of 
the gradients for the VQ input.

The VQ layer learns to make the codebook codes more 
similar to their inputs and vice versa. The first is accom-
plished by an exponential moving average. When a code is 
activated, it gets multiplied by a decay factor � and summed 
with (1 − �)� , where � is the input that activated the code. 
Making the inputs more similar to the codes is accomplished 
by a separate VQ loss, which is the mean squared error 
between each input and its closest code.

The networks are trained using Adam [59] with a cyclic 
learning rate schedule based on [55]. The learning rate 
schedule varies the learning rate smoothly between a mini-
mum of 10−6 and maximum of 2 × 10−4.

We train the regular LSTM-based network for 16 epochs. 
Following [13], we warm start the LSTM-VQ model by tak-
ing the trained LSTM network, inserting the VQ layers and 
training for another 16 epochs. While, unlike [13], we did 
not encounter a large performance loss for cold started net-
works, we did find that a cold started VQ network frequently 
suffered from codebook collapse [60]. This is an issue where 
suddenly all VQ inputs are mapped to only a few (often even 
just one) codes and from which the model never recovers.

We trained 20 VGS models of each type (with and with-
out VQ) using different seeds for the pseudo-random number 
generator, to average over random effects of weight initiali-
sation and training data presentation order.

Data Collection

Target Words

Word learning by visually grounded speech models exploits 
the fact that words in the speech signal tend to co-occur with 
visual referents in the corresponding images. We can there-
fore expect that any words the system learns to recognise 

https://github.com/DannyMerkx/speech2image/tree/CogComp2022
https://github.com/DannyMerkx/speech2image/tree/CogComp2022
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will be words with visual referents in the images. Hence, we 
limit our analysis to the recognition of nouns and verbs. We 
only look at high-frequency words that the model has had 
ample opportunity to learn to recognise.

We selected the 50 nouns and 50 verbs with the most 
frequent lemma in the Flickr8k database, excluding some 
words like ‘air’ and ‘stand’ as their referents appear in nearly 
every picture and, consequently, whether the words are rec-
ognised cannot be established. Other examples of rejected 
words are verbs such as ‘try’ for which it is not possible to 
set objective standards for the visual referent. The selected 
words are shown in Table 1.

To test word recognition performance, we present the 
selected target verbs and nouns in isolation. Two North 
American native speakers of English (one male, one female), 
not present in the Flickr8k database, were asked to read the 
target words out loud from paper. The words were recorded 
in isolation by asking the speakers to leave at least a second 
of silence in between words. To keep conditions close to 
those of the Flickr8k spoken captions (and other captioning 

databases collected through AMT), the speakers recorded 
the words at home using their own hardware. They were 
asked to find a quiet setting and record the words in a single 
session. They received a $20 gift card for their participation.

The nouns were presented in both their singular and plu-
ral form (where applicable)2. All verbs were recorded in root 
form, third person singular form, and progressive participle 
form. We did not record past tense forms as these are rarely, 
if ever, used in the image descriptions.

The speech data were recorded in stereo at 44.1kHz in 
Audacity. We down-sampled the utterances to 16kHz and 
converted them to mono to match the conditions of the 
Flickr8k captions, after which we applied the same MFCC 
processing pipeline used for the Flickr8k training data.

Image Annotations

We test whether the VGS model learned to recognise the 
recorded target words by presenting them to the model and 
checking whether the retrieved images contain the words’ 
visual referents. The problem with this approach, however, 
is that Flickr8k contains no ground truth image annotations 
for such a test. The captions can serve as an indication: if 
annotators mention an action or object in the caption we can 
be reasonably sure it is visible in the picture. In contrast, it 
is definitely not the case that if an object or action is not 
mentioned, it is not in the picture. Hence, using captions 
as ground truth would lead to an underestimation of model 
performance.

We created a ground truth labelling for the visual refer-
ents of our target words by manually annotating the 1000 
images in the Flickr8k test set for visual presence of each 
target word. For the nouns, we also indicate whether the 
visual referent occurred only once or multiple times in the 
images, allowing us to test whether the model learns to dif-
ferentiate between plural and singular nouns.

There were two annotators, one covering the nouns and 
one the verbs. To check the quality of the annotations, the 
first author annotated a sample of 5% of the images. The 
inter-annotator agreement based on this sample was � = 0.70 
for verbs and � = 0.76 for nouns.

Word Recognition

We take the retrieval of images containing a target word’s 
visual referent as indicative of successful word recognition. 
As this is a retrieval task where multiple correct images can 
be found per word, we use precision@10 (P@10) to measure 

Table 1   Selected target nouns and verbs in order of occurrence in the 
training set. An * indicates nouns for which only the singular or plural 
form was recorded, + indicates words that were not included in the 
analysis because there were not enough images depicting their visual 
referent in the test set

Nouns Verbs

dog man play run
boy girl jump sit
woman water* hold walk
shirt ball ride climb
grass* beach smile pose
snow* group catch carry
street rock leap perform
camera bike fly dance
mountain hat swim eat
pool player pull hang
jacket ocean chase slide
basketball sand* splash point
car building kick throw
soccer* swing fight swing
football sunglasses* lie lay
shorts* park laugh ski
dress table surf drive
hand tree fall follow
lake hill race roll
toy baby hit reach
tennis*+ river wade lean
wave snowboarder push bite
bench game spray paddle
surfer stick light+ bend
team skateboard cross raise

2  ‘Shorts’ and ‘sunglasses’ are syntactically plural, but we group them 
under the singular nouns as their use in the data is most often in refer-
ence to a single object.
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word recognition performance, following [45]. That is, for 
each target word embedding we calculate the cosine similar-
ity to all test image embeddings and retrieve the ten most 
similar images. P@10 is then the percentage of those images 
that contains the visual referent according to our annota-
tions. We excluded two target words from this analysis as 
there were fewer than ten test images containing their visual 
referent. Although we annotated whether an image contains 
a single or multiple visual referents, unless stated otherwise, 
multiple visual referents were counted as correct for a singu-
lar noun and vice versa for the purpose of calculating P@10.

We also compute P@10 scores for two baseline models. 
Our random baseline is simply the averaged score over five 
randomly initialised and untrained VGS models. This results 
in a random selection of images but since some words’ vis-
ual referents occur in dozens to hundreds of test images, 
the recognition scores are far from zero. Our naive base-
line is the recognition score of a model that always retrieves 
the ten images with the highest number of visual referents 
(i.e. always the same ten images, selected separately for the 
nouns and verbs). Note that this baseline is not realistic and 
requires knowledge of the contents of the test set (namely 
the number of visual referents per image). Still, it is useful 
to compare our model performance to a model that has only 
a single response regardless of the input.

We then examine the influence of linguistic and acous-
tic factors on the model’s word recognition performance 
as measured by P@10, using a Generalised Linear Mixed 
Model (GLMM) with beta-binomial distribution3 and canon-
ical logit link function. We used the glmmTMB package in 
R [61].

The GLMM examines the effects of signal duration (i.e. 
number of speech frames), speaking rate (number of phones 
per second), number of vowels, number of consonants, mor-
phology (singular or plural)4 and VQ (LSTM or LSTM-VQ 
model), with the VGS model’s word recognition perfor-
mance (P@10) as the outcome variable. As control vari-
ables, we furthermore include the (log-transformed) counts 
of the target word and its lemma in the training set as we 
expect better recognition for words that are seen more often 
during training. The correlation between lemma count and 
word count is .48, so they are expected to explain unique 
portions of variance. We also include speaker-ID to account 
for differences in recognition performance between the two 
speakers. Numbers of vowels and consonants are centred; all 

other non-categorical variables are standardised. VQ (LSTM 
= −1 , LSTM-VQ = 1 ), morphology (plural = −1 , singular 
= 1 ) and speaker ID ( #1 = −1, #2 = 1 ) were sum coded.

The GLMM includes by-lemma and by-model (each of 
the 20 random initialisations) random intercepts. We first 
included all fixed effects that vary within lemma or model-
ID as by-lemma or by-model random slopes but this model 
was unable to converge. As a maximal model is thus not 
possible, we reduced the model until it converged: We tried 
a zero-correlation-parameter GLMM, which also did not 
converge. Next, we split the GLMM into one with only the 
by-lemma and one with only the by-model random slopes 
(uncorrelated). The by-model GLMM resulted in a singu-
lar fit for the speaker ID, morphology, and VQ random 
slopes. After removing these by-model slopes, the com-
bined GLMM, with all remaining uncorrelated by-lemma 
and by-model slopes, converged. None of the removed ran-
dom slopes could be added back into the combined GLMM 
without causing convergence issues. The final GLMM for-
mula is:
p@10 ∼ speaking rate + duration + lemma 

count + word count + #vowels + #conso-
nants + VQ + speaker id + morphology + (1 
+ speaking rate + duration + word count + 
#vowels + #consonants + VQ + speaker id + 
morphology || lemma) + (1 + speaking rate 
+ duration + lemma count + word count + 
#vowels + #consonants || model id), where 
the double pipe symbol (||) means that correlations between 
random slopes are not estimated.

Word Competition

We perform a gating experiment to investigate word com-
petition in our models. We present the models with the tar-
get words in segments of increasing length, using one gate 
per phone. Simply put, if the target word is ‘dog’ with the 
phones /d-ɔ-g/, we evaluate performance after the model 
has processed /d/, /d-ɔ/, and finally the whole word /d-ɔ-g/. 
Performance is measured in P@10 as described in ‘2.3’.

For the gating experiment we need to know when each 
phone starts and ends. We use the Kaldi toolkit to make 
a forced alignment of our target words and their phonetic  
transcripts [62], taken from the CMU Pronouncing Dictionary 
available at  http://​www.​speech.​cs.​cmu.​edu/​cgi-​bin/​cmudi​ct.

We define the word-initial cohort of a target word at a 
certain gate to be the set of words in the Flickr8k dataset 
that share the target’s word-initial phone sequence up to the 
gate. That is, the number of words in the word-initial cohort 
equals the number of words that cannot be distinguished 
from the target given the sequence so far, and thus the num-
ber of words competing for recognition.

3  Our P@10 data, which is discrete and has a floor of 0 and a ceil-
ing of 10, is not suited for standard linear modelling. Our response 
variable is best described as a series of Bernoulli trails with successes 
and failures in terms of correct and incorrect retrieval.
4  As seen in ‘3.1’, word recognition results on the verbs were overall a 
lot worse than for the nouns so we decided not to continue our analysis 
on the verbs.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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We define neighbourhood density as the number of words 
in Flickr8k that differ by exactly one phone from the target 
word [63]. These words are expected to compete for recog-
nition and so affect word recognition. Research shows that 
words with a dense neighbourhood are harder to recognise 
than those with a sparse neighbourhood [49].

For both the word-initial cohort and the neighbourhood 
density, we use phonetic transcripts from the CMU pro-
nouncing dictionary, which contains the transcripts for a 
total of 6431 words in the Flickr8k captions.

We use a GLMM to test whether the neighbourhood den-
sity and word-initial cohort size affect word recognition in 
our model. Furthermore, we are interested in three inter-
action effects: as previously discussed, we test the inter-
actions between neighbourhood density and the word and 
lemma counts. The third interaction is between VQ and the  
number of phones processed so far (gate number). The VGS 
model with VQ layers is forced to map its inputs to discrete 
units even as early as the first gate. As the second VQ layer 
has been shown to learn discrete word-like representations 
[13], we might expect that words are recognised earlier, as 
would be indicated by a smaller effect of gate number for 
the LSTM-VQ model.

The GLMM’s fixed effects are the neighbourhood den-
sity, gate number, the size of the word-initial cohort, VQ, 
morphology, the number of vowels and the number of con-
sonants. Again we also add the occurrence frequencies of the 
target word and its lemma in the training set and speaker-ID 
to account for expected effects of training data frequency 
and speaker differences. The number of vowels, number 
of consonants and gate number are centred; all other non-
categorical variables are standardised.

The GLMM has by-lemma and by-model random inter-
cepts. We started with maximal by-lemma and by-model  
random slopes but had to reduce the complexity due to 
convergence issues, using the same procedure as described  
before. However, after removing all random slopes that yielded  
singular fits in the GLMM with only by-model random 
effects, the combined model (with by-model and by-lemma  
random effects) still failed to converge. We proceeded to use 
the variance estimates of the separate GLMMs to remove the 
smallest variance components until the combined GLMM 
converged. This led to the removal of all by-model random 
slopes and the by-lemma slopes for number of vowels and 
word count. The final GLMM formula for analysis of the 
gating experiment is:
p@10 ∼ (lemma count + word count) * den-

sity + VQ * gate + initial cohort size 
+ speaker id + morphology + #vowels + 
#consonants + (1 + density + VQ + gate + 
initial cohort size + speaker id + mor-
phology + #consonants || lemma) + (1 | 
model id)

Results

All results presented here are averaged over the 20 random 
initialisations of the VGS model. We first evaluate how well 
the models perform on the training task and compare their 
performance to other VGS models. The scores in Table 2 
show the result for the speech caption-to-image and image-
to-caption retrieval tasks. This indicates how well the model 
learned to embed the speech and images in the common 
embedding space. As expected, the VQ layers are beneficial 
to the VGS model’s training task performance [13].

Word Recognition

In the first experiment, we presented isolated words to 
the model. Table 3 shows the average P@10 scores. The 
singular nouns are recognised best with P@10 scores 

Table 2   Image-caption retrieval results on the Flickr8k test set. R@N 
is the percentage of items for which the correct image or caption was 
retrieved in the top N (higher is better) with 95% confidence interval. 
Med r is the median rank of the correct image or caption (lower is 
better). We compare our VGS models to previously published results 
on Flickr8k. ‘-’ means the score is not reported in the cited work

Model Caption to Image

R@1 R@5 R@10 med r
[26] - - 17.9±1.1 -
[28] 5.5±0.6 16.3±1.0 25.3±1.2 48
[29] 8.4±0.8 25.7±1.2 37.6±1.3 21
[36] 10.1±0.8 28.8±1.3 40.7±1.4 -
LSTM 12.5±0.2 33.8±0.3 46.8±0.3 12
LSTM-VQ 12.9±0.2 34.5±0.3 47.3±0.3 12
Model Image to Caption

R@1 R@5 R@10 med r
[26] - - 24.3±2.7 -
[29] 12.2±2.0 31.9±2.9 45.2±3.1 13
[36] 13.7±2.1 36.1±3.0 49.3±3.1 -
LSTM 18.5±0.5 42.4±0.7 55.8±0.7 8
LSTM-VQ 19.6±0.6 45.4±0.7 58.1±0.7 7

Table 3   Word recognition results for each noun and verb type for the 
trained models, the random model, and the naive baseline. In paren-
theses are the recognition scores when only evaluating the subset of 
target words that also have plural forms

Baseline

Morphology LSTM LSTM-VQ Random Naive

singular noun .519(.479) .529(.485) .137 .278
plural noun .479 .449 .140 .267
root verb .185 .193 .082 .188
third-person verb .176 .164 .078 .188
participle verb .246 .260 .083 .188
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of .519 and .529 for the LSTM and LSTM-VQ model, 
respectively. This means that, on average, more than five 
out of the ten retrieved images contain the correct visual 
referent. For the plural nouns the average performance is 
.479 and .449 for the LSTM and LSTM-VQ model, respec-
tively. However, seven target nouns have no plural form, 
so the scores for plural and singular nouns are not directly 
comparable. Therefore, we also calculate singular noun 
performance only on those words that also have a plural 
form. The results show that singular and plural forms are 
recognised equally well by the LSTM model. However, the 
LSTM-VQ model recognises plural target words slightly 
less accurately than singular words.

The histograms in Fig. 2 show the distribution of the 
P@10 scores by word type (noun or verb), morphology 
and whether the VGS model included VQ layers. This 
highlights that the recognition of the verbs is overall much 
worse than for the nouns: many verbs have a P@10 of 
zero, meaning they are not recognised at all. For the nouns 
on the other hand, only two words are not recognised at all. 
While both LSTM models outperform the random baseline 
on verb recognition, only on the participles is performance 
better than the naive baseline’s, with scores over .7 on 
some words. As the recognition performance for the verbs 
is obviously a lot worse than for nouns, we continue our 
analysis on the nouns only.

Havard and colleagues [45] reported a median P@10 
of 0.8 on 80 nouns (from the synthetic speech database 
MSCOCO), while our models achieve median P@10 scores 
of 0.6 and 0.5 on singular and plural nouns, respectively. 

Even though the models recognise most nouns and even 
their plural forms (with only two words per model not being 
recognised at all), this indicates a large drop in recognition 
performance going from the synthetic speech dataset in [45] 
to our natural speech. Note, however, that as Havard et al. 
used the most frequent nouns for their dataset (MSCOCO), 
the target words do not fully overlap with ours.

The results of the GLMM for the word recognition exper-
iment are summarised in Table 4. Speaking rate and number 
of consonants have a significant effect on the VGS model’s 
word recognition performance. The positive coefficient of 
the number of consonants indicates that words with more 
consonants are on average recognised better. The negative 
coefficient for speaking rate indicates that words are harder 

Fig. 2   Histograms of the word 
recognition experiment results 
for each word type

Table 4   Estimated model effects for the word recognition GLMM and 
the results of Type III Wald �2 tests. Plural, LSTM and speaker 1 are 
the reference levels for Morphology, VQ and Speaker id respectively  

Effect Estimate Std. error �2 p

Intercept −0.26 0.70 1.20 0.27
Speaking rate −2.03 0.91 4.98 0.03
Duration −0.88 0.60 2.14 0.14
Lemma count 1.98 0.70 7.97 0.005
Word count 0.33 0.40 0.69 0.41
#Vowels 1.33 1.35 0.98 0.32
#Consonants 2.06 0.81 6.46 0.01
VQ 0.02 0.04 0.34 0.56
Speaker id −0.37 0.25 2.13 0.14
Morphology −0.28 0.44 0.42 0.52
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to recognise if they are spoken faster. Unsurprisingly, lemma 
count also has a significant effect on word recognition: lem-
mas that were seen more often during training are recognised 
better. The results further confirm that plural and singular 
nouns are recognised equally well and that there is no differ-
ence in recognition performance between the two speakers.

While overall these results show no difference in word rec-
ognition performance between the LSTM-VQ and the LSTM 
models, it is notable that only LSTM-VQ has a performance 
difference between singular and plural nouns. Similarly, 
LSTM-VQ performs best on the participle verb form and 
worse on the third person and root forms. Third person and 
root verbs are less frequent than participles, and plural nouns 
are less frequent than singulars. Hence, it may be the case 
that the codebook simply learns to encode frequent words 
better, and struggles with the less frequent word(form)s.

To further investigate whether the VQ models indeed 
recognise frequent words more accurately, we performed 
a post hoc test where we refit the word recognition GLMM 
with an interaction between VQ and word count and 
between VQ and morphology. We fit separate GLMMs 
on the noun and verb targets, the results of which can be 
seen in Table 5. We find the expected interactions between 
VQ and morphology where recognition on the less fre-
quent word forms (plural, third and root) is worse than on 
the more frequent forms (singular, participle) for the VQ 
network. Furthermore, we also find positive interactions 
between word count and VQ, further indicating that fre-
quency of exposure has a greater effect on the LSTM-VQ 
models than on the LSTM models.

Word Competition

The results of the GLMM for the word competition experi-
ment are summarised in Table 6. Of the fixed effects of 
interest, neighbourhood density, gate number, word-initial 
cohort size and number of consonants have significant 
effects on word recognition performance. Furthermore, we 
found significant interaction effects between word count and 
neighbourhood density, and between VQ and gate number.

As in the previous GLMM analysis, the number of con-
sonants has a positive effect. The gate number (number of 
phones processed so far) also has a positive effect: unsurpris-
ingly, the model is better able to recognise the target word as 
more of the word has been presented. This effect is modu-
lated by the presence of VQ layers, where the negative coef-
ficient indicates that the effect of gate is slightly smaller in the 
LSTM-VQ than in the LSTM models. There is a significant 
negative effect of word-initial cohort size. This means rec-
ognition performance is lower the more candidates there are. 
While neighbourhood density has an overall positive effect 
on word recognition, care should be taken in interpreting this 
effect in light of the negative interaction with word count. 
The positive effect would indicate that words with a higher 
neighbourhood density are recognised better; however, the 
interaction indicates this effect decreases with higher word 
count and might become negative for the most frequent words.

Plurality

Using the plurality annotations of the visual referents for the 
noun target words, we test whether the VGS models actu-
ally differentiate between singular and plural nouns. That 

Table 5   Estimated model effects for our post-hoc testing of interaction 
effects and the results of Type III Wald �2 tests. LSTM and speaker 1 are 
the reference levels for VQ and Speaker id respectively. Plural and Parti-
ciple are the Morphology reference levels for the noun and verb models 
respectively

Effect Estimate Std. error �2 p
Nouns

Nouns
VQ 0.03 0.01 3.69 0.06
Word count:VQ 0.10 0.02 23.17 <0.001
Morphology
  Singular 1.34 0.86 2.45 0.12
  Singular:VQ 0.12 0.02 38.42 <0.001

Verbs
VQ -0.04 0.01 11.02 <0.001
Word count:VQ 0.07 0.01 38.42 <0.001
Morphology
  Root −0.05 0.22
  Third 0.46 0.33 6.85 0.03
  Root:VQ −0.07 0.02
  Third:VQ −0.002 0.02 30.86 <0.001

Table 6   Estimated model effects for the gating GLMM and the results 
of Type III Wald �2 tests. Plural, LSTM and speaker 1 are the refer-
ence levels for Morphology, VQ and Speaker id respectively

Effect Estimate Std. error �2 p

Intercept −0.71 0.24 9.10 0.003
Lemma count 0.87 0.20 18.1 <0.001
Word count 0.06 0.14 0.17 0.68
#Vowels −0.08 0.29 0.07 0.79
#Consonants 0.57 0.21 7.42 0.006
Density 0.51 0.20 6.60 0.01
Gate 0.25 0.08 11.13 <0.001
Initial cohort −0.98 0.20 23.0 <0.001
Morphology −0.02 0.23 0.01 0.92
VQ −0.09 0.05 3.18 0.07
Speaker id 0.21 0.14 2.36 0.12
Lemma count:density 0.19 0.13 2.09 0.15
Word count:density −0.20 0.10 4.09 0.04
VQ:gate 0.03 0.01 11.61 <0.001
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is, if we present it with a plural noun, does it return pictures 
with multiple visual referents? For this we first select only 
those target words which have both a plural and singular 
form. Then, we only keep those words which have at least 
ten images depicting a single visual referent and ten images 
with multiple visual referents. So, in theory the VGS models 
can achieve a perfect P@10 score on these words while also 
perfectly distinguishing between singular and plural nouns. 
This results in a final target word set of 28 nouns.

Table 7 shows the confusion matrices for the LSTM 
and LSTM-VQ models, with numbers of single- versus 
multiple-referent images returned when the model is 
presented with a singular versus plural target word. We 
see that both VGS models, when presented with singular 
nouns, more often return images with a single referent than 
with multiple referents. When presented with plural nouns, 
this difference decreases and, for LSTM-VQ, even reverses 
(LSTM: 𝜒2(1) = 49.8, p < 0.0001,N = 11, 150 ; LSTM-VQ: 
𝜒2(1) = 48.1, p < 0.0001,N = 10, 520).

Recognition of plural nouns critically depends on the 
plural suffix, as this is what indicates whether a target 

word is plural (although subtle prosodic cues might also 
be at play [64]). Figure 3 shows the P@10 scores from  
the gating experiment as a function of the gate number 
(number of phones processed so far), averaged over words 
of the same length. Unsurprisingly, recognition scores tend 
to increase as more phones are processed. Interestingly, for 
the plural nouns, recognition scores tend to drop at the last 
phone which, except for ‘men’ and ‘women’, is the plural 
suffix /z/ or /s/. The average P@10 value for plural target 
words drops from .517 to .479 between the penultimate 
and final gate for the LSTM model and from .513 to .449 
for the LSTM-VQ model. It seems both VGS models have 
difficulty processing this suffix, the LSTM-VQ model 
even more so than the LSTM model.

A possible explanation for the P@10 drop is that, 
although the plural suffix causes the model to retrieve 
fewer images with single visual referents and more images 
with multiple referents (see Table 7), the decrease in single- 
referent images is greater than the increase in multiple- 
referent images. Table 8 shows the same confusion matri-
ces as Table 7 but for the phone sequence up to the penul-
timate gate instead of the full word. The numbers between 
brackets indicate how the number of retrieved images 
changes upon processing the final phone. In case of plural 
nouns, the plural suffix is missing at the penultimate gate, 
so the model retrieves more images with a single referent, 
and fewer with a plural referent, than after also presenting 
the final phone. As can be seen in Table 8, and as hypoth-
esised above, processing the plural suffix causes a drop in 
retrieval of single-referent images ( −399 ) that is greater 
than the simultaneous increase in multiple-referent images 
(187), resulting in a drop in P@10 in Fig. 3.

Discussion

In this study we investigated the recognition of isolated 
nouns and verbs in a Visually Grounded Speech model. 
We were interested in whether visual grounding allows the 

Table 7   Confusion matrices for singular and plural nouns indicating 
how many of the correctly retrieved images contained only one or mul-
tiple visual referents to the target word

Model #refs in image Noun morphology

LSTM singular plural
one 3048 (57%) 2940 (51%)
multiple 2281 (43%) 2881 (49%)

LSTM-VQ singular plural
one 2857 (56%) 2631 (49%)
multiple 2278 (44%) 2754 (51%)

Fig. 3   Recognition scores as a function of the gate number (the number 
of phones processed so far). The solid lines represent averaged P@10 
scores over words with an equal number of phones (the length and col-
our of each line indicate the number of phones). The dotted and dashed 
lines represent the naive and random baseline scores, respectively

Table 8   Confusion matrices for singular and plural nouns indicating 
how many of the correctly retrieved images contained only one or 
multiple visual referents to the target word. Here we show the counts 
at the penultimate phone and (parenthesized) the increase or decrease 
after having processed the final phone

Model #refs in image Noun morphology

LSTM singular plural
one 2470 (578) 3339 (−399)
multiple 1851 (430) 2694 (187)

LSTM-VQ singular plural
one 2374 (483) 3171 (−540)
multiple 1704 (574) 2565 (189)
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model to learn to recognise words as coherent linguistic 
units, even though our model is trained on full sentences 
and at no point receives explicit information about word 
boundaries or even that words exist at all. [45] used syn-
thetic speech to test word recognition in their VGS model; 
we used newly recorded real speech. We could have opted 
to extract the words from spoken captions in the test set 
but this has a few disadvantages. Firstly, words in a sen-
tence context are often significantly reduced and reduced 
word forms are hard to recognise in isolation even though 
they are perfectly recognisable in their original sentence 
context [65]. Secondly, due to co-articulation, we would 
not really be testing for single-word recognition unless the 
affected phones are removed, further reducing the word.

Word Recognition

Our first goal was to investigate whether the VGS model 
can recognise words in isolation after being trained on full 
utterances only. Our word recognition results show that 
our VGS model is able to recognise isolated target nouns. 
We have even shown that the LSTM model recognises both 
plural and singular nouns equally well even though plurals 
occur less often in the training data than singulars. While 
our scores are lower than those reported in [45], some 
difference was to be expected when working on real as 
opposed to synthetic speech. The average P@10 scores 
indicate that more than half of the top 10 retrieved images 
contain the visual referent and the models score well above 
the baselines. In fact, only four words (two in the LSTM 
model and two in the LSTM-VQ model) are not recog-
nised at all, namely ‘river’ (in both models), ‘ball’ (LSTM) 
and ‘waves’ (LSTM-VQ). We saw that ‘river’ does return 
pictures of bodies of water (e.g. lakes or the ocean), and 
indeed it can be hard to discern the difference between a 
lake and a river from a picture. The fact that ‘ball’ is not 
recognised is a little baffling considering that ‘basketball’ 
has a P@10 score of .8 and ‘football’ a score of .4 (and 
pictures of either are also annotated as just ‘ball’).

We also tested whether models are able to recognise 
verbs in root, third person and participle form, the latter 
being the most common in the image descriptions. But 
even when we look only at the scores on the participle 
form, recognition scores for verbs are much lower than 
for nouns. In fact, most verbs are not recognised at all, 
and only 11 (LSTM) or 12 (LSTM-VQ) verbs have P@10 
scores over .5. Looking at these words we see that many 
of them consistently occur together with an object (e.g. 
‘surfing’, ‘playing’, ‘skiing’, ‘holding’ and ‘racing’) so 
the models might simply recognise the objects they co-
occur with. This could be explained by our use of image 
features from ResNet-152, a network trained to recognise 

objects, not actions or body postures. However, it also rec-
ognises ‘running’, ‘walking’, ‘jumping’ and ‘smiling’, so 
the image features do seem to contain more information 
than simply the presence of a human in the image. Verb 
recognition in our model was far from good and this pre-
sents an interesting avenue for further research. We think 
it is possible for the VGS model to also learn to recognise 
actions, perhaps by fine-tuning parts of ResNet with the 
VGS model or training the visual side of the model from 
scratch like in [31].

Word Competition

In our gating experiment, we investigated whether the mod-
el’s word recognition is affected by word competition, as 
is the case in humans. The results show clear evidence of 
word competition effects in our model. There is a strong 
effect of word-initial cohort size where recognition scores 
are lower when more words are possible given the current 
input sequence. We also find a positive effect of neighbour-
hood density that is modulated by a negative interaction with 
word count. This means that the effect of neighbourhood 
density is higher for lower-frequency words. This is in line 
with findings that, for humans, recognition of low-frequency 
words is facilitated by dense neighbourhoods whereas rec-
ognition of high-frequency words is facilitated by sparse 
neighbourhoods [50, 51].

We find a positive effect of neighbourhood density, 
contrary to what we may expect if we assume more word 
competition (i.e. a denser neighbourhood) makes word rec-
ognition harder. Furthermore, given the strength of the inter-
action with word count, the neighbourhood density effect is 
only negative for highly frequent words. [50] gives a pos-
sible explanation for the interaction between word count 
and neighbourhood density: during word learning, dense 
neighbourhoods have a positive effect on word recognition 
because hearing similar-sounding words facilitates learning. 
During word recognition, dense neighbourhoods have a neg-
ative effect because similar-sounding words compete for rec-
ognition. For infrequent words, the learning effect outweighs 
the competition effect, and vice versa. Our model may sim-
ply have been trained on too few of the most frequent words 
for the competition effect to outweigh the learning effect, 
explaining the overall positive effect of neighbourhood den-
sity. Together with the strong effect of initial cohort size, 
we argue that we do indeed see word competition effects in 
our VGS model.

Plurality

We also investigated whether our VGS model learns 
the difference between singular and plural nouns. Our 
results show that not only is the model able to recognise 
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target nouns in both forms but, to a limited extent, it 
also learns to differentiate between the two forms: when 
prompted with plural target nouns, the model retrieves 
more images with multiple referents and fewer with sin-
gle referents than when prompted with single nouns (see 
Table 7). Thus, the model learns a meaningful difference 
between singular and plural nouns in terms of their visual 
representations.

P@10 scores from our gating experiment showed that 
words are recognised better when more of the word is pro-
cessed. Yet, we also see that recognition scores are well 
above the baselines before word offset, which means that 
the model is able to recognise words from partial input. We 
take this to mean that the model not only recognises words, 
but is also able to encode useful sub-lexical information. 
However, at first glance, both models seemed to have trou-
ble with the plural suffix. As shown by the results of the 
gating experiment, before the plural suffix recognition of 
plural target words is often more accurate than recognition 
of singulars. However, at the final phone, recognition scores 
of plural nouns drop and become equal or lower to that of 
singular nouns. While this seems to be evidence against the 
encoding of useful sub-lexical information, our results also 
show that presenting the model with plural nouns causes 
both models to retrieve more images with multiple visual 
referents and fewer images with a single referent. This indi-
cates that the model encodes the plural suffix in a way that 
correctly affects recognition.

Using the recognition results from the gating experiment, 
we found that it is indeed only after the plural suffix that 
the distribution over single and multiple referents in the 
retrieved images shifts. At the gate just before the plural suf-
fix (where the word is technically still singular), the model 
retrieves more single-referent images and fewer multiple-
referent images than after the plural suffix. As previously 
said this is in contrast to human listeners, who are able to use 
subtle prosodic cues to recognise plural nouns [64]. It is not 
surprising that our current model, which is far from human 
performance in terms of word learning and recognition, is 
not able to exploit such cues, but this is an interesting avenue 
for further research.

Further analysis showed that after processing the plural 
suffix, the drop in single-referent images is larger than the 
increase in multiple-referent images. This may simply be 
caused by an imbalance in the test data; there are more anno-
tations of single visual referents (3864) than multiple visual 
referents (2203). Further testing with a more balanced set of 
test images could show whether the performance drop seen 
in our gating experiment is indeed due to correct recognition 
of the plural suffix, as we would then expect the increase in 
retrieved multiple-referent images to outweigh the decrease 
in retrieved single-referent images.

Vector Quantisation

Our final research goal was to establish whether the addi-
tion of VQ layers to the VGS model aids in the discovery 
and recognition of words. Previous research had shown that 
VQ layers inserted into a VGS model learned a hierarchy of 
linguistic units; a phoneme-like inventory in the first layer, 
and a word-like inventory in the second layer [13]. VQ layers 
discretise otherwise continuous hidden representations by 
mapping neighbouring speech frames to the same embed-
ding in the codebook. We expected that this aids in the dis-
covery of words and perhaps even allows the LSTM-VQ 
model to recognise words earlier in the gating experiment, 
as the model is forced to output discrete units from its word-
like VQ layer at every time step. Moreover, the codebook 
size (2048) is smaller than the total number of unique words 
in Flickr8k so, if anything, one would expect the model to 
prioritise highly frequent words, of which we took the top 
50 as our targets.

In all of the experiments, however, we found no evidence 
of the VQ layers aiding in the recognition of words: we 
showed that the LSTM-VQ model slightly outperforms the 
LSTM model on the training task (image-caption retrieval) 
so it cannot be the case that it is simply not a good VGS 
model. With regard to word recognition performance, the 
LSTM-VQ model recognises singular nouns better than the 
LSTM model, but it performs much worse at recognising 
plural nouns. Also noticeable is a gap between singular ver-
sus plural noun recognition that is not present in the LSTM 
model (when looking at the subset of words that have both 
a plural and singular form).

Furthermore, both GLMMs showed no main effect of the 
presence of VQ layers on recognition scores. We did find a 
negative interaction between VQ and gate number, indicat-
ing that the effect of gate is smaller for the LSTM-VQ model 
than for the LSTM model. Considering that final recognition 
performance is similar between the two models, the smaller 
effect of gate means the LSTM-VQ model performs bet-
ter at early gates. That is, it recognises words earlier than 
the LSTM model. Together, these results indicate that the 
addition of VQ layers is neither beneficial nor detrimental 
to word recognition performance, although the LSTM-VQ 
model requires less of the input sequence for correct recog-
nition. An interesting question for future research is which 
model performs more ’human-like’, that is, which model 
recognises words closest to the point where humans do.

Finally, we did a post hoc test for the interaction between 
VQ and morphology that shows the LSTM-VQ model has an 
advantage on the most frequent noun and verb forms, but per-
forms worse on the less frequent forms. Perhaps this is due to 
the limited codebook size forcing the model to dedicate codes 
to the most frequent words in the training data.
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Limitations

In this study, we trained and tested a model on real speech, as 
opposed to synthetic speech. As expected, overall recognition 
scores were lower than reported on synthetic speech, as natural 
speech is known to be more challenging for current models of 
speech recognition. However, the speech used in this study is 
read aloud speech, which is itself cleaner than spontaneous 
speech. In the interest of learning from data that is as natural 
as possible, spontaneous speech is preferred as this is the type 
of speech humans are most exposed to.

Furthermore, while we have shown that our model is capa-
ble of recognising words in isolation while only having seen 
those words in utterances, we selected only a small number of 
words. The small number mainly results from selecting only 
words with enough occurrences in the training data to reason-
ably expect the model to be able to learn to recognise the word, 
and enough occurrences of their visual referents in the test 
images in order to evaluate the recognition performance. On 
the other hand, given that the model was able to learn to rec-
ognise the words in this study after relatively little exposure, 
it is not unreasonable to expect the model to be able to learn 
more words if exposed to them.

Finally, our model depends on correlations between the 
speech signal and the images in order to learn to recognise 
meaningful constituents in utterances. Furthermore, our con-
cept of ‘recognition’ of a word is defined as the retrieval of 
images containing its visual referent, limiting the model to 
‘visible’ things, such as object nouns and action verbs (and not 
even all of those). As our results showed, the model especially 
struggles with verbs, even though we selected verbs with a vis-
ual referent (the actions referred to were definitely ‘visible’ as 
we were able to annotate their presence). As mentioned before, 
this may partly be due to the fact that we use a pre-trained 
object recognition network. However, it should be mentioned 
that the inter-annotator agreement for verbs was lower than for 
nouns, so even for the annotators, it was harder to determine 
the presence of actions than objects. We have argued here that 
visual information is an important learning signal in learn-
ing language; however, still images are but a single possible 
source of visual information. Actions can be partly defined by 
the movements involved, and as such, video might be a more 
appropriate learning signal.

Conclusion

We investigated whether VGS models learn to discover and 
recognise words from natural speech. Our results show that 
our models learn to recognise nouns. To a lesser extent, they 
are capable of recognising verbs but future research should 
look into the image recognition side of the model to further 
improve this. Our models even learned to encode meaningful 

sub-lexical information, enabling it to interpret the visual dif-
ference signalled by the plural morphology. Contrary to what 
we expected based on previous research, our results show no 
evidence that vector quantisation aids in the discovery and 
recognition of words in speech. Importantly, we investigated 
the cognitive plausibility of the model by testing whether 
word competition influences our models’ word recogni-
tion performance, as we know happens in humans. We have 
shown that two well-known measures of word competition 
predict word recognition in our models and found evidence 
in favour of a disputed interaction between word count and 
neighbourhood density found in human word recognition.

Taking inspiration from human learning processes, our 
research has shown that using multiple streams of sensory 
information allows our model to discover and recognise words 
without any prior linguistic information from a relatively 
small dataset of scenes and spoken descriptions. Using real-
istic and naturally occurring input is important for creating 
speech recognition models that are more cognitively plausible, 
and visual grounding is an important step in that direction.
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