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Source: adapted from Lavell et al. (2012) 
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Source: adapted from Lavell et al. (2012) 
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Dutch Coast
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Source: Building with Nature - EcoShape (2021). 6

Building with Nature (BwN)

Kustpact - Shorescape
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Source: https://www.visitingthedutchcountryside.com/noord-
holland/best-beaches-in-noord-holland-netherlands/

Based on wind simulation, which beach 
house configuration best promotes 
widening of dunes?

Main research question

Introduction

Research question
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Sub-research questions

• Wind simulation:

How to set up a computational domain suitable for the scenarios to be tested?

• Housing configurations:

What are the parameters to define these house configurations? 

Which parameters are more influential on the formation of the dunes?

• Formation of dunes: 

How to factor in the wind direction in the final configuration choice? 

What are the indicators to evaluate the widening of the dunes?

Introduction

Research question
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Introduction Process



11

Introduction Process

Workflow



12

Introduction Process

Input



13

Depends on the case study area
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Area of study

Noordwijk

Introduction Process
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Wind properties

• Average velocity: U = 4.9 m/s

• Wind direction: w = 60°

• Wind occurrence percentage:

Introduction Process

Input
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Depends on the case study area
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Parametric geometry

Constant parameters

3m

3m

3m

7m

• Length of house: 7 m

• Width of house: 3 m

• Height of house: 3 m

• Inter-distance between 
houses: 3 m

Introduction Process

Input
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Variable parameters

• α: angle of each house relative to the shoreline

0 ≤ α ≤ 90

Introduction Process

Parametric geometryInput
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Variable parameters

• α: angle of each house relative to the shoreline

0 ≤ α ≤ 90

• ß: angle of the configuration relative to the shoreline

0 ≤ ß ≤ 90

Introduction Process

Parametric geometryInput
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Variable parameters

• α: angle of each house relative to the shoreline

0 ≤ α ≤ 90

• ß: angle of the configuration relative to the shoreline

0 ≤ ß ≤ 90

• dd: distance to dunes

1 ≤ dd ≤ 10

→ 3D design space

Introduction Process

Parametric geometryInput



α, ß, dd
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Introduction Process

Workflow



Source: Adapted from P. Gousseau’s diagram in Blocken (2018)
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Wind study approach

Introduction Process

CFD



Source: Adapted from P. Gousseau’s diagram in Blocken (2018)
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Wind study approach
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Source: Adapted from P. Gousseau’s diagram in Blocken (2018)
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Wind study approach

Introduction Process

CFD

• Field measurements:
• Not feasible to test a large 

number of configurations

• No control over wind 
conditions

• Wind tunnel tests:
• Takes time to test a large 

number of configurations

• Difficulty to achieve dynamic 
similarity requirements



Source: Adapted from P. Gousseau’s diagram in Blocken (2018)
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Wind study approach

Introduction Process

CFD



Source: Adapted from P. Gousseau’s diagram in Blocken (2018)
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Wind study approach

Introduction Process

CFD

Reynolds-averaged Navier-
Stokes (RANS)

RNG k-epsilon model
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Computational domain setup

• Following blockage ratio 
conditions

• Respecting all configurations and 
South-West wind directions

81m

205m
330m

Introduction Process

CFD
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Mesh setup
3 refinement areas:

• Houses and immediate wake

• Buffer zone with the rest of the 
domain

• Terrain surface

Introduction Process

CFD
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Mesh setup

Refinement areas are built 
according to the wind direction, up 
until the top of the dune

Introduction Process

CFD



α, ß, dd
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Introduction Process
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α, ß, dd
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Introduction Process

Workflow



α, ß, dd
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How to assess sediment mobility?

Introduction Process

Workflow
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Cross-section

Plan view

Introduction Process

Sediment mobility
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Cross-section

Plan view
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Cross-section

Plan view
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Cross-section

Plan view

𝑞𝑛 = 1.16 × 10−5 × 𝑈3 × cos𝜃

Introduction Process

Sediment mobility

𝑞𝑛 is potential transport rate in kg m−1 s −1

𝑈 is wind speed in m s−1

𝜃 is angle of wind approach from shore 
perpendicular in degrees
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Cross-section

Plan view

Introduction Process

For widening the dunes: 
use L1 and L2

Sample velocity at 2 lines 
at a 30 cm height

Get transport rate at 
each line 

Get difference between 
the 2 lines (L2 – L1)

Less transport means 
more sedimentation 

Objective: Minimise the 
difference (=bigger 
negative difference)



α, ß, dd
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Introduction Process

Workflow



Sampling
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Need to sample the design space with the minimum number of samples in a representative 
way -> Latin Hypercube Sampling (LHS) and Orthogonal Array (OA)

Guerrero, J. (2016). Training session on : Design of experiments , space exploration , and 
numerical optimization using DAKOTA and OpenFOAM. 189.

Introduction Process

Sensitivity Analysis



ANOVA
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• Statistically identifies the effects of input variables on the output

• p-value indicates the confidence interval: a p-value of 0.05 and lower corresponds to a 
confidence interval of 95% and higher

→ Following sensitivity analysis rules: 49 samples are used for the analysis

Introduction Process

Sensitivity Analysis



41

ANOVA results

Introduction Process

Sensitivity Analysis
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ANOVA results

Introduction Process

Sensitivity Analysis

From a 3D design space to a 
2D design space
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Choose a value for the new 
constant in the system

Introduction Process

Sensitivity Analysis



α, ß, dd
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α and ß
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α, ß, dd
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α and ß

Introduction Process

Workflow
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Surrogate-Based Optimisation

Introduction Process

Optimisation
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Surrogate-Based Optimisation

Building the surrogate

• Sampling the domain in a representative 
way

• 10 samples per dimension is used which 
leads to 100 samples

• Response surface: 
• Linear interpolation

• Radial Basis Function

• Kriging

Introduction Process

Optimisation
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Surrogate – response surface

Introduction Process

Optimisation

Predicted optimum from linear 
interpolation: α = 31° and ß = 1°

Predicted optimum from kriging: α = 0° and ß = 0°

Black dots = samples
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Hachimi, H. (2013). Hybridations d’algorithmes metaheuristiques en optimisation globale et leurs 
applications.

Global optimisation – Genetic Algorithm

Introduction Process

Optimisation
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Surrogate + First generation 

Average error between surrogate and first generation: ~6%

Introduction Process

Optimisation Black dots = surrogate samples

Red dots = first generation samples
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Surrogate + First generation 

Introduction Process

Optimisation

Predicted optimum: α = 1° and ß = 4°
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Introduction Process 12 directions

300° 330° 0°

30° 60° 90°
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Introduction Process 12 directions 6.8% increase in transport

270°

120° 150° 180°

210° 240°



α, ß, dd
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α and ß

Introduction Process

Workflow

α = 1° and 
ß = 4°
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Introduction Process Trend results
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Introduction Process Trend results

Sample 1

Sample 2 Sample 3 Sample 4
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Introduction Process Trend results

Sample 1: α ≈ 1° and ß ≈ 3.8° (Best-
performing sample) 

Sample 2: α ≈ 30° and ß ≈ 0.5°
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Introduction Process Trend results

Sample 4: α ≈ 82° and ß ≈ 6°Sample 3: α ≈ 44° and ß ≈ 0°
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Introduction Process Trend results

Design criteria 1: 
α should be defined in a way that the houses are not parallel to the dominant 
wind direction, reducing wind-facing gaps
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Introduction Process Trend results

Sample 5

Sample 6

Sample 1



61

Introduction Process Trend results

Sample 6: α ≈ 59° and ß ≈ 80° (Worse-
performing sample)

Sample 5: α ≈ 9° and ß ≈ 87°Sample 1: α ≈ 1° and ß ≈ 3.8° (Best-
performing sample) 
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Introduction Process Trend results

Design criteria 1: 
α should be defined in a way that the houses are not parallel to the dominant 
wind direction, reducing wind-facing gaps

Design criteria 2: 
α should also allow for enough overlap between the houses

Design criteria 3:
β should keep the configuration as consistently close to the dunes foot as 
possible 
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Introduction Process Trend results

Sample 9

Sample 7

Sample 8
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Introduction Process Trend results

Sample 7: α ≈ 19° and ß ≈ 18° Sample 8: α ≈ 31° and ß ≈ 30° Sample 9: α ≈ 4° and ß ≈ 28°

About 10% increase in the wind-facing surface 
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Introduction Process Trend results

Wind-facing Surface

Ratio of surface with no gaps to total surface 
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Introduction Process Trend results

Wind-facing Surface

Ratio of surface with no gaps to total surface Surface with r = 1, α < 3.8°, ß < 3.8°
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Introduction Process Trend results

Design criteria 1: 
α should be defined in a way that the houses are not parallel to the dominant 
wind direction, reducing wind-facing gaps

Design criteria 2: 
α should also allow for enough overlap between the houses

Design criteria 3:
β should keep the configuration as consistently close to the dunes foot as 
possible 

Design criteria 4:
When all three above criteria are respected, the wind-facing surface should be 
maximised.
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Introduction Process Trend results Conclusion
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Surrogate model (100 samples): 

optimum configuration: α = 0° and β = 0°

Surrogate model and first-generation (200 samples): 

optimum configuration has α = 1° and β = 4°

Surrogate model and 5 generations (594 samples): 

optimum configuration has α = 1° and β = 3°

Introduction Process Trend results Conclusion

Interpolated optimum
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• α should be defined in a way that the houses are not parallel to the dominant wind 
direction, reducing wind-facing gaps

• α should also allow for enough overlap between the houses

• β should keep the configuration as consistently close to the dunes foot as possible 

• When all three above criteria are respected, the wind-facing surface should be 
maximised.

Introduction Process Trend results Conclusion

Design criteria
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• The mesh in refinement boxes for some cases presents inconsistent cell sizes

• A few assumptions have been made in setting up the model, such as simplifying the 
cross-section of the Dutch coast, not accounting for moisture and humidity, and not 
accounting for vegetation on the dunes. 

• Having integer domain variables could have reduced the time for convergence for the 
optimisation.

Introduction Process Trend results Conclusion

Limitations
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• Geometry:

Test with different inter-distance between the houses to increase sedimentation 
behind the houses. 

• CFD:

Create a response surface using LHS to account for the 12 wind directions for more 
than just the optimum configuration

• Optimisation

Try other optimisation algorithms such as the Ant Colony Optimisation

Introduction Process Trend results Conclusion

Recommendations



Thank you
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