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RIESZ TRANSFORMS ON COMPACT QUANTUM GROUPS AND
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Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum
groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We
introduce a property for quantum Markov semigroups of central multipliers on a compact quantum
group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this
property is stable under free products, monoidal equivalence, free wreath products and dual quantum
subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum
groups.

We then show that a compact quantum group with a quantum Markov semigroup that is approximately
linear with almost commuting intertwiners satisfies the immediately gradient- S condition from [10] and
derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show
that these quantum groups have the Akemann—Ostrand property; in particular, the same strong solidity
results follow again (now following [27]).
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In their fundamental papers, Voiculescu [48] and Ozawa and Popa [35] prove that the free
group factors L(IF,,),n > 2, do not contain a Cartan subalgebra. This means that L(F,,)
does not contain a maximal abelian von Neumann subalgebra whose normaliser generates
L(F,). Consequently, L(F,,) does not admit a natural crossed product decomposition and
is therefore distinguishable from the class of group measure space von Neumann algebras.
The proof of Ozawa and Popa in fact shows a stronger property: that the normaliser of any
diffuse amenable von Neumann subalgebra of L(F,) generates a von Neumann algebra
that is amenable again. This property has become known as strong solidity. After [35],
many von Neumann algebras were proven to be strongly solid.

These strong solidity results required several techniques that come from approximation
properties and the geometry of groups. The proof of Ozawa and Popa [35] essentially splits
into two parts. First, they show that weak amenablity of a group (or the weak* completely
contractive approximation property [W*CCAP] of its von Neumann algebra) can be used
to prove a so-called weak compactness property. Second, using weak compactness and
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2 M. Caspers

Popa’s deformation and spectral gap techniques, they obtain the results. For the second
part, a number of alternative approaches have been presented. Essentially they split
into three methods, using (1) malleable deformations [35], (2) closable derivations in 1-
cohomology and HH"-type properties [35] or (3) the Akemann—Ostrand property [38] or
quasicohomological methods [15]. The second and third methods are closely related (see
also [12] and Section 6). Each of these approaches provides new classes of von Neumann
algebras that are strongly solid.

We believe it is instructive to include the following diagram at this point, since these
global methods shall not appear very explicitly in this paper (but rather in the references).
Our focus here is to show that the input for methods (2) and (3) can be proved for a
reasonably large class of quantum groups. We shall thus concentrate on the boldface part
of the diagram, on which we expound later. The arrows should not always be understood
as strict implications; sometimes additional conditions are needed.

(1) Malleable

deformations
Approximate linear Quantum Markov
+ almost commuting semigroups and (2) Derivations Or
intertwiners gradient-Ss

3) Akemann—

Ostrand

ZY?S/*C(I;ZI;AP ¢:> Weak compactness I: And

Strong solidity

In [27], Isono provided the first examples of von Neumann algebras coming from the
theory of compact quantum groups that are strongly solid. The approach falls into
category (3) already described. In particular, Isono proved that free orthogonal quantum
groups are strongly solid. Later different proofs of this fact were given in [23] (see also the
earlier paper [46] on solidity). In [8], strong solidity results for quantum automorphism
groups were obtained.

We note that [26, Theorem C] also covers free products of free orthogonal/unitary
quantum groups and quantum automorphism groups. In the present paper, we shall
deal with a property that implies strong solidity and is stable under free products and
monoidal equivalence. One advantage of this approach is that our methods apply to a
free product of (certain) compact quantum groups followed by a monoidal equivalence.
This is especially important for the treatment of free wreath products [4].
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 3

In [10] it was proved that the type III deformations of free orthogonal and unitary
quantum groups are also strongly solid. The proof builds upon the weak compactness
properties from [6] and follows the path of method (2) already described. The theory
of quantum Markov semigroups (QMSs) is used to construct the closable derivations in
method (2) from [17]. This is done for the specific examples of free orthogonal and unitary
quantum groups.

This paper continues the line of [10] by involving two new ideas. First, we look at [10]
from the viewpoint of a rigid C*-tensor category. Although this paper is not written in the
abstract language of C*-tensor categories (as we found it less accessible), this is precisely
the structure of Irr(G) that occurs in our proofs.

Second, we refine the method from [10]. We introduce a new property for a QMS of
central multipliers on a compact quantum group which we call ‘approximate linearity with
almost commuting intertwiners’ (see Definition 2.2). The definition is certainly technical
in nature, but it has some clear advantages, namely, it is immediately clear that it is
invariant under monoidal equivalence of quantum groups. A first consequence is that since
the free orthogonal quantum groups O;{, are monoidally equivalent to SU,(2),q € (0,1)
with ¢+ ¢~! = N, the estimates from [10] can be carried out on SU,(2). We also prove a
couple of other stability properties, including free wreath products.

Theorem 0.1. Approzimate linearity with almost commuting intertwiners of a QMS of
central multipliers is stable under the following:

(1) Monoidal equivalence.
(2) Free products.
(3) Taking dual quantum subgroups.

(4) Free wreath products with Sf; (more precisely, Theorem 5.1).

The proof for free wreath products is a combination of [30, Theorem 5.11] (see
also [44]), the other stability properties and the fact that SU,(2) carries a QMS that is
approximately linear with almost commuting intertwiners. To prove the latter statements
we provide a conceptual way to construct QMSs from suitable families of unital completely
positive maps. This makes use of generating functionals and differentiation at 0. The
proof also simplifies [10, Section 6.1]. We are indebted to Adam Skalski for sharing this
argument.

We then show that indeed the strong solidity and Akemann—Ostrand-type results as in
the diagram are implied. We first show the following (in path (2)):

Theorem 0.2. Let G be a compact quantum group of Kac type such that Lo (G)
has the weak® completely bounded approximation property (W*CBAP). Suppose that G
carries a QMS of central multipliers that is approximately linear with almost commuting
intertwiners and which is immediately Lo-compact. Then Lo (G) is strongly solid.

Then we show the following theorem using noncommutative Riesz transforms (see
also [12]). Since the Akemann—Ostrand property could be of independent interest, we
record it in this paper in a separate section.
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4 M. Caspers

Theorem 0.3. Let G be a compact quantum group of Kac type such that C.(G) is locally
reflexive. Suppose that G carries a QMS of central multipliers that is approzimately linear
with almost commuting intertwiners and which is immediately Lo-compact. Then Lo (G)
satisfies the Akemann—Ostrand property (more precisely, AOY from [27]).

In [27] it was proved in the factorial case that together with the W*CBAP, Theorem 0.3
implies strong solidity. In that case, Theorem 0.3 implies Theorem 0.2.

We now turn to the examples. Most of the work is contained in the following theorem,
from which a diversity of results follow by stability properties. Its proof heavily uses the
estimates [46, Appendix]; it is interesting that these estimates are precisely sharp enough
for our purposes.

Theorem 0.4. SU,(2) carries a QMS of central multipliers that is approximately linear
with almost commuting multipliers and immediately Lo-compact.

We can now harvest our results using the stability properties and several monoidal
equivalence and isomorphism results for compact quantum groups that have been proved
by others, most notably [4].

Theorem 0.5. The following (Kac-type) compact quantum groups are strongly solid and
satisfy AO™:

(1) All seven series of free orthogonal easy quantum groups classified in [50] under the
names OX,B, SIJ(,S, H;{,s, BJJ{,4, Sﬁ;, BE\Z and Bﬁj for N3 >3, Ny >4, N5 >5 (see
[8])-

(2) The quantum reflection groups Hy" ~ 7. S}, for N >5, 00 > s> 2, where Zo, = Z.

(3) The free unitary quantum groups Uy, for N >3 (see [20]).

The selection of examples presented in Theorem 0.5 is a bit random and not exhaustive.
We have chosen to present examples that relate to attempts to classify easy quantum
groups. The representation category of the families in Theorem 0.5 are precisely the ones
whose representation categories can be described in terms of noncoloured, noncrossing
partitions. One may wonder what happens when more colours are added to the partitions,
like in [25]. Our theorem shows that some cases are already covered.

It should be mentioned that part of Theorem 0.5 was proved in the literature already
using different methods (we have given references in the theorem). Our method gives a
unified way to treat all examples at once. To our knowledge, strong solidity for HIJ{, and
the more general quantum reflection groups has not been covered, nor has AO™. Other
new examples include all free wreath products of these examples with SK,.

Structure

Section 1 introduces preliminary notation. In Section 2 we introduce almost linearity
with almost commuting intertwiners and show stability properties. We conclude most
of Theorem 0.1 except for the wreath products. Section 3 contains the implications for
strong solidity and proves Theorem 0.2. In Section 4 we show that SU,(2) carries a good
QMS and prove Theorem 0.4. From this we can conclude the proof of the case of wreath
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Riesz Transforms on Compact Quantum Groups and Strong Solidity )

products in Theorem 0.1 as well as strong solidity of the examples in Theorem 0.5; this is
done in Section 5. In Section 6 we prove the corresponding statements for the Akemann—
Ostrand property, which concludes Theorem 0.3.

1. Preliminaries

By 6(z € X) we denote the function that is 1 if z € X and 0 otherwise. Inner products
are linear in the left leg. For & vectors in a Hilbert space H we write we ,(x) = (2€,7).

The standard theory of von Neumann algebras can be found in [42]. For operator spaces
we refer to [22].

1.1. Finite-dimensional approximations and strong solidity

See [9] for the following notions.

Definition 1.1. We say that a von Neumann algebra M has the W* CBAP if there exists
a net (®;); of normal completely bounded finite-rank maps M — M such that:

(1) there exists A > 1 such that for all i we have || ®;||. < A and
(2) for every x € M we have ®,(x) — x o-weakly.

A is called the Cowling—Haagerup constant. If A =1, then we say that M has the
W*CCAP.

For quantum groups of Kac type, the W*CBAP (resp., W*CCAP) is equivalent to
weak amenability of the quantum group (resp., weak amenability with Cowling-Haagerup
constant 1). For the Haagerup property, see also [13].

Definition 1.2. We say that a finite von Neumann algebra with faithful normal state
(M,7) has the Haagerup property if there exists a net (®;); of normal unital completely
positive maps M — M such that 7o®; = 7, such that ®; is compact as a map Lo(M,7) —
Lo(M,7) and such that for every z € M we have ®;(x) — x strongly.

We further need the notions of solidity [9] and strong solidity as in the next definition.

Definition 1.3. A finite von Neumann algebra M is called strongly solid if for every
diffuse amenable von Neumann subalgebra P C M, Norp;(P)” is amenable, where the
normaliser is defined as

Nor s (P) = {u € M | u unitary such that uPu* = P}.

1.2. Compact quantum groups and represenations

The theory of compact quantum groups has been established by Woronowicz [51].

Definition 1.4. A compact quantum group G is a pair (C(G),Ag) of a unital C*-
algebra C(G) and a unital *-homomorphism Ag : C(G) — C(G) @min C(G) (comultipli-
cation) satisfying (Ag ®id) o Ag = (id® Ag) 0o Ag (coassociativity) and such that both
Ag(C(G))(C(G)®1) and Ag(C(G))(1®C(G)) are dense in C(G) @min C(G).
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6 M. Caspers

A compact quantum group G admits a unique state ¢ on C(G) called the Haar state
which satisfies left and right invariance:

(p@id) o Ag(z) = p(z)1 = (Id®@ ¢) 0 Ag(x).

G is called Kac if 7 is tracial. We let C.(G) = 7,(C(G)) and L (G) = 7, (C(G))” be the
C*-algebra and von Neumann algebra generated by the GNS-representation 7, of ¢. A
(finite dimensional unitary) representation of G is a unitary element u € C(G) ® M, (C)
such that (Ag ®id)(u) = u13uss, where uss = 1 ®u and wu;3 is usz with the flip map applied
to its first two tensor legs. We also set u12 = u® 1,,. All representations are assumed to be
unitary and finite dimensional, and we shall just call them representations. The elements
(id®@w)(y) with w € M, (C)* are called the matriz coefficients of u. We shall use the
Woronowicz quantum Peter—Weyl theorem [51], which states that for every a,f € Irr(G)
there exists positive Qq € M, (C) with gqdim(a) := Tr(Q,) = Tr (Q;") such that

o ((uf ) ug,) = dapadim(a) ™ (QAEQAN) (&), EmpreC™.  (L1)

The quantity qdim(«) is called the quantum dimension.

After these preliminaries the comultiplication Ag shall never be used, and we stress
that all occurrences of the greek letter A (without subscript G) concern generators of
quantum Markov semigroups.

Set u! € C(G)® M, (C) and u? € C(G) ® M,,,(C). The tensor product u'! ®u? is defined
as the representation uj,u?;. We call u irreducible if the matrix algebra generated by
(w®id)(u),w € C(G)*, is simple. A morphism between u! € C(G) ® M, (C) and u? €
C(G)® M,,(C) is amap T : C" — C"2 such that u*(1®7T) = (1®T)u?. Let Mor (u',u?)
be the (normed) vector space of morphisms. There is a quantum version of Schur’s lemma
which states that w is irreducible if and only if Mor(u,u) = C1. If Mor (ul,uQ) contains a
unitary element, then u! and u? are called equivalent. We write Irr(G) for the equivalence
classes of irreducible representations and Rep(G) for the equivalence classes of all finite
dimensional representations. Its elements shall typically be denoted by «,3 and ~. The
dimension of a € Rep(G) is denoted by n, and satisfies n, < qdim(«). Tensor products
and Mor are well defined on equivalence classes. For o, € Irr(G), the tensor product
a® f is equivalent to a direct sum of irreducibles ©. 1y ()M~ -7y, Wwhere m., -y = EB;Z”N is
an m,-fold copy. This decomposition is unique up to equivalence, and the set of all such
decompositions is referred to as the fusion rules. We write o C 3 if Mor (e, 3) contains an
isometry. For a € Rep(G) we denote by @ its contragredient representation.

Proposition 1.5 (Frobenius duality). For a,8,7 € Rep(G), we have Mor(o,f ® ) =~
Mor (B@ag) linearly. Consequently, if a and v are irreducible, then o C Qv if and
only if vy C BRa.

Lemma 1.6. Set o,y € Irt(G). There are only finitely many 8 € Irr(G) such that 1 C
a®pb®y.

Proof. If 1 Ca® [ ®, then by Frobenious duality we have § C@®?7, and there are only
finitely many such S. O
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 7

We let Pol(G) be the x-algebra of matrix coefficients of (finite-dimensional) repre-
sentations of G. It is given by the linear span of (id ® w)(u) for all representations
u e C(G)®M,(C) and w € M, (C)*. There is a distinguished faithful *-homomorphism
e : Pol(G) — C called the counit that satisfies

(6®id)OAG:id= (id@E)OAg.

Pol(G) carries the inner product (x,y) = ¢(y*z) and norm ||z||% = (z,z). The completion
of Pol(G) with respect to this norm is called Ly(G) and may be identified with the GNS-
space of ¢. For a € Irr(G) we let P, : Pol(G) — Pol(G) be the orthogonal projection onto
the matrix coefficients of «a.

For compact quantum groups H and G we say that H is a dual quantum subgroup of
G, notation H< @, if Loo(H) C Loo(G) and the von Neumann algebraic comultiplication
of Loo(G) restricts to Loo(H) as the comultiplication of H. In this case Irr(H) C Irr(G)
naturally, and the fusion rules and morphisms of Irr(G) restrict to Irr(H) (it is a full
subcategory).

A central multiplier ® : Loo (G) = Lo (G) is a map such that for every o € Irr(G) there
exist A, € C such that ?((Id®w)(a)) = Ay (ild@w)(«) for all a € Irr(G) and w € M, (C)*.
We refer to [29] for more general background on multipliers.

Remark 1.7. We have that (Irr(G),Mor) with the tensor products, fusion rules and
contragredients forms a rigid C*-tensor category. A large part of this paper can be
directly translated in terms of the abstract setting of rigid C*-tensor categories. However,
since our many applications are in quantum group theory, our presentation follows the
terminology of quantum group theory. Recall that by Tannaka—Krein duality, rigid C*-
tensor categories with specified fibre functor are always of the form (Irr(G),Mor) [52].

1.3. Quantum Markov semigroups

Let M be a von Neumann algebra with a faithful normal state ¢. A quantum Markov
semigroup (QMS) ® = (®,);>0 is a semigroup of normal unital completely positive maps
®, : M — M such that for every z € M, the map ¢t +— ®.(z) is strongly continuous.
Moreover, we assume that a QMS is GNS-symmetric in the sense that o(®.(x)y) =
o(x®@,(y)) for all z,y € M. The QMS @ is called p-modular (or modular) if ®,00¥ =
c?o®; for all t > 0,s € R, where 0¥ is the modular automorphism group of ¢ [43].
The QMSs occuring in this paper are QMSs of central multipliers which are always
modular and GNS-symmetric. Further, they are norm-continuous on Pol(G). It should
also be stressed that the most important of our applications are for finite von Neumann
algebras and ¢ tracial. However, in the analysis we shall also need the Haar state on
G4 = SU4(2),q € (—1,1), which is nontracial even though L. (Gy) is of type L

If @ is a QMS of central multipliers, then for every « € Irr(G) there exists A,, > 0 such
that ®¢(z,) = exp(—tAq )z, for every matrix coefficient z, of a.. The values (Aq)acnr (@)
completely determine ®. We set the generator A :C Ly(G) — La(G) to be the closure of

Pol(G) — Pol(G) : ¢ — Apzq.
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8 M. Caspers

The QMS & is called immediately Lo-compact if A has compact resolvent. The generator
A is closely related to the associated quantum Dirichlet form. In [14] it was proved that
a (general) von Neumann algebra has the Haagerup property if and only if it admits an
immediately Lo-compact QMS.

1.4. Free products

To two compact quantum groups G; and Gy one can associate a free product quantum
group Gy *Go [19]. Tt satisfies Loo (G) = Loo(G1) * Loo (G2), where free products are taken
with respect to the von Neumann algebraic Haar states. The quantum groups’s Haar state
is the free product of the Haar states of the two compact quantum groups. Moreover, the
quantum group can be equipped with a natural comultiplication, which shall not be used
in this paper. What is relevant for us is the following proposition, which describes Irr(G)
as a fusion category:

Proposition 1.8 ([49] or [11, Theorem 3.4]). Let G1 and Go be compact quantum groups.
A tensor product v1 ® -+ @y, with v; € Irr (Gy,) and k; # ki1 is called reduced. All
such reduced tensor products form a well-defined complete set of mutually inequivalent
irreducible representations of G1*Go. In other words, they constitute Irr(Gq x Gsy). The
fusion rules are as follows for reduced tensors f1®--- @[, and 1 ® -+ @y If B and 1
are not representations of the same quantum group, then

Bi® @B N D =P1® BB BN D BT

If B; and v, are representations of the same quantum group, then

(Br®@B) (M@ @) = <(51®"'®51—1)®< b Oéi>®(72®“'®%))

’L-,Oti;él

@( P, (51@---@311)®(72®---®7n)>7
i,ai:1
(1.2)
where B @ y1 = B, is the decomposition of B ®y1 into irreducibles (with possible
multiplicity). Note that in equation (1.2) the latter summand is not necessarily reduced,
but the fusion rules are hereby defined inductively.

We shall use the shorthand notation

M =EN® BT

for a reduced word.

1.5. Multiplicity freeness

A compact quantum group G is called multiplicity free if for «,8,v € Irr(G), the space
Mor(v,a® ) is < 1-dimensional. That is, 7 occurs at most once in the decomposition
of a® B into irreducible representations. When G; and Gy are multiplicity free, then in
equation (1.2) the last summation is in fact a single summand if 8 =77, and it vanishes
otherwise (it follows, for example, by Frobenius duality, Proposition 1.5). So, with the
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 9

summation over a going over irreducible representations, we record that

(BrBe)@ (11 m)
- @ @ (B1-+ Br—i)a(Yit1 -+ ¥n),

=1 1#aCBr_i+1QVi

(1.3)

where L —1 is the maximum index i for which ~; = Bx_;+1. We note that the summands
in equation (1.3) are reduced. This decomposition shall be used without further reference
in the rest of the paper.

Assumption. Throughout the entire paper we assume that all compact quantum groups
(e.g., H, G, G; and G2) are multiplicity free.

The following result should be well known and is easy to prove:

Proposition 1.9. If Gy and G2 are compact quantum groups that are multiplicity free,
then so is Gy xGo. If H< G and G is multiplicity free, then so is H.

Proof. Suppose that we have an irreducible representation o = -+« contained in
(B1+++Br)® (71 -+ ¥n). Then by considering the length, & must be one of the ith summands
in equation (1.3), with ¢ satisfying 2i = k4+n—1+ 1. But all those summands are mutually
inequivalent, by Proposition 1.8 and the fact that G; and Gy are multiplicity free. O

That G is multiplicity free has the following consequence. For 8,7 € Irr(G) and o C S ®,
there exists an intertwiner

VY € Mor(a, @)

that is moreover unique up to a phase factor. All expressions and proofs occuring in this
paper are independent of this phase factor unless mentioned otherwise.

1.6. Monoidal equivalence

Definition 1.10. Two compact quantum groups G; and G, are called monoidally
equivalent if there exists a bijection 7 : (Irr(Gq),Morg, ) = (Irr(Gz),Morg,) that maps
the trivial representation of G; to the trivial representation of G, and which for any
morphisms 5,7 and unit 1, € Mor(a, ), € Rep(G), satisfies

m(1la) = 1a, T(S®T)=n(S)@n(T),
m(857) =mn(5)",  w(ST)==(S)=(T),

where in the last equality we assume that S and T are composable. The bijection 7 is
then called a monoidal equivalence.

Proposition 1.11. Let G; and Go be monoidally equivalent compact quantum groups, so
that we may identify Irr(Gy) = Irr(Gs). Let (@})DO be a QMS of central multipliers on
Loo(G) such that ®} (o) = exp(—tAg)zq for every matriz coefficient o of o € Irr(Gy).
Then there exists a QMS of central multipliers (q)%)»o on Loo(Gy) such that ®%(z4) =
exp(—tAy )z for every matriz coefficient x,, of a € Irr(Ga).
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10 M. Caspers

Proof. The proof of this fact is the same as [24, Proposition 6.3], and is based on [5,
Theorems 3.9 and 6.1] together with a transference method. O

In a sense, one could also say that a central QMS lives on the level of the rigid C*-tensor
category [31].

2. A rigid C*-tensor category approach to gradient estimates

To a QMS on a tracial von Neumann algebra one can associate a canonical bimodule
(in principle only defined over a dense subalgebra of M) which is called the gradient
bimodule Hy. In [10], sufficient conditions were given to assure that Hy is in fact a
von Neumann bimodule that is moreover quasicontained in the coarse bimodule. In this
section we provide a categorical viewpoint on the approach in [10]. What we show is that
the methods and estimates that occur in the proofs of [10] actually live on the level of
a monoidal category. In particular, all computations in [10] can be carried out on the
level of SU,(2), after which they transfer to a much larger class of quantum groups. A
particular feature of our current approach is that the properties we consider are stable
under repeated applications of constructions like free products, wreath products, taking
dual quantum subgroups and monoidal equivalence. This should be compared to, for
instance, [26, Theorem C], where such results (and consequences for rigidity properties)
were limited to free products of quantum groups in a specific class. We thus cover a
richer class of quantum groups than has occurred in the literature so far. In particular,
this approach allows us to use the main result of [30], and we cover in particular free
wreath products and HJJ(, We prove, for instance, that H;{, is strongly solid. We will come
back to these results in subsequent sections. In the current section we introduce the main
technical definition of being ‘approximately linear with almost commuting intertwiners’
and prove that is stable under free products, monoidal equivalence and taking quantum
subgroups.

2.1. Approximately linear with almost commuting intertwiners

Let G be a compact quantum group and recall that it is assumed to be multiplicity free.
For a, 8,7 € Irr(G), B2 C a® SRy, we define

L7 ={(B1,82) € rr(G) x Irr(G) | B1 C a® B, 2 C B1®7},
REY ={(B1,82) € Irr(G) x Ire(G) | B € B®7,62 Ca® B},

L7, ={8 ex(G) | (B1.8) € 157},
37, ={B1 €1m(G) | (B1.B:) € RS}

Lemma 2.1. Given o,y € Irr(G), the number of elements in the sets Ly, Rg”, Lg’g2,
Rg:;; is bounded uniformly in 3,53s.

Proof. Suppose that 81 C a®f,6; € Irr(G); then by Frobenius duality (Proposition 1.5)
we have that § Ca® (1. But this can only happen if dim(8) < dim(a)dim(f), so that
dim(B;) > dim(3)dim(@)~!. By counting dimensions we see that a® 3 can therefore have
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 11

at most dim(@) irreducible inequivalent subrepresentations. Applying the same argument
in turn to 81 ® B®~y, we see that there are at most dim(¥) irreducible representations
contained in this representation. O

Let @ := (P;)i>0 be a QMS of central multipliers on G. The following definition is
our main technical tool. Recall that we need G to be multiplicity free to define up to a
phase factor uniquely determined intertwiners V;‘“ﬂ7 a, B,y € Irr(G). So from this point
the multiplicity freeness is being used.

Definition 2.2. We say that ® is approzimately linear with almost commuting intertwin-
ers if the following holds. For every a,y € Irt(G), there exists a finite set Agg := Ago(c,y) C
Irr(G) such that for every § € Irr(G)\ Ago and Sz C a® S ®1, there exist bijections (called
the v-maps)

v (3 8,82) == (-3 B,82) : LG}, — R 3,

such that the following holds. There exists a set A C Irr(G)\Agp and a constant C :=
C(a,7y) > 0 such that the following are true:

(1) For all B € A,(B1,52) € Ly, we have
|As = Ap, = Dy(py;,6.) + Dy | <Cadim ()~ (2.1)
and
|Aﬁ_A51| SC? (22)
and for all 8 € Trr(G)\ (AU Ago), (81,82) € Ly, we have
Ap—Ap, = Dy(sy38,80) + A, =0 (2.3)
(2) For all B € A,(B1,82) € Ly, we have

inf HV@W (ngﬁ ® idv) — 2V Brb ) (ida ® Vf(gl;ﬁ,ﬂz)) H < Cqdim(8)~! (24)

and for all 3 € Trr(G)\(AU Ago), (81,B2) € Ly, we have

: B1, af o a,v(B1;B,B2) [+ B, —
ing [V (Vi @idy) =V 0 (a@Vig o )| <0 (29

(3) There exists a polynomial P such that for every N € N we have
#{feA[Ag <N} <P(N) (2.6)
and B+ §(B8 € A)qdim(B)~! is square summable.

Remark 2.3. In summary, Definition 2.2 entails the following. We cut Irr(G) into three
disjoint sets. Each of these sets has a size condition and a condition on estimates of
eigenvalues of A, as well as certain almost commutations of intertwiners:
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12 M. Caspers

Aoo A The rest: Irr(G)\(Aoo U A)
-Finite set -Grows polynomially compared to A | -No size restrictions
-No conditions | -Estimates (2.1),(2.2) and (2.4) -Vanishing of equations (2.3),(2.5)

We shall usually refer to property (1) as being approximately linear and (2) as having
almost commuting intertwiners. We note that they have to be satisfied for the same
choice of A and Agg, which is why we did not define ‘approximate linearity’ and ‘almost
commuting intertwiners’ as independent notions.

Theorem 2.4. The property of ® being approzimately linear with almost commuting
intertwiners is stable under monoidal equivalence of compact quantum groups.

Proof. Monoidally equivalent compact quantum groups have the same representation
category seen as a rigid C*-tensor category. In particular, the quantum dimension,
norms of intertwiners and irreducible representations with their fusion rules are invariant
under monoidal equivalence (see [5, Remarks 3.2, 3.4 and 3.5]). Since all properties in
Definition 2.2 are expressed in these terms, the theorem follows directly. (]

The following theorem is clear to specialists; for completeness, we give its proof:

Theorem 2.5. Suppose that ® is a QMS of central multipliers on a compact quantum
group G. Suppose that H is a compact quantum group with H<G. Then Irr(H) C Irr(G)
and Loo(H) C Loo(G). In particular, the restriction of ® to Loo(H) is a QMS of
central multipliers. Furthermore, if ® is approzimately linear with almost commuting
intertwiners, then so is its restriction to Lo (H).

Proof. Indeed, if H< @7 then there exists a surjective x-homomorphism 7 : £ (@) —

foo (]ﬁl) Since £ (@) is an ¢o-direct sum of finite-dimensional simple C*-algebras (i.e.,
matrix algebras), 7 must be either 0 or faithful on each of the simple matrix blocks.
Then /o, (11?1) is given by the fuo-direct sum of all matrix blocks for which 7 is faithful.

The matrix blocks of /. (@) are labelled by Irr(G) and the matrix blocks of £ (ﬂ)
are labelled by Irr(H), which is thus a subset of Irr(G). Since Lo, (H) is generated by
the matrix coefficients of Irr(H), it must thus be a subalgebra of Lo (G). We see that ®
restricts to Lo, (H) and is again a QMS of central multipliers. It is clear that ® restricted
to Lo (H) satisfies Definition 2.2, since one has to check fewer conditions than for the
original ® (in particular, the sets La %4, and Ry} and the bijection v*7(:; 8, 52) stay the
same but need only be considered for a, B,y € Irr( ),B2 Ca®pRY). O

2.2. Free products

Our next aim is to show that Definition 2.2 is stable under free products.

Theorem 2.6. Let ®! and ®2 be QMSs of central multipliers on respective compact
quantum groups Gi and Go. Let & = O % ®2 be the free product QMS of central
multipliers on G, xGo. If &1 and 2 are both approzimately linear with almost commuting
intertwiners, then so is .
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 13

The proof of this theorem will take the rest of this section, for which we will fix the
following notation. First we let A be the generator of ® with eigenvalues A,,« € Irr(G).
In particular, this defines A, for the subsets Irr(G;) and Irr(Gsy) of Irr(G). The
straightforward proof of the following lemma can be found at [10, Beginning of Section
5]:

Lemma 2.7 (Leibniz rule). For 8= f1---5; € Irr(G) a reduced word, we have

!
Ap=) Ag,.
r=1
Now let

a=0Q1 -0, Y= TYm

in Irr(G) be reduced words of representations of lengths k and m, respectively. So
a;,i=1,...,k, is alternatingly in Irr(G;) and Irr(Gz), and similarly for ;. When «;,7, €
Irr(Gq) (resp., a;,y; € Irr(Ge)), we define A} (cu,;) and Al (au,7y;) (resp., A3 (ci,v;)
and A% (a;,7)) to be the sets Agg and A of Definition 2.2 for Gy (resp., G2) with respect
to a;,7; and ®' (resp., ®?). This makes sense because of the assumption that «; and v;
are representations of the same quantum group.

Definition of Agy and A associated to a,y € G. The set Agg C Irr(G) will consist of all
representations 8 € Irr(G) of the following form:

e [ equals a reduced word 8 =@y - @k—i+17; -7, for some 0 <i <k, 0<j<m.
e [equals areduced word S =ak - Qg—i+18i417; 7y for some 0 <i <k, 0 <j<m,
and at least one of the following holds:
Bi+1 € Afo (ck—s,7vj+1) when there is s € 1,2 such that ag_;,vj+1 € Irr(Gy),
= 1C a5 ®PBit1 ®Vj+1-

Since Afy,s = 1,2, is finite (for the first sub-bullet) and we have Lemma 1.6 (for the
second sub-bullet), we see that Aoy is a finite set. We set A C Irr(G) to be the set of
representations 8 € Irr(G) of the following form:

e [equals areduced word 8 =ak - @g—it18i417; -7y for some 0 <i <k, 0<j<m,
and Bi+1 € A% (ag—;,7+1) when there is s € 1,2 such that ag_;—1,7j+1 € Irr(Gy).
As part of the proof of Theorem 2.6, we shall at this point establish that Definition 2.2,
property (2.2) holds.
Lemma 2.8. Property (2.2) holds for G and the choice of A.

Proof. The QMSs on G; and Gy are both approximately linear with almost commuting
intertwiners. Therefore, let P be a polynomial such that for all possible choices s = 1,2
and 1 <4<k, 1<j<msuch that a;,v; € Irr(G;), we have for all N € N that

#{Fe A (@) | 45 <NJ < P(OV).
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14 M. Caspers

Suppose that 8 € A. Then from the definition of A we see that the length of the reduced
expression 8 = 1 ---5; cannot be longer than the sum of the lengths of o and  minus
1 —that is, { < k+m — 1. Moreover, we may write 5 =13 =@k - -Ek,iﬂﬂiﬂﬁj Rt
for some 0 <i<k, 0<j<m, with i4+j+2 =1, and there is an s = 1,2 such that
ﬂi+1 € A’ (Oék_i,’)/j+1). We have by the Leibniz rule AB = Aﬂl"'ﬁl = Zi:l A[gr. If AB <N,
then certainly Ag, ., < N. Therefore, we crudely estimate

#{B€A|Ag <N} < (k+m—1)2P(N).

This concludes the proof of the growth bound on A as in Definition 2.2(2.2). From a
similar reasoning, it also follows that 3+ §(3) qdim(8)~! is square summable. O

Definition of the bijections v®P(-;5,82) for G. Take 8 € Irr(G)\Agg. There are three
cases to be treated.

Case 1. Assume that there exists some i < j such that we have a decomposition as a
reduced word

B=(BrBi)(Bix1--Bi-1)(Bj ),

where 1 <1 is the smallest index for which §; is not the conjugate of ax_;11 (and if this
does not exist, then ¢ =1) and j <! is the largest index such that §; is not the conjugate
of v, ;41 (and if this does not exist, then j =1). Heuristically, this means that in a® 8®7,
the letters of a can annihilate at most the first ¢ — 1 letters of 8, and the letters of ~ can
annihilate at most the last [ — j letters of 5. More precisely, we get the following. The
irreducible representations contained in o ® 8 ®y are precisely given by representations
that have a reduced expression

B (Bi1---Bj—1)B", with B/ Ca® (Br---£:),8" C (B;-- i) ®~ irreducible.

Furthermore, we have singleton sets
ngg/(gm..ﬂj,l)gu = {ﬁ/(ﬁﬁl"'/@l)} and Rg:g/(,giﬂ...g%l)gw = {(/81"'ﬂj—1)/6”}~

We therefore set the bijection from Lg:g/(ﬁi+l"‘ﬁj—l)ﬁ,/ to Rg:g’(ﬁi+1~-ﬁj_1)[3” by
v (B (Big1---B1); 6,6 (Bi1---Bi-1)B") = (B1... Bj—1) B".

Case 2. Assume that we have a reduced expression

B=P1 B =0 Qk—it1Bi+17; V1 (2.7)

for some 0 <i <k, 0<j<m, with i+ j+1=1[. Moreover, since 8 &€ Ay, we assume that
Biv1 & Ajo (k—i,Vj+1),5 =1,2.

A representation contained in o ® 8 ®y can have two different forms, which determine
Case 2 and Case 3. In Case 2 we assume that ay_;, ;41 and ;41 are representations of the
same quantum group. Moreover, we assume that we have a subrepresentation of a® S®~y
of the form ay---ar—i—18;' 1 7j+2- - Ym, where i’ | C ap_; ® i1 ® ;41 is irreducible.
Further, 8}, is nontrivial, since § ¢ Agg. So the expression oy - ok—i—18{ 1742 Im
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 15

is reduced. In this case, since we already observed that 5,11 & Afy (qk—i,vj41),8 = 1,2, so
that the sets below are defined, we have

Sl = . / . ak i Yi+1
Lg,,. akﬂ.flgé;mﬂ“.%—{m ap—i-1B8i11Biv2 Bu | Bipa € Lyl g +1}7

% = ... B33 . ! A u"/]+1
Rﬂ,oér"ak—i—lﬂ;f,_leJrz"'Vm 7{B1 ﬂzﬁi+173+2 Tm | 6i+1 € Rﬁ1+1, i }

Qg — 17'YJ+1
Bi+1,8i4 1

Qg —iy V41

Since there is by assumption a bijection v ( ﬁz+1,ﬂl+1) — R&H’ﬁ;,+1 , We may

set

v(ag - on—i—1Bi 1 Bive - BiiBran - a—i—1 B V42 Ym)
=B Biv(Biy1; Biv1: Bt ) Viv2  Yms

for ;. € Lg";;ﬁ; By the previous, then, this is a bijection

.. . /" . LT a,y
(- B ak_l_161+173+2 Ym) 'L@Oél'--ak—i—13£;17j+2'“7m *>Rﬁ,al-~~ak—i—1ﬁ,/;'_*_17j+2---7m'

Case 3. We still assume that [ is written as equation (2.7) and treat the remaining
case. The other form that a representation contained in a® 8 ®y can have is a reduced
expression 3’8" with either ' C a® (q - @g—i—18:+1) and B’ C (7] 71) ®vor B C
a® (ay--ag—;—1) and B’ C (5i+177-“")’1) ® 7. We treat the first of these cases; the
second one can be treated similarly. In fact, both are rather close to Case 1. We get

ﬁ 5 g = {ﬂ 'Yj }, Rg BB = {ak o 'akfiflﬁH»lﬂ”} .
Therefore we may set the bijection Ly’ 5 — R 35, by

V(BT T3 BB B") = T Bmi1 Bisr B

Remark 2.9. Note that we have exhausted all the cases for 5 & Agg. Indeed, the only
other possible form that a 8 € Irr(G) can have is 8= ;-8 = Q- a7, -7, for
suitable 4,7, but those representations are in Agg. It should also be noted that if g falls
into Case 1, then g & A.

In the following proof we need the following notation. Set V' : K3 ® Ko — K3 and W :
H,® Hy — Hz, with K; and H; Hilbert spaces. Then

VRIW :KiQH @ Hy,® Ky — K3 ® H3

is the map that sends & ®@n; @2 ® & to V(& ® &) @ W(n1 ®12). Note that if H3 =C,
then the range space simplifies to K3 ® Hz = K3.

Proposition 2.10. Properties (2.2) and (2.2) of Definition 2.2 hold for the foregoing
choices.

Proof. We treat the three cases previously described separately. In Remark 2.9 we already
noted that for 8 € Irr(G) as in Case 1, we have 5 ¢ AU Agg. So in Case 1 we must prove
equations (2.3) and (2.5) only.
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16 M. Caspers

Proof of equation (2.3) in Case 1. Take § € Irr(G) as in Case 1, so that 8 ¢ AU Ago.
We recall from the discussion of Case 1 that any irreducible representation contained in
a® B ®~y can be written as a reduced expression of the form £’ (8;41---5;-1) 6", i < J,
with 8/ Ca®py---B; and " C B;--- By ®7 irreducible. Further, we have one-point sets

oy o,y _ Y
Lﬁ75’(5i+1 Bi—1)B" T {ﬁ BH—l ﬁl}’ Rﬁvﬁ/(ﬁiﬁ—l"'ﬂj—l)ﬁ” _{51“'51—15 }7

and the v-bijection maps the one set to the other. We therefore conclude that
equation (2.3) equals

Aﬁ - AB’ﬁiﬂ'"ﬁl - Aﬁl-"ﬁj 187+ Aﬁl(ﬂi+l“'5j—1)ﬂ”

-1 j—1
_ZA'B — (A@/Jr Z Aﬁ > — (A@// JrZABT) + (Aﬁ/ +A/3H + Z A5T> =

r=i+1 r=1 r=i4+1

Proof of equation (2.5) in Case 1. To prove equation (2.5), we note that for a suitable
choice of phase factors,

,B B1Bi o a,B1---Bj-18" B1Bi o
Vﬁaﬁ PR V;f ' ®1d5‘+1“'517 Vﬁ/ﬁqlﬂ ]ﬁgl 187 Va " ®1d5i+1“'5'—15”7
By

B,y _; By B'Bi Bi,y
Vﬁl"'ﬁj—lﬁﬁ — ldﬂr“ﬁj—l ®V 1" P Vﬂ 61:—11 Bl 16“ — ld,B ﬁ7+1 5] 1 ®V "

By using these identities in the first and last equations we find the following. The second
equation is elementary, since the intertwiners commute as they act on different tensor
legs. So we get

Vo o (Vi @idy) = (idas s, @ Vi)
o (V;fﬁl'"ﬂi Dids,, .5, ®id7)
= (Vo P @ida, )
o (ida @idg, g, @V )
= Vi o (ida ® Vﬁ%jﬂj—lﬁ”) :
This proves that equation (2.5) is true for 8 in Case 1.

Proof of formulas (2.1) and (2.3) in Case 2. Now set 8 € Irr(G) and assume that we
are in Case 2, so 8 & Agg. Take 8" C a® 8 ®+, which in Case 2 is assumed to be of the
form of a reduced expression v ---ag—i—18{1Vj+2 " Ym, where ap_;, Biy1 and vj41 are
representations of the same quantum group and i, ; C ag—; ® Bi41 ®yj41 is irreducible,
nontrivial and not contained in Ay (ag—i,7j+1)- Take 87, € L3" “g,’,+1 so that

T ) 4 PR Yy
F=a ak*l*lﬁﬂ”lﬁHZ pre Lﬂ arag—i—1 B Vit Ym
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 17

and the v-image of 8’ is 31 ---Bv (ﬁgﬂ) Yit2Ym. We have

l k—i—1
Ap—Dg — Ay +Dgn = <ZA5T> ( Z Ao, + 0 + Z Aﬁr>

r=1 r=i1+2

ZAB +A,( Z A,

r=j5+2
k—i—1
+ Z Aar"‘Aﬂ” + Z A,
r=j42

=Ap =D, —Dugar,,) + D81,

So since the QMSs on G; and G4 are approximately linear, we can conclude as follows.
When Si11 € A (ag—i,75+1),8 = 1,2, we see that there is a constant C' > 0 depending only
on a—; and 741, such that

Ag, — A —A v(B! )+Aﬂ1ﬁkl‘ Squim(ﬁi+1)_l

it1 it1

So by equation (2.7) and the multiplicativity of the quantum dimension,
A3i+1 — AB£+1 — Av(5§+1) +Af31{1¢-1’ <C (H qdim(ozr)> < H Qdim(Vr)> qdim(ﬁ)_l.
r=1 r=i+2
This concludes formula (2.1). When 841 & A® (k—4,7V5+1),5 = 1,2, and as we have also

assumed that 8,41 & AJy (k—s,Vj+1),8 = 1,2, we find

[ A =B, = By, )+ A0

and we conclude equation (2.3).

Proof of formula (2.2) in Case 2. We stay in the setting of the previous subproof
and assume that 5,11 € A% (ak—s,7j41),8 = 1,2. Recall that in Case 2 §’ must be of
the form oy - op_i_18;, 1 Bite---f, with 1 # 5[, | € Lak ";f,“ In that case, 8-+ f8; =

Q- - Qg—it+1. This gives

AB,:@ ) (zAﬂ,Mﬁ, ffka,)

r=1 r=i+2
i—1 k—i+1
= Ag, .+ A6i+1 — A@§+1 — Z A, .
r=0 =
We therefore estimate
i—1 k—i+1 i—1 k—i+1
|AB _A5’| < ZAak—r - Z Ao, |+ ‘A,BH»I _AﬁéJrl < Z A—r Z Ao, |+C,

r=0 r=1 r=0
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18 M. Caspers

for some constant C' that depends only on « and =, since both the QMSs on G; and G,
are approximately linear. This proves that formula (2.2) holds for 5 € A in Case 2.

Proof of formulas (2.4) and (2.5) in Case 2. To prove formula (2.4) for Case 2, note
that up to a phase factor,

o, B a,B1Bit1

ayog—i—18iy 1 Bitva B = Val"'ak—i—15;+1 ®1d’8’i+2"'5”
0(/.1“31.V.ﬁ%v(ﬁgltl)jj+2”.’ym = Va’ﬁl..'ﬁi,v(ﬁ’g/? ®1d . )
1018 1 Vi+2 Ym ayag—i—18] Vit2:-Im
Vﬁﬂ —ida . V57+1 Biy
ﬂl'“BiU(B.E+1)'Yj+2“"Ym Br8s @

(ﬂl+1 )'Y]+2 Ym ’

arok_i—1B] 1 Bita By
arag—i—1 B Vit Ym

. +151+2 B,y
=1iday-ay_;—1 @ Vg

1+1’YJ+2 Ym
Write z ~p y for ||z —y|| < D. Let D =Cqdim(Bi41) " if 8,1 € A* (ag—i,Vj+1), and let
D =0 otherwise. We find since G; and G, have almost commuting intertwiners that

a1 @p—i—1Bi11Bit2 - Biyy a,B :

a1 Qg 15§QFI’Y7‘+2“"Ym °© (VOLI"'ak—i—152+15i+2"'5l ®1d7)

Bit1Biv2:Bu, ,B1Bi : :

Vi Ym ro—i—1Biy,

o z+17’YJ+1 Bit2BLY1 Y o s
= (ldal QUi 1®V Vl ®ld’Yj+2“"Ym

(ldal s ®Vak irBit1 gvlak_i+1~..ak,ﬁl..ﬂi ®idg,,,. ®id7)

=P (d cnia @V )mﬂ%dm)

o (ida ®idg,...s, ®Vyﬂ(¢g[17’>’)j+1 < V131+2~~~BL7’YL~’YJ ®id’y,~+2~~’ym)
i1

a, - ﬂz’U 1+1) . . . BH»I B,y
( Qi1 Bl ®ld'Yj+2""‘{m> o <1da ®idg,...3, @V SE

V; B ( 1+1)’Y./+2 “Ym <lda®V’67

Ak —j— 1/3L+1’YJ+2 Ym

Biv (5;+1)w+z~-wm>'

So formulas (2.4) and (2.5) hold in Case 2.

Proof of formulas (2.1) and (2.3) in Case 3. We shall write
B=p1 B =0 Q—it1Bi+17; V1

This case is essentially the same as Case 1 for i+1=j (so that the terms f;j41---8;_1 in
the proof of Case 1 vanish). Nevertheless, we provide full details here.

Consider the subrepresentation of @ ® 8®+~ given by the reduced word 3’5", where 3’ C
a® (- ak_i118i+1) and 8" C (ﬁjn-ﬁl) ®7. (The case where 8/ C a® (k- Qk—i+1)
and " C (ﬁiﬂﬁjmﬁl) ®y can be treated in the same manner, or by taking adjoints.)
We recall that

Lgher ={87; M} and Rgjg = {0k Qk-ir1Bi+18"}.
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 19

We write v as shorthand for the bijection between these singleton sets. We now find that

JAV R z+1ﬁz+1“rj AB/’Y] Y1 Aak"'ak—i+15i+lﬂ,'+A,3/B”
J
— <A5i+1 Z AaﬂrZA ) - <A5/+ZA7T>
r=k—i+1 r=1

k
—<Aﬁi+1+Aﬁ”+ > Aw) (Apr +Ap7) =0
r=k—i+1

This proves equation (2.3) and certainly formula (2.1); in fact the expression always is 0.

Proof of formula (2.2) in Case 3. Formula (2.2) can be proved as in Case 2; we omit
the details here.

Proof of formula (2.4) and (2.5) in Case 3. For suitable phase factors for the
intertwiners, we have

Vﬁ "BiyarB T VCE,B]M[RH] ®idﬂi+2‘“ﬂu Vﬁaﬁﬁ:} Pl = V§»51~~/3,-+1 ®idgr,
v 75 B = =idg,..3,,, ® @ Vit 5l7’Y’ Vﬂﬁﬁﬁ/;ﬁ—z‘“ﬁzﬂ =idy ® yBit2 Py

By using these identities in the first and last equations we find the following. The second
equation is elementary, since the intertwiners commute as they act on different tensor
legs. So we get

VB/B;?J&'“BLKYO (Vﬂof,ﬁﬁ;r?ﬁl ®ldry) — (1d6’ ®V61+2 6177) o (ng,ﬁlmﬁiﬂ ®1dﬂb+2,@l ®1d'y)
B1eeBi : : : Bit2Bi,y
= (ng 1 +1 ®1dﬁ,,> o (lda®ld51"',3i+1 Vﬁ”+2 1 )
o, B Biv1 B’ ’y
56" (lda @V, Bmﬂ") :

This proves that equation (2.5) and certainly formula (2.4) are true in Case 3. O

3. Approximate linearity with almost commuting intertwiners implies
immediately gradient-S,

One of the main tools introduced in [10] is the notion of a QMS being immediately
gradient Hilbert—Schmidt or immediately gradient-Ss, where Sy refers to the Schatten—
von Neumann noncommutative Lo-space. The aim of this section is to show that
if a QMS is approximately linear with almost commuting intertwiners, then it is
immediately gradient-Ss. The immediately gradient-S; property, together with some
additional assumptions, implies rigidity results for von Neumann algebras. The proofs
of the latter facts were given in [10] and shall not be repeated here.

We note in the following definition that since ® is a QMS of central multipliers, the
x-algebra Pol(G) is in the domain of the generator A.

Definition 3.1. Let ® = (exp(—tA))¢>0 be a QMS of central multipliers on a compact
quantum group G. The QMS & is called immediately gradient-Ss if for every a,c € Pol(G)
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20 M. Caspers

the map
U3 2Qy, > exp(—tA)(A(aze) — Alaz)e — aA(ze) + aA(z)e)d,, x € Pol(G),
is bounded L2(G) — Lo(G) for ¢ > 0 and moreover Hilbert—Schmidt for ¢ > 0.
We first need the following estimate for the isotypical projections.

Proposition 3.2. Suppose that ® is approximately linear with almost commuting
intertwiners. Let a,c € Pol(G) be matriz coeffiecients of, respectively, o,y € Irr(G). Let
Aoo = Aoo(,y) and the v-map be as in Definition 2.2. There exists a constant C =
C(a,c) >0 such that for all B € Irr(G)\Aoo, (81,582) € Ly, and every matriz coefficient x
of B we have

| Pay (Pa, (az)c) = Pa, (aPy(pyi5,6,)(20)) ||, < Cadim(8)~16(8 € A)||]l2,

where v and A are as in Definition 2.2.

Proof.

In this proof we identify Lo (G)® M, (C) with M,(Loo(G)). For an element X €
My (Lo (G)) and vectors &,n € C*, we thus have under this correspondence (X¢&n) =
(id®we, ) (X) € Loo(G). We shall also write m := (0,...,0,1,0,...,0):,1 <m < s (1 at the
mth coordinate) for the orthonormal basis vectors in C*. Let u®, u® and u” be some
concrete representatives for «, 8 and .

Set a = (u4,j), c = (WYm,n) and = = (u’k,l), with 8 € Irr(G)\ Ago. By the Woronowicz
quantum Peter—Weyl theorem we find

lall3 = adim(@) " (Q45,Q41),  llzl3 = adim(8) " (Q3k.Q}k),
Jel3 = adim(7)~* (@ m,Q3m). 3.)

We have

P, (aPusy;, (wc)) =<u"2 (Vﬂi’”(ﬁ“m))*(l@gvﬁﬁ 5 )) i®@mek, (Va v(ﬁl,m)
* ( VU%@H 52)) j®n®l>
and

Ps, (Pgl(ax)c):<u62 (VB‘?@V) (V;’Bm) i@mak, (Vﬁi@”) (ng’ﬁm) j®n®l>.
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 21

For any z € T, we have

Ps, (aPy(p,:,) () = Ps, (P, (ax)c)
= (= () (19 %ifm)
() (13701 iemok () (1943, ont)
(s () (o) somon () (4
— (V@) (103 ,,) )ienstl).
(3.2)

We shall estimate the last two lines. The norm of the first of these lines can be expressed
by the Peter—Weyl theorem (equation (3.1)) as

o (5 (1025) () (50) o
< (VY (18vig ) denel),

adim(82) "' || @4, (Vi) (1eviga)
. (VﬁB;@v)* (Vﬁoiﬁ ® 1)*) i®m®k‘
A0 (o) soned],

((Vﬁo;,v(ﬁuﬁﬁ) ) (1 ® Vﬁ’i;m)) ’

— (V) (veler) ) Qiio@ime i .

2

< qdim(f3,) "

By Definition 2.2 there exists a constant C > 0 and zg € T such that
s a,v(B1iBa) ) * 8, * 8187\ (1B 1) )
H<u 2 ((Vﬁz 1582 ) (1®Vv(ﬁ71;52)) — 20 (Vﬂ; ’Y) (Vﬁl ®1) >z®m®k7

a,v(BiiB2)\ " B,y s
X(Vﬁz ' 2) (1®Vv(ﬁ1;[32)> J®n®l>”2 (33)

1 1 1
< Cadim(8) ! adim(82) 158 € 4)[QAiw Qime QTk| .
Similarly, the second line in equation (3.2) can be estimated with the same zg € T as
o (o) somo ()’ (v

av(B1;62) " B8, "
(V) (Vi) Jienen)], (34)

< Cadim(8) ™ qdim(B2) 7165 € 4) | QFi © Q3 m® QT

‘2'
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22 M. Caspers

Combining formulas (3.2), (3.3) and (3.4), we get

Hpﬁz (aPU(51§ﬁ2)(xc)) _Pﬁz (Pﬁl (ax)c) H2 < Qquim(ﬁ)71
x qdim(B2)"'5(8 € A)|Q2i QEm® Q2 k|,

Then using equation (3.1),

||P/32 (aPU(ﬁl;ﬁz)(Ic)) — Pg, (P51 (a‘r)c)HQ
qdim(a) qdim(8) qdim(y)

<2Cqdim(B)~16(B € A)

lallzflzll2flel2-

qdim(2)
This concludes the proof, since the fraction ;if((ﬁ@) is bounded for all pairs (3,82 with
BoCa®pB®y. O

Theorem 3.3. Suppose that ® is approximately linear with almost commuting intertwin-
ers. Then ® is immediately gradient-Ss.

Proof. We use the same notation as in the proof of Proposition 3.2. Let a,c € Pol(G) be
matrix coefficients of, respectively, o,y € Irr(G). Say that a = (a,n) and ¢ = (v(,)). Let

eiﬁ, 1 <i <ng, be orthogonal vectors in Hg such that <Bef,e§> is orthogonal in Lo (G)
[19, Proposition 2.1]. We must show that for any ¢ > 0,

v ||t ((Beses))|
1(Bewenl,

2 < oo0. (3.5)

D

Belrr(G)4,j=1

Let x = (Be;,e;) for some fixed 8 € Irr(G), 1 <i < ng. We start by examining the term

U2 (z) = Aaze) — Aaz)c —a(zc) + aA(z)c

= > (D, Ps, (Ps,(ax)c) — A, Pa, (Ps, (az)c))
(B1,B2)€Ly”

+ Z (_AB{ sz (aPBi (.’L‘C)) -i-AﬁPﬁQ (G’PB{ (acc))) .
(B1.B2)€RS™

Now if 8 & Agg, then we may write this expression as

Downloaded from https://www.cambridge.org/core. TU Technische Universiteit Delft, on 17 May 2021 at 06:28:59, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51474748021000165


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748021000165
https://www.cambridge.org/core

Riesz Transforms on Compact Quantum Groups and Strong Solidity 23
\I'S’b(x) = A(axc) — Alaz)c — alA(xc) + aA(x)c

= Z (Aﬁzpﬂ2 (P/Jﬁ (aac)c) - Aﬁl Pg, (P/BI (a’m)c)
(B1,B2)eLy ™

— ANy(1:62) Py (aPo(sy,) (7€) + Ap Pa, (aPy(s,5,) (20)) )

= Z (Aﬁb - Aﬁl - Av(ﬁl;ﬁz) + Aﬁ) Pﬁ2 (apv(ﬁuﬁz) ("TC))
(B1,B2)€Ly”

+(Bp, = Ap)(Ps, (aPy(p,:,) (€)) = Pp, (P, (az)c))

Since || Pg, (aPy(s,:8,)(x)) ||, < lallllcll[|z]]2, we estimate

I

a,b
lort@ = X exp(—tan) |As = As = Augis + A5 lallliellz]2
(B1,B2)€Ly” (36)

+exp(—tA52) |A51 - Aﬂl HP,B2 <P31 (a;v)c) - sz (aPU(ﬁl;ﬂ2)(mc)) H2 :

Since the semigroup is approximately linear with almost commuting intertwiners, we see
by Proposition 3.2 that there exists a constant C' > 0 depending only on a and ¢, such
that

|| Ps, (Ps, (az)c) — Ps, (aPy(s,.p,)(xc)) ||, < CF qdim(B)716(8 € A)||]a,
as well as
|Ap, = A, — Ay(pyp) +Ds| < Cadim(B)716(8 € A)
and, when 8 € A,
|Ag, —Ag| <C2.

Combining this with formula (3.6), and estimating exp (—tAg,) < C’exp(—tp) for some
constant C’ > 0 for all 8,35 in the summations, we find

|t @), < ca+lallleadim@) o e a) Y exp(—tdg)al.
(B1,82)€Ly ™
< CC'(1+jallle])) adim(8) ' 8(8 € A) (#L§™ ) exp(—tAg) a2
By Lemma 2.1 we have that #Lg"y is bounded in 3, with the bound depending only on «

and . We may therefore assemble terms and conclude that there exists a constant C'(a,c)
depending only on a and ¢, such that

|w* @), < Clae)adim(B) 7158 € A)exp(—tas)|al.. (3.7)
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24 M. Caspers

We can now estimate term (3.5) as follows, where in the last line we use the fact that the
classical dimension is smaller than or equal to the quantum dimension:

ob €i,€5 ’ ng
S |we s >>Hz<c<a,c>2zzqdimw>2exp<_m5)

setm@\Awiimt  IBeses)lly ]

< C(a,c)? Z qdim(ﬁ)an% exp(—2tAg) (3.8)
BEA

< Cla,c)? Z exp(—2tAg).
BeA

In turn, we may estimate using Definition 2.2(2.2) and get

Z exp(—2tAg) = Z Z exp(—2tN) < Z P(N)exp(—2tN) < cc. (3.9)

BEA NeN BEA, NeN
N<Ag<N+1

Combining formula (3.8) and (3.9), we see that for ¢ > 0,

ot e ot |

> DS

BeIrr(G)\ Ago %=1 <Bei7€j>||2 B BEIrr(G)\ Ago iri=1 H<66i7ej>||2
+C(a,c)? ZP Yexp(—2tN) < oo
NeN

So formula (3.5) is finite as Agg is finite.
Finally, set = € Pol(G) and write x5 = Ps(x) so that @ =} 5y, ) zs. By the triangle
inequality, formula (3.7) and the Cauchy—Schwarz inequality, we have

U5 @), < || D Pa(a)|| +_ Cla.c)qdim(B) || Paall,

BEAgo 9 BEA

<|| Y Ps(a)| +Clac) | Y adim(B)> > 1Pzl
BEApo 9 BEA BEA

< | 1+C(a,0) | Y qdim(B)~ > Ba(@)| +[D P

BEA BEAoo 9 BEA 9

N

<V2{1+C(a0) | Y adim(p)~? Y. Pou

BEA Belrr(G) 9

This gives the boundedness of ¥g'“ and concludes that @ is immediately gradient-Sa by
Definition 2.2(2.2). O
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Riesz Transforms on Compact Quantum Groups and Strong Solidity 25

Recall that we say that a QMS is immediately La-compact if for every ¢ > 0, the map
2y = Oy (2)82, is compact as a map on Ly(G). Equivalently, the generator A > 0 has
compact resolvent.

Theorem 3.4. Let G be a compact quantum group with the W* CBAP with constant
A. Suppose that G admits a QMS that is immediately gradient-Sy and immediately Lo-
compact. Then the following are true:

(1) If G is of Kac type, then Lo (G) is strongly solid.
(2) If Loo(G) is solid and A =1, then Loo(G) is strongly solid.

Proof. Part (3.4) was proved in [10, Proposition 7.9] and is based on the results of [6].
For part (3.4) we see by [10, Section 3.2] (based on [17]) that there exists a closable real
derivation 8 : Pol(G) — Hp into an L (G)-Loo(G) Hp such that A = §*9. Further, since
® is immediately Lo-compact, A has compact resolvent. Moreover, by [10, Proposition
4.3] (see also [12, Theorem 3.9]), this bimodule Hy can be constructed in such a way that
it is weakly contained in the coarse bimodule of Lo (G). It follows then from the main
results of [34, Corollary B] that L., (G) is strongly solid; we note that [34, Corollary B]
is stated only for group von Neumann algebras, but it holds in this context as well (see,
e.g., [10, Appendix]). O

Combining Theorems 3.3 and 3.4, we conclude the following main results of this paper:

Corollary 3.5. Let G be a compact quantum group of Kac type with the W*CBAP.
Suppose that G admits a QMS of central multipliers that is approximately linear with
almost commuting intertwiners and immediately Lo-compact. Then Lo (G) is strongly
solid.

We also get the following corollary, which shall not be used further in this paper:

Corollary 3.6. Let G be a compact quantum group with the W* CCAP such that Lo (G) is
solid. Suppose that G admits a QMS of central multipliers that is approximately linear with
almost commuting intertwiners and immediately Ls-compact. Then Lo (G) is strongly
solid.

4. Quantum Markov semigroups and differentiable families of states

We prove that SU,(2) admits a QMS of central multipliers that is approximately linear
with almost commuting intertwiners. Parts of the proof compare to our analysis from [10].
However, we present a much more conceptual and shorter approach by making use of
generating functionals. We are indebted to Adam Skalski for showing us the argument
contained in Section 4.2.

4.1. Preliminaries on quantum SU(2)

Definition 4.1. Let G4,q € (—1,1)\{0}, be the quantum SU(2) group. It may be defined
as follows. Consider the Hilbert space f2 (N>¢) ® ¢3(Z) with natural orthonormal basis
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26 M. Caspers

€; ® fr,i € N>g,k € Z. Define the operators
ae; ® fr, =V 1—q¢*ei_1® fi,
Ve ® fr. =q'e; ® fr,
and the comultiplication determined by
Ag,(a)=a®@a-q¢y"®7,  Ag,(7)=7®@a+a"®7.
It was proved in [1] that Irr (G,) = N>¢, and the fusion rules of G, are described by

a@f=la—f|@la-fF|+20--@latf|-20[a+fl, ofeNx.

4.2. QMSs on quantum SU(2)

We construct a natural QMS of central multipliers on G, — that is, quantum SU(2). The
QMS is the same as the one from [10, Section 6.1], but the approach is more conceptual.
See also [7] for related results.

Definition 4.2. A generating functional is a (linear) functional L : Pol(G) — C such that
L(1) =0 and L(z*) = L(z) (i-e., L is self-adjoint) and such that if we have ¢(z) =0 for
x € Pol(G), then L(z*x) <0 (i.e., L is conditionally negative definite).

A state on the unital x-algebra Pol(G) is a map p: Pol(G) — C such that u(z*x) >
0,z € Pol(G), and (1) = 1. Recall that e denotes the counit.

Proposition 4.3. Let G be a compact quantum group and let (ut)i>0 be a family of
states on Pol(G) (not necessarily forming a convolution semigroup). Assume that for
every x € Pol(G), the limit

exists. Then L :Pol(G) — C is a generating functional.
Proof. Let 2 € Pol(G) be such that e(z) = 0. Then
() — e(a*3) = (3 3) — e(w) e() = puo(2*2) > 0,
All other properties are clear. O

Let Uy, € N, be the Chebyshev polynomials of the second kind with derivative UY.
They are orthogonal polynomials satisfying Uy = 1,U;(\) = A and the recursion relation

AUn(A) = Uai1(\) +Uae1(N), AER,a€Nsy.

In [21, Theorem 17] (see also [7]), it was proved that for every t € [—1,1] there exists a
state y; : Pol(G) — C characterised by

a)_<Ua(qt+q‘t)

3
Lt (uij = U (q+q_1)> (51"]', CKENZO,lgi,jéna. (41)
@
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Proposition 4.4. There ezists a generating functional L : Pol(G,) — C given by

Ul (ql +q71)
Leidu® = Agid,.,  with A,=-2 1 J
( ) Ua(g+q71)

Proof. Consider the function
U, (¢t —t\\ 3
Call) = ((q“l)) . =L1).
Ua(a+q")
The derivative of this function is
Us(d'+a7")
e (t) ==2———=7 (¢" — ¢7") log(q).
(1) =g o (o =) ogl)
Proposition 4.3 and equation (4.1) show that there is a generating functional Ly :
Pol(G) — C determined by
(Lo ®id)(u®) = ¢, (1)id,,,, .

Then also L =1log(q)~'(¢—q ')"'L is a generating functional and the proposition is
proved. O

Theorem 4.5. Let G = SU,(2) with ¢ € (—1,1)\{0}. There exists a QMS & = (®,);>0
on Loo(G) determined by

(P @ id)u® = exp(—tAy)u®, o € Nsg.

Here A, is defined in Proposition /J.4. Moreover, ® is approximately linear with almost
commuting intertwiners.

Proof. Let L : Pol(G) — C be the generating functional from Proposition 4.4. By [20,
Lemma 6.14] we see that

| —

exp(—tL) =Y  —(—tL)**

k=0

o

is a convolution semigroup of states. We set
O, = (exp(—tL)®id)o A, ¢>0,

which then forms a QMS. We have, writing u;'; for the matrix coefficients with respect
to some orthonormal basis of C"|

P, (ugy) = (exp(—tL) ®id) (Zu?k ®u‘,jj> = exp(—tAq)uf;.
k=1

It follows that (®;);>0 is a QMS with the desired properties. O

4.3. Approximate linearity

In this section and the next, we prove that the QMS from Theorem 4.5 is approximately
linear with almost commuting intertwiners. In order to do so we fix the following notation.
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Recall that Irr(G) = N>o. Take o,y € N>¢. Set Ago = {0,1,..., max(e,y)} and let A =
N>o\Aoo. We note that A and A partition N>o and therefore we do not need to check
equations (2.3) and (2.5). Take 8 € A. Then if S C a® f®7, we must have Sy € {f —
a—y,f—a—v+2,....,0+a+~}. We have

Lys, ={8—af—a+2,... B+al,
Rg:gz :{57776774»27,64’7}

We set v(B1;3,62) = B+ B2 — B1.
The proof of the next proposition is the same as [10, Section 6.1 and 6.2]:

Proposition 4.6. The QMS defined in Theorem /.5 is approximately linear.

Proof. For any m,n € Z\{0}, we have

1 _’_q72m B 1 _~_q72n _ 2 (q72m _ q72n) 2 (q2n _ q2m)

l—g=2m  1—g¢=2  (1—¢2")(1—¢72") (¢*™—-1)(¢*" 1)

Let Ny =q+ ¢~ ', which is the quantum dimension of the fundamental representation. By
[23, Lemma 4.4], we have the explicit expression

1 —2a—2 2
— <1+q2a2> . (4.2)
NZ—4 q (1—¢?) /N2 —4
Therefore it follows that for 3,5, € Irr(G) we have
1 1 +q—2,3—2 61 1 +q—25—2 1 +q—2ﬁ1—2
|A5 _A51| < |ﬁ_61| — 238-2 + 982 1_.—2B-2
JN2—4l1-a N2 —411-4 1—g==
1 1+ q—2,3—2 b1 2 (q2ﬁ+2 _ q2ﬁ1+2)

= |ﬁ—51|

(¢?P+2—1)(¢*P 2 - 1)

1_g—28—2
JN2—41-4 N2 -4

This expression can be estimated uniformly over all 3,81 € N>¢ with |8 — 51| < a+7.
This yields formula (2.2). Further,

Downloaded from https://www.cambridge.org/core. TU Technische Universiteit Delft, on 17 May 2021 at 06:28:59, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51474748021000165


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748021000165
https://www.cambridge.org/core

Riesz Transforms on Compact Quantum Groups and Strong Solidity 29

AN =418 —Dp, — Dpyp,—p +Ag, |

1+q*2ﬁ 2 1+q*251*2 1+q*2(,3+ﬁ2 B1)—2 1+q*252*2
‘5 —q 22 11_q—261—2*(5+52 Bl) — q—2(B+B2—B1)— 2+521_q—252—2

14+ q*Qﬁ*Q B 1+ q*2(5+52*ﬁ1)*2
1—¢q28-2 1_q—2(ﬁ+52—51)—2
1+q*2/32 2 1+q*2(3+52*51)*2

1—q 2622 17q*2(/3+ﬁ2*ﬁ1)*2

1+q*2ﬁ1*2 1+q*2(5+52*ﬁ1)*2

< —
<p 1—g 252 1_g 2P A2

1

+ B2

<8 q25 _ q2(5+,32—51)

e ‘ 2P — 2B+B2=51)

¥ B, ‘qQBz _ 2B+Ba—B) |

As qdim(B) ~ ¢~# asymptotically, we see that there exists a constant C' > 0 such that for
all 8,581,082 € N>g with |8 — 01| < a4+~ and |8 — 82| < a++, we have

V/INZ— 41D —Ap, —Dpyp,p, +Dp,| < CBadim(8) % < Cqdim(8) .
This yields the desired estimate (2.1). O

4.4. Almost commuting intertwiners

In this section we extend the results from [46, Appendix] on almost commuting
intertwiners. In fact these results are self-improving, in the sense that the main estimates
are already proved in [46]. Here we show that they automatically imply the same results
for a larger range of representations.

The following lemma and proposition pertain to G4,q € (—1,1)\{0}. Note however that
the principle of proof of Lemma 4.7 actually works for any compact quantum group. In
the following statements we require that a+k& be even or odd (and v+ be even). In other
words, « and k have either the same parity or different parity. This is because otherwise
the intertwiner Vﬂoﬁr or Vﬁajkl would be 0 by the fusion rules, and the statements to

come would thus be trivial.

Lemma 4.7. Set o, € N> with o < 5. Set k € Z with |k| <« and a+k odd. Then we
have, up to a phase factor,

k‘/ . « (6%
S v (vl (Vi eids) = VY. (4.3)
k'=—a,—a+2,...,«a

Proof. We may decompose 1@ a® 8 = @sen.,ms -9, where ms denotes the multiplicity.
Each of the intertwiners VBI_’FB ,:rk, (id1 ® Vﬁa_;i,) intertwines 1 @ a® 8 with a copy of S+ k,
and the copies are orthogonal for different k’. Moreover,
1,5+
S v (e v
k'=—a,—a+2,...,a

intertwines 1 ® a®  with mgyy - (6 +k) — that is, it exhausts all the summands.
The the total expression on the left-hand side of equation (4.3) intertwines (a+1)®
with $ 4k and therefore by Schur’s lemma must be a scalar multiple of the isometry
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Vﬁa:kl_ﬁ + By the first paragraph of this proof and the fact that (Vo}fl) is an isometry

that maps a+ 1 into its isotypical component in 1® «, we find that this scalar multiple
must be in T. (]

Proposition 4.8. Set o,y € N>. There ezists a constant C' > 0 such that for all B € N>,
B > max(a,y), and k,l € Z with |k| < a,|l| <~ and a+k and y+1 even, we have

. k, a, . a, B+ . s . —
;relg HVLQBJ:F,CJ (Vm-i ® sz,> — zVﬁﬁ:H (zda ®Vﬁ5+?) H < Cqdim(B) ™. (4.4)

Proof. This lemma was proved in [46, Lemmas A.1 and A.2] for the case when o,y =1
and (k,l) is equal to either (1,1), (1, —1) or (—1,1). For (k,l) = (-1, — 1), the same
conclusion can be derived, as follows. Both VBB:;’W (Vﬁ(ﬁ1 ® idv) and Vﬁaf;_l (ida ® VBﬂfD
are intertwiners from a® §®+ to f— 2. But by the fusion rules, 8 —2 occurs at most once
in the decomposition of a® S ®y in terms of irreducibles. Therefore such an intertwiner
is unique up to a phase factor. So the left-hand side of formula (4.4) is 0. We note that
actually also in the case when (k,l) = (1,1), the left-hand side of formula (4.4) is 0 for the
analogous reason.

We now prove the general case by an induction argument. Suppose that the statement
is true for a and 7. Then we shall prove it for a«+1 and 7. Consider the composition of
maps with «,,7,k,l as in the proposition and |k’'| < « such that o+ &’ is even:

id, ®id, @ VL] idi @V,

A 1®a®B®y —lBL 1 ga® (B4 1QB+K+1) S gy,

i, © VY, ®id, , i@V , VaA
By :1@a®BR®y ——5 1®B+EK)®y — 5 1@B+E+1) s Bk,
8V, @id, Vi @id, Vi
—_—

CpilRa®B®y ——— 1QB+K)®y (B+Ek)®~ E—— B+k+1.

14k
Brktl

By the induction hypothesis, we have
inf [ Ay — =By < Cadim(8) ™ and  inf | By — 2Cy] < Cqdim(s)
for some constant C' > 0 that depends only on « and ~. By the triangle inequality,
inf[|Ap —2Cp] < 2C qdim(8) .
For every 3, let z3 € T be the phase factor where this infimum is attained, so that
|45 — 25C5l| < 20 qdim(8) 1.

By multiplying one of the intertwiners in the expression of Cpg with 23, we may
assume without loss of generality that zg =1 for all 3. Now consider the following
expressions, where Dg is obtained from Ag by summing over all £’ and multiplying with

(Vlfl ®idg ®id7) on the right. Similarly, F3 is obtained from Cj3 by summing over all

[e3
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) and multiplying with (vlf“1 ®ids ®1d,y) . We set

Dy =3 Vi (e vl (dieida o Vi) (Vs eidseid, )
_ ngﬁ;’; e vyl (Vi eide) (i eid.e Vi),
Eg = Zvﬁjk’fﬂ( Vet ®id7) (1d1®Vﬂ+k,®1d ) ( A ®idg®id )

It follows from the triangle inequality that
D — Eg|| < CK qdim(8) 1, (4.5)

where K is the total number of summands in Dg and Ej, which depends only on o and
7. But by Lemma 4.7 we have, for suitable phase factors zy,20 € T,

41,541 1,6+k"+1 B+ La o (i
Vil (ldaﬂ ® 6+z) =21 Zvﬁ+k+z (ldl ® V;+k’+z> (Vafi ®ld5+l) (‘daﬂ ® VBH)
’ *
VIR (VerhP @id, ) = mzvﬁlm (Vi eid,) (e vesl, @id, ) (Vi eidg@id, )

So formula (4.4) is just estimate (4.5). By induction, the lemma is proved for any o € N>
and v = 1. Analogously, we can do induction on =, and the proof follows. O

In conclusion we record the following result:

Theorem 4.9. The QMS defined in Theorem 4.5 is approzimately linear with almost
commuting intertwiners.

Proof. Formulas (2.1), (2.2) and (2.4) follow from Propositions 4.4 and 4.8. Finally, by
equation (4.2) we see that formula (2.6) holds for P a linear polynomial. O

5. Applications to strong solidity: Free wreath products and easy quantum
groups

In this section we gather the consequences of our main results. For the definition of the
free wreath product we refer to [4] (and [30] for the main properties we need).

Theorem 5.1. Let G be a compact quantum group. If G carries a QMS of central
multipliers that is approximately linear with almost commuting intertwiners, then so does
the free wreath product G, SK,,N >5. If the QMS on G is immediately Lo-compact, then
so is the one on G, S]J{,

Proof. By [30, Theorem 5.11], the free wreath product G, SIJ(, is monoidally equivalent
to a compact quantum group H whose dual fHisa quantum subgroup of G */SU\q (2) forge
(0,1) such that ¢+¢~' =+/N. By Theorem 4.9, SU,4(2) has a QMS of central multipliers
that is approximately linear with almost commuting intertwiners, which is moreover
immediately Ls-compact. Now since approximate linearity with almost commuting
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intertwiners (and immediate Lo-compactness) passes to free products (Theorem 2.6),

monoidal equivalence (Theorem 2.4) and dual quantum subgroups (Theorem 2.5), we are
done. O

For the definition of the almost completely positive approximation property, we refer
to [21].

Theorem 5.2. Let G be a compact quantum group of Kac type either with the almost
completely positive approximation property or such that Lo, (GZ* SJJ{,) has the W* CBAP.
If G carries a QMS of central multipliers that is approzimately linear with almost
commuting intertwiners and which is immediately Ls-compact, then the free wreath
product G, SK,,N > 5, is strongly solid.

Proof. If G is of Kac type, then so is G, SX,. It follows from [30, Theorem 6.4 and
Remark 6.6] that G, Sy has the W*CBAP. Then we conclude by Theorem 5.1 and
Corollary 3.5. O

Remark 5.3. Theorem 5.7 gives an answer to [30, Remark 6.6]. We note that in [30,
Remark 6.6], the strong solidity statement as suggested can only hold under additional
assumptions on G like the ones in Theorem 5.7. Indeed, if there would not but such
assumptions, then we could consider for instance the case where G decomposes as a
product of two nonamenable quantum groups whose von Neumann algebras are type II;
factors with the W*CCAP (which exist by [24]). Then Lo (G) is not strongly solid and
neither is the ambient von Neumann algebra L., (GZ* SX,)

To our knowledge the following result has not appeared explicitly in the literature
so far. We refer to [41, Theorem 5.11] for strong solidity results for a related series of
compact quantum groups, and to [2] for the hyperoctahedral series. In the proofs to follow,
the symbol ~ stands for an isomorphism of compact quantum groups (not necessarily
preserving the fundamental representation).

Corollary 5.4. The hyperoctahedral compact quantum groups H]"\} ~ 7o U Sj\', are strongly
solid for N > 5.

Proof. This follows directly from Theorem 5.2. O

Theorem 5.5. The seven series of free orthogonal easy quantum groups that were
classified in [50] under the names O]J(,g, SJJ(,S, H]Q’, BXM, SK,;, B;\sz and Bﬁj are strongly
solid for N3 >3, Ny >4, N5 > 5.

Proof. It is known that all these examples have the almost completely positive
approximation property (and hence the von Neumann algebras have the W*CCAP) by
[21], [30, Theorem 6.4] and the remainder of this proof.

By [5, Section 5], the quantum group O}, is monoidally equivalent to SU,(2) for N =
q+q1,q€(0,1), and so we conclude from Theorems 2.4 and 4.5 and Corollary 3.5.
Similarly, SIJ{, is monoidally equivalent to SO4(3) for N = ¢®>+ 1+ ¢~?2; this follows for
instance from [30, Theorem 5.11], together with the observation that the dual of SO4(3)
has no quantum subgroups. By [40, Section 4] and [50, Propositions 5.1 and 5.2], we have
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identifications as compact quantum groups S ~ SX, X Zs, B]J(, ~ OXFP B;\Jfr ~ O;{,i1 X Lo
and Bfﬁ ~ O]Tl—l x Zg, so that our results follow from the cases of O;{[ and SIJ{[ and
Theorem 2.6. The only remaining case, H]J\r,, was covered in Corollary 5.4. O

Remark 5.6. The cases of OX,, SJJ{,, B]f,, Sﬁ, Bﬁ and Bﬁ+ in Theorem 5.5 were already
covered in [26].

We also state the following theorem for completeness, though here we do not give
applications in the non-Kac case. We refer to [10] for such examples. We mention that it
is an open problem whether a theorem of this form holds under the assumption of the
W*CBAP only instead of the W*CCAP.

Theorem 5.7. Let G be a compact quantum group. Suppose that L., (GZ* SX,) is solid
and has the W*CCAP. If G carries a QMS of central multipliers that is approximately
linear with almost commuting intertwiners that is immediately Lo-compact, then the free
wreath product G, S}G,N > 5, is strongly solid.

Proof. It follows from [30, Theorem 6.4 and Remark 6.6] and [21] that G has the
W*CCAP. Then we conclude by Theorem 5.1 and Corollary 3.6. O

6. Noncommutative Riesz transforms and the Akemann—Ostrand property

The aim of this section is to show that the methods in this paper also show that the
von Neumann algebras we consider satisfy the Akemann—Ostrand property. The proof is
the same as [12, Section 5|, but the setting presented there is too narrow for the current
setup. Essentially we need to replace the filtrations considered in [12] by more general
fusion rules. Let us first recall the definition of the Akemann—Ostrand property from [27]:

Definition 6.1. A von Neumann algebra M satisfies the Akemann—Ostrand property
(briefly called AO™) if there exists a o-weakly dense unital C*-subalgebra A C M such
that

(1) A is locally reflexive [9, Section 9] and
(2) there exists a unital completely positive map 6 : A ®yin AP — B(La(M)) such that
0(a®b°P) — ab®P is compact for all a,b € A.

Now let G be a compact quantum group and let ® be a QMS of central multipliers on
G with generator A.

Definition 6.2. We say that ® has subexponential growth if A has compact resolvent
and for every a,v € Irr(G) we have

| Ay
lim sup —1|=0.
B=o0 g/ Cappey | Da
B’ €lrr(G)

Here the limit limg_, o, ¢ = ¢ is defined as saying that for every e > 0, there exists a
compact set K C Irr(G) such that for all « € Irr(G)\ K we have |c,, —c| <.
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Remark 6.3. Formula (2.2) implies that ® has subexponential growth.

Remark 6.4. The subexponential growth condition should be compared to the amenabil-
ity results from [18] and [10, Appendix]. These results show that if the eigenvalues of A
grow fast, then the von Neumann algebra must be amenable. As a rule of thumb, many
semigroups on nonamenable von Neumann algebras will have subexponential growth.

The aim of this section is to state the following theorem. By Remark 6.3 it applies
to all QMSs that are approximately linear with almost commuting intertwiners and for
which the generator has compact resolvent; in particular it applies to the examples in
this paper.

Theorem 6.5. Let G be a compact quantum group of Kac type. Let ® be a QMS of central
multipliers that is immediately gradient-Sy and has subexponential growth.! Assume that
C(G) is locally reflexive. Then Loo(G) satisfies AOT.

Proof sketch. The proof is a straightforward adaptation of the arguments in [12, Section
5], with the following considerations taken into account. The idea is to consider an L. (G)-
Lo (G)-bimodule Hy (called the gradient bimodule or the carré du champ) together with
an isometry

S:=0A"7 : L,(G) — Hy
(called the Riesz transform). We refer to [12, Eqn. (5.1)] for their definitions, which make
perfect sense in the current context. By [10, Proposition 3.8 and Proposition 4.4] and the
fact that ® is immediately gradient-Ss, we see that Hy is weakly contained in the coarse

bimodule of Lo (G). We must then prove a suitable replacement of [12, Theorem 5.12]
stating that for every z,y € Pol(G) (and hence for every z,y € C,.(G)), the map

Tyy:Lo(G) = Hy : £ S(xfy) —xS(§)y (6.1)

is compact. Then a standard argument yields the condition AO™, for which we refer to
[12, Proposition 5.2], finishing the proof.

The most important part is thus that we must prove that [12, Theorem 5.12] still holds
in the current context, meaning that formula (6.1) is compact. In [12, Theorem 5.12] the
von Neumann algebra is assumed to be filtered, which is not the case in the setting of
Theorem 6.5. However, we can still make the following observation. For a € Irr(G) we set
the space of matrix coefficients

Al) ={(t@w)(a) |w e M, (C)"}.
Then for o, 5 € Irr(G) we have
A(@)A(B) € BycampAlY);

which replaces the filtered condition from [12]. With this observation in mind and with
the current notion of subexponential growth (Definition 6.2), the proof of [12, Theorem
5.12] translates literally to the current setting. U

I The immediately gradient-S2 condition can be replaced by the weaker gradient coarse condition
from [10, Definition 4.1].
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Essentially, Theorem 6.5 applies to all the examples mentioned in Section 5. For
instance, we get the following result, which was already known from [26], except for
the case of HIJ\?:

Theorem 6.6. The seven series of free orthogonal easy quantum groups classified in [50]
under the names O]J{,S, S;(,E), H;\?E), B;{w Sﬁ{), BK,Z and Bﬁj satisfy AOT for N3 > 3,
Ny >4 and N5 > 5.

Finally, it should be mentioned that strong solidity results can also be obtained through
condition AO™ using results from [27].
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