
Cognitive Robotics Department

Knowledge Updating Strategies for
Cumulative Learning of Markov
Logic Networks

G.B.G. Potter

M
Sc

th
es

is



Knowledge Updating Strategies for
Cumulative Learning of Markov Logic

Networks

MSc thesis

April 16, 2024

G.B.G. Potter
Student number: 4573951

Supervisor TU Delft: Dr. ir. Joris Sijs
Supervisor TNO: Dr. ir. Gertjan Burghouts

Project duration: May 1 - April 16, 2024

Faculty of Mechanical Engineering (ME) · Delft University of Technology



The work in this MSc thesis report was supported by TNO and the Cognitive Robotics
Department. Their cooperation is hereby gratefully acknowledged.

Copyright ©
All rights reserved.



Abstract

Learning new concepts is a difficult task for autonomous robots. These robots can adapt to
changes in the situations. To adapt to a situation, they should be able to determine the use-
fulness of objects around them. The usefulness of objects is highly dependent on situational
context, making pre-programming of adaptation behaviour to all possible situations difficult.
Automatic learning of this information by the robot from its own observations during deploy-
ment is a more feasible approach. We encode the usefulness of objects in logical statements
that symbolise regularities in observations of objects in a Markov Logic Network. This net-
work forms the basis from which the usefulness of newly observed objects or situations can
be inferred by a robot. Each logical statement in the network has an associated weight that
indicates how strong the robot believes the statement is true. These weights can be adjusted
over time based on new observations made by the robot, strengthening its beliefs or creating
a new belief for an unknown object in a process called cumulative learning. We extend the
Markov Logic Network framework with a cumulative learning algorithm called MLN-CLA.
This algorithm contains several different knowledge updating strategies to handle conflicts
when incorporating new information. We demonstrate the ability of MLN-CLA to learn the
usefulness of unknown objects over time. In addition, we demonstrate the abilities of MLN-
CLA to incorporate new logical statements to better capture information about objects and
situational contexts. Together, these two abilities enable robots to autonomously adapt to
changing situations during deployment.

MSc thesis - Robotics G.B.G. Potter



Contents

Glossary v
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1
1-1 The robotic system and dynamic environments . . . . . . . . . . . . . . . . . . 1
1-2 Encoding knowledge in symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-2-1 Markov Logic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1-3 Affordance inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1-4 Zero shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1-5 Cumulative Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1-5-1 Aspects of Cumulative Learning . . . . . . . . . . . . . . . . . . . . . . 10
1-6 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1-7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related work 13
2-1 SRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2-1-1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2-1-2 Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-2 Neural Symbolic AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-3 Online learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Markov Logic Network 18
3-1 Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3-2 Markov networks and logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-2-1 Understanding weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3-3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3-4 Learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

MSc thesis - Robotics G.B.G. Potter



Contents iii

3-4-1 Formula weight learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3-4-2 Structure learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3-4-3 Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3-5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Cumulative learning with MLNs 29
4-1 The ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4-1-1 The Knowledge List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4-1-2 Knowledge Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4-2 Ingredients in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4-2-1 Knowledge List creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4-2-2 Knowledge List operations . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-3 What can be learned? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4-4 Cumulative learning aspects of MLN-CLA . . . . . . . . . . . . . . . . . . . . . 43
4-5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Experiments 45
5-1 MLN software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5-2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5-2-1 MLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5-3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5-3-1 Evaluation measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5-4 Cumulative learning of constants . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5-5 Cumulative learning of formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5-6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Results 54
6-1 Cumulative learning of new constants . . . . . . . . . . . . . . . . . . . . . . . 54

6-1-1 Analysis of new constants experiment . . . . . . . . . . . . . . . . . . . 54
6-1-2 Experiment conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6-2 Cumulative learning of new formulas . . . . . . . . . . . . . . . . . . . . . . . . 66
6-2-1 Analysis of new formulas experiment . . . . . . . . . . . . . . . . . . . . 67
6-2-2 Experiment conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6-3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Discussion 72
7-1 Evidence assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7-2 Memory and knowledge management . . . . . . . . . . . . . . . . . . . . . . . . 72

7-2-1 Knowledge Categories and intersecting domains . . . . . . . . . . . . . . 73
7-2-2 Knowledge List pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7-2-3 Knowledge updating strategies . . . . . . . . . . . . . . . . . . . . . . . 74

7-3 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

MSc thesis - Robotics G.B.G. Potter



Contents iv

8 Conclusion 75

Bibliography 76

A - Alchemy syntax 83

B - Datasets 84

C - Experiments MLN 87

D - Algorithms 88

MSc thesis - Robotics G.B.G. Potter



Glossary

List of Acronyms

BN Bayesian Network
MLN Markov Logic Network
ROS Robot Operating System
FOL First-order logic
MLN-CLA Markov Logic Network Cumulative Learning Algorithm
MRF Markov Random Field
ROC Receiver Operating Characteristic
AUC Area Under the Receiver Operating Characteristic (ROC) Curve
TPR True Positive Rate
FPR False Positive Rate
LLM Large Language Model
ZSL Zero Shot Learning
XAI Explainable Artificial Intelligence
SRL Stastical Relational Learning
KC Knowledge Category
KL Knowledge List
SVM Support Vector Machines

MSc thesis - Robotics G.B.G. Potter



List of Algorithms

1 CL-Naive knowledge updating strategy . . . . . . . . . . . . . . . . . . . . . . 37

2 CL-Conservative knowledge updating strategy . . . . . . . . . . . . . . . . . . 38

3 CL-Balanced knowledge updating strategy . . . . . . . . . . . . . . . . . . . . 39

4 Evidence counting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Knowledge Lists merging algorithm . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Knowledge Category creation algorithm . . . . . . . . . . . . . . . . . . . . . . 89

7 Knowledge List initialisation algorithm . . . . . . . . . . . . . . . . . . . . . . 89

8 Algorithm for merging two Knowledge Categories with three updating strategies 90

9 Markov Logic Network Cumulative Learning Algorithm . . . . . . . . . . . . . 91

MSc thesis - Robotics G.B.G. Potter



Chapter 1

Introduction

When Karel Čapek first coined the term robot in his play Rossum’s Universal Robots, human-
like robots were a futuristic imagination. Čapek’s play introduced robots as servants of
humanity who ended up revolting and causing the extinction of humans. His robots were
organic and had human intentions, something we can still only dream of today. Robotics
research and development has come a long way since then, but we have not quite created
robots capable of perfectly mimicking human behaviour as Čapek imagined. We do, however,
have specialised robots capable of quickly and accurately carrying out a wide variety of tasks
such as welding, cleaning and social care.
These robots are either pre-programmed or pre-trained for their tasks. Robots of the future
that are capable of executing more than just a couple of tasks require more learning time. This
work focuses on learning on the job for mobile robots in dynamic environments via affordance
inference. Learning during operation, also called lifelong learning [1], enables robots to adapt
to changes in their environments.

1-1 The robotic system and dynamic environments

To better understand how robots can be taught to display autonomous dynamic behaviour
in changing environments, first the robotic system must be understood. A robotic systems
consists of several modules. Figure 1-1 provides an overview of these modules and their
respective functions. Most robots today are made with the purpose of fulfilling one or a
select few tasks. These robots have great difficulty in adapting to changing environments and
performing tasks in different domains. The models their perception and planning modules are
based on do not cover all possible situations the robot could operate in. Unexpected objects
may be observed as well as changes in the situation due to people, animals or other robots
interacting with the environment. To overcome this limitation we have several options: we
could constrain the operation environment of the robot such that it is capable of handling
any scenario possible within the constrains, or we could capture all possible situations a robot
will ever encounter in their perception and planning modules, or we could create adaptive
modules with the ability to change plans based on contextual information obtained via the
sensors of the robot.

MSc thesis - Robotics G.B.G. Potter



1-1 The robotic system and dynamic environments 2

Figure 1-1: Overview of a robot system. A robot measures the state of the environment with
its sensors. The sensor data is processed to extract information about the environment. This
information in combination with task and operational information provided by the user, is used to
reason about the current situation. The conclusions are used as input for the planning module.
This module outputs a plan of actions to complete a task. The plan is executed with actions
that change the state of the environment. The green colour represents internal systems and red
external systems.

The first option is how robots have been built traditionally. A social robot for human com-
panionship is not able to also work as a receptionist of a hotel without some adaptations.
Figure 1-2 illustrates the perception-action cycle of a non-adaptive robot. A non-adaptive
robot can only react to changes in the environment, but it does not have an inherent under-
standing of why it applies a certain action upon a certain change in the environment.

The second option is an impossible task, how can we know during the design of a robot all
the possible situations it will encounter? Which edge cases do we have to account for? One
can only account for a limited number of situations. Large machine learning models, such
as Large Language Model (LLM), are trained on vast amounts of data to capture as many
situations and edge cases within a model as possible. However, this approach is simply limited
by the amount of data available. Such models show impressive cognitive reasoning abilities
in various contexts. Clearly they capture nuanced patterns within different contexts and are
able to leverage these patterns to display adaptive behaviour. Such a system is shown in
figure 1-3, which illustrates the perception-action cycle of a robot with cognitive reasoning
abilities.

The third option is the most feasible approach of the three. Self-learning and adapting models
can generalise knowledge and incorporate new knowledge to solve problems in new situations
based on their current knowledge. The idea is to endow a robot with some initial knowledge
and give it the tools to make sense of the natural world during operation. This is the essence
of the lifelong learning paradigm.

These tools are methods for capturing new knowledge from observations1 of actions and their
effects, storing new knowledge within the existing knowledge, combining existing knowledge
concepts to form new concepts, updating existing knowledge and more. These methods are
built in such a way that the cause and the meaning of certain observations can be converted
to knowledge. In theory this could scale to infinity, i.e. as long as new data comes in, a robot
could indefinitely learn new behaviours and context cues. Such a system in shown in figure
1-4, which illustrates a self-learning perception-action system.

1The terms observations, data and evidence are used interchangeably.

MSc thesis - Robotics G.B.G. Potter



1-1 The robotic system and dynamic environments 3

Figure 1-2: Perception-action cycle overview. The green colour represents internal events and
the red colour external events.

Figure 1-3: The perception-action cycle extended with cognition. A cognition module adds
reasoning capabilities for adaptive planning instead of purely reactive planning within limited
environments. The green colour represents internal events and the red colour external events.

However, one of the problems with robots is that they do not know what the objects they
interact with in the environment are. When we think of a door we immediately think of
its function: to obstruct a passageway when closed and to allow passage when opened. The
function of objects is different for each user. Depending on the capabilities of a user, the same
object can have different functions. An apple can function as food for us, but for a robot
with an arm or a ’ball-throwing device’ it can function as a ball for throwing. Robots must
understand the context of an object in an environment to be able to tell how an object can
be used.

Notice how the function of an object is heavily dependent on context. Both the capabilities
and the state of the environment influence the function of an object to an agent, that is
a robot, human, animal etc. Furthermore, the configuration and physical properties of an
object influence the function or possible actions associated with it in a given situation [2].
If a ball is stored inside a box, it cannot be thrown. It must first be taken out of the box
before it can be thrown. Similarly, if the ball is made of lead, it is too heavy to throw. These
examples show how knowing the mere name or label of an object is not enough to use for
planning purposes in robots.

Creating a cognitive model capable of reasoning over object properties is a task well suited

MSc thesis - Robotics G.B.G. Potter



1-1 The robotic system and dynamic environments 4

Figure 1-4: The perception-action cycle extended with cognition and self-learning. A cognition
module adds reasoning capabilities for adaptive planning instead of purely reactive planning. The
self-learning cognition can adapt to potentially infinite situations. The green colour represents
internal events and the red colour external events.

for machine learning. Recently, several works have explored the user interpretability or trans-
parency of machine learning models in a research field called Explainable Artificial Intelli-
gence (XAI) [3, 4, 5]. Robots that are deployed in dangerous environments or work with
humans must be trustworthy to not cause any harm to humans. In this respect, a core tenet
of XAI is to make machine learning models and robotic decision processes explainable to a
user [6]. A user might ask "why did the robot just execute that specific action?". In machine
learning some models are complex and the relation between input and output can become
unclear. These types of models are called ’black box’ models. Tracing the origin of an action
back in black box models is a difficult task for anyone.

An example of a recent robotic reasoning system is SayCan [7]. In SayCan an LLM is used
as a black box task planner. It converts natural language inputs into action commands it has
learned from large amounts of data. How this conversion comes about for specific actions is
obfuscated by the LLM model. Works like SayCan use post-hoc explainability techniques like
saliency maps and feature attribution to peer into the black box model [5]. However, these
explanation techniques provide insightful information for developers but are too difficult to
interpret for users.

Making machine learning model decisions explainable starts at the representation level of
data. More abstract representations of raw data are better interpetable by user as we can
more intuitively map meaningful semantic symbols to them. Reasoning at a symbolic level
allows for better explainability. In symbolic reasoning raw data is abstracted into symbols
representing the data, such as Heavy representing a range of masses or Green representing a
certain range of RGB colours. The semantic meaning of these symbols are easy to understand
for an operator. Symbols can be chained and fit together in a syntax to form a language that
machines can use to reason about and people can use to read. Some languages allow for logic
to be applied to symbols. This is called symbolic reasoning with logic. Robots that have
an understanding of symbols and logic can use the language and reasoning to build their
knowledge bases.

Finding all possible correlations between symbols is an incredibly complex problem. Deep
learning approaches hide this complexity in the neural network architecture and node weights.
A more transparent and interpretable approach to finding, modelling and exploiting corre-

MSc thesis - Robotics G.B.G. Potter



1-2 Encoding knowledge in symbols 5

lations between object properties, state and other contextual information can be found in
the Stastical Relational Learning (SRL) research area. In this field of research symbolic rela-
tions are learned using weights to indicate the relation strengths or beliefs of a model in the
correlation being true. In chapter 2 we compare the two main SRL approaches.

1-2 Encoding knowledge in symbols

The main advantage of using an abstract symbolic language to encode data is the ability
to reason. In practice standard, machine learning models such as neural networks require
datasets of millions of images to learn salient features related to the problem. Salient features
of objects are for example their shape, size, mass etc. In symbolic reasoning models much
smaller datasets can be used to encode salient features. These symbolic datasets can even
consist of just a few megabytes of text. Compare that to the several hundred gigabytes of
image data required for YOLO [8], SAM [9], LLMs [10, 11, 7] etc. The context range of
these models is extremely large due to their large datasets. Symbolic reasoning models have
a context range determined by their functionality, which is usually much less general than
YOLO or SAM. However, the strength of symbolic reasoning models lies in their ability to
be easily be extended to other context domains without much retraining.

Salient features can thus be encoded in symbolic knowledge models. A method for converting
salient features into abstract symbols is to assign each feature to a variable such as ’a’ or
’x’. Each variable is an abstract representations of one feature. A model can be created by
establishing relations between these variables. Such a model can be used to answer questions
about the variables and how they relate to each other. To reliably generate the same answer
to the same questions, the conversion of salient features into abstract symbols must be stan-
dardised. This is done by applying a syntax, i.e. grammar, to the conversion. This syntax
determines what types of symbols can exist and how symbols can be related to each other.

One such a syntax is called propositional logic. This logic consists of statements that are
either true or false. These statements can be combined with logical connectives such as
∧ (AND), ∨ (OR), ¬ (NEGATION), ⇒ (IMPLIES) and ⇔ (EQUALS) to create relations
between propositions. An example of valid propositional logic is: P ⇒ Q. This statement
is true unless P is true and Q is false. This conclusion can be reached via an inference
mechanism called modus ponens). In this example, P and Q are symbols that can refer
to natural language statements like "It is raining" (P ) and "It is cloudy" (Q). Grounding
these symbols in natural language is called an interpretation of P and Q. From these simple
statements complex knowledge can be derived.

A limitation of propositional logic is its inability to deal with quantifiers to express sentences
such as "There exists an object with an ear" or "All entities with ears are mugs". A more
expressive logic is required to capture these sentences in logic. First-order logic (FOL) is such
a logic. FOL adds the quantifiers ∀ (for all) and ∃ (exists) to propositional logic. FOL also
adds predicates. Predicates are logical symbols representing properties or relations over their
arguments. Predicates come in the form P (A) or P (A, B), meaning the predicate P applies
to its argument A, a constant. Constants such as (A) can be replaced by variables (a) to
represent that a relation applies to a set of constants, where the variable a is also called the

MSc thesis - Robotics G.B.G. Potter



1-2 Encoding knowledge in symbols 6

domain of A2. Predicates can have one or more arguments, e.g. P (A, b, C, d). The number
of arguments of a predicate is called the arity of the predicate. A predicate can range over
both variables and constants. A ground predicate or ground atom is a predicate of which
all arguments that were variables are replaced by constants. Thus only constant arguments
remain, for example P (A, B, C, D), B ∈ b, D ∈ d is a ground atom.

With FOL a more diverse logic can be encoded in knowledge models. Dependencies between
properties of objects or actions that can be applied to objects can be defined with predi-
cates. The sentence "All heavy and large objects cannot be picked up" can be represented
in FOL as ∀obj IsHeavy(obj) ∧ IsLarge(obj) ⇒ ¬Pick(obj). Note that the represen-
tation of this sentence in FOL is not unique. The same sentence can be translated differ-
ently: ∀obj HasProperty(obj,Heavy) ∧ HasProperty(obj,Large) ⇒ ¬Action(obj,Pick)
or ∀obj HasMassAndSize(obj, Heavy, Large) ⇒ ¬PossibleAction(obj, Pick). Which
representation to choose depends on the requirements of the problem to be captured in logic.
In general, simpler formulas and predicates with lower arity are preferred as they are easier
to understand and are faster to solve.

Thus it is clear that knowledge can be compactly represented in logic. Although not as
intuitive and explainable as natural language, FOL represents a trade-off between machine
interpretability and human interpretability. Modelling knowledge in logical formulas that
capture certain regularities in the world has two major drawbacks: contradicting formulas
and the Boolean interpretation of logic.

In lifelong learning, new formulas can be incorporated in the knowledge base of all known
formulas. A new formula could contradict with existing formulas. Large knowledge bases
consist of many formulas. These formulas often interact with each other via common depen-
dencies. If a contradicting formula is accepted into the knowledge base it invalidates other
formulas, resulting in a collapse of the knowledge base.

The second drawback is related to the fact that a formula in FOL can either be true or
false, no other values are possible. If a formula in FOL is true, it means that the situation
described in the formula always holds true for any situation. For example, take the formula
HasSize(Ball, Small) ⇒ Throw(Ball). In natural language the formula expresses ’every
small ball can be thrown’. This formula contains an implicit temporal component. Every
small ball can always be thrown. In most situations this rule holds true. However, what if
a ball is made of a very heavy material? Or what if the ball is stuck between other objects?
Can it still be thrown? Depending on the situation it either can or cannot be thrown.

A symbolic knowledge model based on pure FOL formulas cannot handle these kind of situ-
ations. A potential solution to these drawbacks is to add a probability to a formula for it to
be true in some situations and to be false in other situations. Such a model can then handle
contradicting and soft formulas. A Markov Logic Network (MLN) is such a model that unifies
probabilistic reasoning with FOL.

2Unless noted otherwise, all predicate arguments starting with an uppercase character are constants and
those starting with a lowercase character are variables. This syntax follows the Alchemy convention described
in appendix 8.

MSc thesis - Robotics G.B.G. Potter



1-3 Affordance inference 7

Weight Formula Meaning
1.3 Robot(x)⇒ Think(x) If x is a robot, it can think
2.8 Human(x)⇒ Think(x) If x is a human, it can think
-4.5 Human(x)⇔ Robot(x) If x is a human, it is also a robot

Table 1-1: A Markov Logic Network consisting of three formulas. Each formula has a weight
attached to it. The weight indicates how often a formula is true relative to the other formulas in
the MLN.

1-2-1 Markov Logic Networks

A Markov Logic Network (MLN) is a knowledge base of first-order logic formulas with a weight
attached to each formula [12]. MLNs can compactly represent regularities in the world and
allow reasoning over these regularities. The weight of a formula in the knowledge base is a
measure of how likely that formula is to occur given observations of the world.

In table 1-1 an example MLN is given consisting of three formulas. In this model the formulas
do not conflict logically but semantically seem incorrect. The latter is reflected in the formula
weights. The third formula has a negative weight, indicating that the formula is false most
of the time.

These MLNs can be used to construct a cognitive model for robotic applications. MLN
formulas can capture knowledge in various knowledge domains. In this work we focus on the
task of object affordance inference based on description of objects. In chapter 2 we provide
more in depth reasons for choice to use Markov Logic Networks to learn relations between
object properties and affordances.

1-3 Affordance inference

Humans intuitively know how to remove obstacles to reach their goals. For example, if we
encounter a pile of bricks we instinctively know what to do to reach our goal: pick up each
brick and put them out of the way or shove the whole pile aside. Robots do not have this
quality yet. In several science disciplines the phenomenon of ’immediately knowing what to
do in certain situations’ is known as affordance inference [13]. Affordance inference can be
applied to anything. In this work we focus on affordance inference for objects.

The term affordance was first coined by Gibson in his 1966 book The Senses Considered as
Perceptual Systems [14], to be further expanded upon in The Ecological Approach to Visual
Perception [15]. Gibson defined affordance as what the environment offers, provides or makes
available to an animal. For example, a small tunnel affords a child to crawl through, but it
does not afford a man to crawl through as he does not fit. Gibson’s notion of affordances
takes into account the capabilities and intentions of an agent: to a child an apple affords
to be thrown, but also affords nourishment. However, to a robot an apple does not afford
nourishment at all as it is incapable of processing food. In the robotics context the animal
is replaced by a robot that perceives its environment through a number of different types of
sensors. The robot brain can fuse this sensor data to reason about action possibilities present
in the environment.

MSc thesis - Robotics G.B.G. Potter



1-4 Zero shot 8

The inclusion of a cognitive affordance inference step in the perception-action system of a
robot allows it to reason more effectively about its world beliefs. It makes robots more robust
to unseen situations or encounters. Enhancing a robot with this ability effectively allows it
to adapt to a change in task parameters.

1-4 Zero shot

The affordance concept is tightly coupled with the Zero Shot Learning (ZSL) machine learn-
ing setting. Affordances are often derived from properties of objects as they are relatively
invariant features. Whether an object has certain parts, a certain size or mass influences
greatly what affordances it has to an agent. Looking at object properties (parts, state etc.)
that define an object class, such as teapot, instead of just the object class allows for more fine-
grained affordance predictions. In the teapot example, the classic machine learning models
predict the class of the teapot based on similar looking classes seen during training. Predict-
ing affordances requires more detailed properties of an object to be taken into account as a
ceramic teapot can thrown, but a cast iron teapot might not be as it is too heavy.

Furthermore, robots usually do not have enough sensors on board to derive a full description
of an object. For example, a robot might only have one camera. Based on monocular camera
images only it becomes difficult to accurately estimate the density of an object. Furthermore,
the environments that mobile robots operate in are often partially known and dynamic. It is
unreasonable to assume that the objects a robot encounters during operation all fall within
the classes seen during training. A robot must still be able to know how to use an object
without it being required to have explicit of what the object is. Zero shot learning provides
a solution to this problem.

ZSL – in reference to one- and few-shot learning – is the task of classifying samples from
classes3 not seen during (supervised) training. Essentially, in zero shot learning a classification
model is served a description of a sample, in this case is an object, and must infer its class
based on the object description, contextual information or semantic similarity of text [16].
Evidently, the more detailed a description is the better the classifier performs. However, often
only a partial description of an object is available.

Farhadi et al. [2] introduced a paradigm shift in object classification by describing objects
rather than naming objects. Descriptions of objects consists of common and discriminating
attributes or properties of objects4. Common properties are often shared between similar
classes of objects, whereas discriminating properties are often unique to a class. Figure 1-5
illustrates how object properties can be used to reason about similar looking objects.

Zero shot learning and lifelong learning work well together. Zero shot learners can handle
the sparse and incomplete data that is typically found in lifelong learning. A Markov Logic
Network can be used as a zero shot learner: it contains the initial FOL formulas that relate
object properties to affordances. Subsequently, a lifelong learning technique called cumulative
learning is used to expand the initial formulas, properties and affordances to incorporate newly
observed relations, properties and affordances.

3We use class to refer to an object, i.e. a zebra or ball
4The words properties and attributes are used interchangeably to denote concepts (parts, physical, visual

and state) belonging to an object.

MSc thesis - Robotics G.B.G. Potter



1-5 Cumulative Learning 9

Figure 1-5: An overview of ZSL. The horse class has certain properties associated with it. These
are captured in a learned model. During inference an unseen class is encountered. Based on a
description the model can infer that the descriptions are similar. Thus it concludes that the object
in the image is horse-like. It can attribute a random class name like ’c44’ to the description, but
without ever encountering a class label for the description the model cannot know that we call
the class ’zebra’.

1-5 Cumulative Learning

The cumulative learning process uses prior knowledge to increase the breadth of available
a priori knowledge over time [17]. Unlike traditional batch learning methods where models
are trained once on static datasets, a cumulative learner improves its model incrementally
as described in Figure 1-6. A cumulative learner applies inductive reasoning or inference to
its observations to generate hypotheses. The form these hypotheses take on depends on the
knowledge base. These hypotheses are compared against the prior-knowledge. Based on a set
of rules, loss or other mechanic, the knowledge base is updated. In addition, the knowledge
base can also be queried to predict any unknown knowledge based on the observations.

Embodied robots can apply cumulative learning to continuously learn on the job. Cumulative
learning allows robots to not only learn from interactions with their environments, but to also
passively learn from observations of their surroundings. For example, when a robot observes
multiple times that a television is located in front of a couch, it can learn that there is
a correlation between the location of a television and a couch. The next time this robot
observes a couch it can infer that there is a high probability of a television being present in
front of the couch.

This process is called updating the beliefs of a robot. Beliefs are fragments of a priori knowledge
that are associated with a weight, a value to indicate its likelihood of being true. Updating
the beliefs is thus the process of adjusting these weights based on observations of the world. In
our previous example, if more television-in-front-of-couch situations are observed, the weight
is increased. A weight is decreased if opposite situations are observed, i.e. televisions not in
front of a couch. Using this method a robot can verify and adjust its internal cognitive model

MSc thesis - Robotics G.B.G. Potter



1-5 Cumulative Learning 10

Figure 1-6: The cumulative learning process builds upon prior knowledge via inductive learning
and hypothesis proposals to learn new prior knowledge from observations [17].

of the world with observations of the real world. Cumulative learning leverages this belief
updating method to expand a basis of pre-programmed knowledge.

1-5-1 Aspects of Cumulative Learning

Thórisson et al. emphasise that knowledge acquisition in cumulative learning is incremental
and sequential [18]. It is a continuous process of accepting new information and unifying it
with existing information in small steps. Another important aspect of cumulative learning is
that it must happen automatically. An ideal learner does not require human input. Thórisson
et al. set out three core aspects of cumulative learning:

• Memory and knowledge management
• Temporal capacity and granularity
• Generality

Memory and knowledge management is making sure the storage capacity of a device is not
exceeded. The knowledge based and newly learned knowledge must thus be efficiently stored.
Several methods can be employed to reduce the size or increase the quality of the knowledge
base: old-new unification, forgetting, compressing and correcting.

The core component temporal capacity and granularity is relevant for accepting new informa-
tion. When should new information be accepted? How much information should be accepted
before a new learning step is initiated? Ideally, a cumulative learner can accept any amount
of information at any time to learn new concepts. In practice, robots often only observe small
amounts of information relative to large datasets. A cumulative learner should be able to
incorporate knowledge from both small and large datasets at any time.

Generality is the core component dealing with input data modality, domains of knowledge,
knowledge transfer and abstracting concepts from current knowledge. Knowledge generality
is essential for robots that must be able to adapt to dynamic environments. Generalised
knowledge can be applied to tasks in unseen domains via knowledge transfer. Leveraging
multiple modes of data input such as camera, audio, radar, LiDAR, force, temperature etc.
can greatly increase the adaptation abilities of a robotic system.

MSc thesis - Robotics G.B.G. Potter



1-6 Research goal 11

Automatically learning new knowledge incrementally has the significant benefit of not requir-
ing all knowledge to be learned all at once without dynamic updating. As a result, cumulative
learners can function in partially known and dynamic environments.
Automatic learning is not without drawbacks. Catastrophic forgetting and erroneous unifi-
cation are detrimental to the cumulative learning process. Catastrophic forgetting refers to
the overwriting of (parts of) old knowledge during the learning of new knowledge, thus losing
potentially critical information necessary to complete a task. Several mitigation methods
to catastrophic forgetting exists such as rehearsal and freezing, but none offer a complete
solution [19, 20].
Erroneous unification is another challenge in cumulative learning. When false information
is fed to a system it can be erroneously incorporated in the existing knowledge. This can
cause corruption of the knowledge base and may result in the failure of the system. A
potential solution is to verify new information before it is allowed to interact with existing
knowledge. Another potential solution is to apply a measure of truth certainty to a hypothesis
formulated from observations. Then new knowledge that is more certain to be true overwrites
old knowledge.
Within the context of object affordance inference, cumulative learning can be applied to adapt
to new objects, new action capabilities and newly observed effects without having to retrain a
model from scratch. Ideally, a robot could use cumulative learning during active deployment
to learn the affordances for objects it has never seen before.

1-6 Research goal

In summary, encoding object properties and affordance knowledge in logical formulas and
probabilistic reasoning balances the trade-off between machine and human interpretability.
Combining Markov Logic Networks with cumulative learning leads to a powerful machine
learning model that can learn new object affordances during operation. A natural application
of a cumulatively learning MLN is the zero shot learning setting. This leads to our research
goal: Extending Markov Logic Networks with cumulative learning capabilities for zero shot
object affordance inference.
In this research we propose a cumulative learning extension for Markov Logic Networks called
MLN-CLA. The algorithm allows Markov Logic Networks to adapt to and incorporate new
evidence in the knowledge base. We showcase an application of MLN-CLA to a zero shot
object affordance prediction setting for robots.
To achieve the research goal we demonstrate how MLN-CLA conforms to the three aspects
of the cumulative learner as described in section 1-5-1 and how it does not. Specifically,
in terms of memory and knowledge management we introduce unique knowledge updating
strategies to merge new knowledge into the existing knowledge base. Additionally, we extend
the Knowledge List and Knowledge Category concepts of Cui et al. [21] to manage and cluster
knowledge efficiently 5. We address the temporal capacity and granularity, and generality of
MLN-CLA in our experiments. To reduce the complexity of the research goal, we limit our
focus to creating a discrete and sequential cumulative learner. Furthermore, we assume that
all predicates and domains are known a priori.

5See section 2-3

MSc thesis - Robotics G.B.G. Potter



1-7 Outline 12

1-7 Outline

In Chapter 2 several relevant methods in the literature are discussed to give an overview of the
status of the research field. The essential theoretical background of Markov Logic Networks is
explained in Chapter 3. Here an in depth explanation is given of the main functions of MLNs:
weight and structure learning. With an understanding of the theoretical base, the MLN-CLA
algorithm is proposed for cumulative learning with MLNs in Chapter 4. In Chapter 5 two
experiments are set out to test the functionality and performance of this cumulative learning
algorithm as well as three knowledge updating strategies. Subsequently, in Chapter 6 the
results of the experiments are described and analysed. The limitations of MLN-CLA and
experiments are discussed in Chapter 7.

MSc thesis - Robotics G.B.G. Potter



Chapter 2

Related work

In this chapter the context of extending MLNs with cumulative learning is discussed. The
MLN is fit in the context of Stastical Relational Learning (SRL). A similar approach, the
Bayesian Network (BN), is compared against MLN, what are their differences and similari-
ties? Furthermore, what are the In addition to exploring SRL, several cumulative learning
approaches are discussed in this chapter.

2-1 SRL

SRL is the research field of creating models of complex relational structures that can deal with
uncertainty. These models are often based on a logic system such as first-order logic. Using
the universal quantifier general properties and relations within a domain of knowledge can be
captured in SRL models. The dependency structures of knowledge domains are often encoded
in graphs. Graphs are compact representations of a distribution over a multi-dimensional
space [22]. These are applied in search engines, object identification, causal inference, social
networks and many other machine learning fields. The two main branches within SRL are
Markov networks and Bayesian networks [23].

2-1-1 Bayesian Networks

Bayesian networks are graphical representations of a set of random variables and their con-
ditional dependencies. They can model uncertain domains for probabilistic reasoning. In
robotics BNs are commonly applied in perception, decision and planning and localisation and
mapping. In perception BNs are often used to model relations between several objects in a
scene.

In a Bayesian network the effect of a switch on a light bulb can be modelled. Flipping the
switch results in the light turning on. When a robot enters a room and observes that the
light is on, it can query the BN for the cause of the light being on. An inference algorithm,
such as belief propagation [24], applied to a BN outputs a probability that the switch caused
the light to be on, given the observation.

MSc thesis - Robotics G.B.G. Potter



2-1 SRL 14

(a) Bayesian network [25]. (b) Markov network [32].

Figure 2-1: Two different representations of object, action and effect interactions.

Montesano et al. used a Bayesian network to model the interaction between objects, actions
and effects [25, 26] as described in figure 2-1a. Their model learns many relations between
objects, actions and effects from observations of interactions with the environment. Based on
a set of visual object properties such as size, colour and shape, the model can infer possible
actions and their effects for unseen objects. Additionally, it can update its beliefs, i.e. the
strength of variable interactions in the network, based on observations of these interactions.
As a result, it can adjust its predictions over time as it learns from new interactions.
A major drawback to Bayesian networks is that due to their graph structure and dependency
representation, they cannot handle cyclic dependencies without additional extensions. Cyclic
dependencies occur when two variables have an direct or indirect (via other variables) on each
other. In this example, actions cause effects, effects result in changes in object state and object
states influence action possibilities. As a result, whilst Bayesian networks do capture the direct
interactions between objects, action and effects, they cannot capture indirect interactions
between objects, actions and effects. The Bayesian network of Montesano et al. cannot
learn new actions or effects without explicitly programming these in as prior knowledge and
training the whole network from scratch again. However, other works have extended Bayesian
Networks to include lifelong learning [27, 28, 29, 30, 31].

2-1-2 Markov Networks

Markov networks are, similar to Bayesian networks, a form of graphical representation of un-
certain domains that allow for probabilistic reasoning [33]. In contrast to Bayesian networks,
Markov network relations are undirected as described in figure 2-1b. This property allows for
cyclic dependencies to be modelled. In addition, Markov networks can better exploit symmet-
ric dependencies. Symmetric dependencies occur when a dependency between two variables
is bidirectional.
The Markov properties of the network, as explained in chapter 3, allow for cumulative learning
of new objects, object properties, actions etc. without having to retrain the whole network
from scratch. Only the part of the network that encodes relations for the new knowledge
has to be retrained, leaving the rest of the network unchanged. In essence, Markov networks
can handle updates to the network based on partial information without changing unrelated
relations. These properties make Markov networks particularly suitable for modelling the
complex relations in object affordances in combination with cumulative learning. In contrast,
Bayesian networks require changes to their graphical structure to update the network to
incorporate new information [28, 30].

MSc thesis - Robotics G.B.G. Potter



2-2 Neural Symbolic AI 15

These advantages are exploited in Markov Logic Networks introduced by Richardson and
Domingos [12, 34]. Research on MLNs has mostly focused on more efficient learning [35, 36,
37, 38] and inference algorithms [39, 40, 41, 42, 43, 44].
Several modifications to the MLN framework have been proposed for specific situations and
problems that MLNs struggle with. Jain, Barthels and Beetz proposed an alternative to the
fixed parameter representation of domains in MLNs [45]. Mittal et al. propose adaptive
MLNs, a solution to the problem of MLN performance dropping for significant domain size
differences between training and testing evidence [46]. Malhotra and Serafini continue this
line of work and show that for two variable MLNs the issues with different training and
test dataset sizes and distributions can be solved [47]. David and et al. extend MLNs with
temporal reasoning capacities [48, 49]. Nyga and Beetz combine MLNs with a knowledge
taxonomy and fuzzy logic to reason over knowledge concepts not yet incorporated into the
knowledge base [50].
MLNs have seen many applications to solve complex relational problems. Choi et al. employ
MLNs for social network searching [51]. Papadopoulos and Tzanetakis use an MLN to analyse
music by exploiting the structural relations between audio signals of music instruments [52].
Ha et al. predict player goals and intents from observed actions in video games using MLNs
[53]. Zhu et al. build a knowledge base of object properties with an MLN to predict possible
actions and human poses for unseen objects [54]. In each application complex relations are
captured in a compact model. The Markov properties of MLNs allows these models to be
combined into one MLN that can be used in each application, without the need for any
knowledge transfer often required in other machine learning techniques.

2-2 Neural Symbolic AI

Other machine learning techniques combine logic with neural networks [55]. This field of
research is called Neural Symbolic AI [5]. Different from MLNs, these techniques represent
logical formulas implicitly with neural networks. Marra and Kuželka combine MLNs with a
neural network to implicitly represent FOL formulas [56]. Torrey et al. combine reinforcement
learning with MLNs to transfer learned policies from one task to another [57].
Other approaches in Neural Symbolic AI represent the logical operators such as equality ⇔,
negation ¬, implication ⇒ and even the quantifiers ∀ and ∃ with neural networks. One
such approach is proposed by Donadello and Badreddine et al. called Logic Tensor Network
(LTN) [58, 59, 60]. Figure 2-2 visualises the implementation of a logical conjunction of two
predicates with tensors. Domains in LTN can range over images. The input modalities of
LTN are broader than MLNs, which only has one input modality.
Another Neural Symbolic approach to complex relation representation is the Large Language
Model (LLM). LLMs, such as BERT [61] and GPT-3 [62], learn extremely complex relations
from enormous amounts of data with the help of Transformers [63]. This approach comes with
enormous computational costs [64], but has shown impressive performance and capabilities.
A significant drawback of neural symbolic AI is the loss of explainability in comparison to
more classical machine learning approaches [6, 4]. The neural networks that form the basis
of neural symbolic AI are black boxes. It is unclear how certain outputs came about based
on the inputs when looking at the neural network model. Markov logic networks are grey

MSc thesis - Robotics G.B.G. Potter



2-3 Online learning 16

Figure 2-2: Visualisation of a conjunction of two predicates p(x)∧ q(x) over the variables x and
y in a logic tensor network [60]. The conjunction operator performs an element wise operation
on the predicate tensors G(p(x)) and G(q(y)).

box models. These are more explainable than black box models, but are not as transparent
as white box models such as decision trees. Markov logic is more transparent than neural
network logic because weights in Markov logic are attached to the formulas and not to a
hidden, featureless nodes as in neural networks. Thus in Markov logic there is a more direct
relation between the model output and the reasoning happening over the formula weights.

2-3 Online learning

Cumulative learning is a form of online or lifelong learning, a form of model adaptation to
changing data distributions. It requires categorisation of incoming data[65]. The classical
machine learning Support Vector Machines (SVM) technique can be extended to learn cumu-
latively [66, 67]. SVMs are used for classification in unsupervised learning. An SVM predicts
which data belongs to a class and which data falls outside that class based on a learned de-
cision function. Multiple SVMs can be trained to solve multi-class problems. Online SVMs
continuously adapt their decision functions based on incoming data. Convolutional Neural
Networks have been extended to learn cumulatively in a similar manner [68].

Cui et al. applied a similar approach to MLNs [21, 69]. They classify incoming data based
on the existing knowledge base. Based on the classification, each data sample is put into
a category. Each category in their algorithm represents an independent MLN that can be
trained on the new data. This approach allows Cui et al. to create knowledge clusters within a
Knowledge List to manage the knowledge base. Their knowledge clusters can be individually
updated without having to retrain the whole model. They show that their model outperforms
cumulatively learned SVMs in inference time and accuracy.

The approach of Cui et al. is not a cumulative learner. They require incoming evidence to be
labelled with the knowledge cluster it belongs to. Our work lifts this requirement to turn it
into a cumulative learner. We do not classify evidence based on an externally applied label,
but classify or cluster the evidence purely based on the evidence domains.

Several other works on online learning of MLNs exist. These mainly focus on online learning
of MLN parameters. These assume the initial set of clauses in the model to be complete
and correct. Huynh and Mooney introduced a system for online structure learning of MLNs
called OSL [70] to additionally adjust the model structure and learn its parameters based on
new evidence. Their approach takes into account the model predictions in comparison to the
ground truth to correct false positive and negative predictions using relational pathfinding

MSc thesis - Robotics G.B.G. Potter



2-4 Summary 17

[71]. Whilst OSL can generate new formulas, it mostly generates formulas that are subsets
of existing formulas. It does not restrict its structure learning search space with the existing
formulas. In our work the structure learning search space is restricted through knowledge
clustering.

We adopt the Knowledge List of Cui et al. but develop a unique method for automatic
knowledge clustering with a new algorithm for creating and merging Knowledge Categories.
We employ novel knowledge updating strategies to incorporate new knowledge that conflicts
with the existing knowledge base.

2-4 Summary

In this chapter the Statistical Relational Learning field is explored. Markov Logic Networks
are similar but fundamentally different to Bayesian Networks, both in theory and practical
applications. Recently, the field of Neural Symbolic AI has seen much development. Methods
in this field can learn large amounts of relations from huge datasets and can have multiple
input modalities such as images and text. A major drawback of these approaches is the loss of
explainability compared to traditional SRL approaches due to the black box nature of neural
networks. Online learning with MLNs has seen some proposed methods over the years for
both parameter and structure learning algorithms to learn MLNs. In the next chapter the
theoretical background of the MLN framework is discussed.

MSc thesis - Robotics G.B.G. Potter



Chapter 3

Markov Logic Network

Markov Logic Networks unify probabilistic reasoning with logic [12, 34]. This type of machine
learning model is a powerful tool to solve problems that can be captured in generalised rules.
MLNs are particularly well suited for (zero shot) affordance prediction of objects based on
object properties or attributes. In this chapter the theoretical background of Markov Logic
Networks is explored.

Knowledge encoded in graphs

How can dependencies and independencies between sets of variables be represented explicitly?
An elegant solution is to create a graph G, a set of vertices or nodes V with edges or links E
between them. The vertices represent the variables. The links represent dependencies between
variables. A lack of a link between variables explicitly represents the direct independency of
variables. Graphs can compactly represent a large network or relations that can be queried
to answer a variety of questions.

In the Statistical Relational Learning research field two graphical models are dominant:
Bayesian Networks and Markov networks. Koller et al. describe the differences between
these two popular frameworks in great detail [23]. In this work the focus lies on Markov
Networks for their Markov properties.

3-1 Markov Networks

Markov Networks, often called Markov Random Field (MRF), are a type of graphical model
for reasoning over variable dependencies. In essence, they form a model of the joint distribu-
tion of a set of variables. The basis for the joint distribution representation by graph models is
the notion of conditional independence of variables [23]. Conditional independence describes
the situation in which the probability of a hypothesis is unchanged by new information as
given in definition 3.1.

MSc thesis - Robotics G.B.G. Potter



3-1 Markov Networks 19

Definition 3.1 (Conditional independence). Let A, B, and C be random variables. If A
is the hypothesis and B and C are given, conditional independence of A and B given C is
defined as:

P (A | B, C) = P (A | C)

Equivalently, written in another form, conditional independence is directly related to the joint
probability of A and B given C:

P (A, B | C) = P (A | C)P (B | C)

where P (A, B | C) is the joint probability of A and B given C. For a distribution P the
notation (A ⊥ B | C) is shorthand to say that A is conditionally independent of B given C.
Conditional independence also holds for sets of discrete random variables.

Conditional independence is the bridge between sets of conditional statements such as "if A
and given C then B provides irrelevant information" and graph representations of these sets
of statements.

The Markov Network or MRF graph representation model G(V, E) consists of a set vertices or
vertices V , representing random variables having a Markov property and a set E of undirected
edges, representing variable dependencies. Variables having a Markov property means that
they do not depend on any past states, but only on the present state. In more detail, for the
MRF case three Markov properties hold1:

1. Pairwise Markov property: any two variables that are not connected by an edge are
conditionally independent when given all the other variables. That is, given variables
A, B and C if P (A | B, C) = P (A | C) is true, vertices A and B are not connected by
an edge.

2. Local Markov property: a variable is independent of the rest of the variables given
its direct neighbouring variables. Figure 3-1a describes this property for a Markov
Network.

3. Global Markov property: similar to the local Markov property; two subsets of
variables are conditionally independent given another separating subset of variables.
Figure 3-1b provides an example of this property.

The global Markov property describes the notion of separation of sets of vertices in Markov
Networks. If A, B and C are sets of vertices in the same Markov Network and A and C are
both directly connected to B but not to each other, then A and C are separated from each
other given B. In other words, if any path of vertices starting in A and terminating in C
contains any vertex from B, A and C are separated by C. This is denoted as (A ⊥ C | B).
In figure 3-1b the global and local Markov properties are linked; for positive distributions the
local and global Markov properties are equivalent [23]. These three properties are exploited
in inference on MLNs and cumulative learning of MLNs.

Intuitively these Markov properties show that the influence of probabilities ’flow’ or are prop-
agated through the network. This ’flow’ has no direction as Markov networks are undirected.

1For proofs of these properties the reader is referred to the work of Pearl and Paz [72]

MSc thesis - Robotics G.B.G. Potter



3-1 Markov Networks 20

(a) Local Markov properties example (b) Global Markov property example

(c) Clique example

Figure 3-1: 3-1a demonstrates an example of local and pairwise Markov properties: P (A ⊥
D | {B, C}), P (B ⊥ C | {A, D}), P (C ⊥ B | {A, D}), P (D ⊥ A | {B, C}). A and D are
conditionally independent according to the pairwise Markov property as they are not connected
via an edge given B and C. In 3-1b the global Markov property is demonstrated by the set of
vertices A being separated from C by B. There exists no path from A to C that does not contain
a vertex from B. In 3-1c two cliques of size 3 are formed by the set of vertices {G, H, I} and
{B, C, F}. A clique of size 4 is formed by {C, D, E, F}.

MSc thesis - Robotics G.B.G. Potter



3-2 Markov networks and logic 21

The propagation of probabilistic influence is stopped by vertices that are part of the variables
that are given. This concept is represented by the potential functions.

A Markov network contains a set of potential functions ϕ for each clique in the graph. A
clique in an undirected graph is a set of vertices V such that every two distinct vertices in the
set are connected via an edge. In other words, each possible pair of vertices in the set has an
edge connecting the pair. Figure 3-1c demonstrates an example of a graph clique. Potential
functions are non-negative, real-valued functions of the state of corresponding cliques. The
overall joint distribution modelled by a Markov network is described in equation 3-1.

P (X = x) = 1
Z

|Q|∏
k

ϕk(x{k}) (3-1)

with Q = {q1, q2, . . . , qq} the set of all cliques in the graph, k is the kth clique in the graph,
x{k} the state of the variables (0 or 1 in the binary case) of the kth clique in the graph. Z,
described in equation 3-2, is a normalisation function otherwise called the partition function.

Z =
∑
x∈χ

∏
k

ϕk(x{k}) (3-2)

In Markov networks, the clique potentials ϕk can be replaced by a sum of weighted features
of the state transforming the joint probability into a log-linear model if P (X = x) > 0 for all
variables x as shown in equation 3-3. This representation is more convenient for computation.
An example of a feature in a Markov network is the grounded2 version of a first-order logic
formula.

P (X = x) = 1
Z

exp
(

N∑
i=1

wifi(x)
)

(3-3)

where N is the total number of features in the network. Each clique potential in eq. 3-1
is replaced by an exponentiated weighted sum of features of the variable states. In Markov
Logic Networks the features of the variable states are the binary truth values of grounded
versions of first-order logic formulas.

3-2 Markov networks and logic

Markov Logic Networks are based on Markov networks. In MLNs first-order logic formulas
are converted to a graph. The formal definition of a Markov Logic Networks is given by
Richardson and Domingos [12]:

Definition 3.2. A Markov Logic Network M is a set of pairs of formulas and weights (Fi, wi)
where Fi is a first-order logic formula and wi is a real number. The set (Fi, wi) together with
the set of constants K = {k1, k2, · · · , k|K|} define a Markov network NM,K (eq. 3-1 and eq.
3-2) as follows:

2See section 1-2. Grounding is the replacement of variables by constants in predicates.

MSc thesis - Robotics G.B.G. Potter



3-2 Markov networks and logic 22

1. The Markov network NM,K consists of a vertex for each possible grounding of each
predicate appearing in M . The value of the vertex is binary, that is 1 if the ground
atom is true, and 0 if false.

2. The Markov network NM,K consists of one feature fi,j for each possible grounding j of
each formula Fi in M (see fig. 3-2). The value of this feature is 1 if the ground formula
is true, and 0 otherwise. Each feature has a real valued weight wi associated with it.

A feature in a Markov network is the representation of a ground first-order logic formula of
the MLN in the graph. One formula can have multiple different grounded versions depending
on the set of constants K as demonstrated in figure 3-2 and 3-3. Thus one formula can spawn
multiple different features. Each feature has a truth value fi,j ∈ {0, 1} depending on the given
evidence. The weight wi of formula Fi is the same for each feature fi,j of the same formula
Fi.

A set of ground atoms or predicates that have truth values assigned is called evidence. From
definition 3.2, eq. 3-1 and eq. 3-2, the probability distribution over the evidence x and a
ground Markov network NM,K is given by 3-4.

P (X = x) = 1
Z

exp
(

F∑
i=1

wini(x)
)

(3-4)

where F is the set of formulas in the MLN, ni(x) is the number of true groundings of Fi in
the evidence x [12].

Figure 3-2 shows an example of a ground Markov Logic Network of one formula consisting
of four predicates ranging over five domains. The formula consists of only predicates and
variables. The ground MLN consists of only the features of each formula in an MLN. The
features are derived from the parent formula. Each feature is a possible grounding of the
formula that can be either true or false. The number of true features in an MLN determines
the parent formula weight. Features can overlap if two formulas range over one or more of
the same domains as shown in figure 3-3. Each edge in the ground MLN represents an OR
relation between the vertices as each formula in the MLN is converted to its conjunctive
normal form (CNF) before the grounding operation. For example: A⇒ B turns into ¬A∨B.
Every first-order logic formula can be converted to a CNF equivalent [73].

Within the MLN framework, constant names are unique. However, it is possible in MLNs to
add an Equality(x, y) to signify that x and y refer to the same thing or concept. This can
be useful in applications such as object identification [12] or tracking, where it is important
whether to different instances refer semantically to the same object.

3-2-1 Understanding weights

The weights associated with formulas are not intuitive to understand. In Markov Logic
networks formula weights correspond to how strict a constraint on a formula it is. Each
formula in an MLN is universally quantified, meaning that for all instances of a domain the
formula holds true. The weights soften the universal quantification. If all weights in the MLN
were equal and infinite, the MLN would represent a pure first-order logic knowledge base.

MSc thesis - Robotics G.B.G. Potter



3-2 Markov networks and logic 23

Figure 3-2: A ground MLN example for the formula Size(obj,size)∧Weight(obj,weight)∧
Shape(obj,shape)⇒ IsA(obj,class). Each predicate in the formula corresponds to a vertex
in the graph. Together the predicates of a formula form a clique. In a ground MLN only the
ground features (purple) of a formula are present, not the formula itself (yellow).

Figure 3-3: An example of overlapping features in a ground MLN for the formulas IsA ⇒
Affordance and Size ⇒ Affordance. The ground predicates connected by an edge appear
together in the same formula and form a feature. f1, f4 are features of the first formula, f2, f3
are features of the latter. Features can overlap, creating links between formulas. f1 and f2 are
of different formulas but are connected because of this overlap. When querying the affordance
predicate, both the IsA and Size ground predicates are sampled for their truth value to answer
the query.

MSc thesis - Robotics G.B.G. Potter



3-3 Inference 24

MLN weights represent the log probability of the evidence satisfying the formula. A higher
formula weight corresponds to a greater difference in log probability between evidence that
satisfies the formula and evidence that does not, all other variables being equal. A formula is
satisfied if it is true at least once given the evidence. In other words, the weight of a formula
is the log odds between a world where the formulas is true and world where the formula is
false. For example take figure 3-3. Numerically, if we assign a weight of 2.5 to the formula ’a
cat can be fed’, then a world where n cats can be fed is e2.5n more probable to occur than a
world where no cat can be fed.
Formulas with weight zero can be safely ignored or removed from the MLN as they do not
influence the probability distribution [46]. Weights can be negative as well. A negative weight
indicates that the opposite of the corresponding formula is true. First-order logic formulas
can simply be negated to flip the weight to positive again: (−wi, Fi) ≡ (wi,¬Fi).
Weight interpretation becomes more complicated if formulas share variables. If two formulas
range over the same variables or domains, such as in figure 3-3, there is no longer a one-to-one
correspondence between weights and probabilities of formulas as explained previously [12].
Although weights no longer directly correspond to formula probabilities, the probabilities of
all formulas, given the evidence, do still collectively determine the weights. This allows the
weights to be learned from evidence using weight learning algorithms.

3-3 Inference

Inference is the process of reaching a conclusion on a question or query. For MLNs a query
is in the form of a predicate. Any question that can be asked of an MLN is of the form
described in equation 3-5 meaning "return the probability of a formula F1 being true given
that another formula F2 is true". A formula or query can also be a unit clause, i.e. consist of
a single predicate.

P (F1 | F2, M, K) = P (F1 ∧ F2 |M, K)
P (F2 |M, K)

=
∑

x∈XF1 ∩XF2
P (X = x |M, K)∑

x∈XF2
P (X = x |M, K)

(3-5)

where F1, F2 are first-order logic formulas, M is an MLN containing at least F1 and F2, K
is a finite set of constants defining the grounded MK , x the evidence XFi is the set of worlds
where Fi is true, and P (X = x | M, K) is given by equation 3-4. Again, directly calculating
equation 3-5 is #P-complete and thus intractable. Fortunately, approximation algorithms
exist such that inference is tractable.
The output of inference given a query predicate on an MLN given the evidence is the marginal
probability of the query predicate. If the number of formulas or number of constants in
domains of an MLN are large, inference over the whole network becomes intractable. However,
the Markov properties of Markov networks enable faster inference. In Markov networks, a
variable is independent of the rest of the network given its direct neighbouring variables. The
set of a variable and its direct neighbouring variables together is all that is required to be
sampled to answer a query during inference on MLNs [12]. This set is called the Markov
blanket of a vertex or variable in a graph.

MSc thesis - Robotics G.B.G. Potter



3-3 Inference 25

The joint probability distribution can be sampled or queried to give the marginal probability
of the query being true. The marginal distribution gives the probability distribution of a
subset of variables in a network. The marginal probability of a query is the probability that
the query is true, independent of the state of the rest of the network. This probability is the
output of inference on a network.

Given a set of evidence, the probability distribution of the query predicate y for evidence x
is:

Pground(Y = y | X = x; w) = 1
Zx

exp
(

m∑
i=1

wini(x, y)
)

(3-6)

where X is the set of all evidence, Y is the set of predicates in the MLN, m is the number of
formulas, wi is the weight of the formula Fi and ni(x, y) is the number of satisfied groundings
of Fi for a given pair of (x, y) ∈ (X, Y ). Zx is the normalisation constant given by equation
3-7

Zx =
∑
y′

exp
(

m∑
i=1

wini(x, y′)
)

(3-7)

Given equation 3-6 and equation 3-7 the marginal probability of a ground atom A being true,
that is A = 1, can be calculated via equation 3-8.

Pground(A = 1) = ZA=1
ZA=0 + ZA=1

= 1
1 + ZA=0

ZA=1

(3-8)

where ZA = a means the normalisation constant is constrained to the value a in all truth
assignments of the variables in Z.

Inference is ran in two situations: for training and when querying a trained MLN. During
training, inference is ran on the current model to compute the training set likelihood of the
current weights and the current gradient. During querying, an already learned model is used
to run inference on. For querying in non-real time applications the inference time is not
highly relevant and thus the task of optimising the inference algorithm is less important. For
inference during training a highly efficient algorithm has significant impact on training time.
An efficient inference algorithm preferably does not trade off accuracy for speed.

In this research the default MC-SAT algorithm [74] of Alchemy3 is used for inference. MC-SAT
combines Markov Chain Monte Carlo (MCMC) with satisfiability solving4. Our cumulative
learning algorithm introduced in chapter 4 can work with any inference algorithm compatible
with MLNs.

3See section 5-1.
4For more information the reader is referred to the work by Poon and Domingos [74].

MSc thesis - Robotics G.B.G. Potter



3-4 Learning methods 26

3-4 Learning methods

In Markov Logic Networks the formula weights and the formulas themselves can be learned
from evidence using machine learning. Learning weights or the structure of MLN formulas is
done based on one or multiple databases. These are files containing evidence of the relations
between constants. These relations are encoded in the predicates declared in MLNs. A
database consists of only ground atoms, i.e. no variables or clauses may occur in a database.
This and other rules are described in section 3-4-3. For cumulative learning the closed world
assumption holds for databases. This implies that any ground atom not appearing in the
database is assumed to be false. The reverse also holds; if any ground atom appears in a
database, it is assumed to be true [12]. Effectively, an evidence database of n ground atoms
is a vector x = (1, 0, 1, 1, ..., xn) where each entry is the truth value of the ground atom.

3-4-1 Formula weight learning

Formula weights determine which formula is more likely to be true given evidence. The
optimal weights can be learned from data. The optimal weights are the maximum a posteriori
(MAP) weights or the weights that maximise the product of their prior probability and the
evidence likelihood [38]. Formula weights that can be learned have corresponding evidence
in a given database, otherwise they are not learned. During formula weight learning the
log-likelihood is optimised [12]. Richardson and Domingos demonstrate that the derivative
of the log-likelihood with respect to its weight is the difference between ni(x), the number
of true groundings of the ith formula in the evidence database x, and the expectation of the
formula over all possible evidence databases x′ according to the current model as described in
equation 3-9. Here Pw(X = x′) is the current likelihood computed using the current weight
vector w = {w1, w2, . . . , w|F |}. x is an evidence database of the set of all possible databases x′.

∂
∂wi

log Pw(X = x) is the gradient of one formula weight. The gradient over all weights of the
MLN is the vector g. During learning, weights are updated in each learning step according
to equation 3-10.

∂

∂wi
log Pw(X = x) = ni(x)−

∑
x′

Pw(X = x′)ni(x′) (3-9)

wt+1 = wt − ηg (3-10)

However, as Richardson and Domingos point out, counting the number of true groundings of a
formula in a database is intractable. They state that counting the number of true groundings
of a formula is #P-complete in the length of the clause. No algorithm exists to solve #P-
complete problems. In addition, computation of the expected number of true groundings∑′

x Pw(X = x′)ni(x′) is also intractable as it requires inference over the model that is yet to
be learned.

Richardson and Domingos propose a different approach: optimising the pseudo-log-likelihood
as proposed by Besag [75] instead of the log-likelihood. The pseudo-log-likelihood is the
product of the log-likelihood of each variable given the variables of neighbouring variables in
the evidence. For large domains the number of true groundings of a formula ni(x) is counted

MSc thesis - Robotics G.B.G. Potter



3-4 Learning methods 27

approximately by uniformly sampling groundings of the formula. If a sampled ground formula
is true given the evidence, then ni(x) increases by one. Sampling only a small portion of
possible formula groundings from the data enables approximation of the true distribution.
The number of samples to take is a hyper-parameter that can be tuned. The true ni(x) can
thus be approximated to calculate the log-likelihood with.

This original formula weight learning algorithm of Richardson and Domingos is called gener-
ative weight learning. After each iteration the gradient vector g, calculated for each formula
with eq. 3-9, is scaled by a learning rate η to update the weight vector of all formulas w
resulting in the new weight vector wt+1, as described in Equation 3-10. The learning rate
η determines how fast the weights converge. A large learning rate allows faster convergence
towards the global optimum, but it can cause overshoot resulting in oscillation of the gradient
direction. Choosing a smaller learning rate reduces the chance of overshooting, but will slow
down convergence time.

Singla and Domingos proposed an alternative weight learning algorithm called discriminative
weight learning. In discriminative learning the conditional log-likelihood (eq. 3-11) of the
query predicates y given the evidence x is maximised. In contrast to generative learning,
discriminative learning does not optimise the join likelihood of all predicates but only of the
query predicates. A drawback of this method is the requirement that the query predicate
must be a priori known. As discussed in chapter 4, this requirement is troublesome for the
cumulative learning extension of MLNs. However, for batch learning methods the discrimina-
tive weight learning method has been shown to be more effective than the generative method,
because the formula weights are optimised for a given query instead of generically optimising
weight gradients to zero [35, 38].

∂

∂wi
− log P (Y = y | X = x) = Ew[ni]− ni (3-11)

3-4-2 Structure learning

An MLN is created from expert knowledge about a specific knowledge domain. This knowl-
edge can be incomplete or even incorrect. The formulas of an MLN can revised to correct
mistakes and extended to add new formulas. This process changes the structure of the Markov
network by adding or removing vertices and edges. The structure of an MLN can be learned
from evidence data. Structure learning can be performed from scratch, i.e. add learned
formulas to an empty MLN.

The basic structure learning algorithm is akin to inductive logic programming, except that it
directly optimise the likelihood of the data. It starts with the ground MLN, then it greedily
combines both ground and non-grounded predicates to improve the joint distribution fit of the
evidence based on a score. This is done for all formulas and possible predicate combinations
of the MLN. Despite its simplicity, a significant problem with this method is the necessity
of calculating the new score after each combination step. Another drawback of structure
learning is the poor duration scaling as the number of possible predicate combinations grows
exponentially with the addition of more predicates to an MLN.

Nevertheless, learning new formulas and updating existing formulas is a powerful tool. In
cumulative learning it allows for error correction and mining new relations between previously

MSc thesis - Robotics G.B.G. Potter



3-5 Summary 28

independent domains. Multiple MLN structure learning algorithms exist [36, 76, 37, 77]. In
this work the structure learning algorithm of Kok and Domingos is used [36].

3-4-3 Evidence

To learn new concepts a cumulative learning algorithm requires new input data. An ideal
cumulative learner can continuously learn from a stream of input data with an infinite learning
window size [18]. However, no such algorithm exists yet. Our cumulative learning algorithm
learns incrementally from new databases one at a time, where the learning window size is as
large as the size of the database. This means that a whole new database is ingested at once
for every learning step.

To learn from any database, they must conform to several constraints.

• The data must be written in FOL.
• The FOL notation for predicates, variables and constants follows Alchemy grammar5.
• Duplicate evidence is possible but has no effect on formula weights.
• Only ground atoms are allowed as evidence, i.e. only predicates of the form HasSize(Shoe,

Small).
• With one exception: Domains of predicates must be declared in the database, i.e.

HasSize(obj, size) must occur once (domains are known assumption).
• All evidence can be either true or false (denoted by an ’!’ in front of the ground atom),

i.e. no fuzzy evidence.
• Evidence not in the database is considered false (closed world assumption).

3-5 Summary

In this chapter the definition and several properties of Markov Logic networks were discussed.
Markov Logic Networks are based on Markov networks. MLNs combine first-order logic with
probabilistic reasoning. The formulas in an MLN form a graph with pairwise, local and global
Markov properties. Each vertex in the graph corresponds to a predicates in a formula. The
vertices are connected by an edge if the two predicates appear together in a formula. All edges
in the graph denote the OR relation as each formula is converted to its conjunctive normal
form. Formula weights in an MLN can be trained on evidence with algorithms such as MC-
SAT to optimise a log likelihood to fit the joint probability of the evidence. In addition, the
structure of the network can be learned from evidence. The evidence consists of only ground
atoms, except for predicate declarations for each evidence predicate.

5https://alchemy.cs.washington.edu/user-manual/4Syntax.html

MSc thesis - Robotics G.B.G. Potter

https://alchemy.cs.washington.edu/user-manual/4Syntax.html


Chapter 4

Cumulative learning with MLNs

This chapter delves into the concepts and mechanisms of the Markov Logic Network Cu-
mulative Learning Algorithm (MLN-CLA). First the fundamental concepts and tools for
cumulative learning with Markov Logic Networks are set out. With these tools in hand, our
cumulative learning algorithm is explained step-by-step. Figure 4-1 illustrates a simplified
overview of MLN-CLA.

Figure 4-1: Simplified overview of MLN-CLA in terms of MLNs and databases. In the first step
an MLN or an MLN and an evidence database are given as initial input to create a knowledge base
with. In the next time step a new MLN, evidence database or both are introduced to the knowledge
base. The new information is compared against the knowledge base to determine for each piece of
information whether its is known or unknown. If all information is known then structure learning
is performed, otherwise only formula weight learning is performed. After comparing against the
knowledge base, each piece of information is put into a Knowledge Category. Only the Knowledge
Categories changed by the new information are converted to independent MLNs. Subsequently,
if structure learning is performed then the MLN splits are first merged together before structure
learning on the new information. Otherwise, the MLN splits formula weights are trained on the
new evidence. Afterwards, the splits are merged together and a new knowledge base is created
from the merged or structure learned MLN. Finally, the new knowledge base is merged with the
initial knowledge base to incorporate the newly learnt formula weights or structure.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 30

4-1 The ingredients

First of all, to learn cumulatively an existing knowledge base and new evidence in first-order
logic are required. The knowledge base is required to make sense of any newly received evi-
dence. Everything new is compared to the knowledge base to determine how to incorporate it.
Without a pre-existing knowledge base or any a priori knowledge it is impossible to categorise
new knowledge as there is nothing to compare new evidence against [65]. Cui et al. solved this
problem by a priori labelling each piece of evidence with a ’knowledge identifier’ label [21].
In their work they categorise incoming evidence into clusters, called Knowledge Categories,
based on this knowledge identifier. To manage these clusters they introduce a Knowledge List.
In MLN-CLA we extend these concepts of Knowledge Categories and Knowledge Lists. We
lift the requirement of labelling data beforehand through automatic categorisation based on
domains of constants instead of knowledge identifiers. This includes automatic categorisation
and incorporation of unknown predicates and domains from evidence. Furthermore, in con-
trast to Cui et al., we show how to merge Knowledge Categories together to more efficiently
cluster formulas in the Knowledge List.

Within the context of MLN cumulative learning new evidence consists of one or a combination
of:

• new formulas (from an MLN)
• new ground atoms (from a database)
• new predicate declarations that define new relations over either existing or new domains

of constants (from either an MLN or database)

MLN-CLA allows for two types of sources of new evidence, either from an MLN or an evidence
database of ground atoms. At each time step a combination of any type of evidence can be
presented to the cumulative learner. The software used for MLN learning1 only requires
predicates used in formulas in any MLN to be declared beforehand. Within MLN-CLA
this requirement is extended to evidence databases. Predicates in evidence must also be
declared to indicate to which domains the arguments of ground atoms belong. For example:
IsA(object, category) is a predicate declaration that defines the ’IsA’ relation over the
domains ’object’ and ’category’. The domains are filled with constants by evidence ground
atoms such as IsA(Cat, Animal), indicating by argument position that ’Cat’ belongs to the
’object’ domain and ’Animal’ belongs to the ’category’ domain. This assumption enables
the cumulative learner to incorporate new relations over new or existing domains in the
knowledge base. Structure learning can be applied to newly discovered predicate declarations
to construct formulas from these and other predicates.

To manage knowledge and compare new evidence against the knowledge base is the basis of
a cumulative learner [18]. Before delving into the Markov Cumulative Learning Algorithm,
two types of knowledge containers must be defined first. These containers form the basis in
managing the knowledge base for cumulative learning. First, the concept of the Knowledge
List (KL) is introduced. Subsequently, the second knowledge container, called the Knowledge
Category (KC), is introduced.

1Described in detail in section 5-1

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 31

4-1-1 The Knowledge List

A Knowledge List L consists of a set of predicate declarations P, a mapping D of constants
to domains, and a set of Knowledge Categories C (see section 4-1-2). The definition of a
Knowledge List is given in definition 4.1.

Definition 4.1 (Knowledge List).

P = {P1(DA), P2(DB, DC), P3(DD), P4(DE , DF , DG), . . . , PW (DX)}
D = {

DA 7→ {ka1, ka2, . . . , kaA}
DB 7→ {kb1, kb2, . . . , kbB}

...
...

DX 7→ {kx1, kx2, . . . , kxC}
}

C = {c1, c2, c3, . . . , cY }

where W is the number of predicate declarations, X the number of domains in the predicate
declarations, A, B and C the number of constants k in each respective domain and Y the
number of Knowledge Categories in the Knowledge List.

Building and maintaining a Knowledge List is required to keep track of all known knowledge
elements. When new evidence is fed into the cumulative learner it can be compared against the
Knowledge List to determine whether each piece of new evidence is known or (yet) unknown.
During the MLN-CLA process the Knowledge List is updated according to the new evidence.
Only the elements in the Knowledge List that are affected by the new evidence will be
updated. This method enables selective updating of knowledge and incremental learning
of new knowledge. In MLN-CLA the initial Knowledge List is constantly updated by merging
it with another Knowledge List created from MLNs trained on the new evidence as illustrated
in figure 4-1.

Example 1 shows an example of a Knowledge List with several predicate declarations and
domain to constant mappings. In this example the three predicate declarations all share a
domain. Each predicate defines a relation between an object and another concept, i.e. the
size or shape of any object. Intuitively, because these predicates have a domain in common
they define knowledge within the same context. This property of the predicate and domains
declaration is exploited in the Knowledge Categories to structure the information in the
Knowledge List.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 32

Example 1.

P = {Size(object, size), Shape(object, shape), Affordance(object, action)}
D = {

object 7→ {Ball, Glass, Shoe, Chair, . . . }
size 7→ {Small, Large, . . . }
shape 7→ {Round, Sphere, Cylinder, Cube, Flat, Convex, . . . }
action 7→ {Push, Throw, Pull, Open, Close, Hit, Pick, Place, . . . }
}

C = {C1, C2, C3, . . . , CN}

4-1-2 Knowledge Categories

A Knowledge Category C consist of an index or identifier i, a set of triplets (Fj , wj , zj) of
associated formulas Fj , weights wj and formula evidence counts zj , and a set of category
domains Di. A Knowledge Category contains a finite number of knowledge triplets and
domains. All knowledge triplets in a Knowledge Category contain formulas on the same
concept(s). The definition of a Knowledge Category is given in definition 4.2. Knowledge
Categories are always part of a Knowledge List as they share the same context. The index i
is used to keep track of the Knowledge Category within a Knowledge List over time.

Definition 4.2 (Knowledge Category).

index = i

(F, w, z) ={(F1, w1, z1), (F2, w2, z2), . . . , (FN , wN , zN )}
Di ={DA, DB, . . . , DX}

where i is an integer index, N is the number of knowledge triplets in the category, and X is
the number of domains in the formulas of the category.

Example 2 shows a possible Knowledge Category within the Knowledge List from example 1.
It contains two formulas relating the size of an object to possible actions and two unit clauses
Size(o,s) and Affordance(o,a) that model the prior probability of the predicate. The
constants Large, Push, Small and Throw are mapped to their respective domains object, size
and action via the Knowledge List. Each formula in the knowledge triplets is accompanied
by its weight and evidence count. The evidence counts suggest these formulas were learned
from different evidence databases as their evidence counts vary for each formula. In evidence
counting only the predicates of a formula are counted in the evidence, not the constants (see
algorithm 4. If these formulas were learned from the same evidence database, the counts
would be identical for the first two triplets as well as for the unit clause triplets. The unit
clause triplet evidence counts would sum up to the evidence count of the first two triplets.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 33

Example 2.

index = 3
(F, w, z) ={(Size(o, Large) =⇒ Affordance(o, Push), 0.563, 8),

(Size(o, Small) =⇒ !Affordance(o, Throw),−1.27, 4),
(Size(o, s), 0.2, 1), (Affordance(o, a), 0.3, 1)}

D3 ={object, size, action}

In Markov logic, all predicates have at least one argument. A predicate without an argument
is a proposition and is part of Propositional logic. A predicate can range over a finite number
of domains in Markov logic. Predicate names are unique: Affordance(object, action,
effect) and Affordance(object, action) cannot be both defined in one MLN. Predicate
arguments are not unique. A predicate can range over one domain but have two arguments,
such as NextTo(object, object). Instead of relating two domains together, these kind of
predicates define relations within one domain. Similarly, a formula can be formed by any
number of predicates and the predicates of a formula are not unique within the formula:
Affordance(o, a)⇔ (NextTo(o1, o2)∧NextTo(o2, o1)). The same predicates can occur
in other formulas as well.
A Knowledge Category in a Knowledge List is unique in a Knowledge List. It contains all
formulas in a Knowledge List that relate to the same concept, forming a cluster. Knowledge
Categories are initially created from one formula. A Knowledge Category can contain multiple
different formulas. Determining which formula to add to which Knowledge Category is the
most important mechanism of MLN-CLA. Any formula in an MLN belongs to only one
Knowledge Category in the Knowledge List.
To determine to which Knowledge Category a formula belongs, the algorithm can look at
either the predicates or domains of a formula. All predicates and the domains they range over
are known through the MLN predicate declarations. A Knowledge Category is made unique
by either the set of predicates or domains of the formulas in the category. In practice, there
are more relations between domains than there are domains defined in an MLN. We made
the design choice for our algorithm to make Knowledge Categories unique by their domain
set, where the set is formed by all domains of each predicate in a formula as described. In
MLN-CLA the set of domains Di of a Knowledge Category fully determine the category as
described by definition 4.3. Figure 4-2 illustrates example Knowledge Categories. In the
figure several categories contain the same set of domains.

Definition 4.3. Ci is a Knowledge Category with index i formed by the set of domains Di

of predicates Pi that occur together in a formula.

Figure 4-2 visualises the uniqueness of Knowledge Categories based on their domains. Some
examples of predicates ranging over the same sets of domains are: Large(obj), Small(obj),
Heavy(obj) or Manages(person, person) and Family(person, person).
As a consequence of theorem 4.3, one predicate can belong to multiple Knowledge Categories.
How do Knowledge Categories differ from each other? Two Knowledge Categories can be
compared against each other simply by comparing their respective sets of domains Di (fig.
4-2). Definition 4.4 describes in what circumstance two independent Knowledge Categories
contain information on the same knowledge concept.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 34

Figure 4-2: Illustration of the differences between predicates and domains of several example
Knowledge Categories of a Knowledge List. KC 1 consists of a formula of one predicate ranging
over N domains. KC 2 consists of a formula of M predicates ranging over the same domain D1.
The domains of KC 2 form a subset of KC 1, whereas the predicates of KC 1 form a subset of
KC 2. Either set can make a Knowledge Category unique. KCs 5 consists of a formula of three
predicates ranging over two domains that are part of KC 3. The domains of KC 5 are a subset
of the domains of KC 3. The domains of KC 6 intersect with both KC 4 and 5. The domains
of KCs 2-6 are all subsets of the domains of KC 1. Knowledge Categories with subset domains
contain formulas on the same concepts.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 35

Definition 4.4. Two Knowledge Categories contain formulas on the same knowledge concept
iff the domains of either Knowledge Category is a subset of the other, i.e. Dc1 ⊂ Dc2 or vice
versa.

There are three possibilities for comparing Knowledge Categories by their domains. The set
of domains can either be:

• D1 ⊆ D2, one set fully overlaps with the other set, i.e. one set is a subset, superset of
the other or they are equal. It is irrelevant which of the three options occurs.

• D1 ∩D2 ̸= ∅, there is some overlap between the sets but also some differences, i.e. the
domain sets intersect.

• D1 ∩D2 → ∅, there is no overlap between the sets, i.e. the domain sets are disjoint.

For the disjoint domain sets case, the two Knowledge Categories are independent of each other
and share no common knowledge. In other words, none of the formulas in the Knowledge
Category relate to knowledge common to both categories. Example 3 describes this situation.

Example 3.
D1 = {object, size, shape, affordance}
D2 = {person, child, mother, father, parent}
D1 ∩D2 → ∅

Knowledge updating

If the domain set of a Knowledge Category C1 is a subset or is equal to the domain set
of another Knowledge Category C2, the two Knowledge Categories share common knowl-
edge. All formulas in C1 define rules over the same knowledge domains as C2. The formulas
and constants of the categories can be merged together into one Knowledge Category, i.e.
C1(F1, D1, K1) ∪ C2(F2, D2, K2)→ C2(F1 ∪ F2, D2, K1 ∪K2). Example 4 describes this situ-
ation.

Example 4.
D1 = {object, size, shape, affordance}
D2 = {object, affordance}
D3 = {object, size, shape, affordance}
D2 ⊂ D1 ⊆ D3

D1 ∪D2 ∪D3 → {object, size, shape, affordance}

In the case that the domain sets of two Knowledge Categories intersect but neither is a subset
of the other, then both categories describe different knowledge concepts using similar domains.
These Knowledge Categories are not merged together as it is not clear how the difference set
of the domains has any relation to either Knowledge Category. Example 5 describes three
Knowledge Categories with intersecting domain sets with small differences.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 36

Figure 4-3: Two formulas each form their own independent Knowledge Categories. If the domain
set of category 2 is a subset of that of category 1 then the categories are merged together into
Knowledge Category 1. Knowledge Category 2 is subsumed in Knowledge Category 1 and is
subsequently discarded.

Example 5.
D1 = {object, size, shape, affordance}
D2 = {object, mass, volume}
D3 = {object, size, colour, affordance}

D1 ∩D1 → {object}
D1 ∩D3 → {object, size, affordance}

As a consequence of definition 4.4, two categories on the same concept can be merged into one
category by domain comparison as shown in figure 4-3. In practice, during the initialisation
of a Knowledge List from an MLN, the first formula encountered in the MLN defines its
own Knowledge Category with its set of domains. Each subsequent formula in the MLN is
compared against this category. They are either put into this category if the domain sets
match, or they form their own Knowledge Category for other formulas to compare with.
Afterwards, each Knowledge Category in the Knowledge List is then compared to all other
categories to merge categories on the same knowledge concepts together. After the merging
step, the minimal set of Knowledge Categories is left over. During merging the information
contained in one category is copied over to the other category. The category that information
was copied from is discarded after merging as its information has been subsumed. The merging
of Knowledge Categories is essentially a form of clustering. Newly learned formulas are put
into an existing Knowledge Category or form their own new Knowledge Categories based on
comparison of domain sets.

Knowledge updating strategies

The Knowledge Category merging operation consists of three operations: a domain set union,
the constants union and merging the knowledge triplets from one category into the other.

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 37

Because the domains of two categories that should be merged are a sub/super set of each
other, the union of the two domain sets results in the superset. In the constants union the
constants of both categories are assigned to the corresponding domains in the Knowledge
List.

During the knowledge triplet merging operation, each formula in the triplets is checked
whether it is new to the category or it is the same as an existing formula in the category. If
a formula is new, i.e. it is not the exactly same as an existing one, its triplet is simply added
to the category. If a formula is the same, a conflict situation occurs.

Two triplets from two different categories each with the exact same formula cannot simply
be merged together. The weights of the formulas are learned from different sets of evidence.
Even when the weights are exactly the same, the evidence they were based on could differ
and thus the knowledge encoded in the weights is different. One of the formula weights must
be accepted to merge the two categories.

To solve the conflict it is assumed that formula weights in conflicts always represent different
sets of evidence. This assumption allows the formulation of knowledge updating strategies to
solve merging conflicts: the CL-Naive, CL-Conservative and CL-Balanced strategies. Other
strategies are possible but are left for future work to explore.

The simplest possible strategy is to prefer any new knowledge over the old knowledge. This
is represented in the CL-Naive strategy, described in algorithm 1. In this strategy conflicts
in merging knowledge triplets (F, w, z) with the same formula (F1 = F2) are always resolved
by copying the new triplet over the old triplet, regardless of how much evidence either of the
formula’s weights was trained on.

The weights being overwritten after each learning step using this strategy does not mean
all previously learned information is lost. During conversion of a Knowledge Category to
an MLN, the formula weights are set to their respective current weights prior to learning.
Thus each weight is adjusted based on the new evidence from the starting point of the weight
from the previous learning step, i.e. wt+1 = wt + ∆w where ∆w is the newly learned weight
difference. This way all learned information is carried over between learning steps.

Algorithm 1: CL-Naive knowledge updating strategy
Input: Knowledge triplets (F1, w1, z1) and (F2, w2, z2), where F1 = F2
Output: (F1, w1, z1)
w1 ← w2
z1 ← z2

A converse strategy to simply accepting all new knowledge as better than the old is to only
accept new knowledge as better if it is based on more evidence than the old knowledge. This
is the CL-Conservative strategy, described in algorithm 2. In this strategy the evidence count
portion of the knowledge triplets is important.

The evidence count of a formula represents how many ground atoms were seen during the
training of the weight of the formula. The method for counting evidence is described in
algorithm 4. Only the ground atoms corresponding to the predicates in the formula are
counted as only they contribute to the weight during training. If the evidence count of the
new knowledge is larger than that of the old then the new knowledge triplet overwrites the

MSc thesis - Robotics G.B.G. Potter



4-1 The ingredients 38

old. In subsequent learning steps the new evidence count is then the barrier to overcome.
The old knowledge triplet is not overwritten if the evidence count for the new knowledge is
equal or smaller than the old count.
In contrast to the CL-Naive strategy, the CL-Conservative strategy only updates weights of a
formula if it is a new formula or there is more evidence for the weight of the formula than in
the previous step. Because new evidence counts overwrite old evidence counts in this strategy,
in the next step the new evidence is counted from zero. Another approach is to start counting
the new evidence from the previous evidence count.

Algorithm 2: CL-Conservative knowledge updating strategy
Input: Knowledge triplets (F1, w1, z1) and (F2, w2, z2), where F1 = F2
Output: (F1, w1, z1)
if z2 > z1 then

w1 ← w2
z1 ← z2

end

The CL-Balanced strategy, described in algorithm 3, applies this continuous counting ap-
proach. To solve same formula merging conflicts the balanced strategy takes the weighted
average of the old and new formula weights based on their respective evidence counts. The
resulting averaged formula weight contains partial information of each weight in proportion to
their respective evidence. After calculating the formula weight average, the evidence counts
of both knowledge triplets are summed. The sum of the evidence counts represents that the
formula weights were combined and not overwritten.
If both evidence counts are zero the arithmetic average of the two weights is taken to prevent
division by zero. This situation only occurs if two Knowledge Categories are merged with
untrained formulas or formulas that have not yet seen any evidence. New evidence can contain
only predicate declarations and formulas of yet unknown predicates and domains without any
further supporting evidence. In this case Knowledge Categories, with knowledge triplets with
weight zero and evidence count zero, are created for each predicate declaration. If any of these
categories contain domain subsets of other newly created categories, they are subsequently
merged together with the arithmetic average of the zero weights. The zero weight of the
original formula is thus conserved. In normal operation this scenario is unlikely to happen.
As the number of learning steps grows, the evidence count of the CL-Balanced strategy will
grow too. Except for the case where there is no new evidence for a formula, then the evidence
count is zero and the corresponding weight will not contribute anything to the weighted
average. Due to the evidence count growth, the influence of new evidence will have less
impact on the merged formula weight if its evidence count remains similar to the previous
step. In the CL-Balanced strategy the number of evidence must grow in proportion to the
accumulated evidence of previous steps to prevent formula weight from converging.
Making a distinction in the Knowledge List for Knowledge Categories is important for de-
termining which pieces of knowledge to update in the Knowledge List when new evidence is
given. Only the categories that are relevant for the new knowledge have to be updated, saving
computation resources and time. Furthermore, it ensures that any knowledge not relevant to
the new evidence is not changed in any way.

MSc thesis - Robotics G.B.G. Potter



4-2 Ingredients in practice 39

Algorithm 3: CL-Balanced knowledge updating strategy
Input: Knowledge triplets (F1, w1, z1) and (F2, w2, z2), where F1 = F2
Output: (F1, w1, z1)
if z1 = z2 = 0 then

w1← w1+w2
2

end
else

w1 ← z1w1+z2w2
z1+z2

z1 ← z1 + z2
end

4-2 Ingredients in practice

With the two main ingredients and knowledge updating strategies for MLN-CLA in hand,
a Knowledge List L can be built from an MLN and an evidence database as shown in al-
gorithm 9. Subsequently, L becomes a living knowledge base open for new knowledge to be
incorporated. How this works is explained in the following sections.

4-2-1 Knowledge List creation

First the initial Knowledge List L must be created. From the input MLN its predicate
declarations and formulas are parsed. The predicate declarations are put in the set of known
predicates P of L. Each domain in the predicate declarations is added to the set of domains
D of L. Then the first formula in the MLN is put into its own category. Each subsequent
formula in the MLN is either merged into this category based on its domains or put into its
own category. As a result, an MLN containing N formulas will results in a Knowledge List L
containing 1 to N categories. The constants K of the evidence database are then added to
their respective domains D ∈ DL. This process is shown in algorithm 7.

After these initial operations, the resulting Knowledge List L contains a set of predicate
declarations, a domain to constants mapping and the unique Knowledge Categories that
cluster the formulas in the input MLN. It is now ready to incorporate new knowledge.

4-2-2 Knowledge List operations

Several operations can be carried out on a Knowledge List. These are comparing new evidence
to the List, splitting, merging with another Knowledge List, converting to MLN and merging
Knowledge Categories.

New evidence comparison

Each piece of new evidence can be compared to a Knowledge List to determine whether that
piece is known or unknown. If all pieces of new evidence are known or no unknown evidence
is found, no special operations have to occur. In this case the weights of the formulas in the

MSc thesis - Robotics G.B.G. Potter



4-2 Ingredients in practice 40

Knowledge List have to be updated based on the new evidence. Here structure learning can
be applied to find a more optimal structure of the formulas and thus also the Knowledge
Categories in the Knowledge List. This is illustrated in figure 4-1 in the structure learning
branch. In structure learning the weights of the formulas are optimised too.

If any new evidence is found, it must be incorporated into the Knowledge List. Depending on
the symbol type of the evidence (predicate, variable or constant), the corresponding operations
to incorporate the knowledge must be taken. In the case of an unknown predicate a matching
Knowledge Category must be found based on the domains the predicate defines a relation over.
If no match is found the predicate defines a relation over an as of yet unknown concept. Thus
a new Knowledge Category is made for the predicate and its domains. This new Knowledge
Category is added to the Knowledge List. Otherwise, the predicate is added to a matching
Knowledge Category. In either case the predicate is converted to a knowledge triplet with a
unit clause formula with weight zero and the evidence count.

In the case that the new evidence is a variable (only found in MLN formulas) or constant,
the corresponding predicate declaration is fetched. From this declaration the domain of the
variable or constant is determined. With the domain now known, the matching Knowledge
Category can be obtained. This category is then flagged for further training on the evidence.
In addition, the constant is added to the Knowledge List domain to constants mapping.
Variables are not added to the Knowledge List as they only indicate that any constant of
the domain can be put in that argument position in the formula. The assumption that all
predicates and domains must be declared ensures that no constant or variable has no matching
Knowledge Category.

This process is iterated over for each new piece of unknown evidence. Afterwards, the Knowl-
edge Category merging operation is performed to ensure the set of Knowledge Categories is
the minimal set.

Category merging

The Knowledge Category merging operation, as described in algorithm 8 and figure 4-3, can
be applied in two situations: in Knowledge List initialisation or when two Knowledge Lists
are merged. When initialising a Knowledge List categories are merged to ensure the minimal
set of Knowledge Categories is kept. When merging two Knowledge Lists, as described in
section 4-2-2, each Knowledge Category combination between the lists is compared against
each other for matches to merge.

In the example of table 4-1, two KCs are compared against each other. Both contain the same
formula with a different weight and evidence count. Example 6 demonstrates the application
of the CL-Balanced strategy to solve the merging conflict.

MSc thesis - Robotics G.B.G. Potter



4-2 Ingredients in practice 41

Knowledge Category 1 Knowledge Category 2
Index 22 8

Triplets (Size(obj, Huge) ⇒ !Affordance(obj,
Throw), 0.88, 122)

(Size(obj, Huge) ⇒ !Affordance(obj,
Throw), -0.41, 47)

Domains object, size, action object, size, action

Table 4-1: Example of two Knowledge Categories (possibly of different Knowledge Lists) con-
taining the same formula. The domains of Knowledge Category 2 are a subset of the domains of
Knowledge Category 1. The weights and evidence counts of the formulas are different. The two
categories must be merged together with a knowledge updating strategy.

Example 6.

wC1 = z1w1 + z2w2
z1 + z2

= 122 · 0.88 + 47 · −0.41
122 + 47

= 0.521
z1 = z1 + z2

= 122 + 47 = 169
index = 22

(F, w, z) = {(Size(obj, Huge)⇒ !Affordance(obj, Throw), 0.521, 169)}
D = {object, size, action}

Splitting Knowledge List

A Knowledge List can be split up into independent MLNs. Each Knowledge Category can
be converted back into an MLN as shown in figure 4-1. The MLN’s predicate declarations,
formulas and their weights are derived from the Knowledge Category. The formula weights
act as a prior to for the weight learning algorithm. Because no two categories share formulas,
they are independent when grounding the MLN. As a result, the independent MLNs can be
changed without influencing the others. The same splitting strategy can be applied to the
evidence database. On each of the MLN splits the weight and structure learning algorithms
can be applied given the new evidence splits.

Each MLN split is trained on a corresponding evidence split, containing only those ground
atoms of predicates declared in the MLN split. A major advantage of splitting up the Knowl-
edge List is the ability to selectively update knowledge in the List. Depending on the evidence
only a portion of the Knowledge List has to be updated, saving computation time and cost.
In addition, the training of MLN splits can be parallelised to speed up the learning process.

Merging the splits

After training the MLN splits on the new evidence, they can be merged together. Because
the MLNs are independent of each other, no special treatment of the formulas and weights is
required to merge the MLN splits into one. The merged MLN then contains all formulas and

MSc thesis - Robotics G.B.G. Potter



4-3 What can be learned? 42

predicate declarations of each of the splits. From this merged MLN a new Knowledge List is
created following algorithm 7.

Knowledge Lists merging

To make sure of a fair and complete comparison with the original Knowledge List Lt=0, the
merged MLN, formed from the MLN splits trained on the new evidence, is converted to a
Knowledge List Lnew first. Afterwards Lnew is merged into Lt=0 to form Lt+1 as described
in algorithm 5. This process is similar to the Knowledge Category merging process.

The predicate declarations and domains both Lists are combined. Each KC of Lnew is com-
pared to every Knowledge Category in Lt=0 to find matches. Once a KC match is found
based on their domains, the KC of Lnew is merged into the matching KC of Lt=0. If any KC
from Lnew does not have a matching KC in Lt=0 it is simply added to the list of KCs of Lt=0.

After the end of this merging step the original Knowledge List Lt=0 has been updated with
new knowledge to Lt+1. It is again ready to receive new evidence to incorporate in a never
ending cycle.

4-3 What can be learned?

Cumulative learning with Markov Logic Networks can be applied in three ways:

• Learning new constants for known domains from new evidence
• Learning new predicates and formulas from new MLNs and new evidence
• Adjusting the knowledge base given new known evidence

New constants can be learned from new evidence. These constants extend existing domains
in the knowledge base. For example, the domain Size:(Tiny, Small) can be extended with
newly learned sizes Medium, Large and Huge. The weights of formulas can be adjusted to
reflect the changes in the domains. If the formula templating (’+’) symbol is used in the
MLN formulas then new formulas can be learned for each new constant. The symbol causes
Alchemy to learn a formula instance for each constant in the domain of the variable preceded
by the + symbol. Extra constants can provide more context for formulas or better define the
distribution of a domain.

New predicates can be learned from either a new MLN or from new evidence if an unknown
predicate is declared in the new evidence. New formulas can only be learned from a new
MLN as evidence databases in Alchemy only consist of ground atoms. In both cases the
unknown predicates must be declared as part of the prior knowledge. The new predicates
and formulas can define new relations for existing knowledge if the predicates range over any
known domain. Those formulas are merged into existing Knowledge Categories. The existing
knowledge can also be extended with new relations over previously unknown domains. These
two cases can be combined; new predicates can define a relation between both known and
unknown domains. Thus relations can be learned between previously independent knowledge
domains.

MSc thesis - Robotics G.B.G. Potter



4-4 Cumulative learning aspects of MLN-CLA 43

New evidence can be additionally be used to update existing knowledge. If all predicates and
constants in a new dataset are already incorporated in a Knowledge List, then the weights of
the formulas in the Knowledge Categories can be adjusted by training on the new evidence.
The formulas themselves can additionally be refined by performing structure learning on the
new evidence.

In the case that a new MLN is fed into the cumulative learner consisting of only new formulas
without any supporting ground atoms evidence, the new formulas are added to the Knowledge
List, but no formula weight or structure learning is performed. Formulas without any support
evidence (i.e. with an evidence count of zero) have zero weight and cannot be learned without
supporting evidence. The formulas can, however, be learned in future learning steps and are
therefore added to Knowledge List instead of being discarded.

4-4 Cumulative learning aspects of MLN-CLA

In chapter 1 the aspects of an ideal cumulative learner as described by Thórisson et al. were
discussed. The MLN-CLA extension contains components that uniquely deal with each aspect
of the ideal cumulative learner. In MLN-CLA the memory and knowledge management of a
cumulative learner is represented by the Knowledge List and its Knowledge Categories, and
the MLN structure learning of Alchemy.

The Knowledge List is the knowledge base of the cumulative learner. It contains all previously
seen predicates, domains, constants and Knowledge Categories. The knowledge in the knowl-
edge base is managed by the Knowledge Categories and the merging mechanics of MLN-CLA.
The unique Knowledge Categories ensure that formulas and constants are clustered, and that
new evidence is put in either the correct cluster or into a new one. The merging mechanics,
including the knowledge updating strategies, manage the Knowledge List and update it for
new evidence. Structure learning of MLNs is a form of memory and knowledge management
as well. In structure learning formulas are changed. Incorrect or incomplete formulas are fixed
and new formulas are added to an MLN under structure learning. Afterwards, the updated
formulas are incorporated into the Knowledge List.

The temporal capacity of MLN-CLA is varied. The algorithm is passive and discrete, meaning
that any time new evidence is fed into the algorithm it will initiate a new learning step,
otherwise it will do nothing. The amount of new evidence in a step is not limited and
can vary per step. However, a new learning step can only be initiated after the previous
one. MLN-CLA is thus a sequential cumulative learner. The duration of a learning step is
dependent on the amount of new evidence.

The generality of MLN-CLA is substantial. Due to their Markov properties MLNs can handle
any number of knowledge domains. The structure learning algorithm enables MLN-CLA to
find relations between previously independent knowledge domains. A limitation of MLN-CLA
are the strict data input constraints. The algorithm only accepts input data in the Alchemy
Markov Logic syntax. In addition, MLN-CLA only accepts evidence for which the predicates
are declared, i.e. new evidence domains are labelled. These constraints can be lifted with
the addition of an input translation step. For example, an LLM such as [78] can be used
to translate natural language descriptions to first-order logic. Fine-tuning such an LLM on

MSc thesis - Robotics G.B.G. Potter



4-5 Summary 44

Alchemy syntax allows it translate large image annotations datasets, text documents and
more to fit the MLN-CLA input modality.

No human input is required for any aspect of MLN-CLA, except for the initial knowledge
base. Of course, MLN-CLA is not an ideal cumulative learner. In terms of temporal capacity
it suffers from its sequential learning steps. However, in terms of generality MLN-CLA shines
as it can generalise knowledge from any domain.

4-5 Summary

In this chapter the concepts of a Knowledge List and Knowledge Category were introduced.
The Knowledge List acts as a knowledge base for all known evidence and formulas. Knowledge
Categories encapsulate a set of formulas that share a knowledge concept. These categories
are unique based on the domains they encompass. In cumulative learning several operations
can be performed on the Knowledge List, including splitting, merging and comparison. These
operations enable the Knowledge List to correctly incorporate new evidence such as constants,
predicates and formulas, into the knowledge base. The Knowledge List and Category together
with the operations form MLN-CLA. In the next chapter the capabilities of MLN-CLA are
put to the test.

MSc thesis - Robotics G.B.G. Potter



Chapter 5

Experiments

To demonstrate the capabilities of MLN-CLA two experiments are carried out. As shown in
the previous chapter, MLN-CLA is capable of cumulatively learning new constants, formulas
or a combination of new constants and formulas. First the MLN-CLA ability of learning
new constants from independent datasets is tested. Second the ability to learn new formulas
from MLNs and corresponding evidence is tested. Together these experiments demonstrate
all three cumulative learning capabilities of MLN-CLA. In addition each experiment tests
the different knowledge updating strategies: CL-Naive, CL-Conservative and CL-Balanced.
These are compared against two baseline batch learned MLNs.

First the software tools used to learn MLN weights and structure are discussed. Secondly, the
dataset used in the experiments is showcased. Thirdly the experiments and their setup are
explained. Finally, the measure used to evaluate the performance of the cumulatively learned
knowledge bases is introduced.

5-1 MLN software tools

Few software tools for the creation, parameter learning, structure learning and inference of
MLNs exist. One tool that incorporates all these features is ProbCog1 by Technical University
of Munich [79]. ProbCog has system integration with for instance Robot Operating System
(ROS), but lacks advanced learning and inference algorithms such as lifted inference.

The Python software package pracMLN2 is an easy to use way to learn weights of and per-
formance inference with MLNs [80]. pracMLN is a fork of ProbCog and thus can also be
integrated with ROS based robotics applications. pracMLN lacks support for structure learn-
ing of formulas in MLNs.

Alchemy3 (version 2) by the University of Washington has been under development longer
than ProbCog and pracMLN [81]. Alchemy 2 contains more advanced learning and inference

1https://github.com/opcode81/ProbCog, last updated January 2021.
2https://www.pracmln.org/, last updated May 2019.
3https://alchemy.cs.washington.edu/, last updated May 2020.

MSc thesis - Robotics G.B.G. Potter

https://github.com/opcode81/ProbCog
https://www.pracmln.org/
https://alchemy.cs.washington.edu/


5-2 Dataset 46

algorithms than ProbCog and pracMLN. It does have support for structure learning, albeit
with a very slow algorithm [36]. We adopt the Alchemy systems and notation4 for our
experiments. Our MLN-CLA method is compatible with Alchemy.

5-2 Dataset

The experiments are conducted on the dataset described in the paper on knowledge based
affordance inference from object properties by Zhu et al. [54]. Their dataset is based on
the Stanford 40 Actions dataset by Yao et al. [82]. The Zhu et al. dataset contains 4
predicates describing objects: IsA, HasVisualAttribute, HasWeight and HasSize and one
predicate ascribing an action affordance to an object: HasAffordance. Each predicate has
two arguments, i.e. HasWeight(object, weight): one labelling the object and the other
describing the object property. In total the 5 predicates define relations over 6 domains:
object, affordance, category5, visual_attribute6, size7 and weight8.

Only the portion of the dataset describing objects and their affordances is available9. The
object properties visual_attribute, size and weight were derived from the paper. The
category property of each object is taken from WordNet [83]. Any gaps in the dataset were
filled in by hand based on a best guess. The dataset used in these experiments is thus an
approximated reproduction of the original dataset.

The dataset is split in a training and a test set. The training set contains 40 objects and
their corresponding object property ground atoms. The test set contains 22 objects not seen
in the training set. The objects are similar but not the same as those in the training set. The
22 objects are described by their object property ground atoms. The object properties in the
test set are all present in the training set. The HasAffordance predicate is the target query
of the training and test sets. The ground truth for the query predicate in the training set is
described in Table 1 and for the test set is described in Table 2. Table 5-1 gives an example
for the evidence of an object in the dataset.

5-2-1 MLN

Next to data the MLN of Zhu et al. as described in MLN 1 is used in these experiments.
The Zhu et al. represents a simple and compact model for highly correlated relations. It
consists of 5 predicate declarations for the same 6 domains of the dataset. Four of the five
formulas directly predict the affordance of an object via an implication. The only formula
that does not directly predict the affordance of an object, IsA(o,+c1) ⇒ IsA(o,+c2) is a

4See Appendix 8
522 categories: animal, instrumentality, implement, device, container, tool, equipment, vehicle, machine,

wheeled vehicle, vessel, electronic equipment, edge tool, handcart, seat, musical instrument, cooking utensil,
computer, scientific instrument, knife, telephone, writing implement.

633 visual attributes: boxy_2D, boxy_3D, clear, cloth, feather, furn_arm, furn_back, furn_leg, furn_seat,
furry, glass, handlebars, head, horiz_cyl, label, leather, metal, pedal, plastic, pot, rein, round, saddle, screen,
shiny, skin, tail, text, vegetation, vert_cyl, wheel, wood, wool.

73 sizes: S1 (<10in), S2 (10-100in) and S3 >100inches.
84 weights: W1 (<1 kg), W2 (1-10 kg, W3 (10-100 kg) and W4 (>100 kg)
9Available at https://ai.stanford.edu/~yukez/eccv2014.html.

MSc thesis - Robotics G.B.G. Potter

https://ai.stanford.edu/~yukez/eccv2014.html


5-3 Evaluation 47

Ground atom Description
IsA(Banjo, Musical_instrument) Object category is musical instrument
IsA(Banjo, Device) Object category is also a device
IsA(Banjo, Instrumentality) Object top level category is ’instrumentality’
HasAffordance(Banjo, Grasp) Object can be grasped
HasAffordance(Banjo, Lift) Object can be lifted
HasAffordance(Banjo, Throw) Object can be thrown
HasAffordance(Banjo, Push) Object can be grasped
HasAffordance(Banjo, Fix) Object can be fixed
HasAffordance(Banjo, Play) Object can be played
HasVisualAttribute(Banjo, Boxy_3D) Object has a box shape
HasVisualAttribute(Banjo, Wood) Object looks to be (partly) made of wood
HasVisualAttribute(Banjo, Leather) Object looks to be (partly) made of leather
HasWeight(Banjo, W2) Object has weight class W2 (1-10 kg)
HasSize(Banjo, S2) Object has size class S2 (10-100in)

Table 5-1: Example of the evidence for the ’Banjo’ object in the test dataset. Note that the
object categories are taken from WordNet [83]. The HasAffordance evidence is part of the
ground truth.

support formula. Zhu et al. note that this formula helps the model better predict affordances
by establishing an ontological relation between objects.

The use of the special Alchemy + symbol in each formula signifies that, during training, a
separate formula for each constant in the domain of that variable is learned. This allows the
model to capture the differences between constants in the formula weights instead of learning
a robust generalised weight for a single formula spanning the whole domain.

5-3 Evaluation

The ground truth of the Zhu et al. dataset is a binary 22 × 14 array of object-affordance
pairs in the test set corresponding to the target query. Each entry in the ground truth array
has a value of either 0 or 1. If an object-affordance pair does not occur in the test set, the
corresponding value in the array is 0. Conversely, if an object-affordance pair does occur in
the test set, the corresponding value in the array is 1. The ground truth array is shown in
Table 2.

The inference output of an MLN on the test data consists of a marginal probability for
each ground atom instance of the query predicate. This output is parsed and put into a
predictions array of the same shape as the ground truth array. In contrast to the ground
truth, the predictions array consists of non-binary values between 0 and 1. The predictions
can be interpreted as follows: a marginal probability of 1 means the MLN is certain of the
ground atom being true, a marginal probability of 0.5 means the MLN is uncertain whether
the ground atom is true or not. Finally, a marginal probability of 0 means the MLN is certain
that the corresponding ground atom is false. Marginal probabilities larger than 0.5 indicate
that the ground atom is likely to be true. Marginal probabilities smaller than 0.5 indicate
that the ground atom is likely to be false.

MSc thesis - Robotics G.B.G. Potter



5-3 Evaluation 48

In the cumulative learning setting a problem arises with the parsing of the inference output
and filling out of the predictions array. Some constants have not yet been learned by the
cumulative learner during test time. For these constants the MLN cannot predict a marginal
probability. For example, if the affordance constant Play, part of the test data, has not been
seen in the training data of any cumulative learning step then the resulting MLN does not
know about the constant and does not output a prediction for it.

The solution to this problem is to initialise the predictions array with all marginal proba-
bilities of 0.5, i.e. each prediction is at base fully uncertain or unknown. Subsequently the
inference output is parsed and the 0.5 entries in the predictions array are overwritten with
the actual predictions. Afterwards, if any entry in the predictions is not overwritten due to
missing predictions as a consequence of unseen constants, then the prediction for that ground
atom is unknown and thus has marginal probability of 0.5. Thus missing predictions has no
unintended positive or negative influence on the performance.

In order to properly compare the performance of different models a standard performance
measure must be adopted. We follow Richardson and Domingos by adopting the Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC) performance measure of MLN
inference [12]. The AUC measure is well suited for evaluation of classification problems. The
followings experiments are formulated as multi-class classification problems.

5-3-1 Evaluation measure

The AUC measure is commonly applied as a performance measure in classification tasks. The
ROC curve or receiver operating characteristic curve, is the graph of the True Positive Rate
(TPR) plotted against the False Positive Rate (FPR) for different classification thresholds.
A high classification thresholds means fewer positive classifications, resulting in fewer true
positives and false positives and vice versa. Figure 5-1 shows an example of an ROC curve.
Equations 5-1 and 5-2 describe how to calculate the TPR and FPR from the MLN inference
predictions. Here, TP stands for the number of true positives, FP for false positives, TN for
true negatives and FN for false negatives.

TPR = TP

TP + FN
(5-1)

FPR = FP

FP + TN
(5-2)

The AUC score is an aggregation of the classification performance for all possible classifica-
tion thresholds. AUC is scale-invariant, meaning that it measures how well predictions are
ranked against each other instead of the absolute values of predictions. Furthermore, it is
classification-threshold invariant, meaning that the chosen threshold has no influence on the
AUC and the quality of the model’s predictive power in terms of AUC.

In the experiments the weighted average of the scores for each class is calculated. The weighted
setting is used to counteract class imbalance as some affordances occur more frequently than
others and skew the data. The frequency of the ground truth data is show in Table 2. In
addition, the ’one-vs-rest’ setting is used to compute the AUC for each class. In this setting

MSc thesis - Robotics G.B.G. Potter



5-4 Cumulative learning of constants 49

Figure 5-1: An example of an ROC curve: true positive rate against false positive rate for
different classification thresholds. The diagonal line represents a random classifier that guesses
correctly half the time. Better than random classifiers have a curve leaning towards the top left
corner in the ROC space. The perfect classifier has 0% false positives and 100% true positives
[84].

each class is compared against all others to calculate its score. The inference output of the
MLN for a query predicate is multi-class. In our experiment setup the goal is to determine
which affordances best fit an unknown object based on its properties. There are multiple
answers correct for each object. The ’one-vs-rest’ setting compares each affordance prediction
against all others to determine if it is a better fit than the rest for the object. This setting is
sensitive to class imbalance10.

5-4 Cumulative learning of constants

In this experiment the learning of new constants is tested. The experiment is set up as a
zero shot benchmark to compare a cumulative learner against a batch learner. The batch
learned MLN is trained in one step on all training data. The experiment is repeated for each
knowledge updating strategy.

The cumulative learner is trained in small steps on a new portion of the training data each
time. Each learning step the cumulative learner is fed a new, independent database to learn
from. Each database may contain evidence for constants that were not previously seen in other
databases. In addition, each database contains evidence not present in any other database.
The evidence is in the form of the ground atoms of predicates described in section 5-2. The
Zhu et al. training set of 40 objects is split into 8 independent datasets of 5 objects and their
descriptions.

The Zhu et al. MLN (see appendix C) consisting of 5 formulas is used as the initial knowledge
base. Two batch learned MLNs are trained with the same initial MLN as the cumulative

10See the Sklearn documentation for more information https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.roc_auc_score.html.

MSc thesis - Robotics G.B.G. Potter

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html


5-4 Cumulative learning of constants 50

learner. The batch learned et al. MLNs are trained on the generative and discriminative
setting respectively (see section 3-4-1).

Learning cycle

The experiment is started with an empty Knowledge List and an initial untrained MLN.
The formula weights of the untrained MLN are all 0. In the first step before processing
the new evidence of the step, a Knowledge List is automatically created based on the initial
untrained MLN. Then the evidence for the step is incorporated into the Knowledge List.
The updated Knowledge List contains formulas in the Knowledge Categories trained on the
evidence. The next step builds further upon this Knowledge List with new evidence. In each
step the formula weights of the previous step are used as initial weights for the next step.
This process is repeated until all 8 datasets have been learned by the cumulative learner.

During cumulative learning, each MLN is trained with the generative setting on its corre-
sponding dataset. The generative training setting is used as the query predicate for each
Knowledge Category is not known a priori by the cumulative learner and thus the discrimi-
native training setting cannot be used.

Inference and predictions

At the end of each step in cumulative learning, i.e. when the new evidence is fully incorporated
in the Knowledge List, the current Knowledge List is saved. Then the Knowledge List is
converted to an MLN for evaluation. This allows for evaluation of the learned knowledge on
the test dataset (see appendix B) after each learning step.

Expected results

The expected result of learning new constants is an increase of performance over the learning
steps for each knowledge updating method that approaches the performance of the batch
learned MLNs. The batch learned MLNs should outperform the cumulative learner at 100%
of the training data seen, because they can better learn the distribution of the training data
domains than the cumulative learner can. In each step the cumulative learner only sees a
portion of the distribution.

The knowledge strategy CL-Naive is expected to perform the worst as it causes formula
weights to bounce around at each step. This strategy is the most sensitive to outliers. The
CL-Conservative strategy is expected to perform better than CL-Naive because it only adopts
formula weights based on stronger evidence, causing it to be more robust against outliers.
Conversely, this can also have negative performance impact as slightly weaker, but still valu-
able evidence is disregarded. The CL-Balanced strategy is expected to perform the best of
the three strategies as it values strong evidence, does not disregard any evidence and better
takes previously learned weights into account.

MSc thesis - Robotics G.B.G. Potter



5-5 Cumulative learning of formulas 51

Index Formula
1 IsA(obj,+category)⇒ HasAffordance(obj,+affordance)
2 HasVisualAttribute(obj,+attribute)⇒ HasAffordance(obj,+affordance)
3 HasWeight(obj,+weight)⇒ HasAffordance(obj,+affordance)
4 HasSize(obj,+size)⇒ HasAffordance(obj,+affordance)
5 IsA(obj,+category)⇒ IsA(obj,+category)

Table 5-2: Mapping of formulas to MLN split indices. Each formula is forms an independent
MLN.

5-5 Cumulative learning of formulas

In this experiment the learning of new formulas is tested. This experiment focuses on the
role of Knowledge Categories in clustering new evidence. New formulas can be about existing
knowledge concepts or introduce new ones. If a formula is about new knowledge concepts, i.e.
the formula predicates define relations over unknown domains, it will form a new Knowledge
Category in the Knowledge List. Otherwise the formula is incorporated into an existing
category.

Learning new formulas allows a cumulative learner to better categorise incoming data. Fur-
thermore, learning new formulas with new predicates increases the number of questions that
can be asked to the learner. New formulas can also help increase performance of certain
queries if these formulas add more information about the query predicate. In the Zhu et
al. MLN example, the formula IsA(o,+c) ⇒ IsA(o,+c) helps the model better distinguish
objects by providing a class ontology to each object. This ontological relation is exploited in
the formula IsA(o,+c)⇒ HasAffordance(o,+a) to answer the query predicate.

The setup for the cumulative learning of formulas experiment is similar to that of learning
constants. The main difference is that instead of feeding new evidence to the cumulative
learner at each step, a new MLN containing one new formula is fed into the cumulative
learner. The original MLN is split into five independent MLNs, each containing one formula
and the corresponding predicate declarations. Table 5-2 shows the MLN split index and
corresponding formulas.

Because the Alchemy system does not allow undeclared predicates to be used in training
data, the training dataset is split up too. The training dataset is split into 5 databases,
each containing only evidence for one formula. Thus each MLN split from table 5-2 has
a corresponding database containing all ground atoms for each predicate in the associated
formula. Each database contains evidence for all 40 objects in the training dataset.

Similar to the constants experiment, two MLNs are trained on all formulas and evidence in
a batch learning setting. These are the original Zhu et al. MLNs trained on the generative
and discriminative setting respectively.

Learning cycle

In the first learning step of the experiment a cumulative learning instance is created with
an empty Knowledge List. The cumulative learner is fed a new MLN and its corresponding

MSc thesis - Robotics G.B.G. Potter



5-5 Cumulative learning of formulas 52

evidence to incorporate. At the end of the step the cumulative learner has incorporated the
new formula into its Knowledge Categories and trained the weights of the formulas in each
category.

A different new formula and corresponding evidence is fed to the cumulative learner until
all five formulas from table 5-2 are learned. During the cumulative learning process, if the
evidence for a new formula is already known to the cumulative learner, then structure learning
is performed on the Knowledge Categories relevant to the new evidence. Structure learning
updates the structure and weights of all formulas in a Knowledge Category based on the new
evidence, instead of just updating the weights. The experiment is repeated for each different
knowledge updating strategy.

In the cumulative learning process, each MLN is trained with the generative setting on its
corresponding dataset. The generative training setting is used as the query predicate for each
MLN is not known a priori by the cumulative learner and thus the discriminative training
setting cannot be used.

Inference and predictions

At the end of each learning step the current Knowledge List is saved. Then the Knowledge List
is converted to an MLN for evaluation. This allows for evaluation of the learned knowledge
on the test dataset (see appendix B) after each learning step.

However, similar to the training dataset, the test dataset must be split up for each step,
because the resulting MLN of each learning step may not contain formulas for one or more
predicates in the test dataset. The result of each step is thus tested on a subset of the complete
test dataset. As a result the performance at each learning step cannot be directly related to
other steps.

Expected results

The expected result of learning new formulas and predicates is an increase of performance
over the learning steps for each knowledge updating method. In each step, the cumulative
learner incorporates more knowledge relevant to the test set. It learns more formulas and can
better approximate the joint distribution of the test data, thus increasing performance with
each learning step.

At the end of the learning cycle, the performance of each method is expected to be on par or
better than the performance of the generative and discriminative batch learnedMLNs trained
on 100% of the formulas and data. In cumulative learning the formula weights are initialised at
the beginning of each step to the learned weights of the previous step. Based on the previous
weights, the cumulative learner should improve its representation of the joint distribution if
more information is gained after each step.

The expectation is that there are no differences in performance between the knowledge up-
dating strategies CL-Naive, CL-Conservative and CL-Balanced for the formulas that form
independent Knowledge Categories. From definition 4.4, the independent formulas are 1 to
4 (see table 5-2. The introduction of formula 5 is expected to result in a difference between
the strategies as this formula belongs to the same Knowledge Category as formula 1. The

MSc thesis - Robotics G.B.G. Potter



5-6 Summary 53

performance difference between the strategies is expected to be similar to the learning of
constants experiment.

5-6 Summary

To demonstrate the capabilities of the MLN-CLA algorithm two experiments are performed.
The capabilities of learning constants and formulas from the dataset by Zhu et al. are tested.
At the same time, the performance difference between the three knowledge updating strategies
is evaluated. Several cumulative learning steps are performed in the experiments, each incor-
porating new knowledge whilst retaining the old. Two MLNs are trained in the batch learning
setting with the generative and discriminative weight learning algorithms. To evaluate the
performance of the resulting knowledge bases, they are converted to MLNs. These MLNs are
used for inference on the test dataset of Zhu et al. [54] to predict marginal probabilities of
the query predicate. The performance is measured with the AUC score for comparison. The
results of these experiments are discussed in the next chapter.

MSc thesis - Robotics G.B.G. Potter



Chapter 6

Results

In this chapter the results of experiments on the capabilities of MLN-CLA are shown. The
results of each experiment are analysed in depth to demonstrate the differences between
the knowledge updating strategies of MLN-CLA and to compare the differences between
MLN-CLA and batch learning of MLNs.

6-1 Cumulative learning of new constants

In this experiment the goal is to investigate the performance of MLN-CLA when learning
new constants. In each learning step the cumulative learner is given a new, small batch of
evidence that is a portion of all training data to incorporate into the knowledge base. The
sum of all evidence batches amounts to 100% of all training data. MLN-CLA is compared
against the two batch learned generative and discriminative MLNs that are trained on 100%
of the training data. In addition, the performance of the three knowledge updating strategies
is tested. A 100% of the test evidence is used to evaluate MLN-CLA on after each step.

The two comparisons are combined in one diagram shown in figure 6-1a. This figure shows
the performances of different the different strategies against the batch learned MLNs on the
test dataset after each learning step. Figure 6-1b shows the performance of the same methods
but then for a different order of the evidence fed to the cumulative learner.

6-1-1 Analysis of new constants experiment

The results in figure 6-1 give rise to several questions:

1. What is the cause of the difference in performance of cumulative learning strategies over
the learning steps?
(a) Why do the three strategies all start with the same performance?
(b) What causes the difference in performance in the final step between the three

strategies?

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 55

(a) Evidence order: 4, 8, 6, 2, 1, 3, 5, 7.

(b) Evidence order: 8, 5, 1, 2, 7, 3, 4, 6.

Figure 6-1: ROC AUC performance of cumulative learning of new object constants for the MLN
of Zhu et al. for the three knowledge updating strategies on the reproduced dataset of Zhu et al.
[54]. A higher score is better. Each learning step a new (training) evidence database of 5 objects
is fed into the cumulative learning algorithm. The MLN output for each step is evaluated on the
test evidence database. After 8 steps, the cumulative learning algorithm has seen 100% of the
training evidence. The performances of the batch learned MLNs for the two settings ‘generative’
and ‘discriminative’, are included for comparison. The difference between 6-1a and 6-1b is the
order of evidence fed to the cumulative learner.

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 56

(c) What is the cause of the large jumps in performance between some steps for each
strategy?

2. What causes the difference in performance for different orders of evidence?

(a) Does iterating over a number of different evidence orders result in a trend?

3. Why is the performance of the batch learned MLN with the generative setting better
than that of the MLN trained with the the discriminative setting?

4. What causes the difference in performance between the cumulative learning methods
and the batch learned methods?

Each question is answered in the following paragraphs. First, the inference output of the
cumulative learning methods is analysed against the groundtruth. Subsequently, the marginal
probabilities of the inference output are connected to formula weights for the test evaluation
query predicate. Finally, the difference between the knowledge updating strategies is derived
from the evidence counts for the weights of one formula for each learning step.

Inference output: marginal probability predictions

The first step in analysing the results of the cumulative learning of new constants is visual-
ising the inference output of each learning step for each knowledge updating strategy. The
figures 6-2 and 6-3 in show the marginal probability of each object-affordance pair in the test
evidence. Figure 6-4 zooms in on the results of nine object-affordance pairs. These nine pairs
showcase the sequential learning property of MLN-CLA, as well as the differences between
the knowledge updating strategies.

In the figures 6-2 and 6-3 the affordances Sit on, Ride, Feed, Play, Type on, Write with
and Row were not yet seen in the training data for some learning steps and thus have a
marginal probability of 0.5 at those steps. The groundtruth for each pair can be found in
appendix 8. In figure 6-4 the groundtruth of each object-affordance pair is indicated. In the
figure the Feed affordance is first introduced in the fifth learning step. In the steps 1-4 the
marginal probability for all object-‘Feed’ pairs is 0.5. After the introduction of the affordance
constant, the cumulative learner is able to make predictions for this constant for all objects.
This experiment result demonstrates the sequential temporal capacity of MLN-CLA.

Difficult and easy to predict cases

The difficult to predict affordances (columns) in figures 6-2 and 6-3 are Grasp, Throw, Sit
on, Fix and Pour from. The Grasp affordance is difficult to predict, because there is no clear
distinction in the training data between which objects can be grasped and which cannot. Of
the 40 objects in the training evidence, 27 have the Grasp affordance. For the objects that do
not have the Grasp affordance there is no defining property that makes clear that an object
is not graspable. Intuitively, size is the defining property for an object having the Grasp
affordance. However, in the training data the size ranges are not well defined, an axe has the
same size class as a bicycle, resulting in size being a poor predictor for the Grasp affordance.
The other difficult affordances have the same issues causing them to be hard to predict.

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 57

Figure 6-2: Learning new constants experiment: inference marginal probability outputs for the
first 7 object-affordance pairs over the cumulative learning steps for each knowledge updating
strategy. The affordances are sorted from left to right by descending occurrence frequency in the
test evidence. Evidence database order: 4, 8, 6, 2, 1, 3, 5, 7 (same order as fig. 6-1b).

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 58

Figure 6-3: Learning new constants experiment: inference marginal probability outputs for the
last 7 object-affordance pairs over the cumulative learning steps for each knowledge updating
strategy. The affordances are sorted from left to right by descending occurrence frequency in the
test evidence. Evidence database order: 4, 8, 6, 2, 1, 3, 5, 7 (same order as fig. 6-1b).

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 59

In contrast, the affordances Push and Lift are relatively easy to predict1. Here Push and
Lift are interesting, because in the training evidence 37/40 objects have the Push affordance
and 35/40 objects have the Lift affordance. The test evidence has similar frequencies for
these affordances. Thus the MLN is certain in its predictions for these affordances.

The objects (rows) that are difficult to predict affordances for in figures 6-2 and 6-3 are Camel,
Cat, Donkey and Rhinoceros. It is immediately clear that these objects are all animals, they
each belong to the Animal category. Animals are a distinct category from the rest of the
object categories in the training data. In addition, animals have visual attributes in common,
such as Skin, Tail and Head, that occur infrequent among other objects. The training data
only contains two examples of animals: a Dog in step 5 and Horse in step 6 (for this evidence
order). In figure 6-4 the effect of the introduction of the Animal category is visible in step 5
of the Camel-Grasp pair.

The effect of learning about animals is immediately visible in the predictions for the animal
objects. From step 4 to 5 for the first time evidence for an animal is given to the cumulative
learner. As a result the Push and Lift affordance marginal probabilities drop from 1 to 0,
where 0 is the groundtruth. The Horse object is large and heavy, whereas the Cat object
is light and small. The affordance predictions of the Cat follow a similar but different trend
than the other animals in the test set. The effect of learning of the Dog object in the final step
is clearly visible too. The Dog is similar to a Cat in size and weight. As a result of learning
the Dog object, the formula that relates object mass to an affordance has its weight lowered
by CL-Naive and CL-Conservative. This causes predictions for the larger and heavier test
animals to be negatively impacted. In contrast, the CL-Balanced strategy does not adjust
the formula weights as drastically as the other strategies. This strategy adjusts the formula
weight only slightly such that its predictions for the larger and heavier animals are more
correct than the other strategies.

Some objects are relatively easy to predict, such as Walkie talkie, Spoon, Bowl, Flagon and
Sickle. These objects have in common that they are small, lightweight and have a distinct
visual attribute or category. In the MLNs these properties have large weights, causing the
MLN to be confident in its predictions. In figure 6-4 the Sickle object has constant correct
predictions by every strategy for the Grasp affordance. From the first learning step, no new
evidence is introduced that influences the predictions of the Sickle-Grasp pair.

Knowledge updating strategies

The differences between the knowledge updating strategies in figures 6-2 and 6-3 are not
visible from the data. Performance jumps are for each strategy are caused by two factors:
the introduction of new evidence that is in contrast to previously seen evidence and the
strategy for knowledge updating. The differences between the strategies become visible in
the weights and evidence counts of formulas over the cumulative learning steps. Figure 6-
5a shows the evolution of the weights of the formula !HasVisualAttribute(obj,Shiny) ⇒
HasAffordance(obj,Grasp) and the effect of each strategy based on the evidence count at
each step. Figure 6-5b shows the evolution of the weights of the formula IsA(obj,Animal)⇒
HasAffordance(obj,Sit on).

1Leaving out affordances that were not seen in each cumulative learning step such as Feed.

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 60

Figure 6-4: Marginal probability (y-axis) results of inference for each knowledge updating strategy
of several object affordance pairs over the cumulative learning steps. Marginal probabilities range
from 0 (certainly false) to 1 (certainly true). The binary groundtruth marginal probability for each
pair is marked by the square symbol in the final step. Evidence database order: 8, 5, 1, 2, 7, 3,
4, 6 (same as fig. 6-1b).

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 61

Figure 6-5a and figure 6-5b demonstrate clearly the differences between the knowledge up-
dating strategies and their resulting effects on formula weights. The formula weights differ
between the strategies in each learning step, except for the first step where the initial weight
is learned from the initial weight value 0. Each strategy reacts differently to the introduction
of new evidence.

The CL-Naive strategy accepts all new weights, regardless of evidence counts. The formula
weight for CL-Naive shows both large increases and decreases over the learning steps. As
a results, the CL-Naive strategy shows significant jumps in its predictions for some object-
affordance pairs such as Banjo-Grasp as indicated in figure 6-4. There seems to be no
correlation between the rate of change of the evidence and the changes in the formula weights.
A significant increase or decrease in evidence count does not necessarily correspond to a
significant change in formula weight between two steps. CL-Naive demonstrates this in step
3 to 4 of figure 6-5a. In addition, the difference in evidence count between steps 4 and 5 is
larger than between steps 5 and 6, whereas the difference in weight is larger between steps 5
and 6 than 4 and 5. It is not intuitive that weight changes can be larger for less evidence than
in other steps. However, some evidence has more impact than other evidence. For instance,
if new evidence suddenly makes a formula false instead of true, the new formula weight will
decrease or even turn negative. The weight difference between learning steps is a measure of
the impact of that evidence batch on formula weights.

The CL-Conservative strategy demonstrates the effect of not updating the formula weights
for any change in evidence. This strategy only updates formula weights if the evidence count
of the current step is larger than that of the previous step. In the middle plot of figure
6-5a the effect of this rule is demonstrated clearly between steps 1 and 2, and 4 and 5. The
CL-Conservative strategy functions as a high-pass filter on the evidence count.

The CL-Balanced strategy directly adjusts formula weights based on the weighted average of
the evidence count of the previous step and the current step. After each step, the evidence
count is updated to the sum of the previous and current evidence counts. This strategy thus
has growing counts. If the evidence count stays more or less equal over the learning steps,
the effect of new evidence on the formula weight tapers off. In this experiment the evidence
counts for each step differ at maximum by 10.

In figure 6-4 the CL-Balanced strategy clearly changes its predictions slower than CL-Naive
and CL-Conservative. This delay is exemplified in the figure in the pairs Camel-Grasp,
Banjo-Sit on and Sickle-Sit on. In each result, the balanced strategy follows the predic-
tions of the other strategies, but with a less steep gradient.

Each updating strategy starts with the same formula weight and evidence count in step 1,
because the knowledge updating strategies are not yet relevant in the first step. From step
1 to 2 the strategies do show their effect. From the evidence counts in figure 6-5a it is clear
that a different order of the evidence will result in a different formula weight for each strategy.
This is due to the formula weight of each learning step being initialised to the weight of the
previous step before being trained on the new evidence, regardless of knowledge updating
strategy. Between evidence orders the evidence in each step is (possibly) different.

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 62

(a) Formula: HasVisualAttribute(obj,Shiny) ⇒ HasAffordance(obj,Grasp).

(b) Formula: IsA(obj,Animal) ⇒ HasAffordance(obj,Sit on).The category constant
Animal is first learned in step 5.

Figure 6-5: Tracking weights (top) and evidence counts (bottom) for two formulas. The three
knowledge updating strategies CL-Naive (left), CL-Conservative (middle) and CL-Balanced (right)
demonstrate different methods for updating the formula weights based on the evidence counts.
All plots are based on the same data. The formula weights of the MLNs trained on 100% of the
training data are included for reference. Evidence database order: 8, 5, 1, 2, 7, 3, 4, 6 (same as
fig 6-1b).

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 63

Learning step 1 2 3 4 5 6 7 8
CL-Naive 0.059 0.103 0.108 0.127 0.133 0.142 0.147 0.156
CL-Conservative 0.059 0.069 0.081 0.091 0.099 0.105 0.108 0.106
CL-Balanced 0.059 0.069 0.080 0.097 0.100 0.104 0.106 0.104

Table 6-1: Standard deviations per step of each cumulative learning knowledge updating strategy.
The largest overall standard deviation is underlined.

Evidence order

That evidence order influences the performance of the cumulative learner is evident from
figures 6-1a, 6-1b and 6-5. The influence of evidence order on performance is be negated
by averaging the experiment performance results of random evidence orderings. In figure
6-6 the mean performance over 300 shuffles of the 8 learning steps in the experiment is
shown. Averaging over different evidence orderings better showcases the differences between
the strategies.

In this figure, CL-Naive has the worst overall performance. At first CL-Naive outperforms
CL-Conservative up to 50% of the training data, after which the strategy dramatically drops
off in performance. The conservative strategy overtakes the naive strategy from 62.5% of the
data seen and onwards, indicating that not updating weights can be an effective strategy.
CL-Conservative has on par performance with the batch learned discriminative MLN.

In contrast to CL-Naive and CL-Conservative, CL-Balanced outperforms all other methods
from the second step. This result suggests that the strategy of combining weights by ratio is
effective in representing the joint probability of the data over time. Taking the weighted aver-
age of formula weights at each step based on evidence counts is effective in strengthening the
belief of the cumulative learner in its knowledge. The influence of new evidence is weakened
in comparison to CL-Naive and CL-Conservative. For those strategies new evidence seems to
be detrimental for their performance.

The standard deviation for each strategy over the 300 shuffles grows larger after each learning
step as shown in table 6-1. Intuitively, the cause of this growth is the increase in the number of
possible seen evidence databases at each step. From the first step to the second, there are only
8 possible evidence orderings. From the second to the third step, there are already 64 possible
orderings. Each combination of evidence orderings has a different resulting performance. The
evidence ordering possibilities grow according to n2

steps.

CL-Naive has the largest standard deviation owing to this strategy accepting all new knowl-
edge without concern for the amount of evidence for that knowledge. This causes the naive
approach to erratically change formula weights and ‘jump to conclusions’ that do not repre-
sent the overall data distribution well. The strategies CL-Conservative and CL-Balanced have
similar standard deviations. The standard deviation curve of each strategy shows similarities
to a radical function. Overall, the deviations are significant for each strategy, indicating that
the large difference between the performance results of fig. 6-1a and 6-1b are to be expected.

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 64

Figure 6-6: Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) performance
score of cumulative learning of new object constants for the MLN of Zhu et al. [54] for the
three modes of knowledge merging. Each learning step a new (training) evidence database is
fed into the cumulative learning algorithm. The resulting MLN is evaluated on the test evidence
database. The order of databases is shuffled 300 times. Each graph represents the average
performance over the shuffles. After 8 steps, the cumulative learning algorithm has seen 100%
of the training evidence. The test performance of the MLNs trained once on all data, generative
and discriminative batch learned MLN, is included for comparison.

Cumulative learning versus batch learning

The MLNs that were generatively and discriminatively trained on 100% of the training data
outperform both the CL-Naive and CL-Conservative methods. CL-Conservative seems to
approach the batch learned Markov Logic Network (MLN)s performance. The initial weights
after the first step for each method already approach the batch learned performance. The
CL-Conservative strategy updates formula weights the least during cumulative learning. Thus
the conservative approach will not deviate much from the initial performance if there is no
significant number of evidence to affect formula weights in another direction.

CL-Balanced outperforms the batch learned models from 25% and onwards of the training
data seen already. The balanced approach is able to leverage the maximisation of the likeli-
hood of the data during training, and the adjustment of formula weights after training based
on evidence counts. The latter is beneficial as it tends to converge formula weights to a more
optimal value than the initial formula weight given the fact that the training data in each
step is similar in this experiment. If the data in each learning step were more diverse, i.e.
each step containing a varying number of objects instead of a constant five objects, the perfor-
mance impact of the balanced approach should be different. More investigation is required to
determine whether this performance boost of the CL-Balanced strategy generalises to other

MSc thesis - Robotics G.B.G. Potter



6-1 Cumulative learning of new constants 65

databases and batch sizes than the dataset by Zhu et al. [54] and the batch sizes used in this
experiment.

The generative training setting performs better on the Zhu et al. [54] than the discriminative
training setting. Singla and Domingos showed that discriminative weight learning leverages
prior knowledge of the query predicate to better approximate the data joint distribution.
However, discriminative weight learning is only better than generative weight learning for
MLNs with complex formulas such that inference paths are longer [35]. This result shows
that for datasets with a small number of predicates optimising the joint likelihood of all
predicates instead of the conditional likelihood of the query predicates given the evidence
predicates results in better performance. MLN-CLA employs generative training of MLNs in
the cumulative learning process as a priori the query predicate is not known.

6-1-2 Experiment conclusion

Learning new constants and incorporating them into the knowledge base extends the domains
of knowledge of a cumulative learner. This experiment proves that MLN-CLA can learn new
constants cumulatively from evidence. Within MLN-CLA the three knowledge updating
strategies give different performance results due to their different rules for formula weight
overwriting. In the first learning step there is not yet any difference between the strategies,
because there are no merging conflicts yet. In each learning step the MLN formula weights are
initialised to the weights of the previous step for each strategy. The differences between the
strategies thus accumulate over the learning step, culminating in the performance difference
in the final step. The impact that some evidence batches have on formula weights cause large
jumps in performance on a step by step basis.

The sequential processing nature of MLN-CLA implies that the order that the evidence
batches are seen in has a large impact on performance. Some evidence batches have more
impact than others. Averaging over 300 different shuffles of evidence batch order permuta-
tions results in performance trends. On average, the CL-Balanced strategy outperforms all
other methods when learning new constants. The CL-Naive and CL-Conservative strategy
do not perform better than the baseline batch learned MLNs. The CL-Naive strategy suf-
fers from discarding too much information by overwriting all old weights with newly learned
weights. The CL-Conservative strategy performance tends to neither improve nor worsen
when learning new constants.

The performance difference between the batch learned MLNs and the MLN-CLA strategies is
caused by prior weights. The batch learned MLNs start learning weights from a prior weight
of 0. In contrast, the MLN-CLA strategies only start learning weights from 0 in the first step.
Afterwards, they use the weight of the previous step to start learning from in each step. Only
for the CL-Balanced strategy does this approach result in better than baseline performance
when learning new constants. This is unexpected as normally incremental learning should
approach the performance of batch learning methods. CL-Balanced adjusts learned weights
in each step by averaging the previous weight with the newly learned one. This results in
a smaller difference in weights between steps. The accumulated difference results in weights
that better fit the test evidence distribution.

MSc thesis - Robotics G.B.G. Potter



6-2 Cumulative learning of new formulas 66

6-2 Cumulative learning of new formulas

In the learning of new formulas experiment, the goal is to investigate the ability of a cumulative
learner to learn new formulas and corresponding evidence. In learning new formulas the
Knowledge Categories play an important role. Depending on the domains of a new formula,
it is either categorised into an existing Knowledge Category in the Knowledge List or a new
Knowledge Category is created for the formula. In the case of a new formula belonging to an
existing Knowledge Category, the formula is added to it. Otherwise the a new, independently
trained Knowledge Category is created for the formula.

Figure 6-7: AUC performance score of cumulative learning of new formulas of the Zhu et al. [54]
MLN. At each step a new formula with corresponding evidence is fed to the cumulative learner.
After each learning step the resulting MLN is evaluated on the test evidence filtered for predicates
seen up to the and including the current step. At each step step the test set is different. After
five steps, the Knowledge List resulting from the cumulative learning algorithm has seen 100% of
the formulas and evidence. The MLNs discriminative and generative trained with all five formulas
on 100% of the training evidence batch learned are included for comparison.

The results of this experiment are shown in figure 6-7. The figure shows the mean evaluation
results of the cumulatively learned MLN of each learning step for five iterations. At each
step the MLN is evaluated on a test set containing only ground atoms for the predicates
known to the cumulative learner to prevent inference on unknown predicates. In each step
the amount of test evidence grows. As a result, the performance scores of each step are not

MSc thesis - Robotics G.B.G. Potter



6-2 Cumulative learning of new formulas 67

Step 1 2 3 4 5
Iteration 1 2 1 3 4 5*
Iteration 2 3 4 1 5* 2
Iteration 3 1 2 5* 3 4
Iteration 4 5 3 4 2 1*
Iteration 5 4 5 2 1* 3

Table 6-2: The formulas learned at each cumulative learning step for the five iterations. Each
column and row is unique. Table 5-2 maps formula indices to the corresponding formula. The
underlined iteration learns a formula in the first step that does not contain the query predicate
HasAffordance and thus cannot be evaluated on the test evidence. Asterisks indicate when
structure learning is performed.

directly comparable to the scores of the other steps.

To fairly compare each knowledge updating strategy against each other when performing this
experiment it is imperative that the order of the formulas over the learning steps is unique for
each iteration and the same for every strategy. The table 6-2 shows the order of the learned
formulas for five iterations. Each strategy is trained on the same formula orderings from this
table. Each row and column in the table is unique to ensure that taking the mean of the
results of each step (column) represents the performance of that step for all five different
formulas. Each row is unique to ensure that the cumulative learner is not fed any duplicate
formulas and has seen all five formulas in total after the final learning step.

In each iteration structure learning is performed once. In MLN-CLA structure learning is
performed when all new evidence is known and part of a Knowledge Category as explained
in chapter 4. Only Knowledge Categories relevant to the new evidence are used for structure
learning. These are converted MLNs and subsequently merged together into one large MLN.
Structure learning on the new evidence is applied on that large MLN.

When structure learning is done depends on in which step the formulas IsA⇒ HasAffordance
(1) and IsA ⇒ IsA (5), were learned. Structure learning is performed after both formula 1
and 5 are learned as indicated by the asterisks in table 6-2. The weights and evidence counts
of the formula IsA(obj,Instrumentality)2 => IsA(obj,Implement)3 are tracked in figure
6-8.

Table 6-3 shows the performance of each knowledge updating strategy after learning a new
formula over the five iterations. The mean of each strategy at each step is plotted in Figure 6-
7. The standard deviations at each step for each strategy are shown in table 6-4.

6-2-1 Analysis of new formulas experiment

In figure 6-7 the three knowledge updating strategies all outperform the two batch learned
MLNs after having learned the final formula. The difference between the cumulatively learned
methods and the batch learned methods can be found in the formula weights of each method.

2Constant Instrumentality refers to "an artifact that is instrumental in accomplishing some end" according
to Wordnet [83]

3Constant Implement refers to "instrumentation (a piece of equipment or tool) used to effect an end" [83]

MSc thesis - Robotics G.B.G. Potter



6-2 Cumulative learning of new formulas 68

10−2 N C B N C B N C B N C B N C B
Step 1 2 3 4 5
Iter. 1 88 88 88 94 94 94 92 92 92 90 90 90 93 93 91
Iter. 2 80 80 80 81 81 81 93 93 93 92 91 88 93 93 91
Iter. 3 93 93 93 94 94 94 90 91 91 94 93 92 93 93 91
Iter. 4 50 50 50 80 80 80 81 81 81 89 89 89 90 91 71
Iter. 5 72 72 72 72 72 72 89 89 89 85 90 69 87 89 68
Mean 77 77 77 84 84 84 89 89 89 90 90 86 91 92 82

Table 6-3: The AUC score (10−2) of each step of all iterations in the cumulative learning of
formulas experiment for each strategy CL-Naive (N), CL-Conservative (C) and CL-Balanced (B).
The underlined score indicates the step in which the first formula learned does not contain the
query predicate. The scores in italics show outliers. Batch learned MLN AUC scores: generative
0.750, discriminative 0.715.

Learning step 1 2 3 4 5
CL-Naive 0.168 0.0.94 0.048 0.034 0.027
CL-Conservative 0.168 0.094 0.049 0.016 0.014
CL-Balanced 0.168 0.094 0.049 0.094 0.118

Table 6-4: Standard deviations per step of each cumulative learning knowledge updating strategy.
The largest overall standard deviation is underlined. Bold indicates the smallest standard deviation.

Figure 6-8: Formula weights and evidence counts for the formula
IsA(obj,Instrumentality) => IsA(obj,Implement). These are based on iteration 5
of the formula sequences. The formula is first learned in step 2. In step 4 another formula with
the IsA predicate is learned.

MSc thesis - Robotics G.B.G. Potter



6-2 Cumulative learning of new formulas 69

The formula weights of the cumulatively learned methods are overall larger in both the posi-
tive and negative weight direction than those of the batch learned methods. This observation
explains the performance difference between the batch learned and cumulatively learned meth-
ods. The cumulatively learned methods perform better because the weights of their final MLN
models are relatively stronger than those of the batch learned methods.

We hypothesise that the stronger weights are caused by the cumulative learner having to
optimise fewer weights in each learning step than the batch learned MLNs have to. This
could cause the batch learned MLNs to ‘soften’ their weights in comparison to cumulatively
learned MLNs. More experiments on larger datasets are required to test this hypotheses.

The cumulative learning process thus has a positive impact on the final performance of the
learned MLN. The question is how the formula weights develop over the learning steps for
each strategy. Quantitative analysis of the formula weights after each step of the fifth iteration
is shown in 6-8. In the fifth sequence of formulas, the IsA ⇒ IsA formula is learned in the
second step. After incorporating this formula, each strategy learned the same initial weight.
In the fourth learning step the formula IsA ⇒ HasAffordance is learned. The evidence
counts for both steps are the same as in each step the evidence for all 40 objects is given.
This causes CL-Conservative to not update the formula weight. CL-Naive and CL-Balanced
do update the formula weight.

In the same figure the formula weight for the batch learned MLNs are plotted. The discrimi-
native MLN assigned a weight of 0 to all IsA⇒ IsA formulas, because the formula does not
contain the query predicate HasAffordance. Adding the predicate IsA to the query predi-
cates is possible but not fair for comparison with the generative MLN. The generative MLN
did learn a weight for the formula, but only a relatively small weight in comparison to the
cumulative learning strategies. These relatively weaker weights cause the generative MLN to
make worse predictions than the cumulative learning strategies.

The effect of learning a formula without a query predicate in iteration 4 has no significant
impact on the performance in the next steps for each strategy. The reason for this is that
the formula weights learned in this first step are carried over as initial weights to the next
step. Meanwhile, the resulting MLN from the first step is not evaluated because of the lacking
query predicate, causing a dip in performance. In the second step of this iteration, the query
predicate is learned for the first time. Now the learned MLN can be queried for inference
with the query predicate without loss of performance as illustrated in table 6-3.

The standard deviation (table 6-4) decreases in each learning step for each strategy. This is the
reverse of the results in the previous experiment. The increase in number of learned formulas
causes the cumulative learner to better predict the query predicate in the test evidence in
each step. Each step the test evidence grows too. The extra test evidence helps the MLN to
more accurately predict the query predicate during inference.

Knowledge updating strategies

The three strategies have near identical performance for the first three learning steps before
CL-Balanced tapers off in performance. Each strategy learns the same new formula in a step.
The learned formulas are all categorised in their own domain, except for formula 5 and 1. For-
mula 5 and 1 belong to the same category as the domains of formula 5 – {object, category}

MSc thesis - Robotics G.B.G. Potter



6-2 Cumulative learning of new formulas 70

– is a subset of the domains of formula 1: {object, category, affordance}. In each step the
learned formula does not conflict with previously learned formulas and is simply added to
the Knowledge List. As a result there is no difference between the strategies as no formula
merging conflicts have arisen.

In this experiment, the balanced strategy of taking the weighted average of formula weights
to solve knowledge merging conflicts has a negative performance effect. The performance of
CL-Balanced is significantly worse in iteration 4 step 5, and iteration 5 step 4 than the other
two strategies as shown in table 6-3. These two steps correspond to structure learning steps
after learning the formula IsA ⇒ HasAffordance as shown in table 6-2. The same drop in
performance score does not occur after structure learning, having learned the IsA ⇒ IsA
formula, in iterations 1 to 3.

Manual inspection of the learned formula weights of CL-Balanced and CL-Naive for iteration
4 resulted in significant differences in formula weights found. The learned formula weights
for each formula in CL-Balanced are different from every formula in CL-Naive, except for
the newly learned IsA ⇒ HasAffordance formula. For the latter no differences in formula
weights were observed between the two strategies. For iteration 1 only the formulas con-
taining the query predicate are different in weight between the two strategies. The main
difference between the weights is caused by structure learning. For iterations 1-3 structure
learning does not change the weights of the IsA⇒ IsA formulas much. For iterations 4 and
5 structure learning does change the weight of these formulas. This causes the difference in
performance. The effect of changing the weights of the IsA ⇒ IsA by structure learning is
only expressed in the performance of the balanced strategy. The averaging of the structure
learned weights with the weights from the previous step has a significant negative impact on
the performance for the CL-Balanced strategy. CL-Naive and CL-Conservative benefit from
their non-interference with the weights. CL-Balanced has the largest standard deviation due
to this effect of structure learning as shown in table 6-4.

The strategies CL-Naive and CL-Conservative perform the best, in contrast to the constants
learning experiment. The conservative strategy performs slightly better of the two. As
demonstrated in figure 6-8, the conservative strategy does not update any weights for all
steps in this experiment. Due to the experiment setup, the evidence counts for each formula
are the same in every step. The effect of structure learning on the performance is thus negative
as CL-Conservative does not accept the structure learned weights where CL-Naive does.

6-2-2 Experiment conclusion

This experiment demonstrates the ability of MLN-CLA to learn new formulas and correspond-
ing evidence. The learning of new formulas is essential to better model the relations between
knowledge domains. In contrast to the previous experiment, all three knowledge strategies of
MLN-CLA perform better on the test set than the batch learned MLNs. Structure learning
occurs during the learning of new formulas. This has an insignificant performance impact
for CL-Naive and CL-Conservative, but has a significant impact on the performance of CL-
Balanced. The direct altering of formula weights that was beneficial in the learning of new
constants is now a drawback, causing a deterioration in performance after structure learning.
The CL-Naive and CL-Conservative strategies have near identical performance due to the
experiment setup.

MSc thesis - Robotics G.B.G. Potter



6-3 Summary 71

In this experiment the impact of evidence order is again significant. Each different permu-
tation of formula order shows a different performance for each strategy. Although the steps
are different between the iterations, the final results are identical. Except for one situation
where a specific formula is learned after another. This causes structure learning to trigger
but the result of structure learning is worse than the MLN used as input. This require more
experiments on other datasets to explore the root cause of this phenomenon.

6-3 Summary

In this chapter the results of the two experiments of learning new constants and learning new
formulas with MLN-CLA are analysed. The different updating strategies of MLN-CLA show
significant differences in performance when learning new constants. The CL-Balanced strategy
outperforms the batch learned MLNs. The order of the evidence in each learning step has
a major impact on performance. This phenomenon is inherent to the sequential handling of
new evidence of MLN-CLA. All knowledge updating strategies of MLN-CLA outperform the
baseline batch learned methods when learning new formulas. In this setting the CL-Balanced
strategy performs significantly worse than the CL-Naive and CL-Conservative strategies. The
balanced strategy suffers from structure learning affecting some formula weights. In this
experiment the order the formulas are learnt in impacts performance as well.

MSc thesis - Robotics G.B.G. Potter



Chapter 7

Discussion

In this chapter the limitations and unexplored possibilities of MLN-CLA are discussed.

7-1 Evidence assumption

Automatic incorporation of new evidence in MLN-CLA is based on the assumption that
all predicates are declared a priori in each database. This assumption is necessary for the
algorithm to cluster knowledge. Without a concept of how knowledge elements are related to
each a cumulative learner cannot place new knowledge into context [65].

That this assumption is feasible is proven by the fact that new predicates can be discovered
and automatically declared through the use of predicate invention algorithms such as [85].
Predicate invention algorithms can discover new concepts from evidence. Another approach
is to use LLMs such as LogicLLaMA [86] to translate natural language to FOL statements.
With this approach large image annotation datasets such as MSCOCO [87] or VisualGenome
[88] can be translated to FOL datasets suitable for cumulative learning with MLNs.

7-2 Memory and knowledge management

As part of the memory and knowledge management aspect of cumulative learners, MLN-CLA
keeps track of knowledge elements with the Knowledge List. Knowledge Categories are used
to cluster knowledge. Only relevant clusters have to be kept in memory to free up memory
for other processes.

Super Knowledge Categories

However, a limitation of MLN-CLA is the inability to prevent super Knowledge Categories.
Over time evidence can contain large amounts of new knowledge over the same domains.
This evidence is clustered into the same Knowledge Category causing it to grow significantly

MSc thesis - Robotics G.B.G. Potter



7-2 Memory and knowledge management 73

larger than other categories. Such a super Knowledge Category is detrimental to efficient
management of knowledge. In the extreme case that MLN-CLA contains only one large
Knowledge Category it is no different from a batch learner. A method for preventing or
splitting super categories is required.
On the other hand, new evidence fed into MLN-CLA that only contains evidence of new do-
mains in each learning step would result in a Knowledge List full of single formula Knowledge
Categories. This is intended behaviour. The micro Knowledge Categories are highly efficient
for memory management as only a ground MLN for one formula has to be kept in memory
for inference. The micro categories will only merge together once new formulas are learned
from evidence that relate domains from different Knowledge Categories to each other.
A possible solution to super categories dominating the Knowledge List is to split up the super
category into smaller sub categories and recording the parent-child relation between the super
and sub categories into a taxonomy or ontology of Knowledge Categories. Such a taxonomy
would allow for efficient look up of knowledge subsets to use for inference. A taxonomy on top
of the Knowledge List transforms the knowledge base from a flat structure to a hierarchical
tree structure.

7-2-1 Knowledge Categories and intersecting domains

In the merging operation of two Knowledge Categories only those categories that are subset or
supersets of each other are merged together. Often formulas do share domains but the sets are
not subsets. These formulas share an intersection of domains. In the ground Markov network
the features of these formulas are connected via edges and thus influence each other. However,
in MLN-CLA the formulas are put into separate Knowledge Categories. The relations between
Knowledge Category formulas is not exploited during training as each category is trained as its
own independent MLN. The domains that fall outside the intersection set of the two formulas
make the categorisation of the two formulas ambiguous. During inference, all categories in
the Knowledge List are converted into one large MLN. In this MLN the features once again
overlap. The difference being that the relations between features are not optimized for during
training.
The ambiguity problem can be lifted with the previously discussed taxonomy of Knowledge
Categories. In such a taxonomy the ambiguous domains can be compared to more abstract
categories higher up in the taxonomy hierarchy. The formulas can be both be categorised
under the same parent category. This approach does exploit the knowledge captured by
formula domain intersections.

7-2-2 Knowledge List pruning

Currently MLN-CLA has no pruning mechanism. Although structure learning is able to result
in shortened formulas and weight learning can generate zero weight formulas, no formulas are
removed from the Knowledge List. In MLN-CLA all previously seen knowledge is kept. The
reason being that any learned knowledge might be relevant again later and knowing that
some knowledge is irrelevant is also beneficial. Formulas with weight zero do not influence
the inference outcome. The only downside of retaining all gained knowledge is an increased
memory footprint.

MSc thesis - Robotics G.B.G. Potter



7-3 Generality 74

As Thórisson noted, the knowledge management aspect of cumulative learners must prune the
knowledge base to prevent the memory footprint from becoming too large [18]. A possible
mechanism for MLN-CLA is to keep track of how long ago a piece of knowledge was last
interacted with. Possible interactions are: used in inference, seen in evidence or knowledge
merged into another category. Formulas with weight zero can be pruned if the last interaction
was past a pre-determined threshold. Pruning the Knowledge List could lead to an unstable
cumulative learning system.

7-2-3 Knowledge updating strategies

The knowledge updating strategies, CL-Naive, CL-Conservative and CL-Balanced, are set up
to demonstrate the effect of catastrophic forgetting. Catastrophic forgetting is the overwriting
of essential old knowledge by new knowledge. The naive approach to merging categories
exemplifies this phenomenon. This strategy always discards old knowledge for new knowledge
regardless of the quality of the new knowledge or the importance of the old knowledge.

The conservative strategy is more careful and looks at the quality of new knowledge before
overwriting the old. However, the quality of new knowledge might be better, the old knowl-
edge could still be based on relevant evidence. The conservative approach can still cause
catastrophic forgetting.

The balanced strategy best prevents catastrophic forgetting of the three strategies. It always
takes the quality of the old knowledge into account through weighted averaging of formula
weights. However, this strategy is not perfect. With enough new evidence the contribution of
the old knowledge to the new averaged weight is insignificant. With the balanced strategy it
still possible to fully overwrite the old knowledge with the new, but it requires a large amount
of evidence to convince MLN-CLA-Balanced its old knowledge was incorrect.

Conversely, the balanced strategy can also suffer from too strong a belief in its current for-
mula weights. After a large number of learning steps the evidence count for a weight can
become insurmountable by new evidence. In this situation the new evidence cannot provide
a significant contribution to the newly averaged weight anymore. This situation only occurs
if the learning steps are more or less equal in amount of new evidence. With varying amounts
of new data in each step, a large step can still provide a significant contribution to the newly
averaged formula weights.

7-3 Generality

The Markov properties of MLN-CLA enable it to learn formulas about any task, making it
a multi-task learner. However, MLN-CLA is restricted in its input modality to first-order
logic text. It cannot learn directly from videos, images or robot sensors. A translation step
before the algorithm input can improve the generality of MLN-CLA. Furthermore, it does not
incorporate fuzzy semantics. In MLN-CLA all evidence is either true or false. In fuzzy logic
ground atoms in the evidence have an associated weight between 0 and 1 that indicates how
certain it is that the atom is true [50]. Extending MLN-CLA with fuzzy semantics enables it
to determine how strong it believes the weight of a formula is correct. This addition expands
the reasoning dimension of the algorithm, increasing generality.

MSc thesis - Robotics G.B.G. Potter



Chapter 8

Conclusion

In this research the MLN Cumulative Learning Algorithm was introduced. The algorithm is
an extension to the Markov Logic Network framework for probabilistic reasoning over logical
statements. MLN-CLA can automatically incorporate new first-order logic formulas into a
knowledge base without any data annotations. Furthermore, it can automatically incorporate
information about new domain constants and update relevant parts of the knowledge base.
MLN-CLA has different knowledge updating strategies. The balanced strategy is most ap-
plicable when learning new constants. The conservative strategy works best in new formula
learning.

MLN-CLA is a sequential cumulative learner. Within each learning step, the algorithm can
incorporate any finite amount of new evidence. The algorithm can accept information on
any knowledge domain, but only in one modality: first-order logic. The novel Knowledge
Categories and knowledge updating strategies help keep the cumulative learner stable over
time by preventing catastrophic forgetting.

In future work new knowledge updating strategies for intersecting domain sets of Knowledge
Categories could be investigated. These strategies could be made more effective by the inclu-
sion of a Knowledge Category taxonomy. The pruning of Knowledge Categories to keep the
knowledge base compact is another research area. In addition, new studies could investigate
the effect of variable learning step sizes and more complex knowledge bases on the stability
of MLN-CLA.

MSc thesis - Robotics G.B.G. Potter



Bibliography

[1] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez, “Con-
tinual learning for robotics: Definition, framework, learning strategies, opportunities and
challenges,” Information Fusion, vol. 58, pp. 52–68, 2020.

[2] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their attributes,”
in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785,
2009.

[3] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explainable ai: A brief survey
on history, research areas, approaches and challenges,” in Natural Language Processing
and Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang,
China, October 9–14, 2019, Proceedings, Part II 8, pp. 563–574, Springer, 2019.

[4] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah,
G. Morgan, et al., “Explainable AI (XAI): Core ideas, techniques, and solutions,” ACM
Computing Surveys, vol. 55, no. 9, pp. 1–33, 2023.

[5] A. Sheth, K. Roy, and M. Gaur, “Neurosymbolic ai – why, what, and how,” 2023.

[6] A. Sheth, M. Gaur, K. Roy, R. Venkataraman, and V. Khandelwal, “Process knowledge-
infused ai: Toward user-level explainability, interpretability, and safety,” IEEE Internet
Computing, vol. 26, no. 5, pp. 76–84, 2022.

[7] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu,
K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan,
E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov,
Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Van-
houcke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng, “Do As I Can, Not As I
Say: Grounding Language in Robotic Affordances,” 2022.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 779–788, 2016.

MSc thesis - Robotics G.B.G. Potter



77

[9] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” 2023.

[10] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez,
A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson,
R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya,
S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus,
D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan,
S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira,
R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta,
J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling
language modeling with pathways,” 2022.

[11] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen,
G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami,
N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich,
Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton,
J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subrama-
nian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov,
Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat Models,” 2023.

[12] M. Richardson and P. Domingos, “Markov logic networks,” Machine Learning, vol. 62,
pp. 107–136, 2006. https://doi.org/10.1007/s10994-006-5833-1.

[13] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater, and J. Santos-
Victor, “Affordances in psychology, neuroscience, and robotics: A survey,” IEEE Trans-
actions on Cognitive and Developmental Systems, vol. 10, no. 1, pp. 4–25, 2018.

[14] J. Gibson and L. Carmichael, The Senses Considered as Perceptual Systems. Houghton
Mifflin, 1966.

[15] J. Gibson, The ecological approach to visual perception. Houghton Mifflin, 1979.

[16] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a comprehensive
evaluation of the good, the bad and the ugly,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 9, pp. 2251–2265, 2018.

[17] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, ch. 19. Pearson,
3rd ed., 2010.

[18] K. R. Thórisson, J. Bieger, X. Li, and P. Wang, “Cumulative learning,” in Artificial
General Intelligence (P. Hammer, P. Agrawal, B. Goertzel, and M. Iklé, eds.), (Cham),
pp. 198–208, Springer International Publishing, 2019.

[19] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Mi-
lan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran,

MSc thesis - Robotics G.B.G. Potter

https://doi.org/10.1007/s10994-006-5833-1


78

and R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of
the National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[20] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and
T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 3366–3385,
July 2022.

[21] S. Cui, T. Zhu, X. Zhang, and H. Ning, “MCLA: Research on cumulative learning of
Markov Logic Network,” Knowledge-Based Systems, vol. 242, p. 108352, 2022.

[22] L. Getoor and B. Taskar, Introduction to Statistical Relational Learning. Adaptive com-
putation and machine learning, The MIT Press, 08 2007.

[23] D. Koller, N. Friedman, L. Getoor, and B. Taskar, “Graphical Models in a Nutshell,” in
Introduction to Statistical Relational Learning, The MIT Press, 08 2007.

[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.

[25] M. Lopes, F. S. Melo, and L. Montesano, “Affordance-based imitation learning in
robots,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1015–1021, 2007.

[26] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning object affor-
dances: From sensory–motor coordination to imitation,” IEEE Transactions on Robotics,
vol. 24, no. 1, pp. 15–26, 2008.

[27] A. Pfeffer, “A bayesian language for cumulative learning,” in Proceedings of AAAI 2000
Workshop on Learning Statististical Models from Relational Data, 2000.

[28] K. Yue, Q. Fang, X. Wang, J. Li, and W. Liu, “A parallel and incremental approach
for data-intensive learning of bayesian networks,” IEEE Transactions on Cybernetics,
vol. 45, no. 12, pp. 2890–2904, 2015.

[29] W. Liu, K. Yue, M. Yue, Z. Yin, and B. Zhang, “A bayesian network-based approach
for incremental learning of uncertain knowledge,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 26, no. 01, pp. 87–108, 2018.

[30] H. Liu, Z. SU, Y. Liu, L. Zhang, R. Yin, and Z. Ying, “An improved incremental struc-
ture learning algorithm for bayesian networks,” in 2019 6th International Conference on
Systems and Informatics (ICSAI), pp. 505–510, 2019.

[31] A. Kumar, S. Chatterjee, and P. Rai, “Bayesian structural adaptation for continual learn-
ing,” in Proceedings of the 38th International Conference on Machine Learning (M. Meila
and T. Zhang, eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 5850–
5860, PMLR, 18–24 Jul 2021.

[32] E. Şahin, M. Cakmak, M. R. Doğar, E. Uğur, and G. Üçoluk, “To afford or not to afford:
A new formalization of affordances toward affordance-based robot control,” Adaptive
Behavior, vol. 15, no. 4, pp. 447–472, 2007.

MSc thesis - Robotics G.B.G. Potter



79

[33] P. Parag, Markov logic: theory, algorithms and applications. University of Washington,
2009.

[34] P. Domingos and D. Lowd, “Unifying logical and statistical ai with markov logic,” Com-
mun. ACM, vol. 62, p. 74–83, jun 2019.

[35] P. Singla and P. Domingos, “Discriminative training of markov logic networks,” in AAAI,
vol. 5, pp. 868–873, 2005.

[36] S. Kok and P. Domingos, “Learning the structure of markov logic networks,” in Proceed-
ings of the 22nd international conference on Machine learning, pp. 441–448, 2005.

[37] S. Kok and P. M. Domingos, “Learning markov logic networks using structural motifs.,”
in ICML, vol. 10, pp. 551–558, 2010.

[38] D. Lowd and P. Domingos, “Efficient weight learning for markov logic networks,” in
European conference on principles of data mining and knowledge discovery, pp. 200–211,
Springer, 2007.

[39] P. Singla, A. Nath, and P. Domingos, “Approximate lifting techniques for belief prop-
agation,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, Jun.
2014.

[40] J. Van Haaren, G. Van den Broeck, W. Meert, and J. Davis, “Lifted generative learning
of markov logic networks,” Machine Learning, vol. 103, pp. 27–55, Apr 2016.

[41] G. Van den Broeck, W. Meert, and J. Davis, “Lifted generative parameter learning,” in
AAAI Workshop-Technical Report, pp. 87–94, AAAI, 2013.

[42] V. Sharma, N. A. Sheikh, H. Mittal, V. Gogate, and P. Singla, “Lifted Marginal MAP
Inference,” 2018.

[43] V. Gogate and P. Domingos, “Probabilistic theorem proving,” Communications of the
ACM, vol. 59, no. 7, pp. 107–115, 2016.

[44] V. Belle, “Open-universe weighted model counting,” Feb. 2017.

[45] D. Jain, A. Barthels, and M. Beetz, “Adaptive markov logic networks: Learning statisti-
cal relational models with dynamic parameters,” in ECAI 2010, pp. 937–942, IOS Press,
2010.

[46] H. Mittal, A. Bhardwaj, V. Gogate, and P. Singla, “Domain-size aware markov logic
networks,” in Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics (K. Chaudhuri and M. Sugiyama, eds.), vol. 89 of Proceedings
of Machine Learning Research, pp. 3216–3224, PMLR, 16–18 Apr 2019.

[47] S. Malhotra and L. Serafini, “On projectivity in markov logic networks,” in Machine
Learning and Knowledge Discovery in Databases (S. Amini, Massih-Rezavand Canu,
A. Fischer, T. Guns, P. Kralj Novak, and G. Tsoumakas, eds.), (Cham), pp. 223–238,
Springer Nature Switzerland, 2023.

[48] V. David, R. Fournier-S’niehotta, and N. Travers, “Parameterisation of reasoning on
temporal markov logic networks,” 2022.

MSc thesis - Robotics G.B.G. Potter



80

[49] V. David, R. Fournier-S’niehotta, and N. Travers, “Neomapy: A parametric framework
for reasoning with map inference on temporal markov logic networks,” in Proceedings of
the 32nd ACM International Conference on Information and Knowledge Management,
CIKM ’23, (New York, NY, USA), p. 400–409, Association for Computing Machinery,
2023.

[50] D. Nyga and M. Beetz, “Reasoning about unmodelled concepts - incorporating class
taxonomies in probabilistic relational models,” 2015.

[51] J. Choi, C. Choi, E. Lee, and P. Kim, Markov Logic Network Based Social Relation
Inference for Personalized Social Search, pp. 195–202. Cham: Springer International
Publishing, 2015.

[52] H. Papadopoulos and G. Tzanetakis, “Exploiting structural relationships in audio music
signals using markov logic networks,” in 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 1–5, IEEE, 2013.

[53] E. Ha, J. Rowe, B. Mott, and J. Lester, “Goal recognition with markov logic networks for
player-adaptive games,” in Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 7, pp. 32–39, 2011.

[54] Y. Zhu, A. Fathi, and L. Fei-Fei, “Reasoning about object affordances in a knowledge
base representation,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, eds.), (Cham), pp. 408–424, Springer International Publishing, 2014.

[55] D. Yu, X. Liu, S. Pan, A. Li, and B. Yang, “A novel neural-symbolic system under
statistical relational learning,” 2023.

[56] G. Marra and O. Kuželka, “Neural markov logic networks,” 2020.

[57] L. Torrey and J. Shavlik, “Policy transfer via markov logic networks,” in International
Conference on Inductive Logic Programming, pp. 234–248, Springer, 2009.

[58] I. Donadello, L. Serafini, and A. d’Avila Garcez, “Logic tensor networks for semantic
image interpretation,” 2017.

[59] F. Bianchi and P. Hitzler, “On the capabilities of logic tensor networks for deductive
reasoning,” in AAAI Spring Symposium Combining Machine Learning with Knowledge
Engineering, 2019.

[60] S. Badreddine, A. d’Avila Garcez, L. Serafini, and M. Spranger, “Logic tensor networks,”
Artificial Intelligence, vol. 303, p. 103649, 2022.

[61] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[62] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

MSc thesis - Robotics G.B.G. Potter



81

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[64] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Tex-
ier, and J. Dean, “Carbon emissions and large neural network training,” arXiv preprint
arXiv:2104.10350, 2021.

[65] S. Harnad, “To cognize is to categorize: Cognition is categorization,” in Handbook of
Categorization in Cognitive Science (H. Cohen and C. Lefebvre, eds.), ch. 2, pp. 21–54,
San Diego: Elsevier, 2nd ed., 2017.

[66] S. Rüping, “Incremental learning with support vector machines,” in Proceedings of the
2001 IEEE International Conference on Data Mining, ICDM ’01, (USA), p. 641–642,
IEEE Computer Society, 2001.

[67] G. Fei, S. Wang, and B. Liu, “Learning Cumulatively to Become More Knowledgeable,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16, (New York, NY, USA), p. 1565–1574, Association
for Computing Machinery, 2016.

[68] K. Seddiki, P. Saudemont, F. Precioso, N. Ogrinc, M. Wisztorski, M. Salzet, I. Fournier,
and A. Droit, “Cumulative learning enables convolutional neural network representa-
tions for small mass spectrometry data classification,” Nature Communications, vol. 11,
p. 5595, 11 2020.

[69] S. Cui, T. Zhu, X. Zhang, L. Chen, L. Mao, and H. Ning, “Generating markov logic
networks rulebase based on probabilistic latent semantics analysis,” Tsinghua Science
and Technology, vol. 28, no. 5, pp. 952–964, 2023.

[70] T. N. Huynh and R. J. Mooney, “Online structure learning for markov logic networks,” in
Machine Learning and Knowledge Discovery in Databases (D. Gunopulos, T. Hofmann,
D. Malerba, and M. Vazirgiannis, eds.), (Berlin, Heidelberg), pp. 81–96, Springer Berlin
Heidelberg, 2011.

[71] B. L. Richards and R. J. Mooney, Learning relations by pathfinding. Artificial Intelligence
Laboratory, University of Texas at Austin, 1992.

[72] J. Pearl and A. Paz, GRAPHOIDS: A Graph-based Logic for Reasoning about Relevance
Relations Or when Would X Tell You More about Y If You Already Know Z. University
of California, Computer Science Department, Cognitive Systems Laboratory, 1986.

[73] J. A. Robinson, “A machine-oriented logic based on the resolution principle,” Journal of
the ACM (JACM), vol. 12, no. 1, pp. 23–41, 1965.

[74] H. Poon and P. Domingos, “Sound and efficient inference with probabilistic and deter-
ministic dependencies,” in AAAI, vol. 6, pp. 458–463, 2006.

[75] J. Besag, “Statistical analysis of non-lattice data,” Journal of the Royal Statistical Society
Series D: The Statistician, vol. 24, no. 3, pp. 179–195, 1975.

MSc thesis - Robotics G.B.G. Potter



82

[76] Q.-T. Dinh, M. Exbrayat, and C. Vrain, “Generative structure learning for markov logic
networks based on graph of predicates,” in Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[77] J. Van Haaren and J. Davis, “Markov network structure learning: A randomized feature
generation approach,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 26, pp. 1148–1154, 2012.

[78] X. Lu, J. Liu, Z. Gu, H. Tong, C. Xie, J. Huang, Y. Xiao, and W. Wang, “Parsing
natural language into propositional and first-order logic with dual reinforcement learn-
ing,” in Proceedings of the 29th International Conference on Computational Linguistics,
pp. 5419–5431, 2022.

[79] D. Jain, S. Waldherr, K. von Gleissenthall, A. Barthels, R. Wernicke, G. Wylezich,
M. Schuster, P. Meyer, and D. Nyga, “ProbCog: A Toolbox for Statistical Relational
Learning and Reasoning,” 2021.

[80] D. Nyga, M. Picklum, M. Beetz, et al., “pracmln – Markov logic networks in Python,”
2013. https://www.pracmln.org/ accessed on April 4, 2023.

[81] S. Kok, P. Singla, M. Richardson, and P. Domingos, “The Alchemy system for statistical
relational AI,” tech. rep., Department of Computer Science and Engineering, University
of Washington, Seattle, WA, 2005.

[82] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei, “Human action recog-
nition by learning bases of action attributes and parts,” in 2011 International conference
on computer vision, pp. 1331–1338, IEEE, 2011.

[83] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press, 1998.

[84] CMG Lee, “The ROC space for a "better" and "worse" classifier,” 2018. [Online; accessed
October 19, 2023].

[85] S. Kok and P. Domingos, “Statistical predicate invention,” in Proceedings of the 24th
International Conference on Machine Learning, ICML ’07, (New York, NY, USA),
p. 433–440, Association for Computing Machinery, 2007.

[86] Y. Yang, S. Xiong, A. Payani, E. Shareghi, and F. Fekri, “Harnessing the power of large
language models for natural language to first-order logic translation,” 2023.

[87] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference on
computer vision, pp. 740–755, Springer, 2014.

[88] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis,
L.-J. Li, D. A. Shamma, et al., “Visual genome: Connecting language and vision us-
ing crowdsourced dense image annotations,” International journal of computer vision,
vol. 123, pp. 32–73, 2017.

MSc thesis - Robotics G.B.G. Potter

https://www.pracmln.org/


A - Alchemy syntax

The Alchemy software packages requires MLNs and evidence databases of ground atoms to
be written in a specific format. The Alchemy grammar rules are set out in the list below.

• Predicates must start with upper case
• Predicates must contain at least one argument
• Constants must start with upper case
• Variables must start with lower case
• A full stop ’.’ at end of formula indicates hard clause that has infinite weight
• The ’!’-symbol before a predicate indicates the negation (¬) of that predicate
• The ’+’-symbol before a variable indicates that a separate formula is created for each

constant of the domain of that variable
• List of allowed MLN symbols:

– Quantifiers: ∀,∃
– Logical operators: ∧, ∨, ⇔, ⇒
– Alchemy specific: +, !, .

MSc thesis - Robotics G.B.G. Potter



B - Datasets

MSc thesis - Robotics G.B.G. Potter



85

Table 1: Objects and their corresponding actions of the Zhu et al. training dataset [54].

Grasp Lift Throw Push Fix Ride Play Watch Sit
on Feed Row Pour

from
Write
with

Type
on Total

Automobile engine 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Axe 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4

Bicycle 0 1 0 1 1 1 0 0 1 0 0 0 0 0 5
Bottle 1 1 1 1 0 0 0 0 0 0 0 1 0 0 5

Camera 1 1 1 1 1 0 0 0 0 0 0 0 0 0 6
Can 1 1 1 1 0 0 0 0 0 0 0 1 0 0 5

Car tire 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
Carving knife 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4

Chair 0 1 0 1 0 0 0 0 1 0 0 0 0 0 3
Chalk 1 1 1 1 0 0 0 0 0 0 0 0 1 0 5

Cleaver 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Desktop computer 0 1 0 1 1 0 0 1 0 0 0 0 0 1 5

Dish 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Dog 0 1 0 1 0 0 0 0 0 1 0 0 0 0 3

Dustcloth 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Fishing pole 1 1 0 1 1 0 0 0 0 0 0 0 0 0 4
Food turner 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4

Frisbee 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Guitar 1 1 1 1 1 0 1 0 0 0 0 0 0 0 6

Hand saw 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Handset 1 1 1 1 1 0 0 0 0 0 0 0 0 0 5

Horse 0 0 0 0 0 1 0 0 1 1 0 0 0 0 3
Laptop 1 1 1 1 1 0 0 1 0 0 0 0 0 1 7

Microscope 1 1 0 1 1 0 0 0 0 0 0 0 0 0 5
Mobile phone 1 1 1 1 1 0 0 0 0 0 0 0 0 0 5

Mop 1 1 0 1 0 0 0 0 0 0 0 0 0 0 3
Pen 1 1 1 1 0 0 0 0 0 0 0 0 1 0 5

Pitcher 1 1 1 1 0 0 0 0 0 0 0 1 0 0 5
Power saw 1 1 0 1 1 0 0 0 0 0 0 0 0 0 4

Shopping cart 0 0 0 1 1 1 0 0 1 0 0 0 0 0 4
Small boat 0 0 0 1 0 1 0 0 1 0 1 0 0 0 4

Sofa 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Teapot 1 1 1 1 0 0 0 0 0 0 0 1 0 0 5

Telescope 1 1 0 1 1 0 0 0 0 0 0 0 0 0 5
Television 0 1 0 1 1 0 0 1 0 0 0 0 0 0 4

Toothbrush 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Umbrella 1 1 1 1 1 0 0 0 0 0 0 0 0 0 5

Vacuum cleaner 0 1 0 1 1 0 0 0 0 0 0 0 0 0 3
Violin 1 1 1 1 1 0 1 0 0 0 0 0 0 0 6

Wheelbarrow 0 1 0 1 1 1 0 0 1 0 0 0 0 0 5
Frequency 27 35 22 37 18 5 2 3 7 2 1 4 2 2 170

MSc thesis - Robotics G.B.G. Potter



86

Table 2: Objects and their corresponding actions of the Zhu et al. test dataset [54]. This dataset forms the groundtruth of the experiments in
chapter 5.

Grasp Lift Throw Push Fix Ride Play Watch Sit on Feed Row Pour from Write with Type on Total
Banjo 1 1 1 1 1 0 1 0 0 0 0 0 0 0 6
Bench 0 1 0 1 0 0 0 0 1 0 0 0 0 0 3
Bowl 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4

Broom 1 1 0 1 0 0 0 0 0 0 0 0 0 0 3
Camel 0 0 0 0 0 1 0 0 1 1 0 0 0 0 3

Cat 0 1 0 1 0 0 0 0 0 1 0 0 0 0 3
Coffee cup 1 1 1 1 0 0 0 0 0 0 0 1 0 0 5

Donkey 0 0 0 0 0 1 0 0 1 1 0 0 0 0 3
Flagon 1 1 1 1 0 0 0 0 0 0 0 1 0 0 5

Hammer 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Hand truck 0 1 0 1 1 1 0 0 1 0 0 0 0 0 5

Kayak 0 0 0 1 0 1 0 0 1 0 1 0 0 0 4
Monitor 0 1 0 1 1 0 0 1 0 0 0 0 0 0 4

Motorcycle 0 0 0 1 1 1 0 0 1 0 0 0 0 0 4
Pencil 1 1 1 1 0 0 0 0 0 0 0 0 1 0 5

Rhinoceros 0 0 0 0 0 1 0 0 1 1 0 0 0 0 3
Serving cart 0 0 0 1 1 1 0 0 1 0 0 0 0 0 4

Sickle 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Spoon 1 1 1 1 0 0 0 0 0 0 0 0 0 0 4
Stool 0 1 0 1 0 0 0 0 1 0 0 0 0 0 3

Typewriter 0 1 0 1 1 0 0 0 0 0 0 0 0 1 4
Walkie-talkie 1 1 1 1 1 0 0 0 0 0 0 0 0 0 5
Frequency 10 16 9 19 7 7 1 1 9 4 1 2 1 1 88

M
Sc

thesis
-Robotics

G.B.G.Potter



C - Experiments MLN

The experiments consisting of five predicate declarations, six domains and five formulas by
Zhu et al. is shown in Listing 1. The HasAffordance predicate is the query predicate in each
of the experiments described in Chapter 5.

Listing 1: Zhu et al. MLN with a formula for all combinations of instantiations of all variables
except for objects.

1 // Predicate declarations
2 HasAffordance ( object , affordance )
3 IsA ( object , category )
4 HasVisualAttribute ( object , attribute )
5 HasWeight ( object , weight )
6 HasSize ( object , size )
7
8 // Formulas
9 0 IsA (x , +c1 ) => IsA (x , +c2 )

10 0 IsA (x , +c ) => HasAffordance (x , +aff )
11 0 HasVisualAttribute (x , +attr ) => HasAffordance (x , +aff )
12 0 HasWeight (x , +w ) => HasAffordance (x , +aff )
13 0 HasSize (x , +s ) => HasAffordance (x , +aff )

MSc thesis - Robotics G.B.G. Potter



D - Algorithms

Algorithm 4: Evidence counting algorithm
Input: Formula F , evidence DB
Output: Evidence count z
z ← 0
A← ∅ // list of ground atoms
for p ∈ F // where p is predicate
do

A← filter(DB, p) // get list of ground atoms corresponding to p
z = z + length(A)

end

Algorithm 5: Knowledge Lists merging algorithm
Input: Knowledge Lists L1, L2, merging method
Output: L1 : {(F1, w1, z1), D1, K1}
DL1 ← DL1 ∪ DL2

PL1 ← PL1 ∪ PL2

Cm ← CL2 // set of all KC in L2
for CL2 ∈ L2 do
DCL2

← domains ∈ CL2 // KC domains set
for CL1 ∈ L1 do
DCL1

← domains ∈ CL1

if DCL∞ ⊆ DCL2
∨ DCL1

⊃ DCL2
then

CL1 ← mergeKC(CL1 , CL2)
Cm \ CL2 // discard the merged KC

end
end

end
for CL2 ∈ Cm do
{CL1} ∪ CL2 // add non-merged KCs

end
return L1

MSc thesis - Robotics G.B.G. Potter



89

Algorithm 6: Knowledge Category creation algorithm
Input: Knowledge triplets {(F, w, z)}, formula domains {FD}
Output: C
C ← ∅
Ctriplets ← {(F, w, z)}
Cdomains ← {FD}
return C

Algorithm 7: Knowledge List initialisation algorithm
Input: MLN : {P, (F, w), KMLN}, merging method M , (optional) evidence

DB : {KDB}
Output: Knowledge List L : {P, Dd7→k, C}
L← ∅ // initialise Knowledge List
LP ←MLNP // predicate declarations
LD ← domains(MLNP ) // parse arguments of predicate declarations
if DB then

// Parse evidence constants and map them to corresponding domains
LD ← KDB

end
for F, w ∈MLN do

// Gather domains in formula
for Predicate ∈ F do

FD ← domains(Predicate)
end
if DB then

FD 7→ KDB

// Count predicate evidence
z ← count_evidence(Predicate)

end
else

z ← 0
end
CF ← create_KC((F, w, z), FD)
// Check for existing KCs to merge CF into
match← False
for ci ∈ LC do

if CFD
⊆ ci ∨ ci ⊆ CFD

then
ci ← mergeKC(ci, CF , M) // can merge with multiple KCs

end
match← True

end
if match = False then

LC ← CF

end
end
return L

MSc thesis - Robotics G.B.G. Potter



90

Algorithm 8: Algorithm for merging two Knowledge Categories with three updating
strategies
Input: Knowledge Categories C1, C2, merging method M
Output: C1 : {(F1, w1, z1), D1}
if DC2 ⊆ DC1 ∨ DC1 ⊆ DC2 then

// Same knowledge concept
for (F2, w2, z2) ∈ TC2 do

// check all formulas in TC2 for conflicts
for (F1, w1, z1) ∈ TC1 do

if F2 ≡ F1 then // same formula conflict
if M = naive then

// overwrite weight and evidence count
w1 ← w2
z1 ← z2

end
if M = conservative then

// overwrite weight and evidence count if more evidence for
F2 than F1

if z2 ≥ z1 then
w1 ← w2
z1 ← z2

end
end
if M = balanced then

// combine weights with weighted average (prevent division
by zero), sum evidence count

if z1 = z2 = 0 then
w1← w1+w2

2
end
else

w1 ← z1w1+z2w2
z1+z2

z1 ← z1 + z2
end

end
end

end
end

end

MSc thesis - Robotics G.B.G. Potter



91

Algorithm 9: Markov Logic Network Cumulative Learning Algorithm
Input: Knowledge List Lt=0, evidence DB
Output: Knowledge List Lt+1
U ← ∅ // unknown evidence
E ← parse_evidence(DB) // list of evidence by symbol type
foreach e ∈ E do

// Compile all unknown evidence
if e ̸∈ Lt=0 then

U ← e
end

end
if U = ∅ then // all new evidence is known, perform structure learning

MLN ← createMLNfromKL(Lt=0)
MLNnew ← structlearn(MLN, DB)
Lnew ← createKLfromMLN(MLNnew, DB)
Lt+1 ← mergeKL(Lt=0, Lnew)

else // put each element of U in the Knowledge List
foreach u ∈ U do

match← match_to_KC(u) // match each element in U to a KC ink KL
if not match then

addCategory(u)
end

end
foreach (C1, C2) ∈ L do

mergeKC(C1, C2) // merge similar categories
end

end
MLNtrained ← ∅
foreach C ∈ Lt=0 do

MLNC ← createMLNfromKC(C)
DBC ← split_DB(DB, MLNC)
MLNtrained ← train_MLN(MLNC , DBC) // generative weight training

end
MLNmerged ← mergeMLNs(MLNtrained)
Lnew ← createKLfromMLN(MLNmerged)
Lt+1 ← mergeKL(Lt=0, Lnew)
return Lt+1

MSc thesis - Robotics G.B.G. Potter


	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Glossary
	List of Acronyms


	Main Matter
	Introduction
	The robotic system and dynamic environments
	Encoding knowledge in symbols
	Markov Logic Networks

	Affordance inference
	Zero shot
	Cumulative Learning
	Aspects of Cumulative Learning

	Research goal
	Outline

	Related work
	SRL
	Bayesian Networks
	Markov Networks

	Neural Symbolic AI
	Online learning
	Summary

	Markov Logic Network
	Markov Networks
	Markov networks and logic
	Understanding weights

	Inference
	Learning methods
	Formula weight learning
	Structure learning
	Evidence

	Summary

	Cumulative learning with MLNs
	The ingredients
	The Knowledge List
	Knowledge Categories

	Ingredients in practice
	Knowledge List creation
	Knowledge List operations

	What can be learned?
	Cumulative learning aspects of MLN-CLA
	Summary

	Experiments
	MLN software tools
	Dataset
	MLN

	Evaluation
	Evaluation measure

	Cumulative learning of constants
	Cumulative learning of formulas
	Summary

	Results
	Cumulative learning of new constants
	Analysis of new constants experiment
	Experiment conclusion

	Cumulative learning of new formulas
	Analysis of new formulas experiment
	Experiment conclusion

	Summary

	Discussion
	Evidence assumption
	Memory and knowledge management
	Knowledge Categories and intersecting domains
	Knowledge List pruning
	Knowledge updating strategies

	Generality

	Conclusion

	Back Matter
	Bibliography

	Appendices
	A - Alchemy syntax
	Appendices
	B - Datasets
	Appendices
	C - Experiments MLN
	Appendices
	D - Algorithms





