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Abstract. A method for fusion of perceptions is presented. It is based on probabilistic 
treatment of perception, where perception quantifies the chance an unbiased observer 
sees an environmental object, and the associated probability can be interpreted as 
degree of awareness for the object. The approach uniquely accounts for the fact that final 
realization or remembrance of a scene in the brain may be absent or elusive, so that it is 
subject to probabilistic considerations. For objects that are to be perceived from multiple 
viewpoints, such as a sculpture in a museum, or a building in its urban context, the 
probabilistic approach uniquely defines the fusion of perceptions. This is accomplished by 
carrying out the probabilistic union of events. The computation is presented together with 
its geometric implications, which become rather intricate for multiple observers, whereas 
the computation is straight forward. The method is exemplified for two applications in 
architectural design at different scales, namely interior and urban design, indicating the 
generic nature as well as the large application potential of the method.
Keywords. Perception; vision modeling; architectural design; evolutionary search.

Introduction
Perception, and in particular visual perception, is 
an interdisciplinary concept taking an important 
place in many diverse applications. These range 
from design of objects and spaces, for which per-
ceptual qualities are aimed (Bittermann and Ciftcio-
glu, 2008), to robotics where a robot moves based 
on perception (Ciftcioglu et al., 2006a; Bülthoff et 
al., 2007). However, although visual perception has 
been subject to scientific study for over a century, 
e.g. see Wertheim (1894), it is interesting to note that 
it remained mysterious what perception precisely is 
about, while it eluded mathematical modeling until 
very recently. Many approaches to perception, in 
particular in the domain of psychology and neuro-
science, are based on experiment, while underlying 
theoretical models or hypotheses are either sim-
plistic, ambiguous or even absent (Treisman and 

Gelade, 1980; O’Regan et al., 2000; Treisman, 2006), 
so that gaining insight into the nature of human 
perception from the experiments remains minimal. 
However, considering that the perception phe-
nomenon is due to brain processing of retinal pho-
ton-reception, it should be clearly noted that the 
phenomenon is highly complex. That is, the same 
experimenter may have different perceptions of the 
same environment at different times, depending on 
the complexity of the environment, psychological 
state, personal preferences and so on, not to men-
tion different vantage points. Due to the complexity 
of the brain processes and diversity of environments 
subject to visual perception, the empiric approaches 
to perception yielded merely rudimentary under-
standing of what perception is. Although some ver-
bal definitions of the concept are presented in the 
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literature, e.g. (Gibson, 1986; Palmer, 1999; Foster, 
2000; Smith, 2001) due to excessive ambiguity of the 
linguistic expressions, these are not to be converted 
to precise or even more unambiguous mathematical 
expressions.

Computational approaches addressing some 
perception aspects have been proposed by Marr 
(Marr, 1982) whose prescription is to build computa-
tional theories for perceptual problems before mod-
eling the processes which implement the theories. 
Explicitly, different visual cues are computed in sep-
arate modules and thereafter only weakly interact 
with each other, where each module separately es-
timates scene properties, such as depth and surface 
orientation, and then the results are combined in 
some way. These works can be termed as image pro-
cessing based approaches, and they are determinis-
tic in nature, starting from simulation of retinal data 
acquisition. The retinal photon-reception certainly is 
the first stage in the time sequence of the process-
ing in the visual system, and it might be dealt with 
by means of an image specified as a two-dimension-
al matrix. However, the ensuing neural processes 
are highly complex, so that retinal image does not 
imply that all the information in the scene is regis-
tered in the human brain and remembered shortly 
afterwards. Only part of the visual information is re-
membered. For instance, it is a common experience 
that when we look at a scene, we are not aware of 
the existence of all objects the scene comprises. This 
is easily verified for scenes where the number of ob-
jects exceeds about seven objects. 

In this work a probabilistic approach is adopted 
for perception, where perception is considered a 
whole process from the stimulus coming from the 
scene to mental realization in the brain. In other 
words, all complex processes, e.g. image formation 
on the retina, processes in the visual cortex in the 
brain, and final realization of ‘seeing’ is modeled as 
a single probabilistic event, where ‘seeing’ in that 
probabilistic description is considered to be percep-
tion, where remembrance is a matter of probability. 
The final realization or remembrance of the scene in 
the brain may be absent or elusive, which is subject 

to probabilistic considerations. This approach has 
been described and its validity demonstrated (Ciftci-
oglu et al., 2006b; Bittermann and Ciftcioglu, 2008). 

This probabilistic approach is unique in the 
sense that the perception refers to human percep-
tion. In the field of computer vision perception is 
considered to be a mere image processing and en-
suing pattern recognition process, where Bayesian 
methods are appropriate (Knill et al., 2008; Knill and 
Richards, 2008; Yuille and Bulthoff, 2008). Bayesian 
approach is to characterize the information about 
the world contained in an image as a probability dis-
tribution which characterizes the relative likelihoods 
of a viewed scene being in different states, given 
the available image data. The conditional probabil-
ity distribution is determined in part by the image 
formation process, including the nature of the noise 
added in the image coding process, and in part by 
the statistical structure of the world. The Bayes’s rule 
provides the mechanism for combining these two 
factors into a final calculation of the posterior distri-
bution. This approach is based on Bayes formula

( | ) ( )( | )
( )

p i s p sp s i
p i

=
	 (1)

Here s represents the visual scene, the shape and 
location of the viewed objects, and i represents the 
retinal image. p(i|s) is the likelihood function for 
the scene and it specifies the probability of obtain-
ing image i from a given scene s. p(s) is the prior 
distribution which specifies the relative probability 
of different scenes occurring in the world, and for-
mally expresses the prior assumptions about the 
scene structure including the geometry, the light-
ing and the material properties. p(i) can be derived 
from p(i|s) and p(s) by elementary probability theory. 
Namely _ _

( ) ( | ) ( ) ( | ) ( )p i p i s p s p i s p s= + 	 (2)
so that (1) becomes 
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The posterior distribution p(s|i) is a function giving 
the probability of the scene being s if the observed 
image is i. Bayesian approach is appropriate for 
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computer vision, because for human p(i|s) is almost 
clearly known, that is p(i|s)=1. Consequently, p(i|s)=0 
and from equation (3) 

	 (4)
which is independent of the probabilistic uncer-
tainties about the scene. This means, as the p(i|s) 
is definitive for human recognizing a scene, p(s|i) 
is also definitive, being independent of p(s) which 
is the prior assumptions about the scene structure 
including the geometry, the lighting and the mate-
rial properties. The effectiveness of Bayes for ma-
chine vision is due to its recursive form, providing 
improved estimation as the incoming information is 
sustained.

The organization of the paper is as follows. In 
the modeling human perception section a vision 
model is established. In the perception from multiple 
viewing positions section, the fusion of perceptions 
from multiple viewpoints is derived. In the section 
experiments, two experiments demonstrating the 
fusion of perceptions in architectural design are pre-
sented, and this section is followed by conclusions.

Modelling Human Perception
In the human perception an object is visually 
seen, but its remembrance is subject to some 
degree via probabilistic considerations. This is 

described elsewhere (Ciftcioglu et al., 2006b; 
Bittermann and Ciftcioglu, 2008) and briefly men-
tioned as follows. We consider a basic geometric 
situation as shown in Figure 1a. For a visual scope  
-p/4£q£p/4 the probability density characterizing 
perception along the y-direction is shown in Figure 
1b for lo=2 and given by

	 (5)
The probability density with respect to q is given by 
fq(q)=1/qS , where qS=π/2. The one-dimensional per-
ception of an object spanning from arbitrary object 
boundaries a and b on the y-axis is obtained by

	 (6)
yielding perception as an event being subject to 
probabilistic computation. For the case of percep-
tion of an object by a single human observer the 
computation is accomplished always by (6) when 
the projection of the object is considered as one-
dimensional along a line. The same computation 
can be valid for three-dimensional objects, provided 
we consider the projection of the object on a plane. 
In this case, the same formulation can be used twice 
for each respective orthogonal dimension of the 
plane in the form of product of the two probability 
densities integrated over the projected area on the 
plane.

Figure 1 

Plan view of the basic geo-

metric situation of perception; 

P represents an observer’s 

point, viewing an object (a); 

probability density function 

characterizing perception 

along y direction for lo=2 (b).

	 (a)	 (b)	
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Perception from Multiple Viewing 
Positions
In many occasions an object is subject to perception 
from multiple viewing positions, either by the same 
observer or by multiple observers. That is, percep-
tions from different viewing positions are subject to 
fusion. As the perception is expressed in probabilis-
tic terms, the union of different perception events is 
subject to probabilistic computation. Requirements 
with respect to perception from multiple viewing 
positions can occur in many practical applications. 
To demonstrate fusion of perceptions we restrict the 
study to two basic examples. It is noted that they 
may not be important depending on the particular 
design problem; however the examples are simple 
in order to clearly explain the method. The same 
method can be applied in more complex tasks, such 
as courtroom design (Bhatt et al., 2011), auditorium 
design, office design, as well as urban design. In the 
first case study we consider an exhibition gallery en-
vironment, where there are several entrances to a 
gallery space, and we are wondering what the best 
position to place an object is, so that perception of 
the object is maximized. In the second application 
we are considering an urban environment, where 
a building will be erected that will be seen from a 
number of prominent viewing positions. We are in-
terested to obtain the perception of the different 
parts of the future building as fusion of perceptions 
from these viewing positions. In the latter case study 
this is to identify which part of the building is most 

conspicuous, in order to determine for instance the 
building entrance that should preferably be posi-
tioned. Consequently it will be easily noticed. 

A scene subject to investigation as exemplary 
case is shown in Figure 2a, with the three perception 
events E1, E2, and E3. The figure shows a plan view 
of the space and the location of an object subject 
to perception assessment and optimal positioning. 
The object is subject to perception from the three 
viewing positions VP1, VP2, and VP3, where it re-
spectively subtends the angle domains θ1, θ2, and 
θ3 as seen in the figure. The dashed lines in the fig-
ure indicate the boundaries of the observer’s visual 
scope at the respective viewing positions spanning 
the angles θS1, θS2, and θS3. Figure 2b shows a Venn 
diagram corresponding to the perception situa-
tion in Figure 2a. In the case of perceiving an object 
from several viewing positions this corresponds to 
the probabilistic union of the perceptions, which 
is obtained by P(E1ÈE2ÈE3)=P(E1)+P(E2)+P(E3)-
P(E1ÇE2)-P(E1ÇE3)-P(E2ÇE3)+P(E1ÇE2ÇE3), as this 
is seen from Figure 2b. It is noted that the events 
P(E1), P(E2), and P(E3) are independent. In the three 
dimensional perception case θ1, θ2, and θ3 become 
solid angles Ω1, Ω2, and Ω3 and the scopes θS1, θS2, and 
θS3 become solid angles ΩS1, ΩS2, and ΩS3.

Experiments
Computer experiments are carried out, where P(E1), 
P(E2), and P(E3) are obtained by probabilistic ray 
tracing, so that a three-dimensional object is sub-

	 (a)	 (b)	

Figure 2 

Perception events E1, E2, and 

E3 respectively denoting 

perception of an object from 

three viewpoints VP1, VP2, 

VP3; the union of the events is 

indicated by the white dashed 

line (a); Venn diagram cor-

responding to the perception 

events in Figure 2a (b).
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ject to perception measurement without need for 
projection to a plane as shown in Figure 1a. That is, 
the solid perception angle Ω subtended by the ob-
ject, as well as the solid angle ΩS, which defines the 
observer’s visual scope, are simulated by vision rays 
that are sent in random directions within the three 
dimensional visual scope. The randomness in terms 
of unit Ω is characterized by fΩ(Ω)=1/ΩS, conform-
ing to the uniform pdf f

q
(q)=1/qS that models the 

unbiased observer in the case of perception of an 
object that is contained in the scope of vision plane, 
as seen in Figure 1a. In the experiments the number 
of vision rays is denoted by nv. An object within the 
visual scope will be hit by a number of vision rays np, 
and these rays are termed perception rays. The per-
ception of the object is given by P=np/nv.

Experiment Nr. 1
The first experiment concerns a basic issue in an 
architectural design, namely positioning an object, 
so that its perception from several viewing posi-
tions is maximized in the sense that the object will 
be perceived well at least from one of the relevant 
viewpoints. This issue is exemplified by means of 
positioning a sculpture in a museum space having 
several entrances; namely the space has three doors, 
where the relevant viewing positions are located de-
noted by VP1, VP2, and VP3. The problem is to posi-
tion the sculpture in the space, so that the visitors 
entering the space from either door will notice the 
object. The problem is to maximize the union of the 
perceptions from the three viewpoints P(E1ÈE2ÈE3), 
while at the same time the sculpture positioned at 
point x should not obstruct entrance to the room 
from either door. The latter constraint is formulated 
by the condition ‖x-xo‖≥3, where xo is the position of 
each viewing position. The maximization is carried 
out by the method of random search, accomplished 
through the method of genetic algorithm. Genetic 
algorithm is a stochastic optimization method from 
the domain of computational intelligence. The al-
gorithm starts from a number of random solutions 
referred to as members of a population. Each mem-
ber satisfies the objective function to some degree, 

which is termed fitness. In the algorithm population 
members with a comparatively high fitness will be 
favored over solutions with low fitness, by giving 
the former a higher chance to remain in the popu-
lation and to produce new solutions by combining 
fit solutions. The combination among solutions is re-
ferred to as crossover operation, and it is carried out 
among pairs of population members referred to as 
parents. Crossover entails that the parameters con-
stituting a parent are treated as binary strings, and 
portions of the strings are exchanged among the 
two solutions to create new solutions with features 
from both parents. This process is repeated for sev-
eral iterations, and due to the probabilistic favoring 
of fit solutions, eventually optimal solutions appear 
in the population (Goldberg, 1989; Zalzala and Flem-
ing, 1997).

The resulting best solution after 40 generations 
is shown in Figure 3a in a plan view and in Figure 3b 
in perspective view, where the perception rays are 
seen. The circles in the figures mark the boundaries 
at 3.0 m distance from the doors. In Figure 3c-e the 
space is shown from the respective viewing position 
VP1, VP2, and VP3. The best position of the sculp-
ture is at the edge of the circle in front of viewing 
position VP1. This position has the highest union of 
perceptions in the feasible region, namely PU=.307. 
This is composed of the perceptions P1=.157 at VP1, 
P2=.063 at VP2, and P3=.048 at VP3.

For comparison the second best position is 
shown in Figure 4, namely the perceptive plan view 
in Figure 4a, perspective perceptive view in Figure 
4b, and the perceptive views from VP1, VP2, and VP3 
in Figure 4c-e respectively. The union of the percep-
tions PU=.255, that is 17% lower compared to the 
best solution in Figure 3. The union is composed of 
the perceptions P1=.072 at VP1, P2=.152 at VP2, and 
P3=.033 at VP3. The results demonstrate a common 
design knowledge, namely when one aims to maxi-
mize the perception of an object in a space with 
several possible viewing positions, it is preferable to 
position the object to have a high perception for at 
least one of the possible positions, for that matter 
VP1, rather than having several moderate percep-
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Figure 3 

Best position for the sculpture 

in a plan view (a); in a percep-

tive view (b); for VP1, P1=.157 

(c); for VP2, P2=.063 (d); for VP3, 

P3=.048 (e).

Figure 4 

Second best position for the 

sculpture in a plan view (a); in 

a perceptive view (b); for VP1, 

P1=.072 (c); forVP2, P2=.152 (d); 

for VP3, P3=.033  (e).

	 (c)	 (d)	 (e)

	 (a)	 (b)	

	 (a)	 (b)	

	 (c)	 (d)	 (e)



341Models of Computation: Human Factors - Volume 2 - Computation and Performance - eCAADe 31 | 

tions, i.e. without any outstandingly high one. The 
lower perceptions in Figure 4c demonstrate the im-
plications of the Cauchy function in Figure 1b, where 
deviation from the frontal direction for an object, in 
particular at a near distance from the observer, yield 
reduction in probability density, i.e. visual attention 
is diminished in this case. 

Experiment Nr. 2
A second experiment concerns the perception of a 
building in an urban context from three viewpoints 
that are prominent locations in the surrounding of 
the building. The location in an urban scene, where 
a new building is subject to perception considera-

tions, is seen in Figure 5. The zoomed out rendering 
of the scene in Figure 5 is shown in Figure 6, where 
the three viewing positions VP1, VP2, and VP3 are 
indicated. Figure 7 schematically shows the floor 
plan of the urban situation, as well as the percep-
tion cones and vision scopes belonging to the view-
ing positions, which are the endpoints of streets 
entering to a square where the building is located. 
Figure 7b shows random vision rays having uniform 
pdf with respect to the vision angle modeling visual 
scopes for three viewing positions. Figure 7c shows 
those rays among the vision rays that hit the build-
ing subject to perception, for perception computa-
tion. The results from the perception fusion for the 

Figure 5 

Location in an urban scene, 

where a new building is 

subject to perception consid-

erations.

Figure 6 

Zoomed out rendering of the 

urban scene in Figure 5,  where 

a new building is subject to 

perception considerations 

from three viewpoints.
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respective building envelope portions are shown 
Figure 8, where the numbers display the fused per-
ception associated with the respective portion. From 
the analysis it is seen that the part of the envelope 
that is most intensely perceived from the three view-
points, is the area in front of VP2, while the second 
most intense part is the part of the building corner 
oriented towards VP1, which is expected consider-
ing the influence of the distance lo in the perception 
computations in (5). The information obtained from 
perception fusion is of relevance for a designer de-
termining formal and functional details of the en-
velope, for instance determining the position of en-
trance during conceptual design. Figure 9 shows the 
fused perceptions of the building envelope from the 
three viewpoints per envelope element with a vision 
scope that is 20% narrower compared to Figure 8.

Conclusions
A method for fusion of perceptions is presented and 
demonstrated with two examples from architectural 
design. The probabilistic treatment, where percep-
tion quantifies the chance that an unbiased observ-
er notices an environmental object, is accomplished 
through fusion of perceptions. The method of quan-
tified union of perceptions has been an unresolved 
issue up till now, that is resolved in this presentation. 
The fusion by probabilistic union yields significant 
information for designers. With the presented ap-
proach an object is to be perceived from several 
viewpoints at the same time. Such abstraction is 
necessary, since the precise analysis of the percep-
tions is a formidable issue due to abundant visual 
scene information. The use of perception fusion 
as constrained design objective has been demon-
strated by coupling the method with a probabilistic 
evolutionary algorithm performing the constraint 
optimization. The combination of the two proba-
bilistic methods is a powerful tool for designers as 
it permits treatment of architectural design to be 
highly constrained and involving many perception 
related demands. Although the examples presented 
are rather basic, the method is generic and yields 
highly appreciable scoring executions in diverse ap-

Figure 7 

Scheme of an urban situation, 

where a building is subject 

to perception analysis from 

three viewpoints in plan view 

(a); random vision rays with 

uniform pdf w.r.t. the vision 

angle modeling visual scopes 

for three viewing positions 

VP1, VP2, and VP3 (b); the rays 

among the vision rays that 

hit the building subject to 

perception (c).

(b)

(c)

(a)
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plications in the areas where perception plays a role, 
such as architecture, urbanism, interior and indus-
trial design, as well as robotics.

Acknowledgement
Technical design assistance by Architect Paul de 
Ruiter, providing us with the scene presented in the 
second experiment is gratefully acknowledged.

References
Bhatt, M, Hois, J and Kutz, O 2011, ‘Ontological Modelling 

of Form and Function for Architectural Design’, Applied 
Ontology, pp. 1-32.

Bittermann, MS and Ciftcioglu, Ö 2008, ‘Visual perception 
model for architectural design’, Journal of Design Re-
search, 7(1), pp. 35-60.

Bülthoff, H, Wallraven, C and Giese, M 2007, ‘Perceptual ro-
botics’, in B Siciliano and O Khatib (eds), The Springer 
Handbook of Robotics, Springer, pp. 1481-1495.

Ciftcioglu, Ö, Bittermann, MS and Sariyildiz, IS 2006a, ‘Stud-

ies on visual perception for perceptual robotics’,  ICIN-
CO 2006 - 3rd Int. Conf. on Informatics in Control, Auto-
mation and Robotics, Setubal, Portugal, pp. 468-477.

Ciftcioglu, Ö, Bittermann, MS and Sariyildiz, IS 2006b, ‘To-
wards computer-based perception by modeling visual 
perception: a probabilistic theory’, 2006 IEEE Int. Conf. 
on Systems, Man, and Cybernetics, Taipei, Taiwan, pp. 
5152-5159.

Foster, J 2000, The Nature of Perception, Oxford University, 
Oxford.

Gibson, JJ 1986, The Ecological Approach to Visual Percep-
tion, Lawrence Erlbaum Associates, Hillsdale, New Jer-
sey.

Goldberg, DE 1989, Genetic Algorithms, Addison Wesley, 
Reading, MA.

Knill, DC, Kersten, D and Mamassian, P 2008, ‘Implications of 
a Bayesian formulation for visual information for pro-
cessing for psychophysics’, Perception as Bayesian Infer-
ence, Cambridge, Cambridge, pp. 239-286.

Knill, DC and Richards, W 2008, Perception as Bayesian Infer-

Figure 8 

Fused perceptions of the 

building envelope from the 

three viewpoints per envelope 

element.

Figure 9 

Fused perceptions of the build-

ing envelope from the three 

viewpoints per envelope ele-

ment with a vision scope that 

is 20% narrower compared to 

Figure 8.



344 | eCAADe 31 - Computation and Performance - Volume 2 - Models of Computation: Human Factors

ence, Cambridge University, Cambridge, UK.
Marr, D 1982, Vision, Freeman, San Francisco.
O’Regan, JK, Deubel, H, Clark, JJ and Rensink, RA 2000, ‘Pic-

ture changes during blinks: looking without seeing 
and seeing without looking’, Visual Cognition, 7(1-3), 
pp. 191-211.

Palmer, SE 1999, Vision Science, MIT, Cambridge, MA.
Smith, D 2001, The Problem of Perception, Harvard Univer-

sity, Cambridge, MA.
Treisman, AM 2006, ‘How the deployment of attention de-

termines what we see’, Visual Cognition, 14(4), pp. 411-
443.

Treisman, AM and Gelade, G 1980, ‘A feature-integration 
theory of attention’, Cognitive Psychology, 12(1), pp. 97-
136.

Wertheim, T 1894, ‘Ueber die indirekte Sehschaerfe’, Z Psy-
chol Physiol Sinnesorg, 7, pp. 172-189.

Yuille, AL and Bulthoff, HH 2008, ‘Bayesian decision theory 
and psychophysics’ in DC Knill and W Richards (eds), 
Perception as Bayesian Inference, Cambridge University, 
Cambridge, UK, pp. 123-161.

Zalzala, AMS and Fleming, PJ 1997, Genetic Algorithms in 
Engineering Systems, IEE Control Eng., Series 55, Cam-
bridge University, New York.


