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ABSTRACT
Graph-based semi-supervised learning (G-SSL) methods play
an increasingly important role in machine learning systems.
Recently, latent low-rank representation (LatLRR) graph has
gained great success in subspace clustering. However, LatLRR
only considers the global structure, while the local geometric
information, which is often important to many real applica-
tions, is ignored. In this paper, we propose a locality regular-
ized LatLRR model (LR-LatLRR) for semi-supervised subspace
clustering problems. This model incorporates two regulariza-
tion terms into LatLRR by taking the local structure of data into
account. Then, we develop an efficient splitting algorithm for
solving LR-LatLRR. In addition, we also prove the global con-
vergence of the proposed algorithm. Furthermore, we extend
the LR-LatLRR model to a case of including the non-negative
constraint. Finally, we conduct experiments on a synthetic
data and several real data sets for the semi-supervised cluster-
ing problems. Experimental results show that our method can
obtain high classification accuracy and outperforms several
state-of-the-art G-SSL methods.
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1. Introduction

Semi-supervised learning (SSL) [1] has recently received considerable attention
on computer vision and machine learning. It utilizes limited labelled data and
sufficient unlabelled data to obtain the subspace. Over the past decades, many
SSLmethods ormodels have been proposed, such as self-training [2], co-training
[3], semi-supervised support vector machines [4,5], graph-basedmethods [6–9].
Among the current SSL methods, graph-based SSL (G-SSL) methods are par-
ticularly appealing because of their empirical success as well as computational
efficiency. The essence of G-SSL methods is to construct a good graph that can
capture the essential data structure.
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According toWright et al. [10], an informative graph should have three charac-
teristics: high discriminating power, low sparsity, and adaptive neighbourhood.
Inspired by this, many methods have been proposed to construct discrimina-
tive graphs. Yan and Wang [11] proposed an �1 graph via sparse representation
(SR) [10] by solving an �1 optimization problem. Based on the �1 graph, vari-
ous works were done to construct sparse graphs for many image applications.
Although the �1 graph is sparse, these methods may be ineffective in capturing
the global structures of data. This drawback can greatly reduce the performance
when data are grossly corrupted. To capture the global structure of the whole
data, Liu et al. [12] proposed the low-rank representation (LRR) method for
subspace clustering. The target of LRR aims at finding the low-rank represen-
tation among all samples. For some applications, data are taken from physical
measurements which must be non-negative. Motivated by this, Zhuang et al. [9]
proposed a non-negative low-rank and sparse graph for SSL by enforcing the
representation to be non-negative. Furthermore, many works [13,14] have also
shown that the non-negative constraint is particularly useful in data representa-
tion and handling image data. However, the standard LRR does not consider the
case of insufficient samples and extremely noisy data. To solve this issue, Liu and
Yan [15] further proposed a latent low-rank representation (LatLRR) approach,
which is an enhanced version of LRR. But it should be noted that both LRR and
LatLRR do not consider the local geometric information of data samples. From
this point of view, Fei et al. [16] proposed a low-rank representationwith adaptive
distance penalty (LRRADP) for semi-supervised subspace clustering. By embed-
ding the adaptive distance penalty into the LRR, LRRADP can better preserve
the local neighbour relationship of data. Moreover, Li et al. [17] proposed a uni-
fied optimization framework of semi-supervised method, termed as Self-Taught
Semi-Supervised Learning (STSSL), which learns both the affinitymatrix and the
unknown labels simultaneously.

Recently, many studies [18,19] have shown that the local structure is very
important for data clustering [20] and classification [21,22]. For example, Yin
et al. [23] proposed a Non-negative Sparse Laplacian regularized LRR (NSLLRR)
model for data representation by adding a Laplacian regularization term to LRR.
However, many graph-based methods only enforce the nearby points have simi-
lar representation coefficients. Both the pair-wise distance and label information
were ignored in graph construction. In particular, many problems in subspace
clustering can be formulated as linearly constrained separable convex programs.
A variety of methods have been proposed in the past to solve separable con-
vex programs. For example, He and Yuan [24] proposed a linearized alternating
direction method (LADM) with Gaussian back substitution to solve a convex
model with linear constraints and a general separable objective function. Liu
et al. [25] proposed LADM with parallel splitting and adaptive penalty for solv-
ingmulti-block separable convex programs efficiently.Moreover, they established
the convergence rate for their proposed method, respectively. Most recently,
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He et al. [26] proposed a splitting method for solving a general separable con-
vex minimization problem. And they also established the global convergence
and a worst-case convergence rate for the splitting method. However, the split-
ting method requires that each resulting subproblem could easily enough have
closed-form solution.

Motivated by the above works, we propose a locality regularized latent low-
rank representation (LR-LatLRR) for the semi-supervised subspace clustering
problems. The model combines LatLRR with the local geometric information
of data to improve the clustering performance. Specifically, we incorporate two
regularization terms into LatLRR by taking two reasonable assumptions into
account. Besides, LR-LatLRR copes with the case that the observation data are
corrupted by both impulsive and Gaussian noise. Then, we develop an effi-
cient algorithm for solving LR-LatLRR. In addition, we also prove the global
convergence of the proposed algorithm. Furthermore, we extend LR-LatLRR to
a non-negative model which includes the non-negative constraint. Finally, the
proposed algorithm is applied to the semi-supervised clustering problems on
a synthetic data and several real data sets. Experimental results show that our
method can obtain high classification accuracy and greatly outperforms several
state-of-the-art G-SSL methods.

The paper is organized as follows. In Section 2, we first give a brief review
of the related works and provide some preliminaries that are used in the latter
analysis. Section 3 is dedicated to proposing the locality regularized latent low-
rank representation (LR-LatLRR ) for the semi-supervised subspace clustering
problems. In Section 4, the global convergence of the proposed method is estab-
lished. Section 5 presents experiments that evaluate our method with a synthetic
data and several real datasets. Lastly, we end with some concluding remarks in
Section 6.

2. Related works

Before introducing the proposed model, we first review some well-known nota-
tions and results that are used in the latter analysis. Since our framework is based
on low-rank representation, we also briefly review LRR and LatLRR.

2.1. Notations

For any matrix X ∈ Rm×n, the nuclear norm ‖X‖∗ is defined as the sum of all
singular values of X. The spectral norm ‖X‖ is defined as the largest singular
value of matrix X. The l1 norm and the Frobenius norm are respectively defined
as ‖X‖1 =

∑m
i=1
∑n

j=1 |Xij|, ‖X‖F =
√∑m

i=1
∑n

j=1 X2
ij, where Xij is the (i, j)-th

component of X. For any vector x, we denote diag(x) as a diagonal matrix which
possesses the components of x on its diagonal. Let diag(A,B,C, . . . ) denote a
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block-diagonal matrix, where A, B, C . . . are matrices. For any two matrices X,
Y ∈ Rm×n, we define 〈X,Y〉 = Tr(XTY), whereTr stands for the trace of amatrix.

Lemma 2.1 ([27]): For μ > 0 and T ∈ Rm×n, the minimizer of

min
S∈Rm×n

μ‖S‖1 + 1
2‖S− T‖2F

is given by Sμ(T) ∈ Rm×n, which is defined componentwise by [Sμ(T)]ij =
max{|Tij| − μ, 0} · sign(Tij), where sign(·) is the sign function.

Lemma 2.2 ([28]): Given T ∈ Rm×n of rank r, let T = UT�TVT
T and �T =

diag(σ1, . . . , σr) be the singular value decomposition of T, where UT ∈ Rm×r,
�T ∈ Rr×r, and VT ∈ Rn×r. For eachμ > 0, the solution of the following problem:

min
X∈Rm×n

μ‖X‖∗ + 1
2‖X − T‖2F

is given by Dμ(T) := UT�
μ
TV

T
T ∈ Rm×n, where �

μ
T = diag({σi − μ}+) ∈ Rr×r

and {·}+ = max(0, ·).

2.2. Low-rank representation: an overview

Low-rank representation [12] was proposed to segment data drawn from a mix-
ture of several lowdimensional subspaces. Given a corrupted training datamatrix
X = [X1, . . . ,Xn] ∈ Rm×n drawn from a union of s subspaces {Si}si=1. Each sam-
ple Xi is drawn from a low dimensional subspace Sk. LRR seeks the lowest rank
representation Z that represent all vectors as the linear combination of the data
themselves. The LRR model in [12] can be formulated as

(P1) min
Z,E
‖Z‖∗ + λ‖E‖� s.t. X = XZ + E,

where X ∈ Rm×n is the given data matrix. Z ∈ Rn×n is a low-rank representa-
tion of data X. E ∈ Rm×n is the observation noise. λ > 0 is a positive weighting
parameter and ‖ · ‖� indicates a certain regularization strategy, such as the l1
norm.

However, the standard LRR model (P1) does not consider the case of insuf-
ficient samples and extremely noisy data in its formula. To overcome this
drawback, Liu and Yan [15] proposed the following LatLRR model:

(P2) min
Z,L,E
‖Z‖∗ + ‖L‖∗ + λ‖E‖� s.t. X = XZ + LX + E.

Obviously, both (P1) and (P2) are convex. Thus, a number of methods can be
derived for solving them, such as the singular value thresholding method [28],
proximal gradient method [29,30], and augmented Lagrange multiplier method
[31]. Note that both LRR and LatLRR do not consider the local geometric infor-
mation of data samples. However, many previous works [21,22] have shown that
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the local geometric information contributes to constructing a discriminative clas-
sifier. Thus, in the next section, we propose LR-LatLRR by considering the local
structure of data into LatLRR.

3. Locality regularized latent low-rank representation

In this section, we propose the locality regularized latent low-rank representa-
tion (LR-LatLRR) for the semi-supervised subspace clustering.We first formulate
LR-LatLRR as a regularized LatLRR problem. To solve this problem, we develop
an efficient algorithm. In addition, we also describe a non-negative extension of
LR-LatLRR.

3.1. Model formulation and optimality

As pointed out in [23], there are two explanations for the low-rank representation
matrix Z. Firstly, the i-th column of Z, i.e. Zi, as a ‘better’ representation of Xi
such that the desired subspace structure is more prominent. Secondly, the ij-th
element ofZ, i.e.Zij, reflects the ‘similarity’ between the pairXi andXj. Motivated
by these two explanations, we begin with introducing two regularization terms
on Z by taking local properties of data into account.

In practice, it is reasonable to assume that if two data pointsXi andXj are close
in the samples space, their representations Zi and Zj in a new space are also close
to each other. To satisfy such assumption, a reasonable choice is to minimize the
following regularization term:

1
2

n∑
i,j=1
‖Zi − Zj‖22Wij = Tr(ZQZT), (1)

where Wij denotes the weight of the edge between Xi and Xj. Q = D−W is
called as the graph Laplacian matrix. And D is a diagonal matrix whose entries
are given by Dii =

∑n
j=1Wij. Such a regularization term has been shown effec-

tive in machine learning [23,32], also known as Laplacian regularizer. If Xi
is among the K-nearest neighbours of Xj or vice versa, then the samples Xi
and Xj are considered as neighbours. In this paper, we define the matrix W as
Wij = exp (−‖Xi − Xj‖22/2) if Xi and Xj share the same label or if Xi and Xj are
neighbours, andWij = 0 otherwise.

Furthermore, we also consider another local property that a sample and its
nearest neighbours usually belong to the same class. Therefore, the similarity
between Xi and Xj should vary with the distance between each other.

To achieve this goal, we define a weight matrix H according to the pair-wise
distance and label information. In particular, let Hij = 0 if Xi and Xj share the
same label or ifXi andXj are neighbours, andHij = ‖Xi − Xj‖2 otherwise. Based
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on this weight matrix, in this paper, we impose the following regularizer on Z as

n∑
i,j=1

HijZij = Tr(HTZ). (2)

Consequently, when the data Xj is far from the point Xi, the weight Hij will be
assigned to a large value, which will force the term Zij to be small (or zero). In
contrast, if Xi and Xj share the same label or if Xi and Xj are neighbours, the
regularization term HijZij will be ignored.

In this paper, we aim at combining the advantages of term (1) and term (2).
Actually, regularization terms (1) and (2) are the second-order and the first-
order penalty on Z, respectively. Incorporating these two regularization terms
into LatLRR, the LR-LatLRR model can be formulated as follows:

(P3) min
E,F,L,Z

f (E, F, L,Z) = ‖Z‖∗ + λ1‖L‖∗ + λ2‖E‖1 + g(Z)+ γ

2
‖F‖2F

s.t. X = XZ + LX + E+ F,

where g(Z) = (λ3/2)Tr(ZQZT)+ λ4Tr(HTZ). λi > 0 (i = 1, . . . , 4) are the reg-
ulation parameters, which are set empirically. The last term (γ /2)‖F‖2F is the
relaxation of the equality constraint X = XZ+ LX+E. Indeed, this term copes
with the case that the observation data X may be corrupted by both the impul-
sive noise E and the Gaussian noise F. The parameter γ is referred to as a
penalty parameter, which has a large value. In this paper, we set γ = 104 for all
experiments. Obviously, (P3) is convex and the objective function is non-smooth.

The Lagrangian function of (P3) is defined as

L(E, F, L,Z,�) = f (E, F, L,Z)+ 〈�,X − XZ − LX − E− F〉,

where � ∈ Rm×n is the Lagrange multiplier associated with the equality con-
straint in (P3). Obviously, (E∗, F∗, L∗,Z∗) ∈ Rm×n × Rm×n × Rm×m × Rn×n is a
solution of (P3) if and only if there exists �∗ ∈ Rm×n such that⎧⎪⎨⎪⎩

0 ∈ λ2∂‖E∗‖1 −�∗, 0 = γ F∗ −�∗, (3a)

0 ∈ λ1∂‖L∗‖∗ −�∗XT, 0 ∈ ∂‖Z∗‖∗ + ∇g(Z∗)− XT�∗,

X∗ = XZ∗ + L∗X + E∗ + F∗,

where ∂(·) denotes the subgradient operator of a convex function and∇g(Z∗) =
λ3Z∗Q+ λ4H.

3.2. A splittingmethod for solving (P3)

In this subsection, we derive a splitting method for solving (P3) based on the
iteration scheme of the method in [26].
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The augmented Lagrangian function of (P3) is

Lρ(E, F, L,Z,�) = L(E, F, L,Z,�)+ ρ

2
‖XZ + LX + E+ F − X‖2F ,

where ρ > 0 is a penalty parameter for the violation of the equality constraint.
Recall that the splitting method in [26] was proposed for solving a general
separable convex minimization problem.

In detail, with the given (Ek, Fk, Lk,Zk,�k), the method in [26] generates the
new iterate (Ek+1, Fk+1, Lk+1,Zk+1,�k+1) via the following scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ek+1 = arg min
E∈Rm×n

Lρ(E, Fk, Lk,Zk,�k),

�̃k = �k − ρ(XZk + LkX + Ek+1 + Fk − X),

Fk+1 = arg min
F∈Rm×n

γ

2
‖F‖2F +

ρη

2
‖F −

(
Fk + �̃k

ρη

)
‖2F ,

Lk+1 = arg min
L∈Rm×m

λ1‖L‖∗ + ρη

2
‖LX −

(
LkX + �̃k

ρη

)
‖2F , (4a)

Zk+1 = arg min
Z∈Rn×n

‖Z‖∗ + g(Z)+ ρη

2
‖XZ −

(
XZk + �̃k

ρη

)
‖2F , (4b)

�k+1 = �̃k − ρ(Fk+1 − Fk)− ρ(Lk+1 − Lk)X − ρX(Zk+1 − Zk).

It is obvious that the scheme is easily performed in sense that each subproblem is
exactly solved. However, we are no longer able to obtain the exact solutions Lk+1
and Zk+1. Besides, the efficiency of the scheme depends heavily on how to solve
the difficult subproblems (4a) and (4b). Hence, this motivates us to design an effi-
cient algorithm for solving (P3). In particular, instead of solving (4a) and (4b)
exactly, we solve a respective approximate model at each time as long as the
overall convergence can be guaranteed.

Let Hk = −(1/ρη)�̃kXT be the gradient of 1
2‖LX − (LkX + (�̃k/ρη))‖2F at

current Lk. Then we have

Lk+1 ≈ arg min
L∈Rm×m

λ1‖L‖∗ + ρη〈Hk, L− Lk〉 + ρη

2τ
‖L− Lk‖2F

= arg min
L∈Rm×m

λ1‖L‖∗ + ρη

2τ
‖L− Lk + τHk‖2F

= D(λ1τ/ρη)(Lk − τHk),

where τ > 0 is a positive scalar which is important to the convergence of our
splitting method.

Similarly, in order to reformulate (4b), we next approximate (λ3/2)Tr(ZQZT)

and λ4Tr(HTZ)+ (ρη/2)‖XZ − (XZk + �̃k/ρη)‖2F . According to Lemma 2.1 in
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[33], (λ3/2)Tr(ZQZT) is upper bounded by its proximal approximation:

λ3

2
Tr(ZkQZkT)+ 〈λ3ZkQ,Z − Zk〉 + λ3‖Q‖

2
‖Z − Zk‖2F ,

where ‖Q‖ is the spectral norm of matrix Q. Since λ4H − XT�̃k is the gra-
dient of λ4Tr(HTZ)+ (ρη/2)‖XZ − (XZk + (�̃k/ρη))‖2F at current Zk. Thus
λ4Tr(HTZ)+ (ρη/2)‖XZ − (XZk + (�̃k/ρη))‖2F can be approximated by

λ4Tr(HTZk)+ ρη

2
‖�̃

k

ρη
‖2F + 〈λ4H − XT�̃k,Z − Zk〉 + ρη

2τ
‖Z − Zk‖2F .

By replacing (λ3/2)Tr(ZQZT) and λ4Tr(HTZ)+ (ρη/2)‖XZ − (XZk + (�̃k/

ρη))‖2F in (4b), we have

Zk+1 ≈ arg min
Z∈Rn×n

‖Z‖∗ + 〈λ3ZkQ+ λ4H − XT�̃k,Z − Zk〉

+
(

ρη

2τ
+ λ3‖Q‖

2

)
‖Z − Zk‖2F

= arg min
Z∈Rn×n

‖Z‖∗ + σ

2
‖Z − Zk + 1

σ
(λ3ZkQ+ λ4H − XT�̃k)‖2F

= D1/σ

(
Zk − λ3ZkQ+ λ4H − XT�̃k

σ

)
,

where σ = ρη/τ + λ3‖Q‖.
Since it is nontrivial to choose an optimal fixed ρ, a dynamic ρ is preferred

in real application. In this paper, we propose the following adaptive updating
strategy for the penalty parameter ρ:

ρk+1 = ρk + ρmaxμ
k where μk =

{
μ0 if (7) is satisfied,
1 otherwise.

(5)

The condition to assign μk = μ0 comes from the analysis on the stopping
criterion. In detail, the first stopping criterion is the feasibility

‖X − XZk+1 − Lk+1X − Fk+1 − Ek+1‖2F/‖X‖2F ≤ ε1. (6)

Furthermore, based on the condition (3a) and the conditions in Lemma 4.1,
we conclude that ρkη(Fk+1 − Fk), ρkη(Lk+1 − Lk)/τ , and λ3(Zk+1 − Zk)Q−
σ k(Zk+1 − Zk) should be small enoughwhen (Ek+1, Fk+1, Lk+1,Zk+1) converges
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to (E∗, F∗, L∗,Z∗). This leads to the second stopping criterion

max{ρk√η‖Fk+1 − Fk‖F , ρk√η‖Lk+1 − Lk‖F/τ , (7)

ρkη/τ + 2λ3‖Q‖√
η

‖Zk+1 − Zk‖F} ≤ ε2.

To sum up, instead of solving (4a), we generate the new iterate with adaptive
penalty ρk via the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ek+1 = Sλ2/ρk

(
X + �k

ρk − XZk − LkX − Fk
)
, (8a)

�̃k = �k − ρk(XZk + LkX + Ek+1 + Fk − X), (8b)

Fk+1 = (ρkηFk + �̃k)/(ρkη + γ ), (8c)

Lk+1 = D(τλ1/ρkη)(L
k − τHk), (8d)

Zk+1 = D1/σ k

(
Zk − λ3ZkQ+ λ4H − XT�̃k

σ k

)
, (8e)

�k+1 = �̃k − ρk(Fk+1 − Fk)− ρk(Lk+1 − Lk)X − ρkX(Zk+1 − Zk), (8f)

where Hk = −(1/ρkη)�̃kXT and σ k = ρkη/τ + λ3‖Q‖.
Now we are ready to describe our algorithm, named the Variant Splitting

Method or VSM, as in Algorithm 1.

Algorithm 1: VSM for solving the problem (P3)
Input Choose parameters ε1 = 10−4, ε2 = 10−5, η > 0, τ > 0, ρmax > 0,

μ0 = 2.1, the graph Laplacian matrix Q and the weight matrix H. Initial
E0 = 0, F0 = 0, L0 = 0, Z0 = 0, multiplier vector �0 = 0, penalty
parameter ρ0 = 0. Set the iteration counter k = 0.

Output An approximate optimal solution (Ek+1, Fk+1, Lk+1,Zk+1) of
problem (P3).

while (6) or (7) is not satisfied do

Step 1 generate the new iterate (Ek+1, Fk+1, Lk+1,Zk+1,�k+1) via (8);
Step 2 update the parameter ρk+1 via (5), and k← k+ 1.

return Ek+1, Fk+1, Lk+1 and Zk+1;
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Remark 3.1: Note that the authors in [24,25] also proposed LADM for solv-
ing multi-block separable convex programs, respectively. However, they all only
linearized the quadratic penalty term in the subproblems. Then, they assumed
that the resulting subproblems become easy enough to have closed-form solu-
tions. However, since there exists λ3/2Tr(ZQZT) and λ4Tr(HTZ), only lineariz-
ing the quadratic term ‖XZ − (XZk + (�̃k/ρη))‖2F does not obtain an easy sub-
problem. Hence, unlike the methods in [24,25], we need to further approximate
the resulting subproblem. Moreover, instead of using Gaussian back substitution
in [24], we prove the convergence without any correction step.

3.3. Non-negative extension

In many applications, data are taken from physical measurements which must
be non-negative. Furthermore, as pointed out in [9], non-negativity is more
consistent with the biological modelling of visual data [34,35], and lead to bet-
ter performance for data representation [35] and graph construction [34]. In
this case, we extend LR-LatLRR to a non-negative case by imposing the non-
negative constraint on the data representation. For simplicity, we call this model
as NLR-LatLRR hereafter.

(P4) min
E,F,L,Z

f (E, F, L,Z) s.t. X = XZ + LX + E+ F, Z ≥ 0.

It is straightforward to modify VSM for solving (P3) from (8). We just need an
extra positive projection after updating Z in (8e), i.e. Zk+1 = max{0,Zk+1}. We
skip this for conciseness.

4. Convergence analysis

This section is devoted to establishing the global convergence of Algorithm 1.
Before proving our main global convergence theorem, we first discuss several
important properties of the sequence generated by Algorithm 1.

Lemma 4.1: Let {(Ek, Fk, Lk,Zk, �̃k,�k)} be the sequence generated by
Algorithm 1. Then the sequence satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̃k ∈ λ2∂
∥∥∥Ek+1∥∥∥

1
, �̃k − ρkη

(
Fk+1 − Fk

)
= γ Fk+1, (9a)

�̃kXT − ρkη

τ

(
Lk+1 − Lk

)
∈ λ1∂

∥∥∥Lk+1∥∥∥∗ , (9b)

−λ3ZkQ− λ4H + XT�̃k − σ k
(
Zk+1 − Zk

)
∈ ∂

∥∥∥Zk+1
∥∥∥∗ . (9c)

Proof: The lemma can be easily verified by the optimality conditions of (8a), (8c),
(8d) and (8e). �
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Let pk+1L = �̃kXT − (ρkη/τ)(Lk+1 − Lk) and let pk+1Z = λ3(Zk+1 − Zk)Q+
XT�̃k − σ k(Zk+1 − Zk). Then (9b) and (9c) imply pk+1L ∈ λ1∂‖Lk+1‖∗ and
pk+1Z ∈ ∂‖Zk+1‖∗ + λ3Zk+1Q+ λ4H, respectively.

To simplify the notation, we denote, for any F, � ∈ Rm×n, L ∈ Rm×m, Z ∈
Rn×n, V = {ν : ν = diag(F, L,Z,�)}, ν∗ = diag(F∗, L∗,Z∗,�∗), ν̃k = diag(̃Fk,
L̃k, Z̃k, �̃k), where F̃k = Fk+1, L̃k = Lk+1, Z̃k = Zk+1. Let Gk = diag(ηIm, (η/τ)

Im, (σ k/ρk)In, (1/(ρk)2)Im), where Im denotes the identity matrix in Rm×m.
Throughout this paper, we assume that the solution set of (3) is nonempty.

Thus V∗ = {ν∗, (E∗, F∗, L∗,Z∗,�∗) is a solution of (3)} is also nonempty. With
the above notations, we have the following two lemmas, which are crucial to the
proof of the global convergence. For fluency, we move the proofs of both lemmas
to the Appendix.

Lemma4.2: Let {νk} be generated byAlgorithm 1 and let ν∗ ∈ V∗. Thenwe obtain
the following inequality:∥∥∥νk+1 − ν∗

∥∥∥2
Gk+1 −

∥∥∥νk − ν∗
∥∥∥2
Gk

≤ − 2
ρk

〈
Fk+1 − F∗, γ Fk+1 −�∗

〉
− 2

ρk

〈
Lk+1 − L∗, pk+1L −�∗XT

〉
− 2

ρk

〈
Zk+1 − Z∗, pk+1Z − XT�∗

〉
− 2

ρk

〈
Ek+1 − E∗, �̃k −�∗

〉
− (η − 3)

∥∥∥Fk+1 − Fk
∥∥∥2
F
−
(η

τ
− 3‖X‖2

) ∥∥∥Lk+1 − Lk
∥∥∥2
F

−
(

η

τ
− 3‖X‖2 − λ3‖Q‖

ρk+1 − ρk

)∥∥∥Zk+1 − Zk
∥∥∥2
F
− 1(

ρk
)2 ∥∥∥�k − �̃k

∥∥∥2
F
,

(10)

where the G-norm is defined as

‖ν1 − ν2‖2G = 〈ν1 − ν2,G · (ν1 − ν2)〉, ∀ ν1, ν2 ∈ V . (11)

Lemma 4.3: Let {νk} be generated by Algorithm 1 and let ν∗ ∈ V∗. Then the
following claims hold:

〈Ek+1 − E∗, �̃k −�∗〉 ≥ 0, 〈Fk+1 − F∗, γ Fk+1 −�∗〉 ≥ 0,

〈Lk+1 − L∗, pk+1L −�∗XT〉 ≥ 0, 〈Zk+1 − Z∗, pk+1Z − XT�∗〉 ≥ 0. (12)

Based on the assertions in Lemma (4.2) and (12), some properties of the
sequence {νk} can be immediately derived, and we summarize them in the
following lemma.
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Lemma 4.4: If η > 3, 0 < τ < 1/(‖X‖2 + c), ρk+1 − ρk > (λ3‖Q‖/(η/τ − 3
‖X‖2 − c)), where c is any positive number, and (E∗, F∗, L∗,Z∗,�∗) is any KKT
point of (P3), then the following statements are true.

(1) ‖νk+1 − ν∗‖2Gk+1 is non-increasing.
(2) limk→∞ ‖Fk − Fk+1‖F = 0, limk→∞ ‖Lk − Lk+1‖F = 0,

limk→∞ ‖Zk − Zk+1‖F = 0, limk→∞(1/ρk)‖�k − �̃k‖F = 0.
(3)

∑∞
k=1(1/ρk)〈Ek+1 − E∗, �̃k −�∗〉 ≤ ∞,∑∞
k=1(1/ρk)〈Fk+1 − F∗, γ Fk+1 −�∗〉 ≤ ∞,∑∞
k=1(1/ρk)〈Lk+1 − L∗, pk+1L −�∗XT〉 ≤ ∞,∑∞
k=1(1/ρk)〈Zk+1 − Z∗, pk+1Z − XT�∗〉 ≤ ∞.

Proof: The assumptions η > 3, 0 < τ < 1/(‖X‖2 + c), and ρk+1 − ρk >

(λ3‖Q‖/(η/τ − 3‖X‖2 − c)) imply that {ρk} is increasing and η/τ − 3‖X‖2 −
(λ3‖Q‖/(ρk+1 − ρk)) ≥ c. Then all assertions can be easily deduced from
Lemma (4.2) and (12). �

In the following, we prove the global convergence for Algorithm 1.

Theorem 4.5: If η > 3, 0 < τ < (‖X‖2 + c),
∑∞

k=1(1/ρk) = ∞, ρk+1 − ρk >

(λ3‖Q‖/(η/τ − 3‖X‖2 − c)), where c is any positive number, then the sequence
{(Ek, Fk, Lk,Zk)} generated byAlgorithm 1 converges to an optimal solution to (P3).

Proof: The proof consists of the following two claims.

(1) Any clustering point of {(Ek, Fk, Lk,Zk)} is an optimal solution to (P3).
(2) The sequence {(Ek, Fk, Lk,Zk)} converges to some (E∞, F∞, L∞,Z∞).

By the first assertion of Lemma 4.4, the sequence {(Fk, Lk,Zk)} is bounded
and hence has at least one accumulation point (F∞, L∞,Z∞). Recall that (8b)
implies that Ek+1 = X − XZk − LkX − Fk − (1/ρk)(�̃k −�k). Then, by the
second assertion of Lemma 4.4 that limk→∞(1/ρk)‖�k − �̃k‖F = 0, we con-
clude that (E∞, F∞, L∞,Z∞) is a feasible solution of (P3), where E∞ := X −
XZ∞ − L∞X − F∞.

Since
∑∞

k=1(1/ρk) = ∞ and according to the third assertion of Lemma 4.4,
there exists a subsequence {(Ekj , Fkj , Lkj ,Zkj)} such that

〈Ekj − E∗, �̃kj−1 −�∗〉 → 0, 〈Fkj − F∗, γ Fkj −�∗〉 → 0,

〈Lkj − L∗, pkjL −�∗XT〉 → 0, 〈Zkj − Z∗, pkjZ − XT�∗〉 → 0. (13)

Recall that

�̃kj−1 ∈ λ2∂
∥∥∥Ekj∥∥∥

1
, pkjL ∈ λ1∂

∥∥∥Lkj∥∥∥∗ , pkjZ ∈ ∂

∥∥∥Zkj
∥∥∥∗ + λ3ZkjQ+ λ4H.

(14)
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The boundedness of {(Ek, Lk,Zk)} implies that λ2∂‖Ek‖1, λ1∂‖Lk‖∗, and
∂‖Zk‖∗ + λ3ZkQ+ λ4H are bounded. Without loss of generality, we may
assume that (Ekj , Fkj , Lkj ,Zkj)→ (E∞, F∞, L∞,Z∞), �̃kj → �∞,

(
pkjL , p

kj
Z

)
→(

p∞L , p∞Z
)
. It can be easily proven that�∞ ∈ λ2∂‖E∞‖1, p∞L ∈ λ1∂‖L∞‖∗, p∞Z ∈

∂‖Z∞‖∗ + λ3Z∞Q+ λ4H.
Taking j→∞ in (13), we have

〈E∞ − E∗,�∞ −�∗〉 = 0, 〈F∞ − F∗, γ F∞ −�∗〉 = 0,

〈L∞ − L∗, p∞L −�∗XT〉 = 0, 〈Z∞ − Z∗, p∞Z − XT�∗〉 = 0. (15)

On the other hand, (14) implies

f (Ekj , Fkj , Lkj ,Zkj)− f (E∗, F∗, L∗,Z∗)

≤ 〈Ekj − E∗, �̃kj−1〉 + 〈Fkj − F∗, γ Fkj〉 + 〈Lkj − L∗, pkjL 〉 + 〈Zkj − Z∗, pkjZ 〉.

Using (15) for j→∞, it follows

f (E∞, F∞, L∞,Z∞)− f (E∗, F∗, L∗,Z∗)

≤ 〈E∞ − E∗,�∞〉 + 〈F∞ − F∗, γ F∞〉 + 〈L∞ − L∗, p∞L 〉 + 〈Z∞ − Z∗, p∞Z 〉
= 〈E∞ − E∗,�∗〉 + 〈F∞ − F∗,�∗〉 + 〈L∞ − L∗,XT�∗〉
+ 〈Z∞ − Z∗,�∗XT〉
= 〈(E∞ − E∗)+ (F∞ − F∗)+ (L∞ − L∗)X + X(Z∞ − Z∗),�∗〉 = 0.

Therefore, {(Ekj , Fkj , Lkj ,Zkj)} converges to an optimal solution (E∞, F∞, L∞,
Z∞). Thus the first claim is proved.

Finally, we prove the second claim by taking ν∗ as ν∞ := diag(F∞, L∞,Z∞,
�∞) in Lemma 4.4, where �∞ is the corresponding Lagrange multiplier.
From (3a) and (9a), we have �∞ = γ F∞ and �̃k = ρkη(Fk+1 − Fk)+ γ Fk+1,
respectively. Hence, we obtain

1
(ρkj)2

∥∥∥�̃kj −�∞
∥∥∥2
F
≤ 1

(ρkj)2

∥∥∥γ Fkj+1 − γ F∞
∥∥∥2
F
+
∥∥∥η(Fkj+1 − Fkj)

∥∥∥2
F
.

Therefore Fkj → F∞ and limk→∞ ‖Fk − Fk+1‖F = 0 in Lemma 4.4 imply
that (1/(ρkj)2)‖�̃kj −�∞‖2F → 0. Using limk→∞(1/ρk)‖�k − �̃k‖F = 0 in
Lemma 4.4, we easily obtain

1
(ρkj)2

∥∥∥�kj −�∞
∥∥∥2
F
≤ 1

(ρkj)2

(∥∥∥�kj − �̃kj
∥∥∥2
F
+
∥∥∥�̃kj −�∞

∥∥∥2
F

)
→ 0. (16)
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According to the definition of G-norm (11), we can write∥∥∥νkj − ν∞
∥∥∥2
Gkj
= η

∥∥∥Fkj − F∞
∥∥∥2
F
+ η

τ

∥∥∥Lkj − L∞
∥∥∥2
F

+
(

η

τ
+ λ3‖Q‖

ρkj

)∥∥∥Zkj − Z∞
∥∥∥2
F
+ 1

(ρkj)2

∥∥∥�kj −�∞
∥∥∥2
F
.

Because of (16) and {(Fkj , Lkj ,Zkj)} → (F∞, L∞,Z∞), we arrive at ‖νkj −
ν∞‖2

Gkj
→ 0. Then the first assertion of Lemma 4.4 gives that ‖νk − ν∞‖2Gk →

0. As a consequence, we have (Fk, Lk,Zk)→ (F∞, L∞,Z∞). Moreover, Ek+1 =
X − XZk − LkX − Fk − (1/ρk)(�̃k −�k) implies limk→∞ Ek+1 = X − XZ∞ −
L∞X − F∞ = E∞. To summarize, we have shown that the whole sequence
{(Ek, Fk, Lk,Zk)} converges to (E∞, F∞, L∞,Z∞), which is an optimal solution
point of (P3). This completes the proof. �

5. Numerical results

In this section, we evaluate the performance of the proposed LR-LatLRR based
methods, including LR-LatLRR and NLR-LatLRR, on the baseline data sets. Five
data sets are used, including two-moon toy data, COIL20 database, Extended
YaleB database, ORL database, and Isolet5 database. We compare our methods
with LRR [12], LatLRR [15], LRRADP [16], and NSLLRR [23]. Furthermore,
we also compare with the state-of-the-art unified framework of semi-supervised
methods, including NNSG [36] and STSSL [17].

For these state-of-the-art methods, we use the implementations provided by
their authors to construct the affinity graph. Based on the constructed affin-
ity graph, the Gaussian Field and Harmonic Function (GFHF) [8] is used to
propagate the class labels from labelled samples to unlabelled samples. For
each method, different numbers of regularization parameters need to be set
beforehand to balance different terms. Each parameter is selected from the
set {10−3, 10−2, 10−1, 100, 101, 102, 103}. Then we select the best combination
of parameters for each method. For our method, we choose the parameters
in Algorithm 1 as follows: η = 3.01, c = 0.1, τ = 0.99/(‖X‖2 + c), ρmax =
(λ3‖Q‖/(η/τ − 3‖X‖2 − c)). The weightmatricesQ andH are constructed with
K = 5 nearest neighbours. All experiments are performed with MATLAB 7.14
and run on a PC (3.20GHz, 8GB RAM).

We gather data sets for our experiments.

(1) Two-moon toy data. Following the setting in [37,38], we generate a toy data
set that includes two classes, each of which follows a half moon pattern. In
each class, only three data points are selected as labelled set and the remain-
ing as unlabelled set. Figure 2(a) depicts the toy data set consisting of 556
points.
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Figure 1. Some examples of different data sets. (From top to bottom: COIL20 database, YaleB
database, and ORL database.)

(2) COIL20 object database. The COIL20 database1 contains 1440 images of
20 objects and each object provides 72 images, which were captured from
varying angles at pose intervals of five degrees.

(3) Extended YaleB face database. The YaleB face database2 consists of 2432
human face images of 38 subjects. Each subject contains about 64 images
taken under different illuminations. In our experiment, we only consider the
first 18 subjects.

(4) ORL face database. The ORL database3 consists of 400 face images of 40
people. The images were taken at different times, with varying lighting, facial
expressions, and facial details.

(5) Isolet5 voice database. The Isolet5 database4 consists of 26 alphabet voice
data from 30 subjects. Each subject spokes the name of each letter twice. In
other words, the Isolet5 contains 26 classes of voice data, each of which has
about 60 samples. Specially, we note that the data of ‘m’ is missing and it has
59 samples. In summary, the feature dimension is 617 and the number of
samples is 1559.

Some examples of data sets (2), (3), and (4) are shown in Figure 1.We resize all
images of data sets (2), (3), and (4) to 32× 32 pixels. For all compared methods,
we use the same pre-proceeding procedure as in [16,36,39] to improve the com-
putational efficiency. Specifically, the feature dimensions are reduced by using
PCA to preserve 98% energy of data.

5.1. Classification accuracy

We first conduct the semi-supervised clustering experiments on COIL20, YaleB,
andORL. For each data set, different numbers of images per subject are randomly
selected as labelled samples, where #Tr denotes the number of training samples
selected fromeach subject. And the remaining images are used as unlabelled sam-
ples. We compare our methods with LRR [12], LatLRR [15], LRRADP [16], and
NSLLRR [23]. Furthermore, we also compare with NNSG [36], which is a unified
framework of SSLmethod. The parameter values of different methods are shown
in Table 1. The other parameters are fixed to their default values. All experiments
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Table 1. Parameter values of different algorithms on different data sets.

LRR LatLRR NNSG LRRADP NSLLRR LR-LatLRR NLR-LatLRR
Database (λ) (λ) (α, λ,β) (λ1, λ2) (γ ,β , λ) (λ1, λ2, λ3, λ4) (λ1, λ2, λ3, λ4)

COIL20 (0.1) (0.01) (1,0.1,0.1) (1,10) (0.1,10,1) (1,1,100,0.001) (1,1,1,10)
YaleB (10) (10) (10,0.01,0.1) (10,0.1) (1,0.1,10) (1,10,0.01,0.01) (1,1,0.1,0.1)
ORL (1) (0.1) (0.1,0.1,1) (1,0.1) (1,1,10) (100,1,1,0.001) (100,1,1,0.001)
Two-moon (1) (0.1) (1,0.1,1) (1,10) (1,1,1) (1,1,1,1000) (100,1,0.001,100)

Table 2. Classification performance on COIL20 database (mean classification accuracy%± stan-
dard deviation%).

#Tr LRR LatLRR NNSG LRRADP NSLLRR LR-LatLRR NLR-LatLRR

2 70.93± 1.37 70.34± 1.78 72.40± 1.46 75.96± 2.89 69.71± 2.32 78.53± 1.52 89.59± 1.17
3 75.28± 2.25 72.75± 3.29 75.10± 0.87 79.14± 2.70 74.45± 2.02 81.43± 2.40 89.49± 1.11
4 77.10± 2.21 74.76± 1.12 80.60± 1.76 82.40± 1.30 77.91± 3.14 84.01± 1.91 90.81± 0.46
5 78.39± 1.44 75.79± 0.90 82.03± 1.97 85.00± 1.57 79.16± 2.04 86.10± 1.32 91.15± 1.21
6 78.92± 2.83 77.11± 2.83 84.02± 2.71 85.23± 2.16 81.21± 1.90 86.26± 2.23 91.91± 0.94
7 81.03± 2.40 78.85± 2.63 86.31± 2.56 87.89± 2.10 82.38± 2.55 89.05± 2.65 93.49± 1.08
8 82.08± 1.54 79.55± 1.43 88.06± 0.68 89.00± 0.65 83.38± 0.77 89.47± 1.32 92.98± 1.03

Table 3. Classification performance on Extended YaleB database (mean classification accuracy%
± standard deviation%).

#Tr LRR LatLRR NNSG LRRADP NSLLRR LR-LatLRR NLR-LatLRR

5 82.38± 1.56 82.30± 1.50 71.92± 2.66 75.65± 2.85 63.30± 1.62 81.84± 1.85 75.34± 2.49
7 85.71± 0.74 85.71± 0.60 74.66± 1.43 79.68± 1.28 65.91± 2.24 87.14± 0.49 80.40± 1.35
10 89.45± 0.76 89.29± 0.69 79.43± 1.11 84.49± 1.42 69.01± 1.27 89.73± 1.30 85.41± 1.55
13 91.67± 1.34 91.56± 1.32 84.24± 1.77 88.22± 1.40 72.44± 1.60 92.53± 0.90 89.38± 1.17
16 92.43± 0.84 92.46± 0.85 85.91± 1.50 89.65± 1.23 74.28± 0.65 93.10± 0.67 90.80± 0.62

Table 4. Classification performance on ORL database (mean classification accuracy%± standard
deviation%).

#Tr LRR LatLRR NNSG LRRADP NSLLRR LR-LatLRR NLR-LatLRR

4 88.50± 2.68 81.75± 3.86 75.58± 3.62 90.83± 1.56 90.42± 2.34 90.92± 2.01 93.58± 2.07
5 91.40± 2.30 87.30± 2.51 84.00± 1.97 93.80± 1.35 92.90± 2.04 93.30± 2.25 95.50± 1.32
6 92.88± 1.30 89.00± 2.88 87.50± 1.59 93.25± 2.48 93.38± 1.14 94.00± 1.44 94.63± 1.44
7 94.33± 1.60 92.00± 1.73 90.67± 1.90 95.67± 1.37 95.17± 1.60 95.83± 1.02 97.00± 0.46
8 96.00± 2.24 93.75± 2.50 92.25± 1.05 96.25± 1.98 96.25± 0.88 96.50± 1.63 96.75± 1.43

are run five times and the mean classification accuracy and the standard devia-
tion are reported. The detailed results on COIL20, YaleB, and ORL are reported
in Tables 2, 3, and 4, respectively.

From the results shown in Tables 2– 4, we can conclude that LR-LatLRR based
methods, including LR-LatLRR and NLR-LatLRR methods, can achieve higher
classification accuracy than other methods in most cases. For example, Table 2
reports that NLR-LatLRR outperforms others by a large margin on the COIL20
database. This clearly demonstrates that the local structure information coded
in our regularization terms is helpful for semi-supervised subspace clustering.
Interestingly, we observe from Table 3 that the performance of NLR-LatLRR is
reduced on YaleB data set. This may be caused by the fact that the non-negative
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constraint weakens the ability of our method on this data set. Similarly, since
NNSG, LRRADP, and NSLLRR also consider the non-negative constraint, their
performances are also slightly reduced on YaleB data set. Moreover, compared
with LatLRR, LR-LatLRR obtains higher classification accuracies on these three
databases. This demonstrates that the local regularization terms embedded in
LR-LatLRR effectively improves the performance of LatLRR.

5.2. Experiment on amanifold example

In this subsection, we evaluate the clustering performance of our methods on the
two-moon data set, which lies on a manifold. Then, we visualize the clustering
results of our proposed LR-LatLRR based methods, including LR-LatLRR and
NLR-LatLRR. In particular, we compare LR-LatLRR based methods with several
state-of-the-art methods, including LRR [12], LatLRR [15], LRRADP [16], and
NSLLRR [23]. Furthermore, we also compare with two unified SSL methods, i.e.
NNSG [36] and STSSL [17]. For STSSLmethod, the parameter λ is set to 1. For all
the other methods, the parameter values are shown in Table 1. The other param-
eters are fixed to their default values. In this test, the weight matricesQ andH are
constructed with K = 50 nearest neighbours. Figure 2 shows the classification
results of different methods on this toy.

Figure 2(h,i) demonstrates that even though the two-moon data are lying on
a manifold rather than subspaces, LR-LatLRR based methods are also able to
cluster this data set efficiently. From Figure 2(e,h,i), it is observed that LRRADP,
LR-LatLRR, andNLR-LatLRR,which consider the neighbour relationship among
samples, can better separate clusters. While other methods fail to distinguish the
twohalfmoons and the clustering accuracy is only about 60 percent. This demon-
strates that considering the neighbour relationship is helpful for clustering on
this data set. Particularly, NLR-LatLRR yields the ideal clustering results with the
accuracy as high as 100%.

5.3. Extension to unsupervised clustering

Note that both LR-LatLRR and NLR-LatLRR are devoted to constructing the
affinitymatrix Z. Therefore, it is easy to extend them for unsupervised clustering.
In this test, we evaluate the efficiency of our methods on unsupervised clustering
task. And we compare with the results of the methods LRR [12], LatLRR [15],
LRRADP [16], and NSLLRR [23]. Specifically, instead of using GFHF, a spec-
tral clustering algorithm [40] is performed to obtain the clustering accuracies for
unsupervised cases. We use the first N ∈ {2, 3, 4, 5, 6, 7, 8} subject classes from
COIL20 data set for the unsupervised clustering. For our methods, the corre-
sponding weight matrixW is computed byWij = exp (−‖Xi − Xj‖22/2) if Xi and
Xj are neighbours, and 0 otherwise. Another weight matrixH is given byHij = 0
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Figure 2. Classification on the two-moon data: (a) Toy Data; (b) LRR (AC= 56.56%); (c) LatLRR
(AC= 56.54%); (d) NNSG (AC= 65.09%); (e) LRRADP(AC= 96.90%); (f ) NSLLRR(AC= 56.54%); (g)
STSSL(AC= 56.91%); (h) LR-LatLRR(AC= 92.73%); (i) NLR-LatLRR(AC= 100%).

Table 5. Clustering accuracy for unsupervised clustering on COIL20 database.

LRR LatLRR LRRADP NSLLRR LR-LatLRR NLR-LatLRR
(λ) (λ) (λ1, λ2) (γ ,β , λ) (λ1, λ2, λ3, λ4) (λ1, λ2, λ3, λ4)

#N (1) (1) (1,1) (0.1,10,1) (1,1,100,0.01) (1,0.1,0.1,10)

2 95.14 94.44 100 95.14 100 100
3 96.30 96.30 100 97.22 100 100
4 97.57 97.57 100 97.57 98.26 100
5 96.67 69.17 100 98.06 98.89 100
6 52.31 52.08 75.46 73.38 82.87 98.38
7 58.13 58.13 88.29 58.73 77.98 98.61
8 63.37 63.19 71.01 46.70 79.17 98.09

Note: The top three rows report the choices of regularization parameters for all methods.

if Xi and Xj are neighbours, andHij = ‖Xi − Xj‖2 otherwise. Table 5 reports the
results of applying different methods for unsupervised clustering.

From Table 5, we can see that NLR-LatLRR almost always achieves the highest
accuracy for all these test examples. In short, NLR-LatLRR outperforms other
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Figure 3. Performance of LR-LatLRR and NLR-LatLRR versus different parameters on ORL
database: (a) λ1; (b) λ2; (c) λ3; (d) λ4.

methods in terms of clustering accuracy. These results clearly show that our
methods are also quite efficient for solving unsupervised clustering problems.

5.4. Parameter sensitivity and ablation study

Both LR-LatLRR and NLR-LatLRR require four regularization parameters, e.g.
λ1, λ2, λ3, and λ4, to be set in advance. In this subsection, we study their influ-
ence on the clustering performance. We select ORL, COIL20, and Isolet5 as test
data sets. Indeed, ORL, COIL20, and Isolet5 are face data, object data, and voice
data, respectively. For each database, we only consider the first 10 subjects and
the number of labelled samples is five. We test the sensitivity by selecting each
parameter from {0, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20} while keeping others fixed as
the values given in Table 1. The fixed values for Isolet5 database are (1, 1, 1, 10) for
both LR-LatLRR and NLR-LatLRR. Furthermore, we set a parameter to 0 as the
ablation study. For each setting, we run five times to record the average classifica-
tion accuracies. Figures 3, 4, and 5 display the average accuracies with varying
parameters on ORL, COIL20, and Isolet5, respectively.

As can be seen in Figures 3–5, there exists a wide range of values for each
parameter such that both LR-LatLRR and NLR-LatLRR give good performance.
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Figure 4. Performance of LR-LatLRR and NLR-LatLRR versus different parameters on COIL20
database: (a) λ1; (b) λ2; (c) λ3; (d) λ4.

In particular, Figure 3(b) shows that both LR-LatLRR and NLR-LatLRR achieve
higher accuracies with some values λ2 > 0 than with λ2 = 0. This indicates that
the presence of λ2‖E‖1improves clustering performance on the ORL database.
Similar results regarding λ1‖L‖∗, λ3

2 Tr(ZQZ
T), and λ4Tr(HTZ) can be observed

from Figures 3(a), 4(c), and 5(d), respectively. On the other hand, as the results
demonstrate, these regularized terms may not be absolutely necessary in some
cases. However, both LR-LatLRR and NLR-LatLRR archive good performance
when the parameter is small. Overall, we can conclude that both LR-LatLRR and
NLR-LatLRR effectively incorporate different terms, each of which improves the
clustering quality.

Moreover, we further verify the benefits of using L in representing the data. In
detail, we analyse the difference between with constraint X = XZ+ LX+E and
with constraintX = XZ+E in ourmodels. Therefore, we construct the following
two models:

(LR-LRR) min
E,F,Z

‖Z‖∗ + λ2‖E‖1 + g(Z)+ γ

2
‖F‖2F

s.t. X = XZ + E+ F,
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Figure 5. Performance of LR-LatLRR and NLR-LatLRR versus different parameters on Isolet5
database: (a) λ1; (b) λ2; (c) λ3; (d) λ4.

(NLR-LRR) min
E,F,Z

‖Z‖∗ + λ2‖E‖1 + g(Z)+ γ

2
‖F‖2F

s.t. X = XZ + E+ F, Z ≥ 0.

Then, it is straightforward to modify VSM for solving LR-LRR and NLR-LRR.
In this test, we generate an example on the COIL20 data set. Seven samples of
each subject are selected as labelled samples and the remaining samples are used
as unlabelled samples. Figure 6 illustrates the graph weight matrices produced by
LR-LRR, NLR-LRR, LR-LatLRR, andNLR-LatLRR. Specifically, the graphweight
matrix is given by (|Z| + |ZT|)/2.

Figure 6 shows that the block-diagonal structure of the matrices learned
by nonnegative models (NLR-LRR and NLR-LatLRR) are clearer than those
learned by general models (LR-LRR and LR-LatLRR). Besides, Figure 6(a,c)
demonstrate that there are much fewer off-diagonal entries in the matrix learned
by LR-LatLRR than the matrix learned by LR-LRR. This means that using
X = XZ+ LX+E encodes strong discriminative information in the weight
matrix. Furthermore, the accuracies reported in Figure 6 indicate that the pres-
ence of L improves the clustering accuracy.
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Figure 6. Visualization of graph weight matrices produced by different models on COIL20
database: (a) LR-LRR (AC= 87.31%); (b) NLR-LRR (AC= 93.08%); (c) LR-LatLRR (AC= 89.54%); (d)
NLR-LatLRR (AC= 93.69%).

6. Conclusion

In this paper, we proposed a locality regularized LatLRR model (LR-LatLRR)
for the semi-supervised subspace clustering problems. This model incorporates
two regularization terms into LatLRR by taking the local structure of data into
account. Then, we developed a splitting algorithm for solving LR-LatLRR and
proved the global convergence of this algorithm. Furthermore, we extended LR-
LatLRR to a non-negative case for a large class of real-world applications. Finally,
the proposed method was applied to the semi-supervised clustering problems
on a synthetic data and several real data sets. Experimental results show that
our method can obtain high classification accuracy and outperforms several
state-of-the-art G-SSL methods.

Notes

1. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
2. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
3. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4. http://archive.ics.uci.edu/ml/datasets/ISOLET

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://archive.ics.uci.edu/ml/datasets/ISOLET
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Appendix

To prove Lemma 4.2, we shall first have the following lemma.

Lemma A.1: Let {νk} be generated by Algorithm 1 and let ν∗ ∈ V∗. Then we have

ρk
〈
νk+1 − ν∗,Gk ·

(
νk+1 − νk

)〉
≤ −

〈
Fk+1 − F∗, γ Fk+1 −�∗

〉
−
〈
Lk+1 − L∗, pk+1L −�∗XT

〉
−
〈
Zk+1 − Z∗, pk+1Z − XT�∗

〉
−
〈
Ek+1 − E∗, �̃k −�∗

〉
+ 3ρk

2

∥∥∥Fk+1 − Fk
∥∥∥2
F
+ 3ρk‖X‖2

2

∥∥∥Lk+1 − Lk
∥∥∥2
F
+ 1

2ρk

∥∥∥�k+1 −�k
∥∥∥2
F

− 1
2ρk

∥∥∥�k − �̃k
∥∥∥2
F

+ 1
2

(
3ρk‖X‖2 + λ3‖Q‖ρk+1

ρk+1 − ρk

)∥∥∥Zk+1 − Zk
∥∥∥2
F
+ λ3‖Q‖

2
ρk+1 − ρk

ρk+1
∥∥∥Zk+1 − Z∗

∥∥∥2
F
.

(A1)

Proof: Using the definitions of Gk and νk+1, we obtain

ρk
〈
νk+1 − ν∗,Gk ·

(
νk+1 − νk

)〉
= ρkη

〈
Fk+1 − F∗, Fk+1 − Fk

〉
+ ρkη

τ

〈
Lk+1 − L∗, Lk+1 − Lk

〉
+ σ k

〈
Zk+1 − Z∗,Zk+1 − Zk

〉
+ 1

ρk

〈
�k+1 −�k,�k+1 −�∗

〉
. (A2)
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Next, we reformulate the first three terms in the right-hand side of (A2), respectively. It follows
from (9a) that ρkη(Fk+1 − Fk) = −γ Fk+1 + �̃k, which implies that

ρkη
〈
Fk+1 − F∗, Fk+1 − Fk

〉
= −

〈
Fk+1 − F∗, γ Fk+1 −�∗

〉
−
〈
Fk+1 − F∗,�∗ − �̃k

〉
. (A3)

By the definition of pk+1L = −(ρkη/τ)(Lk+1 − Lk)+ �̃kXT and pk+1Z = −σ k(Zk+1 − Zk)+
XT�̃k + λ3(Zk+1 − Zk)Q, we have (ρkη/τ)(Lk+1 − Lk) = �̃kXT − pk+1L and σ k(Zk+1 −
Zk) = XT�̃k + λ3(Zk+1 − Zk)Q− pk+1Z . Therefore, we get

ρkη

τ

〈
Lk+1 − L∗, Lk+1 − Lk

〉
= −

〈
Lk+1 − L∗, pk+1L −�∗XT

〉
−
〈
Lk+1 − L∗,�∗XT − �̃kXT

〉
(A4)

and

σ k
〈
Zk+1 − Z∗,Zk+1 − Zk

〉
= −

〈
Zk+1 − Z∗, pk+1Z − XT�∗

〉
+
〈
Zk+1 − Z∗, λ3(Zk+1 − Zk)Q

〉
−
〈
Zk+1 − Z∗,XT�∗ − XT�̃k

〉
. (A5)

It follows from (8b) and (8f) that X(Zk+1 − Z∗)+ (Lk+1 − L∗)X + (Fk+1 − F∗) = −(1/ρk)

(�k+1 −�k)− (Ek+1 − E∗). Therefore, the terms involving�∗ − �̃k in (A3), (A4), and (A5)
can be merged as

〈Fk+1 − F∗,�∗ − �̃k〉 + 〈Lk+1 − L∗,�∗XT − �̃kXT〉 + 〈Zk+1 − Z∗,XT�∗ − XT�̃k〉

= − 1
ρk 〈�k+1 −�k,�∗ − �̃k〉 − 〈Ek+1 − E∗,�∗ − �̃k〉. (A6)

In addition, we have

〈�k+1 −�k,�k+1 −�∗〉 + 〈�k+1 −�k,�∗ − �̃k〉 = 〈�k+1 −�k,�k+1 − �̃k〉. (A7)

Substituting (A3), (A4), and (A5) into (A2), and using (A6) and (A7), we conclude that

ρk〈νk+1 − ν∗,Gk · (νk+1 − νk)〉
= −〈Fk+1 − F∗, γ Fk+1 −�∗〉 − 〈Lk+1 − L∗, pk+1L −�∗XT〉
− 〈Zk+1 − Z∗, pk+1Z − XT�∗〉 − 〈Ek+1 − E∗, �̃k −�∗〉

+ 〈Zk+1 − Z∗, λ3(Zk+1 − Zk)Q〉 + 1
ρk 〈�k+1 −�k,�k+1 − �̃k〉. (A8)

The term 〈Zk+1 − Z∗, λ3(Zk+1 − Zk)Q〉 is bounded by〈
Zk+1 − Z∗, λ3

(
Zk+1 − Zk

)
Q
〉

≤ λ3‖Q‖
2

ρk+1

ρk+1 − ρk

∥∥∥Zk+1 − Zk
∥∥∥2
F
+ λ3‖Q‖

2
ρk+1 − ρk

ρk+1
∥∥∥Zk+1 − Z∗

∥∥∥2
F
. (A9)

For the last term in (A8), we use the relations

2
〈
�k+1 −�k,�k+1 − �̃k

〉
=
∥∥∥�k+1 −�k

∥∥∥2
F
−
∥∥∥�k − �̃k

∥∥∥2
F
+
∥∥∥�k+1 − �̃k

∥∥∥2
F



OPTIMIZATION 1095

and

1
2ρk

∥∥∥�k+1 − �̃k
∥∥∥2
F
= ρk

2

∥∥∥X (Zk+1 − Zk
)
+
(
Lk+1 − Lk

)
X +

(
Fk+1 − Fk

)∥∥∥2
F

≤ 3ρk‖X‖2
2

(∥∥∥Zk+1 − Zk
∥∥∥2
F
+
∥∥∥Lk+1 − Lk

∥∥∥2
F

)
+ 3ρk

2

∥∥∥Fk+1 − Fk
∥∥∥2
F
.

Then the last term (1/ρk)〈�k+1 −�k,�k+1 − �̃k〉 in (A8) is bounded by

1
2ρk

∥∥∥�k+1 −�k
∥∥∥2
F
− 1

2ρk

∥∥∥�k − �̃k
∥∥∥2
F
+ 3ρk

2

∥∥∥Fk+1 − Fk
∥∥∥2
F

+ 3ρk‖X‖2
2

(∥∥∥Zk+1 − Zk
∥∥∥2
F
+
∥∥∥Lk+1 − Lk

∥∥∥2
F

)
. (A10)

Finally, substituting (A9) and (A10) into (A8), we obtain the inequality in the lemma. �

Now, we are ready to prove Lemma 4.2.

Proof: It is easy to derive that

‖νk+1 − ν∗‖2Gk = ‖(νk − ν∗)+ (νk+1 − νk)‖2Gk

= ‖νk − ν∗‖2Gk − ‖νk+1 − νk‖2Gk + 2〈νk+1 − ν∗,Gk · (νk+1 − νk)〉.

Based on the result in Lemma A.1, we can write∥∥∥νk+1 − ν∗
∥∥∥2
Gk
−
∥∥∥νk − ν∗

∥∥∥2
Gk

≤ −
∥∥∥νk+1 − νk

∥∥∥2
Gk
− 2

ρk

〈
Fk+1 − F∗, γ Fk+1 −�∗

〉
− 2

ρk

〈
Lk+1 − L∗, pk+1L −�∗XT

〉
− 2

ρk

〈
Zk+1 − Z∗, pk+1Z − XT�∗

〉
− 2

ρk

〈
Ek+1 − E∗, �̃k −�∗

〉
+ 3

∥∥∥Fk+1 − Fk
∥∥∥2
F

+ 3‖X‖2
∥∥∥Lk+1 − Lk

∥∥∥2
F
+ 1

(ρk)2

∥∥∥�k+1 −�k
∥∥∥2
F
− 1

(ρk)2

∥∥∥�k − �̃k
∥∥∥2
F

+
(
3‖X‖2 + λ3‖Q‖ρk+1

ρk
(
ρk+1 − ρk

)) ∥∥∥Zk+1 − Zk
∥∥∥2
F
+ λ3‖Q‖ρ

k+1 − ρk

ρkρk+1
∥∥∥Zk+1 − Z∗

∥∥∥2
F
.

(A11)

Next, we need to deal with the last term λ3‖Q‖
(
(ρk+1 − ρk)/(ρk+1ρk)

) ‖Zk+1 − Z∗‖2F by
merging into ‖νk+1 − ν∗‖2Gk . In detail, following the definition of Gk, we have

∥∥∥νk+1 − ν∗
∥∥∥2
Gk
=
〈
νk+1 − ν∗,Gk ·

(
νk+1 − ν∗

)〉
= η

∥∥∥Fk+1 − F∗
∥∥∥2
F
+ η

τ

∥∥∥Lk+1 − L∗
∥∥∥2
F
+ σ k

ρk

∥∥∥Zk+1 − Z∗
∥∥∥2
F
+ 1

(ρk)2

∥∥∥�k+1 −�∗
∥∥∥2
F
.
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Using the increment of {ρk} and the equality

σ k

ρk

∥∥∥Zk+1 − Z∗
∥∥∥2
F
− λ3‖Q‖ρ

k+1 − ρk

ρkρk+1
∥∥∥Zk+1 − Z∗

∥∥∥2
F

=
(

η + λ3‖Q‖
ρk − λ3‖Q‖ρ

k+1 − ρk

ρkρk+1

)∥∥∥Zk+1 − Z∗
∥∥∥2
F

=
(

η

τ
+ λ3‖Q‖

ρk+1

)∥∥∥Zk+1 − Z∗
∥∥∥2
F
= σ k+1

ρk+1
∥∥∥Zk+1 − Z∗

∥∥∥2
F
,

we thus obtain∥∥∥νk+1 − ν∗
∥∥∥2
Gk+1 ≤

∥∥∥νk+1 − ν∗
∥∥∥2
Gk
− λ3‖Q‖ρ

k+1 − ρk

ρk+1ρk

∥∥∥Zk+1 − Z∗
∥∥∥2
F
.

Moreover, recall that∥∥∥νk+1 − νk
∥∥∥2
Gk
=
〈
νk+1 − νk,Gk ·

(
νk+1 − νk

)〉
= η

∥∥∥Fk+1 − Fk
∥∥∥2
F
+ η

τ

∥∥∥Lk+1 − Lk
∥∥∥2
F
+ σ k

ρk

∥∥∥Zk+1 − Zk
∥∥∥2
F
+ 1

(ρk)2

∥∥∥�k+1 −�k
∥∥∥2
F
.

Thus we can simplify (A11) by merging terms containing ‖Fk+1 − Fk‖2F , ‖Lk+1 − Lk‖2F , and
‖Zk+1 − Zk‖2F into ‖νk+1 − νk‖2Gk . Consequently,∥∥∥νk+1 − ν∗

∥∥∥2
Gk+1 −

∥∥∥νk − ν∗
∥∥∥2
Gk

≤ − 2
ρk

〈
Fk+1 − F∗, γ Fk+1 −�∗

〉
− 2

ρk

〈
Zk+1 − Z∗, pk+1Z − XT�∗

〉
− 2

ρk

〈
Lk+1 − L∗, pk+1L −�∗XT

〉
− 2

ρk

〈
Ek+1 − E∗, �̃k −�∗

〉
− (η − 3)

∥∥∥Fk+1 − Fk
∥∥∥2
F
−
(η

τ
− 3‖X‖2

) ∥∥∥Lk+1 − Lk
∥∥∥2
F

−
(

σ k

ρk − 3‖X‖2 − λ3‖Q‖
ρk

ρk+1

ρk+1 − ρk

)∥∥∥Zk+1 − Zk
∥∥∥2
F
− 1

(ρk)2

∥∥∥�k − �̃k
∥∥∥2
F
. (A12)

In addition, it follows from σ k = ρkη/τ + λ3‖Q‖ that
σ k

ρk −
λ3‖Q‖

ρk
ρk+1

ρk+1 − ρk =
η

τ
− λ3‖Q‖

ρk+1 − ρk .

Finally, Lemma (4.2) follows from (A12), which completes the proof. �

Proof of Lemma 4.3

Proof: Note that the operator of the subgradient of a convex function is monotone. Hence,
for any convex function g, any two points x and y from the domain of g, the following
inequality 〈x− y, s1 − s2〉 ≥ 0, ∀s1 ∈ ∂g(x), ∀s2 ∈ ∂g(y), is valid. To prove the first inequal-
ity of (12), let us consider a function g1(E) = λ2‖E‖1. From (9a) and (3a), we have �̃k ∈
∂g1(Ek+1) = λ2∂‖Ek+1‖1 and �∗ ∈ ∂g1(E∗) = λ2∂‖E∗‖1, respectively. Hence, we obtain the
first inequality of (12), i.e. 〈Ek+1 − E∗, �̃k −�∗〉 ≥ 0. �
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