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Small-scale farms are vital to Europe’s food soverei-
gnty, biodiversity, and ecological resilience. Yet, they 
are vanishing at an alarming rate. While industriali-
sed agriculture has introduced certain efficiencies, 
it has also resulted in monocultures, the decline 
of rural communities, and widespread ecological 
degradation. Despite various policy efforts, small-
holders continue to encounter increasing systemic 
pressures. This thesis explores the role of Precision 
Agriculture Technologies (PATs) in this context - 
not merely as tools for efficiency, but as potential 
enablers of smallholder autonomy, resilience, and 
sustainability. It evaluates both the benefits and the 
limitations of their adoption.

This research challenges the dominant techno-
solutionist narrative, arguing that current 
implementations of PATs often reinforce the very 
structural inequalities they aim to address. These 
technologies tend to favour large agribusinesses, 
often putting farmers at a disadvantage by establis-
hing new dependencies. By emphasising the gap 
between technological design and the everyday 
experiences of smallholders, the study reconsiders 
innovation as a social and systemic problem, rather 
than merely a technical one.

This thesis investigates how PATs can be reimagi-
ned to truly assist small-scale agriculture, drawing 
on thorough fieldwork and collaboration with 
farmers. The outcome is CropKit, a modular, open-
source agricultural technology ecosystem tailored 
to meet the unique needs of smallholders. Central 
to this system is the CropKit Base, a lightweight 
and compact micro-tractor designed for flexibility 
and ease of use across various farming conditions. 
Functioning like a two-wheel tractor, the Base fea-
tures three levels of autonomous control, allowing 
farmers to choose the most suitable interface for 
each task. Its functionality is further enhanced by 
a variety of modular attachments, which boost its 
adaptability. Collectively, these elements create a 
versatile system that integrates physical usability 
with digital insights, enabling gradual, accessible 
adoption while empowering farmers to remain 
autonomous stewards of their land.

Ultimately, this thesis calls for a radical rethinking 
of how agricultural technologies are conceived and 
implemented - not as top-down solutions, but as 
collaborative tools for systemic change. In the face 
of ecological crisis, it advocates for technologies 
that serve farmers, not the other way around, and 
places small-scale farms at the centre of a resilient 
and sustainable agricultural future.

Abstract
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Context and Background1.1. 

Every day, we consume food grown on farmland, yet 
we rarely consider its origins. Agriculture is not just 
an economic sector; it is the foundation of our food 
system and is deeply entangled with the escalating 
climate crisis. Across Europe, small-scale farms, 
which comprise the majority of agricultural enterpri-
ses, are disappearing at an alarming rate. Structural, 
economic, and climatic pressures are pushing them 
to the brink of survival. Yet, these farms are indis-
pensable for biodiversity, ecological resilience, and 
sustainable food systems. Their decline is not just a 
shift toward large-scale agribusiness but a profound 
ecological and societal loss.

The rise of industrialised agriculture has led to 
homogenised landscapes, declining biodiversity, 
and a food system driven by yield maximisation 
rather than ecological balance. Small-scale 
farms face mounting challenges: intensive labour 
demands, limited access to technology, financial 
dependencies, and knowledge gaps in adapting to 
changing conditions. If they vanish, what remains is 
a monolithic, extractive model that prioritises short-
term gains over long-term sustainability.

Precision Agriculture Technologies offer potential 
solutions to some of these challenges. Howe-
ver, they are primarily designed for large-scale, 
efficiency-driven farming, often reinforcing 
monocultures. These innovations are rooted in 
a techno-optimistic paradigm, assuming that 
automation and data-driven decision-making can 
uniquely address agriculture’s systemic issues. Yet, 
when automation enters a profession, it often de-
values human labour and expertise. This raises the 
risk of a ‘technological paradox’ - where technology 
promises optimisation but unintentionally erodes 
farmers' agency, knowledge, and role within the 
ecosystem. As the Colombian philosopher Nicolás 
Gómez Dávila warned:

‘Civilisation nears its end when agriculture 
ceases to be a way of life
and becomes an industry.‘
- Nicolás Gómez Dávila

Agriculture, especially in the age of climate change, 
requires more than technological fixes. Applying 
new tools without considering their broader 
implications is merely symptom treatment, ignoring 
the underlying disease. This is not to dismiss the 
vast potential of Precision Agriculture Technologies 
(PATs), but to emphasise that their implementation 
must be holistic, ensuring that farmers remain 
the keystone species of the system. As Marshall 
McLuhan famously noted:

‘We shape our tools,
and thereafter our tools shape us.‘
- Marshall McLuhan

The key question is not whether to adopt tech-
nology, but how we can design it in a way that 
empowers farmers rather than undermining them, 
enabling them to be both stewards and beneficia-
ries of their land while cultivating a thriving, resilient 
ecosystem.

1.2. Research Questions and Objectives

Small-Scale Farms

RQ 1. Why should small-scale farms in Europe be preserved?
RQ 1.1. What are the biggest challenges faced by small-scale farms in Europe?

Precision Agriculture Potential

RQ 2.  Why should small-scale farms adopt Precision Agriculture technologies?
RQ 2.1. What are the advantages of Precision Agriculture technologies in the context of small-scale farms?
RQ 2.2.  What are the potential overlooked disadvantages of Precision Agriculture technologies in the context of  
 small-scale farms?

Precision Agriculture Adoption

RQ 3.  What are the key factors influencing the adoption of Precision Agriculture technologies  
 among small scale farms?
RQ 3.1.  What is the role of Human-Robot Interaction (HRI) in the adoption of Precision Agriculture technologies?
RQ 3.2.  What strategies can be implemented to enhance trust in Precision Agriculture technologies among  
 small-scale farmers?

Data-Driven Decision-Making

RQ 4. Which specific data points (e.g., morphological and physiological plant parameters, 
 soil parameters, or bioindicators) provide the most actionable 
 insights for agricultural  decision-making?
RQ 4.1. What role do bioindicators and indicator species play in monitoring environmental changes and   
 assessing ecosystem integrity?
RQ 4.2. How do temporal delays and local biases affect the reliability of bioindicators in ecosystem evaluation?

Technology

RQ 5. What functions, beyond data collection, should a carrier platform fulfil to enhance its   
 attractiveness for small-scale farmers?
RQ 6. Which sensor technologies are best suited for collecting field data in Precision Agriculture?
RQ 6.1. Which sensor combinations offer the best trade-off between information depth 
 and cost-efficiency in environmental monitoring?
RQ 6.2. Beyond cost considerations, what are the most critical criteria for selecting 
 sensors in Precision Agriculture and environmental monitoring?

The following list presents the research questions explored and answered in this thesis.
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Approach and Methodology1.3. 

1.3.1. Exploratory Literature Review
The literature review was conducted in an exploratory and iterative manner, without relying on a strictly 
predefined search strategy or fixed search query. Instead, relevant publications were identified through a 
stepwise refinement of search terms, continuously adapting and expanding key terms and their synonyms. 
The primary databases consulted included ScienceDirect (Elsevier), SpringerLink (Springer Nature), IEEE 
Xplore (Institute of Electrical and Electronics Engineers), and MDPI (Multidisciplinary Digital Publishing 
Institute). Additionally, a substantial number of sources were retrieved using the snowballing technique, 
where reference lists of relevant studies were analysed to identify further pertinent literature. This flexible 
and context-sensitive approach allowed for a comprehensive mapping of the research landscape, particu-
larly in areas where systematic search strategies were less effective due to heterogeneous terminologies or 
interdisciplinary overlaps.

1.3.2. Quantitative Empirical Research (Online Questionnaire)

To investigate current farming practices and small-scale farmers’ attitudes toward Precision Agriculture 
Technologies, a quantitative online survey was conducted in English, German and Dutch. The study was 
approved by TU Delft’s Human Research Ethics Committee (HREC), ensuring compliance with ethical 
standards. Participants provided explicit informed consent, and responses were fully anonymous.

Data collection ran from January 1 to March 15, 2025, using a snowball sampling method. Initial interviewees 
shared the survey within their networks, supplemented by outreach in online farming communities (e.g., 
Reddit). To mitigate selection bias, participants were recruited from diverse communities and countries, 
ensuring a broad range of network diversity. The final sample consisted of 44 valid responses from active 
farmers and agricultural decision-makers, yielding a 52% response rate. Responses from non-agricultural 
participants and incomplete submissions were entirely removed from the dataset. While the study primarily 
targeted crop and mixed farms (see Chapter 2.1.1. Farm Types in the European Union), livestock farmers 
were not excluded, as Pearson and Spearman correlation analyses showed no statistically significant impact 
of farm type on general responses. However, for crop-specific questions, such as the number of cultivated 
crops, responses from livestock-only farmers were excluded. Mixed farms were included in all analyses. A 
more comprehensive overview of the survey participants‘ demographics is available in the appendix (see 
Appendix 7.4.1. Sociodemographics of Participants).

The survey comprised 35 questions that covered farm characteristics, PAT adoption, automation accep-
tance, and future technological expectations. It included open-ended, multiple-choice, and rating scales 
(0 - 10). Approximately one-third of the survey focused on qualitative insights. Open-ended responses were 
categorised and analysed thematically. A pilot test ensured clarity and reliability before deployment. 
Data analysis was conducted using Jamovi and Excel, employing descriptive statistics and correlation tests 
(Pearson or Spearman, depending on the data distribution). Given the small sample size, a significance 
threshold of p < 0.01 was applied for statistical tests.A notable limitation is the small sample size. Since 
farming practices vary widely, future research should aim for a larger and more structured sample to improve 
representativeness.

Agriculture is a diverse and complex field. Developing technologies for this sector requires a thorough 
understanding of its many facets. To achieve this understanding, this thesis has employed various methods 
to gain the most comprehensive picture possible.
The research revolves around three key pillars: an exploratory literature review, quantitative empirical 
research conducted through an online questionnaire, and qualitative expert interviews. This thesis integ-
rates all these findings. Due to the significant overlap among them, insights are compiled across chapters 
to prevent redundancy. This chapter offers an initial outline of the methods employed, citing the sources 
referenced in the main text.

1.3.3. Qualitative Empirical Research (Expert Interviews)

To complement the quantitative data collection and ensure a multidimensional understanding of the 
perspectives on agricultural and plant biology, expert interviews were conducted. The primary goal of these 
interviews was to explore relevant topics and relationships, supporting the quantitative data and covering 
additional areas such as plant biology. A total of eight experts from the Netherlands, Germany and Austria 
were selected based on their specialised knowledge in agriculture and agricultural sciences. The group 
included conventional farmers, organic farmers, regenerative agriculture practitioners, and agricultural 
biologists. This diverse selection ensured a comprehensive perspective on the relevant topics. Experts were 
recruited through targeted email inquiries and networking, providing access to a broad range of expertise 
from various sectors of agriculture. 

Interviews were held either in-person or through videoconferencing, based on the experts‘ availability. A 
semi-structured approach was utilised, enabling a mix of structured questions and open-ended answers. 
The interview guide was created from the literature review and a pilot interview to guarantee the questions‘ 
relevance and clarity. Each interview lasted an average of 70 minutes.

Interviews were recorded in audio format, and transcripts were generated only upon obtaining consent from 
the experts. In such instances, written notes were also taken to enhance the audio recordings. Conducted in 
both English and German, the transcripts were preserved in their original languages. Direct quotations used 
in the thesis were translated into English as needed. The Ethics Committee of TU Delft approved the study, 
and all participants provided informed consent. Data from experts who requested anonymity was anonymi-
sed, while those who consented were identified by name.

To minimise bias, neutral questions were used for interviews, and experts with diverse perspectives were 
intentionally selected to create a comprehensive dataset. Inductive coding and thematic analysis were 
applied to uncover key patterns and themes in the responses. The outcomes of the expert interviews were 
merged with insights from the online survey and literature review. This blend of qualitative and quantitative 
data provided a richer understanding of the explored topics.

On the next page is a concise description of each interview participant, clarifying their qualifications for the 
interview and outlining the topics discussed during the interview.
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Christine Bajohr 
Christine Bajohr is a German leading expert and practitioner in climate-
resilient farming and sustainable land management. As co-founder of 
KUHproKLIMA, she applies Holistic Planned Grazing to enhance soil 
health and biodiversity. Managing a Demeter-certified farm in Bavaria, she 
integrates agroecological research into practice. A recipient of the Bavarian 
Climate Prize, she actively shapes EU agricultural policy, contributing to 
initiatives like EIP-AGRI’s Healthy Soils for Europe. She also serves as ma-
naging director of AERA Land gGmbH, a nonprofit organisation dedicated 
to advancing regenerative land use and driving digital innovation in agricul-
ture. In our interview, we explored the digitalisation of agriculture, focusing 
on satellite data, automation, and efficiency gains. We discussed the ethical 
dimensions of data usage, the need to protect farmers’ autonomy, and the 
systemic changes required to ensure digital innovations support sustainable 
and equitable farming.

David Brunmayr
David Brunmayr is an Austrian agroecologist and co-founder of Organic 
Tools, a company dedicated to developing innovative technologies for 
market gardening, agroforestry, and ecological farming. Specialising in 
agricultural mechanisation and sustainable small-scale farming, he is also 
an active advocate for the future of small-scale agriculture, promoting the 
development of appropriate, farmer-centred technologies. In our interview, 
we explored the role of automation and AI in agriculture, particularly in data 
collection and management. We discussed how these technologies can 
enhance efficiency and sustainability while also raising critical concerns 
about data ownership and the risks of an overly techno-optimistic approach 
to agricultural development.

Urs Mauk 
Urs Mauk is a German leading expert in regenerative agriculture, soil fertility, 
and vegetable cultivation. As the founder of ReLaVisio, he provides con-
sultancy services to farms on agroecological principles, no-till farming, and 
carbon sequestration. He is also a co-founder of soil.diagnostix, a company 
that develops digital tools to enhance farmers’ understanding and ma-
nagement of soil health. With a background in organic agricultural science 
and vegetable production, Mauk is widely recognised for his expertise in 
regenerative vegetable farming. Through ReLaVisio’s YouTube channel, 
he disseminates knowledge on soil health and syntropic agroforestry. This 
interview explores the role of Precision Agriculture in small-scale, diversi-
fied farms, analysing how technological innovations can optimise labour 
efficiency while maintaining ecological integrity and how tailored solutions 
can support smaller farming operations.

Christian Fletschberger
Christian Fletschberger is an Austrian conventional farmer and an expert 
in agricultural policy and subsidy management at the Salzburg Chamber 
of Agriculture. His work focuses on ensuring compliance with EU Common 
Agricultural Policy (CAP) regulations, with particular emphasis on subsidy 
eligibility, land-use verification, and cross-compliance. His expertise 
extends to digital land monitoring and the optimisation of farm support ad-
ministration, where he provides guidance to farmers on subsidy frameworks 
and environmental regulatory requirements. Our interview examined the 
economic and bureaucratic challenges within modern agriculture, including 
the sector’s dependence on subsidies, the rising costs of agricultural 
machinery, and the increasing administrative complexities faced by farmers. 
Additionally, we explored the potential of cooperative models, such as ma-
chinery rings and neighbourhood assistance, as mechanisms to enhance 
flexibility and sustainability in contemporary farming systems.

Howard Koster 
Howard Koster is a Dutch regenerative farmer and a specialist in regene-
rative agriculture and agroecology with a Master’s in Organic Agriculture 
from Wageningen University. He co-manages De Biesterhof, a regenerative 
farm in the Netherlands established in 2022. The farm employs a diversified 
approach - combining market gardening, arable farming, agroforestry, 
and food forests - to enhance biodiversity and soil health. Beyond farm 
management, Koster is deeply engaged in agricultural education and 
community outreach, offering workshops and guided farm tours. This 
interview examines the intersection of sustainable farming, data collection, 
and automation. It delves into attitudes toward technological advancements 
in agriculture and critically evaluates the capabilities farm robots need to 
effectively support regenerative farming practices.

Johann Winklhofer 
Johann Winklhofer is an Austrian organic vegetable farmer and the owner of 
a fourth-generation organic nursery. With nearly 40 years of experience, he 
specialises in cultivating a diverse range of crops while integrating tradi-
tional horticultural practices with modern organic standards. His expertise 
lies in seasonal crop planning, soil fertility management, and sustainable 
greenhouse production. In this interview, Winklhofer shares insights into the 
complexities of managing a diversified organic farm with a direct marketing 
approach. He discusses the high labour demands of organic cultivation, the 
limitations of automation, and the necessity of efficient mechanisation in 
diverse farming operations.

Harriet Mella
Dr. Harriet Mella, an independent research scientist from Austria with a 
Doctorate in Natural Sciences, specialises in unravelling unexplained phe-
nomena in plant growth and development. With expertise in microbiology, 
mycology, and biochemistry, her work advances resilient, low-input agricul-
tural systems. As a leading educator in Carbon microcycling, she bridges 
biochemical research with agronomy, focusing on soil carbon sequestration, 
microbial-plant interactions, and nutrient bioavailability. This interview 
delves into the role of bioindicators in plant phenotyping and data collec-
tion, highlighting how observational systems enhance decision-making by 
assessing plant and soil characteristics. It also explores how bioindicators 
reflect ecosystem health and evaluates the hierarchy and significance of 
different data types in agricultural decision-making.

Gert-Jan Noij
Gert-Jan Noij is a researcher at Wageningen Environmental Research, 
specialising in agricultural environmental management and water quality. 
His work focuses on buffer strips and nutrient runoff mitigation, contributing 
to sustainable farming and conservation. He has co-authored studies on 
buffer zone effectiveness in reducing nutrient leaching into surface waters. 
His expertise in nutrient management and soil-water interactions informs 
agro-environmental policy. This interview explores automation in agriculture 
and the role of data collection, particularly soil data. It examines how preci-
sion monitoring can enhance environmental sustainability while balancing 
technological reliance with ecological land management.
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(Design Agency)
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Stakeholders1.4. 

This study employed Mendelow’s Matrix to analyse stakeholders by categorising them according to their 
power and interest in the project. This method effectively informs stakeholder management by determining 
which groups require engagement, need to be kept satisfied, should be kept informed, or only require 
monitoring.

A total of 24 stakeholders were identified for this master’s thesis. Given the complexity of managing such a 
large group, a pairwise ranking method, using a tournament-style format, was applied to establish a priority 
order from 1 to 24. Stakeholders were systematically compared in pairs, with iterative selections leading to 
a final structured ranking. This method simplified the prioritisation process by reducing it to binary decisi-
ons. The resulting rankings—power (vertical axis) and interest (horizontal axis)—were then mapped onto 
Mendelow’s Matrix. Subsequent research considered key stakeholders, highlighted in blue (see Figure 01).

Figure 01:  Stakeholder Map

Project Scope1.5. 

Since agriculture is an enormously broad topic, the scope of this work must narrow it down. At its core, the 
focus is on understanding what technological innovation should look like for small-scale farms and how a 
modular platform can support this. The primary focus is on data-driven technologies and how field data 
collection can provide meaningful support. While the mobile platform, the “micro-tractor”, is the centrepiece 
of the development, additional extension modules are also being considered. The graph illustrates the dis-
tribution of focus in this work (see Figure 02).
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Figure 02:  Project Scope
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Figure 03:  Aerial view of the landscape (Freepik, n.d.)

Agriculture2.1. 

Agriculture is a cornerstone of human develop-
ment, contributing significantly to Gross Domestic 
Product (GDP) while maintaining ecological balance 
and ensuring nutritional security (Devlet, 2020). It 
plays a crucial role in achieving food security and 
advancing the Sustainable Development Goals 
(SDGs), particularly SDG 2 (Zero Hunger), along 
with other interrelated objectives (Viana et al., 
2022). However, rapid population growth is placing 
increasing pressure on agricultural resources, 
necessitating higher food production to meet rising 
demand (Dhillon & Moncur, 2023). This intensifies 
the strain on agricultural systems, resulting in severe 
environmental consequences (Monteiro et al., 
2021).

This chapter starts with an introduction to agricul-
ture in the European Union. To understand how 
technological innovation can enhance the resilience 
and sustainability of small-scale farms, it is first 
necessary to know what they are, explore their main 
challenges and understand their root causes. The 
chapter focuses on small-scale farms and answers 
the following research questions:

RQ 1. Why should small-scale farms in Europe be preserved?
RQ 1.1. What are the biggest challenges faced by small-scale farms in Europe?
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2.1.1. Farm Types in the European Union
In the context of the European Union, a farm is defined as a single unit of land and operations managed 
collectively for agricultural purposes, whether as a primary or secondary activity (Eurostat, 1001). A farm may 
consist of multiple parcels of land, which together determine its total size and productive capacity. 

Farm typologies provide a structured framework for understanding the diversity of agricultural systems. 
They are essential for policymakers, including those shaping the Common Agricultural Policy (CAP) of the 
European Union, to differentiate between farm types and design targeted incentives accordingly (European 
Union, 2022a). By categorising farms based on distinct characteristics, typologies ensure that agricultural 
policies effectively address the diverse structural realities of the sector (Huber et al., 2024).

Farm Types (Based on Standard Output)

Agricultural structures across the European Union vary significantly in terms of size, production methods, 
and economic viability (Beckers et al., 2018; Eurostat, 2022). To facilitate standardised comparisons, the 
EU Farm Typology Classification System, developed under the CAP, categorises farms according to two key 
criteria: the type of agricultural activity and the economic scale of operations. This classification relies on 
the concept of Standard Output (SO), which represents the average monetary value of agricultural produc-
tion per hectare or per head of livestock (European Union, n.d.; Eurostat, 1002). The SO metric provides a 
standardised approach to assessing farm productivity and enables policymakers to design CAP measures 
that align with the specific needs of different farm types (Eurostat, 1002).

In 2020, crop specialist farms accounted for 
58.3% of all EU farms, with field cropping as the 
largest subgroup at 34%. Specialist livestock farms 
represented 21.6%, including 5.1% dedicated to 
dairy production. Mixed farms made up 19.3%, while 
a small fraction remained unclassified (Eurostat, 
2022) (see Figure 4).

The EU Farm Typology Classification System 
identifies three main farm types based on Standard 
Output (SO):

Crop Specialists
Farms where at least two-thirds of the total output 
or economic size comes from a single crop-related 
activity.

Livestock Specialists
Farms where at least two-thirds of total output 
comes from a specific type of livestock production.

Mixed Farming Operations
Farms engaged in multiple activities, with no single 
activity dominating output.

18,3 % 
General field cropping

15,7%
Cereals, oilseed
and protein crops 

9,7% 
Olives

5,5% 
Fruit and 
citrus fruit

4,5% 
Vineyards

2,4% 
Various permanent 
crops combined

2,3% 
Horticulture

5,1% 
Dairying

4,2% 
Cattle - rearing 

and fattening

3,6% 
Sheep, goats and 

other grazing livestock 

1,5% 
Pigs 

0,7% 
Cattle - dairying, rearing 
and fattening combined

3,9% 
Poultry

2,5% 
Various granivores 

combined 

9,9% 
Various crops 

and livestock combined 

5,1% 
Mixed cropping

1,7% 
Mixed livestock, 

mainly grazing livestock 

2,0% 
Field crops - grazing 

livestock combined

0,6% 
Mixed livestock, 

mainly granivores 0,8% 
Non - classifiable

Crop 
Specialists

58,3%Livestock
Specialists

21,6%

Mixed
Farming
19,3%

Figure 04:  Farms by type of specialisation (share of EU farms,%,2020); Created by the author based on (Eurostat, 2022) 
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Figure 05:  Amount of Farms <10ha in 2020 per Country; Created by the author based on (Eurostat, 2022) 

2.1.2. Small-Scale Farms
This chapter lays a foundation by exploring the 
quantity and geographic spread of small-scale 
farms in Europe and the key crops they cultivate. It 
wraps up by emphasising the essential contribution 
of small-scale farming to the agricultural sector and 
its wider importance for food security, clarifying why 
these farms are the focal point of the thesis.

This research defines small-scale farms primarily by 
their size, specifically focusing on those up to five 
hectares, in accordance with EU definitions. Howe-
ver, due to differing commonly accepted definitions 
and variations in available data, some graphs adopt 
a ten-hectare threshold, as per the FAO definition. 
The term smallholder is used interchangeably with 
small-scale farm throughout this research, applying 
the same definition. (For a more detailed definition 
of 'small-scale farm‘, ‘smallholder‘, ‘small-scale 
farm', and ‘family farm'; see Appendix 7.2. Termin-
ology of Small-Scale Farms).

2.1.2.1. Distribution

Globally, most farms are small in land area, with 
approximately 84% covering less than two hectares 
(Lowder et al., 2016). In the European Union, 63.7% 
of farms in 2020 had less than five hectares of 
agricultural land (Eurostat, 2022). Additionally, two-
thirds of these small EU farms operated on fewer 
than two hectares (Rossi & EPRS, 2022).

Luxembourg (53.8%) and Iceland (82.7%) are the 
only European countries where most agricultural 
holdings surpass 50 hectares. In contrast, the 
majority of farms in other EU member states are 
under this size. The accompanying bar chart (see 
Figure 06) illustrates the dominance of small-scale 
farms throughout Europe, with Romania standing 
out as leading in the number of such holdings.

The accompanying map (see Figure 07) provides 
the number of farms under 10 hectares across each 
EU country as of 2020, giving further insight into 
the prevalence of small farms. The data indicates 
that these small farms form the backbone of Euro-
pean agriculture. Thus, they represent the largest 
and most critical target audience for agricultural 
innovation. Tailoring solutions to their unique 
requirements presents the greatest opportunity for 
transformative change within the sector.

Figure 06:  Distribution of different Farmsizes in 2020 per Country; Created by the author based on (Eurostat, 2022) 
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2.1.2.1. Crops and Diversification

In the EU, small-scale farms (under 5 hectares) primarily grow permanent crops (Eurostat, 2020). It is diffi-
cult to define the crops grown by small-scale farms, as the smaller the farm, the greater the diversity of crops 
cultivated (Ricciardi et al., 2021; Rossi & EPRS, 2022) . Small-scale farms generally maintain more diversified 
crop portfolios compared to larger operations. (SALSA Consortium, 2020).

Figure 07:  Diversified Market Gardening in Practice (Market Garden Pro, 2025)

Benefits of Crop Diversification
Crop diversification offers multiple advantages for 
small-scale farms. It enhances resilience against 
pest infestations (Weigel et al., 2018), improves 
overall yields (Clough et al., 2020; Di Falco et 
al., 2010) and reduces dependency on chemical 
fertilisers (Bommarco et al., 2013; Clough et al., 
2020; Weigel et al., 2018).

Expert interviews further emphasise its role in 
mitigating financial risks. Losses from one crop, 
caused by drought, pests, or market fluctuations, 
can be offset by profits from other cultivated crops. 
Additionally, growing plant species with diverse 
environmental requirements increases resilience 
against extreme weather events such as droughts, 
floods, or frost, thereby enhancing long-term farm 
stability (Expert Interviews, 2025).

Beyond economic benefits, diversification promotes 
biodiversity within agricultural ecosystems (Clough 
et al., 2020; Rossi & EPRS, 2022) and can lead 
to increased productivity despite lower resource 
inputs (Bommarco et al., 2013). Farmers implement 
diversification through two primary strategies. The 
first involves crop rotation, where different crops are 
grown sequentially on the same land to maintain 
soil health and reduce pest pressure. The second 
approach is spatial diversification, where multiple 
crops are cultivated simultaneously across different 
sections of the farm, enhancing biodiversity and 
mitigating risks (Weigel et al., 2018). Crop diversifi-
cation plays a crucial role in ensuring the long-term 
sustainability of small-scale farms by reducing 
their vulnerability to economic and environmental 
uncertainties.
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Figure 08:  Standard Setup of a Farmer 

Figure 09:  Topview - Big Ag Setup; Changed by author based on (Elevate, 2024)  

Figure 10:  Topview - Small Farm Setup; Changed by author based on (Organic Tools, n.d.)

The Mobile Platform
The mobile platform - whether a four-wheel tractor, a single-axle machine, or another towing device - serves 
as the foundation of agricultural mechanisation. Among these, tractors of all sizes play a crucial role in 
farming due to their versatility and adaptability to different configurations (Mocera et al., 2023). While large-
scale commercial agriculture increasingly relies on heavy, high-powered tractors, small-scale farms often 
prefer two-wheel tractors (see Figure 09).

2.1.2.2. Mechanisation and Equipment

To understand the advantages of technology implementation, we should initially examine the tools that 
farmers use in their fields. Small-scale farmers throughout Europe employ a variety of machinery designed 
to meet their agricultural needs. Generally, this equipment features a mobile platform that can be either 
manually operated (like a wheel hoe) or motorised (such as a tractor), along with an attachment known as an 
implement (for example, a plough) (see Figure 08).
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Two-Wheel Tractors
Two-wheel tractors, also referred to as walk-behind 
tractors, single-axle tractors, walking tractors, or 
hand tractors, are compact agricultural machines 
designed as single-axle counterparts to traditional 
four-wheel tractors (see Figure 11). Typically 
powered by small gasoline or diesel engines, these 
versatile machines can operate multiple implements 
using a single power source, offering a cost-effec-
tive and efficient solution for small-scale farmers.

This affordability extends to both the tractor and 
its implements. Implements made for conventional 
four-wheel tractors, especially those needing a 
power take-off (PTO), are usually far more costly 
than those for walk-behind tractors. Moreover, 
maintenance expenses are typically lower since 
walk-behind tractors are generally simpler to repair 
(Frost, 2023).

Beyond their financial advantages, two-wheel 
tractors are particularly well-suited for small-scale 
farms due to their efficiency in managing compact 
or irregularly shaped plots. Large, conventional 
machinery is often impractical in these settings, 
making smaller, more manoeuvrable equipment a 
better fit for small-scale operations (Al-Amin et al., 
2022). Furthermore, the high cost of large tractors 
remains a significant barrier for many small-scale 
farms, whereas two-wheel tractors provide an 
adaptable and affordable solution for a wide range 
of agricultural tasks (Kornecki & Reyes, 2020). 

Expert interviews reinforce these insights, emphasi-
sing the economic and functional benefits of these 
machines. The carrier platform—Wbe it a four-
wheel tractor, a single-axle machine, or another 
towing device—serves as the core of agricultural 
mechanisation. An ideal carrier platform should be 
compatible with a variety of implements, enabling 
farmers to undertake different agricultural activi-
ties without the need to completely revamp their 
machinery inventory. This modular approach lowers 
costs, enhances flexibility, and fosters technological 
advancement, allowing farms to adjust to evolving 
agricultural demands (Expert Interviews, 2025).

‘In traditional arable and vegetable farming, 
you use many different tools, but the tractor is 
central. I would say a carrier platform, to which 
I can attach various devices, is the key piece of 
equipment. Then there are different planting 
technologies and implements, which are extre-
mely specific depending on the branch of the 
operation.’
- Expert Mauk

The two-wheel tractor market is growing rapidly, 
driven by increasing demand and innovations like 
electric motors and Precision Agriculture features. 
Electric models are preferred for their quiet ope-
ration and environmental benefits, supporting 
the global shift toward sustainable agriculture. 
This ongoing innovation will further boost market 
adoption (MWR, 2025).

Figure 11:  Farmer with Two-Wheel Tractor (Bellm, 2023)
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Implements
Agricultural implements are vital tools 
for a carrier platform, enhancing its 
capabilities for specific farming tasks. 
Some, like ploughs and planters, are 
passive and pulled or ground-driven, 
while others, such as mowers, have 
powered components using the tractor’s 
powertrain. Powered implements draw 
energy from the power take-off (PTO) 
system, which is common in modern 
tractors (Mocera et al., 2023).

Farmers use various implements, from 
basic attachments to highly specialised 
machinery, depending on farm size, crop 
type, and operational needs. Figure 12 
provides an overview of the most com-
monly used implement types. Naming 
conventions for implements vary across 
countries and regions, and translations 
may differ accordingly. Additionally, the 
design and dimensions are influenced 
by the carrier platform. For example, a 
plough designed for a high-horsepower 
tractor differs significantly in scale 
and structural requirements from one 
intended for a manually operated wheel 
hoe (Frost, 2023).

This summary, based on multiple 
sources (Barkolias, 2023; BCS, n.d.; 
Deere, n.d.; Köppl, n.d.; Lipco, n.d.), 
provides a general overview rather than 
an exhaustive classification. As noted, 
some implements require PTO power 
while others do not. Those have been 
marked in the overview (see Figure 12). 

Figure 12:  List of Commonly Used Implements

Figure 13:  Link between Field Size and Biodiversity; 
Created by the author based on (Clough et al., 2020) 

2.1.2.3. The Importance of Small-Scale 
Farms

Small-scale farms form the backbone of agri-
cultural systems worldwide, particularly in local 
food production and rural economies (Dhillon 
& Moncur, 2023; Guth et al., 2022). Although 
industrial agriculture dominates in terms of global 
food output, small-scale farms play a crucial role in 
preserving genetic diversity, maintaining resilient 
ecosystems, and sustaining communities. In an 
era defined by globalisation, farm specialisation, 
large-scale production, and a widening disconnect 
between rural communities and agriculture, these 
smaller farms may appear outdated or inefficient. 
Nevertheless, they are indispensable for sustaining 
local economies and preserving ecosystems (Guth 
et al., 2022).

A key strength of small-scale farms lies in their 
structural diversity and varied farming practices, 
which foster high levels of biodiversity and enhance 
ecological resilience (Babai et al., 2015; Marini et al., 
2009; McDonagh et al., 2017). This diversity is also 
vital for mitigating risks associated with nutritional 
deficiencies, ecosystem degradation, and climate 
change (Herrero et al., 2017). Beyond food security, 
small-scale farming generates numerous direct and 
indirect benefits - environmental, social, cultural, 
and economic - by improving crop diversification, 
job security, and self-sufficiency (Dhillon & Moncur, 
2023). Small-scale farms also support greater 
non-crop biodiversity, for instance by providing 
habitat at landscape edges, and typically achieve 
higher yields per hectare compared to larger farms 
(Clough et al., 2020; Ricciardi et al., 2021; Rossi & 
EPRS, 2022).

In addition to their role in promoting biodiversity, 
small-scale farms help prevent soil erosion by 
maintaining meadows and pastures, particularly in 
mountainous regions (Tasser et al., 2007). Through 
these practices, they stabilise landscapes and 
protect against land degradation, providing a valua-
ble environmental service that bolsters resilience 
against both ecological and climatic challenges.

Empirical research also suggests a strong link 
between field size and biodiversity: smaller fields 
generally harbour a greater variety of species 
(see Figure 13) (Clough et al., 2020). Traditional 
small-scale farms, which often rely on more diverse 
cropping systems and lower levels of chemical 
inputs, consistently exhibit higher levels of species 
richness than large, highly intensive farms (Marini 
et al., 2009). For example, Belfrage et al. (2005) 
found that small organic farms hosted 56% more 
bird species than larger organic farms, despite 
both types avoiding pesticide use. This evidence 
underlines the need to consider farm size, alongside 
farming practices, when assessing the impact of 
agriculture on biodiversity.

Mean field size
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Taken together, these findings highlight the 
essential role of small-scale farms in modern 
agriculture. Their ability to support local economies, 
preserve genetic resources, protect biodiversity, and 
stabilise landscapes demonstrates that small-scale 
farms are not relics of the past but rather critical 
contributors to a more resilient and equitable future 
food system. As pressures from climate change, 
biodiversity loss, and economic restructuring in-
crease, the necessity of maintaining and supporting 
small-scale farming systems becomes ever more 
apparent.

‘Small field sizes are of utter importance to halt 
and maybe even reverse the decline in biodiversity in landscapes.‘ 
- (Clough et al., 2020)



3332

2.1.3. Challenges and Changes
The agricultural sector in the European Union (EU) has undergone significant structural transformations in 
recent decades, marked by a notable decline in its share of the overall economy in terms of both income and 
employment (Anderson, 2010; Beckers et al., 2018; Corsi et al., 2021; FAO, 2000; Lowder et al., 2016; Rossi 
& EPRS, 2022). Several factors have contributed to these changes, including technological advancements 
(Babalola et al., 2023; Jouzi et al., 2017; SALSA Consortium, 2020), labour dynamics (Dhillon & Moncur, 
2023; Fan & Chan-Kang, 2005; Sutherland, 2023), and subsidy structures (Rossi & EPRS, 2022). 

Agricultural structures are closely linked to subsidies and political measures. This is a crucial topic, as the 
survival of small-scale farms in Europe is significantly shaped by subsidies, though their impact varies 
depending on regional differences and farm types. Many survive primarily through financial subsidies rather 
than economic self-sufficiency (Al-Amin et al., 2022). (For more information about subsidy schemes, regu-
lations, and farmers’ perceptions based on expert interviews, see Appendix 7.3. Subsidies and Regulations).
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2.1.3.1. The Decline of Small-Scale Farms

Small-scale farms play a vital role in society and the environment (see Chapter 
2.1.2.3. The Importance of Small-Scale Farms), yet their numbers are shrinking 
alarmingly. Between 2005 and 2020, more than a third (37%) of farms smaller 
than five hectares disappeared. At the same time, the average farm size has 
increased. Despite this sharp decline in small-scale farms, the total utilised 
agricultural area (UAA) has remained almost unchanged, growing by just 0.3%. 
This shows that agricultural land is increasingly being concentrated in the 
hands of fewer, larger farms (Eurostat, 2022).

This trend is not unique to agriculture. Similar shifts have occurred in the 
industrial and service sectors, where larger businesses have grown by taking 
advantage of economies of scale. However, unlike in these sectors, agriculture 
has not seen the rise of new businesses but rather the absorption of smaller 
farms into larger ones, leading to a dramatic restructuring of the farming 
landscape (Beckers et al., 2018; Corsi et al., 2021).

Data obtained from the Eurostat Agriculture Database underscore the seri-
ousness of this trend. The dataset [ef_m_farmleg], entitled “Farm indicators by 
legal status of the holding, utilised agricultural area, type and economic size of 
the farm, „ offers detailed statistics on EU farms, organised by size, legal form, 
farm type, economic output, and region (Eurostat, 2024). From this dataset, the 
number of registered holdings smaller than 10 hectares was obtained for the 
years 2010 and 2020. The percentage change over this period was calculated 
and represented in a graph (see Figure 14). The findings depict a concerning 
situation. A comparison of farms with under ten hectares between 2010 and 
2020 indicates a steep decline in nearly all EU Member States, with the signi-
ficant exceptions of Czechia and Denmark. In Bulgaria, for instance, the count 
of small farms has decreased by more than 70% in just ten years. Likewise, the 
Netherlands has lost nearly half of its small-scale farms in the same period. 
This troubling trend is depicted in Figure 14, highlighting the widespread 
reduction of small-scale farms throughout Europe.

The decline stems from intricate, interrelated economic, environmental, and 
social challenges that complicate the survival of small-scale farmers. The fol-
lowing chapter will examine these factors in greater depth, drawing on insights 
from existing literature, quantitative analysis, and qualitative research.
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Figure 14:  Decline of Small Farms (<10ha) from 2010-2020; Created by the author based on [ef_m_farmleg__custom_17007441] (Eurostat, 2024)
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2.1.3.2. Main Challenges of Small-Scale Farms

Participants express significant concerns regarding 
high labour demands, administrative challenges, 
rising costs, and time limitations, especially for 
part-time farmers. Many respondents highlighted 
that increased expenses for energy, machinery, and 
infrastructure are not balanced by fair producer 
prices. Additionally, labour shortages, worsened by 
the seasonal nature of agriculture and the ongoing 
need for retraining, strain farm operations. Market 
distortions, including low farmgate prices and in-
sufficient consumer awareness, hinder profitability. 
Concurrently, the adoption of technology presents 
challenges, as the costs and practicality of automa-
tion and mechanisation often do not align with the 
needs of smaller farms. Moreover, environmental 

uncertainties and the slow learning processes typi-
cal of seasonal production add further complexity, 
making it increasingly difficult to maintain a balance 
between economic sustainability and ecological 
responsibility (Quantitative Research, 2025).

The upcoming sections will explore each of these 
seven problem categories in detail, combining 
insights from quantitative research, existing litera-
ture, and qualitative studies. This comprehensive 
approach provides a detailed understanding of the 
challenges small-scale farms encounter, many of 
which are interconnected and influence each other 
in various ways.

Figure 15:  Key Challenges Faced by Small-Scale Farms: Findings from Quantitative Research (n=44)

18 Participants

14 Participants

10 Participants

10 Participants

Labour & Workload

Economic Viability

Regulations & Bureaucracy

Market Access

7 Participants

6 Participants

5 Participants

4 Participants

Technology & Mechanization

Climate & Environment

Knowledge & Skills

Others

What are the biggest challenges for your farm?

Small-scale farms face several key challenges, as 
highlighted in the literature. These challenges can 
be broadly categorised into labour and workload 
(Jouzi et al., 2017; SALSA Consortium, 2020), 
regulations and bureaucracy (Babalola et al., 2023; 
Jouzi et al., 2017; SALSA Consortium, 2020), 
market access and pressures (Jouzi et al., 2017; 
Rossi & EPRS, 2022), the need for greater engage-
ment in technology and mechanisation (Jouzi et al., 
2017; Rossi & EPRS, 2022), and the growing impact 
of climate change (Dhillon & Moncur, 2023; Rossi & 
EPRS, 2022; SALSA Consortium, 2020).

These challenges are evident in both the quanti-
tative survey and expert interviews. The following 
graph (see Figure 15) shows how participant 
responses were distributed across various problem 
categories. Many farmers reported facing multiple 
challenges across different areas. The graph indica-
tes the total number of participants who identified 
each category as one of their most significant chal-
lenges (Quantitative Research, 2025). To minimize 
bias, the question was posed in an open-ended 
format: “What are the biggest challenges for your 
farm?” The written responses were then analyzed 
and grouped into categories. The chart provides an 
overall summary of these problem areas and shows 
how many participants (n=44) mentioned challen-
ges related to each category.

Challenge 1 - Labour & Workload

Labour shortages and increasing workloads pose 
a significant challenge for European small-scale 
farms. The availability of agricultural workers is 
becoming an increasing concern (Sutherland, 
2023). The decline of small-scale farms, alongside 
the consolidation of land into larger enterprises, 
has further exacerbated this issue (Guth et al., 
2022). Traditionally reliant on family labour, many 
small-scale farms now face an ageing workforce 
and a lack of young successors willing to take over 
farming operations (Recanati et al., 2019). Labour 
availability is also a key barrier preventing new farm 
enterprises from being established, as the difficulty 
in securing workers represents a major challenge for 
prospective farmers (Dhillon & Moncur, 2023).

Quantitative research highlights labour-related 
difficulties as one of the most urgent concerns, with 
44% of surveyed farmers (see Figure 15) identifying 
them as a primary issue (Quantitative Research, 
2025). Expert interviews further reinforce these 
findings, emphasising ongoing struggles with heavy 
workloads and securing a reliable workforce.

The persistent labour shortages in agriculture stem 
largely from the high demand for manual work, 
particularly in organic and diversified farming, where 
mechanisation is often unfeasible. Compared to 
industrialised farms that utilise advanced machi-
nery and automated systems, tasks like weeding, 
planting, and harvesting require substantially more 
human effort. Organic farming is especially labour-
intensive due to bans on chemical herbicides. While 
conventional large-scale farms can simply spray 
pesticides, organic farmers must rely on manual 
labour for weed control. Although mechanical 
alternatives like cultivators and hoeing tools exist, 
they often lack the precision and efficiency needed, 
making weed management an expensive and 
time-consuming challenge. Even in conventional 
farming, stricter EU regulations on herbicides are 
likely to push farmers toward mechanical weed 
control, further increasing labour demands (Expert 
Interviews, 2025).

‘Organic farming takes almost twice as many 
workers because a lot of tasks still can’t be 
automated. While conventional farms use 
herbicides, we must harrow, hoe, and pull weeds 
by hand—so I end up going into the fields three, 
four, or even five times more often.’
- Expert Winklhofer

Farmers struggle to find individuals with both the 
technical know-how and the willingness to commit 
to farm work. This issue is worsened by seasonal 
fluctuations, which create unpredictable labour 
demands and make workforce stability difficult. 
Small-scale farms face financial constraints that 
hinder their ability to offer competitive wages, 
making jobs in industrial agriculture or other sectors 
more appealing. As a result, they often rely on family 
members, apprentices, or short-term workers, 
leading to inconsistencies in labour quality and 
productivity.

While automation and mechanisation could help 
address labour issues, their high costs and tech-
nical challenges keep them out of reach for many 
small-scale farms. This financial and technological 
hurdle maintains dependence on manual labour, 
continuing a cycle of heavy workloads and econo-
mic strain (Expert Interviews, 2025).

Demographic Changes
Farm demographics are a critical factor in unders-
tanding the structural changes in farming. Younger 
farmers typically manage larger farms, while smaller 
farms are often run by older farmers, sometimes 
beyond retirement age. When these farmers retire, 
their land is either abandoned or consolidated, 
increasing the average farm size (Rossi & EPRS, 
2022).

The dominance of family-run farms (93% in the 
EU as of 2020) complicates farm exits, land-use 
changes, and intergenerational transfers (Eurostat, 
2022). Farm exits are influenced by age, farm size, 
land prices, and retirement benefits (Corsi et al., 
2021), with research showing that profitability and 
high agricultural prices reduce the likelihood of 
farmers leaving the sector (Breustedt & Glauben, 
2007; Glauben et al., 2006). Larger farms and 
younger farmers are also less likely to exit (Glauben 
et al., 2006). Most new farmers enter through 
inheritance. Profitable farms encourage farmers 
to remain active until retirement, but without a 
successor, farms are often sold or merged, reducing 
overall farm numbers (Corsi et al., 2021). Expert 
interviews also highlight concerns about farm 
succession, particularly when children do not take 
over (Expert Interviews, 2025). Policy support 
reduces farm exits, with subsidies linked to lower 
exit rates (Glauben et al., 2006), yet current policies 
still favour large farms (see Appendix 7.3. Subsidies 
and Regulations).
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Challenge 2 - Economic Viability

Economic viability presents its own challenge while 
also being influenced by the culmination of other 
structural issues. Small-scale farms experience 
significant pressure to stay profitable as they 
contend with rising costs, heightened competition, 
and the ongoing growth of industrialised agriculture 
(Czyżewski & Kryszak, 2023; Guth et al., 2022; 
Recanati et al., 2019; Satola et al., 2018). Their 
lower technical efficiency makes direct competition 
with large-scale operations nearly impossible.

This reality is supported by quantitative research: 
more than a third (34%) of surveyed farmers 
identified profitability maintenance as their primary 
challenge (see Figure 15). Major issues encompass 
rising costs, the shrinking price difference between 
organic and conventional farming, and competition 
from leading retail chains (Quantitative Research, 
2025).

Ultimately, economic viability determines farm 
survival. As small-scale farms struggle, many are 
forced to sell, leading to land consolidation and an 
ever-decreasing number of independent farms (see 
Chapter 2.1.3.1. The Decline of Small-Scale Farms). 
The result is a shift toward larger, more specialised 
agricultural enterprises, accelerating the adoption 
of advanced technologies and further deepening 
the divide between small-scale farms and industrial 
farms (Beckers et al., 2018; FAO, 2000).

Challenge 3 - Technology & Mechanisation

The rising labour requirements in small-scale, 
diversified farms are directly related to the hurdles 
of mechanisation and automation. Integrating 
advanced technologies into these operations can 
be challenging due to multiple constraints. 

Survey data underscores the importance of this 
issue, revealing that 17% of participants view 
mechanisation and technology-related challenges 
as the primary barriers to their farm operations (see 
Figure 15). The struggle to effectively implement 
mechanisation compels many small-scale farms to 
depend on manual labour, intensifying economic 
strain and hindering long-term sustainability in a 
progressively technology-driven agricultural sector 
(Quantitative Research, 2025).

Cost
Expert interviews reveal that mechanisation is 
usually less economically feasible for small-scale 
farms compared to larger ones. The main obstacle 
is the substantial costs associated with purchasing 
and maintaining agricultural machinery, which are 
challenging to mitigate due to the lower production 
levels typical of small farms. Additionally, the varied 
cropping systems found on small farms complicate 
the efficient use of specialised equipment. Each 
crop might need different machinery, resulting 
in mechanisation becoming prohibitively costly, 
especially for farms that grow many varieties. In 
contrast, larger farms benefit from economies of 
scale by focusing on a limited selection of crops, 
which allows for more effective and economical use 
of machinery (Expert Interviews, 2025).

‘Why should I spend money on expensive, main-
tenance-intensive equipment if I do not need it? 
… If my field is only 30 meters long, I spend more 
time retooling the machinery than I would just 
work through it by hand.’
- Expert Mauk

Flexibility
Growing various plants on small plots and frequently changing crops requires advanced technology. Rigid 
systems are often impractical because they lack the flexibility to adapt quickly to the diverse needs of 
different crops, workflows, and field sizes. The time invested in reconfiguring equipment can outweigh the 
advantages, leading farmers to prefer manual labour or simpler mechanised techniques for their efficiency 
(Expert Interviews, 2025). Manual methods enable farmers to adjust quickly to changing soil conditions and 
planting patterns, making them a cost-effective and adaptable alternative to inflexible mechanised solutions. 
Consequently, many small-scale crop farming tasks still depend on manual labour or minimal mechanisation 
(Dhillon & Moncur, 2023).

‘Using technology always requires compromises because it lacks flexibility. Your hands 
and mind, however, are the most adaptable tools, enabling what machines cannot.’
- Expert Mauk

Maybe manual work suits 
my field size better after all...

Figure 16:  Illustration: The Challenge of Mechanization

Manoeuvring Space
Alongside costs, space limitations significantly hinder mechanisation on small farms. Both storage and field 
tasks necessitate adequate space for machinery to function effectively—this requirement is often not met on 
smaller plots. In contrast, large fields covering multiple hectares see minimal loss of area due to the need for 
turning and manoeuvring heavy machinery. Yet, on small farms, every square meter of arable land is crucial, 
making the land lost to machinery movement much more significant. Even compact machinery like narrow-
track tractors and large single-axle vehicles still need several meters for turning, which further diminishes the 
land available for productive farming (Expert Interviews, 2025). Small, diversified farms like market gardens 
often favour manual or highly manoeuvrable equipment, such as two-wheel tractors (see Chapter 2.1.2.2. 
Mechanisation and Equipment) or wheel hoes, due to their ability to utilise available space more efficiently 
(Expert Interviews, 2025).

‘With a single-axle machine, you might need 2 to 3 meters of headland. On foot, 1.5 
meters is enough—just enough space to place a wheelbarrow. So, it is also a question of 
space.’
- Expert Mauk
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Challenge 4 - Regulations & Bureaucracy

The demand for reporting in agriculture is increasing. To secure subsidies—essential for the survival of most 
farms in Europe, particularly small-scale operations—farmers must navigate extensive bureaucratic proce-
dures. The transition to sustainable and diversified farming practices may further exacerbate administrative 
burdens, as compliance requirements, certification processes, and documentation for policy-driven agricul-
tural initiatives become more complex (Ehlers et al., 2021).

Small-scale farmers face stringent and time-consuming regulatory requirements that hinder their operatio-
nal efficiency (Babalola et al., 2023; Jouzi et al., 2017; SALSA Consortium, 2020). In Europe, the Common 
Agricultural Policy (CAP) represents the primary source of bureaucratic intervention in the agricultural sector. 
However, multiple reform attempts aimed at reducing administrative and financial burdens on farmers have 
largely failed (Howarth, 2000). One of the most recent initiatives in this regard is the Small Farmers Payment 
(see Appendix 7.3.4. Subsidies Targeted at Small-Scale Farms).

For example, certification procedures for organic and sustainable farming practices entail significant costs 
and paperwork, making compliance prohibitively expensive for many small-scale farms. Excessive bure-
aucracy not only discourages new entrants into the sector but also undermines the competitiveness of 
small-scale farms compared to large-scale agricultural enterprises. Reducing these administrative burdens 
is therefore crucial for fostering a more favourable regulatory environment for small-scale farmers (Aristovnik 
& Obadić, 2015).

The survey results highlight the burden of bureaucracy on small-scale farmers. 24% of respondents cited 
bureaucratic and regulatory requirements as their main challenge (see Figure 15). One participant summari-
sed the issue: 

‘The time required for all the bureaucracy is far too great, leaving little room for truly 
valuable work.’
- Anonymous survey participant

Expert interviews underscored the difficulties that small-scale farms encounter due to complex subsidy sys-
tems that necessitate thorough documentation. Ensuring compliance requires considerable administrative 
oversight, which diverts time and resources away from essential farming operations. While environmental 
and safety regulations are intended to foster sustainability, they create disproportionate challenges for 
small-scale farms, which frequently lack the administrative resources to navigate these obligations. Furt-
hermore, market regulations concerning direct sales and organic certification create additional hurdles, as 
small producers must adhere to strict standards that involve expensive inspections and extensive reporting. 
Although these regulations are designed to encourage sustainability and equitable practices, they often 
place small-scale farms at a disadvantage (Expert Interviews, 2025).

Challenge 5 - Market Access

Small-scale farms face systemic barriers to market access, as retailers and food processors favour larger 
suppliers (Guth et al., 2022; Satola et al., 2018). Price volatility, trade policies, and economic shocks multiply 
these challenges, fostering financial instability. Lacking economies of scale (Clough et al., 2020), small-
scale farms struggle to compete, while administrative burdens and high transaction costs further limit their 
opportunities (Czyżewski & Kryszak, 2023).

Direct Marketing
Numerous small-scale farms utilise direct marketing strategies to navigate challenges. Insights from experts 
highlight that increased crop diversity enhances the importance of direct marketing, as farmers with a 
variety of crops are more inclined to adopt this strategy. A diverse product lineup enables them to cater to 
market demands and consumer preferences. On the other hand, wholesale markets typically necessitate 
specialisation in a limited number of crops, rendering them less suitable for organic mixed farms. While direct 
marketing provides flexibility in cultivation decisions, dependence on wholesale often leads to diminished 
crop diversity or monoculture for the sake of economic viability (Expert Interviews, 2025). This pattern is 
corroborated by the SALSA dataset, which reveals a notable correlation between crop diversification and 
engagement in direct marketing (r = 0.234, p < .001) (SALSA Consortium, 2020).

‘The problem with wholesale is that you must specialise in two, three, or four crops in-
stead of growing everything. But in direct marketing, it is the other way around because 
people are interested in your own products.’ 
- Expert Winklhofer

Direct marketing has its limitations. While diversification boosts resilience, it also increases logistical and 
promotional requirements. Moreover, inadequate infrastructure for local sales and distribution restricts its 
scalability, posing obstacles to consistent revenue generation. Respondents in the quantitative survey highl-
ighted that attracting a sufficient number of customers for sustainable operations is a significant challenge. 
In contrast to large agribusinesses with robust supply chains, smaller farms dedicate considerable time and 
resources to establish a stable consumer base (Quantitative Research, 2025).

That's a crucial decision ...

Figure 17:  Illustration: The Importance of Direct Marketing
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Agriculture is the most climate-dependent sector of 
the EU economy, making it particularly vulnerable 
to climate change. Climate-related changes are 
already significantly affecting agricultural produc-
tion, and these impacts are expected to intensify. 
Small-scale farms, in particular, are dispropor-
tionately affected (Jacobs et al., 2019). Rising 
temperatures, changing precipitation patterns, 
extreme weather events (Cogato et al., 2019), soil 
degradation (Egidi et al., 2022), and the increasing 
spread of plant diseases and pests (Carozzi et al., 
2022; Olesen et al., 2011; Roos et al., 2011) pose 
growing challenges.

Already, 15% of participants in a quantitative survey 
reported that climate change-related problems 
are their biggest challenges (see Figure 15), citing 
reasons such as crop failures due to pests, declining 
soil fertility, and extreme weather events (Quantita-
tive Research, 2025)

Climate change is leading to increased rainfall in 
some European regions, raising the risk of flooding 
and storm damage, while other areas face pro-
longed droughts (Parmesan et al., 2014). Higher 
temperatures, particularly for crops such as wheat, 
contribute to yield losses (Jacobs et al., 2019). 
Shorter growth cycles due to warmer temperatures 
reduce the productivity of crops, as there is less 
time for biomass formation and yield development 
(Ciscar et al., 2019). Another consequence is 
the shift in plant phenology and flowering times, 
disrupting interactions between plants and pollina-
tors, with negative effects on agricultural production 
(Jacobs et al., 2019; Shrestha et al., 2018).

The decline in soil fertility threatens food security, 
while increased sedimentation degrades water qua-
lity, and reduced water retention capacity heightens 
flood risks. Even now, soil degradation—partly due 
to unsustainable farming practices—is leading to 
declining soil fertility (Günal et al., 2015), which, in 
turn, drives climate change and results in biodi-
versity loss and decreased agricultural production 
(Keesstra et al., 2024). Organic matter is funda-
mental to soil health, influencing its structure, water 
cycling, carbon sequestration, and biodiversity, all 
of which are essential for sustainable agriculture 
(Czyżewski & Kryszak, 2023). Arid and semi-arid 
areas are particularly affected by ongoing deserti-
fication, further reducing the availability of arable 
land (Egidi et al., 2022). Additionally, competition for 
water resources between agriculture, industry, and 
households exacerbates the problem (Rocha et al., 
2020). At the same time, extreme weather events 
such as storms and floods are becoming more 
frequent, destroying crops, livestock, and agricultu-
ral infrastructure (Cogato et al., 2019).

Climate change is expected to intensify pest and 
disease outbreaks due to rising temperatures and 
increased humidity, leading to more frequent and 
severe infestations. Additionally, it extends the 
active period of pests and plant pathogens, causing 
them to emerge earlier in the season, persist 
longer, and reproduce more rapidly, particularly 
in Central Europe (Olesen et al., 2011; Roos et al., 
2011; Svobodová et al., 2013). The distribution of 
agricultural pests and diseases has already shifted 
as warmer temperatures and higher humidity create 
favourable conditions for their proliferation, resulting 
in significant crop yield losses (Skendžić et al., 
2021). Currently, an estimated 20–40% of global 
crop production is lost annually due to pest and 
disease damage (Oliveira et al., 2021). Moreover, 
the dominant category of weeds (C3 species), 
which competes with crops for essential resources 
such as nutrients, water, and sunlight, is expected 
to benefit from elevated atmospheric CO₂ levels, 
further complicating weed management (Malhi et 
al., 2021).

Although climate change has some positive effects, 
such as longer growing seasons in northern Europe, 
the negative consequences far outweigh them. 
The combined impacts of temperature changes, 
precipitation patterns, and increased CO₂ concen-
trations affect crop yields differently across regions 
(Jacobs et al., 2019). Regional climate change 
impacts, vulnerabilities, and adaptation strategies 
are comprehensively analysed in the IPCC Fifth 
Assessment Report. For a more detailed analysis, 
see Parmesan et al. (2014).

Challenge 6 - Climate & Environment Challenge 7 - Knowledge & Skills

Interviews and survey results revealed the necessity 
for new knowledge and the erosion of existing 
understanding during farm transitions. In the survey, 
15% of respondents indicated (see Figure 15) that 
knowledge-related concerns, such as the loss of 
knowledge during transitions or a lack of new know-
ledge for sustainable practices, were their primary 
challenges. This observation is consistent with 
research highlighting an increasing need for new 
skills in response to evolving agricultural conditions 
(Dhillon & Moncur, 2023).

Acquiring and utilising new knowledge presents a 
substantial challenge in agriculture. Farming opera-
tions may struggle due to limited access to relevant 
information and a fear of changing strategies in light 
of shifting environmental conditions, stemming from 
the perceived risks associated with a lack of know-
ledge. The seasonal and long-term characteristics 
of most agricultural processes complicate the ability 
to see immediate cause-and-effect relationships, 
thereby hindering learning and adaptation. As one 
survey participant aptly noted:

‘Arable farming relies on a lot of knowledge, but much of it has been lost. We no longer 
have the grandparents who used to pass down their experiences about how these fields 
were managed. That knowledge is gone—it has disappeared with them.’
- Expert Fletschberger

A farmer with many years of experience on the same land usually knows their fields well. However, when a 
new tenant arrives after the farmer retires, this specific knowledge of the land must be meticulously rebuilt—
a process that, as mentioned previously, demands a considerable time investment.

This might take a while ...

Figure 18:  Illustration: Results Take Time to Emerge

‘We learn so slowly because in 
farming each season lasts a whole 
year. It is not like baking bread, 
where you can test eight different 
methods in a single day.’
– Anonymous survey participant

Gaining new knowledge can be challenging, but 
losing existing knowledge is equally significant. 
Expert interviews have underscored this concern. 
Traditional knowledge loss during farm transitions 
or ownership changes remains a significant issue. 
Each agricultural region possesses distinct charac-
teristics that textbooks often overlook. Knowledge 
specific to a site, such as soil types, crops, and 
management practices, especially concerning local 
variations, holds great value yet is frequently lost.
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In conclusion, small-scale farmers encounter nu-
merous challenges that climate change intensifies. 
Because these problems are deeply intertwined, 
making essential adaptations is especially challen-
ging and carries significant risk.

Additionally, farmers frequently navigate stringent 
regulatory frameworks due to their dependence 
on subsidies. Maintaining a farm is already difficult 
under typical circumstances. Therefore, it's unders-
tandable that many farmers are reluctant to make 
structural changes, given that these necessitate 
substantial financial investment and come with 
considerable risks, especially since the outcomes 
of such changes can take years to become evident. 
Moreover, the bureaucratic obstacles tied to these 
transitions further dissuade change.

Climate change increases the occurrence of pest 
infestations. A sustainable method to mitigate this 
issue is through crop diversification, which enhan-
ces pest resistance (Hatt et al., 2018; H. He et al., 
2019; Murrell, 2017) and provides financial stability 
by offsetting losses from a single crop with earnings 
from another (Expert Interviews, 2025). However, 
diversification complicates mechanisation, leading 
to greater reliance on manual labour and exacerba-
ting the current labour shortage. It also introduces 
bureaucratic hurdles and often necessitates direct 
marketing, which requires additional time and effort. 
Many farms remain dependent on subsidies for their 
viability, and changing their practices to improve 
pest resilience could jeopardise these subsidies, 
threatening farmers' financial stability. Therefore, 
addressing one problem may intensify other 
existing difficulties. 

Agricultural consultant Urs Mauk effectively articu-
lated this challenge in an expert interview:

‘If I am 65 years old and plan to run my farm 
for only a few more years without a successor, 
would I really restructure everything on a large 
scale again? That comes with a lot of risk. 

Farmers are often aware that their current sys-
tem is far from perfect, but at least it still works 
well enough to survive. So why take the risk? 

Should I put everything I have built up on the 
line for an uncertain future? … An adjustment 
requires a complete overhaul of my system, 
which involves new knowledge, significant 
financial investments, and a high level of risk. 
Am I really doing this?”
- Expert Mauk

Understanding the intricate interconnections 
among these challenges requires a compre-
hensive perspective. The Systems Map created 
(see Figure 19) synthesises these insights into a 
comprehensive, systems-oriented schematic that 
instantaneously reveals the web of interdependen-
cies. This visual, developed through integrating 
existing literature, expert interviews, and quantita-
tive survey results, offers a conceptual framework 
addressing the main challenges faced by small 
farms and their relationships. Given the intricate 
and context-dependent nature of these issues, the 
graphic aims to avoid depicting fixed connections, 
instead emphasising broader patterns and dyna-
mics. The specific interactions may vary according 
to the distinct characteristics of individual farming 
operations and diverse external influences.

2.1.3.3. The Multifaceted Nature of the Challenges
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Figure 20:  Farmer with Beetroot (Gill, 2019)

The first part of this research has thoroughly 
examined the structural dynamics of European 
agriculture, revealing that the future of small-scale 
farms stands at a crossroads. The rapid decline of 
small-scale farms is not merely a statistical trend 
but a profound transformation with far-reaching 
consequences.

Small-scale farms play a crucial role in creating a 
more resilient and fair food system. However, the 
challenges posed by climate change, biodiversity 
decline, and economic shifts are making their sur-
vival more uncertain. The loss of small-scale farms 
not only raises social issues but also significantly 
threatens agricultural sustainability and biodiversity. 
Yet, the dominant movement towards large-scale, 
efficiency-focused agriculture frequently undermi-
nes environmental resilience.

While the EU has started to recognise this issue, the 
prevailing subsidy model, which relies on per-hec-
tare payments, still encourages farm consolidation. 
Although recent strategic plans of the CAP seek to 
bolster support for small-scale farms, their success 
is questionable, especially in light of the significant 
number of farm closures over the past decades. 
This prompts a crucial inquiry: Is this policy shift too 
late? Furthermore, depending on subsidies to artifi-
cially support small-scale farms is not a sustainable 
long-term solution. True sustainability requires a 
systemic transformation rather than dependence on 
financial aid.

Understanding why small-scale farms are strug-
gling and how this trend might be reversed is 
essential for developing better strategies. Analysing 
the challenges these farms face reveals that they 
are caught in a web of problems (see Figure 19), 
which are only exacerbated by the ongoing impacts 
of climate change. Trapped in a network of depen-
dencies and ill-suited technologies, it becomes 
difficult for farms to restructure themselves into an 
attractive alternative to large-scale agriculture.

Rather than relying on subsidies as temporary 
relief, what is required are targeted instruments 
that empower farmers to reclaim their role as 
both stewards and beneficiaries of the land. The 
symbiotic relationship between farmers and nature, 
where both thrive, is becoming increasingly difficult 
to maintain. With access to appropriate techno-
logies and knowledge, small-scale farms can 
regain viability—whether through labour reduction, 
enhanced decision-making, or alternative agricul-
tural models. The answer is not to prolong financial 
dependencies, but rather to empower farmers 
to autonomously and sustainably address these 
challenges.  A farmer-first approach is essential, 
as those cultivating the land are best positioned to 
determine its needs.

This part of the research argues that the future of 
European agriculture depends on rethinking how 
we support small-scale farms. Innovations must 
be designed to accommodate the diverse reali-
ties of small-scale farms, rather than exclusively 
serving large-scale agribusiness.

Precision Agriculture Technologies (PATs) are 
frequently promoted as a remedy for this issue, yet it 
is still unclear whether these innovations genuinely 
deliver on their promises for small-scale farms. The 
upcoming chapters will evaluate the strengths and 
weaknesses of these strategies...

2.1.4. Conclusion Agriculture
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Figure 21:  Autonomous field robot from Naïo Technologies (Naïo Technologies, 2021)

2.2.1.1. Terminology

Agriculture, specifically large-scale agriculture, has seen a lot of technological advancements in the last few 
decades. This substantial transformation in agriculture was led by advancements in Precision Agriculture 
(Dhillon & Moncur, 2023). Precision Agriculture (PA) is an advanced farming practice that leverages techno-
logy to manage agricultural resources efficiently and sustainably (Mohammed & Munir, 2025). This concept 
is also commonly referred to as Precision Farming (PF), Precision Agriculture Technologies (PATs), Smart 
Farming, Agriculture 4.0, or Digital Farming (Karunathilake et al., 2023; Mohammed & Munir, 2025). 

Precision Agriculture Technologies2.2. 

Traditional Data-Driven

What’s	Needed,	and	Where?

Resource Input.

Figure 22:  Illustration – Accounting for spatial variability within a field.

One of the earliest and most widely cited definitions 
of PA is provided by Pierce & Nowak (1999), who 
describe it as ‘the application of farming strategies 
and methodologies to do the right thing, in the 
right place and at the right time‘,  while data and 
technologies are used to detect and decide what 
is ‘right’ (Botta et al., 2022). A more recent and 
comprehensive definition, officially adopted in 2024 
by the International Society for Precision Agriculture 
(ISPA), states that PA is ‘a management strategy 
that gathers, processes and analyses temporal, 

spatial and individual plant and animal data and 
combines it with other information to support 
management decisions according to estimated 
variability for improved resource use efficiency, 
productivity, quality, profitability and sustainability 
of agricultural production‘ (ISPA, 2024). In simpler 
terms, PA aims to optimise the use of agricultural 
inputs (e.g., fertilisers, fuel) by accounting for spatial 
and temporal variability within the field (see Figure 
22) (Iria et al., 2019).

Agricultural technologies are rapidly advancing 
toward a new paradigm known as Precision 
Agriculture Technologies (PATs), where digitaliza-
tion, automation, and artificial intelligence (AI) play 
a central role in modern crop production (Santos 
Valle & Kienzle, 2020). Within this framework, 
Precision Agriculture has emerged as a trans-
formative approach, utilizing advanced tools and 
techniques to enhance efficiency, productivity, and 
sustainability in farming. It encompasses a diverse 
range of innovative solutions, many of which have 
the potential to address key challenges faced by 
small-scale farmers.

While these technologies appear to offer significant 
advantages, their uptake remains quite limited, 
particularly among small farms. This chapter starts 
by defining the concept and different types of 
Precision Agriculture. It subsequently discusses 
the overall benefits of these methods, focusing 
especially on their potential impact for small-scale 
farmers, along with the reasons behind the low 
levels of adoption. The analysis also critically 
examines whether the introduction of such sophis-
ticated technologies is a suitable or beneficial goal 
in this sector.  Lastly, the chapter presents insights 
into how farmers view these technologies and their 
expectations regarding their application.

2.2.1. Introduction



4948

The fundamental concept of Precision Agriculture —addressing the spatial and temporal variability of soil 
and crop factors within fields—is not a new idea. In fact, this principle has been practised for centuries. 
Before the mechanisation of agriculture, farmers cultivated small fields, allowing them to adjust treatments 
based on localised conditions manually. However, as field sizes increased and mechanisation advanced, 
it became more challenging to account for variability within a field and apply individualised treatments to 
different areas (Stafford, 2000).

PA extends beyond data collection, analysis, and site-specific input application. It also encompasses a wide 
range of technologies that automate field operations, including tractor auto-guidance systems and robotics 
for crop and livestock management (A. Balafoutis et al., 2017). The following section will discuss the five 
main categories of Precision Agriculture, which cover the key technologies and practices within this field.

Guidance Technologies
Guidance technologies increase accuracy in 
agricultural tasks by employing GPS/GNSS-based 
auto-steering and navigation systems. These inno-
vations enhance machine efficiency, decrease input 
overlap, and optimise essential activities like tillage, 
sowing, and fertilisation. By reducing human error, 
they aid in conserving resources and lowering fuel 
use. However, it's important to note that guidance 
technologies do not gather or analyse data; their 
main purpose is to enhance operational precision.

Recording Technologies
Recording technologies concentrate on collecting 
critical agricultural information, such as soil, crop, 
and climate conditions. This includes sensors (e.g., 
measuring moisture, temperature, and nutrient 
levels), UAVs for remote sensing, weather stations, 
and GPS-based yield mapping. While these tech-
nologies produce important raw data, they lack the 
ability to process or interpret it. To obtain actionable 
insights, integration with analysis or decision-sup-
port systems is necessary.

Reacting Technologies
Reacting technologies facilitate immediate modi-
fications in agricultural inputs driven by collected 
data, improving resource efficiency and environ-
mental sustainability. Examples include Variable 
Rate Application (VRA) for fertilizers and pesticides, 
intelligent irrigation systems, and automated 
spraying machinery. Although these tools markedly 
enhance precision in field interventions, they are not 
completely autonomous and still depend on human 
supervision—setting them apart from robotic 
systems.

While the European Commission’s Science and 
Knowledge Service classifies PATs into the pre-
sented three main categories, A. T. Balafoutis et al. 
(2020) expanded this framework by adding Farm 
Management Information Systems (FMIS) and 
Robotic/Automation Systems. These two additional 
categories have gained significant attention in 
research, innovation, and market applications.

Farm Management Information Systems (FMIS)
Farm Management Information Systems integrate 
and analyse agricultural data to aid in farm planning 
and decision-making. This group encompasses De-
cision Support Systems (DSS), big data analytics, 
and farm planning tools that help optimise fertilisa-
tion, irrigation, pest control, and resource allocation. 
Unlike reactive technologies, FMIS do not carry out 
physical tasks in the field. Rather, they convert raw 
data into actionable insights, improving efficiency 
and informing long-term farm strategies.

Robotic/Automation Systems
Robotic and automation systems perform auto-
nomous agricultural tasks with minimal human 
intervention, incorporating AI-driven tractors, robo-
tic weeders, and automated harvesting machines. 
These advanced systems reduce manual labour by 
independently executing field operations based on 
recorded data and sensor feedback. Unlike reacting 
technologies, robotic systems go beyond adjusting 
inputs to fully automate actions, representing 
the most sophisticated level of smart farming by 
combining data collection, decision-making, and 
execution into a single system.

2.2.1.2. Types of PATs

Since Precision Agriculture is a broad and multifa-
ceted concept, the European Commission’s Science 
and Knowledge Service has categorised Precision 
Agricultural Technologies (PATs) into three main 
types for policymaking purposes (Iria et al., 2019).

It is important to note that these five categories are not mutually exclusive. A particular PAT may simulta-
neously record and react to data. Robotic systems typically incorporate guidance technologies while also 
performing recording or reacting functions - or both.

Precision Agriculture Technologies (PATs)
Precision Farming (PF) - Smart Farming (SF) - Digital Farming - Agriculture 4.0

Precise navigation.

Accurate positioning.

Collect raw data.

No data interpretation.

Adjust inputs in real-time. Data-driven planning. Autonomous field operations.

Not fully autonomous. No physical field tasks. Data, decisions & execution.

Figure 23:  Types of Precision Agriculture Technologies

A. T. Balafoutis et al. (2020) also conducted an analysis of which types of PATs dominate scientific research, 
innovation projects, and commercial products (see Figure 24). Their findings reveal a strong emphasis 
on recording technologies in scientific papers, with significantly less focus on reacting technologies. This 
highlights a discrepancy in the field. Although data collection has advanced, the conversion of these measu-
rements into practical applications on farms remains insufficient.

Figure 24:  Allocation of Identified Smart Farming Technologies by Type (Recording, Reacting, Guiding, FMIS, Robotics/Automation); 
Created by the author based on (A. T. Balafoutis et al., 2020)
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2.2.2. Benefits
This chapter explores the benefits of Precision Agriculture Technologies (PATs). It begins by outlining the 
general advantages of Precision Agriculture found in the literature. These benefits are then connected to the 
specific challenges faced by small-scale farms, as discussed in the previous chapter, to assess whether—
and in what ways—these technologies can effectively address those challenges. In this manner, the chapter 
answers the following research questions:

RQ 2. Why should small-scale farms adopt Precision Agriculture technologies?
RQ 2.1. What are the advantages of Precision Agriculture technologies 
 in the context of small-scale farms?

Precision Agriculture aims to enhance productivity, sustainability, and efficiency in farming operations 
(Mohammed & Munir, 2025). By improving the efficiency of both crop and livestock management, PA helps 
reduce resource consumption and operational costs (Monteiro et al., 2021). Through the systematic col-
lection and analysis of soil, crop, and climate data, PA enables targeted interventions—whether performed 
manually or automatically—based on agro-climatic and economic models (A. T. Balafoutis et al., 2020; Rose 
& Chilvers, 2018).

2.2.2.1. Types of Benefits

While different scientific studies emphasise various advantages of PA, this section aims to provide a com-
prehensive overview by categorising its benefits systematically. The impact of PATs depends on the specific 
technology used. Some benefits are data-driven, leveraging real-time insights to optimise decision-making, 
while others are automation-driven, improving efficiency through mechanisation. These two categories are 
closely linked, as automation often relies on data, and automated processes are typically based on previously 
gathered insights.

This summary has been created from comprehensive literature research to enhance understanding. The list 
presents a structured outline of the benefits identified during the review. Each point will be elaborated on in 
the following sections.

Optimized Interventions & Resource Application

 → Reduced	input	costs	through	fewer,	more	targeted	field	interventions	(manually	or	autonomously)
(Ahmad	et	al.,	2024;	A.	T.	Balafoutis	et	al.,	2020;	EPRS,	2016;	Fabiani	et	al.,	2020;	Frauenhofer,	n.d.;	Karunathilake	et	al.,	2023;	Misara	et	al.,	2022)

 → Reduced	environmental	impact	by	minimising	chemical	inputs	and	field	interventions	(VRT)
(Ahmad	et	al.,	2024;	A.	T.	Balafoutis	et	al.,	2020;	Bucci	et	al.,	2018;	Fabiani	et	al.,	2020;	Frauenhofer,	n.d.;	Meddeb	et	al.,	2021;	Misara	et	al.,	2022;	

Mohammed	&	Munir,	2025;	Navarro	et	al.,	2020;	Stafford,	2000)

 → Reduced	labour	demand	through	optimized,	more	targeted	field	interventions	
(Akintuyi,	2024)

Enhanced Crop Management & Quality

 → Improved	soil	fertility	through	zone-specific	nutrient	management
(Ahmad	et	al.,	2024;	Fabiani	et	al.,	2020)

 → Enhanced pest and disease prevention through data-enabled cropping strategies
(A.	T.	Balafoutis	et	al.,	2020;	Navarro	et	al.,	2020)

 → Improved	pest	and	disease	detection	(spotting)	for	timely,	zone-specific	interventions
(A.	T.	Balafoutis	et	al.,	2020;	EPRS,	2016;	Frauenhofer,	n.d.;	Mohammed	&	Munir,	2025;	Navarro	et	al.,	2020)

 → Enhanced	yield	stability	through	timely	interventions	and	Crop-Rotation	Diversification	
(Bowles	et	al.,	2020)

 → More consistent product quality through uniform crop growth conditions
(A.	T.	Balafoutis	et	al.,	2020;	Mohammed	&	Munir,	2025)

Risk Forecasting and Strategic Planning

 → Enhanced	risk	management	through	predictive	modelling	(e.g.,	droughts,	floods,	pest	outbreaks)
(Ahmad	et	al.,	2024;	A.	T.	Balafoutis	et	al.,	2020;	Mohammed	&	Munir,	2025)

 → Data-enabled cropping strategies for optimal crop selection, timing, and location
(Ahmad	et	al.,	2024;	Bucci	et	al.,	2018;	Karunathilake	et	al.,	2023;	Mohammed	&	Munir,	2025;	van	Klompenburg	et	al.,	2020)

 → Accurate yield forecasting and climate-based planning
(EPRS,	2016;	Meddeb	et	al.,	2021;	Mohammed	&	Munir,	2025)

 → Improved	(climate)	resilience	by	adapting	cropping	decisions	to	evolving	field	conditions
(Cravero	et	al.,	2022;	Jung	et	al.,	2021)

 → Potential carbon credit earnings through easier access to climate-smart subsidies 
(Pedersen	et	al.,	2024;	Raihan	et	al.,	2024;	Tripathi	&	Giri,	2024)

 → Reduced bureaucratic burden through automated data records for compliance and traceability
(Stafford,	2000;	N.	Zhang	et	al.,	2002)

Overview Data-Driven Benefits

Overview Automation-Driven Benefits

Labour Reduction & Safety Improvements

 → Reduced labour demand through automated tasks (e.g. weeding)
(A.	T.	Balafoutis	et	al.,	2020;	EPRS,	2016)

 → Enhanced worker safety by reducing direct exposure to machinery and chemicals
(A.	T.	Balafoutis	et	al.,	2020;	Duckett	et	al.,	2018)

Optimized Field Operations

 → Lower fuel consumption through minimized overlaps and optimized route planning
(A.	T.	Balafoutis	et	al.,	2020;	EPRS,	2016;	Frauenhofer,	n.d.;	Monteiro	et	al.,	2021)

 → Reduced soil compaction through optimized route planning and lightweight machinery
(EPRS,	2016;	Frauenhofer,	n.d.;	Monteiro	et	al.,	2021;	Santos	Valle	&	Kienzle,	2020)

 → Extended	Operational	Windows	(earlier	planting	and	later	harvesting)	in	wet	fields	
due to lightweight machinery 
(Duckett	et	al.,	2018;	Grimstad	et	al.,	2015;	Xu	&	Li,	2022a,	2022b)

 → Minimized	machinery	wear	and	tear	through	data-driven	operational	efficiency
(EPRS,	2016;	Frauenhofer,	n.d.)
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Optimized Resource Use & Targeted 
Interventions

One of the most significant advantages of PATs is 
their ability to optimize resource use, particularly 
through Variable Rate Technology (VRT). This 
technology ensures that fertilizers, pesticides, and 
irrigation are applied only where necessary, redu-
cing overall input costs and improving efficiency 
(Ahmad et al., 2024; A. T. Balafoutis et al., 2020; 
EPRS, 2016; Fabiani et al., 2020; Frauenhofer, n.d.; 
Karunathilake et al., 2023; Misara et al., 2022). By 
minimizing unnecessary chemical applications and 
excessive field operations, PATs also contribute to a 
lower environmental impact. Reduced input usage 
leads to less contamination of soil and water, while 
fewer trips across the field help mitigate soil com-
paction, preserving soil health over time (Ahmad et 
al., 2024; A. T. Balafoutis et al., 2020; Bucci et al., 
2018; Fabiani et al., 2020; Frauenhofer, n.d.; Med-
deb et al., 2021; Misara et al., 2022; Mohammed & 
Munir, 2025; Navarro et al., 2020; Stafford, 2000). 
Another crucial benefit of resource optimization is 
its impact on labour efficiency. With more targeted 
field interventions, farmers spend less time perfor-
ming manual tasks, allowing for better workforce 
management, and reducing the need for physical 
labour (Akintuyi, 2024). 

Enhanced Crop Management & Quality

PATs can improve soil fertility through zone-specific 
nutrient management, ensuring that the soil recei-
ves exactly what it needs in specific areas (Ahmad 
et al., 2024; Fabiani et al., 2020). Furthermore, early 
detection of disease outbreaks (Early Spotting) 
through sensor-based monitoring enables precise 
and localized treatment before infections or weeds 
spread across larger areas (A. T. Balafoutis et al., 
2020; EPRS, 2016; Frauenhofer, n.d.; Mohammed 
& Munir, 2025; Navarro et al., 2020). This approach 
reduces the overall amount of inputs required, 
as treatment is applied only where necessary, 
while also minimizing labour time and yield loss. 
If stresses are detected early, suitable treatments 
can be applied to protect crops and prevent losses 
(Navarro et al., 2020; Neupane & Baysal-Gurel, 
2021).

Early detection has two major advantages. First, 
diseases can often be identified before visible 
symptoms appear to the human eye, allowing 
for timely intervention. Second, continuous and 
seamless monitoring eliminates the risk of human 
errors, such as overlooking critical signs of disease 
(A. T. Balafoutis et al., 2020). 

Additionally, intelligent and data-driven analyses 
enable the development of optimised cropping 
strategies, which enhance pest resistance by 
strategically combining plant species to create more 
resilient ecosystems (A. T. Balafoutis et al., 2020; 
Navarro et al., 2020). Moreover, data-driven input 
adjustments contribute to uniform crop growth 
conditions, ultimately leading to more consistent 
product quality (A. T. Balafoutis et al., 2020; 
Mohammed & Munir, 2025).

Risk Forecasting & Strategic Planning

Data-driven insights also enable enhanced risk 
management through predictive modelling. With 
real-time monitoring and predictive analytics, far-
mers can anticipate and mitigate risks before they 
cause significant damage (Eunice et al., 2022). This 
allows for more accurate forecasting of droughts, 
floods, and pest outbreaks, helping to identify 
patterns and adjust cropping strategies accordingly 
(Ahmad et al., 2024; A. T. Balafoutis et al., 2020; 
Mohammed & Munir, 2025). By leveraging data, 
farmers can develop optimised cropping strategies 
for better crop selection, timing, and field place-
ment, leading to improved agricultural planning and 
resource efficiency (Ahmad et al., 2024; Bucci et 
al., 2018; Karunathilake et al., 2023; Mohammed & 
Munir, 2025).

Furthermore, climate resilience is enhanced by 
adapting cropping decisions to evolving field 
conditions, making agriculture more sustainable in 
the face of changing environmental factors (Cravero 
et al., 2022; Jung et al., 2021). Additionally, more 
accurate yield forecasting and climate-based 
planning help optimize resource allocation and 
improve long-term farm management strategies 
(EPRS, 2016; Meddeb et al., 2021; Mohammed & 
Munir, 2025; van Klompenburg et al., 2020).

Recording technologies also play a crucial role in 
reducing bureaucratic burdens for farmers, stre-
amlining data collection and regulatory compliance 
(Ehlers et al., 2021). By automating compliance 
and traceability records, farmers can significantly 
decrease administrative workloads, ensuring 
seamless reporting and documentation (Stafford, 
2000; N. Zhang et al., 2002). Moreover, access 
to climate-smart subsidies and potential carbon 
credit earnings becomes easier, as necessary data 
is already collected and readily available, eliminating 
the need for additional effort (Pedersen et al., 2024; 
Raihan et al., 2024; Tripathi & Giri, 2024).

Explanation Data-Driven Benefits Explanation Automation-Driven Benefits

Labour Reduction & Safety Improvements

Hiring and retaining agricultural workers has 
become increasingly difficult (see Chapter 2.1.3.2. 
Main Challenges of Small-Scale Farms), which is 
one of the key factors driving the rapid growth of 
field robotics over the past decade (Lowenberg-
DeBoer et al., 2020). Automation significantly 
reduces labour demand by taking over repetitive 
and time-consuming tasks, such as weeding, which 
is one of the most labour-intensive activities in 
farming (A. T. Balafoutis et al., 2020; EPRS, 2016). 
Given the substantial time investment required for 
weed control, it is no surprise that weed control 
robots are among the most advanced agricultural 
robots to date (Fountas et al., 2020). At the same 
time, automation also contributes to improved 
worker safety by reducing direct exposure to heavy 
machinery and hazardous chemicals, making 
farming both safer and less physically demanding 
(A. T. Balafoutis et al., 2020; Duckett et al., 2018).

Optimized Field Operations

Automation also provides several practical advan-
tages. One key benefit is lower fuel consumption, 
as optimized route planning reduces unnecessary 
overlaps and minimizes human errors, leading to 
more efficient field operations (A. T. Balafoutis et al., 
2020; EPRS, 2016; Frauenhofer, n.d.; Monteiro et 
al., 2021). This increased efficiency also results in 
minimized machinery wear and tear, as data-driven 
operational strategies help extend the lifespan of 
equipment by reducing unnecessary usage and 
mechanical strain (EPRS, 2016; Frauenhofer, n.d.).

Another important advantage is reduced soil 
compaction. Optimized field routes ensure mini-
mal overlaps, while autonomous vehicles can be 
designed to be lighter, further reducing the pressure 
exerted on the soil (EPRS, 2016; Frauenhofer, n.d.; 
Monteiro et al., 2021). The ability to construct lighter 
agricultural machinery also allows for extended 
operational windows, enabling earlier planting and 
later harvesting, even in wet field conditions, as 
lightweight machines can continue operating when 
heavier traditional equipment would get stuck or 
cause excessive soil damage (Duckett et al., 2018; 
Grimstad et al., 2015; Xu & Li, 2022b, 2022a). 
Extending the seeding and harvest windows is 
a key factor in improving farm profitability, and 
autonomous lightweight machines are well-suited 
to achieve this (Lowenberg-DeBoer et al., 2020).

Additional Benefit Identified in Expert Interviews

'Training the Eye'

One often overlooked advantage, emphasised in 
expert interviews but not extensively covered in 
literature, is how data collection aids in ‘training the 
eye’ and enhancing perception. Although current 
research recognises the knowledge-boosting 
effects of Precision Agriculture, it's important to 
view these benefits within a wider framework. 
Data-driven decision-making not only enhances 
field management but can also develop farmers’ 
observational abilities over time. Data gathering 
can promote continuous learning and knowledge 
improvement by providing unbiased evaluations of 
field conditions and past decisions.

‘When I see people leaving workshops thinking, 
‚Ah, so that is how it works! All clear, great! 
How do we get started?‘ it’s clear they still need 
someone—or an AI—to take them by the hand 
and guide them further.’ 
– Expert Mauk

Beyond immediate decision support, data collection 
and digital analysis hold considerable value during 
the early stages of farming or when transitioning 
to new agricultural practices, such as regenerative 
agriculture. These technologies can enhance 
farmers’ comprehension of ecological relationships, 
assisting them in developing sound judgement. 
In this context, data acts as an educational tool, 
promoting both technical expertise and intuitive 
competence.

Ultimately, experts suggest that long-term success 
in agriculture is likely to depend more on enhancing 
knowledge and practical judgement than on in-
definite reliance on technological aids.

‘Every machine is just a crutch - something 
you might need for a while, maybe only at the 
beginning when you're trying something new 
and looking for reassurance. But eventually, you 
figure it out yourself and gain confidence in your 
own judgment.’ 
– Expert Bajohr
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The numerous advantages outlined in the previous 
chapter demonstrate how diverse forms of PATs 
could help small-scale farms tackle their pressing 
challenges and lessen related burdens. They pro-
vide focused and practical solutions to a variety of 
main challenges faced by small farms (see Chapter 
2.1.3.2. Main Challenges of Small-Scale Farms). 
By streamlining processes and improving field 
operations, these technologies can mitigate labour 
shortages and the demanding workloads typical in 
organic farms that depend on manual labour. Ad-
ditionally, PATs enhance climate resilience through 
predictive modelling, data-driven crop planning, and 
reduced chemical use, which collectively promote 
healthier soils and more sustainable farming 
practices. Economically, they lead to lower input 
costs, improved resource efficiency, and stabilised 
yields - all vital for long-term viability. Regarding 
knowledge, PATs equip farmers with actionable, 
site-specific data that enables them to adapt and 
make well-informed decisions, even in the absence 
of traditional experience passed through genera-
tions. Although their impact on market access and 

regulatory challenges may be indirect, PATs still 
provide significant support by improving product 
consistency and automating compliance-related 
data collection, thereby streamlining certification 
and subsidy application processes.

While PATS are not a one-size-fits-all answer, they 
address many linked issues and show great poten-
tial for enhancing the resilience, efficiency, and 
sustainability of small-scale farming. However, their 
adoption rates are still relatively low. By 2016, only 
around 25% of farms in the European Union had 
adopted any form of precision agriculture (EPRS, 
2016), encompassing all farm sizes and a range 
of technologies. Small-scale farms, in particular, 
exhibit a significantly lower adoption rate, with 
considerable differences across member states. 
For example, in Austria, just 6% of farms were using 
PATs in 2016 (ERDF, 2020). 

This raises the important question of why small-
scale farms are not adopting available PAT solutions 
more widely.

The following chapter examines the economic, technological, and social factors that hinder the adoption 
of Precision Agriculture technologies (PATs) among small-scale farms, answering the following research 
question:

RQ  3. What are the key factors influencing the adoption of 
 Precision Agriculture technologies among small-scale farms?

2.2.2.2. Opportunities for Small-Scale Farms

Despite the significant ecological and economic 
benefits of PATs, their adoption remains limited, 
particularly among small-scale farms (Buitkamp et 
al., 2021; Cui et al., 2018; John et al., 2023). While 
the PA industry has made considerable efforts to 
demonstrate the advantages of these innovations, 
surveys consistently indicate widespread reluc-
tance (Paustian & Theuvsen, 2016). Large-scale 
farms tend to integrate PATs relatively quickly, 
whereas small-scale farms face greater complexi-
ties and inconsistencies in implementation (Barnes 
et al., 2019; John et al., 2023; Schimmelpfennig & 
Ebel, 2011).

This development is particularly concerning 
given the steady decline in the number of small-
scale farms. Yet, Precision Agriculture presents 
an opportunity for these farms to maintain their 
competitiveness and position themselves as an 
economically viable alternative to large-scale ope-
rations (Al-Amin et al., 2022). However, the hesitant 
adoption of PATs prevents small-scale farms from 
fully benefiting from the potential economic and 
environmental advantages (Paustian & Theuvsen, 
2016). 

In the complex landscape of modern agriculture, 
the adoption of PATs among small-scale farms is 
influenced by a wide range of interrelated factors 
(John et al., 2023). Numerous studies have 
examined the key barriers and drivers shaping this 
process (Ammann et al., 2022; A. T. Balafoutis et 
al., 2020; Barnes et al., 2019; Hundal et al., 2023; 
Iria et al., 2019; John et al., 2023; Kernecker et al., 
2020; Knierim et al., 2018; Marcus Pedersen et al., 
2022; Pathak et al., 2019; Paustian & Theuvsen, 
2016; Reichardt et al., 2009). 

This chapter provides an overview of these critical 
influences by applying the conceptual framework 
proposed by John et al. (2023), categorising them 
into economic, technological, and social dimensions 
(see Figure 25).

2.2.3. Adoption Barriers

Economic Social

Technological

Figure 25:  Categories of Adoption Barriers; Created by the author based on (John et al., 2023)
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2.2.3.1.  Economic Factors

As previously established, the economic survival of 
small-scale farms is already a significant challenge. 
The cost of PATs is often simply unaffordable for 
small-scale farmers (Dhillon & Moncur, 2023; 
Reichardt et al., 2009). The substantial upfront 
financial investment required to acquire advanced 
agricultural tools serves as a major barrier. However, 
even when farmers manage to overcome this initial 
cost hurdle, the issue of return on investment (ROI) 
comes into play. It is not just about the upfront 
expenses but also about carefully weighing the 
potential long-term benefits against these costs 
(Pathak et al., 2019).

Farmers must critically assess the economic 
advantages, such as increased crop yields and 
reduced input costs, against the capital-intensive 
nature of these technologies (John et al., 2023). 
Many express concerns over whether the eventual 
ROI will justify the initial expenditure, particularly 
when yields are already volatile, and profit margins 
are thin (Pathak et al., 2019). Limited cash flow 
and small profit margins make it difficult to absorb 
the financial risk associated with investing in new 
technologies (Paustian & Theuvsen, 2016).

Another ongoing financial challenge is the recurring 
costs of subscription fees and software licensing, 
which add to the overall financial burden (A. T. 
Balafoutis et al., 2020; Iria et al., 2019; Paustian & 
Theuvsen, 2016). Moreover, the cost of specialized 
technologies, such as GPS and Real-Time Kinema-
tic (RTK) networks, tends to be disproportionately 
high on a per-hectare basis for smaller farms, 
further reinforcing risk-averse behaviour (A. T. Ba-
lafoutis et al., 2020). Additionally, limited access to 
credit or financing programs specifically designed 
to support technology adoption further constrains 
the ability of small-scale farmers to modernise 
through Precision Agriculture (Barnes et al., 2019; 
Iria et al., 2019).

The Common Agricultural Policy (CAP) seeks to 
address these financial barriers through targeted 
subsidies (see Appendix 7.3.3. Subsidies for Invest-
ment in Technology). 

2.2.3.2. Technological Factors

Even basic mechanisation remains a challenge 
for many small-scale farms, as discussed in detail 
in a previous chapter (see Chapter 2.1.3.2. Main 
Challenges of Small-Scale Farms). Many well-esta-
blished agricultural technologies are impractical for 
small-scale farms due to limited applicability (Dhil-
lon & Moncur, 2023). Action-oriented technologies, 
such as agricultural robots, are typically designed 
for specific tasks (Lowenberg-DeBoer et al., 2020) 
and monoculture farming systems (Duckett et al., 
2018). As a result, they are often unsuitable for 
small-scale farms, where only a small portion of 
tasks can be automated. A single-purpose robot 
provides little economic benefit if most farm work 
still relies on manual labour. The lack of adaptability 
to smaller farm structures remains a major barrier to 
adoption (Marcus Pedersen et al., 2022).

For large farms, action-oriented automation proves 
to be much more cost-effective. Technologies 
such as Variable Rate Technology (VRT) can 
greatly lower fertilizer expenses. For instance, on a 
500-hectare farm, a 40% reduction in fertilizer use 
ensures a quick return on investment. Conversely, a 
small farm that achieves the same savings percen-
tage on only one hectare sees little financial gain, 
complicating the justification for such an investment 
(Expert Interview, 2025).

According to expert Interviews, informing techno-
logies, such as data-driven systems, face different 
challenges. Field robots solely collecting data offer 
too little immediate value for small-scale farms to 
justify the investment. Large-scale operations ty-
pically have the resources and expertise to analyse 
and apply such data effectively. Smaller farms often 
lack the time, technical expertise, or capacity to 
integrate data-driven insights into their workflows. 
The effort required to process and interpret the data 
frequently outweighs its potential benefits, making 
pure data-collection systems impractical for small 
and medium-sized farms. In an interview, expert Urs 
Mauk highlights this challenge:

‘So, it [the robot] only collects data? No, a ma-
chine that only collects data might be worth it for 
large farms, but not for small and medium-sized 
ones. The added value of the data is too low, and 
the know-how to analyse and use it is lacking. If 
you are on a family farm, where everyone works 
70 hours a week and isn’t particularly tech-
savvy, what are you supposed to do with even 
more abstract data?’
– Expert Mauk

Demographics
The influence of age and education on adopting 
PATs remains a topic of debate. Some researchers 
argue that younger and more educated farmers are 
more inclined to adopt new technologies. John et al. 
(2023) and Pathak et al. (2019) found that edu-
cation enhances farmers’ understanding of PATs, 
while younger individuals tend to be more open to 
innovation. Barnes et al. (2019) and Kernecker et 
al. (2020) further highlight that higher education 
improves data interpretation and decision-making, 
facilitating adoption.

However, other studies suggest that structural and 
financial factors are more decisive. Knierim et al. 
(2018) and Reichardt et al. (2009) found that farm 
size, costs, and technological complexity are more 
significant determinants than age or education. 
Similarly, Paustian & Theuvsen (2016) contend that 
although education can be advantageous, other 
factors have significantly stronger influences on 
adoption. Consequently, while age and education 
may affect adoption, their effects are frequently 
secondary to economic and structural conditions.

Cultural and Perception Barriers
Farmers’ willingness to adopt Precision Agriculture 
is shaped not just by economic or technical factors 
but also by their mindset, experience, and social 
environment (Barnes et al., 2019; John et al., 2023). 
Many older farmers, for instance, rely on traditional 
methods and may see digital dashboards as 
unnecessary or even contradictory to their field-
based intuition (Kernecker et al., 2020; Reichardt 
et al., 2009). Some worry that technology could 
mean losing independence, especially if it ties them 
to proprietary software (A. T. Balafoutis et al., 2020; 
Knierim et al., 2018). Others hesitate because data-
driven farming feels overwhelming—it can seem 
like they need to relearn everything they already 
know (Iria et al., 2019; Paustian & Theuvsen, 2016). 
Even when some farmers succeed with new tools, 
adoption can remain slow if everyday challenges 
make knowledge-sharing difficult (Hundal et al., 
2023; Pathak et al., 2019).

Technological Affinity
Implementing Precision Agriculture requires ad-
vanced technical skills, including sensor calibration 
and data analysis.  However, access to specialised 
training remains limited for many small-scale 
farmers, creating a significant knowledge gap (John 
et al., 2023). This issue is further compounded by 
a lack of familiarity with geospatial and information 
technology tools, which contributes to reluctance 
and suboptimal use of available technologies 
(Kernecker et al., 2020). Farmers who have not 
previously engaged with data-driven platforms may 
find them challenging, particularly in the absence 
of intuitive user interfaces or peer support networks 
(Reichardt et al., 2009).

Advisory Services and Trust
For many farmers, adopting Precision Agriculture 
means depending on equipment dealers, software 
companies, or agribusinesses for training and 
support. However, these sources are not always 
neutral (John et al., 2023; Knierim et al., 2018). 
Some farmers worry that commercial advisors may 
push products that do not truly fit their farm’s needs, 
eroding trust in these advisory channels (Barnes et 
al., 2019; Pathak et al., 2019). Peer learning—often 
a trusted method in farming communities—is 
not widely used in Precision Agriculture, largely 
because of the technical complexity involved (Iria et 
al., 2019; Kernecker et al., 2020). Without reliable, 
unbiased guidance, many farmers remain unsure 
whether investing in PA tools will genuinely improve 
their farm’s productivity (Paustian & Theuvsen, 
2016).

2.2.3.3. Social Factors

This is especially true when the advantages of 
data-enhanced, optimised decision-making are not 
immediately visible or may take years to materialise. 
Unlike action-oriented solutions that provide tan-
gible, short-term results, the connection between 
improved data-driven decisions and long-term 
farm performance is often unclear (Expert Interview, 
2025).
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Alongside recognising the advantages of Precision Agriculture Technologies (PATs) and understanding the 
barriers to their adoption, it is essential to maintain a balanced perspective by examining potential downs-
ides. This includes questioning whether universal adoption across all farms is truly necessary or appropriate. 
Insights from expert interviews reveal several frequently overlooked disadvantages of PATs, particularly in the 
context of small-scale farming. By addressing these findings, this chapter answers the following research 
question:

RQ 2.2. What are the potential overlooked disadvantages of 
 Precision Agriculture technologies in the context of small-scale farms?

2.2.4. Drawbacks and Risks of Technology Adoption
The rise of PATs marks a significant shift in modern farming, driven by advancements in automation and data 
analytics. Beyond the various adoption barriers, an important consideration is whether overcoming these 
obstacles should be a priority to increase adoption rates. Given the previously outlined benefits, this may 
seem like a logical step. However, assessing the potential disadvantages of adopting these technologies is 
equally important. A thorough evaluation of PATs requires not only an examination of their advantages but 
also a critical analysis of their drawbacks.

While existing literature primarily highlights the benefits of PATs, expert interviews conducted in this study 
have also explored and analysed potential disadvantages. While techno-optimists champion these inno-
vations for their potential to enhance sustainability and efficiency, techno-pessimists warn of unintended 
consequences, such as job displacement and increased reliance on proprietary systems. However, from 
the perspective of Don Ihde’s postphenomenology—a framework that examines how technology mediates 
human experience—both views oversimplify the issue (Ihde, 2009).

2.2.4.1. Postphenomenology

Postphenomenology challenges the idea that 
technology is either a neutral tool or a simple 
extension of human intention. Instead, it argues 
that technology actively shapes human experience, 
amplifying certain aspects while diminishing others 
(Ihde, 2008).

Consider a farmer whose daily routines are 
reshaped by PATs. Traditional, hands-on 
knowledge—gained through years of manual field-
work—is increasingly intertwined with data-driven 
insights. The rhythm of manual inspection and 
decision-making shifts to one guided by automated 
systems. This transition not only changes what 
farmers do but also how they experience their work 
(Verbeek, 2005).

Take precision farming robots, for example. 
Techno-optimists view them as tools that increase 
efficiency and sustainability by optimising re-
source use. Techno-pessimists, however, argue 
that these robots threaten traditional farming 
methods, foster dependency on proprietary 
technologies, and displace human labour. From a 
postphenomenological standpoint, these robots 
do more than enhance efficiency or disrupt labour 
markets—they actively reconfigure the farming 
process (Verbeek, 2005). Decision-making shifts 
from human judgment to algorithmic optimisation, 
with farmers relying more on technology providers 
and data-driven insights than traditional knowledge 
and intuition.

A key concept in postphenomenology is multista-
bility—the idea that technology does not have a 
single, fixed function but acquires different mea-
nings based on context and user interaction (Ihde, 
1990)This became evident in the analysis of expert 
interviews. 

Farmer Winklhofer viewed the data-collecting robot 
as an extremely effective tool for minimising labour, 
thus removing the necessity for manual field in-
spections. In contrast, Farmer Fletschberger viewed 
it mainly as a form of control and a possible risk to 
data privacy, worried that farmers might become 
more reliant on data-driven decisions. Meanwhile, 
Farmer Bajohr viewed it as a knowledge genera-
tor, revealing links between soil quality, weather 
patterns, and yield forecasts, enhancing agricultural 
comprehension and supporting learning.

Each of these perspectives is rooted in the everyday 
experiences and concerns of the users. The robot 
remains unchanged as a physical entity, yet its 
significance is continuously reconfigured through 
interaction with diverse human practices and cultu-
ral contexts. This interpretation can also shift over 
time. The stability of a given technological function 
is not fixed, it evolves with cultural, social, or 
individual changes (Ihde, 2009). For example, while 
a farmer may initially use the robot only to determine 
the optimal location for planting potatoes, its role 
could expand as the technology becomes more 
established. Eventually, the robot could replace the 
farmer’s knowledge entirely, making all field-related 
decisions autonomously.

Multistability undermines the idea that techno-
logy dictates a single, inevitable outcome. Instead, 
technologies interact with human intentions, cultural 
settings, and societal structures, allowing for diverse 
and often unpredictable applications. This chal-
lenges the techno-pessimist perspective, which 
assumes that technology determines human beha-
viour in a rigid, one-directional manner. Technology 
itself does not dictate its use—human choices do. 
Much like a knife can be used for cooking or as a 
weapon, PATs can be employed in different ways 
depending on human intentions. 

However, even when farmers have control over 
how they utilise a tool, the tool itself structures the 
possibilities of what can be done. Farmers can use 
big data analytics to refine cropping strategies, 
amplifying data-driven insights, but at the same 
time, if they rely solely on automated reports, 
traditional, hands-on farming knowledge may be 
lost. This shift represents a fundamental reconfigu-
ration of epistemic authority (Ferrario et al., 2023). 
Expertise moves away from experience-based 
knowledge toward data-driven analysis, creating 
a new dependency on technological systems. 
Therefore, PATs cannot be seen as neutral tools. 
They actively reshape agricultural practice, deci-
sion-making, and the role of the farmer. While they 
enhance efficiency, automation, and precision, they 
also diminish traditional knowledge, direct human 
observation, and alternative approaches.

The adoption of farm robotics and PATs is not me-
rely a technical shift—it fundamentally transforms 
farmers’ perceptions, workflows, and decision-
making processes. A postphenomenological 
perspective highlights that these technologies are 
not passive instruments; they mediate human ex-
perience, introducing both benefits and challenges. 
Future developments in Precision Agriculture should 
not focus solely on technical efficiency. Instead, 
they must also consider how these technologies 
can be socially and epistemically integrated into 
existing farming practices. Only by acknowledging 
the complex ways in which technology reshapes 
human experience can we ensure that agricultural 
innovations serve both efficiency and the preserva-
tion of essential knowledge.

Multistability
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2.2.4.2. Critical Perspectives on Technology Implementation (Qualitative Research)

A lack of awareness regarding technology’s active role in everyday life can lead to irresponsible design de-
cisions. Don Ihde underscores that technology is never neutral; it shapes how we perceive and interact with 
the world, with its meaning emerging through use rather than being inherently fixed. Because technological 
outcomes are always shaped by human intentions, they remain open-ended rather than predetermined. 
Therefore, designers must consider possible negative effects and make careful choices to anticipate and 
reduce these impacts.

To enhance this approach, expert interviews were conducted to pinpoint the risks and potential disadvan-
tages of adopting Precision Agriculture. The insights collected from these specialists provide an in-depth 
view of the challenges that need to be addressed during the design process. The next section outlines six 
significant risks identified, supported by direct interview quotes.

Risk 1 - The 'Shift in Epistemic Authority'

Data-Driven
The adoption of PATs is fundamentally reshaping 
epistemic authority in farming. This shift is often 
perceived as a risk, as expert interviews highlight 
the importance of maintaining farmer autonomy, 
which must remain unquestioned. Farmers insist on 
retaining full control over decisions regarding their 
land and strongly reject any form of external inter-
ference, whether it comes from political regulations, 
societal pressures, or technological advancements 
that limit their independence. This resistance also 
extends to data-driven technologies such as AI-
powered field robots. While these innovations may 
be highly functional, they must be designed in a 
way that reinforces, rather than diminishes, farmers’ 
decision-making power. Research consistently 
shows that farmers' ability to make independent 
choices about their land is a core principle. Any 
technology that threatens this principle is met with 
scepticism and resistance. An Expert highlights the 
frustration many farmers feel when external entities 
attempt to dictate their practices:

‘And there is always someone standing there—
socially or institutionally—constantly telling 
farmers what would be better and what they 
could do better … I really see the danger that 
farmers might just quit and say, ‘You know 
what? Then do it yourselves.’’
– Expert Fletschberger

To ensure that PATs gain acceptance, farmers‘ 
expertise must remain central to the decision-
making process. Technology should serve as an 
advisory tool, offering insights and recommendati-
ons while leaving the final judgment in the hands of 
the farmer. While farmers are open to innovations 
that support their decision-making, systems that 
function independently and impose rigid directives 
are perceived as intrusive. Even when AI-driven 
systems collect and analyse field data, they must 
not replace human judgment but rather guide a 
way that respects the farmer’s role as the ultimate 

I think I should...

... but ...

*Calculating ... {Σ(17S) |xi/∫xRi ... 
... No! you have to ...

authority. This scepticism is rooted in the unders-
tanding that while AI can process vast amounts 
of data, it does not bear the consequences of its 
decisions—farmers do. An Expert articulates this 
concern, emphasising the need for AI to function 
as a supportive tool rather than an autonomous 
decision-maker:

‘And later, the AI tells you how to manage your 
ecosystem [on the farm]. It can have advantages 
because it can collect data … But on the other 
hand, what consequences does that have, and 
how does it restrict you?’
– Expert Bajohr

The central issue is responsibility. Farmers do not 
want to be dictated to by an AI system that does 
not take accountability for the outcomes. An Expert 
further explains:

‘I do not want to be told by an AI, ‘This is how 
you do it now,’ because it does not take responsi-
bility for the outcome—I do. 
– Expert Bajohr

Figure 26:  Illustration: The Final Decision Belongs to the Farmer

Automation-Driven
While concerns about epistemic authority primarily 
arise in the context of data-driven decision-making, 
the automation of routine farming tasks is viewed 
differently. Farmers generally welcome automation 
when it takes over monotonous, labour-intensive 
tasks without interfering with their expertise. Robots 
that perform repetitive mechanical work, such as 
weeding or harvesting, are seen as valuable tools 
that alleviate workload pressures. Unlike AI-driven 
decision-making tools, which provoke fears of 
losing control, purely mechanical automation does 
not threaten farmers’ autonomy.

However, scepticism arises when machines are 
not only automating tasks but also analysing 
data in ways that create the impression that they 
‘understand’ the land better than the farmer. While 
AI-based decision-making tools raise concerns 
about control, automation introduces different 
anxieties, primarily about reliability. Farmers worry 
that even minor technical malfunctions could have 
catastrophic consequences for their yield and 
financial stability. An Expert highlights this fear, ex-
plaining how a small error, such as a two-centimetre 
deviation in fieldwork, could result in significant 
losses:

‘If my colleague sends his autonomous robot out 
to the field at night, he cannot sleep … If somet-
hing—like the weed knives—shifts by just two 
centimetres, a lot can happen, and then his entire 
annual revenue is lost.’
– Expert Winklhofer

The reliability of automation is a major concern. An 
Expert questions whether these systems can truly 
function as intended:

‘The question is, does it work? Or will it 
eventually mow everything down, without distin-
guishing between weeds and crops? You must be 
able to rely on these systems.’
– Expert Fletschberger

For automation to gain widespread acceptance, it 
must be equipped with robust safety mechanisms 
that detect and correct errors before severe damage 
occurs. Building trust in autonomous systems is a 
gradual process, requiring consistent and reliable 
performance. Farmers must feel confident that 
these systems will function as intended, without 
introducing new risks.

Nooo, what have you done?!

Figure 27:  Illustration: Fear of an Automation Malfunction
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Data Ownership
These concerns are not limited to general field 
surveillance. Another issue raised is that as data 
collection becomes easier and more widespread, 
government agencies and funding institutions may 
increasingly expect access to this data. This could 
result in future subsidy programs being tied to the 
provision of specific data, forcing farmers to share 
detailed operational insights to qualify for financial 
support. Early developments in this direction are 
already visible, as some aspects of subsidy applica-
tions are now verified using satellite imagery. Many 
farmers are deeply uncomfortable with this trend, 
fearing that expanding data collection will primarily 
increase bureaucratic burdens rather than provide 
tangible benefits. An Expert highlights the growing 
unease surrounding satellite-based monitoring and 
its implications for farmers’ autonomy:

‘… but also, my own experiences, that now I am 
being monitored from above [Sentinel satellites]. 
It is not fun. … So, we now must provide evidence 
that we are delivering results … otherwise, they 
cut everything [subsidies], and they want to 
tighten it even more. … You are constantly being 
observed, what you are doing in your field …’
– Expert Bajohr

Similarly, another expert points to the increasing 
use of satellite imagery for regulatory enforcement, 
which fuels farmers‘ reluctance to embrace further 
data collection:

‘It has not been that long since the authorities 
started working with satellite images. … That 
means they are now looking, okay, what do 
you have in your application? … And with the 
slightest violation of the rules, you get a penalty. 
Of course, that’s why farmers are only somewhat 
keen on having more data collected about them, 
because exactly that can lead to bureaucrats 
tightening their control.’
– Expert Mauk

Violation detected: §237-3 
... results forwarded ...

Risk 2 - The 'Transparent Agriculture'

Surveillance
Automating compliance and traceability—highl-
ighted earlier as a primary advantage of PATs—can 
greatly alleviate administrative burdens and 
enhance reporting efficiency. Furthermore, the pre-
collection of agricultural data ensures easy access 
to climate-smart subsidies and carbon credits. 
Nonetheless, viewed from another angle, exten-
sive data collection raises worries about creating 
an excessively transparent agricultural system. 
Numerous experts have expressed fears regarding 
this development in the interviews.

As farmers can use robotic systems to monitor their 
fields, there is a growing concern that regulatory 
bodies could also leverage this data for surveillance. 
Many farmers fear that extensive data collection 
may lead to increased reporting obligations and 
tighter government oversight. The scepticism 
surrounding surveillance, data collection, and the 
concept of ‘transparent agriculture’ reflects a more 
profound concern about losing control to state 
authorities or technological systems. A significant 
worry is that sharing agricultural data, or even future 
government mandates requiring such data, could 
result in greater regulatory interference. Farmers 
are concerned that this could lead to policy-driven 
interventions, additional restrictions, or even 
constraints on their farming decisions. Ultimately, 
there is a fear that these systems could contri-
bute to establishing comprehensive surveillance 
mechanisms that would erode their autonomy. An 
Expert describes these concerns, emphasising 
how automated monitoring differs from traditional 
regulatory inspections:

‘Then a big issue is the surveillance topic … We 
already have an enormous bureaucracy … the-
re’s a control rate of 5%, and then someone [an 
inspector] comes around … but that’s different 
from knowing that my own equipment [e.g., field 
robots] is monitoring my operation 100% of the 
time—day and night—and every mistake shows 
up somewhere…’
– Expert Fletschberger

Figure 28:  Illustration: Fear of Machine-Driven Surveillance

These concerns are valid. The European Parliamen-
tary Research Service (EPRS), an independent body 
analysing EU policies, suggested this in a 2016 fo-
resight study. The report stated that adopting PATs 
would make agriculture's environmental impact 
easily measurable and verifiable. Consequently, 
this could lead to policies that force farmers to use 
digital tools to collect more environmental data and 
share it with regulatory authorities (EPRS, 2016). 

Given these concerns, it is critical to ensure that 
farmers retain data ownership. Farmers must have 
the right to decide who can access their field data 
and maintain complete control over its use. This 
data should primarily serve as an internal tool for 
farmers, helping them improve their operations, 
rather than becoming an instrument for government 
oversight or external control.

Risk 3 - The ‘Dehumanisation of Agriculture’

The increasing reliance on data-driven agriculture 
raises concerns that farmers are becoming pas-
sive interpreters of algorithms rather than active 
participants in ecological stewardship. Land, once 
cultivated through intimate human connection, risks 
being reduced to a digital construct—quantified, 
analysed, and optimised exclusively for efficiency. 
While framed as progress, this technologisation 
may render agriculture sterile, eroding the intrinsic 
'Farmer-Nature Symbiosis' that has long defined 
sustainable farming practices. 

Expert interviews emphasise that the farmer’s bond 
with nature is irreplaceable and essential for sustai-
nable agriculture. This is especially true in organic 
farming, where intuition and direct observation are 
crucial. Farmers develop an instinctive understan-
ding of their land, recognising subtle shifts in soil 
health, plant growth, and animal behaviour—so-
mething digital tools can measure but never fully 
replicate. 

An expert underscores this, highlighting the value of 
firsthand observation:

‘Because actually, if you are a good farmer ... 
two-thirds I can tell just by looking. Looking at 
the plants and seeing, oh, something is missing 
there ...’
– Expert Winklhofer

Another expert further stresses that field expe-
rience provides deeper insight than isolated digital 
readings:

‘And my field experience definitely needs to be 
included somewhere as well, and I almost think 
it’s worth more than any measurement at a 
single point because that only reflects that small 
point and not my entire system.’
– Expert Bajohr

Hey, I'm here, look!

Figure 29:  Illustration: Technology May Sterilize Farming
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Risk 4 - The 'Price of Progress'

‘Google Maps Pitfall’ - Cognitive dependency
While data collection and digital analysis can pro-
vide valuable insights, over-reliance on technology 
risks eroding fundamental agricultural skills and en-
vironmental awareness. On one hand, farmers can 
use collected data to deepen their understanding 
of their fields; on the other, excessive dependence 
on digital tools can lead to a gradual decline in 
traditional knowledge. Once central to agricultural 
expertise, essential practices such as observing soil 
conditions, weather patterns, or animal behaviour 
are increasingly outsourced to machines. As a 
result, the intuition and holistic understanding from 
firsthand experience may weaken.

Long-term reliance on data-driven systems reduces 
the ability to assess one’s land independently. This 
loss is comparable to the widespread dependence 
on navigation systems like Google Maps—those 
who use them exclusively often lose their ability 
to orient themselves without digital assistance. 
Similarly, outsourcing agricultural decision-making 
to machines can diminish farmers’ field intuition, 
creating a dangerous cycle in which technology, 
rather than experience, becomes the primary 
reference point. An expert warns of this risk, empha-
sizing the potential erosion of agricultural expertise:

‘You can see that with an app that dictates 
everything, the farmer's knowledge and unders-
tanding of nature could be lost. ... I also see the 
danger that, if the machine takes over everyt-
hing, this knowledge will be disrupted.’
– Expert Bajohr

This decline in experiential knowledge leads to 
new dependencies. Farmers become reliant on 
technology to understand their fields, an ability 
once cultivated through generations of experience. 
As with traditional map reading, which has largely 
faded in an era of GPS navigation, agricultural intui-
tion risks being replaced by digital systems, making 
farmers increasingly vulnerable to technological 
failures. This detachment from direct experience, 
leads to a mediated relationship (Eisenstein, 2007) 
with the environment, where reliance on external 
systems creates distance rather than connection. 
Knowledge that is not actively used is lost.

Technological Lock-in - Technical dependency
While technological advancements increase 
efficiency, they also create long-term dependencies 
on specific providers, updates, and maintenance 
contracts. Highly specialized machines often lock 
farms into closed ecosystems, making it difficult to 
switch to alternative methods. This lack of flexibility 
can hinder adaptation to changing environmental 
and market conditions, restricting innovation and 
self-sufficiency. An expert explains how such 
dependencies discourage investment in new 
technologies:

‘And that is why I will not invest in this machine 
anymore … to get away from these dependencies. 
… We might not be able to get these spare parts 
anymore because they simply are not being 
produced anymore. …’
– Expert Bajohr

Overreliance on digital infrastructure creates new 
risks that could jeopardise farm operations. Many 
precision agriculture technologies (PATs) rely on 
GPS, sensors, and cloud services. If these sys-
tems fail - whether due to server outages, service 
terminations, or cyberattacks - farms may face 
severe disruptions. Problems that previously did 
not exist, such as GPS failures due to solar storms 
(Koebler, 2024), could suddenly halt operations. 
Power outages, connectivity problems, or soft-
ware glitches may undermine crucial agricultural 
processes, leaving farmers with limited options. In 
the absence of analogue alternatives, such failures 
threaten entire harvests. An expert emphasises this 
growing vulnerability:

‘… and you make yourself extremely dependent 
on all sorts of things. Can the company deliver 
what it promises? Is the internet connection 
stable? Are the updates working? If I work 
manually … anything can happen, and I can just 
keep going.’
– Expert Mauk

Damn, the technician
isn’t available until next week ...

Figure 30:  Illustration: Technology Creates New Dependencies

Risk 5 - The 'Yield Optimiser'

In ecosystems, long-term success is not achieved 
through maximum resource exploitation but rather 
by maintaining balance. The interaction between 
soil, plants, animals, and the environment must be 
managed sustainably. While short-term efficiency 
measures, such as intensive fertiliser use or 
chemical pesticides, can temporarily boost yields, 
they often come at the cost of ecological stability, 
leading to long-term damage such as soil degra-
dation and loss of biodiversity. A truly sustainable 
system is one that regenerates itself, providing more 
stable and reliable yields over time.

However, increased data-driven insights do not 
automatically lead to sustainability. Variable Rate 
Technology (VRT)—a Precision Agriculture tool 
that optimises input distribution—serves as a prime 
example. While often highlighted in the literature 
as one of the most significant benefits of PATs, its 
application depends entirely on human intent. It can 
be used to minimise inputs, protect ecosystems, 
and maintain stable yields, or it can be leveraged 
to maximise short-term production at the cost of 
environmental health. Technology itself does not 
dictate its use—human choices do (see Chapter 
2.2.4.1. Postphenomenology). An expert illustrates 
this contrast, explaining how the same technology 
can lead to vastly different agricultural practices:

‘And conventional agriculture can use it [Data-
driven Technologies] and then it recommends: 
deep ploughing, heavy NPK [fertilizer] applica-
tion, and spraying tomorrow. Or it says: balance 
the soil, use shallow tillage, and plant a cover 
crop. These are different interpretations of the 
same data.’
– Expert Mauk

Risk 6 - The 'Sustainability Bias'

While precision technologies, such as targeted 
pesticide use, can reduce environmental impact, 
they often function as course corrections within 
a flawed system rather than addressing the root 
causes of agricultural challenges. For example, PATs 
can help minimise pesticide application—a positive 
step in itself—but this can also create a false sense 
of progress, leading farmers to overlook more 
fundamental solutions, such as crop diversification 
or eliminating pesticide dependence. Without a ho-
listic approach, technology risks reinforcing existing 
inefficiencies rather than transforming agriculture 
into a truly sustainable system.

True effectiveness in agriculture comes from prioriti-
sing natural processes over short-term efficiency 
gains dictated by industrial farming models. 
Long-term resilience is built through system-wide 
improvements, such as enhancing soil health and 
biodiversity, rather than optimising isolated factors 
at the expense of ecological stability. If sustainability 
efforts remain narrowly focused on incremental ef-
ficiency gains, they may only prolong the inevitable 
collapse of a system that is already under strain. An 
expert warns that while precision technologies may 
delay the consequences of unsustainable practices, 
they do not fundamentally solve the problem:

‘With precision technologies, the [regeneration 
and recovery of nature] have indeed been further 
improved, but in the wrong direction. … Maybe 
death takes longer, but you will definitely go 
over the cliff because you’ve ruined your entire 
system. … For the past ten or twenty years, it has 
been clear that yields can no longer be increased, 
no matter what measures are taken.’
– Expert Bajohr
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Along with the previously outlined benefits, adoption barriers, and identified risks, it's essential to consider 
the views of the most impacted group: the farmers. Their insights are crucial for making informed and 
customised design decisions. 

To investigate farmers’ perspectives on precision agriculture technologies (PATs), a specific segment of the 
quantitative online survey was aimed at this. The findings here are derived from responses provided by far-
mers (n=44) from Austria, the Netherlands, and Germany. (Further details about participant demographics 
and the methodology can be found in Chapter 1.3.2. Quantitative Empirical Research (Online Question-
naire)). Demographic factors influencing response patterns are discussed only when statistically significant 
effects are noted. This portion of the research answers the following research questions:

RQ 3.1. What is the role of Human-Robot Interaction (HRI) in 
 the adoption of Precision Agriculture technologies?
RQ 3.2. What strategies can be implemented to enhance trust in 
 Precision Agriculture technologies among small-scale farmers?

2.2.5.1. General Perception

When asked about their overall perception of precision agriculture technologies (PATs) most participants 
(54%) showed a favourable attitude on a five-point Likert scale, with 22% indicating a very positive view (see 
Figure 31). However, it's vital to mention that this question was posed without further context, potentially 
leading to some level of response bias.

To further explore initial associations with technolo-
gical advancements in agriculture, participants were 
presented with an open-ended question asking 
what first comes to mind when thinking of technolo-
gical developments and future technologies such as 
precision farming, robotics, and similar innovations 
in agriculture.

Precision agriculture provokes mixed feelings 
among farmers, balancing hope with doubt. While 
many see its promise, the steep costs pose a 
significant barrier. Respondents voice worries 
that upfront investments and ongoing mainte-
nance might not yield sufficient financial returns, 
especially for smaller operations. Dependence on 
external vendors for repairs and data management 
fosters concerns about financial reliance on tech 
companies. Some farmers noted that heightened 
automation could erode their bond with nature and 
traditional farming practices, replacing instinct and 
hands-on expertise. Although larger, flatter farms 
may benefit from precision agriculture, smaller 

farms with varied terrains question its practicality, 
particularly in areas with poor GPS signals. Some 
farmers are apprehensive about a future overly 
reliant on machinery, fearing a shift toward in-
dustrial-style food production. Still, others might 
reconsider precision agriculture if costs were to 
decrease. In essence, these responses highlight a 
tension between the efficiencies brought by new 
technologies and the economic, philosophical, and 
practical challenges that obstruct broader adoption.

To better represent the open-text responses, 
they were organised into thematic categories and 
visualised as a word cloud (see Figure 32). Each 
response‘s sentiment- positive, negative, or neutral- 
was also assessed. For this, the complete written 
answer from each participant, along with their Likert 
rating regarding the overall perception of PATs, was 
taken into account for interpreting and categorising 
each individual response, enabling a more context-
ual analysis. 

‘How do you perceive precision agriculture and technologies like field robots?‘

16% 14% 16% 32% 22%

Very Negative Very Positive

Figure 31:  Quantitative Research (n=44); General Perception of PATs

2.2.5. Perspectives on PATs of Farmers (Quantitative Survey)

A notable discrepancy emerged between the 
quantitative (Likert-scale rating) and qualitative 
(open-ended question) results from the questi-
onnaire. While the Likert scale indicated a mostly 
positive perception of Precision Agriculture 
Technologies (PATs), the word cloud analysis of 
the open-ended answers showed a more critical or 
sceptical viewpoint. A closer look revealed that even 
those displaying strong enthusiasm on the Likert 
scale often utilised their open-ended responses to 
express significant concerns. Many acknowledged 

the potential benefits of PATs, such as reduced 
workload, but also pointed out challenges like high 
costs and limited relevance for small-scale farmers. 
This difference clarifies the considerable number of 
negative aspects noted in the qualitative analysis. 
Critical challenges were often mentioned first, even 
by respondents who rated PATs very positively on 
the Likert scale. This indicates that farmers are 
typically receptive to these technologies; however, 
the perceived drawbacks often overshadow the 
overall view.

The analysis revealed that negative ‘first thoughts’ dominated at 60%, primarily due to concerns about cost. 
Additional worries involved the belief that technological solutions are unsuitable for small-scale farms and 
fears regarding increased dependency. On the other hand, the primary benefit noted was the anticipated 
decrease in workload. Notably, concepts like field monitoring and data-driven decision-making were rarely 
mentioned, with only one participant specifically mentioning ‘supportive FMIS’.

When participants (n=44) were surveyed about their potential investment in precision farming technologies, 
the results showed a fairly even distribution (see Figure 33). About one-third of respondents indicated they 
could not picture making such an investment, another third were unsure, while the last third demonstrated 
a definite interest in investing. Notably, just 8% said they absolutely could not see themselves investing in 
these technologies, even though 16% had previously rated them very negatively (see Figure 31).

60% Negative

Neutral

Positive

4%

36%

expensive

workload-relief
not-suitable-for-small-farms

cost-benefit

dependencies

farming-disruption
nature-connection-lost

ai

band-aid-solution
big-potential

difficult-on-slopes

helpful

soil-compaction

data-security

drones

efficiency

expensive-maintenance

expensive-repairs

farmer-reluctance

gps-loss

innovative

irreplaceable-manual-labor

milking-robot

more-development-needed

positive

robots

rtk-gps

self-driving

slave-to-technology

smart-machines

specialized

supportive-fmis

surveillance

tech-overdependence

time-saving

too-much-effort

variable-rate-technology

mechanical-weeding

‘What are the first thoughts that come to mind when you think of technological developments and "future 
technologies" (e.g., precision farming, robotics, etc.) in agriculture?‘

Figure 32:  Quantitative Research (n=44); First Thoughts on PATs

8% 26% 33% 21% 13%

No, definitely not Yes, definitely

‘Could you see yourself investing in such technologies in the future?‘

Figure 33:  Quantitative Research (n=44); Likelihood of Investment
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2.2.5.1. Farmer-Robot Interaction (FRI)

In addition to grasping farmers' tangible expectati-
ons for functionality, designers need to understand 
their views on collaborating with robots. To investi-
gate this, the questionnaire featured six statements 
evaluated on a Likert scale to measure agreement 
levels. The findings are shown in Figure 34.

The questionnaire responses indicate that most 
participating farmers have a generally positive 
view of robots in agriculture, though opinions vary 
significantly. A significant portion of respondents 
(70%) expressed that they can envision a robot as 
a beneficial partner on their farm, selecting either 
“agree somewhat” or “strongly agree.” This sug-
gests that many farmers are open to the concept of 
working alongside robotic systems.

When asked whether robots should be able to per-
form tasks independently and without supervision, 
responses were more divided. While 56% showed 
some degree of agreement, a notable portion (30%) 
expressed disagreement. This suggests that while 
some farmers are comfortable with robotic inde-
pendence, others may be concerned about losing 
control or fully trusting automated systems. This 
also became evident in the expert interviews. 

When asked about the potential effects of robotics 
on their personal relationship with work and nature, 
just over half of the respondents (53%) agreed that 
it would lead to change. Meanwhile, more than a 
third expressed disagreement. These responses 
indicate that many participants are reflecting not 
only on the practical functions of robots but also on 
the broader implications for their work experiences 
and surroundings.

The notion that robots might diminish the fulfilment 
of farm work garnered the least consensus. A total 
of 63% disagreed with this view, suggesting most 
participants do not link robotic support with a dimi-
nished sense of purpose in their jobs. Nevertheless, 
23% voiced concerns, and another 15% stayed 
neutral, indicating that for some, the emotional or 
personal importance of farming influences their 
perspective on technological advancements.

Maintaining traditional working methods, despite 
the rise of robots, has sparked a range of opini-
ons. Surprisingly, 45% of participants expressed 
opposition to this idea, while 40% remained neutral, 
showing some uncertainty, and only 16% agreed. 
This notable neutral stance might indicate that 
many recognise the value of tradition but also see 
the importance of balancing it with practicality and 
efficiency.

When asked if they are concerned about robots 
replacing their roles in agriculture, 55% of par-
ticipants disagreed, while only 21% expressed 
agreement. This indicates that many do not see 
technology as an immediate threat. However, 
the neutral responses and some level of concern 
suggest that this issue might be more nuanced or 
context-dependent.

Overall, while the sample is relatively small and cannot be assumed to represent the broader farming 
population, these responses offer some insight into how this group of farmers thinks about robotics. Many 
seem open to technological support and even autonomy. Still, a number also reflect caution or uncertainty, 
particularly when it comes to the broader cultural and emotional dimensions of agricultural work.

35% 20% 25% 18% 3%

13% 23% 13% 33% 20%

28% 35% 15% 5% 18%

8% 18% 5% 40% 30%

15% 15% 15% 33% 23%

25% 20% 3%40% 13%

The idea that robots could take over my role in agriculture in the future worries me.

The use of robots would change my personal relationship with work and nature.

The use of robots could make my work less fulfilling.

It is important to me to preserve traditional methods of working, even if robots were more efficient.

I can imagine a robot as a helpful partner on my farm.

Robots should be able to perform tasks independently and without supervision.
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Figure 34:  Quantitative Research (n=44); Farmer-Robot Interaction (FRI)
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2.2.5.2.  Expectations and Problem Areas

Expected Benefits

To better understand the specific benefits farmers 
associate with different types of technologies, they 
were asked to identify where they find data-driven 
technologies (e.g., field sensors and data collection 
tools) particularly helpful, and where they find 
automation-driven technologies (such as robots) 
particularly helpful.

To ensure comparability, the same multiple-choice 
question, with identical wording and the same eight 
answer options, was posed twice: once regarding 
data-driven technologies and once regarding 
automation-driven technologies. The responses are 
presented in a radar chart (see Figure 35), where 
each axis represents one of the answer options 
and shows the overall percentage of farmers who 
identified the respective technology as particularly 
helpful in that domain.

The results follow a largely intuitive pattern, yet 
several findings stand out. First, both technology 
types are widely perceived as beneficial: only 9% of 
respondents saw no relevant benefit from data-
driven technologies, and just 7% said the same of 
automation-driven ones. Notably, robots are far 

more frequently associated with labour savings 
(68% of respondents), resource savings (59%), and 
efficiency gains (55%). This is somewhat surprising, 
as increasing efficiency, especially through targeted 
field interventions (see Chapter 2.2.2.1. Types of 
Benefits), is a core strength of data-driven techno-
logies. These can also contribute to labour savings, 
a benefit currently seen almost exclusively as a 
function of automation-driven technologies (such 
as robots).

This aligns with insights from the expert interviews. 
Action-oriented solutions like harvesting robots 
provide immediate and concrete results. On the 
other hand, the link between enhanced data-driven 
decision-making and long-term farm performance 
is frequently seen as less straightforward or ambi-
guous (see Chapter 2.2.3.2. Technological Factors). 
Therefore, it is crucial to improve how the benefits 
of data collection are communicated to farmers. 
The cause-and-effect relationship between data-
enhanced crop management and farm outcomes 
must be clearly illustrated to make its impact more 
tangible and convincing to farmers.

‘In which areas do you consider the use of 
robots (automation-driven)
to be particularly helpful?‘

‘In which areas do you consider the use of 
field sensors and data collection (data-driven)
to be particularly helpful?‘

Better Field Monitoring

More accurate Decisions

Increaded Efficiency

Resource Savings

Labour Savings

None of these

40%

20%

60%

Sustainability

Higher Crop Yields

Data - Driven

Automation - Driven

Figure 35:  Quantitative Research (n=44); Expected Benefits

When asked, “What features should a field robot 
have to be of interest to you?”, farmers provided 
a relatively clear picture that closely aligns with 
the insights from the literature review and expert 
interviews. To effectively present the open-text res-
ponses, these were categorised into thematic areas 
and visualised in a word cloud (see Figure 36). The 
most mentioned topic was weed management, 
frequently cited as one of the most labour-intensive 
tasks, especially in organic farming.

Several other responses commonly referenced 
terms do not strictly qualify as “features” in a 
technical context. For instance, farmers consistently 
pointed out affordability as a vital consideration. 
While it may not be a feature in the traditional sense, 
its repeated acknowledgement implies that farmers 

associate affordability with functionality, perceiving 
economic accessibility as key to a robot's practical 
usefulness. 

The strong focus on adaptability, independence, 
and cost-effectiveness highlights a distinct 
necessity for technology that can effortlessly fit 
into the varied realities of farm life. Farmers seek 
not highly specialised machinery but rather flexible 
systems that can execute various tasks across 
multiple crops, seasons, and terrains—all while 
being budget-friendly. Furthermore, the desire for 
robustness, reliability, low maintenance, and easy 
repairs showcases a practical understanding of 
rural environments: these machines must withstand 
tough conditions and be easy to service without 
complex, advanced infrastructure. 

weed-management
affordableadaptable

autonomous

all-terrain
cost-effective flexible

none
safe

battery-capacity

harvesting

high-efficiency

low-maintenance

reliableautomated-mowing automation

crop-monitoring

data-loggers
easy-handling

high-data-security

irrigation

labor-savings

low-energy-consumption

mature

moisture-sensorsnutrient-monitoring
pesticide-savings

precise-operationrepairable

robust

soil-cultivation

soil-measurement

soil-monitoring

soil-protection

sufficient-power

transportable

‘What features should a field robot have to be of interest to you?‘

Expected Features

Field-to-Field and Farm-to-Field Mobility
A crucial factor to consider in this context is transporting the device between different fields. Many farms 
have several distinct plots. The response to the question “Are there fields (plots) that are more remote or 
separated from your other fields?” reveals that most farmers (66%) noted that roads are necessary to access 
their fields. In contrast, 20% claimed their fields are within walking distance, while just 14% stated that all 
plots are directly connected. This indicates that the (ground-based) device needs to be either road-legal for 
travelling from the farm to the fields or sufficiently compact for easy transport between different plots.

‘Are there fields (plots) that are more remote or separated from your other fields?‘

Yes,	but	the	fields	are	within	walking	distance	of	each	other.
Yes,	streets	need	to	be	used	to	move	between	the	fields.
No,	all	fields	are	directly	connected	to	each	other.

20%

66%

14%

Figure 36:  Quantitative Research (n=44); Expected Features

Figure 37:  Quantitative Research (n=44); Field-to-Field Mobility
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Problem Areas

The challenges outlined in the literature review and 
expert interviews (refer to Chapter 2.2.3, Adoption 
Barriers) were further evaluated through an online 
survey to identify which issues should be prioriti-
sed in the concept development phase. Farmers 
assessed the severity of each issue by answering 
the question: “How problematic do you consider 
the following aspects of precision agriculture?” with 
a slider that ranges from 0 (No problem) to 10 (Ma-
ximum problem). The results, displayed in Figure 38, 
show the average ratings from participants.

To ensure an impartial representation of the data, 
the median of the responses was selected, as it 
provides greater resilience to outliers. The figure 
highlights that the most significant challenges 
identified included costs (median = 9), dependence 
on technology (median = 8), and a lack of appro-
priate solutions (median = 7). Notably, while data 
privacy was emphasized in the expert interviews 
(see Chapter 2.2.4.2, Critical Perspectives on 
Technology Implementation (Qualitative Research)), 
farmers perceived it as a comparatively lower 
concern (median = 5).

For the proposed concept, addressing cost and 
technological dependence is essential. The conse-
quences of technological reliance were discussed in 
greater detail during expert interviews (see Chapter 
2.2.4.2. Critical Perspectives on Technology 
Implementation (Qualitative Research)). Practically, 
this means the robot should be affordable and avoid 

creating new dependencies. Such dependencies 
might be cognitive or technical. Thus, the concept 
should incorporate a “manual override” feature, 
ensuring it remains functional even without internet 
or GPS access, which guarantees that the farmer is 
not left powerless in critical situations.

‘How problematic would you consider the following aspects of precision agriculture?‘
(Median values shown)

No 
problem
0

Maximum 
problem

10

Costs 9

8

7

5

5

5

4,5

Insufficient information

Dependence on technology

Use of AI

Lack of suitable solutions

Data privacy

Ease of use

Figure 38:  Quantitative Research (n=44); Ranking of Problem Areas

Status Quo - Types of Information Collected
In addition to understanding farmers‘ data collection methods, it is crucial to recognise the specific types of 
data they gather. Commonly, farmers focus predominantly on harvested yields, which are recorded by about 
three-quarters of those surveyed (see Figure 40). Notably, there is more attention given to soil properties 
rather than on plant-related aspects like plant health and diseases. This is intriguing since expert interviews, 
including one with a biologist (Expert Interview, 2025), underscored the importance of gathering information 
on fungal and bacterial plant diseases. The concentration on soil data could be partly attributed to the readily 
available laboratory analyses, typically provided for soil samples.

Status Quo - Information Gathering Practices
The chart (see Figure 39) illustrates the responses 
to "How do you primarily collect field data?". It 
shows that 77% of respondents collect field data 
manually, making it the most common method. 
Laboratory analyses follow at 48%, while apps 
(30%) and on-site weather stations (27%) are 
moderately used. More advanced technologies like 
satellite images (20%), drones (9%), field sensors 
(5%), and autonomous machinery (5%) are used far 
less frequently. 

In conclusion, manual and traditional methods 
still dominate field data collection, with digital and 
automated technologies playing a relatively minor 
role despite their potential.

75%43%32% 61%39%5% 57%39%
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Overall, it appears that the collection of plant-based 
data is an underexploited field with significant 
potential. Specifically, plant health indicators can 
provide immensely valuable insights, which are 
discussed in more detail in a later chapter (see 
Chapter 2.3.1.2. Field Phenotyping). Additionally, 
while biodiversity data and bioindicators hold 
substantial informational value, they rank among the 
least commonly gathered data types.

Expert interviews highlighted that effective data 
collection poses a significant challenge. A recurring 
theme was the lack of time and the perceived 
minimal benefits, which frequently discourage 
farmers from engaging in data collection efforts 
(Expert Interview, 2025). This viewpoint highlights 
the realistic limitations and motivational hurdles that 
hinder the broader use of data-driven methods in 
the field. One expert stated:

“… we have stressed farmers. They have no 
interest in data collection, and even less interest 
in data archiving and all that stuff.”
- Expert Mella

2.2.5.3. Status Quo - Data Practices and Decision Influence

To gain insights into the opportunities and obstacles presented by precision agriculture technologies (PATs) 
that are driven by data collection, it is crucial to investigate the existing practices of farmers in gathering data. 
This includes examining the types of data collected, the methods employed, and the extent to which this 
information impacts their daily decision-making processes.

Figure 39:  Quantitative Research (n=44); How Field Data is collected

Figure 40:  Quantitative Research (n=44); Type of Field Data collected

What field-related 
data do you collect?
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How much influence do the following factors have
on your field management (e.g., seed selection, soil cultivation)?

No 
influence
0

Maximum 
influence

10

Personal experience 8

7,5

7

7

5

4

Professional advice

Environmental compatibility

Internet

Interaction with peers

Data analysis

Figure 41:  Quantitative Research (n=44); Ranking of Problem Areas

(Median values shown)

Key Influencers and Influences in 
Decision-Making

The mere collection of specific data by farmers 
does not necessarily indicate its influence on their 
decision-making. To gain a deeper understanding of 
the reasoning behind their choices and the role data 
analysis plays in this context, farmers were asked: 
“How much influence do the following factors have 
on your field management decisions (e.g., seed 
selection, soil cultivation)?” 

Responses were given on a scale from 0 (no 
influence) to 10 (maximum influence).

To ensure an unbiased representation of the results, 
the median was utilised due to its resilience against 
outliers. As illustrated in Figure 41, farmers place 
the greatest emphasis on their personal experience 
(median = 8), followed by peer interactions (median 
= 7.5) and professional advice (median = 7), which 
has an equally significant impact as environmental 
factors. Interestingly, the analysis of data is rated the 
lowest in terms of influence. This indicates that even 
when data is gathered, its impact on decision-ma-
king is limited - farmers tend to trust their personal 
experience and peer advice more.

This conclusion aligns with findings from the litera-
ture review, indicating that peer learning - a strategy 
frequently adopted in farming communities - has 
not been widely applied to advanced technologies 
like data analysis, mainly due to the complexities 
involved (Iria et al., 2019; Kernecker et al., 2020) 
(see Chapter 2.2.3.3 Social Factors). 

Peer-to-peer learning plays a crucial role. To 
successfully introduce and promote the adoption of 
new technologies, it's vital to establish a direct, far-
mer-led dialogue regarding the proposed design as 
part of a market entry strategy. Farmers should have 
the chance to share their experiences and insights, 
and ideally, they should have the option to borrow 
or lease components, such as sensors, from trusted 
peers, creating a more accessible entry point.

Would you be willing to rent or share machines or equipment for fieldwork?

Absolutely
not
0

Very
willingly

10

Share 8

7Rent

Figure 42:  Quantitative Research (n=44); Ranking of Problem Areas

(Median values shown)

Renting and Sharing
This issue is closely related to farmers' general willingness to share or rent equipment. The online survey 
addressed this by asking: "Would you be willing to rent or share machines or equipment for fieldwork?" 
Respondents rated their willingness on a scale from 0 (Absolutely not) to 10 (Very willingly). As depicted 
in Figure 42, the results reveal a general openness among farmers to both options, with a slightly stronger 
preference for sharing (median = 7) compared to renting (median = 6).

This topic also came up in expert interviews. There, 
it became clear that farmers' attitudes vary, but the 
potential is recognised, especially within small, local 
cooperatives. Fast access to equipment is crucial 
for time-sensitive tasks such as sowing or hoeing, 
which must often be done quickly depending on 
weather conditions (Expert Interview, 2025).

"Rental stations have grown significantly in 
recent years and decades, but I think there is still 
a lot of potential for growth… From an economic 
and agricultural perspective, it would be ideal 
if a farmer says, 'I only need my tractor twice a 
week, and it only runs for a few hours, so I’ll rent 
it.' But this willingness is not strongly developed 
among many yet."
– Expert Fletschberger

For the envisioned concept, this implies that, in ad-
dition to sharing components, the optimal situation 
would involve promoting this sharing within regional 
cooperatives. Such organisations provide farmers 
with quick and flexible access to shared equip-
ment. Conversely, external rental services may 
be inadequate for weather-sensitive tasks due to 
limited availability and possible delays.
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Figure 43:  Designer Engaging Farmers in Direct Design Discussions

It is essential to highlight the benefits of data collec-
tion in agriculture. Currently, data collection plays a 
minor role on many farms and, when it does occur, 
it is often done manually using handwritten notes. 
Significant untapped potential exists in assessing 
plant characteristics and biodiversity, but this 
aspect remains underrepresented. Unlike machines 
such as harvesting robots, where advantages are 
immediately visible, the cause-and-effect relation-
ship between data-driven crop management and 
improved farm outcomes is often not recognised. 
Making this connection visible and understandable 
is key to helping farmers grasp its tangible value.

A market entry strategy must include direct, farmer-
led conversations about the proposed design to 
successfully introduce and encourage the adoption 
of new technologies (see Figure 43). Farmers 
should be actively involved and encouraged to 
share their experiences and insights. While farmers 
do not rely heavily on gathered data, they are often 
influenced by the practices and successes of their 
peers.

Facilitating knowledge exchange among farmers, 
particularly regarding Precision Agriculture Tech-
nologies (PATs), is crucial for encouraging their 
adoption and ensuring long-term success. Ideally, 
PATs, or specific elements like sensors and modu-
les, should be designed for sharing or rental among 
trusted peers. Peer learning stands out as one of 
the most effective yet underutilised methods for 
promoting new technologies, as farmers often trust 
insights from fellow farmers more than those from 
external sources. A modular design with a peer-to-
peer learning approach provides a low-barrier entry 
point, building trust while supporting gradual adop-
tion. It also helps alleviate the substantial challenge 
of high upfront investments, a primary obstacle 
to adoption. Research indicates that farmers are 
receptive to sharing and rental models, especially in 
local cooperatives.

In addition to building trust through peers, the de-
sign must incorporate a “manual override” feature 
to further enhance trust in the technology itself, as 
the fear of overdependence on technology is ever-
present. This would ensure that the system remains 
operable even without internet or GPS access, 
giving farmers control during critical moments and 
fostering trust in the technology.

Regarding functionality, the design must be highly 
flexible and capable of supporting various tasks. A 
significant barrier to adoption is the lack of suitable 
solutions for small-scale farms. Farmers are not 
looking for highly specialised machines, but for ver-
satile systems that can perform multiple functions 
across different crops. One of the key functionalities 
farmers expect is support in weed management, 
which they consistently cite as a top priority.

In addition to task flexibility, the system must also be 
location-flexible. It should either be road-legal for 
travel between fields and farms or compact enough 
for easy transport across plots. 

2.2.5.4. Conclusion & Key Considerations for Designing PATs for Small-Scale Farms
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Figure 44:  Interwoven Approaches to Design and Technology Research

Technology Choices in Design2.3. 

Understanding the emerging technologies that 
drive Precision Agriculture is crucial for creating 
tools suited to farmers‘ requirements. This chapter 
provides an overview of these technologies, serving 
as a basis for crucial design and technology choices 
within the proposed concept. It facilitates informed 
decision-making throughout the entire design 
journey. Although this chapter is a segment of the 
broader research initiative, it is regarded as distinct 
from the main research area since the insights 
shared here were developed alongside — and 
intricately woven into — the design process (see 
Figure 44).

According to Xu & Li (2022b), a typical field robot 
consists of five essential components: a mobile 
platform, sensors for both phenotyping and 
navigation, computing units for data processing and 
control, and manipulators (see Figure 45).

Mobile Platform

Perception Sensors

Phenotying Sensors Computing Unit

Manipulator

Figure 45:  Key Components of Field Robots; 
Created by the author based on (Xu & Li, 2022b)

The following chapters explore each of these 
components in differing degrees of detail. 

In line with the research focus, there is special 
attention on phenotyping sensors and the exact 
parameters that the robot needs to measure. 
Additionally, emphasis is placed on the mobile 
platform, particularly regarding its technological 
specifications and setup. 

Perception sensors, which are closely linked to the 
vehicle’s navigation system, are addressed within 
the chapter on the mobile platform. 

The digital backend, particularly the computing 
unit, receives only a brief mention since it is not the 
main focus of this thesis (see Chapter 1.5. Project 
Scope).

Manipulators, such as robotic arms, are not ex-
amined in detail, as field data collection generally 
occurs contactless, which eliminates the need for 
manipulators. In this concept, any manipulative 
actions are intended to be performed using the 
implements already available to the farmer (see 
Chapter 2.1.2.2. Mechanisation and Equipment).
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2.3.1.1. Creating the Trait-Sensor-Relation Framework

Every digitisation process relies on data acquisition and interpretation. Data and data collection form the 
foundation of decision-support tools and data-driven management. In PA, data on individual fields and crops 
are gathered through observation, measurement, and sensing using various types of sensors mounted on 
mobile platforms such as drones, Unmanned Ground Vehicles (UGVs), or satellites (Karunathilake et al., 
2023). This sensing process constitutes the fundamental core of PA (Hundal et al., 2023; Yuan et al., 2023). 
The collected data may pertain directly to plants, soil conditions, or the surrounding environment (Pieruschka 
& Schurr, 2024).

In agricultural research, various plant parameters 
are assessed with different sensor technologies. 
To determine the most relevant parameters and, 
thus, the appropriate sensors for this project, a 
comprehensive analysis is necessary. This chapter 
evaluates the effectiveness of several sensor 
technologies for field data collection in PA, inves-
tigating ideal sensor combinations that achieve a 
balance between information depth and cost-effec-
tiveness in environmental monitoring. In addition to 
economic considerations, this study also outlines 
essential criteria for sensor selection. 

Before selecting appropriate sensors for the project 
to integrate into the platform, it is essential to 
understand what needs to be measured and why. 
This chapter introduces the Trait-Sensor-Relation 
Framework, a decision-support tool designed to 
aid in sensor selection for farmer toolkits, ensuring 
efficient and meaningful data collection. The follo-
wing chapters will provide a detailed, step-by-step 
explanation of the framework's development. 

This chapter and the developed Trait-Sensor-Rela-
tion Framework address the subsequent research 
questions: 

RQ 6. Which sensor technologies are best suited for 
 collecting field data in Precision Agriculture?

RQ 6.1. Which sensor combinations offer the best trade-off between information depth and  
 cost-efficiency in environmental monitoring?

RQ 6.2. Beyond cost considerations, what are the most critical criteria for 
 selecting sensors in Precision Agriculture and environmental monitoring?

2.3.1. Phenotyping Sensors - Sensor and Data Type Selection
Field phenotyping is the process of measuring and 
analysing plant traits in their natural environment 
using sensors, imaging technologies, and other 
tools to assess growth, health, and yield potential. 
This process involves capturing and evaluating 
complex plant characteristics, such as growth, 
development, geometric structure, and stress 
tolerance. The collective physical and physiological 
attributes of a plant are referred to as its phenotype 
(Thakur et al., 2023).

Moreover, the plant phenotype is significantly 
influenced by soil-related and environmental factors 
(e.g., weather conditions), which are also recorded 

during the phenotyping process (Pieruschka & 
Schurr, 2024). Monitoring the phenotype of crops 
requires non-invasive, high-throughput data 
collection across multiple scales (leaf, plant, field, 
or landscape level), time points (various growth 
stages), and data sources (different sensors and 
measurement tools) within the plant’s natural 
environment (Yuan et al., 2023). This approach 
is essential for understanding plant responses to 
environmental stressors such as drought, salinity, 
and disease (Kolhar & Jagtap, 2023; L. Li et al., 
2014; Narvaez et al., 2017; R. Qiu et al., 2018; Xu & 
Li, 2022b; Yuan et al., 2023; Zieschank & Junker, 
2023).

Plant traits
Every plant has distinct traits, which are unique, 
measurable, quantitative parameters like height, 
leaf area, biomass, or chlorophyll content. These 
essential traits serve as the foundation for more in-
tricate plant characteristics (L. Li et al., 2014). Traits 
can be broadly classified into morphological and 
physiological traits. Both categories are essential 
for understanding plant ecology, adaptation, and 
responses to environmental conditions (R. Qiu et al., 
2018; Zieschank & Junker, 2023).

Morphological Traits
Morphological traits refer to the physical structure 
and form of a plant. These traits, such as plant 
height, are usually externally visible and can be 
measured directly.

Physiological Traits
Physiological traits, such as chlorophyll content, 
relate to the internal processes and functions of the 
plant. These traits are not always visible from the 
outside (R. Qiu et al., 2018; Zieschank & Junker, 
2023).

Due to the complexity of plant phenotyping, a 
diverse range of morphological and physiological 
traits must be quantified to assess plant perfor-
mance comprehensively (R. Qiu et al., 2018). 

The list below summarises measurable plant 
traits from these two categories, identified in the 
literature, that are commonly used in automated 
plant phenotyping in PA (see Figure 46) (Crain et 
al., 2016; Das Choudhury et al., 2019; Gano et al., 
2024; Kolhar & Jagtap, 2023; L. Li et al., 2014; 
Narvaez et al., 2017; Pérez-Ruiz et al., 2020; R. 
Qiu et al., 2018; Xie & Yang, 2020; Xu & Li, 2022b; 
Yuan et al., 2023; Zieschank & Junker, 2023).
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2.3.1.2. Field Phenotyping

Figure 46:  Commonly Measured Plant Traits and Soil Parameters
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Relating Areas of Traits

Depending on their relevance, all phenotyping traits can be assigned to different plant characteristics. 
However, this categorisation is not mutually exclusive, as many plant traits contribute to multiple categories 
(Yuan et al., 2023)Some traits correlate strongly with only one specific category, such as yield, resistance, 
quality, or nutrition, while others provide valuable insights across multiple categories.

Yield
Yield is primarily determined by the plant's morpho-
logical characteristics. It essentially represents 
biomass production and is closely associated with 
the quantity of harvested organs.

Resistance
Resistance stems from a blend of multidimensional 
phenotypic data. It is shaped by numerous environ-
mental elements, such as biotic stresses (including 
diseases, insect infestations, and weeds) and 
abiotic stresses (like drought, salinity, alkalinity, and 
flooding). These elements can greatly influence 
plant growth and survival.

Quality
Quality is influenced by differences in both morpho-
logical and physiological characteristics. Evaluating 
quality based only on morphological traits proves 
difficult. However, incorporating physiological 
traits, like nutrient content, results in more precise 
assessments.

Nutrition
Nutritional assessment is mainly based on phy-
siological characteristics. These characteristics 
indicate aspects like soil nutrient availability, the 
nutrient requirements of plants, and the efficiency 
of nutrient uptake. Moreover, nutrient deficiencies 
show in morphological features, including the size 
and structure of the plants (Yuan et al., 2023).

Information Content of Different Traits

Most traits serve different functions and adapt to various environmental factors, interlinking in complex 
manners. These interconnections make it hard to analyse trait relationships and their specific roles through 
traditional correlation and cluster analysis techniques. An effective way to examine these multifaceted inter-
actions is by utilising Plant Trait Networks (PTNs). PTNs offer a comprehensive framework for analysing and 
visualising the intricate relationships among various plant traits (N. He et al., 2020).

To illustrate which traits are most ‘informative,’ the relationships among them have been simplified. This 
strong simplification is necessary, as a complete PTN analysis would exceed the scope of this study. Addi-
tionally, the predictive power of traits may vary depending on the crop species. Based on previous studies 
(Botta et al., 2022; Cardone et al., 2020; N. He et al., 2020; Kolhar & Jagtap, 2023; Y. Li et al., 2016; Ouyang 
et al., 2021; R. Qiu et al., 2018; Rossato et al., 2017; Yuan et al., 2023; Zieschank & Junker, 2023) a simpli-
fied classification has been developed, indicating the extent to which specific traits allow for conclusions 
about the different categories. For instance, while traits such as plant diameter provide limited information, 
indices like the Normalised Difference Vegetation Index (NDVI) allow for more precise conclusions across 
multiple categories.

However, with the continuous advancements 
in AI systems, particularly convolutional neural 
networks (CNNs), the informational value of 
plant traits can be increasingly refined and better 
interpreted. By integrating multiple traits, AI models 
can provide a holistic perspective, enhancing the 
understanding of how various factors influence 
plant growth and development. Therefore, it can 
be assumed that even a combination of multiple 

‘weak’ (low-information) traits can yield significant 
insights when analysed using AI-driven approaches 
(Hati & Singh, 2021). It can significantly enhance 
the informational content derived from standard 
morphological and physiological plant traits. The 
integration of AI and machine learning (ML) tech-
niques enables more comprehensive data analysis 
and interpretation, leading to deeper insights into 
plant biology (Cembrowska-Lech et al., 2023).
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The graphic (see Figure 47) illustrates how various 
traits can be divided into morphological and physio-
logical categories. Above each trait, it indicates the 
extent of information regarding yield, resistance, 
quality, or nutrients that can be obtained by evalua-
ting that trait. In this framework, (1) signifies vague 
or indirect correlations, whereas (2) indicates direct 
correlations that enable more precise predictions.

For example, Chlorophyll content serves as a 
strong indicator of a plant’s resilience (2) because it 
directly correlates with photosynthetic activity and 
overall plant health. Higher chlorophyll levels sug-
gest robust photosynthesis, which leads to superior 
growth and increased yield (1). While chlorophyll 
content offers a rough estimate of yield, a more 
accurate prediction can be achieved by assessing 
biomass, as it reflects the actual harvested volume. 

Conversely, biomass can also signify resilience (1), 
since only plants that efficiently perform photo-
synthesis and possess high chlorophyll levels can 
accumulate substantial biomass (Cheng et al., 
2025; Jiang et al., 2018; Mohan et al., 2022; Mu 
et al., 2024; Rowland et al., 2020; SAMUOLIENĖ 
et al., 2019; Wang et al., 2022). Therefore, while 
certain traits allow for accurate predictions, others 
provide indirect insights into specific aspects, and 
some can only be effectively understood when 
combined with supplementary data (Expert Inter-
views, 2025). 

It is important to acknowledge that this is a greatly 
simplified representation. The table is intended 
solely as a guide for selecting sensors. The 
information conveyed by specific traits can vary 
significantly among different crop species. 

Figure 47:  Information Value of Various Plant Traits
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2.3.1.3. Sensors

The selection of sensor technology is inherently 
linked to the choice of plant traits to be measured. 
Traits and sensors are interdependent. While 
some sensors are designed for highly specific 
measurements, others can be used to capture 
multiple traits. Not every trait, however, needs to be 
measured directly to yield meaningful plant data. 
Strong correlations between certain traits allow for 
indirect assessments, where measuring one trait 
can provide reliable insights into another (R. Qiu et 
al., 2018).

A single trait can be evaluated using various sensor 
technologies. For example, plant height can be 
measured with an RGB camera that employs AI 
analysis or with a LiDAR system. The choice of sen-
sor influences both the measurement accuracy and 
the range of traits that can potentially be assessed. 
Depending on the technology, sensors may capture 
one trait or several, aiding in evaluating plant 
characteristics. Therefore, choosing the appropriate 
sensor should match the intended application, 
ensuring adequate and pertinent measurements.

Using plant height as an example, both LiDAR 
technology and RGB cameras equipped with AI 
analysis can measure this metric, but they vary 
significantly in their capabilities and limitations. 
LiDAR provides highly accurate depth readings and 
functions efficiently under various lighting environ-
ments, ensuring precision; nonetheless, it comes 
with high costs and demanding computational 
needs. In contrast, RGB cameras with AI are more 
cost-effective and readily available but depend on 
substantial training data and are affected by lighting 
variations. The balance between resolution, cost, 
and processing demands significantly influences 
the practicality and success of sensor deployment.

The schematic overview illustrates the complexity 
of sensor selection (see Figure 48). The choice 
of sensors directly determines which traits can be 
measured and in what quality and quantity, influen-
cing the depth of information that can be extracted. 
At the same time, every trait has a different informa-
tion value, allowing for agricultural decision-making. 

Moreover, several critical factors must be thought-
fully evaluated to achieve the ideal balance among 
accuracy, cost, and practical utility in precision 
agriculture. It's not solely about how closely a 
sensor aligns with specific traits—technical 
specifications and limitations are equally significant. 
These factors encompass the clarity of the sensor’s 
images (in terms of spatial and spectral resolution), 
the overall cost, and its computational demands(Xie 
& Yang, 2020). Additionally, it is vital to consider the 
sensor’s operational range, durability, and ability to 
withstand challenging environments.

Relevant plant phenotyping and trait estimation 
sensors have been identified and added to the 
table. In addition to listing the types of sensors 
currently available and in use, they have also been 
mapped to the specific plant traits they can mea-
sure or have been used to estimate. A mark in the 
matrix shows which traits the correlating sensor can 
measure (see Figure 49) (Crain et al., 2016; Deery 
et al., 2014; Fountas et al., 2020; Gano et al., 2024; 
Guri et al., 2024; Karunathilake et al., 2023; L. Li et 
al., 2014; Narvaez et al., 2017; Neupane & Baysal-
Gurel, 2021; Oliveira et al., 2021; R. Qiu et al., 2018; 
Stafford, 2013; Villa-Henriksen et al., 2020; Xie & 
Yang, 2020; Xu & Li, 2022b; H. Zhang et al., 2023). 
However, it is essential to note that this mapping 
may evolve with ongoing advances in artificial 
intelligence. For example, while it was previously im-
possible to estimate plant volume using a standard 
RGB camera, recent technological progress has 
enabled algorithms to extract such information from 
RGB data alone (Raja et al., 2021).

Info Value

Trait(s) Sensor

Figure 48:  Relation between Trait, Info Value and Sensor

To determine the best sensors for this project, a 
score was computed for each sensor across four 
criteria: yield (Y), resistance (R), quality (Q), and 
nutrient content (N). This score reflects the overall 
value of all traits that a sensor can potentially 
measure within each criterion. For instance, if a 
sensor measures trait A with a yield value of 2 and 
trait B with a yield value of 1, it achieves a total yield 
score of 3.

The scores appear on the right as a heatmap (see 
Figure 49), reflecting the theoretical information 
potential of each sensor, under the assumption 
that it measures all traits it is technically capable 
of detecting. However, it's important to note that 
measuring two weakly correlated traits (1) related 
to a given category is not the same as measuring a 
single trait with a strong correlation (2). To address 
this distinction, a second heatmap is presented on 
next to it, illustrating the direct correlation score, 
which only considers those traits with strong 
correlations (2) to the relevant category. 

Two additional factors were considered for the final 
selection of sensors: price category and the require-
ment for physical contact. The price category is a 
straightforward classification: category A represents 
average prices in the two-digit range, category 
B encompasses three-digit prices. In contrast, 
category C includes sensors priced at four digits 
or more. Since cost presents a considerable barrier 
to farmers adopting precision agriculture techno-
logies, all category C sensors were eliminated from 
consideration. Sensors requiring physical contact 
with the test object (plant or soil) were designated 
with an 'X'. These also were excluded, as they would 
greatly complicate their integration into an autono-
mous platform.

It must be mentioned that the computational 
requirements of each sensor are also essential 
for the selection process. A deeper integration of 
these requirements, particularly for each sensor, 
along with an appropriate ranking, would be 
advantageous. However, this analysis goes beyond 
the scope of this thesis. Nonetheless, this aspect 
should be considered more in future decision-ma-
king processes.

2.3.1.4. Using the Trait-Sensor-Relation Framework
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In summary, the framework indicates that both the 
stereo camera and the RGB-D camera are the most 
promising choices due to their strong performance 
in both information scoring and affordability.

To validate the relevance of the framework, the 
topic of clustering and its correlation with specific 
categories identified in the literature was also 
discussed during an expert interview with an 
independent research scientist holding a Doctorate 
in Natural Sciences. As previously mentioned in the 
framework description, the expert confirmed that 
the model should be seen as a significant simplifi-
cation of reality. 

The expert underscored that the significance 
of a measurement largely relies on its applica-
tion—whether it acts as a criterion for a specific 
intervention (cause-effect) or as an indicator of 
the system's overall state. Additionally, it was 
noted that certain values gain meaning only when 
interpreted alongside others. For instance, measu-
ring leaf length in isolation offers very little insight; 
its relevance emerges when assessed with other 
attributes such as leaf width or shape. While some 
parameters may be more meaningful when consi-
dered alone, others only elucidate their significance 
in combination.

“They belong together. From the shape of the 
leaf, the way it grows, and the flatness—how 
flat the blade is and how the plant holds the 
leaf—you can read an incredible amount. If you 
know how to interpret that, you can understand 
a lot about the plant’s condition. A lot! But if you 
isolate just one of these values? No.” 
– Expert Natural Sciences

The expert also noted that the fewer data points 
you collect, the more difficult it becomes to inter-
pret them correctly. This is well summarised in the 
following quote:

“In my experience, the fewer data you collect, the 
better you need to be at interpreting them.”
 – Expert Natural Sciences

Thus, measuring various traits is crucial for obtai-
ning reliable results. Gathering diverse data, not just 
focused on plants or soil, but also including other 
factors like environmental factors, facilitates more 
precise conclusions, while limited data can hinder 
interpretation. The RGB-D camera, known for its 
capability to capture a range of traits, is selected for 
data collection in this thesis, as it aligns well with the 
framework. Its potential for enhancing data inter-
pretation through AI further confirms the RGB-D 
camera as a cost-effective and appropriate choice, 
given its proficiency in capturing both colour and 
depth information.

RGB-D camera is the most promising choice due to its strong 
performance in both information scoring and affordability.

Figure 49:  Final Trait-Sensor-Relation Framework
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2.3.1.5. The Role of Bioindicators in Informed Decision-Making

Phenotyping, outlined in the previous chapter, 
entails a multifaceted process. Ecosystem health 
evaluations should not rely only on isolated indi-
cators. Adopting a holistic perspective is essential, 
as single measurements rarely capture the com-
plexities of natural systems. Specific parameters 
possess greater informational value than others, 
indicating that this inherent hierarchy could improve 
data collection strategies. 

This inspired the concept of utilising nature as a 
dependable indicator. The idea involves starting 
with the insights that ecosystems provide through 
particular species. Instead of prioritising specific soil 
or plant measurements, this strategy emphasises 
how insects and animals, particularly those sensi-
tive to environmental shifts, can act as proxies for 
evaluating ecosystem health and informing farming 
choices.

This can be illustrated through a simple analogy: 
when evaluating a car's functionality, one typically 
doesn’t examine every engine component separa-
tely. Instead, the standard approach is to start the 
engine. If it operates correctly, it’s assumed that the 
essential subsystems—like the battery, ignition, 
and fuel delivery—are working adequately. A more 
detailed assessment of individual parts is only 
conducted if the engine fails to start. This approach 
saves time and resources while still offering a 
reliable diagnosis. In ecosystem monitoring, specific 
species can act as bioindicators—organisms 
whose presence indicates that key environmental 
conditions are within appropriate ranges. From 
this hypothesis, two key research questions were 
derived that will be assessed in this chapter: 

RQ 4.1. What role do bioindicators and indicator species play 
 in monitoring environmental changes and assessing ecosystem integrity?

RQ 4.2. How do temporal delays and local biases affect 
 the reliability of bioindicators in ecosystem evaluation?

To investigate this, an interview was conducted with 
a biologist. The expert endorsed this hierarchical 
measurement strategy, highlighting its effectiveness 
and strategic importance. Rather than gathering 
thousands of data points at the outset, it is more 
efficient to start at the top of the data hierarchy 
and only dig deeper when anomalies arise. For 
instance, the presence of earthworms suggests 

that factors such as soil moisture, aeration, pH, and 
organic matter levels are likely within acceptable 
limits. Instead of measuring each factor individually, 
monitoring earthworms provides a holistic and 
efficient evaluation of soil health. If these creatures 
are absent, more detailed measurements can follow 
(Expert Interview, 2025).

Top-level consumers
(carnivorous animals)

Primary consumers
(herbivorous animals)

Producers
(plants)

Decomposers
(soil organisms)

“The higher you go in the system—say, if 
earthworms are present—then you already 
know that many other factors must be in place. 
Otherwise, they wouldn't be there at all.” 
 – Expert Natural Sciences

Figure 50:  Ecological pyramid; Created by the author based on (Ueda, n.d.)

Tools like Soildiag, created by botanist Gérard 
Ducerf, embody this concept. The app evaluates 
images of indicator plants to estimate essential 
soil properties such as pH, biological activity, and 
organic matter, without requiring direct sampling 
(Soildiag, n.d.). Besides plant indicators, particular 
animal species could also serve as valuable 
reference points. The presence of predatory insects 
like hoverflies or ladybugs indicates a healthy eco-
system, while their absence signals degradation. 
For example, hoverflies that prey on aphids demon-
strate natural pest control, whereas the presence 
of dung beetles in meadows signifies a functioning 
nutrient cycle.

“We should be paying closer attention to insect 
species in the field. They offer highly specific 
and meaningful ecological insights—we simply 
choose not to see them.”
 – Expert Natural Sciences

Multisensory Approaches: The Role of Acoustic 
Signals
Acoustic signals were also highlighted as an unde-
rutilised yet valuable source of ecological data. Field 
biologists do not rely solely on visual cues—they 
also listen. The calls of specific birds or the chirping 
of crickets can reveal much about local ecosystems. 
Advances in AI now make it increasingly feasible 
to automate the identification of these auditory 
signals. By integrating sound analysis into monito-
ring systems, beyond the dominant use of cameras, 
ecological assessments could become even more 
comprehensive.

“If I walk a transect and hear selected bird 
species, I know they’re there. Recognising bird 
calls or cricket chirps can provide valuable data. 
Sound is a vital layer of information, but we 
often ignore it in favour of visual data.” 
– Expert Natural Sciences

Addressing Spatial and Temporal Biases
Methodological strategies can alleviate concerns 
regarding spatial and temporal biases in bioindicator 
data. Spatial bias is frequently countered by emp-
loying transects—systematic sampling lines from 
which data is gathered at regular intervals, typically 
every 5 or 10 meters. This method effectively 
uncovers ecological gradients and spatial patterns. 
Temporal delays between environmental changes 
and ecological responses are generally minimal. 
Although some species may respond slowly, others 
can react almost instantaneously to environmental 
shifts (Wu et al., 2020).

Limitations in Degraded Ecosystems
Although this approach shows potential, it has 
limitations. A significant challenge occurs in already 
degraded ecosystems. In numerous regions, 
indicator species have disappeared due to severe 
environmental degradation. Consequently, there 
are no organisms left to act as ecological reference 
points.

“We've lost 90 per cent of insect biomass. 
Predators have vanished from conventional 
farmland—they're just no longer there. That 
means we've ended up in a degraded system 
where pests remain, but the natural predators 
are missing. So, you'll have to accept that, and 
measure at that lower level [individual plant 
parameters].” 
– Expert Natural Sciences

Conventional measurements, like plant-based 
sensor data, are essential in these environments. 
Bioindicators can only operate in healthy ecosys-
tems that can sustain them.

Implications for Sensor Selection and Monitoring 
Strategy
In conclusion, bioindicators can serve as valuable 
reference points for ecosystem monitoring. Howe-
ver, relying solely on biological indicators is often 
not feasible in heavily degraded systems. Therefore, 
the proposed monitoring strategy should begin with 
plant-based sensor measurements.

As ecosystems recover and indicator species 
re-emerge, the strategy can gradually shift to incor-
porate bioindicator-based evaluations, using these 
organisms as key proxies for assessing ecosystem 
health. Similar to how canaries historically provided 
early warnings in coal mines, indicator species can 
indicate both recovery and potential underlying 
ecological issues. Consequently, a hierarchical, 
species-informed approach can enhance environ-
mental monitoring, making it more efficient and 
better aligned with the principles of nature.
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This chapter guides on choosing sensor tech-
nologies to advance the design concept. The 
Trait- Sensor- Relation Framework identifies 
several key factors to aid in sensor selection. 
Although intended as an initial guide for this thesis, 
it can also serve as a starting point for broader 
discussions about the complex task of selecting 
suitable technologies. As noted, sensor selection 
is not universally applicable; it demands careful 
consideration of cost, accuracy, scalability, and 
environmental suitability.

The proposed scoring and evaluation strategy 
underscores the advantages of affordable, 
non-contact sensors such as RGB-D cameras, 
particularly due to their versatility. As artificial 
intelligence advances, the value of the simple data 
these sensors generate is expected to increase 
significantly. Enhanced data interpretation capa-
bilities will likely yield deeper insights, allowing the 
same hardware to improve functionality through 
straightforward digital backend updates, making 
these sensors a future-proof solution.

A comprehensive review of artificial vision systems 
used for agricultural characterisation and detection 
has been provided by (Narvaez et al., 2017). This 
work intentionally does not include a detailed tech-
nical description of individual sensor technologies, 
as this information is already thoroughly covered 
in numerous scientific studies, including those 
by (Crain et al., 2016; Deery et al., 2014; Fountas 
et al., 2020; Gano et al., 2024; Guri et al., 2024; 
Karunathilake et al., 2023; L. Li et al., 2014; Narvaez 
et al., 2017; Neupane & Baysal-Gurel, 2021; Oliveira 
et al., 2021; R. Qiu et al., 2018; Stafford, 2013; 
Villa-Henriksen et al., 2020; Xie & Yang, 2020; Xu & 
Li, 2022b; H. Zhang et al., 2023).

The chapter also emphasises the role of bioindica-
tors in environmental monitoring. While the expert 
interview supported the core hypothesis of their 
usefulness, they also highlighted certain limitations. 
Bioindicators such as earthworms and pollinators 
can provide quick, comprehensive insights into 
ecosystem health; however, their effectiveness 
diminishes in highly degraded environments.

To tackle this issue, a hierarchical monitoring 
strategy is recommended: beginning with robust 
plant-based data collection and progressively 
integrating bioindicators as ecosystem conditions 
improve. The significance of audio data in monito-
ring has also been acknowledged and will be further 
included in the design concept.

Ultimately, this integrated approach, melding sensor 
technologies (both visual and auditory) with various 
data sources (including plant parameters and 
bioindicators), provides a flexible, scalable frame-
work for future agricultural monitoring platforms. 
It is essential to mention that several soil-related 
parameters were excluded from the selection 
process due to their need for physical contact. 
While this exclusion is justifiable in an automated 
system, these parameters still hold value for manual 
assessments by farmers and should receive greater 
focus in future studies.

2.3.1.6. Conclusion Recording Technologies

The carrier platform—whether a four-wheel tractor, single-axle machine, or another towing device—serves 
as the foundation of agricultural mechanisation (see Chapter 2.1.2.2. Mechanisation and Equipment) (Expert 
Interviews, 2025). This chapter outlines the differences between various platform types, whether ground-
based or aerial, and provides an overview of their drive mechanisms and guidance systems (for autonomous 
platforms). The aim is to support informed decision-making regarding the most suitable mobility concept for 
small farms.

2.3.2.1. Ground vs. Aerial Platforms

2.3.2. Mobile Platform

Agricultural autonomous platforms can be broadly 
divided into aerial and ground systems (Xu & Li, 
2022a), each presenting unique benefits and 
drawbacks. Regarding data collection, UAVs provide 
distinct advantages: they are more efficient and 
capable of covering wider areas (Xu & Li, 2022a). 
Their ability to fly avoids interference from ground-
level obstacles like rocks, holes, terrain variations, 
and branches (Oliveira et al., 2021). On the other 
hand, the repeated movement of UGVs on the 
ground leads to increased soil compaction, which 
poses a significant problem in agriculture.

UAVs encounter several limitations. Their payload 
capacity is notably constrained, restricting the 
types of sensors and equipment they can trans-
port. Furthermore, UAVs are more vulnerable to 
weather conditions like wind and rain (Xu & Li, 
2022a; Oliveira, Moreira, & Silva, 2021). While flying 
offers advantages, it typically results in reduced 
ground-level detail and limits close-range sensing 
because of the greater distance between plants and 
the sensor (Munasinghe, Perera, and Deo, 2024).  
UGVs theoretically have the advantage of control-
ling lighting in enclosed spaces if needed (Ren et 
al., 2024) and providing a more adaptable viewing 
angle, unlike UAVs, which are confined to top-down 
perspectives of the canopy (Xu & Li, 2022a). 

Additionally, trees in the field, which are essential for 
biodiversity, present greater challenges for airborne 
sensing technologies. This is not only because 
of the risk of collisions with branches (similar to 
power lines) (Oliveira et al., 2021), but also due to 
their ability to block visibility beneath the canopy 
(Ren et al., 2024). Drone flight time further limits 
UAV capabilities. Unlike UGVs, UAVs cannot easily 
support large, heavy batteries, which greatly limits 
their operational time (Oliveira et al., 2021; Ren 
et al., 2024). In contrast, UGVs encounter fewer 
regulatory and legal limitations, as they remain on 
the ground (Ren et al., 2024). Figure 51 illustrates 
the pros and cons of each system.

Recently, hybrid platforms have attracted attention, 
including UAVs that land on UGVs for recharging 
and ground robots equipped with tethered aerial 
components and „perch-and-stare“ capabilities 
(Munasinghe et al., 2024). While this combination 
leverages the strengths of both systems, it also 
brings out their weaknesses. Combining both 
UAVs and UGVs raises expenses, demands more 
infrastructure, and adds to the system‘s overall 
complexity (Pretto et al., 2021).

One key distinction between UGVs and UAVs is that 
UGVs offer more functionality beyond data col-
lection—they can also execute a range of farming 
tasks. For instance, they can be fitted with tools or 
manipulators to perform activities like ploughing, 
which UAVs are unable to do (Pretto et al., 2021).

As previously noted (see Chapter 2.2.3.2. Techno-
logical Factors), data collection alone often does not 
provide sufficient immediate value to justify the use 
of robotic systems on small-scale farms. Therefore, 
this thesis focuses on ground-based robots, which 
can support both monitoring and practical field 
tasks. Flexibility is a key factor in precision agricul-
ture for small farms, and ground-based solutions, 
compared to airborne solutions, are more suited 
to meet this need. The following chapter will delve 
deeper into the various drive mechanisms that can 
be employed for ground-based robotic systems.

+
-
-
-
+
+
+
+
+
+

-
+
-
+
-
-
-
-
-
-

UGVs UAVs

Flexibility (Additional Tasks)

Area Coverage

Obstacle avoidance

Soil Impact

Payload Capacity

Weather Resistance

Detail Resolution

Viewing Angle

Operational Time

Regulatory Limits

Figure 51:  Comparison of UGVs and UAVs
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2.3. 2.2. Drive Mechanisms

Phenotyping robots are typically categorised into three types according to their drive mechanisms: wheeled, 
tracked, and wheel-legged. Wheeled-robots can be further divided into those with limited mobility and those 
with full mobility (see Figure 52) (Xu & Li, 2022b).

Full Mobility

Locally Restricted

Omnidirectional

Skid

Differential

Ackermann
2WD2WS / 4WD4WS

Articulated

Tracked
Robot

Wheeled
Robot

Wheel-Legged
Robot

This section provides a brief overview of each 
mechanism. A custom illustration on the right (see 
Figure 53) visually depicts the structure of each 
system. Actively driven wheels are labelled (A), 
while passive wheels are denoted (P). 

Tracked 
Tracked robots utilise continuous tracks instead of 
wheels, enhancing ground contact and adapting 
well to difficult terrains like muddy and uneven 
fields. They function with lower ground pressure, 
which makes them perfect for soft surfaces. Their 
movement systems are like those found in differen-
tial drive wheeled robots (Bruzzone et al., 2022).

Wheel-Legged
Wheel-legged robots merge the benefits of wheels 
with articulated legs, delivering both speed and 
enhanced adaptability to various terrains. They 
offer manoeuvrability similar to that of four-wheel 
drive and four-wheel steering (4WD4WS) systems. 
However, their increased mechanical complexity 
and expense render them less durable and econo-
mically viable for most phenotyping applications, 
where these advanced features may be excessive 
(Zhu et al., 2024).

Wheeled
Locally constrained wheeled robots—particu-
larly those with skid-steer and differential drive 
systems—are appreciated for their simplicity and 
affordability. These systems closely resemble 
tracked locomotion, particularly in their capability 
to rotate on the spot by adjusting the speed and 
direction of the wheels. Skid-steer robots com-
monly feature four powered wheels and manoeuvre 
by varying the speeds of these wheels. On the 
other hand, differential drive robots operate with 
two powered wheels and typically include one or 
more passive caster wheels to maintain balance 
and enhance manoeuvrability. While both types can 
perform zero-radius turns, skid-steer robots depend 
on lateral wheel slippage for turning, leading to 
decreased power efficiency, increased tire wear, 

and possible soil disturbance. Although differential 
drive robots can also experience slippage, it is 
significantly less frequent, leading to lower energy 
lossand reduced impact on soil compared to 
skid-steer robots. Nonetheless, differential drive 
systems can face steering inaccuracies due to 
unequal traction or rolling resistance among the 
wheels, potentially leading to unintended deviations 
in direction (Xu & Li, 2022b).

Ackermann steering, commonly used in cars, pro-
vides a familiar and efficient means of navigation. 
In this system, either two or all four wheels can be 
powered, allowing for stable and controlled motion 
on solid ground. However, its primary limitation is 
the large turning radius, which becomes a disad-
vantage in constrained environments, such as at the 
edges of crop fields, where space is limited (Q. Qiu 
et al., 2018).

Articulated steering offers a compelling alternative, 
particularly in off-road scenarios. In this design, the 
robot is split into front and rear segments connec-
ted by a vertical hinge, with steering achieved by 
changing the angle between the two halves. While 
this setup enhances manoeuvrability and reduces 
the required turning space, it comes at the cost 
of increased mechanical complexity compared to 
Ackermann steering (Delrobaei & McIsaac, 2011).

Fully mobility wheeled robots provide enhanced 
steering capabilities. Certain models employ a two-
wheel drive and two-wheel steering arrangement 
(2WD2WS), while others use a four-wheel drive 
and four-wheel steering configuration (4WD4WS), 
which offers more precise control. This configura-
tion boosts off-road performance but introduces 
mechanical complexity. Omnidirectional robots 
take mobility a step further, allowing movement in 
any direction without needing to rotate the chassis. 
Although this feature enables better adaptability to 
different terrains, it also elevates both system costs 
and control complexities (Tagliavini et al., 2022).

Figure 52:  Drive Mechanisms; Created by the author based on (Xu & Li, 2022b) 

To find the optimal solution for the drive mechanism of the ground-based system, multiple decision factors 
identified in the research have been chosen and prioritised using a Harris profile (see Figure 53).

The Harris profiles indicate that differential steering is the most effective configuration, primarily due to its 
affordability and mechanical simplicity. These features render it ideal for creating dependable and easily built 
robots. A key drawback of differential steering is its lower steering precision, primarily due to the uncontrolled 
swivel of passive caster wheels. Nevertheless, this limitation can be significantly alleviated by fine-tuning the 
pivot offset of the caster wheels, which improves straight-line tracking.
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- Support a small turning radius for confined farm spaces.
- Operate reliably on rough, soft, or uneven ground.

Manual Operation
Mechanical Complexity

Cost
Steering Precision

Manoeuvring Space
Terrain Adaptability

Figure 53:  Evaluation of Drive Mechanisms Using Harris Profiles
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2.3.2.3. Perception Sensors – Navigation 

Navigation plays a vital role in robotic automation, presenting three main challenges: localization, path plan-
ning, and map building. A variety of sensor technologies are commonly utilised to tackle these issues. GNSS 
and IMU deliver global positioning and orientation, whereas vision and LiDAR sensors facilitate accurate 
localization and obstacle detection. These sensors frequently collaborate within Simultaneous Localisation 
and Mapping (SLAM) frameworks to promote real-time awareness of the environment and assist with 
navigation (Xu & Li, 2022b).

GNSS-Based Navigation
GNSS is extensively utilised for robot localisation, 
particularly within agricultural settings. High-
precision systems such as RTK-GNSS provide 
centimetre-level accuracy and are frequently 
employed in path-following operations for 
autonomous machinery (Oliveira et al., 2021). 
Nevertheless, GNSS performance can diminish 
due to signal obstructions from tree canopies, 
multipath interference, radio frequency distur-
bances, and insufficient heading data. To address 
these challenges, GNSS is often integrated with 
additional sensors like IMUs and wheel encoders. In 
situations where GNSS reliability is uncertain, or in 
rapidly changing environments, vision-based and 
LiDAR-based methods are favoured for their ability 
to deliver real-time obstacle detection and mapping 
(S. Li et al., 2023). Although the high subscription 
costs of RTK correction signals have posed a barrier 
to widespread adoption (Lowenberg-DeBoer et al., 
2020), there are growing efforts within the EU to 
provide these services free of charge to farmers. 
For instance, Austria has been offering free RTK 
correction signals for agricultural use since February 
2021 (Hirt, 2024).

Vision-Based Navigation
Vision-based navigation allows robots to track crop 
rows through machine vision techniques. Typically, 
RGB cameras are employed to identify these rows 
and evaluate the robot's orientation concerning 
them. Integrating stereo vision systems enhances 
depth perception, boosting performance under 
varying lighting conditions and amidst weeds. Ho-
wever, this approach can be sensitive to changes in 
lighting and low-texture environments. To enhance 
robustness, vision systems are often paired with 
GNSS: vision guarantees accurate row-following, 
while GNSS aids navigation between rows or in 
visually compromised situations (S. Li et al., 2023; 
Xu & Li, 2022b).

LiDAR-Based Navigation
LiDAR operates by sending rapid pulses of laser 
light and measuring the time it takes for these 
pulses to bounce back from nearby objects. By 
determining distances using the speed of light, it 
creates a precise 3D representation of the sur-
roundings. Although highly accurate, LiDAR can 
generate rough or noisy data and sometimes misi-
dentify vegetation, like grass or leaves, as obstacles. 
Integrating LiDAR with vision sensors improves 
object classification and eliminates irrelevant data 
points, thus enhancing structural detection and 
obstacle avoidance (Stronzek-Pfeifer et al., 2023).

Small-scale farms need a navigation system that is accurate, affordable, and durable - traits often missing 
from single-sensor solutions in actual agricultural scenarios. A tiered sensor fusion strategy provides a 
more dependable alternative. Combining an RTK-GNSS receiver with an IMU and wheel encoder achieves 
centimetre-level positioning while retaining heading during GNSS outages. Stereo RGB cameras aligned 
with crop rows facilitate accurate local lane navigation, even amidst weeds. An optional 2D LiDAR layer can 
improve safety by identifying obstacles that the camera system might miss. Additionally, it is helpful to consi-
der the dual use of sensors already in place for phenotyping (see Chapter 2.3.1.6. Conclusion Recording 
Technologies). If an RGB-D camera is already being used for phenotyping, it can also support navigation, 
necessitating only the addition of the RTK-GNSS, IMU, and wheel encoder. This multi-purpose approach 
minimises hardware redundancy and enhances cost-efficiency.

2.3.2.4. Computing Unit 

In a phenotyping robot, the computing unit performs 
two primary functions: autonomous navigation and 
data collection, which can operate independently. 
While compact and energy-efficient single-board 
and embedded systems can be utilised, their 
processing power is often limited. As a result, it's 
common to employ separate computing units for 
navigation and data collection. This approach 
facilitates task-specific optimisation, for instance, 
leveraging a high-performance PC to manage large 
sensor data, and enhances modularity for smoother 
sensor integration and upgrades. However, this also 
introduces communication complexity and increa-
ses hardware costs (Xu & Li, 2022b). 

Since this project aims to create a highly flexible 
system, separate computing units will be implemen-
ted to allow for quick and simple sensor swapping, 
with one computing unit designated explicitly for 
autonomous navigation.

Software and Artificial Intelligence (AI) play a crucial 
role within the realm of computing power. This 
thesis will not explore these topics further because 
they are considered established technologies in 
precision agriculture and fall outside the main focus 
of this work.
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Synthesis of Insights3.1. 

3.1.1. Summary of Theoretical and Empirical Findings

The survival of small farms is not merely important 
- it is crucial to the future of our food system. Yet 
the trajectory of the past several decades paints a 
stark picture. Small-scale farming is being syste-
matically undermined. Despite policy efforts like 
the European Union’s Common Agricultural Policy 
offering financial lifelines, subsidies alone cannot 
counteract the structural forces driving small farms 
toward extinction. These farms are essential pillars 
of rural economies and irreplaceable guardians of 
agricultural biodiversity. But the odds are stacked 
against them. Faced with mounting challenges, they 
are being pushed out, making way for the relentless 
expansion of industrial agriculture.

As small farms disappear, industrial agribusinesses 
tighten their grip. With access to vast capital, 
infrastructure, and economies of scale, Big Ag has 
engineered a playing field in which smallholders 
are set up to fail. The more dominance these 
corporations gain, the more entrenched the system 
becomes. This is not simply market evolution—it 
is structural displacement. It leads to the erosion 
of community-based food systems and ecological 
resilience. And along with the disappearance of 
small farms, sustainable agriculture is buried as well.

The created Figure 54 illustrates this dynamic 
through the concept of a “vicious cycle.” The 
erosion of small farms fuels the rise of Big Ag, 
which in turn drives more profound structural 
disruptions - monocultures, regulatory capture, 
environmental degradation, and the displacement 
of rural identities. These disruptions, in turn, worsen 
the conditions for smallholders, intensifying their 
hardships and pushing them further toward exit or 
absorption. As small farms vanish, the agricultural 
landscape becomes increasingly homogenised, 
less diverse, and more vulnerable.

A key insight from this graph is that Precision 
Agriculture Technologies (PATs), while often pro-
moted as solutions, are currently being deployed 
at the wrong leverage point in this cycle. Instead 
of disrupting the cycle, they are reinforcing it - 
optimising efficiency for large-scale operators 
while neglecting the needs and realities of small 
farms. While promises abound that PATs will 
make Big Ag more sustainable, this approach is 
fundamentally flawed. Making industrial farming 
slightly more efficient does not solve its core 
problems - it merely postpones collapse. 

What agriculture needs is not marginal improvement 
through technology, but radical transformation. 
We need a diverse network of small farms - auto-
nomous, resilient, and locally rooted - cultivating a 
wide range of crops and strengthening local econo-
mies. These farms must serve as both stewards and 
beneficiaries of their ecosystems. To achieve this, 
we must redirect innovation. Precision agriculture 
must be decoupled from its current trajectory and 
repositioned as a tool to empower small farms.

This means developing tools that are grounded 
in real farm contexts - tools that amplify farmers’ 
agency rather than override it. Farmers do not need 
systems that automate their roles or override their 
judgment. They need technologies that amplify 
their agency, reduce stress, and support their ability 
to learn, adapt, and evolve. In short, they need tools 
that serve them, not the other way around.

There is enormous potential, but only if we abandon 
the techno-solutionist mindset that has failed us. If 
we simply replace subsidy dependence with tech-
nological and cognitive dependence on precision 
farming tools, we will repeat the same mistakes 
under a different name. True innovation means 
creating systems that are empowering by design 
- technologies that are adaptable, affordable, and 
free of hidden costs or constraints. Only then will 
we earn the trust of a farming community too often 
excluded from the benefits of innovation.

One major obstacle remains: many small farms 
still underestimate the value of field data. That 
must change. Technologies must offer more than 
abstract promises - they must deliver immediate, 
visible benefits. Flexibility is key. Farmers must be 
free to explore this new field of opportunity at their 
own pace. At the same time, the technology must 
offer direct and convincing returns. The appetite for 
innovation exists. With thoughtful, inclusive design, 
we can lower the barriers to adoption and create 
technologies that truly scale, not through imposi-
tion, but through actual relevance.

To break this flawed cycle, we must shift preci-
sion agriculture away from serving consolidation 
and toward enabling a new vision - a future of 
autonomous, resilient small farms.
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Figure 55:  Stewards and Beneficiaries of Their Land (Aritao, n.d.)

3.1.2. Problem Statement and Vision Statement

This research brings together valuable insights from a literature review, expert interviews, and a quantitative 
survey, all aimed at distilling a complex issue into a clear and focused problem statement. 

At its core, design is all about problem-solving, and valuable solutions emerge from a thorough unders-
tanding of the underlying issues. Expressing this central challenge accurately is a vital first step in creating 
meaningful design impact. Below is the refined problem statement, which lays the foundation for a clear and 
actionable vision statement.

“European small-scale farms are disappearing due to a complex mix of 
challenges, including economic pressures, labour shortages, regulatory burdens, 
and the loss of traditional knowledge - further exacerbated by climate change. 

This crisis is driving agriculture toward large-scale, unsustainable 
industrial models that compromise ecosystem health and biodiversity, 
deepening the difficulties small-scale farms face. 

While PATs have significant potential to address these challenges, 
most existing solutions remain anchored in techno-optimism and are designed 
primarily for large-scale systems, lacking the farmer-centric focus 
essential for diverse, small-scale farms.”

Problem Statement

“I aspire to a farmer-focused tool that enhances efficiency, effectiveness, and 
knowledge - keeping farmers at the heart of the system. 

Through a modular design that can adapt to their needs, it empowers 
them to meet challenges independently and sustainably, ensuring they thrive 
as both stewards and beneficiaries of their land.”

Vision Statement
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Small farms are indispensable pillars of sustainable, ecosystem-friendly agriculture and must be sustained.

 1. Small farms are vital for securing the future of agriculture.
1.1. Small farms are indispensable for preserving ecosystems.
1.2. Small farms are more sustainable than large farms, even when both are certified organic.

 2. Most farms in Europe are small farms
2.1. Three out of four farms cultivate crops; only one out of four specialises in livestock.
2.2. Two-thirds of all farms in the EU are smaller than five hectares.

 3. Small farms cultivate a diverse set of crops.
3.1. Crop diversification enhances resilience, overall yield, and sustainability.
3.2. Small farms often engage in direct marketing to consumers.
3.3. The greater the diversity of crops, the more likely a farm is to adopt a two-wheel tractor.

 4.	 Mechanisation	on	small	farms	is	challenging	because	it	often	limits	operational	flexibility.
4.1. Two-wheel tractors—and their accompanying implements—are highly cost-effective.
4.2. The two-wheel tractor market is rapidly growing, especially in the electric-powered segment.

Small farms face a web of pressures that threaten their survival and demand transformative solutions. 

 5. Despite their importance, small farms are vanishing alarmingly.
 6.	 Small	farms	contend	with	a	network	of	interconnected	challenges	that	make	any	single	intervention	insufficient.
 7. High manual workloads—particularly weeding—burden small-scale operations.

7.1. Climate change is expected to intensify pest and disease outbreaks through higher temperatures and humidity.
7.2. EU regulations restricting pesticides will increase manual and mechanical weed control demand.

 8. Many small farms depend on subsidies for their very survival.
 9. Agriculture requires systemic transformation, not merely incremental interventions.

Precision agriculture technologies (PATs) hold great promise for small farms 
and can help make this farming model viable again, but they also carry significant risks.

 10.	 PATs	have	tremendous	potential	to	help	small	farms	flourish.
 11.	 Farmers	generally	view	PATs	positively,	yet	perceived	drawbacks	often	overshadow	perceived	benefits.
 12. Farmers are open to collaborating with robots, envisioning them as helpful partners.
 13. The farmer must remain the ultimate decision-maker at the system's heart.

13.1. Farmers must retain complete control over who accesses their field data and how it is used.
13.2. PATs' adoption can fundamentally reconfigure who holds epistemic authority.
13.3.	 Purely	mechanical	automation	does	not	threaten	farmers’	autonomy.

 14. Data-driven analysis can shift expertise away from experience-based knowledge, creating new dependencies on technology.
 15.	 PATs	are	not	intrinsically	sustainable;	their	impact	depends	on	farmers’	intentions.

15.1. Increased data-driven insights do not automatically yield more sustainable choices.
 16.	 Without	a	holistic	approach,	PATs	risk	reinforcing	existing	inefficiencies	rather	than	transforming	agriculture.

Data-driven insights are underestimated yet hold great potential 
for continuous learning, knowledge retention, and decision making.

 17. Data-driven insights are underestimated because links between data-enhanced crop management and outcomes are unclear.
17.1. The benefits of data collection must be better illustrated to make the impacts more tangible and convincing.

 18.	 Small	farms	often	lack	the	time,	technical	expertise,	or	capacity	to	integrate	data	insights	into	workflows.
 19. Data collection can help “train the eye” of farmers, fostering sound judgment, especially during transition

19.1. Data gathering can promote continuous learning by providing unbiased evaluations of field conditions and past decisions.
 20. Excessive dependence on digital tools can lead to a gradual decline in traditional knowledge.
 21. Farmers still rely primarily on personal expertise and advice from peers and experts.

21.1. Currently, collected data plays only a minor role in decision-making.
21.2. Traditional, manual methods dominate field data collection.

 22. The demand for reporting in agriculture is increasing.
22.1. Reducing administrative burdens is crucial to creating a favourable regulatory environment for small farms.
22.2. Automating compliance and traceability records can significantly decrease administrative workload.
22.3. Automated record-keeping eases access to climate-smart subsidies and carbon credit revenues.

3.1.2. List of Findings
The key research findings have been summarised in the following list to support the design process. 
This summary also serves as the foundation for the subsequent list of requirements.

Integrated environmental monitoring—combining sensors and bioindicators—
is the key to holistic ecosystem assessment.

 23. Bioindicators can be used for holistic ecosystem estimation.
23.1.	 A	hierarchical,	species-informed	approach	enhances	environmental	monitoring’s	efficiency	
 and alignment with natural processes.
23.2. Spatial and temporal biases in bioindicator use can be easily avoided.
23.3. Reliance solely on biological indicators is often infeasible in heavily degraded ecosystems.
23.4. Only one in four farmers gathers information about biodiversity.

 24. An integrated approach melding visual and auditory sensor technologies with plant parameters 
	 	 and	bioindicators	provides	a	flexible,	scalable	framework	for	future	platforms.

24.1. Monitoring strategies should begin with plant-based sensor measurements, with the option to incorporate bioindicators.
24.2. Sensor choice—considering cost, spatial and spectral resolution, computational demands, 
 operational range, durability, and environmental resilience—heavily influences data quality.
24.3. Integrating sound analysis into monitoring systems makes ecological assessments more comprehensive.

 25. The fewer data points collected, the greater the need for skilled/advanced interpretation.
25.1. Continuous AI advancements will increase field measurements' informational value and interpretation.

Adopting PATs on small farms hinges on affordability, peer-to-peer knowledge exchange, 
and flexible, farmer-centric design.

 26. High cost, fear of dependence on technology, and lack of suitable solutions are the main barriers.
26.1. Awareness of technology-investment subsidies enhances the likelihood of investment.

 27. Peer learning is one of the most effective yet underutilised methods for promoting new technologies.
27.1. Farmers trust insights from fellow farmers and experts.
27.2. Facilitating knowledge exchange among farmers is crucial for encouraging PAT adoption.

 28. Farmers generally welcome sharing and renting, especially within regional cooperatives.
28.1. Farmers should be able to share or rent components, such as sensors, from trusted peers, providing accessible entry points.

 29. Manual-override features reduce technical dependency and build trust.
29.1. Systems must remain operable without internet or GPS access, giving farmers control during critical moments.

A modular, ground-based vehicle with interchangeable implements is the optimal PAT platform for small farms, 
delivering unmatched flexibility across diverse tasks.

 30.	Farmers	seek	flexible,	adaptable	systems	capable	of	multiple	tasks	rather	than	highly	specialized	machinery.
30.1. Carrier platforms should accommodate various implements to perform diverse tasks.
30.2. Weed management is a key feature farmers expect from PATs.

 31. PATs that solely collect data offer too little immediate value for small-scale farms to justify investment.
 32.	 Unmanned	ground	vehicles	offer	more	functionality	and	a	better	fit	for	small-farm	requirements	than	unmanned	aerial	vehicles.

32.1. Trees in the field, essential for biodiversity, pose greater challenges for airborne sensing technologies.
32.2. Minimal turning space is required on small farms to utilise a maximum cropping area.
32.3. Differential steering suits small farms due to its low complexity, low cost, and tight-space manoeuvrability.
32.4. Robust safety mechanisms must detect and correct errors before severe damage occurs to enhance trust.
32.5. UGVs must either be road-legal for travel or compact enough for easy plot-to-plot transport.
32.6. UGVs offer varied viewing angles compared to the top-down view of UAVs.
32.7. UGVs encounter fewer regulatory and legal limitations, as they remain on the ground.

 33.	Navigation	must	be	robust	and	fully	functional	even	in	low-signal	environments.
33.1. GNSS is often integrated with IMUs and wheel encoders to mitigate its flaws.
33.2. Vision systems are paired with GNSS to enhance robustness.
33.3. In areas where GNSS reliability is uncertain, vision-based and LiDAR-based methods perform better.
33.4. RTK correction signals are likely to become cheaper or even free in the future.
33.5. A 2D LiDAR layer can improve safety by detecting obstacles that cameras might miss.

 34. Separate computing units dedicated to autonomous navigation allow quick, simple sensor swapping.
 35. Lightweight machinery extends operational windows, enabling earlier planting and later harvesting.

35.1. Lightweight machines can continue operating when heavier equipment gets stuck or damages soil.
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Carrier Platform

RQ. 1 Modular architecture must allow for component replacement.
RQ. 2 Modular architecture must support phased upgrades.
RQ. 3 Modular architecture must support shared/rental ownership models (easy sensor switch).
RQ. 4 Modular architecture must support weed management.
RQ. 5 Adjustable track width between up to at least 75 cm.
RQ. 6	 Adjustable	ground	clearance	(min.	70	cm).
RQ. 7	 Turning	radius	≤	1.5	m	for	high	manoeuvrability.
RQ. 8 Drive mechanism must allow for manual operation.
RQ. 9	 Maximum	weight:	≤	150	kg	(including	all	essential	components	but	excluding	payload).
RQ. 10	 Ground	pressure:	≤	0.3	kg/cm²	to	minimize	soil	compaction.
RQ. 11	 Payload	capacity:	≥	100	kg.
RQ. 12 Compatible with common non-powered two-wheel tractor-style implements
RQ. 13	 Capable	of	pushing/pulling	implements	with	a	force	of	≥	500	N.
RQ. 14 Must be transportable using a standard trailer.
RQ. 15	 Electric-powered	with	a	swappable	battery	(swap	time	≤	5	min).
RQ. 16	 Battery	capacity:	≥	2	kWh,	ensuring	≥	4	hours	of	continuous	operation	at	full	load.
RQ. 17	 Capable	of	performing	at	least	three	distinct	field	operations.
RQ. 18	 Reliable	operation	in	diverse	environmental	conditions	(-10°C	to	50°C,	0–100%	humidity).
RQ. 19	 Target	price:	≤	30,000€	(excluding	implements).

Automation

RQ. 20	 Autonomous	navigation	accuracy:	±2	cm	(RTK-based	or	equivalent).
RQ. 21 Autonomous navigation must be functional in low-connectivity environments
RQ. 22 Must detect and avoid obstacles within a 1.5 m range.
RQ. 23	 Emergency	stop	must	be	accessible	and	engaged	within	≤	3	seconds.
RQ. 24	 Offline	mode	operation	must	be	possible	in	case	of	signal	loss	or	system	failure.
RQ. 25 Must detect tool failures in autonomy mode.

3.1.3. List of Requirements
Based on the research and the list of findings, a set of requirements has been established. Due to the 
conceptual aspect of the design and its novelty, not all requirements are defined with strict numerical values. 
However, this list acts as a foundational guide that can be continuously updated and improved in future 
redesign efforts. These requirements are categorised into five main areas.

Sensors

RQ. 26 Must measure at least two key crop parameters.
RQ. 27	 Ground	Sampling	Distance	(GSD)	≤	5	mm/pixel	for	high-resolution	data	collection.
RQ. 28 Must have a minimum protection rating of IP65
RQ. 29 Must support auditory sensor integration for bioindicator-based ecosystem monitoring.

Farmer-Robot Interaction

RQ. 30	 Operable	by	untrained	or	minimally	trained	personnel	(≤	2	hours	of	training	required).
RQ. 31	 Module	replacement	or	reconfiguration	must	take	≤	5	minutes.
RQ. 32	 Design	must	be	clear,	well-structured,	and	allow	for	independent,	on-field	repairs.
RQ. 33 Must provide actionable insights and recommendations
RQ. 34 Farmer must retain full ownership and control of all collected data.

Wishes

RQ. 35	 Module	replacement	or	reconfiguration	must	be	tool-free.
RQ. 36 Compatible with common powered two-wheel tractor-style implements.
RQ. 37	 Compatible	with	mobile	phone	as	‘first	phenotyping	sensor’
RQ. 38 Capable of powering implements with an additional motor.
RQ. 39	 Collected	data	helps	train	farmers’	judgment	and	supports	learning.
RQ. 40 Enables automated traceability and compliance reporting to reduce administrative burden.
RQ. 41 Enables easy exporting of logs or reports to facilitate subsidy access.
RQ. 42 Enables peer-to-peer learning, including intuitive UI and support for knowledge sharing.
RQ. 43 Full functionality must be available without cloud connectivity or third-party services.
RQ. 44	 Enables	cargo	transport	during	fieldwork	and	harvesting.
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Figure 56:  Collaboration with  Farmers

Creative Collaboration3.2. 

Collaboration with experts and stakeholders was 
integrated at multiple stages of the design process. 
In particular, the active involvement of farmers was 
crucial, as they are the primary intended beneficiaries 
of the development, as previously discussed.

Designing meaningful technology for agriculture calls 
for more than abstract problem-solving—it requires 
a grounded, participatory approach that respects the 
complexity of the farming environment. This chapter 
presents a series of collaborative activities that helped 
shape the design direction by weaving together 
experiential insight from the field with structured 
ideation in the lab.

Three complementary methods were employed, each 
targeting specific intents and stakeholders. A visit 
to the farm De Biesterhof provided an immersive, 
hands-on experience that enhanced empathy and 
contextual understanding at the outset of the ideation 
phase. A farmer roundtable discussion with farmers 
facilitated open, peer-based dialogue among various 
agricultural practitioners, allowing for the refinement 
of the design vision through real-world validation 
and critique. Finally, a brainwriting session with the 
Human-Robot Interaction Lab at TU Delft introduced 
a different expertise—technical, creative, and specu-
lative—through structured ideation aimed at exploring 
new possibilities without the constraints of immediate 
practicality.

By integrating insights from farmers, designers, 
and robotics researchers, this phase of the project 
ensured that the emerging design was both visionary 
and viable, rooted in real needs, yet open to inno-
vation. The following sections describe how each 
collaboration contributed uniquely to the evolution of 
the concept, helping bridge the gap between human-
centred design and agroecological resilience.
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3.2.1. Farm Visit
To better understand the daily realities of farmers, 
a full day of practical work was conducted on a 
regenerative farm. Howard Koster, a Dutch regene-
rative farmer and expert in regenerative agriculture 
and agroecology, provided the chance to engage 
in daily tasks at De Biesterhof (see Figure 60), a 
regenerative farm situated in the Netherlands.

Beyond providing practical insights into the lived 
experiences of farmers, the day also served as a 
valuable occasion to engage in ongoing discussions 
with other farmers who were also present and acti-
vely involved. These conversations, held alongside 
physical labour, reinforced the existing knowledge 
base that had already been developed through nine 
in-depth expert interviews.

The farm visit did not provide new quantitative data 
or specific design requirements beyond what was 
already established, but that was not its primary 
purpose. The objective was to foster empathy and a 
deeper understanding. Designers creating techno-
logies for farmers need to have firsthand experience 
of agricultural daily life. Thus, this experience was 
intentionally positioned at the start of the ideation 
phase, acting as contextual "background noise" to 
guide and shape the overall design process.

Figure 57:  Main Entrance to De Biesterhof

Figure 58:  Farm Life Experience Figure 59:  Behind the Wheel of a Tractor Figure 60:  Aerial View of De Biesterhof Farm
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To validate the proposed design directions and 
finalise the list of requirements in collaboration with 
key stakeholders, a group discussion session was 
held with farmers at Biesterhof, a working farm in 
the Netherlands. The session took place in the main 
farmhouse and brought together 14 participants 
with diverse backgrounds—including experienced 
farmers, agricultural and environmental specialists, 
farm advisors, biologists, as well as individuals with 
limited farming experience who were volunteering 
on the farm that day (see Figure 61).

Once the design direction was unveiled, the session 
shifted into an open forum. Farmers were urged to 
share their views on the advantages and disadvan-
tages, and to engage in collaborative discussions. 
The designer was not there to defend or advocate 
for particular ideas. Instead, the focus was on step-
ping back, minimally intervening while promoting 
peer dialogue, observing reasoning patterns, and 
extracting insights from the various arguments and 
perspectives. Throughout the discussion, elements 
from the initial requirements list were carefully 
examined, debated, and refined according to the in-
sights provided. Overall, participants showed strong 
support for the outlined problem statement, vision, 
and the suggested design direction: a versatile and 
adaptable farming robot that enables a gradual shift 
towards precision farming technologies.

"Especially in the market garden, in the food 
forests, and the alley cropping system, it would 
be super helpful—and cool—to have a small, 
smart machine you can hang appendages on and 
that can do different stuff."
– Participating Farmer Koster

Alongside the overall view of the design direction, 
previously identified risks also surfaced during the 
group discussion. Echoing earlier expert interviews, 
concerns regarding a potential drop in agronomic 
knowledge and the fear of increased dependency 
resurfaced. One farmer articulated this concern as 
follows:

"If you don’t know anything about the plant or 
the soil anymore, you're just a robot operator. 
But if the robot doesn't work, how do you know 
what to pick, when to pick, what to do, what’s 
good soil, what isn’t? So, you still would need 
someone who understands how nature works." 
– Participating Farmer

"On a small farm, the farmer is the smartest and 
most capable data-collecting robot around."
– Participating Farmer

3.2.2. Farmer Roundtable Discussion

Figure 61:  The Big Table at De Biesterhof Farm

The weight and dimensions of the device were 
key topics of discussion. The promise of small, 
autonomous machines was broadly acknowledged, 
particularly in relation to future uses in swarm 
robotics. Lightweight equipment was deemed 
beneficial and crucial, especially for small-scale 
agriculture. This demand is anticipated to grow even 
more important in the coming years, as highlighted 
by one farmer:

"It´s a really good point … or it’s a really import-
ant design direction, to have something much 
lighter than a tractor, because a lot of our pro-
blems last year were really because this damn 
tractor is just too heavy and can't go on the field. 
And we’ll probably experience many more really, 
really wet years because of climate change.”
 – Participating Farmer

An important point that emerged during the discus-
sion was the integration of different systems. While 
a tool designed for small-scale farming must offer 
maximum flexibility, this should never come at the 
expense of core functionality. A “jack-of-all-trades” 
approach was deemed unacceptable by the par-
ticipants. The consensus was clear: it is better for 
the tool to perform fewer functions, but to execute 
each one with excellence. Careful consideration 
is therefore needed to determine the appropriate 

level of modularity and to find the optimal balance 
between a dedicated device and a highly flexible, 
multi-functional system. The success of the design 
depends on delivering consistent quality across all 
module configurations. One critical factor is how 
easily and intuitively the system allows users to 
switch between different modes or functions. One 
farmer summarized this perspective during the 
discussion as follows:

"I have a woodworking device, the Emco-Star. 
It's a table saw, a bandsaw, and a jigsaw. You 
can do all kinds of things. Almost decent. But 
as soon as it's a jack-of-all-trades, it’s almost 
always a master of none. And it’s really hard to 
set it up every time. … That’s my experience with 
non-dedicated devices. Switching functions takes 
a long time. And time is, of course, money."
– Participating Farmer

In addition to the existing set of requirements, the 
group discussion led to the identification of two 
further user-driven needs:

RQ. 31:  Module replacement or reconfiguration  
 must take ≤ 5 minutes.
RQ. 35:  Module replacement or reconfiguration  
 must be tool-free.

Figure 62:  A Dialogue Between a Designer and Agricultural Professionals
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3.2.3. Brainwriting Session (Human-Robot Interaction Lab)
To gain deeper insights and explore innovative de-
sign directions, a brainwriting session was held with 
the Human-Robot Interaction Lab at TU Delft (see 
Figure 63). The session adhered to the framework 
as described by Heijne & Van Der Meer (2019), 
employing the Brainwriting 6-3-5 method. This 
method involves six participants, each generating 
three ideas in five minutes per round. Consequently, 
108 ideas are produced within 30 minutes (6 
participants × 3 ideas × 6 rounds) (see Figure 64).

The fundamental idea of this approach is to circu-
late written or sketched thoughts after every round. 
This enables participants to enhance and develop 
one another's ideas. To steer the ideation process, 
the facilitator presented a new topic at the start of 
each round, immediately after participants passed 
their page to the next person. This topic acted as 
the focal point for that round.

One of the key benefits of this design method 
was the diversity and depth of ideas it generated, 
ranging from visionary, holistic concepts (e.g., 
a pet-like robotic companion that supports the 
farmer) to specific design improvements for existing 

products (e.g., vibration feedback in the handle 
of a two-wheel tractor). This broad spectrum of 
abstraction added significant value to the session. 
On one end, small, concrete ideas offer immediate 
potential for implementation and testing. On the 
other hand, comprehensive, system-level concepts 
encourage a shift in perspective, challenge establis-
hed assumptions and support a broader reframing 
of the design space.

Among the many valuable ideas generated, a few 
stood out during the analysis due to their clarity or 
relevance to key themes. The notion of modularity, 
for instance, was illustrated through the “Mr. Potato 
Head” metaphor and supported by references such 
as Phonebloks and the Original GARDENA System, 
offering strong analogies for designing flexible and 
reconfigurable systems. Another notable direction 
involved rethinking the wheel, not just as a mobility 
element, but as a multifunctional interface with the 
ground, potentially serving additional roles. The 
integration of digital twins or digital shadows also 
emerged as a promising approach for enhancing 
system intelligence and enabling more adaptive, 
data-driven functionalities.

Figure 63:  Brainwriting with the Human-Robot Interaction Lab Figure 64:  The Full Set of 108 Ideas
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Figure 65:  Ideas Taking Shape on the Sketchwall

Ideation and 
Concept Generation

3.3. 

This chapter describes the development process that resulted in the 
final design. It systematically breaks down each step, offering a clear 
understanding of how the design evolved. 

3.3.1. Ideation and Concept Development

The ideation process began with the 
list of requirements as a foundational 
reference. From there, the scope was 
deliberately expanded to encourage 
open-ended and unbiased idea 
generation. Numerous initial sket-
ches developed naturally during the 
research phase, driven by spontaneous 
thoughts and insights. Considering 
the detailed and specific nature of the 
requirements, the central reasoning 
that guided the ideation process can 
be summarised as follows:

Designing a farm robot that empowers 
farmers to carry out a range of tasks 
while seamlessly switching between 
different modes of operation. To 
lower the barrier to entry, the initial 
configuration should feel familiar, like a 
two-wheel tractor that can be operated 
manually, while offering from the outset 
the option to upgrade to autonomy for 
those interested. This upgrade path 
needed to be fluid in both directions, 
allowing the farmer to move from 
manual to autonomous and back 
without friction. 

It would also benefit compatibility 
with existing tools, allowing farmers to 
keep their current implements. At the 
same time, it was essential to introduce 
pathways into more advanced capabili-
ties, such as mounting sensors for field 
data collection. This introduced a core 
design challenge: the machine needed 
to be compact and stable for transport 
and implement work, yet capable of 
high ground clearance for crop scou-
ting, even when plants are tall, requiring 
a mechanism for easily adjusting its 
ground clearance. Weed management 
was another integral consideration, 
achievable through both manual tools 
attached to the platform, like finger 
weeders and data-driven, smart field 
decisions. Ultimately, a guiding thought 
was how to foster deeper human-ma-
chine collaboration, moving beyond the 
farmer simply operating the machine, 
toward a model where the farmer and 
robot function as one, with the farmer 
almost becoming an extension of the 
tool itself.
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Cropkit Ecosystem.
Merging mechanical efficiency, human precision, and digital intelligence.

LiDAR & RTK-GPS for Autonomous Driving
CROPKIT PILOT
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E-Motor for Powered Implements
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Prone-Bed for Hand Weeding
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Predictive Modeling 
Yield Forecasting 
Decision Support 
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Cropkit Base
The entire concept is built around a mobile base 
platform. Cropkit Base forms the core of this 
system, acting as the carrier platform. It must 
be capable of towing various implements and 
should include a standard PTO (Power Take-Off) 
connection to ensure compatibility with commonly 
available implements on the market. Additionally, 
height adjustability for the attached implements is 
essential. 

Cropkit Walk
The basic configuration should support manual 
operation via a handle, drawing on a two-wheel 
tractor's familiar, well-established principles. A 
dedicated handle enables direct, hands-on control 
of the platform.

Cropkit Pilot
This module is intended to enable a transition from 
manual operation via the handle to fully autono-
mous driving. To achieve this, the system must be 
capable of being equipped with an RGB-D camera 
and RTK-GPS for autonomous navigation.

Following the initial ideation phase, it became evi-
dent that the requirements' complexity, particularly 
in relation to various modules, needed to be distilled 
into a modular ecosystem. The focus shifted to 
identifying how the requirements could be met 
through distinct modules and determining which 
components would be essential for the foundational 
platform. To support this, all potential functions 
and components that could be integrated into the 
base platform were mapped, roughly sketched, and 
structured. These elements are based on insights 
gathered during the research phase as well as ideas 
that emerged during ideation (see Figure 66). 

This work led to the development of the first 
design concept for the product ecosystem. As 
an early-stage version, it supports the ongoing 
design process. The following section provides brief 
descriptions of each module. While some elements 
are intuitive based on the research, others, such 
as „cargo“ and „float“, gained relevance primarily 
during the ideation phase, and their inclusion is 
therefore explained in greater detail.

3.3.1.1. Ecosystem Concepting

Figure 66:  Cropkit Ecosystem - Early Concept

Cropkit Power
To extend functionality beyond manually or 
autonomously pulling non-powered implements 
(e.g., ploughs), an additional module that can drive 
powered implements (e.g., rotary tillers) using a 
dedicated electric motor should be considered. 
While not the primary focus of development, this 
capability should be accounted for in the concept 
phase to ensure the technology remains as future-
proof as possible.

Cropkit Cargo
To support the transport of boxes and harvested 
crops, a flat loading surface would be a helpful 
addition, for example, to place vegetable crates. 
This feature emerged during the ideation phase but 
is not part of the core development focus. 

Cropkit Float
Effective weed management is a core requirement 
identified in the research. One solution provided is 
to use the base platform (either manually or autono-
mously via the Pilot module). In this configuration, 
farmers simply attach their weeding implements, 
like a finger weeder, to the base and perform 
weeding tasks following existing farming methods.

A proactive strategy focuses on controlling weed 
growth with intelligent, data-driven cropping sys-
tems. By fine-tuning planting strategies, initial weed 
pressure can be minimised (Lowry & Smith, 2018). 
The Cropkit IQ module is tailored to facilitate this 
method (see Paragraph Cropkit IQ). Nonetheless, 
this strategy requires months or even years to show 
results and cannot completely eradicate weeds.

As a result, implements like the finger weeder 
remain essential. Yet, their effectiveness drops near 
crop stems or in irregular planting patterns, where 
weeds are often missed. In these areas, farmers 
still rely on manual weeding, a labour-intensive and 
time-consuming task. To ease this burden, many 
turn to prone weeders.

The Prone Weeder
Prone weeders, also known as lay-down weeders, 
Jäteflieger (Germany), or fietsenwieders (Nether-
lands), are especially valued on small, organic farms. 
These battery-powered carts allow operators to lie 
face down on cushioned platforms and glide over 
the crops. With both hands free, farmers can weed, 
thin, or harvest without the strain of bending or 
kneeling (Coxworth, 2010; Williams, 2017). 

Although wheeled creepers have existed for 
decades, modern prone weeders gained traction in 
the early 2010s, particularly with electric versions 
by companies like Andela and FieldWorkers. As 
interest in non-chemical, regenerative practices 
grows, these ergonomic tools are making a slow 
comeback, offering efficient, low-impact weed 
control. They greatly enhance the speed and ease 
of manual weeding, reflecting a human-centred, 
low-impact philosophy. These factors are leading 
to a gradual renaissance in the popularity of prone 
weeders (Andela Techniek, n.d.; Farmhack, 2017; 
FieldWorkers, 2023; Rock et al., n.d.)

Some European growers even prefer simple prone 
weeders over sophisticated robotic weeding 
systems. In a 2024 interview, Swiss organic farmer 
Michael Reichmuth shared his reasons for switching 
back from robotic weeders to manual, human-ope-
rated prone weeders (Eppenberger, 2024):

“Hands and eyes are still more efficient than 
lasers and sensors from trendy robots. The 
Jäteflieger is easy to use, free of unnecessary 
complexity, robust, and meets high ergonomic 
standards.”
— Michael Reichmuth, Organic Farmer

The prone weeder shows a harmonious partnership 
between human effort and suitable technology. 
Instead of being substituted by a costly, overly 
complicated machine, the farmer is enabled by 
technology, making them a more efficient tool. 
Consequently, a prone position module perfectly fits 
the envisioned design. It allows the farmer to merge 
effortlessly with the machine, gliding over the fields 
as one cohesive, efficient entity.

Cropkit IQ
The primary sensor on which all data collection can be based is a visual sensor—an RGB-D camera. The 
base module must be capable of accommodating this sensor. As identified in the research, measuring 
bioindicators offers significant advantages. Therefore, an audio sensor module should also be installable.
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Figure 67:  Designer Engaged at the Sketchwall



121120

3.3.1.2. Concept Selection

During the ideation session, three different design 
directions gradually emerged, layer by layer (see 
Figure 69). Despite their differences, they repea-
tedly featured the same fundamental elements. All 
three offered manual operation, allowed the user to 
lie on the device to perform fieldwork by hand, and 
were suitable for crop scouting thanks to adjustable 
ground clearance.

To get a rough idea of which concept appeared 
most promising, a brief Harris profile evaluation 
was conducted based on the following criteria 
(see Figure 68). This assessment was quick and 
approximate, given that all three concepts were still 
in their early conceptual stages:

Concept A 
Concept A featured a tracked system, where 
different ground clearance levels could be achieved 
by flipping the body over.

Concept B
Concept B was a differential-steered robot with 
casters, conceptually similar to a two-wheel tractor. 
Height adjustment was accomplished by rotating a 
boom around a pivot point.

Concept C 
Concept C took modularity to the extreme, consis-
ting of a single-wheel unit where different modules 
could be inserted—much like a Lego set—allowing 
full customization and height adjustment.

– Speed of switching between configurations and ground clearances.
– Preference for simple, robust systems for durability and easy maintenance.
– Ease of adapting the height for various tasks.
– Intuitive operation and simple mode changes.
– Stability while manually pushed in the field.
– Stability during autonomous operation, especially with high ground clearance.
– Stability when a person lies on top of the device.
– Even weight distribution to minimize soil compaction.

Mode Swapping Time
System Complexity

Ground Clearance Adjustment
Ease of Use

Stability (Manual)
Stability (Autonomous)

Stability (Farmer-On-Top)
Soil Impact

Concept A

-2 -1 +1 +2

Concept B

-2 -1 +1 +2

Concept C

-2 -1 +1 +2

Mode Swapping Time

Stability (Manual)

Stability (Farmer-On-Top)

System Complexity

Stability (Autonomous)

Ease of Use

Ground Clearance Adjustment

Soil Impact

According to the Harris profile, Concept B proved to 
be the most compelling solution, mainly due to its 
straightforward height adjustment mechanism and 
overall simplicity. Although Concept A had benefits 
in terms of stability and soil impact because of its 
tracked drive, transitioning between various modes 
could be challenging, and the tracked system 

introduces mechanical complexity and higher costs. 
Meanwhile, Concept C offered the highest flexibility 
with its significant modularity, yet this advantage 
resulted in greater complexity. Adjusting the system 
could consume considerable time and may not be 
practical, positioning it more as a DIY option rather 
than a reliable field tool.

Concept A 

Concept B

Concept C

Figure 69:  Scans of the First 30 Ideation Pages

Figure 68:  Harris Profile Concept Evaluation
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3.3.1.3. Concept Refinement

Overall Appearance
Building on the initial concept, the design was 
further refined into a first key sketch, which visually 
outlines the various possible stages of the concept 
(see Figure 70).

Figure 70:  Sketches Concept Refinement
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Although initially promising, the device first appea-
red more like a walker than a powerful field tool. To 
enhance its visual impact and convey a greater sense 
of strength, the side profile was redesigned. This 
transformation introduced pronounced “shoulders,” 
inspired by the muscular build of a powerful bull. The 
overall shape became more angular and robust, emp-
hasizing its commanding presence (see Figure 71). 
 
When folded up, the frame should maintain high 
ground clearance to allow sensors to be mounted at a 
sufficient distance above the crops (see Figure 72).

Figure 71:  Side Profile Development

Figure 72:  Folded  Up Mechanism

At the same time, the handle design 
evolved into a more delicate and refi-
ned form, still sturdy enough to avoid 
appearing fragile. This handle was 
intentionally designed to soften the 
main body's otherwise dominant, “ma-
sculine” aesthetic, lending the device 
a more balanced and neutral appea-
rance. Visually, it suggests minimal 
physical effort is needed to operate the 
device. The powerful core carries out 
the heavy-duty work, while the user 
simply guides it with a light “leash”, as 
if effortlessly taming a bull. The design 
communicates that the device is both 
strong and easy to control.

Figure 73:  Digital Refinement of the Key Sketch
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Figure 74:  Prone Bed Development

Prone Bed Module
Ergonomics is a central consideration in the design 
of the prone bed module. The surface must allow 
users to lie comfortably while providing adequate 
freedom of movement for the arms. The bed’s 
height should also be adjustable to accommodate 
different working conditions. This adjustment can 
be implemented via the boom to which the bed is 
mounted. As the boom is already height-adjustable 
for agricultural implements and ground clearance, 
extending this functionality to include positional 
adjustments for the bed offers a logical and efficient 
solution.

Existing prone weeding systems were analysed as 
reference points to inform the ergonomic design. 
Furthermore, prone positioning systems used in 
medical settings were studied. These systems are 
specifically designed to support the head, chest, 
hips, and legs using pressure-relieving materials. 
They are optimised for long-duration use by minimi-
sing pressure points and the risk of pressure sores. 
Key pressure zones identified from this research 
were translated to the prone module to ensure 
sustained ergonomic support during prolonged 
operation.

Following the initial sketching phase (see Figure 
75), it became evident that a different design tool 
would be more effective for refining ergonomics 
and spatial dimensions. Subsequently, virtual reality 
(VR) sketching was adopted to enhance the design 
process.

Figure 75:  Prone Bed Conceptsketch
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3.3.1.4. Virtual Reality Concept Sketching

Ergonomic considerations and the human figure 
were pivotal in the design of both the prone module 
and manual manoeuvring with the handle. There-
fore, VR sketching was utilised to address these 
components effectively (see Figure 76). 

By using Gravity Sketch, the design process was 
significantly improved, allowing for quick exploration 
and iteration of intricate shapes in an immersive 3D 
setting. This capability to create and engage with 
designs at full scale offered a clearer perspective on 
proportions and spatial dynamics, which is crucial 
in the initial phases of concept development. This 
method effectively connected 2D sketches and 3D 
models, particularly in scenarios involving human 
interaction. 

Digital mannequins at real scale enabled precise 
ergonomic assessments and spatial analysis, 
guaranteeing that human-centred design features 
were integrated from the very beginning.

Figure 76:  Design Refinement Using Gravity Sketch



131130

3.3.1.5. Technical Design Refinements

Key design details were refined after several colla-
borative sessions with engineers and designers at 
NPK Design. One of the most significant changes 
was relocating the boom’s pivot point. This pivot is 
the core mechanism that adjusts the ground clea-
rance. It also raises and lowers both the implement 
and the prone bed. Initially, the pivot point was 
located at the centre of the wheel axle. For better 
stability and improved weight distribution, it has 
now been moved backwards to the "shoulders" of 
the carrier platform (see A).

Rethinking Height Adjustment
A crucial part of the design is achieving height ad-
justment and mode switching. Various mechanisms 
were considered. At first glance, a simple vertical 
slide might seem most efficient for vertical move-
ment. However, this approach carries a high risk of 
jamming—especially in open field conditions—if 
the left and right sides of the robot aren't perfectly 
parallel. Due to the adjustable ground clearance, 
installing a crossbar to connect both sides is not 
feasible (see B).

Though less intuitive, rotational movement offers 
several advantages. It allows a greater adjustment 
range (from minimum to maximum ground clea-
rance). While telescopic sliders could reduce the 
difference, they would also significantly increase the 
risk of jamming. Therefore, a rotational mechanism 
proves to be a better solution for height adjustment.

Four-Bar Linkage
While effective, the boom mechanism introduces 
a new challenge: when an implement is attached, 
it rotates with the boom as it moves. As a result, 
any part of the implement extending beyond the 
pivot point may move downward instead of upward, 
potentially striking the ground (see C). To address 
this, the implement must remain level during all 
height adjustments.

A four-bar parallelogram linkage offers an ideal 
solution. This mechanism maintains a consistent 
parallelogram shape by keeping opposing links 
equal in length and parallel. It comprises two vertical 
links—the fixed base and the moving coupler—and 
two horizontal links—the crank and the follower 
(see D). The follower moves in sync as the crank 
rotates, ensuring the coupler remains upright and 
parallel throughout the motion. This configuration 
keeps the attached implement level and properly 
oriented during vertical movement.

Despite its effectiveness, the exposed four-bar 
linkage presents safety concerns. Its scissor-like 
action creates pinch points between moving parts, 
particularly between the crank and the follower, 
posing a risk of injury from fingers or clothing 
getting caught during operation (see D and E).

To mitigate this, the SafeSync System was deve-
loped. This fully enclosed mechanism integrates 
the four-bar linkage within the structure of the 
crank (see F). Instead of using an external follower, 
the parallelogram motion is replicated internally, 
ensuring the coupler arm stays perfectly vertical. 
Thus, the crank serves both as a motion driver and 
a protective housing, shielding users from moving 
joints and eliminating scissor hazards. The result is a 
safe, smooth, and synchronized motion mechanism 
that not only ensures reliable functionality but also 
features a sleek, modern aesthetic—seamlessly 
integrating form and function.

C - A rotational movement also 
rotates the implement, increasing 
collision risk and causing its angle to 
change with each height adjustment.

E - With a four-bar link-
age, there’s always a 
risk of pinching fingers 
between moving parts.

A - Center of gravity too far forward makes it front-heavy. Shifting the pivot 
to the rear moves the center of gravity back, improving weight distribution.

B - Linear sliding motion always carries a risk of jamming.

D - A four-bar linkage 
keeps the implement in a 
constant vertical orienta-
tion, reducing collision risk 
and ensuring consistent 
angle regardless of height.

F - The designed Safe Sync 
system uses interlocking 
arms that move within each 
other, ensuring there are no 
pinch points at any time.

Figure 77:  Explanation of Key Technical Refinements
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The design method utilised a hybrid process that 
integrated traditional sketching, virtual reality 
(VR), and CAD modelling. Generally, hand-drawn 
sketches were scanned and transferred into a VR 
headset, allowing for adjustments and 3D develop-
ment. These initial VR models were subsequently 
exported to CAD software such as SolidWorks or 
Rhino for refinement of dimensions, geometry, and 
mechanical parts.

After refining in CAD, the models were re-imported 
into the VR environment to assess their proportions 
and spatial presence - essentially to "place" the 
object in space and evaluate the scale's feel. This 
triangle (see Figure 78) - from hand sketch to VR 
sketch, then to CAD model and back to VR - was 
repeated several times, progressively enhancing 
the design at each stage. The integration of various 
methods significantly reduced reliance on 3D 
printing. Although components were occasionally 
produced through 3D printing, the VR process 
accelerated many of these stages. 

Nevertheless, because VR cannot completely mimic 
real-world interaction, a full-scale 1:1 prototype was 
also created and tested with users. This prototyping 
process is elaborated upon in the next chapter.

Hand Sketch

CAD VR Sketching

Figure 78:  Hybrid Workflow

Figure 79:  User Perspective Through the VR Headset Figure 80:  CAD Iterations Snapshot
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Figure 81:  Prototype Rim Crafted on the Lathe

Prototyping and
User Testing

3.4. 

After further design refinements through VR sketching and early-stage 
CAD modelling, a full-scale (1:1) prototype was created for user testing. 

The Prototype
The full-size prototype was constructed from wood and painted to 
resemble a metallic finish. It incorporated all key mechanical functi-
ons, such as the lever arm, and featured multiple modules. While the 
prototype offered a basic aesthetic impression, its primary purpose was 
to evaluate structural stability and construction. Most importantly, it 
enabled realistic user testing in the field with actual farmers.

The Testing Setup
The testing was conducted outdoors with eight participants, three of 
whom were farmers. The prototype served multiple purposes throug-
hout the process. Each participant completed four testing scenarios, 
with the order of modes varied to avoid bias. All tests utilised the Think-
Aloud Method—a qualitative research technique in which participants 
verbalise their thoughts while performing tasks. This method aims 
to provide insight into their cognitive processes, including reasoning, 
decision-making, and problem-solving.
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The Testing Setup
Testing took place outdoors with eight participants, 
three of whom were experienced farmers. The 
prototype served multiple roles during testing. 
Each participant completed four distinct testing 
scenarios, with the order of modes randomised 
to minimise bias. The Think-Aloud Method was 
employed throughout—a qualitative research 
technique in which participants verbalise their 
thoughts while performing tasks, providing insight 
into their cognitive processes and interaction with 
the prototype.

Alongside the scheduled user testing, farmers had 
the chance to assess the design‘s aesthetics. While 
the physical prototype focused on functionality, 
participants could wear a VR headset to experience 
a more detailed, visually polished digital twin of 
the design (see Figure 83). This virtual model was 
overlaid in real-time onto the physical prototype, 
enabling farmers to interact with the actual object 
while concurrently viewing the intended final design 
through the headset. 

Figure 82:  Stakeholder Dialogue: Engaging with Farmers Figure 83:  Farmers Engaging with VR and the Prototype
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Test A (Walk Module):

Setup
To assess the handle’s ergonomics and overall 
controllability, participants were instructed to guide 
the robot along a predefined 30-meter path in the 
field, perform a turnaround at the end, and return 
to the starting point. This test was designed to 
evaluate the handle position, user comfort, and 
manoeuvrability of the robot.

Learnings
The robot proved to be extremely easy to control 
and maneuver. None of the farmers had any diffi-
culty completing the task successfully. Stability was 
consistently maintained; however, the connection 
point between the robot and the handle showed 
signs of significant stress. This issue is not expec-
ted in the final model, as it will include motorized 
assistance - unlike the prototype. Additionally, it 
was noted that the handle should be shortened by 
approximately 6 cm.

Figure 84:  Cropkit Walk Figure 85:  Cropkit Walk Testing in the Field
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Test B (Float Module):

Setup
In this test, the CropKit Float module was mounted 
onto the robot. Farmers lay on the module while the 
robot was slowly pulled across the field using ropes. 
During the movement, they manually removed 
weeds and grass. The primary objective was to 
assess the ergonomic comfort of the lying position, 
as well as to evaluate the structural stability of the 
system under real working conditions.

Learnings
The test revealed that the preset „standard height“ 
of the bed was too low. It needs to be raised, as 
farmers frequently had to bend their arms exces-
sively and were unable to let them hang naturally 
while performing the task. Notably, all participants 
independently emphasized the overall comfort of 
the position, indicating that the ergonomics were 
generally well-suited. However, the footrest should 
be extended by approximately 10 cm to provide 
better support.

Figure 86:  Cropkit Float Frontview

Figure 87:  Cropkit Float Sideview Figure 88:  Looking at the Cropkit Float from the Rear

Figure 89:  The farmer’s hands are the most precise tools

Figure 90:  Cropkit Float in the Field
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Test C (Pilot Module):

Setup
For this test, the carrier platform was reconfigured 
with the CropKit Pilot module. Once placed in 
the field, the system operated „autonomously,“ 
navigating across the area to perform fieldwork. 
The primary goal of this test was to demonstrate 
the autonomous functionality to the farmers and 
observe their reactions.

Learnings
This configuration generated the most uncertainty 
among participants. Several expressed concerns 
that the robot might veer off toward the nearby 
road. Others raised the issue of what would happen 
in the event of a network failure. For participants 
who, due to the randomized test sequence, had 
not yet experienced the manual mode, the handle 
was introduced and mounted to demonstrate that 
manual control is always an option.
The handle received overwhelmingly positive 
feedback. It was almost perceived as a „symbol 
of authority,“ reassuring farmers that they could 
always switch to manual operation if needed. This 
significantly reduced their sense of dependency on 
autonomous systems. The cognitive relief provided 
by the presence of the handle was striking. One 
farmer summed it up as follows:

„I probably won’t even need the handle once 
this thing runs autonomously, but I’m telling 
you—just knowing I have it is enough to help me 
sleep better.“
- Participating Farmer

This confirms that the handle - and the ability to 
take manual control - achieved exactly the intended 
effect: offering reassurance and promoting trust in 
the system.

Figure 91:  Cropkit Pilot Sideview

Figure 92:  Cropkit Pilot alone in the Field (stationary)

Figure 93:  Cropkit Pilot Sensor Mounting

Figure 94:  Cropkit Pilot Frontview (without Implement)



145144

Test D (IQ Module):

Setup
For this test, the carrier platform was reconfigured 
with the CropKit Pilot module. After being placed 
in the field to ‘operate independently‘, farmers 
received a notification on their smartphones after 
a short period, informing them that the robot had 
detected an irregularity in the field and prompting 
them to inspect the issue more closely.

Learnings
Reactions to the text message notification were 
mixed. Most participants responded with surprise 
and some uncertainty about how to interpret or act 
on the message. It’s important to note a limitation of 
the test setup: the robot remained stationary in the 
field and did not move, which may have influenced 
participant perceptions. Notably, older participants 
appreciated the concept but expressed concern 
about future generations of farmers. They questio-
ned how well their children would learn traditional 
farming skills if they were to rely heavily on such 
systems from the start.

Figure 95:  Cropkit IQ -  High Ground Clearance

Overall, the concept showed solid feasibility, viabi-
lity, and desirability throughout the testing process. 
While some concerns were raised, these offered 
constructive insights that will be incorporated 
into the final design. With only minor adjustments 
required, the system performed reliably and was 
generally well-received by participants, indicating 
strong potential for practical application in the field.

Figure 96:  Cropkit IQ – Farmer Receives Notification of a Detection

Figure 97:  Cropkit IQ – Four-Lever Mechanism in Raised Position
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The Cropkit 
Ecosystem

4.1. 

This chapter presents the final design concept and 
system architecture of the CropKit ecosystem. It 
outlines all the modules included in the final design 
and discusses both aesthetic and technical design 
decisions in detail. Furthermore, it provides an 
overview of materials and costs and addresses 
the marketing strategy and branding of the final 
product.

CropKit is more than just a product; it represents 
a comprehensive ecosystem comprising various 
components that operate in harmony. These com-
ponents feature both physical and digital elements, 
tailored to satisfy users‘ distinct requirements. Cen-
tral to this system is the motorised CropKit Base, 
the lightest and smallest micro-tractor available. 
It operates similarly to a conventional two-wheel 
tractor, designed for practical and flexible fieldwork. 
Users can control the Base using three different 
methods: CropKit Walk, CropKit Pilot, and CropKit 
Remote, enabling them to select the most appro-
priate option for their tasks. Additionally, there are 
currently four available expansion modules: CropKit 
Cargo, CropKit Power, CropKit Float, and CropKit 
IQ. These modules enhance the Base‘s capabilities, 
allowing it to adapt to a diverse range of agricultural 
tasks.

Figure 98:  The Cropkit Ecosystem

LiDAR	&	RTK-GPS	for	Autonomous	Driving
CROPKIT PILOT

Mobile	Phone	for	Remote	Operation
CROPKIT REMOTE

Control	Handle	for	Manual	Operation
CROPKIT WALK

CROPKIT BASE
E-Powered	Carrier	Platform

E-Motor	for	Powered	Implements
CROPKIT POWER

Prone-Bed	for	Hand	Weeding
CROPKIT FLOAT

Crate	Carrier	for	Transporting	Goods
CROPKIT CARGO

AI	Vision	for	Smart	Services
CROPKIT IQ
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As its name indicates, the CropKit Base serves as 
the cornerstone of the entire system. This micro-
tractor can be operated manually or autonomously. 
In its basic configuration, it functions much like 
a traditional two-wheel tractor, but its design is 
carefully engineered to accommodate a wide range 
of future extensions.

Due to its much lighter weight compared to 
traditional tractors, the CropKit Base can be utilised 
even under less-than-ideal soil conditions - such as 
in early spring when the ground remains wet. This 
feature provides enhanced flexibility in planning 
field activities and minimises soil compaction. 
Additionally, its compact design ensures high space 
efficiency during both operation and storage.

Drive System
The propulsion system features two front wheels, 
each 450 millimetres in diameter, driven by hub mo-
tors, while two heavy-duty caster wheels at the rear 
enable manual or autonomous differential steering. 
The front motors are arranged in a cantilevered 
configuration and operate as direct-drive units. 
Each motor includes a 45-millimetre stator platform 
and delivers a continuous torque of 30 to 40 new-
ton-meters, with a peak torque output exceeding 
80 newton-meters. These motors are optimized for 
outdoor conditions and include integrated torque 
arms.

The direct-drive setup offers several advantages. 
Because it does not require belts, chains, or gear-
boxes, it simplifies mechanical construction and 
reduces maintenance demands. The motors exhibit 
near-zero rolling resistance when unpowered, all-
owing for energy-efficient movement. Additionally, 
the centre of gravity remains exceptionally low since 
the motor weight is integrated into the wheels. This 
electric drive system also enables quiet operation, 
eliminating the need for hearing protection, unlike 
conventional fuel-powered engines.

Rear Caster Design
The caster wheels at the rear are capable of 
360-degree rotation, allowing the robot to move 
forward and backwards with equal ease. A relatively 
large pivot offset of 84 millimetres was intentionally 
chosen to enhance off-road capabilities, where 
stability and obstacle traversal are critical. The pivot 
offset—the horizontal distance between the swivel 
axis and the wheel's point of contact—generates 
self-aligning torque that helps the caster wheel 
return to a neutral position after turning or deflec-
ting. The 320-millimetre wheel diameter supports 
this high offset without sacrificing functionality. The 
result is improved obstacle negotiation, minimised 
caster flutter, and greater stability by resisting 
unintended swivelling. Given that the robot operates 
at low to moderate speeds, the increased offset 
enhances control and durability, particularly in 
autonomous mode, where lane-keeping is essential.

4.1.1. Cropkit Base.

Figure 99:  Cropkit Base Figure 100:  Cropkit Base Suspension



153152

Adjustable Ground Clearance with SafeSync 
System 
One of the most essential features of the Cropkit 
Base is its continuously adjustable ground clea-
rance, made possible by the SafeSync System. 
Ground clearance ranges from 212 to 832 milli-
metres and is adjusted using two 24-volt linear 
actuators, each capable of providing 1000 newtons 
of continuous force over a 110-millimetre stroke. 
These actuators are sealed to IP66 standards and 
equipped with overload protection and a self-
locking mechanism, ensuring they maintain their 
position even without power.

The actuators can be attached at two different 
positions on the driver link of the four-bar linkage. 
In the low configuration, they operate from the 
bottom up to a horizontal lever position, covering 
a clearance range of 212 to 448 millimetres. This 
setting is intended for standard applications with 
implements, the Cropkit Cargo, or the Cropkit 
Float. To switch to the higher configuration, spring-
loaded index plungers on both sides are released, 
and the actuator connection point is shifted. This 
adjustment allows the lever arm to operate from the 
horizontal up to the maximum height of 832 milli-
metres. The reconfiguration is necessary because 
linear actuators have a limited stroke. Additionally, 
this design ensures that the actuators operate 
at favourable angles across all height settings, 
improving mechanical efficiency and triangulation 
for enhanced stability.

This height adjustment affects both the platform's 
ground clearance and the vertical positioning of 
attached implements. When tools are mounted, the 
centre of gravity remains low to ensure stable hand-
ling. The same system also allows precise height 
adjustments for the prone module.

Figure 101:  Cropkit Base Invisible  Four -Lever  - Linkage 
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Structural Reinforcement and Frame Design
To guarantee structural integrity and off-road 
performance, several design choices were imple-
mented. The lever arm pivots are notably wide, 
measuring 140 millimetres, which provides a solid 
foundation to absorb mechanical loads (see Figure 
102). The arm is mounted using a dual-shaft 
U-bracket configuration, which allows for stable 
rotation even under lateral forces. The central axis of 
rotation is 25 millimetres thick, further contributing 
to the system's rigidity.

A height-adjustable cross brace at the rear 
connects the left and right flanks of the platform, 
enhancing overall frame stability (see Figure 103). In 
high-clearance mode, intended for light-duty tasks 
such as phenotyping, the cross brace is removed 
to maximize available space. In low-clearance 
or heavy-duty modes, the brace is reinstalled to 
reinforce the frame, particularly when tools are used 
or when the platform carries a person in float mode.

This cross brace features a custom height adjust-
ment mechanism. First, the safety pin is removed. 
Then the quick-release skewer, or cam lever, is 
opened to free the connection. This allows the 
brace to move freely for repositioning. Integrated 
spring plungers in the frame ensure even align-
ment on both sides. Once the desired height is set, 
the skewer is closed, which automatically aligns 
the mounting holes vertically through the spring 
plungers and horizontally through the skewer. The 
safety pin can then be reinserted without any risk 
of misalignment. This mechanism, comprising the 
quick-release skewer, the safety pin, and the spring 
plungers, ensures smooth and precise adjustment 
while maintaining both a force-fit and form-fit 
connection.

Figure 102:  Cropkit Base Lever Arm Pivots

Figure 103:  Cropkit Base Brace Adjustment
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Physical Interface
Both the height-adjustable front arm and the rear 
cross brace feature a standardised cutout designed 
to accommodate interchangeable module inlays. 
These inlays can be quickly swapped without the 
need for any tools. To remove or replace a module, 
users simply pull out the securing pins, after which 
any compatible module can be inserted thanks to 
the uniform interface design. This approach not 
only simplifies usability but also establishes a highly 
modular and extensible system architecture. The 
standardised physical interface ensures that future 
modules—whether developed by Cropkit or third 
parties—can be seamlessly integrated, reinforcing 
the system's openness and long-term adaptability.

Energy Supply and Computing Units
The Cropkit Base features a dual-battery system, 
with one 24-volt battery mounted on each side. 
This setup provides balanced weight distribution 
and increases system resilience. If one battery fails, 
the Battery Management System (BMS) allows the 
platform to continue operating for a limited time 
using the remaining battery.

Above the battery compartments are two com-
puting units. The left side houses the central unit 
responsible for the Cropkit IQ module and all 
necessary operational intelligence. The right side 
contains a separate unit dedicated exclusively to 
autonomous navigation.

User Interface
The user interface on the device itself has been 
intentionally kept minimal. This design choice ensu-
res that if advanced features requiring a dedicated 
interface are not used, no unnecessary components 
are installed. Moreover, a sophisticated digital inter-
face integrated directly into the robot could pose 
durability issues under rough outdoor conditions 
such as wind, rain, or dirt. From a sustainability 
perspective, including a screen in the robot itself 
would be redundant, considering that most farmers 
already carry a smartphone in their pocket. For this 
reason, most interaction with the robot is conducted 
via a mobile device.

To provide a user-friendly control interface, a micro-
controller on the Cropkit Base establishes a local 
Wi-Fi access point and hosts a lightweight web 
server. This setup enables users to connect directly 
to the robot using their smartphones and access 
a browser-based control dashboard. Because this 
system operates independently of cellular networks, 
it offers reliable, low-latency communication even in 
remote field environments. The result is an intuitive, 
accessible, and efficient user experience.

Only the most essential information is displayed 
directly on the Cropkit Base module itself. The 
current battery level and overall system status are 
communicated through LED indicators. All other 
detailed system data is streamed directly to the 
user's mobile app.

Safety Mechanism
To ensure operational safety at all times, the Cropkit 
Base features an easily accessible emergency stop 
mechanism. A red emergency stop button is located 
on the left side of the platform. Pressing this button 
instantly cuts power to the drive system and halts 
all movement of the Base, regardless of whether 
it is being operated manually or autonomously. 
This hardwired safety feature is designed for quick 
intervention, such as in the event of unexpected 
behaviour. Its prominent position ensures it can be 
activated with ease, even in stressful situations or 
while wearing gloves in field conditions.

Figure 104:  Cropkit Base User Interface
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4.1.2. Cropkit Walk
Cropkit Walk is the first of the three control options available for operating the Cropkit Base. This module 
connects directly to the base via the standardised interface and is secured using locking pins. Once moun-
ted, it is plugged into the robot’s central control unit via a direct cable connection. The ergonomic design 
and positioning of the handlebar were developed using live-scale VR simulations and later refined through a 
full-scale physical prototype.

The height of the grip unit is adjustable via the cross brace, allowing users to tailor the handle to their prefer-
red working position. Additionally, the vertical shaft of the handlebar features an integrated ball bearing at its 
base, enabling full 360-degree rotation. This feature is particularly useful when the operator prefers to walk 
beside the robot—such as in the tire track—rather than directly behind it, in order to avoid stepping on crops. 
To reposition the handle laterally, the user pulls out the spring-loaded index plunger, allowing the entire grip 
column to swivel outward (see Figure 105).

To ensure ergonomic alignment even in the swivelled position, the upper grip bar can also be rotated and 
adjusted independently. This adjustment is performed by loosening a skewer at the top of the vertical post, 
rotating the bar to the desired orientation, and then securing it again. Similar to a bicycle handlebar system, 
this allows fine-tuning of both position and angle. The rotational interface at the top is deliberately designed 
with an almost square geometry rather than a perfect circle. This makes even slight misalignments visually 
noticeable, which helps the operator return the handlebar precisely to the neutral 0° position.

The upper grip bar includes two dead-man switches—one on the left and one on the right. The left switch 
controls the left motor, and the right switch controls the right motor. When both switches are pressed 
simultaneously, the robot moves straight forward. Releasing either switch immediately deactivates the 
corresponding motor entirely, causing the robot to turn toward the stopped side. For example, if the left 
switch is released, the left motor stops, and the robot pivots to the left. This intuitive control method allows 
the operator to steer the robot with minimal physical effort while 

Figure 105:  Cropkit Walk Figure 106:  Cropkit Walk Detail
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4.1.4. Cropkit Pilot
Cropkit Pilot is the third and fully autonomous 
navigation configuration for the robot, designed for 
high-precision tasks. It integrates an RTK-capable 
GNSS antenna for centimetre-level geolocation 
and a stereo depth camera for 3D visual sensing. 
The GNSS unit supports real-time correction data, 
enabling accurate field mapping and path tracking. 
The stereo camera captures both RGB and depth 
information, enabling the system to detect terrain 
features and obstacles in real-time.

Installing the Pilot module is tool-free: the handle is 
removed and the module connects via a standard 
interface. The crossbar linkage is raised to improve 
GNSS signal reception and to ensure the camera 
remains unobstructed by any attached implements, 
protecting it from dust and debris. Once mounted, 
the module also integrates seamlessly with the 
Cropkit Base’s IMU and wheel encoders, enabling 
accurate positioning even during short GNSS signal 
losses. Additionally, stereo vision aligned with crop 
rows provides reliable local navigation, even in the 
presence of weeds.

The camera is mounted on a Picatinny rail—a 
robust, standardized mounting system originally 
developed for military use and now widely adopted 
across industries. Its precise slot spacing and 
mechanical strength support a wide range of 
commercial accessories such as brackets, clamps, 
and quick-release systems. This modularity ensures 
easy adjustment of camera positioning and allows 
for future upgrades and sensor enhancements.

In Pilot mode, the RGB-D camera not only assists 
with navigation but also serves a critical safety 
role by monitoring the implement. If the implement 
deviates from its intended position or threatens to 
damage crops, the camera can detect the anomaly 
and initiate appropriate corrective actions.

This mode also supports a more advanced version 
of the teach-and-repeat system: FieldPath Replay 
Precision. Unlike the basic version, this enhanced 
method combines data from wheel encoders, IMU, 
and RTK-GPS. During the teaching phase, the robot 
logs high-accuracy GPS waypoints along with 
motion data. In the replay phase, it uses waypoint 
tracking algorithms to follow the recorded GPS 
path, rather than relying solely on relative motion. 
The RTK-GPS ensures centimeter-level accuracy, 
enabling the robot to start from any point and still 
align with the taught route precisely.

FieldPath Replay Precision significantly reduces 
drift and is ideal for longer routes and real-world 
field applications where high precision, flexibility, 
and reliability are essential.

4.1.3. Cropkit Remote
Cropkit Remote is the second control option avai-
lable for the Cropkit Base. Like the standard user 
interface for the base, it operates through a local 
Wi-Fi access point that hosts a lightweight web 
server. This enables users to connect directly to the 
robot using a smartphone and control it via a simple, 
browser-based interface—no additional apps or 
external network infrastructure are required.

In addition to manual control, Cropkit Remote 
introduces users to basic autonomous functiona-
lity. It features a low-cost autonomy mode called 
FieldPath Replay Lite, a “teach-and-repeat” system. 
In this mode, the user manually guides the robot 
along a desired path or task using the smartphone 
interface. During this process, the robot records 
motion data from its wheel encoders and IMU to 
capture relative movement over time. The robot can 
later autonomously replay the path by following the 
same movement sequence.

This approach is highly intuitive and requires no 
programming skills, making it accessible to non-
technical users. However, because it relies only on 
internal sensors (wheel odometry and IMU), it is 
subject to limitations. Odometry errors from wheel 
slippage or uneven terrain and IMU yaw drift can 
lead to deviations during replay. Although filtering 
techniques like a complementary filter can help mit-
igate these effects, the absence of GPS or external 
corrections means the robot cannot determine its 
absolute position.

As such, FieldPath Replay Lite is best suited for 
short, repeatable tasks in fixed or structured en-
vironments. Additionally, changes in battery voltage 
may affect motor performance, further impacting 
replay accuracy.

Despite these constraints, this mode offers a fast 
and user-friendly path to basic automation—ideal 
for early trials, simple routes, and scenarios where 
ease-of-use is more critical than centimetre-level 
precision.

Figure 107:  Cropkit Pilot
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4.1.5. Cropkit Power
Some implements, like ploughs or planters, are 
passive and towed or ground-driven. Others, 
such as mowers, need active components and a 
separate power source. For those wanting to use 
powered implements with the Cropkit Base, the 
Cropkit Power module is offered. This module 
allows the robot to operate powered attachments 
through an electric Power Take-Off (PTO) system. 
It is equipped with a 24-volt brushless DC motor 
that produces 3 to 5 kilowatts of continuous power. 
The motor generates high torque at low RPM, 
making it ideal for heavy-duty tasks. Its operating 
speed, typically between 1500 and 3000 RPM, is 
mechanically reduced to the industry-standard 540 
RPM using either a belt or chain drive. The module 
connects easily to the robot’s standard interface, 
with the implement installed on the opposite side.

The motor is currently designed to function with 
standard implements available in the market. Ho-
wever, it would be beneficial to consider developing 
implements specifically optimized for Cropkit, either 
through in-house efforts or by external suppliers. 
When used with the autonomous Cropkit Pilot, the 
necessity for large, heavy-duty implements decrea-
ses. Traditional implements tend to be oversized to 
achieve maximum coverage quickly, a model driven 
by human operation. In contrast, with the robot's 
autonomous functioning, time is less of a concern. 
This transition mirrors the transformation seen in 
lawnmowers: moving from loud, bulky designs to 
compact, silent robotic mowers that utilise auto-
nomy for a different kind of efficiency. This evolution 
creates opportunities to design smaller, lighter, and 
more effective powered implements specifically for 
the Cropkit platform, better adapted for continuous, 
autonomous operation in the field.

Figure 108:  Cropkit Power
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4.1.6. Cropkit Float

The Cropkit Float module creates a genuine 
partnership between humans and machines. Rather 
than depending on costly and sophisticated tools, 
this system transforms the most skilled instru-
ment—the farmer—into the tool itself. Mounted 
on the Cropkit base, the Float module includes a 
platform that is ergonomically designed for ex-
tended periods of comfortable use. Each support 
surface consists of EVA foam cushions, which can 
be easily repositioned and adjusted with plastic 
clips along the base frame to fit each user perfectly. 
The platform's height can be continuously adjusted 
between 540 mm and 640 mm, utilising linear 
actuators at the front and a height-adjustable cross 
brace at the rear to keep the platform level during 
adjustments.

In this float setup, the machine advances steadily 
and automatically, allowing the operator to focus 
on their tasks without managing propulsion. The 
operator lies face down, gaining an unobstructed 
view of the crops, with their hands entirely free for 
precise manual activities like weeding or thinning. 
Steering and speed control are managed through 
the feet: pressing one pedal slows down that side of 
the machine, gently directing it where needed, while 
pressing both pedals at once halts the platform 
entirely. This straightforward, foot-operated braking 
system allows for smooth, hands-free navigation, 
making it ideal for enhancing efficiency and comfort 
during long hours in the field.

Figure 109:  Cropkit Float Figure 110:  Cropkit Float Detail
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4.1.7. Cropkit Cargo
Cropkit Cargo is a modular solution designed to 
support farmers in transporting tools, equipment, 
or harvested goods—whether in the field or around 
the farm. The cargo platform is optimized to fit up 
to four standard 60×40 cm Euroboxes, providing a 
practical and familiar loading space.

The robot can be operated remotely using the 
Cropkit Remote system, offering full control via 
smartphone. Alternatively, for those who prefer not 
to use a mobile device, the Cargo module is fully 
compatible with the Cropkit Walk module, which 
connects easily through the standard interface 
on the base unit. This flexibility allows farmers to 
choose the most convenient control method for 
their workflow and environment.

Figure 111:  Cropkit Cargo Figure 112:  Cropkit Cargo Detail
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CropKit IQ represents the physical brain of the 
robot. It integrates a sensor suite consisting of an 
RGB-D camera and a bioacoustic microphone. 
The data collected through these sensors is 
processed and made accessible to farmers via a 
digital backend, which can be accessed through a 

smartphone or laptop. To support different needs, 
various subscription-based backend services are 
available, allowing farmers to choose the level of 
functionality that best suits their operations.

4.1.8. Cropkit IQ IQ Logbook
The IQ Logbook uses collected field data to provide 
farmers with a clear overview of the current biomass 
status and crop types present in their fields. This 
allows farmers to track how different crops are 
developing over time and supports better deci-
sion-making in planning and crop management. 
The system makes it easy to log and access key 
data points—such as plant growth stages or yield 
estimates—helping farmers compare current con-
ditions with previous seasons. For example, a farmer 
can quickly check how high their yield was at the 
same time last year. Since most data is still collected 
manually, and harvested yield remains one of the 
most frequently recorded metrics (see Chapter 
2.2.5.3. Status Quo - Data Practices and Decision 
Influence), the IQ Logbook provides a simple yet 
powerful tool to streamline data collection and 
support more informed farm management.

IQ Scout 
IQ Scout turns the Cropkit agricultural robot into 
a digital field investigator. Rather than relying on 
labour-intensive manual crop inspections, Cropkit 
Scout consistently evaluates plant health and 
identifies early indications of pest infestations with 
great accuracy. This empowers farmers to respond 
more quickly and strategically, addressing only the 
impacted areas and conserving time, resources, and 
crop protection products. By translating sensor data 
into specific action recommendations, autonomous 
scouting aids in protecting yields while minimising 
environmental harm.

When IQ Scout identifies something unusual, it 
promptly alerts the farmer, either through an app 
or a direct message, indicating the precise location 
(see Figure 114). The robot does not operate 
independently; instead, it functions as a decision-
support tool, enabling the farmer to make informed 
choices. Following an on-site evaluation, the farmer 
can give feedback to the system: Was it genuinely 
a disease, or simply a false alarm? For instance, IQ 
Scout may flag a possible powdery mildew infec-
tion. Upon further examination, it may actually be 
harmless trichomes—plant hairs that have a similar 
appearance. The farmer rectifies the diagnosis 
directly in the app. This feedback is reintroduced 
into the system, allowing the robot to learn from 
it. Through a blend of auto-labelling and manual 
labelling, a smart learning process ensues. This 
“human-in-the-loop” methodology guarantees that 
IQ Scout becomes increasingly precise with every 
scouting mission, leading to ongoing improvement 
over time.

Figure 113:  Cropkit IQ

Figure 114:  Cropkit IQ App Design - Allert
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IQ Planning
IQ Planning is designed for advanced farm manage-
ment and strategic decision-making. As part of the 
IQ suite, it integrates data from the IQ Logbook and 
IQ Scout, along with real-time weather information, 
to enable more accurate and forward-looking 
planning. This data-driven approach allows for 
advanced yield forecasting, which is especially 
valuable for farmers who rely on direct marketing. 
Over time, the system’s deep learning models begin 
to identify patterns and correlations across seasons 
and crops, offering actionable insights based on 
long-term trends.

For example, it might detect that lettuce yields are 
consistently lower when sown in April and therefore 
suggest sowing in May instead. Since develop-
ments in the field are often influenced by a complex 
interplay of many variables, IQ Planning helps 
uncover these hidden relationships and supports 
better decision-making. However, it is not intended 
as a rigid decision-support tool. Rather, it acts 
as a discussion-support tool—presenting clear, 
data-backed insights that spark dialogue and guide 
collaborative, data-driven cropping strategies.

IQ Habitat
IQ Habitat takes a unique approach to ecological 
monitoring by literally “listening” to the land. The 
system utilises a bioacoustic microphone built 
into the IQ module to capture the farm's sound-
scape, enabling real-time biodiversity monitoring. 
Leveraging AI, it identifies species based on their 
vocalizations and detects insect activity by analy-
zing wingbeat frequencies and buzzing patterns. 
This approach, outlined in Chapter 2.3.1.5. The Role 
of Bioindicators in Informed Decision-Making, is 
part of an expanding field where sound serves as a 
glimpse into ecosystem health.

Bioacoustics is rapidly becoming a practical and 
effective method for monitoring environments 
in agricultural areas. By capturing and analyzing 
natural ambient sounds, it provides valuable infor-
mation on species presence, distribution, behavior, 
and even their physiological state. For farmers, this 
offers a novel approach to assess and showcase 
the ecological results of their management practi-
ces—non-invasively, continuously, and in real-time 
(FAS, 2024).

Farmland soundscapes are filled with biological 
signals, particularly from birds and insects, which 
act as important indicators of environmental quality. 

For instance, the songs of birds found in fields or 
hedgerows often suggest a robust insect population 
and a varied habitat structure. Since their calls alter 
in response to environmental changes, birds are 
increasingly utilised as proxies for wider biodiversity. 
Shifts in bird song patterns can subtly but power-
fully indicate changes in land use (Molina-Mora et 
al., 2024).

Insects play a vital role in acoustic monitoring. 
Machine learning algorithms can identify different 
species by analysing their flight tones or distinct 
sound-producing behaviours, including stridulation. 
The acoustic signatures of pollinators, such as bees 
and hoverflies, or pests like weevils and gras-
shoppers, provide insights into crucial ecological 
dynamics. A lively nighttime chorus of crickets or 
grasshoppers often indicates a healthy, minimally 
disturbed ecosystem. When placed near agricultural 
areas, acoustic sensors monitor pollinator activity, 
yielding valuable data on their abundance and 
diversity (Alberti et al., 2023). Soniferous insects, 
including cicadas, grasshoppers, and crickets, are 
particularly effective for evaluating habitat quality in 
mixed-use landscapes (Bennett et al., 2025). In ad-
dition to biodiversity monitoring, bioacoustics allows 
for the early detection of pest activity. Sounds such 
as locusts stridulating can act as early indicators 
of potential infestations, providing farmers the 
opportunity to intervene before damage escalates 
(Kohlberg et al., 2024).

Bioacoustics plays a crucial role in identifying 
broader environmental patterns. A decline in early 
morning birdsong or evening insect sounds may 
signal habitat degradation or the effects of agro-
chemicals. Conversely, a more diverse and vibrant 
soundscape often indicates ecological restoration, 
achieved through techniques such as hedgerow 
planting, cover cropping, and pond revitalisation. By 
consistently analysing soundscapes, farmers can 
observe the impact of their practices and adjust 
their approaches based on real-time feedback. As 
land use shifts—whether by eliminating natural fea-
tures or adopting wildlife-friendly strategies—these 
changes manifest in the acoustic environment. This 
information offers an early, non-invasive insight 
into environmental trends, enabling proactive land 
stewardship. Field studies and pilot initiatives 
(AgriSound, 2024; FAS, 2024; Molina-Mora et al., 
2024) have shown that acoustic monitoring is not 
only precise but also scalable, making it a valuable 
tool for contemporary, ecologically conscious 
agriculture.

IQ Edu
IQ Edu is tailored for farmers who are either new to 
agriculture or actively exploring new approaches, 
such as regenerative farming, low-input systems, or 
biodiversity-focused practices. While the other IQ 
backends provide data insights and visualizations, 
IQ Edu adds a dedicated learning layer. It interprets 
the data and explains what it means, why it matters, 
and how to act on it in more detail.

This includes guided tutorials, contextual tooltips, 
field examples, and beginner-friendly visualizations 
that break down complex agronomic or ecological 
relationships. For instance, when IQ Scout flags a 
disease, IQ Edu might explain the typical life cycle of 
the pathogen, potential environmental triggers, and 
sustainable treatment options—turning an alert into 
a teachable moment.

Unlike other modules that are mainly for ex-
perienced users, IQ Edu deliberately leans into 
explanation. The goal isn‘t just to support deci-
sions, but to train the farmer’s observational and 
interpretive skills over time. Research shows that 
seasonality slows learning in agriculture, and a lack 
of confidence or technical know-how can dis-
courage new entrants (see Chapter 2.1.3.2. Main 
Challenges of Small-Scale Farms). IQ Edu addres-
ses this by serving as a patient, on-demand mentor, 
lowering the barrier to entry and helping users 
gradually develop both theoretical understanding 
and practical intuition.

Figure 115:  Cropkit IQ App Design - Selection of Digital Modules
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Embodiment Evaluation4.2. 

4.2.1. Materials Selection

Metallic Parts
Most metallic components are crafted from 7075 
aluminium, selected for its remarkable strength-to-
weight ratio, outstanding corrosion resistance, and 
reliable performance under challenging conditions. 
This high-performance alloy, mainly made up of alu-
minium, zinc, magnesium, and copper, is extensively 
utilised in the aerospace sector due to its exceptio-
nal mechanical characteristics. It provides tensile 
strength comparable to certain steels while being 
considerably lighter, making it ideal for applications 
that require both strength and reduced weight.

In agricultural settings, 7075 aluminium sustains 
its structural integrity under mechanical stress and 
resists damage from moisture, fertilisers, and severe 
weather, making it a dependable, low-maintenance 
option. For the initial low-volume production phase 
utilising CNC machining, 7075 was chosen for its 
superior machinability. However, as production in-
creases and shifts to casting-based manufacturing, 
considering an alternative like A356-T6—better 
suited for casting—should be considered.

A mixed-material approach, using stainless steel for 
high-stress components and aluminium for other 
parts, was explored but ultimately rejected due to 
concerns about galvanic corrosion. This type of 
corrosion occurs when different metals come into 
electrical contact within an electrolyte, like salt or 
fertiliser-laden water, which can accelerate the 
degradation of the more anodic metal- in this case, 
aluminium. Additionally, the differing thermal ex-
pansion rates of stainless steel and aluminium could 
induce mechanical stress, threatening the integrity 
of the joints over time. As a result, the decision was 
made to adopt a full-aluminium structural design 
to ensure durability, thermal stability, and ease of 
manufacturing.

Plastic Components
Alongside the aluminium structural elements, 
high-density polyethylene (HDPE) was chosen for 
the assembly‘s plastic components because of 
its durability, UV resistance, and environmentally 
friendly properties. HDPE excels in outdoor agri-
cultural environments, as it withstands degradation 
from extended sun exposure, moisture, fertilizers, 
and mechanical stress. It is resistant to cracking, 
corrosion, and deformation, ensuring dependable 
performance over long durations. From a sustai-
nability standpoint, HDPE is fully recyclable and 
has a reduced environmental footprint compared 
to many other widely used plastics, thus meeting 
responsible sourcing and end-of-life recycling 
goals. Its blend of strength, weather resistance, and 
ecological benefits makes HDPE an excellent option 
for plastic parts in agricultural systems.

Float Module Cushions
The float module‘s prone bed surfaces feature 
TPU-laminated foam cushions that provide a 
perfect blend of comfort, durability, and environ-
mental resilience. With an ergonomic foam core, 
they reduce physical strain during prolonged use. 
The thermoplastic polyurethane (TPU) outer layer 
offers excellent waterproofing and UV protection, 
ensuring dependable performance even in deman-
ding field conditions. In contrast to conventional 
materials, TPU-coated foam withstands high-pres-
sure cleaning without degrading, which is vital for 
keeping agricultural settings hygienic. Additionally, 
TPU serves as a more sustainable choice compared 
to PVC, often manufactured through low-VOC 
processes and containing recyclable materials. 
Thus, TPU-laminated cushions present a practical, 
durable, and eco-friendly option for the prone bed 
of the float module.

Figure 116:  Exploaded View of the Lever Mechanism
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To establish a foundational understanding of Crop-
kit’s pricing strategy, a preliminary cost estimation 
was performed. Each module was broken down into 
its primary components, with cost estimates assig-
ned accordingly to build a baseline for production 
expenses. A profit margin is then applied to ensure 
both commercial viability and sustained investment 
in research and development.

Initially, a production run of 100 to 500 units is 
planned. During this phase, the first rollout of Crop-
kit modules will undergo continuous refinement 
through practical feedback gained from field trials, 
allowing for iterative enhancements to its mecha-
nical and functional subsystems. The first units 
will utilise CNC machining, which enables quick 
changes and adjustments without the financial and 
temporal constraints commonly associated with 
moulding methods.
This low-volume production strategy avoids 
the substantial initial costs linked to injection or 
die-casting tooling. Once the design is stable and 
proven in the field, production can shift to injection 
moulding or die casting to upscale production and 
reduce unit costs.

The base module has a 100% profit margin. This 
covers the complexity of the product, the small 
production scale, and the need to fund further 
development, testing, and infrastructure. The goal 
is not to offer the cheapest product, but one that 
performs reliably in tough agricultural conditions 
and provides long-term value. For all additional 
modules beyond the base platform, a reduced profit 
margin of 20% is applied. This structure ensures 
that the base platform generates the primary 

revenue stream needed to fund continued R&D, 
while expansion modules remain economically 
accessible. This approach reflects a reverse 
razor-and-blades pricing model. The base unit 
offers substantial standalone value, while optional 
add-ons remain within reach, minimizing adoption 
barriers for farmers. All final prices include 21% VAT, 
as required in the Netherlands.

Cost Estimation Methodology
The table below outlines an estimated breakdown 
of component prices. Cost estimates for pre-fabri-
cated parts are based on market research, while for 
custom-manufactured components, such as the 
aluminum frame, figures come from the CAD model 
that provides volume estimates. These volumes 
were modified to account for machining allowance 
and then multiplied by the corresponding material 
and processing rates. For instance, the Cropkit 
base frame will be CNC-machined from 7075-T6 
aluminum. The CAD model estimates a raw material 
volume of about 9,000 cubic centimeters, or 
approximately 25 kilograms. With a 40% machining 
allowance, the total aluminum stock needed per unit 
rises to roughly 35 kilograms. Based on an esti-
mated cost of €25 per kilogram, the material cost 
for each frame is around €890. CNC machining is 
projected to last three to four hours per unit, costing 
€80–100 per hour, leading to an extra €250–300 
in machining expenses. An optional anodizing 
process, which improves corrosion resistance, adds 
around €30 per unit.

The following table provides a preliminary overview 
of all estimated costs. 

4.2.2. Manufacturing and Pricing
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Base
Frame	material	(7075-T6	Al,	35.46	kg	@	25	€/kg) 	890	
CNC	machining	(3–4	h	@	80–100	€/h) 	300	
Anodizing	finish 	30	
2× 24 V linear actuators 	300	
2× gas springs 	60	
2× direct-drive hub motors 	2.200	
2× rear pneumatic tires 	120	
2× front swivel casters 	100	
2× sealed 24 V Li-ion batteries 	500	
Battery Management System 	120	
Wiring, connectors & hardware 	100	
Assembly	(8–10	h	@	30	€/h) 	250	
Total Production Cost 	4.970	 	100	 	9.940	 	12.027	 	12.000	

Walk
Frame	material	(7075-T6	Al) 	40	
CNC	machining	(0.5	h	@	80–100	€/h) 	40	
Anodizing	finish  5 
2× IP66 stop switches 	20	
Wiring, connectors & hardware 	20	
Assembly	(0.5	h	@	30	€/h)  15 
Total Production Cost 	140	 	20	  168 	203	 	200	

Pilot
RTK-capable	GNSS	antenna	&	receiver 	300	
Stereo depth camera 	120	
Mounting hardware & weather protection 	20	
Wiring, connectors & cabling  15 
Assembly	(0.5	h	@	30	€/h)  15 
Total Production Cost 	470	 	20	  564  682 	700	

Float
Aluminum	tube	frame	(30	mm	×	3	mm) 	60	
EVA foam padding 	80	
Mounting brackets & hardware  25 
Assembly	(0.75	h	@	30	€/h) 	20	
Total Production Cost  185 	20	  222  269 	250	

Power
24	V	BLDC	motor	(3–5	kW) 	600	
Motor controller 	200	
Pulley/chain reduction system 	60	
Housing, mounts, brackets & weather-sealing 	40	
Electrical integration & cabling 	20	
Assembly	&	testing	(1	h	@	30	€/h) 	30	
Total Production Cost 	950	 	20	 	1.140	  1.379 	1.400	

Cargo
Steel/Aluminum platform (cut, welded, corrosion-resistant) 	50	
Mounting brackets & hardware 	20	
Assembly	(0.5	h	@	30	€/h)  15 
Total Production Cost  85 	20	 	102	  123 	150	

IQ
RGB-D	camera 	120	
Directional bioacoustic microphone 	70	
AI edge computing unit 	80	
Wireless module (Wi-Fi/Bluetooth) 	20	
Mounting, housing & cabling 	10	
Assembly	(0.5	h	@	30	€/h) 	10	
Total Production Cost 	310	 	20	  372 	450	 	450	
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Market Strategy4.3. 

4.3.1. Business Model

4.3.1.1. The Modules 

Physical Modules

At the heart of the Cropkit ecosystem is the Cropkit 
Base, which serves as both the physical and 
economic foundation. Every user begins with full 
ownership of the Base unit, ensuring long-term 
security and freedom from vendor lock-ins. This 
ownership includes the Cropkit Walk module, 
providing an always-available manual control inter-
face. From this starting point, users can tailor the 
ecosystem to their needs by selectively acquiring 
other modules either through direct purchase or 
flexible subscriptions.

This hybrid model allows farmers to grow into the 
system incrementally. A user might begin with 
only the Walk and Remote modules, and later add 
Pilot for autonomy, Cargo for logistics, or Float 
for ergonomic manual work—depending on their 
changing requirements and financial possibilities. 
The system does not require upfront investment in a 
complex, full-featured solution. Instead, it promotes 
organic growth aligned with each farm’s scale, 
capability, and learning curve. The optional switch 
from subscription to ownership lowers total cost 
over time for modules that prove consistently useful, 
while the subscription-first approach encourages 
experimentation and reduces investment risks. 
This is particularly valuable in agriculture, where 
uncertainty—seasonal, financial, and climatic—is a 
constant factor.

Digital Modules

Where hardware modularity allows physical 
expansion, Cropkit IQ provides a modular digital ex-
tension of the ecosystem. The IQ suite—comprising 
Logbook, Scout, Planning, Habitat, and Edu—are 
offered via monthly or annual subscription plans, 
with users able to opt in or out depending on sea-
sonal needs, budget, or priorities. More importantly, 
the modular structure of the IQ Suite mirrors that of 
the physical platform. A small-scale farmer might 
start with IQ Logbook, and later activate IQ Scout or 
Planning as their farm becomes more data-driven. 
Critically, IQ services run via the farmer’s smart-
phone or laptop. There is no costly digital interface 
embedded into the robot—this design decision is 
both a technical and economic strategy. It reduces 
the complexity and fragility of hardware while 
leveraging devices the farmer already owns.

Unlike many contemporary ag-tech platforms, 
Cropkit empowers farmers by granting them 
full ownership of their collected data while also 
offering the option to share it voluntarily. Farmers 
who choose to share their anonymized data 
receive subscription discounts in return, creating 
an incentive that fuels a positive feedback loop. As 
more data is shared, machine learning models and 
insights improve, which leads to better outcomes 
for all users and encourages further participation. 
Data sharing remains entirely optional, reflecting 
an ethical commitment to agency and consent. 
This approach aligns with Cropkit’s decentralized 
philosophy, ensuring that the platform never profits 
from farmers’ data without their explicit permission 
and instead builds collective knowledge through 
transparency and trust.

A key aspect of the Cropkit business model is its 
strong focus on community. Farmers utilising Crop-
kit are not merely end users; they act as co-owners 
and collaborators within an expanding ecosystem. 
Each module features a standardized mechani-
cal interface, facilitating the lending, leasing, or 
co-investing in equipment among farmers. This 
significantly decreases unnecessary purchases and 
promotes local collaboration, thereby supporting 
a decentralized equipment-sharing system that 
sharply contrasts with traditional top-down leasing 
or service models. For instance, neighboring 
farmers might collaboratively use a Pilot module 
for seasonal autonomous tasks or share a cargo 
platform during the harvest.

Cropkit also adheres to the principles of open 
hardware and innovation. It encourages farmers 
and makers to create tools specifically designed 
for their crops or environments and to share their 
experiences within the Cropkit community. A crucial 
component of this initiative is the "blank" interface, 
a modular attachment point that allows users to 
invent and construct their own implements for 
the Cropkit base unit. Many farmers are practical 
problem-solvers who relish the opportunity to craft 
their own solutions. With the blank interface, they 
can personalise their systems and even develop 
their toolsets beyond the offerings of the core 
product line. Consequently, Cropkit benefits from 
these grassroots innovations, gaining insights into 
additional modules or features that could serve the 
wider community.

Essentially, Cropkit transcends being just a product 
line; it acts as a dynamic, open, and collaborative 
platform that encourages farmers to influence the 
future of agriculture. It represents a movement 
characterised by shared value creation, the free 
exchange of knowledge, and empowering those 
closest to the land with the tools and autonomy to 
drive innovation.

4.3.1.2. Cropkit Community

Cropkit’s maintenance and service model is built 
on a network of authorized local dealers, blending 
the reliability of traditional service infrastructure 
with the adaptability of its modular design. Similar 
to established brands like John Deere and Fendt, 
Cropkit dealers provide a comprehensive range of 
support services, including routine maintenance, 
diagnostics, repairs, and access to original parts. 
Service packages are available in tiered plans, 
giving farmers flexibility—from basic preventive 
maintenance to full coverage with extended war-
ranties and on-site support. Regional dealers stock 
and distribute parts and modules to ensure timely 
access when needed.

A key advantage of Cropkit’s modular structure is 
the simplicity and speed of repairs, especially during 
time-sensitive periods such as harvest season. If 
a component fails, it can be quickly swapped out 
without causing major delays. The system is inten-
tionally designed for ease of repair, with no glued 
parts and all components assembled using visible 
screws. This transparent, repair-friendly approach 
avoids the “black box” problem, making it far easier 
for farmers to carry out fast, independent repairs 
when necessary. For those who prefer hands-on 
maintenance, Cropkit offers detailed technical 
documentation and supports peer learning through 
its community platform, while certified repairs 
and upgrades remain available through the dealer 
network.

4.3.1.3. Service and Maintenance

Figure 117:  App Design with Community Button
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The name “Cropkit” clearly conveys its value 
proposition. The word “crop” emphasizes that the 
product is designed specifically for crop farming 
rather than livestock farming, reinforcing its 
connection to harvesting. The word “kit” suggests a 
complete, modular system—an ecosystem of tools 
working together. Both components of the name are 
monosyllabic and follow a consonant–vowel–con-
sonant structure, making the name sound balanced, 
compact, and easy to remember.

The subclaim "Built for the field. Designed for 
tomorrow." was chosen because it succinctly cap-
tures the essence of the Cropkit ecosystem. “Built 
for the field” highlights the platform’s durability, 
functionality, and real-world readiness—under-
scoring that Cropkit is a practical tool designed 
for everyday agricultural use, not just a concept 
from the lab. “Designed for tomorrow” reflects its 
future-oriented nature: modular, scalable, and built 
to support autonomous and data-driven farming. 
This tagline strikes a balance between present-day 
reliability and forward-looking innovation, making 
it compelling both for current users and future 
adopters. Its clarity, rhythm, and dual-focus make 
it an ideal expression of Cropkit’s value in a single, 
memorable line.

The Cropkit logo visually captures the brand’s 
essence by seamlessly merging nature and techno-
logy through a stylized fusion of a grain symbol with 
the letter’s “C” (for Crop) and “K” (for Kit). Its clean, 
modular geometry reflects the system’s scalable 
architecture—where physical and digital compo-
nents fit together effortlessly. Soft, leaf-like curves 
evoke sustainability and natural growth, while the 
underlying grid-based structure communicates 
precision and engineering reliability. Together, these 
elements align with Cropkit’s mission to provide 
durable, future-ready solutions for modern agricul-
ture. The vertical, seed-inspired form symbolizes 
both deep roots in the field and upward-looking 
innovation—perfectly embodying the tagline: Built 
for the field. Designed for tomorrow.

The logo meets all key functional criteria for effec-
tive branding. It is fully scalable, ensuring clarity 
and sharpness at any size. For smaller applications, 
the wordmark can be reduced to just the symbol 
without losing recognizability. The design remains 
impactful in both colour and black-and-white for-
mats, avoiding dependence on gradients or visual 
effects to maintain its identity.

4.3.2. Branding

CROPKIT

CROPKIT

CROPKIT

CROPKIT

Built for the field. Designed for tomorrow.

Built for the field. Designed for tomorrow.

Built for the field. Designed for tomorrow.

Built for the field. Designed for tomorrow.

Figure 118:  Cropkit Logo Design Figure 119:  Cropkit Logo Meaning
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The aim of this thesis was to support and enable the 
gradual adoption of precision agriculture technolo-
gies (PATs) for smallholder farmers. While the initial 
focus lay on implementing technology for its own 
sake, the course of the research revealed a more 
nuanced picture, highlighting both the real benefits 
and the potential drawbacks of PATs. It became 
increasingly clear that the value of these tools lies 
not in the technology itself, but in how it is designed 
and integrated into the lives and workflows of those 
who use it.

This work has illustrated the complex, intercon-
nected challenges smallholders face. Through the 
concept of the vicious cycle, it has become evident 
where PATs must be strategically deployed in order 
to truly make a difference. The erosion of small 
farms is not just a symptom but a driver of deeper 
structural disruptions: monocultures, regulatory 
capture, environmental degradation, and the loss 
of rural identities. These forces feed back into the 
system, compounding the struggles of smallholders 
and accelerating their disappearance. As small 
farms vanish, the agricultural landscape beco-
mes more homogenous, less resilient, and more 
vulnerable.

Today, PATs are too often applied at the wrong 
leverage points in this cycle. Agriculture doesn’t just 
need incremental improvements through techno-
logy—it needs systemic, radical transformation. 
What we need is a diverse network of small, auto-
nomous, resilient, and locally rooted farms—farms 
that cultivate a broad range of crops, enrich their 
ecosystems, and bolster local economies. To build 
this, we must fundamentally redirect innovation.

There is great potential in technology—but only if 
we abandon the techno-solutionist mindset that 
has failed us. Replacing dependency on subsidies 
with dependency on complex tools and opaque 
algorithms is not progress; it is repetition under a 
different name. True innovation means designing 
systems that are empowering by default: techno-
logies that are affordable, adaptable, and free from 
hidden costs or constraints.

Cropkit represents a first step in this direction. It 
is the beginning of an open product ecosystem 
designed to make the farmer’s life easier—modular, 
customisable, and interoperable. Its low entry bar-
rier, modelled after a familiar tool—the two-wheel 
tractor—allows gradual, needs-based expansion 
through additional modules. This adaptability helps 
reduce dependency while respecting the farmer’s 
autonomy and context.

This progress was only possible through close 
collaboration with farmers and ongoing engage-
ment with stakeholders. It is essential to co-create 
with those most affected by these transformations. 
This research also made one thing clear: techno-
logy cannot solve all problems. We cannot simply 
throw innovation at a sector and hope for systemic 
change. We must understand the people behind 
the systems, their challenges, and their needs. Only 
then can we foster real innovation.

And this shift must happen quickly. Time is running 
out for agriculture. We need tools designed to 
support sustainable, resilient, and regenerative 
farming. Cropkit is intended to be one such tool, 
driving forward the urgently needed transformation 
of our agricultural systems.

Conclusion5.1. 
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This thesis, while aiming to explore and propose 
meaningful solutions for small-scale farming 
through modular precision agriculture techno-
logies, is subject to several limitations that should 
be acknowledged. These constraints also provide 
guidance for future research and development 
directions.

Temporal Scope
The most significant limitation of this work is its 
temporal scope: it was conducted within the time 
frame of a single academic semester. Agriculture, 
particularly in relation to emerging technologies, is 
a vast and complex field. Developing truly impactful 
solutions requires an in-depth understanding of 
the broader context—technological, ecological, 
and socio-political. While a comprehensive and 
interdisciplinary research approach was used to 
build contextual awareness, the scale and depth 
necessary for exhaustive exploration remained 
limited by time.

Market Research
While this thesis touches on available technologies 
in the agricultural sector, it lacks a detailed and 
systematic market analysis. A broader market study, 
identifying the full spectrum of existing Precision 
Agriculture Technologies (PATs) and their adoption 
levels, would be a valuable addition. Future projects 
should conduct in-depth benchmarking of com-
mercial solutions to understand adoption barriers 
and opportunities more clearly.

Quantitative Data Limitations
The online survey conducted included responses 
from 44 participants across the Netherlands, Ger-
many, and Austria. Although the analysis indicated 
that nationality did not significantly affect response 
patterns, the sample size remains too small for 
generalizable conclusions. Additionally, some 
responses were included from farms exceeding 10 
hectares, which may have introduced variability 
not representative of small-scale farming. Future 
studies should aim for larger, more structured, and 
regionally stratified samples.

Physical Prototyping and Testing
The embodiment of the Cropkit system remains 
conceptual and digital in nature. Particularly in the 
"Float" configuration, which places high mecha-
nical demands on the system due to rough terrain, 
thorough real-world testing is critical. Future work 
should include extensive prototyping and field 
trials to assess durability, mobility, and operational 
reliability under real farming conditions.

Digital Backend and Sensor Integration
Another important limitation lies in the underdeve-
loped state of the digital backend. Even the most 
advanced sensors are ineffective without reliable 
data processing, interpretation, and decision 
support. In this thesis, the digital components—
including AI, computing power, and software 
integration—were only partially addressed due to 
scope constraints. Future iterations should focus 
more extensively on this aspect, particularly in 
refining the Trait-Sensor-Relation framework to 
include computing limitations.

Modular Design and Adaptability
The current Cropkit track width is fixed at 800 mm, 
based on standard bed widths in market gardening 
(typically ~750 mm). However, adaptability will 
be crucial for broader applicability. Future design 
improvements should explore adjustable wheel 
spacing, potentially using modular spacers at 
the front arm and rear brace to allow for flexible 
configurations.

Cabling and Control Interfaces
Cabling and wire management are not yet integra-
ted into the design. This is a key technical gap that 
should be resolved to ensure system robustness 
and maintainability. Additionally, in the Cropkit Float 
configuration, user control is currently limited to a 
smartphone interface via Cropkit Remote. A more 
ergonomic, foot-operated control system—com-
monly found in prone weeders—could enhance 
usability and should be further developed.

User Interface – Cropkit Walk
The current Cropkit Walk setup includes controls 
only for left and right motors. It lacks an interface for 
operating linear actuators, which are necessary to 
raise and lower implements. A dedicated switch or 
control interface should be added in future iterations 
to enable full user functionality.

Limitations and Recommendations5.2. 
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In this document the agreements made between student and supervisory team about the student's IDE Master Graduation Project 
are set out. This document may also include involvement of an external client, however does not cover any legal matters student and 
client (might) agree upon. Next to that, this document facilitates the required procedural checks: 

Student defines the team, what the student is going to do/deliver and how that will come about 
Chair of the supervisory team signs, to formally approve the project's setup / Project brief 
SSC E&SA (Shared Service Centre, Education & Student Affairs) report on the student's registration and study progress 
IDE's Board of Examiners confirms the proposed supervisory team on their eligibility, and whether the student is allowed to 
start the Graduation Project 

STUDENT DATA & MASTER PROGRAMME 
Complete all fields and indicate which master(s) you are in

I 

Family name Soche 

Initials D.S. 

Given name David 

Student number 5901820 

SUPERVISORY TEAM 

IDE master(s) IPD ✓ Dfl SPD 

2"d non-lDE master 

Individual programme 
(date of approval) 

Medisign 

HPM 

Fill in he required information of supervisory team members. If applicable, company mentor is added as 2nd mentor 

Chair Jan Willhelm Hoftijzer 

mentor Marco Rozendaal 

2nd mentor Martin Stettner 

client: NPK Design 

city: Leiden 

dept/section HCD 

dept./section HCD 

country: Netherlands 

optional While Mr. Hoftijzer focuses on Design Visualization and has expertise in visualization (one of my comments personal learning goals), Mr. Rozendaal focuses on Human-Robot Interaction and has expertise in
robotics (a valuable expertise essential for the project). 

Ensure a hPteroge-11eous 
tedm Ir c SE' you wish to 
irclude tea,1 members frorr 
tne sd Pe section, expla :,
why 

Chair st-ould request the DE 
Board of Exariiners for 
approval when a nor DE
m<>ntor 1s pt c;posed lrrlud" 
CV ... nd motIvatIon letter 

2nd mertor on'y applies 
wher J c.l,ent Is involved.

APPROVAL OF CHAIR on PROJECT PROPOSAL/ PROJECT BRIEF > to be filled tn by the Chair of the supervisory team 

Sign for approval (Chair) 

Name J- W •· �f f 1J 2-vv-" Date '2... L- - ( { - '2-0. 'Z.,)7 Signature

7521

7.Project Brief

 Sign for approval (SSC E&SA)

Name Date Signature

CHECK ON STUDY PROGRESS  
To be filled in by SSC E&SA (Shared Service Centre, Education & Student Affairs), after approval of the project brief by the chair.
The study progress will be checked for a 2nd time just before the green light meeting.

YES all 1st year master courses passed

NO missing 1st year courses

Comments:

ECMaster electives no. of EC accumulated in total 

Of which, taking conditional requirements into 
account, can be part of the exam programme EC

APPROVAL OF BOARD OF EXAMINERS IDE on SUPERVISORY TEAM -> to be 

YES Supervisory Tea

NO Supervisory Tea approved

Does the composition of the Supervisory Team 
comply with regulations?

Comments:

 Sign for approval (BoEx)

Name Date Signature

ALLOWED to start the graduation project

NOT allowed to start the graduation project

Based on study progress, students is Comments:

X

K. Veldman 11-02-2025

V

V

Monique von Morgen 11/2/2025
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Personal Project Brief IDE Master Graduation Project

space available for images / figures on next page

Project title 

Please state the title of your graduation project (above). Keep the title compact and simple. Do not use abbreviations. The
remainder of this document allows you to define and clarify your graduation project. 

PROJECT TITLE, INTRODUCTION, PROBLEM DEFINITION and ASSIGNMENT
Complete all fields, keep information clear,  specific and concise

Introduction 

Describe the context of your project here; What is the domain in which your project takes place? Who are the main stakeholders 
and what interests are at stake? Describe the opportunities (and limitations) in this domain to better serve the stakeholder 
interests. (max 250 words)

Name student Student number 5,901,820David Soche

Personal Project Brief IDE Master Graduation Project

Then explain your project approach to carrying out your graduation project and what research and design methods you plan to
use to generate your design solution (max 150 words)

Problem Definition 

What problem do you want to solve in the context described in the introduction, and within the available time frame of 100 
working days? (= Master Graduation Project of 30 EC). What opportunities do you see to create added value for the described 
stakeholders? Substantiate your choice.
(max 200 words)

Assignment 

This is the most important part of the project brief because it will give a clear direction of what you are heading for. 
Formulate an assignment to yourself regarding what you expect to deliver as result at the end of your project. (1 sentence) 
As you graduate as an industrial design engineer, your assignment will start with a verb (Design/Investigate/Validate/Create), 
and you may use the :  
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Green light meeting 

In exceptional cases (part of) the Graduation 
Project may need to be scheduled part-time. 
Indicate here if such applies to your project

Part of project scheduled part-time

For how many project weeks

Number of project days per week

Project planning and key moments 

To make visible how you plan to spend your time, you must make a planning for the full project. You are advised to use a Gantt 
chart format to show the different phases of your project, deliverables you have in mind, meetings and in-between deadlines.
Keep in mind that all activities should fit within the given run time of 100 working days. Your planning should include a kick-off 
meeting, mid-term evaluation meeting, green light meeting and graduation ceremony. Please indicate periods of part-time 
activities and/or periods of not spending time on your graduation project, if any (for instance because of holidays or parallel 
course activities). 

Make sure to attach the full plan to this project brief. 
The four key moment dates must be filled in below

Motivation and personal ambitions

Explain why you wish to start this project, what competencies you want to prove or develop (e.g. competencies acquired in your 
MSc programme, electives, extra-curricular activities or other).

Optionally, describe whether you have some personal learning ambitions which you explicitly want to address in this project, on 
top of the learning objectives of the Graduation Project itself. You might think of e.g. acquiring in depth knowledge on a specific 
subject, broadening your competencies or experimenting with a specific tool or methodology. Personal learning ambitions are 
limited to a maximum number of five.  
(200 words max)

Graduation ceremony 

Kick off meeting Kick off meeting 

Mid-term evaluation

Comments:

18 Nov 2024

10 Feb 2025

14 Apr 2025

26 Mai 2025

PLANNING
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Farm Sizes
Farm size, alongside Standard Output (SO), is a 
key classification factor. While often measured in 
hectares, it can also be assessed by economic size, 
labour force, livestock numbers, crop production or 
overall farm structure (Guiomar et al., 2018). In the 
EU, hectares remain the primary metric for analysing 
agricultural structures, mapping farm distribution, 
and understanding production patterns (Rossi & 
EPRS, 2022).

Hectare-based classification is widely used for 
its simplicity (Guiomar et al., 2018; Rossi & EPRS, 
2022). Farms with less than five hectares are typi-
cally classified as small. However, this method can 
be misleading. A small landholding with intensive 
livestock production, such as a large pig shed, 
may still qualify as a large operation in terms of SO. 
Despite these limitations, land area remains the 
most accessible indicator, especially in regions with 
limited resources for detailed agricultural surveys 
(Rossi & EPRS, 2022).

Relying solely on a single criterion, such as farm 
size, limits the effectiveness of classification 
systems designed for broader agricultural assess-
ments (Guiomar et al., 2018). Moreover, terms 
like ‘small-scale farm‘, ‘smallholder‘, ‘small-scale 
farm‘ and ‘family farm‘ lack universally accepted 
definitions. The scientific literature reflects consi-
derable debate over these definitions, with various 
approaches proposed (Bartkowski et al., 2022; 
Davidova & Thomson, 2013; FAO, 2017; Guiomar 
et al., 2018; Nyambo et al., 2019). Although these 
terms are sometimes used interchangeably, their 
meanings can vary significantly depending on the 
agricultural context. Clarifying these definitions is 
crucial for understanding both their overlaps and 
their distinctions.

Smallholder and Small-Scale Farm
Definitions of ‘smallholder‘ or ‘small-scale farm‘ 
vary widely, incorporating factors such as farm 
size, production techniques or technologies, family 
labour involvement, and economic impact (FAO, 
2017). Various studies have characterised smallhol-
der farmers using different approaches (Nyambo et 
al., 2019). In practice, ‘smallholder‘ often empha-
sises land tenure or usage, whereas ‘small-scale 
farm‘ is more directly linked to production levels. 
Nonetheless, the Food and Agriculture Organisation 
(FAO) suggests that these terms can be used 
interchangeably because they describe very similar 
actors (FAO, 2017).

Small-Scale Farm
The term ‘Small-Scale Farm‘ typically refers to the 
size of the farmland, although this definition has 
its limitations (Rossi & EPRS, 2022). Within the 
European Union, Eurostat defines small-scale farms 
as those with an agricultural area of less than five 
hectares (Davidova & Thomson, 2013; Eurostat, 
2022; Guiomar et al., 2018). In contrast, the FAO 
characterises small-scale farms as those with less 
than ten hectares (FAO, 2013). 

Family Farm 
The terms ‘small-scale farm‘ and ‘family farm‘ are 
sometimes used interchangeably - a practice that 
can be misleading (Guarín et al., 2020; Lowder et 
al., 2016; Rossi & EPRS, 2022). There is no univer-
sally accepted definition for ‘family farm‘. Typically, 
the term refers to the management structure rather 
than the farm’s size. Over 90% of farms worldwide 
are considered family farms, while the other terms 
often emphasise different criteria (Lowder et 
al., 2016). Although there is significant overlap 
between small-scale farms and family farms, not 
all family farms are small (Rossi & EPRS, 2022). 
According to Eurostat, a family farm is defined as 
one in which 50% or more of the agricultural labour 
force is provided by family members, independent 
of the farm’s size (Eurostat, 2022).

7.2. Terminology of Small-Scale Farms 7.3. Subsidies and Regulations

Agricultural structures are closely linked to subsi-
dies and political measures. To examine how these 
policies influence farmland, particularly small-scale 
farms, the following section provides an overview.  
This is a crucial topic, as the survival of small-scale 
farms in Europe is significantly shaped by sub-
sidies, though their impact varies depending on 
regional differences and farm types. Many survive 
primarily through financial subsidies rather than 
economic self-sufficiency (Al-Amin et al., 2022). 
The European Union’s agricultural policies include 
specific measures aimed at supporting small-scale 
farms, yet most agricultural funds are allocated 
to larger farms (Rossi & EPRS, 2022). To get a 
better understanding of this, also an interview was 
conducted with an expert in agricultural policy and 
subsidy management. 

7.3.1. Common Agricultural Policy (CAP)

The Common Agricultural Policy (CAP) is a set 
of laws adopted by the European Union (EU) to 
establish a unified agricultural policy across its 
Member States. Initially created in 1962 by the six 
founding countries of the European Communities, it 
remains the EU's oldest ongoing policy. The CAP is 
designed to support agriculture and rural develop-
ment within the EU, with primary goals of promoting 
sustainable food production, enhancing rural 
economies, and contributing to environmental and 
climate objectives (Pe’er et al., 2019). It oversees 
and finances all agricultural support within the EU, 
making it a crucial instrument in advancing the 
European Green Deal. In its most recent revision, 
the CAP was significantly restructured to align more 
closely with the Green Deal's objectives (European 
Union, 2022b, 2023).

The CAP Strategic Plan Regulation 2023-2027 

(CSP) is a fundamental component of the Common 
Agricultural Policy (CAP), providing the framework 
and strategic direction for its implementation across 
EU Member States. For the period 2023-2027, the 
CAP is built around ten key objectives, addressing 
social, environmental, and economic priorities. 
These objectives form the basis upon which each 
Member State has developed its CAP Strategic Plan 
(European Union, 2022a).

The CAP Strategic Plans (CSP) are financed 
through two key EU budget funds:

European Agricultural Guarantee Fund (EAGF) – 
Pillar 1:

• Fully financed by the EU.
• Provides direct payments to farmers.
• Supports market stability measures.

European Agricultural Fund for Rural Develop-
ment (EAFRD) – Pillar 2:

• Co-financed by Member States.
• Supports rural development initiatives.
• Delivered through grants or financial instruments.

These funds operate under distinct programming 
approaches. EAGF support is provided annually, 
ensuring direct financial assistance, whereas 
EAFRD support follows a multi-annual structure, 
involving area-related payments and long-term 
commitments (European Union, 2023; Pe’er et al., 
2019)The accompanying graph provides a visual 
representation of the subsidy distribution structure 
(see Figure 120).
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Structure	of

Subsidy Distribution.

BISS
Basic Income Support for Sustainability (Art. 21-28)

PSF
Small Farmers Payment

CIS
Coupled Income Support (Art. 32-35)

CIS-YF
Complementary Income Support for Young Farmers 

(Art. 30)

CRISS
Complementary Redistributive Income Support for 

Sustainability (Art. 29)

Eco-scheme
Schemes for Climate, Environment, and Animal 

Welfare (Art. 31)

Cotton
Crop Specific Payment for Cotton (Art. 36-41)

KNOW
Knowledge and Information (Art. 78)

COOP
Cooperation (Art. 77)

RISK
Risk Management Tools (Art. 76)

INSTAL
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Figure 120:  Structure of Subsidy Distribution. Created by author, based on (European Commission, 2023a; European Union, 2022b, 2022a, 2023) Figure 121:  Distribution for EAGF and EAFRD (2023-2027). Created by author, based on (European Commission, 2023a; European Union, 2022b, 2022a, 2023)

The reformed CAP (2023-2027), with a total 
budget of €264 billion, represents a strategic shift 
towards sustainability-driven agriculture. The 
European Agricultural Guarantee Fund (EAGF), 
amounting to €198 billion, remains the primary 
vehicle for direct payments (€189.1 billion), in-
cluding Basic Income Support (€96.7 billion) and 
Eco-Schemes (€44.7 billion), the latter aimed at 
climate action.

Simultaneously, the European Agricultural Fund for 
Rural Development (EAFRD), with €66 billion, plays 
a crucial role in strengthening rural development. 
Within this budget, €20.3 billion is allocated to 
environmental and animal welfare initiatives, while 
€18.4 billion is dedicated to investment programs.

This financial structure aligns the CAP with the EU 
Green Deal and the Farm to Fork Strategy, ensuring 
a more sustainable and resilient agricultural sector. 
The budget distribution is illustrated in Figure 121.

264 CAP

198 EAGF

66 EAFRD

189.1 Direct Payments

96.7 BISS - Basic Income Support for Sustainability

44.7 Eco-scheme – Schemes for Climate, Environment, and Animal Welfare

23 CIS – Coupled Income Support

20.1 CRISS – Complementary Redistributive Income Support for Sustainability

3.4 CIS-YF – Complementary Income Support for Young Farmers

1.2 Cotton – Crop Specific Payment for Cotton

8.9 Sectoral Support
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4.1 Fruit and Vegetables

0.3 Apiculture

0.2 Olive

0.1 Other Sectors

0.01 Hops

66 Rural Development

20.3 AECC - Environmental/Climate/Animal Welfare Related

18.4 INV - Investments

10.6 ANC - Areas with Natural Constraints
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3.4 INSTAL - Setting up of Farmers and Start-ups

2.7 RISK - Risk Management Tools

1.9 Technical Assistance

1.1 KNOW - Knowledge and Information

0.5 ASD - Areas with Specific Disadvantages
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Types of Subsidies Available under the CAP

BISS – Basic Income Support for Sustainability (Articles 21-28):
BISS offers a safety net for farmers by helping to close the gap between agricultural income and average 
wages. It is an area-based support scheme that provides a fixed amount per hectare each year. This is one of 
the key tools within the Common Agricultural Policy (CAP) to ensure income support for EU farmers. To qua-
lify, farmers must meet the Good Agricultural and Environmental Conditions (GAECs) of their respective EU 
member states. In the EU, the average BISS payment per hectare is €134 (European Commission, 2023b).

CRISS – Complementary Redistributive Income Support for Sustainability (Article 29):
CRISS redistributes income support from larger to smaller and medium-sized farms by providing additional 
payments for the first hectares under BISS. As a key element of the 2023-2027 CAP, Member States must 
allocate at least 10% of their adjusted financial allocation for direct payments (after transfers between funds) 
to CRISS. This aims to ensure that smaller and medium-sized farms receive higher payments.

CIS-YF – Complementary Income Support for Young Farmers (Article 30):
CIS-YF provides financial support to help young farmers establish and sustain their agricultural businesses. It 
offers additional payments per hectare or a lump sum to young farmers who meet specific eligibility criteria.

CIS – Coupled Income Support (Articles 32-35):
CIS allows EU member states to offer targeted support to specific agricultural sectors or farming types. This 
support aims to stabilize incomes in volatile markets and is directly linked to the production of certain crops 
or livestock. Payments are based on the quantity or area of production for specific crops or animals.

Fruit and Vegetables (Articles 49-53):
Financial assistance for fruit and vegetable producers aimed at enhancing competitiveness and 
sustainability.

AECC – Environmental/Climate/Animal Welfare Related (Article 70):
AECC encourages practices that safeguard the environment, mitigate climate change, and promote animal 
welfare.

ANC – Areas with Natural Constraints (Article 71):
Support for farmers in regions with natural constraints, providing compensation for the environmental 
challenges they face.

ASD – Areas with Specific Disadvantages (Article 72):
Assistance for farmers in disadvantaged areas, supporting them in maintaining operations despite local 
challenges.

INV – Investments (Articles 73-74):
Support for investments in agricultural infrastructure, technology, and sustainable practices to enhance 
productivity and environmental performance.

INSTAL – Setting up of Farmers and Start-ups (Article 75):
Financial aid for new farmers and start-ups to establish and grow their farms.

RISK – Risk Management Tools (Article 76):
Support for risk management tools to help farmers manage price volatility, natural disasters, and market 
fluctuations.

COOP – Cooperation (Article 77):
Encourages collaboration among farmers to enhance productivity, sustainability, and innovation.

KNOW – Knowledge and Information (Article 78):
Provides access to knowledge, training, and information to improve farming practices and competitiveness.

Good Agricultural and Environmental Conditions (GAECs)
To qualify for funding under the Common Agricultural Policy (CAP), farmers must comply with the Good 
Agricultural and Environmental Conditions (GAECs). These standards serve as a prerequisite for full CAP 
support, addressing climate change, water management, soil health, biodiversity, and landscape conserva-
tion. The latest version includes nine specific thematic areas.

GAEC 1: Permanent grassland
GAEC 2: Protection of wetland and peatland
GAEC 3: Ban on burning arable stubble
GAEC 4: Buffer strips along water courses
GAEC 5: Tillage management
GAEC 6: Minimum soil cover
GAEC 7: Crop rotation
GAEC 8: Non-productive areas and features
GAEC 9: Ban on converting and ploughing permanent grasslands in Natura 2000 sites

Failure to meet GAEC requirements results in financial penalties or loss of support. Designed to reflect local 
and national conditions, GAECs apply to nearly 90% of agricultural land in the EU (European Commission, 
n.d.; European Union, 2022a, 2022b, 2023).

7.3.2. Subsidies for Sustainable Practices

Eco-schemes - Schemes for Climate, Environment, 
and Animal Welfare (Article 31) - are voluntary 
programs designed to incentivise farmers to adopt 
environmentally friendly agricultural practices, 
including climate action, biodiversity conserva-
tion, and improved animal welfare. As part of the 
Common Agricultural Policy (CAP), these schemes 
aim to support the implementation of sustainable 
land management practices. They can introduce 
new environmentally beneficial practices, expand 
existing ones, or both.

Member States have flexibility in tailoring these 
schemes to their national agricultural contexts, 
leading to the development of 158 unique eco-
schemes across the EU. Of these, 18% provide 
‘top-up’ payments in addition to the Basic Income 
Support for Sustainability (BISS), while 82% 
compensate farmers for additional costs and 
income losses. Eco-schemes that include ‘top-up’ 
payments typically focus on enhancing biodiversity, 
preserving non-productive landscape features, or 
adopting a ‘whole-farm approach’ (European Union, 
2023). An analysis of the strategic plans of different 
Member States reveals that ‘soil conservation prac-
tices’ and ‘landscape and biodiversity conservation’ 
play a significant role in all national CAP Strategic 
Plans (CSPs).

A broader examination of thematic objectives 
across all 28 CSPs further confirms that ‘soil 
conservation practices’ and ‘landscape and bio-
diversity conservation’ remain central priorities in 
eco-schemes.

Each EU Member State has developed its own 
eco-schemes, offering financial support to farmers 
based on their environmental performance. In the 
Netherlands, for example, a points-based system 
within the CAP incentivises sustainable farming 
practices. Farmers can select from 22 eco-activi-
ties, including crop diversification, organic farming, 
and biodiversity enhancement. Each activity is 
assigned a specific number of points according to 
its environmental impact. Practices that provide 
greater ecological benefits, such as establishing 
biodiversity areas, earn more points, while less 
intensive actions receive fewer points. Farmers 
make their selections annually, allowing for flexibility 
in adapting their practices while contributing to 
environmental goals (European Union, 2023).

This performance-based system rewards farmers 
for greater environmental efforts. The more points 
they accumulate, the higher the financial support, 
encouraging them to adopt more ambitious sustai-
nability measures. Additionally, the flexibility of this 
system enables farmers to customize their partici-
pation based on the needs of their land, making it 
suitable for both small and large farms (European 
Union, 2023).
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7.3.3. Subsidies for Investment in Technology

Through eco-schemes, the Common Agricultural 
Policy (CAP) also wants to incentivise farmers to 
adopt Precision Agriculture techniques. In addition 
to these measures, several funding programs 
directly support investments in technology and 
digitalisation. Most financial support for Precision 
Agriculture falls under Pillar II of the European Agri-
cultural Fund for Rural Development (EAFRD) (see 
Figure 120), which is co-managed by EU Member 
States and regions (Heyl et al., 2023). The EAFRD 
co-finances Precision Agriculture projects through 
investment grants and financial aid. Through that, 
farmers should receive the necessary resources 
to modernise operations, scale production, and 
integrate advanced technologies in alignment with 
the CAP (European Union, 2023).

One of the key funding mechanisms supporting 
Precision Agriculture is Measure 4 of the Rural 
Development Programme (RDP), which focuses on 
investments in physical assets. Within this frame-
work, Sub-Measure 4.1—Support for Investments 
in Agricultural Holdings—provides financial support 
for farm modernisation, including new machinery, 
storage facilities, and Precision Agriculture techno-
logy (Commission, 2025). Funding rates vary by 
country and region. In the Netherlands, for example, 
the Rural Development Programme (RDP) allocated 
€361 million to Sub-Measure 4.1 for farm moderni-
sation between 2014 and 2020. As of April 2020, 
19.1% of this budget had been utilized (fi-compass, 
2020).

Another key initiative is Measure 16, which focu-
ses on innovation and digital farming. Under this 
measure, Sub-Measure 16.1 (M16.1) plays a crucial 
role in supporting projects within the European 
Innovation Partnership (EIP-AGRI). This sub-mea-
sure strongly promotes Precision Agriculture, digital 
tools, and advanced agricultural technologies to 
enhance productivity and sustainability. Many RDPs 
have incorporated digital farming technologies 
within their M16.1 projects (ENRD, 2015).

Additionally, Horizon Europe, while not part of the 
CAP, offers research and innovation grants for 
robotics, AI, and automation in agriculture. Farmers, 
cooperatives, and agribusinesses can participate 
in pilot projects to explore the potential of these 
technologies.

7.3.4. Subsidies Targeted at Small-Scale Farms

The EU’s revised Common Agricultural Policy 
(CAP), introduced in January 2023, aims to 
redistribute support more fairly, with programs such 
as CRISS (additional payments for the first hectares 
under BISS) and the Small Farmers Payment (PSF) 
designed to assist small-scale farms (European 
Union, 2023). The PSF simplifies direct payments 
by merging multiple schemes, including BISS, 
CRISS, eco-schemes, CIS-YF, and CIS (see Figure 
120). Farmers receive either a standard lump sum 
payment—equal for all recipients—or a payment 
per hectare, with a maximum of €1,250 per farm. 
However, recipients must still comply with Good 
Agricultural and Environmental Conditions (GAECs) 
(European Commission, 2023a).

Despite these efforts, the CAP continues to rely 
primarily on per-hectare payments, which may still 
disadvantage small-scale farms (European Union, 
2023) This system is sustaining the ‘get big or get 
out’ dynamic in the agricultural sector (Al-Amin et 
al., 2022), as larger farms benefit disproportionately 
due to economies of scale - not only in subsidies 
but also in machinery, field labour and overall 
efficiency (Clough et al., 2020). 

7.3.5. Perception of Subsidies

Subsidy structures and their perception by farmers 
were among the topics explored in the expert inter-
views. They revealed a deep ambivalence toward 
subsidies and incentives in agriculture. While finan-
cial support is generally welcomed, many farmers 
feel that these programs impose too many restric-
tions, limiting their autonomy. The growing conflict 
between agriculture and nature conservation 
authorities reflects this tension, as farmers increa-
singly view conservation measures as intrusions on 
their property rights. Regulations like eco-schemes, 
which come with various conditions, create a sense 
of external control, reinforcing reluctance to accept 
suggestions on how things could be done ‘better,’ 
whether from society or government agencies 
(Expert Interviews, 2025).

‘There is a major conflict between agriculture 
and nature conservation. The regulations are so 
strict that, in practice, farmers lose control over 
their land. And that is the real problem.’
- Expert Fletschberger

Another concern is the ‘educational’ approach 
of many funding programs. The underlying as-
sumption that policymakers and institutions know 
best how farms should be managed is met with 
resistance. While some measures are seen as 
reasonable, many farmers engage with subsidy 
programs primarily for financial reasons, often ques-
tioning their ecological or practical value (Expert 
Interviews, 2025).

Experts point to structural issues within subsidy-
dependent agriculture, emphasising its long-term 
negative consequences. Many small-scale farms 
remain economically viable only due to financial 
aid, forcing them to comply with regulatory requi-
rements that may not be practical or ecologically 
relevant. This dependency erodes farmers' auto-
nomy and perpetuates a cycle in which agricultural 
decision-making is increasingly dictated by external 
funding conditions (Expert Interviews, 2025).

‘At some point, farmers are no longer working 
for their products, but only for the subsidies. 
... Many openly admit ‘I only do it because the 
subsidies require it.’ But these policies are ... a 
kind of re-education for farmers - one that does 
not go down well with farmers”
- Expert Fletschberger
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7.4. Quantitative Research
7.4.1. Sociodemographics of Participants
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Data collection ran from January 1 
to March 15, 2025, using a snowball 
sampling method. Initial interviewees 
shared the survey within their net-
works, supplemented by outreach 
in online farming communities (e.g., 
Reddit). To mitigate selection bias, par-
ticipants were recruited from diverse 
communities and countries, ensuring 
a broad range of network diversity. 
The final sample consisted of 44 valid 
responses from active farmers and 
agricultural decision-makers, yielding 
a 52% response rate. Responses from 
non-agricultural participants and 
incomplete submissions were entirely 
removed from the dataset. While the 
study primarily targeted crop and 
mixed farms, livestock farmers were 
not excluded, as Pearson and Spear-
man correlation analyses showed no 
statistically significant impact of farm 
type on general responses. However, 
for crop-specific questions, such 
as the number of cultivated crops, 
responses from livestock-only farmers 
were excluded. Mixed farms were 
included in all analyses. 

Farming Specialisation

Nationality

Experience &  Age

Farmsize

Figure 122:  Sociodemographics of Participants
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