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Disaster
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Working with Uncertainties
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Introduction

Research question

Main research question

Based on wind simulation, which beach
house configuration best promotes
widening of dunes?
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Introduction

Research question Sub-research questions
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 Wind simulation:

How to set up a computational domain suitable for the scenarios to be tested?

* Housing configurations:
What are the parameters to define these house configurations?

Which parameters are more influential on the formation of the dunes?

* Formation of dunes:
How to factor in the wind direction in the final configuration choice?

What are the indicators to evaluate the widening of the dunes?
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Workflow
h 4
Parametric
imput
hJ
. . - Influential R Optimal
CFD simulation Sensitivity analysis —7/ parameters # Optimisation —7/‘:“ niigurati
A A

/m/

/ 3:;:;.-".5,,"‘ /

]
TUDelft

/

11



Introduction Process

]
TUDelft

Input

/

Farametric
input

/

12



Introduction Process

]
TUDelft

Input

Parametric
input

/

o]

A 4

Depends on the case study area
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Area of study

Noordwijk
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Input

=/
-

Depends on the case study area
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Introduction Process

Input Parametric geometry

Constant parameters

e Length of house: 7 m
* Width of house: 3 m
* Height of house: 3 m

* |nter-distance between
houses: 3 m

4 17
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Introduction Process

Input Parametric geometry

Variable parameters

* a: angle of each house relative to the shoreline
0<a<90
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Parametric geometry
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Workflow
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Wind study approach
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CFD

Wind study approach

* Field measurements:

* Not feasible to test a large
number of configurations

* No control over wind
conditions

e Wind tunnel tests:

* Takes time to test a large
number of configurations

 Difficulty to achieve dynamic
similarity requirements
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CFD s

Wind study approach o
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Wind study approach

1

Reynolds-averaged Navier-
Stokes (RANS)

1

RNG k-epsilon model
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Introduction Process

CFD

Computational domain setup

* Following blockage ratio
conditions

» Respecting all configurations and
South-West wind directions

81m
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Introduction

Mesh setup
3 refinement areas:
* Houses and immediate wake

e Buffer zone with the rest of the
domain

* Terrain surface
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CFD
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CFD

Mesh setup

Refinement areas are built
according to the wind direction, up
until the top of the dune
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Workflow
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Workflow
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Workflow

/ e / o R, dd

How to assess sediment mobility?

L4

CFD simulation
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Introduction Process Cross-section

Sediment mobility . Plateau Dune

N

Plan view
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Introduction Process Cross-section

Sediment mobility BesEl Plateau Dune

T heightening

T widening
q—

Plan view
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Introduction Cross-section

L1 L2 L3
Sediment mobility Beach = Plateau = Dune E
~ | |
| | |
Plan view

] 35
TUDelft



Introduction Cross-section
L1 L2 L
|
|

Sediment mobility Beach

Dune

| heightening
widening

Plateau

3
|
]
|
]
|
]

g, = 1.16 x 107> x U3 X cos8

N

q, is potential transport rate in kgm™s 1
U is wind speed in m s™* Plan view

6 is angle of wind approach from shore
perpendicular in degrees
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Introduction Cross-section
L1 L2 L
|
|

Dune

| heightening
widening

Plateau

For widening the dunes: Beach

3
|
|
use L1 and L2 |

A 4

Sample velocity at 2 lines
at a 30 cm height

v

Get transport rate at
each line

!

Get difference between
the 2 lines (L2 — L1)

v

Less transport means
more sedimentation

Y
Objective: Minimise the
difference (=bigger
negative difference)

N

Plan view
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Workflow
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Sensitivity Analysis ~ —— Sampling

Need to sample the design space with the minimum number of samples in a representative
way -> Latin Hypercube Sampling (LHS) and Orthogonal Array (OA)
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Guerrero, J. (2016). Training session on : Design of experiments, space exploration, and
numerical optimization using DAKOTA and OpenFOAM. 189.
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Introduction

Sensitivity Analysis ANOVA

 Statistically identifies the effects of input variables on the output

e p-value indicates the confidence interval: a p-value of 0.05 and lower corresponds to a
confidence interval of 95% and higher

— Following sensitivity analysis rules: 49 samples are used for the analysis
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p_value

Sensitivity Analysis

ANOVA results
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0.5 1
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Sensitivity Analysis

From a 3D design space to a
2D design space
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p value

ANOVA results
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Sensitivity Analysis

Choose a value for the new
constant in the system
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Workflow

k4

/ et / o, R, dd
v

A

: ) . Influential N
CFD simulation Sensitivity analysis —7/ paramelers # Optimisation

l , j.

/ Average / A
velocity
i oand 3

Sediment /

mobility /

]
TUDelft




Introduction

Optimisation

Surrogate-Based Optimisation
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Optimisation
Surrogate-Based Optimisation

Building the surrogate

* Sampling the domain in a representative
way

* 10 samples per dimension is used which
leads to 100 samples

* Response surface:
* Linear interpolation
* Radial Basis Function
* Kriging

]
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Optimisation

Linear interpolation

20 40 60 80
)

Predicted optimum from linear
interpolation: a=31°and 8 =1°

Surrogate — response surface

Black dots = samples

Universal kriging

0 20 40 60 80
o

Predicted optimum from kriging: a =0°and 8=0° |
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Optimisation Global optimisation — Genetic Algorithm

Hachimi, H. (2013). Hybridations d’algorithmes metaheuristiques en optimisation globale et leurs

.’Ifu Delft applications. 49
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o Surrogate + First generation
Optimisation Black dots = surrogate samples

Red dots = first generation samples

Universal kriging le—5

0 20 40 60 80
a

Average error between surrogate and first generation: ~6%
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Optimisation Surrogate + First generation

Universal kriging

0 20 40 60 80
a

Predicted optimum: a=1°and [§ = 4°
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Introduction Process 12 directions
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Introduction Process 12 directions  6.8%increase in transport

180°
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Workflow

k4

Farametric /
/ input / > o, B, dd
b 4
: ) . Influential L Optimal
CFD simulation Sensitivity analysis —7/ e # Optimisation 47/ configuration /
l ry A
/ H?ETEQE / ) 4 ) 4
velocity o =1°and
o and 3 .

i 8=

Sediment /
mobility /
54

A

]
TUDelft




Introduction

]
TUDelft

Process Trend results
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Introduction

Universal kriging le—5

Sample 1 <

14UDeIft Sample 2 Sample 3 Sample 4
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Introduction Process Trend results
6.0
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Trend results

y [m]
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Introduction Process Trend results

Design criteria 1:
a should be defined in a way that the houses are not parallel to the dominant
wind direction, reducing wind-facing gaps
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Sample 5

Universal kriging

Sample 1 <
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Sample 6
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Introduction Process Trend results
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Introduction Process

Design criteria 1:
a should be defined in a way that the houses are not parallel to the dominant
wind direction, reducing wind-facing gaps

Design criteria 2:
a should also allow for enough overlap between the houses

Design criteria 3:

B should keep the configuration as consistently close to the dunes foot as
possible
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Universal kriging

Sample 9 <«

Sample 7

]
TUDelft Sample 8
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Process Trend results
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Introduction Process Trend results

Wind-facing Surface

T T T T T
0.6 0.7 0.8 0.9 1.0

Ratio of surface with no gaps to total surface
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Wind-facing Surface
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Design criteria 1:
a should be defined in a way that the houses are not parallel to the dominant
wind direction, reducing wind-facing gaps

Design criteria 2:
a should also allow for enough overlap between the houses

Design criteria 3:
B should keep the configuration as consistently close to the dunes foot as
possible

Design criteria 4:

When all three above criteria are respected, the wind-facing surface should be
maximised.
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Introduction Process Trend results Conclusion
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Introduction Process Trend results

Interpolated optimum

Surrogate model (100 samples):

optimum configuration: a =0°and f =0°

Surrogate model and first-generation (200 samples):

optimum configuration has a = 1°and B = 4°

Surrogate model and 5 generations (594 samples):

optimum configuration hasa=1°and = 3°
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Introduction Process Trend results

Design criteria

* a should be defined in a way that the houses are not parallel to the dominant wind
direction, reducing wind-facing gaps

* a should also allow for enough overlap between the houses
* B should keep the configuration as consistently close to the dunes foot as possible

 When all three above criteria are respected, the wind-facing surface should be
maximised.

4 70
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Introduction Process Trend results

Limitations

* The mesh in refinement boxes for some cases presents inconsistent cell sizes

* A few assumptions have been made in setting up the model, such as simplifying the
cross-section of the Dutch coast, not accounting for moisture and humidity, and not
accounting for vegetation on the dunes.

* Having integer domain variables could have reduced the time for convergence for the
optimisation.

]
TUDelft

71



Introduction Process Trend results

Recommendations

* Geometry:
Test with different inter-distance between the houses to increase sedimentation
behind the houses.

* CFD:

Create a response surface using LHS to account for the 12 wind directions for more
than just the optimum configuration

* Optimisation
Try other optimisation algorithms such as the Ant Colony Optimisation

72
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