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How well do NDVI and OpenStreetMap data capture people’s visual 
perceptions of urban greenspace? 

Roos Teeuwen *, Vasileios Milias, Alessandro Bozzon, Achilleas Psyllidis 
Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft, the Netherlands   

H I G H L I G H T S  

• We compared NDVI and OpenStreetMap data to people’s visual perceptions of greenness. 
• NDVI and OpenStreetMap data often diverge from human perceptions of greenness. 
• OpenStreetMap captures greenness best in short distance, NDVI best in longer distance. 
• Vegetation configuration, variety, and natural elements enhance perceived greenness. 
• Vegetated space dominated by built-environment elements may not be perceived as green.  

A R T I C L E  I N F O   
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A B S T R A C T   

The study of urban greenspaces typically relies on three types of data: people’s subjective perceptions collected 
via questionnaires, vegetation indices derived from satellite imagery, such as the Normalized Difference Vegetation 
Index (NDVI), and Land Use or Land Cover maps, such as OpenStreetMap (OSM). Data on people’s perceptions are 
essential when researching human activities, yet they scale poorly. NDVI and OSM data, on the other hand, are 
freely available worldwide, thus valuable for assessing cities at scale or prioritizing locations for interventions. 
However, it is unclear how effectively NDVI and OSM data capture people’s visual perceptions of urban 
greenspaces. In this work, we collect people’s visual perceptions of public spaces in three major European cities 
through crowdsourcing, quantitatively compare them to NDVI and OSM data, and qualitatively investigate 
disparities. We found that NDVI moderately correlates with perceived greenness and that not only OSM 
greenspaces but also pocket parks and play spaces are often considered green. Furthermore, we found that 
people’s perceptions correspond best to OSM data in small radius distances and NDVI data in larger radius 
distances and that combining NDVI and OSM data can improve identification of places in OSM that are 
commonly considered green. Our qualitative analysis revealed that configuration and variety of vegetation, and 
presence of other natural or built-up features, influence people’s perceptions of greenspace. With our findings we 
aim to help researchers and practitioners make more informed decisions when collecting greenspace data for 
their specific context, ultimately contributing to green urban environments that reflect people’s perspectives.   

1. Introduction 

Urban greenspaces are widely associated with positive effects on 
human health and well-being. Depending on the discipline, pathway, 
and context, they are typically examined using one of three types of data 
sources (Labib et al., 2020; Nieuwenhuijsen et al., 2017; Markevych 
et al., 2017; Zhang et al., 2021). First, data collected through large-scale 
questionnaires that reflect individual people’s perceptions of greenspace, 
for example of their residential neighborhood, are typical of 

environmental psychology research (Kruize et al., 2020; Zhang et al., 
2021). Second, vegetation indices derived from satellite imagery, such 
as the Normalized Difference Vegetation Index (NDVI), are commonly 
employed in epidemiological studies to study the abundance of vege
tation around people’s homes (Larkin and Hystad, 2019; Helbich et al., 
2019; Roberts and Helbich, 2021; Dadvand et al., 2015). Finally, Land 
Use / Land Cover (LULC) maps that describe the land surface in distinct 
categories, such as OpenStreetMap (OSM), are frequently used in city 
planning or policy assessment to quantify the availability, accessibility, 
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or size of formal greenspaces (Larkin and Hystad, 2019; Kabisch and 
Haase, 2014; Wood et al., 2017; Zhang et al., 2021; Taubenböck et al., 
2021). 

While environmental perceptions from questionnaires are essential 
when investigating human activities (Flowers et al., 2016; Fongar et al., 
2019), such data scale poorly due to time, costs, geographical coverage, 
and spatial extent constraints. NDVI and LULC maps such as OSM, on the 
other hand, are freely available worldwide and routinely updated over 
time, making them valuable to assess the availability or accessibility of 
greenspaces at scale, or to prioritize locations for interventions (Larkin 
and Hystad, 2019; Nieuwenhuijsen et al., 2017; Markevych et al., 2017; 
Labib et al., 2020). Even though LULC maps often only represent formal 
greenspaces such as parks and urban forests, informal and small-scale 
greenspaces or green streets have also been found to benefit people 
(Luo and Patuano, 2023; Wolch et al., 2014; Rao et al., 2007; Markevych 
et al., 2017). Furthermore, while both NDVI and LULC maps are 
essential in greenspace studies, they may not mirror subjective human 
perceptions (Leslie et al., 2010; Kothencz and Blaschke, 2017; Zhang 
et al., 2021; Labib et al., 2020; Markevych et al., 2017). Although recent 
works have attempted to incorporate the human perspective into large- 
scale greenspace studies using street-level imagery (Rzotkiewicz et al., 
2018; Larkin and Hystad, 2019; Biljecki and Ito, 2021; Lu, 2019), to the 
best of our knowledge, these have primarily employed computer vision 
techniques such as automated object detection and scene recognition, 
which do not acknowledge the subjectivity of human perception. 

We aim to contribute to a better understanding of how well large- 
scale open datasets, specifically NDVI and OSM LULC maps, capture 
people’s visual perceptions of urban greenspace. Our goal is to evaluate 
how well these datasets match with each other, and where they deviate, 
and to explain such disparities using the spatial features of investigated 
locations, to inform the design of future greenspace studies. 

To that end, we follow a two-step approach. First, we collect large- 
scale open-source NDVI and OSM data for three major European cit
ies. We apply a crowdsourcing approach to obtain people’s visual 
greenness perceptions of various sorts of public spaces. Second, we 
assess how well these visual perceptions correspond to or diverge from 
the information included in NDVI and OSM data. We hypothesize that: 
(H1) there is a strong positive correlation between NDVI values and 
perceived greenness, as these are both commonly used to quantify 
environmental greenness, (H2) perceived greenness is higher for 
regular-size OSM greenspaces than for pocket parks, play spaces, open 
public spaces, and streets, as definitions of greenspace are often limited 
to greenspaces larger than a certain threshold area, whereas pocket 
parks, play spaces, open public spaces, and streets can also be perceived 
as (informal) greenspaces, as other studies suggest, and (H3) perceived 
greenspaces are better reflected in data when they are selected using a 
combination of OSM categories and NDVI values, rather than simply 
OSM categories or just NDVI values. To test our hypotheses, we employ 
statistical analyses, followed by a qualitative thematic analysis to 
discover which spatial qualities explain differences between NDVI and 
OSM data and people’s visual perceptions. 

In the remainder of this paper, we explore greenspace data sources 
used in related work, detail what data sources we collect and how we 
analyze them, present and discuss our findings and their implications, 
and conclude with our key conclusions and future lines of research. 

2. Greenspace data sources 

In this work, we adapt the definition of greenspace by the WHO 
Regional Office for Europe (2017) to “urban space characterized by 
vegetation of any kind”, including street trees and roadside vegetation, 
green roofs and facades, greenspace on private grounds, and parks, 
playgrounds, or greenways. We narrow our focus to greenspaces that are 
publicly accessible, thereby allowing people to engage in outdoor 
activities. 

To study greenspaces, researchers use data of varying types and 

scales, depending on hypotheses and outcomes of interest (Markevych 
et al., 2017). Examples include measures of availability, accessibility, 
visibility, and use of greenspace (Labib et al., 2020; Markevych et al., 
2017). Large-scale data are essential for informing policy, measuring 
how well cities adhere to such rules, and studying the epidemiological 
consequences of greenspace (Markevych et al., 2017; Larkin and Hystad, 
2019; Kabisch and Haase, 2014). 

Other studies collect data on people’s perceptions regarding green
spaces, which are critical when studying people’s behavior in green
spaces (Markevych et al., 2017), for instance through questionnaires 
among residents or interviews with park visitors (Sundevall and Jans
son, 2020; Talal and Santelmann, 2021; Kabisch and Haase, 2014). In 
this work, we focus on people’s visual subjective perceptions, which we 
define as perceptions generated by visual stimuli, such as a photo of a 
place, and further influenced by the individual’s experiences, prefer
ences, emotions, and context. 

The following sections go over various data sources and collection 
methods and discuss their differences and similarities that motivate our 
study. 

2.1. Objective measures of greenspace using spatial data 

Among all vegetation indices derived from satellite imagery, the 
Normalized Difference Vegetation Index (NDVI) is the most widely used 
(Markevych et al., 2017). NDVI is an objective remote sensing index that 
captures vegetation by calculating the difference between red and near- 
infrared light reflected by the land surface. NDVI maps are often ob
tained from Landsat or Sentinel satellite missions. Both of these missions 
provide open data at regular intervals worldwide, with the European 
Sentinel-2 mission providing data at a high resolution of 10 m (Labib 
et al., 2020; Markevych et al., 2017). Alternatives to NDVI include the 
Green Ratio Vegetation Index (GVRI) (Sripada et al., 2006), Soil- 
Adjusted Vegetation Index (SAVI) (Huete, 1988), and Enhanced Vege
tation Index (EVI) (Huete et al., 2002). Indices such as NDVI are 
particularly relevant for studying the presence or availability of green
space, for instance around people’s home locations or along the routes 
they take as captured in GPS tracks (Markevych et al., 2017; Robinson 
et al., 2018; Spotswood et al., 2021; Roberts and Helbich, 2021). 

Land Use / Land Cover (LULC) maps represent the land surface in 
distinct classes, such as buildings, roads, parks, and forests, allowing to 
study the size, shape, kind, accessibility, or spatial layout of designated 
greenspaces (Markevych et al., 2017; Nieuwenhuijsen et al., 2017). 
LULC maps are commonly utilized for greenspace accessibility studies; 
they account for a large share of objective studies on greenspace for 
human activities (Labib et al., 2020). OSM, in particular, is a type of 
LULC map that is increasingly being used in academic studies as an 
open-source and global alternative to local commercial or authoritative 
LULC datasets (Barrington-Leigh and Millard-Ball, 2017) and is an 
effective alternative to local data in terms of its accuracy and precision 
(Liao et al., 2021). Alternative LULC maps include, for example, the 
Urban Atlas in Europe (used by Turunen et al., (2023)) and local data 
registries (e.g., municipal canopy cover and street tree data used by Baró 
et al. (2021)). 

Geo-located street-level imagery is gaining importance for urban an
alyses, including studies on urban greenery (Biljecki and Ito, 2021; Labib 
et al., 2020). Examples include measuring the Green View Index in 
images (Li et al., 2015; Lu, 2019), detecting vegetation objects through 
computer vision (Song et al., 2022; Chen and Biljecki, 2023), or merging 
street-level imagery with LULC data (Zhang et al., 2021). Lastly, various 
studies make use of social media data, such as the frequency of Flickr 
photos and Tweets posted per location (Hamstead et al., 2018), the 
contents of Tweets (Roberts, 2017), and the categories of objects 
detected in Instagram photos (Song et al., 2022). 
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2.2. Capturing subjective perceptions through interviews, questionnaires, 
and audits 

People’s subjective environmental perceptions are typically obtained 
through interviews or questionnaires (Nieuwenhuijsen et al., 2017; 
Markevych et al., 2017). Examples include in-situ interviews with park 
visitors. For instance, Talal and Santelmann (2021) conduct interviews 
with park visitors to understand their motivations for visiting, experi
ences, perceptions of accessibility, and suggestions for improvements, 
and Sundevall and Jansson (2020) conduct walking interviews with 
greenspace users to learn about their desired use, content, atmosphere, 
inclusivity, and management of a greenspace. 

Questionnaires often employ Likert scales to obtain quantified sub
jective measurements, for instance asking respondents to rate the 
perceived quality and amount of greenspace in their surroundings (Zij
lema et al., 2018), the perceived amount of greenness and how satisfied 
people are with its quality, amount, maintenance, and safety (Kruize 
et al., 2020), or the perceived quantity and usage quality of greenspaces 
near their homes (Zhang et al., 2021). 

Alternatively, researchers conduct audits to measure the quantity 
and quality of greenspace (Nieuwenhuijsen et al., 2017). A subset of 
greenspace studies employs street-level imagery to elicit perceptions or 
to conduct audits, such as assessing the existence of features in green
spaces through street-level imagery (Rzotkiewicz et al., 2018). Other 
examples include work by Du et al. (2021), who provided park visitors 
with photos of park scenes to help them recall their visiting experience 
while answering a questionnaire about their health and well-being, or 
Van Vliet et al. (2021) who conducted a video-based choice experiment 
on park attributes such as trees, furniture, cleanliness, facilities, and 
biodiversity. 

Although subjective data prove important when studying use of 
greenspace (Flowers et al., 2016; Fongar et al., 2019), their collection is 
typically constrained by time, money, and geographical extent. 

2.3. Capturing subjective perceptions through crowdsourcing campaigns 

To address these temporal, monetary or geographic limitations, re
searchers collect people’s visual environmental perceptions from many 
people through crowdsourcing campaigns, typically elicited through 
street-level imagery. Crowdsourcing is a method of recruiting a group of 
participants to execute a task online, i.e., ex-situ or remotely, whereas 
street-level imagery allows to remotely mimic at scale what pedestrians 
may observe (Larkin and Hystad, 2019; Lu, 2019; Markevych et al., 
2017). As such, street-level imagery-based crowdsourcing campaigns 
enable researchers to source perceptions from a vast and diverse number 
of places and individuals worldwide in a time- and labor-efficient 
manner (Milias et al., 2023). 

Examples include studies that collect perceptions by asking their 
participants in questionnaires to choose which location they prefer or to 
rate places on a Likert scale and then inviting them to explain their re
sponses by selecting options from a list or inputting keywords. Examples 
include asking people to choose the most safe, upper-class, or unique- 
looking place out of two places presented in imagery (Salesses et al., 
2013); or the most happy, beautiful, or quiet place (Quercia et al., 2014); 
letting participants select the least and most safe or attractive looking 
place out of four images (Candeia et al., 2017); and by asking people to 
virtually navigate city streets while rating how safe and attractive they 
perceive their path in various places (Milias et al., 2023). 

2.4. Differences and similarities between subjective and objective 
greenspace data 

Few studies have investigated the extent to which large-scale spatial 
data and people’s perceptions of greenspaces match. These studies 
suggest, however, that consistency is limited. Leslie et al. (2010) 
discovered a lack of agreement with overall perceived greenness and a 

significant but modest correlation only for greenness expanse and not for 
street greenness, green sports facilities, and green amenities when 
comparing NDVI maps with people’s perceptions of their residential 
surroundings captured in four greenspace components. Zhang et al. 
(2021) found no correlation of people’s perceived quantity and usage 
quality of greenspaces near their homes with canopy cover and at best 
very weak correlation with park area, vegetation cover, and Green View 
Index. Kothencz and Blaschke (2017) assessed park visitors’ ratings of 
greenness, accessibility, and functions of parks, and found no correla
tions with NDVI or park area, while they did find a moderate correlation 
of people’s impression of greenness with the percentage of vegetated 
surface. Hyam (2017) discovered a correlation between the author’s 
rating of perceived naturalness, and natural components in street-view 
imagery detected through computer vision; And Helbich et al. (2019) 
found no correlation between NDVI and deep-learning-based metrics of 
street-view greenness. 

Our study aims to add to our understanding of the previously re
ported (lack of) associations between large-scale greenspace data, such 
as NDVI and LULC maps, and people’s visual perceptions of greenspaces. 
That is, we do not necessarily presume that these data are comparable, 
but rather seek to provide evidence on their differences and similarities, 
as well as in which circumstances substantial differences arise. Three 
factors distinguish our work. First, we include in our study a diverse 
range of public spaces that differ in terms of type, geographical setting, 
and vegetation level. Second, we collect multiple people’s perceptions 
on the same locations. Third, we investigate potential causes of dataset 
differences by qualitatively analyzing the reasons people give for their 
assessments and the spatial characteristics of each location to further 
strengthen our quantitative findings. 

3. Methods 

We collected and analyzed greenspace data in three European cities: 
Barcelona, Rotterdam, and Gothenburg. We used Python to collect NDVI 
data, and LULC data from OSM, and we used a crowdsourcing approach 
with Google Street View (GSV) imagery to collect people’s visual per
ceptions of greenspaces. We then tested our hypotheses and conducted 
additional exploratory and sensitivity analyses, and qualitatively 
investigated what spatial characteristics explain deviations between 
people’s perceptions of greenspace and what is captured in the map 
data. Fig. 1 shows a summary of our steps and Fig. 2 depicts the data we 
collected for each location: median NDVI values, OSM categories, and 
people’s visual perceptions of greenness. Links to repositories contain
ing our code and (pseudonymized) data are provided in the data avail
ability statement at the bottom of this article. 

3.1. Three case-study cities 

We selected three case-study cities in Europe: Gothenburg (Sweden), 
Rotterdam (The Netherlands), and Barcelona (Spain). OSM data in 
Europe is found to be relatively complete (Zhou et al., 2022). The 
selected cities are all major cities in their respective countries, with 
Gothenburg and Rotterdam having comparable populations of approx. 
583,000 (in 2021) and approx. 592,000 (in 2022), respectively, while 
Barcelona has a substantially larger population of over 1,640,000 (in 
2022) (Ajuntament de Barcelona, 2022; CBS, 2022; Statistikmyndigh
eten, 2021). All three cities have an important harbor. By selecting case- 
study cities from Northern, Western, and Southern European regions 
(UN, 2019), different vegetation zones (Roy et al., 2012), and diverse 
coverage of green land (Zhou et al., 2022), we account for varying 
environmental qualities. Barcelona is situated between a seaside with 
beaches and a forested mountain range inland, with a variety of parks, 
including historic parks such as the Montjuïc hill and architect Antoni 
Gaudí’s Park Güell, complemented by trees distributed along its streets. 
Gothenburg is strategically placed at a river outlet into the sea, and it has 
several greenspaces within its borders, including parks such as the 
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centrally located Kungsparken, nature reserves such as Änggårdsbergen, 
and other types of greenspaces. Rotterdam is distinguished by modern 
morphology and architecture resulting from the city’s reconstruction 
following significant bombing during World War II. It has several well- 
known parks such as the Kralingse Bos forest and lake, and The Park 
located on the Meuse riverside. Both Rotterdam and Gothenburg have 
temperate maritime climates, while Barcelona has a warmer Mediter
ranean climate. 

3.2. Collecting OSM, NDVI, and GSV data 

As candidate locations for analysis, we identified urban public spaces 

with relevant OSM categories, NDVI values, and GSV imagery available. 
We scoped to public spaces located within walking distance from the 
urban centers of these case-study cities, based on the European Com
mission’s Human Settlement Layer models and guidelines (Schiavina 
et al., 2022; Waddell and Ulfarsson, 2003). 

OSM data: We collected public space and pedestrian street network 
data from OSM using the Overpass API and the Osmnx library (Boeing, 
2017). We collected a variety of public spaces, represented as polygons: 
vegetated spaces, typically referred to as greenspace; and other spaces 
that may — depending on their character — be perceived as such ac
cording to the WHO definition (WHO Regional Office for Europe, 2017). 
We excluded spaces that are inaccessible via the pedestrian street 

Identify urban centres
of 3 case study cities

Collect OSM data Collect NDVI data

Collect GSV metadata

Identify locations with

- OSM category
- median NDVI
- GSV panorama

Stratify locations

- OSM category
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Fig. 1. Overview of methodological steps.  
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network or that are smaller than 200 square meters (i.e., the size of a 
typical tennis court). For vegetated spaces, we merged overlapping or 
adjacent spaces into one, such as shrubbery adjacent to a forest, and 
differentiated between different sizes. As a result, we obtained OSM 
polygons of five OSM categories: regular-size greenspaces (specifically 
parks, nature reserves, forests, woods, scrubs, shrubbery, heath, 
meadows, grass(lands) village greenery, and fells, at least 0.5 ha in size 
(Teeuwen, Psyllidis, & Bozzon, 2023; Ambiente Italia, 2003)); pock
et-size greenspaces (same categories, up to 0.5 ha in size (Wood et al., 
2017; Labib et al., 2020; Peschardt et al., 2014)); public open spaces 
(specifically squares, pedestrian areas, marketplaces, and common 
grounds); play spaces (specifically playgrounds and public schoolyards); 
and streets accessible to pedestrians (i.e., for walking as defined by 
Boeing (2017)). 

NDVI data: We used Google’s Earth Engine API to collect high- 
resolution satellite vegetation indices from the Copernicus Sentinel-2 
mission (Markevych et al., 2017; Labib et al., 2020). We used all im
agery between May and September 2021, i.e., the growing season for 
vegetation in Europe (Roberts and Helbich, 2021), and calculated the 
average NDVI value per raster cell. We then calculated the average NDVI 
value per OSM polygon, while ignoring values less than 0 (i.e., water) 
(Markevych et al., 2017). 

GSV metadata: Using Google’s Street View Static API, we looked for 
the nearest GSV imagery for up to 10 random points within each OSM 
polygon, with a maximum search radius of 15 m (Amiri and Crain, 
2019). When we found an image captured from 2018 to 2022 in May to 
September (i.e., the vegetation growing season (Roberts and Helbich, 
2021; Turunen et al., 2023)), we stored its metadata. We considered 
imagery sourced by Google, and 360-degree panoramas uploaded by 
GSV users, as particularly in green urban areas that are inaccessible by 
car, user-contributed imagery is a widespread alternative to imagery 
sourced by Google. 

Identifying candidate locations: Our candidate locations are OSM 
polygons of various categories for which we have both an NDVI value 
and GSV imagery available. We then took a random sample of 140 
candidate locations per case-study city, while ensuring equal spread 

between both OSM categories (i.e., sampling equal numbers of regular- 
size greenspaces, pocket-size greenspaces, public open spaces, etc.) and 
NDVI-value quarters. We manually checked if their associated GSV im
agery is suitable for collecting visual perceptions: we excluded images 
captured indoors or underground, during night-time or events, of poor 
image quality, taken from bird’s or frog’s view perspective, or when 
sight to the location they were sampled for was obstructed (e.g., by a 
wall). We replaced these locations with another randomly sampled 
candidate from the same OSM category, NDVI quartile, and city, until all 
sampled locations passed the check. 

Finally, we reset the geometry of these sampled locations to the point 
from which the GSV image was taken. We recalculated the median NDVI 
and determined which OSM place categories were located within 15 m 
buffer zone around this point (Amiri and Crain, 2019). By doing so, we 
ensured that people’s perceptions, NDVI values, and OSM categories all 
referred to the same location. We also investigated buffers of 25, 29, 43 
and 100 m to define a location’s immediate surroundings to assess the 
sensitivity of our results to the radius distance chosen. In related studies, 
25 m were found to be relevant for capturing greenery visible from a 
location (Kuo et al., 2018); 29 and 43 m for observing events in urban 
environments (Amiri and Crain, 2019); and 100 m for representing the 
individual human scale in greenspace health research (Labib et al., 
2020). 

3.3. Collecting people’s visual perceptions 

We then collected people’s visual perceptions of the sampled loca
tions through a questionnaire on Prolific: an online crowdsourcing 
platform designed for academic research (Peer et al., 2017). We 
recruited participants who currently live in Europe and are proficient in 
the English language. We ensured diversity in age and gender and paid 
participants minimum wage in the Netherlands, the country of the au
thors’ affiliation. Participants provided informed consent to participate 
and could only submit a single questionnaire. 

Crowdsourcing task: Our questionnaire, implemented using the 
Qualtrics platform, took about fifteen minutes to complete. On average, 

Fig. 2. Collected data per sampled location: NDVI values and OSM categories within radius distance, perceived greenness, and reasons. Example in Parc del Turó del 
Putxet, Barcelona. 
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we expected each location to be rated by five people. We formulated our 
questions based on related questionnaires used in environmental health 
research (Kruize et al., 2020; Zijlema et al., 2018), while keeping them 
simple and straightforward for crowdsourcing (Salesses et al., 2013; 
Quercia et al., 2014; Milias et al., 2023; Candeia et al., 2017). Fig. 3 
depicts an impression of the interface. First, we introduced the topic and 
asked participants to provide some demographics. Second, for each 
participant, we randomly sampled five locations from the same case- 
study city. For each location, we showed them the panoramic GSV 
image and instructed them to pan around for at least 10 s. We then 
collect participants’ visual perceptions of greenness by asking them to 
indicate to what extent they find the place vegetated (on a 5-point Likert 
scale: not at all (1) to very (5)); and what characteristics of the location 
motivated their choice (in open text). We included quality checks con
sisting of a reCAPTCHA bot test and an attention check and collected the 
number of panning clicks participants made. Finally, we asked partici
pants some more demographics and asked how clear they found the 
crowd-sourcing tasks. 

3.4. Data analysis 

After collecting all necessary data (see Fig. 2), we could assess how 

well NDVI and OSM capture people’s visual perceptions of greenspaces. 
Quantitative (statistical) analysis: First, we filtered out partici

pants or visual perceptions that did not meet our quality standards (e.g., 
through bot detection and an attention check, and checking if partici
pants panned around in the panorama). We then calculated descriptive 
statistics based on the NDVI value, OSM category, and perceived vege
tation level of each location, and aggregated ratings into a median value 
per location for further analysis. To compare perceived vegetation levels 
to the binary OSM data categories (i.e., something either is tagged as a 
greenspace, or not), we also converted perceived vegetation levels into 
binary values, by defining perceived greenspaces as locations with a me
dian perceived vegetation level of 4 (fairly) to 5 (very) vegetated (Zij
lema et al., 2018). We statistically tested our hypotheses and conducted 
several exploratory analyses. Table 1 summarizes our hypotheses (H1-3) 
and the non-parametric methods we used to test them. First, we tested 
for correlations between visual perceptions (on a 5-point Likert scale) 
and NDVI data using Spearman’s ρ (H1). Second, we compared the 
perceived greenness distributions (on a 5-point Likert scale) of various 
OSM categories using the Mann-Whitney U and Kruskal-Wallis tests 
(H2.1); and calculated the percentage of OSM regular-size greenspaces 
that are perceived as greenspaces (in binary values) (H2.2). Third, we 
implemented three algorithms to select greenspaces from the different 
data sources and compared them on how well they captured perceptions 
of greenspace using McNemar’s test. We also performed sensitivity an
alyses to identify how our results change when we increase the buffer 
zone radius from which we identify the median NDVI value and the 
presence of OSM greenspaces. Given that we performed 8 different 
significance tests (i.e., 1 for H1, 5 for H2, and 2 for H3), we applied a 
Bonferroni correction to our significance threshold of 0.05

8 = 0.006. We 
used the same cutoff for exploratory analyses. 

Qualitative analysis: To understand potential causes of differences 
between visual perceptions and map data, we conducted a reflexive 
thematic analysis (Clarke and Braun, 2013). Based on our quantitative 
findings, we identified the places for which perceptions notably deviated 
from NDVI and OSM map data and analyzed the spatial characteristics of 
these places that participants mentioned as reasons. We used Atlas TI to 
conduct our thematic analysis, employing inductive coding and iterative 
identification of themes. 

4. Results 

4.1. Descriptive statistics 

This section describes the number of perceptions we collected, the 
number of places we included in our analysis, and the number of people 
who participated in our study. 

Between March and May 2023, 423 Prolific participants, living in 21 
different European countries, completed our crowdsourcing task. Of 
these people, 409 passed our quality checks and were therefore included 
in our study. A majority found the tasks clear (100 %), panned the 
panoramas around as requested (93 %), did not move away to adjacent 
places (71 %) and were not familiar with the places presented (95 %). 
Participant genders vary (49 % female, 49 % male, and 2 % non-binary, 
third gender, or prefer to self-describe or not to say), as well as ages (12 
% age 18–24, 19 % 25–34, 20 % 35–44, 20 % 45–54, 18 % 55–64, and 

Fig. 3. Impression of crowdsourcing interface.  

Table 1 
Overview of hypotheses and statistical methods.   

Hypothesis Method 

H1 There is a strong positive correlation between NDVI and perceived greenness. Spearman’s Rho 
H2.1 Perceived greenness is higher for OSM regular-size greenspaces than for pocket parks, play spaces, open public spaces, 

and streets. 
Mann–Whitney U & Kruskal-Wallis 

H2.2 Pocket parks, play spaces, open public spaces, and streets can be perceived as greenspaces. Descriptive statistics (percentages) 
H3 Perceived greenspaces are better captured in data when selecting them based on a combination of OSM categories and 

NDVI values, opposed to only OSM categories, or only NDVI values. 
Descriptive statistics (true positives and 
negatives) & McNemar’s test  
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10 % 65 years or older). Most participants are city dwellers (61 %). 
When testing differences in perceptions among pairs of demographic 
groups using the Mann-Whitney U test, we did not find any statistically 
significant differences. 

From these 409 participants, we obtained a total of 1956 perceptions 
on greenness, after filtering out data in case of technical issues (e.g., the 
panorama did not load in time) or in case the participant did not interact 
at all with the panorama (i.e., made no clicks to pan the panorama 
around or zoom in). 

Out of 420 places, 413 received valid perceptions from our partici
pants. On average, each place was rated on greenness by 5 people. 
Table 2 shows descriptive statistics on the places, their NDVI values and 
OSM categories, and associated perceptions per city. People perceived 
180 of the places (44 %) as green. 

4.2. Quantitative analyses 

4.2.1. H1: Perceived greenness in relation to NDVI values 
Hypothesis and outcome: We hypothesized to find a strong positive 

correlation between NDVI and perceived greenness. Using Spearman’s ρ, 
we tested the correlation between how green places are perceived to be, 
and their NDVI values, and found a statistically significant correlation of 
moderate strength (ρ: 0.459, p-value < 0.006), thus not supporting our 
hypothesis. 

Exploratory analyses: No apparent NDVI value threshold that differ
entiates greenspaces from other spaces could be identified. When 
comparing correlations between cities, we found that correlation is 
much weaker in Barcelona (ρ: 0.269, p-value < 0.006) than in Rotter
dam (ρ: 0.540, p-value < 0.006) and Gothenburg (ρ: 0.570, p-value <
0.006) Furthermore, we did not find stronger correlations when using 
the maximum NDVI value in a place’s proximity, as opposed to the 
median (i.e., ρ: 0.47, p-value < 0.006). 

Sensitivity analyses: To analyze how sensitive our correlation results 
are to the radius distance used to calculate a place’s NDVI value, we 
found that by increasing the radius distance to 25, 29, and 43 m, cor
relation strengths increase from 0.459 to 0.556, 0.585 and 0.600 (all p- 
value < 0.006), while decreasing again for larger distances. Further
more, from 25 up to 100 m, the differences in correlations among case- 
study cities largely disappeared. 

4.2.2. H2: Perceived greenness in relation to OSM categories 
Hypothesis and outcome H2.1: We hypothesized (H2.1) that perceived 

greenness is higher for OSM regular-size greenspaces than for pocket- 
size greenspaces, play spaces, open public spaces, and streets. Using 
the Kruskal-Wallis test, we found significant difference in perceived 
greenness occurs between OSM categories (H: 107, p-value < 0.006). 
Using a one-tailed Mann-Whitney U test, with the alternative hypothesis 
that regular-size greenspaces are perceived more green than others, we 
found that regular-size greenspaces (median perceived greenness: 4.0, n: 
112) are indeed perceived greener than: pocket-size greenspaces (me
dian: 4.0, U: 5878, n:86, p-value < 0.006); open public spaces (median: 
2.0, U: 9723, n: 102, p-value < 0.006); and streets (median:3.0, U: 8741, 
n: 107, p-value < 0.006); while no significant difference was found with 
play spaces (median: 4.0, n: 78); showing that OSM regular-size green
spaces are only perceived greener than pocket-size greenspaces, open 
public spaces, and streets. 

Hypothesis and outcome H2.2: We further hypothesized (H2.2) that 
also pocket-size greenspaces, play spaces, open public spaces, and 
streets can be perceived as greenspaces, as some literature suggests. We 
considered a place to be perceived as greenspace when it was rated on 
median 4 (fairly) or 5 (very) vegetated. We found that 70 % of all OSM 
regular-size greenspaces are perceived as greenspaces. Furthermore, 47 
% of pocket-size greenspaces, 11 % of open public spaces, 36 % of play 
spaces, and 23 % of streets (all excluding those that also lie within direct 
proximity of a regular-size greenspace) are perceived as greenspaces. 
Thus, we can confirm that not only regular-size greenspaces, but also 
pocket-size greenspaces are perceived as green more often than 40 % of 
times (i.e., if greenness ratings were distributed equally over our 5-point 
scale, 2/5 or 40 % would be considered green). 

Sensitivity analyses: When we gradually increased the radius distance 
which we use to define if a place lies in proximity to an OSM greenspace, 
we observed that results for H2.1 remain rather stable up to 43 m. Yet for 
H2.2, we observed that percentages decline: with a radius of 15 m, 70 % 
of places located near OSM greenspace are indeed perceived by people 
as green; while with 25, 29, and 43 m, the percentages declined to 67 %, 
66 %, and 63 %, respectively. 

4.2.3. H3: Perceived greenness in relation to both NDVI values and OSM 
categories 

Hypothesis and outcome: We hypothesized that if perceived green
spaces are selected using a combination of OSM categories and NDVI 
values, they are better recorded in data than when only OSM categories 
or only NDVI values are used. To test our hypothesis, we implemented 
three greenspace selection algorithms based on our findings in H1 and 
H2: 1) OSM-based, selecting all locations near OSM regular-size green
spaces; 2) NDVI-based, selecting places with an NDVI value larger than 
the median NDVI value of all sampled locations in the same city; and 3) 
combination-based, selecting locations near OSM regular-size green
spaces, and pocket-size greenspaces and play spaces with an NDVI larger 
than the median. We compared their results to the crowdsourced per
ceptions of greenspace. In 67.8 % of cases, the OSM-based algorithm 
correctly captured perceptions of greenspace, compared to 65.6 % for 
the NDVI-based algorithm, and 71.8 % for the combination-based al
gorithm. McNemar’s one-tailed test revealed that the combination- 
based algorithm performed significantly better than the NDVI-based 
algorithm (n: 401, p-value < 0.006), while no significant difference 
was found with the OSM-based algorithm. 

Sensitivity analyses: When we repeated our analysis with NDVI values 
and OSM categories within larger radius distances, we discovered that 
the percentages of the OSM-based and combination-based algorithms 
gradually decreased with distance, while they increased for the NDVI- 
based algorithm, which is consistent with the findings in H1 and H2 
(see Table 3). Regardless of radius distance, the combination-based al
gorithm outperformed the OSM-based algorithm, while at a 43-meter 
radius distance, the NDVI-based algorithm achieved the highest score 
of 72.3 %. Using McNemar’s test, we observed the NDVI-based algo
rithm outperforms the OSM-based algorithm significantly (n: 412, p- 
value < 0.006), while the difference with the combination-based algo
rithm was not statistically significant. 

Table 2 
Descriptive statistics of places and associated perceptions per case-study city.  

case places NDVI [0–1]  OSM category [%]    perceptions 
city n med. min max reg.-size greensp. poc.-size greensp. open space play space street n 

Barcelona 139 0.139 0.017 0.379 30.9 % 20.1 % 31.7 % 20.1 % 28.1 % 647 
Rotterdam 137 0.188 0.023 0.539 26.3 % 21.9 % 21.9 % 19.7 % 27.0 % 645 
Gothenburg 137 0.140 0.019 0.492 24.1 % 20.4 % 20.4 % 16.8 % 22.6 % 664 
Total 413 0.151 0.017 0.539 27.1 % 20.8 % 24.7 % 18.9 % 25.9 % 1956  
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4.3. Qualitative analyses 

The following paragraphs present qualitative findings following up 
on testing hypotheses H1 and H2. Exemplary quotes denoted as Q-i are 
included in the supplementary material, as is exemplary street-level 
imagery. 

4.3.1. Deviations between perceived greenness and NDVI values (following 
H1) 

To understand deviations between perceived greenness and NDVI 
values, we explored why people regard places green, while NDVI values are 
low, and vice versa. We selected places for analysis based on our quan
titative results, using a 43-meter radius distance, i.e., where correlations 
were strongest. 

Regarding places that do have a high surrounding NDVI value but are 
not deemed green (n = 6, see Table A1 and Fig. A1 in supplementary 
material), we identified that these are typically characterized by the 
place being in between two distinctive sides, resulting in mixed opinions 
among participants (Q-1). Specifically, these places are characterized by 
greenness on one side, with grass, trees, and occasionally other vege
tation or natural features. However, the other side is generally domi
nated by built-up elements (e.g., buildings, concrete, and infrastructure) 
or, when there is some vegetation present (e.g., trees, grass, greenery, or 
private gardens, sometimes located further away or combined with 
other natural features), it remains too little or too barren (Q-2, Q-3). Less 
often, we observed that greenery may be present, but is physically 
inaccessible, for instance due to height difference (Q-4). 

Regarding places that are perceived by people as green but have a 
low NDVI value (n = 10, see Table A2 and Fig. A2 in supplementary 
material), first, we identified that vegetation is often present and varying 
in type, but only on a low level (e.g., only grass, other ground-covering 
greenery, or low-level bushes), still young (e.g., tiny trees), or scattered 
around in small bits (e.g., stand-alone trees, some vegetation in every 
garden) (Q-5). We also observed that vegetation may be lush, but only 
on a limited area, in private gardens, or located further-on (Q-5). Sec
ond, participants also mentioned other natural features: riverfronts, sand 
or small tiles on the ground, wooden fences, or a seemingly good local 
climate (e.g., shaded, clean air) (Q-6, Q-7). Third, we observed spaces 
are characterized by a lack of features, for example: distant from traffic, 
secluded, or quiet (Q-8). We do note, however, that some participants 
still characterized places dominated by built-up elements as “green for an 
urban environment” (Q-10), in which cases the judgment seemed 
contextual rather than absolute (Q-9). Lastly, mentions of attractiveness 
were more prevalent among places perceived as green, than vice versa 
(Q-11). 

4.3.2. Deviations between perceived greenness and OSM categories 
(following H2) 

Subsequently, we explored why people regard places green, while OSM 
does not tag them as such, and vice versa. Again, we selected our cases 
based on quantitative results, now using the 15-meter radius distance at 
which OSM performed best. 

As to places tagged by OSM as greenspaces, but not perceived as such 
by people (n = 12, see Table A3 and Fig. A3 in supplementary material), 
we identified two main reasons. First, despite being tagged in OSM as 

green and seemingly equipped for use by people, e.g., with benches or an 
elevated pedestrian walkway, some places were not perceived by people 
as green (Q-12). People state vegetation is too low, young (e.g., tiny 
trees), scattered, dry, constrained, located too far away, or only on one 
side, or the space is too open and empty (Q-13, Q-14, Q-15, Q-16). In 
these cases, the vegetation was overruled by built-up structures: major 
roads or tramways, high building blocks, concrete and other paved 
areas, and associated sense of a bad local climate (Q-17, Q-18, Q-19). 
Second, again, we observed that some places are characterized by two 
distinct sides: major apartment buildings on one side, versus a natural 
rock landscape with vegetation on the other; concrete and constructions 
works, versus a carefully designed green-looking space; and a major 
road, versus an extensive vegetated area. These differences sometimes 
caused disagreement among people, depending on what attracted their 
attention the most (Q-20 versus Q-21). 

Places that are not tagged as greenspaces of regular size in OSM, but 
still are perceived as green by people, outnumbered all other qualitative 
cases: 102 places. We identified two main themes (see Table A4 and 
Fig. A4 in supplementary material). First, presence and number of trees, 
other greenery such as bushes, shrubs, and smaller plants, and to a lesser 
extent grass played a major role, while people also mentioned variation 
in vegetation, flowers, and fields (Q-22, Q-23, Q-24). We also observed 
vegetation configuration was explicitly or implicitly referred to (Q-25): 
vegetation on different heights (e.g., grass fields, tree canopies, and 
vegetated walls) (Q26); and places that are spacious or have vegetation 
all around and far extending (Q-27). Second, we see again that people 
judged urban greenspace contextually rather than absolutely: they are 
green “for an urban setting” (Q-28). These included residential neigh
borhoods with lots of private greenspace and natural buildings materials 
(Q-29); and regular or dense road-side vegetation (Q-30). Also, other 
qualities were associated with greenness: water, shade and fresh air, and 
quietness, attractiveness, and safety (Q31, Q-32, Q-33). Yet we do note 
that the conflict between built-up and greenspace remained, with people 
motivating their greenness by the lack or presence of built-up elements, 
such as buildings, traffic, concrete, and parking lots (Q-34, Q-35, Q-36, 
Q-37). 

Table 4 summarizes the outcomes of our hypothesis tests and 
exploratory, sensitivity, and thematic analyses. 

5. Discussion 

5.1. Interpretation of results 

Our findings suggest that NDVI and OSM data capture how green 
people find places to be rather well, yet significant discrepancies remain. 
Fig. 4 shows exemplary locations where perceptions of greenspace 
deviate from NDVI and OSM map data. 

We found no evidence for a strong correlation between how green 
places are perceived and the NDVI values in their immediate vicinity. 
However, we did discover a significant moderate correlation. Our 
findings of a significant correlation contrast with those of Kothencz and 
Blaschke (2017) and Leslie et al. (2010), who found no significant cor
relation of NDVI values with park visitor’s perceptions of greenspace, or 
with people’s perceptions of their home environment. What distin
guished our method from Leslie et al. (2010) is that we collected data for 

Table 3 
Quantitative results per radius distance. Per row, highest scores are emphasized in bold.    

radius distance [m]   
15 25 29 43 

H1 correlation perception & NDVI 0.459 0.556 0.585 0.600 
H2.2 percentage OSM greenspaces perceived as such 69.6 % 66.9 % 66.4 % 62.9 % 
H3 correctness OSM-based algorithm 67.8 % 67.0 % 66.8 % 65.3 %  

correctness NDVI-based algorithm 65.6 % 69.7 % 70.8 % 72.3 %  
correctness combination-based algorithm 71.8 % 70.2 % 70.0 % 68.2 %  
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one single point in place, rather than an entire residential neighborhood, 
and unlike Kothencz and Blaschke (2017), we collected data for a 
broader range of public spaces, potentially with a wider range of NDVI 
values. 

When we investigated the influence of radius distances, we discov
ered that the strongest correlation was 0.600 when using median NDVI 
values within a 43-meter radius distance. We saw the greatest change in 
correlation strength with increasing radius distance in Barcelona, rising 
from 0.269 to 0.577, implying that perceptions of places in Barcelona 
are based on greenery located further away: One could hypothesize that 
Barcelona’s public spaces are more spacious or have more mature trees 
that can be seen from a distance, as opposed to grasslands or small 
vegetation that is more evenly distributed in space. 

We found evidence to support our hypothesis that OSM regular-size 
greenspaces are perceived significantly greener than pocket-size 
greenspaces, streets, and public open spaces, while OSM seems to use 
open space tags almost exclusively for places where vegetation is not 
dominant. We also discovered that nearly half of OSM pocket-size 
greenspaces are perceived as green, adding to the body of evidence 
that pocket-size greenspaces are important for green cities as well 
(Wood et al., 2017; Labib et al., 2020; Peschardt et al., 2014). Surpris
ingly, no significant difference in greenness perception was found be
tween OSM regular-size greenspaces and play spaces. We discovered 
that many play spaces are unanimously perceived by people as green, 
even though OSM does not provide any indication of the presence of 
greenery. Furthermore, examples of greenery that are unexpectedly 
missing from OSM include forests and groves located on the outskirts of 
cities that are not represented in OSM. Other deviations were not due to 
a lack of greenery in OSM data, but rather to how we filtered our 
greenspaces. That is, we selected greenspaces of significant size based on 
a minimum size of 0.5 ha of adjacent green land (Ambiente Italia, 2003). 
Some greenspaces, however, are mapped in such granularity in OSM — 
for example, every individual patch of grass separated from others by 
narrow footpaths — that our algorithm filtered them out. 

We also observed that some places in OSM are labeled as green but 
are not perceived as such. When we look at these places in OSM, we see 
that half of them are tagged as parks. The term park is explicitly included 
in the WHO definition of greenspace that we used (WHO Regional Office 
for Europe, 2017a), and many other definitions of greenspace in the 
literature (Taylor and Hochuli, 2017), and participants often seemed to 
regard parks equivalent to greenspaces. According to OSM, a park is “an 
area of open space for recreational use, usually designed and in semi-natural 
state with grassy areas, trees and bushes” (OpenStreetMap, 2023). As this 
definition and our findings suggest, OSM parks are typically but not 
always vegetated. 

We demonstrated that combining OSM categories and NDVI values 
can help to better select perceived greenspaces from these data in many 
cases, providing an answer to the question raised by Liao et al. (2021) 
whether combining multiple datasets improves performance. Surpris
ingly, we observed that the NDVI-based selection algorithm out
performed all others at a 43-meter distance. Qualitative results 
suggested refining these algorithms with information on other spatial 
characteristics from OSM has great potential, such as proximity to water 
or presence of greenery in all directions; proximity to traffic infra
structure or high-rise buildings; and presence of private gardens. Other 
qualities, such as vegetation variety, quietness, attractiveness, and 
safety, may be more difficult to capture in large-scale data, but are 
studied in related work (Milias et al., 2023; Candeia et al., 2017; Salesses 
et al., 2013; Quercia et al., 2014). 

Our qualitative findings indicated that people seem to judge the 
greenness of a place contextually rather than absolutely. Specifically, 
people stated, for example, that “for an urban setting, more trees than I 
would have expected” (Q-28), suggesting that people have different ex
pectations of greenspaces within cities opposed to outside of them. 
Furthermore, they stated “considering it’s in the middle of a man made 
square it seems quite green” (Q-9), indicating that within the constraints 
of the type or function of a given urban space (e.g., a crossroads or a 
major road), people sometimes simply considered a place as green as can 
be. 

5.2. Implications for research and practice 

According to our findings, NDVI maps are only moderately associ
ated with how green people perceive places to be. For optimum results, 
perception data should only be exchanged for NDVI maps while keeping 
this limitation in mind, ideally utilizing median NDVI values within 43 
m. When using OSM data, similar limitations arise, but we suggest using 
a short radius distance of 15 m instead. 

Our results further suggest that incorporating NDVI data into OSM- 
based analyses produces more accurate results. In the case informal 
and small-scale greenspaces are of interest, NDVI values may help to 
filter out those parks that are not perceived green, or to identify pocket 
parks and play spaces that are often perceived as green. 

Our qualitative findings suggest that when identifying locations for 
greenspace interventions, urban planners could consider prioritizing 
greenspaces that appear in large-scale data but are not perceived as 
such, e.g., where built-up features are too dominant. 

Our findings could also serve as guidance when aiming to make cities 
“just green enough”: greenspace strategies that limit adverse effects of 
interventions to make neighborhoods healthier and more attractive, 

Table 4 
Summary of quantitative and qualitative findings.  

H1 Perceived greenness in relation to NDVI  

hypothesis test No evidence for a strong correlation with median NDVI.  
exploratory 
analysis 

Significant moderate correlation instead, weak correlation for Barcelona, while moderate for Rotterdam and Gothenburg, and moderate but less strong 
correlation with maximum NDVI.  

sensitivity analysis NDVI within 43 m radius distance yields strongest correlation.  
qualitative 
analysis 

Places perceived not-green, but with high NDVI: have two distinctive sides; or the greenspace is physically inaccessible. Places perceived green, but with 
low NDVI: have varying vegetation; other natural features nearby; absent built-up features; are rated in context. 

H2 Perceived greenness in relation to OSM  

hypothesis tests Regular-size greenspaces are perceived as greener than pocket-size greenspace, open public spaces, and streets, but not greener than play spaces. Pocket- 
size greenspaces are oftentimes perceived as greenspaces.  

sensitivity analysis OSM within 15 m radius distance yields best outcomes.  
qualitative 
analysis 

Places perceived not-green, but in OSM: are still equipped for people; have dominant built-up features; or two distinctive sides. Places perceived green, but 
not in OSM: have large amount and good configuration of vegetation; are rated in context; have other natural and soft features. 

H3 Perceived greenness in relation to NDVI and OSM  

hypothesis test Algorithm combining OSM and NDVI data yields better results than NDVI-based algorithm, but no significant difference with OSM-based algorithm.  
sensitivity analysis Combination- and OSM-based algorithm perform best with 15 m radius distance, while NDVI-based algorithm with 43 m radius distance scores highest 

overall.  
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such as increased property values, so-called green gentrification, and 
displacement of the residents in whose interests these interventions 
were originally designed (Curran & Hamilton, 2012; Wolch et al., 2014). 
Potential solutions are green interventions that are small-scale, in scat
tered locations, and evenly distributed rather than concentrated projects 
in one focal place that may kick-start gentrification (Wolch et al., 2014). 
Our qualitative findings regarding what it is that makes a location be 
perceived as green, while not formally tagged or depicted as such in data 
registries, may inspire such interventions. Examples include selecting 
varying vegetation extending in multiple directions; combining vege
tation with other natural features such as water fronts or pervious sur
faces; greening roadsides or traffic squares that may be perceived as 
green within their specific urban context; and limiting concrete or hid
ing built-up structures from view by tree canopies and hedges. 

5.3. Limitations and future work 

Several remaining limitations in this study could be addressed in 
future research. First, we collected only visual perceptions using street- 
level imagery, which should be interpreted as a proxy for perceptions in 
real urban environments (Salesses et al., 2013). Nonetheless, street-level 
imagery is becoming more important in urban analyses and is a prom
ising source for efficient urban environment auditing (Biljecki and Ito, 

2021; Rzotkiewicz et al., 2018). Second, the participants of our study 
cannot be considered a representative sample of the general population 
or of the case-study cities. We did, however, recruit European partici
pants, balanced in age and gender, and found no significant differences 
in greenness perceptions among different groups. Third, regarding our 
questionnaire implementation, due to random chance, not all locations 
were rated as often as others. Furthermore, participants’ perceptions 
may be influenced by the locations they have previously seen, or the 
places they are familiar with (Mehta, 2008), although we expect the 
effect of familiarity bias to be small given that less than 5 % of partici
pants reported knowing some places from personal experience. Fourth, 
we limited our study to three European cities, but our method can be 
applied to any city in the world. We did notice some differences between 
Barcelona, and Rotterdam and Gothenburg. Future work could research 
how our findings hold across continents, climates, and cultures (Mar
kevych et al., 2017; Catterall, 2009; Zhou et al., 2022), for LULC maps 
other than OSM, and for case study cities dominated by hills and 
viewpoints. Fifth, NDVI values are subject to change over time (Helbich 
et al., 2019), and the lushness of vegetation in street-level imagery is 
only a snapshot in time. While we used NDVI data and street-level im
agery from similar years and months, we cannot rule out the effects of 
temporal changes. Sixth, we only analyzed places that were at least 200 
square meters in size, which means that places smaller than 

Fig. 4. Exemplary locations where perceptions deviate from NDVI or OSM data.  
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approximately the size of a tennis court were not studied. Finally, future 
work could assess how people’s visual perceptions are captured in other 
quantitative data, such as the Green View Index or computer-detected 
objects in street-level imagery; or to develop refined algorithms to 
select potential perceived greenspaces by combining NDVI and LULC 
maps, potentially using viewsheds and incorporating other spatial 
characteristics. 

6. Conclusion 

In this study we looked at how well NDVI and LULC data captured 
people’s visual perceptions of urban greenspaces. While NDVI and LULC 
data are widely used in greenspace studies and planning, insight into 
their representation of visual perceptions has remained lacking to date. 

We crowdsourced perceptions of public spaces in three European 
cities and quantitatively compared them to NDVI and to LULC data 
sourced from OSM, and qualitative explored reasons for deviations. 
Although we discovered an overall match between NDVI and OSM data 
and people’s perceptions of greenness, notable deviations remain. NDVI 
values moderately correlate with perceived greenness, and OSM 
greenspaces are perceived to be greener than other types of public 
spaces except for play spaces, while pocket-size greenspaces are 
frequently perceived to be green as well. Selecting perceived green
spaces based on both OSM and NDVI yields better results in many cases. 
Furthermore, built-up elements may overpower the presence of vege
tation, while a space may still be considered green given its urban 
context. Not only the amount of vegetation but also its configuration and 
variety influence people’s perceptions of greenness, as do other natural 
features and perceptual qualities. 

Our findings can help researchers and practitioners to make more 
informed decisions when collecting data for greenspace studies and 
planning. Future work could improve greenspace data collection by 
including more qualities that influence greenspace perception or test the 
transferability of our findings to other geographical contexts around the 
world. 
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