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Abstract 33 

Anaerobic digester (AD) microbiomes harbor complex, interacting microbial populations to 34 

achieve biomass reduction and biogas production, however how they are influenced by operating 35 

conditions and feed sludge microorganisms remain unclear. These were addressed by analyzing 36 

the microbial communities of 90 full-scale digesters at 51 municipal wastewater treatment plants 37 

from five countries. Heterogeneity detected in community structures suggested that no single AD 38 

microbiome could be defined. Instead, the AD microbiomes were classified into eight clusters 39 

driven by operating conditions (e.g., pretreatment, temperature range, and salinity), whereas 40 

geographic location of the digesters did not have significant impacts. Comparing digesters 41 

populations with those present in the corresponding feed sludge led to the identification of a 42 

hitherto overlooked feed-associated microbial group (i.e., the residue populations). They 43 

accounted for up to 21.4% of total sequences in ADs operated at low temperature, presumably 44 

due to ineffective digestion, and as low as 0.8% in ADs with pretreatment. Within each cluster, a 45 

core microbiome was defined, including methanogens, syntrophic metabolizers, fermenters, and 46 

the newly described residue populations. Our work provides insights into the key factors shaping 47 

full-scale AD microbiomes in a global scale, and draws attentions to the overlooked residue 48 

populations. 49 

50 
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1. Introduction  55 

Wastewater treatment processes, including primary treatment for solids separation and 56 

secondary treatment for carbon and nutrients removal, produce substantial amount of waste 57 

sewage sludge. For example, the amount of waste sludge generated in European Union is 58 

estimated to exceed 13 million dry solid tons in 2020 (Kelessidis and Stasinakis 2012). 59 

Anaerobic digestion (AD) has been used worldwide to simultaneously degrade waste sludge and 60 

produce methane, and is an promising solution to treat the increasing global growth of organic 61 

solid waste (Appels et al. 2011). Meanwhile, the microbial community involved in AD is 62 

complex (Narihiro et al. 2015) and a better understanding of the AD ecosystem would optimize 63 

existing processes and enhance the engineering application (Vanwonterghem et al. 2014). 64 

To identify critical populations responsible for the AD process, multiple researches have 65 

tried to define the core AD microbiome. Campanaro et al. (Campanaro et al. 2016) and Treu et al. 66 

(Treu et al. 2016) analyzed metagenomic sequences of mesophilic and thermophilic lab-scale 67 

digesters treating cattle manure, and concluded that 77 out of 265 genome bins could be 68 

considered as the core essential microbial groups in biogas production. Our  recent study 69 

analyzed the microbial communities of three full-scale digesters in the a wastewater treatment 70 

plant and observed a core microbiome that accounted for 59% of the total 16S rRNA gene 71 

sequences (Mei et al. 2016a). Studies investigating multiple full-scale plants reported that core 72 

populations constituted 36.4% of the total 16S rRNA gene sequences in seven digesters from 73 

Seoul, South Korea (Lee et al. 2012), and 28% of the total 16S rRNA gene sequences in seven 74 

digesters from France, Germany, and Chile (Riviere et al. 2009). De Vrieze et al. (De Vrieze et al. 75 

2015) evaluated the microbial communities of 29 AD installations whose locations were not 76 

specified, and reported that Clostridiales and Bacteroidales were part of the core microbiome as 77 
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they were shared by each sample with >0.1% abundance. So, if a large number of digesters are 78 

sampled and multiple operating parameters are considered, such as temperature, ammonia 79 

concentration, and system configuration that are known to influence AD community (De Vrieze 80 

et al. 2015, Smith et al. 2017), would it be still possible to define a core AD microbiome? 81 

Furthermore, geographical differences in microbiomes have been observed for waste-treating 82 

ecosystems like activated sludge (Zhang et al. 2012) and solid waste landfill (Stamps et al. 2016). 83 

Would a similar difference be observed with the AD microbiome? 84 

A classic categorization of microorganisms in AD consists of fermenting bacteria 85 

(fermenters), syntrophic metabolizers (syntrophs), and methanogenic archaea (methanogens) 86 

(Schink and Stams 2006). However, it has been realized that AD microbiome embraces a large 87 

proportion of prokaryotes with unrecognized ecophysiology (Narihiro 2016). For example, our 88 

recent study (Mei et al. 2016a) revealed that 25% of the AD populations in one wastewater 89 

treatment plant migrated from the upstream activated sludge process and remained as residue 90 

populations in AD. The presence of those non-anaerobic residue populations has not been widely 91 

examined to test whether it is a common phenomenon in all digesters under different operating 92 

conditions from different geographical locations. Furthermore, the microbial populations in 93 

activated sludge can vary considerably due to differences in process configuration and 94 

geographical locations (Zhang et al. 2012). Thus, it is not clear whether such variations of 95 

microbial populations in the feed sludge impacts the AD microbiome. 96 

In this study, we used high-throughput sequencing technologies to characterize 97 

microbiomes in digesters around the world by sampling 90 full-scale digesters with diverse 98 

operating conditions and feed sludge characteristics from 51 municipal wastewater treatment 99 

plants. The impacts of operating conditions and geographical locations on AD microbiome were 100 
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examined. Clustering of samples was performed and cluster-specific core populations were 101 

identified. Within the AD microbiome, feed-derived populations were investigated and the 102 

distribution in different digesters was characterized. 103 

 104 

2. Materials and methods 105 

2.1. Sample collection 106 

In total, 148 digester sludge samples were collected from 90 full-scale ADs in 51 107 

municipal wastewater treatment plants. Feed sludge in 27 plants were collected prior to entering 108 

ADs, and feed sludge in the rest plants were not collected due to sampling difficulties. All 109 

operation-related information was provided by the plant operators. Besides the volatile solids 110 

reduction (VSR) provided by plant operators, we calculated VSR values using the Van Kleeck 111 

equation according to the USEPA regulation (Regulations 2003), which were further used in the 112 

downstream analyses. Most plants were operated with the conventional primary-secondary 113 

(activated sludge) treatment scheme, while three plants were only configured with primary 114 

treatment before AD (plant CAII, CALG, and USRA). Seven plants (JPHW, JPMU, JPNA, JPST, 115 

JPTB, JPYS, and USDV) used a two-stage anaerobic digestion process with similar sludge 116 

retention time (the first digester treating sludge from primary/secondary clarifiers and the second 117 

digester treating sludge from the first digester). Seven plants (JPHG, JPNA, JPNG, USST, 118 

USUR, NEAV, and USCA) introduced external solid wastes into digesters, such as food waste, 119 

green waste, and sludge from other sources. Wastewater to two Hong Kong plants (HKST and 120 

HKTP) had approximately 1/4 to 1/5 of seawater of high salinity. Due to its high saline nature 121 

with high sulfate content, these two AD digesters dosed ferric chloride (FeCl3) to suppress 122 

sulfide production, leading to a chloride concentration of 4,000 to 6,000 mg/L (Koenig and Bari 123 
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2001, Zhang et al. 2012). Wastewater to another Hong Kong plant (HKYL) had effluent from the 124 

tannery industry and contained high concentrations of Zn and Cr (Wong et al. 2001). Digester 125 

NEAV1 had both high salinity influent (electrical conductivity about 30-35 mS/cm) and external 126 

food waste sludge simultaneously. Digesters from Hong Kong and US (except for USWA and 127 

USSF) were sampled at multiple time points with at least one-month interval. These multiple 128 

tome points samples were considered as different samples. Fifty milliliters of sludge were 129 

collected from the recirculation lines of digesters, transported to laboratory in UIUC on ice 130 

(including international samples), and stored at -80°C until DNA extraction.  131 

2.2. 16S rRNA gene sequencing 132 

Genomic DNA was extracted from 2 mL of well-mixed sludge using the FastDNA SPIN 133 

Kit for Soil (MP Biomedicals, Carlsbad, CA, USA), and quantified using a Nanodrop 2000c 134 

spectrophotometer. For PCR amplification, 60 ng of genomic DNA was added into a total 135 

reaction volume of 25 µL as template. With a dual-indexing approach (Kozich et al. 2013), a 136 

universal primer set 515F (5’-GTGCCAGCMGCCGCGGTAA-3’)/909R(5’-137 

CCCCGYCAATTCMTTTRAGT-3’) targeting the V4-V5 region of both bacterial and archaeal 138 

16S rRNA gene was used for PCR amplification. PCR was performed with the thermal cycling 139 

protocol consisting of initial denaturation (94°C, 3 min), 25 cycles of denaturation (94 °C, 30 s), 140 

annealing (55 °C, 45 s) and extension (72 °C, 1 min), and a final extension (72 °C, 10 min) (Mei 141 

et al. 2016b). The PCR amplicons were purified using the Wizard SV Gel and PCR Clean-Up 142 

system (Promega, Fichburg, WI, USA) and quantified by Qubit 2.0 Fluorometer. Library 143 

preparation and sequencing on Illumina Miseq Bulk 2 × 300 nt paired-end system was performed 144 

at the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-Champaign, IL, 145 

USA. 146 
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2.3. Microbial community analyses   147 

Paired-end raw sequences were assembled, screened, and trimmed using Mothur 1.33.3 148 

(Schloss et al. 2009) with a maximum sequence length of 400 bp and a quality score of 20. The 149 

output data were analyzed using QIIME 1.9.1 (Caporaso et al. 2010b) for OTU (operational 150 

taxonomic unit, 97% sequence similarity) picking with the de novo strategy, which included 151 

OTU grouping by UCLUST (Edgar 2010), alignment by PyNAST (Caporaso et al. 2010a), 152 

chimera identification by ChimeraSlayer (Haas et al. 2011), taxonomy assignment by BLAST 153 

using reference sequences in the GreenGene 2013 database. After removing singletons (OTUs 154 

that only had one sequence in the entire dataset), all samples were rarefied to an even depth of 155 

20,957 sequences (determined by the sample with fewest sequences). Shannon index (  156 

             is the relative abundance of an individual population) calculation, UniFrac 157 

distance matrix calculation, Bray-Curtis distance matrix calculation, principal coordinate 158 

analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) with 100 159 

iterations were all performed using QIIME. Relative abundance was calculated from OTU table. 160 

Phylogenetic trees was constructed using the methods of neighbor joining and parsimony 161 

provided in ARB program (Ludwig et al. 2004). 162 

 Statistical differences of principal components between samples from different locations 163 

were evaluated using Mann Whitney U test with Bonferroni correction with R (Ihaka and 164 

Gentleman 1996). A p-value < 0.01 was considered as statistical significance. Correlations 165 

between microbial groups, alpha diversity, and VSR were determined using the Spearman's Rank 166 

Order Correlation test with R. Evaluation of normality of the data using Shapiro Wilk Normality 167 

test, and preparation of box plot and histogram were also performed using R. Distance-based 168 

linear model (DistLM) and analysis of similarity (ANOSIM) were performed with Primer 6 169 
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(Clarke 1993). Raw Illumina sequences obtained in this study have been deposited in 170 

DDBJ/NCBI/EMBL-EBI under the accession number DRA005150. 171 

 172 

3. Results  173 

3.1. Operation-driven heterogeneity of AD microbiome  174 

In total, over 7 million quality-filtered, non-chimeric sequences were obtained from 148 175 

AD samples in 51 municipal wastewater treatment plants (Fig. S1, Table S1 in the 176 

Supplementary material). After removing singletons and subsampling to an even depth (20,957 177 

sequences per sample, determined by the sample with fewest sequences), each AD sample on 178 

average contained 1,844 OTUs with a high standard deviation of 595 OTUs. The Shannon index 179 

that characterized both richness and evenness of a community showed large variations (Fig. S2), 180 

with the highest value being 2.5 times higher than the lowest value (9.12 vs. 3.68). Dissimilarity 181 

between AD communities was also reflected in the large variations in the relative abundance of 182 

major phyla (Fig. S3). For example, the abundance of Bacteroidetes varied from 5% to 71% in 183 

different samples, and the abundance of Thermotogae varied from 0 to 56%.  184 

Principal coordinate analysis (PCoA) performed on beta-diversity (weighted UniFrac 185 

distance) showed that there were different types of AD communities (Fig. S4). However, the 186 

variance could not be explained by geographical locations, as only North America samples 187 

significantly differed from Hong Kong samples in PC1 and from Japan samples in PC2. In 188 

addition, only small portions of the variance could be explained by single environmental 189 

parameters such as temperature (9.63%), pH (3.22%), and sludge retention time (SRT) (1.63%) 190 

(Table S2A).  191 
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To identify shaping factors of the heterogeneous AD communities, the dissimilarity based 192 

on weighted Unifrac was further analyzed using unweighted pair group method with arithmetic 193 

mean (UPGMA), a clustering method that could fully reveal the variance in beta diversity. Eight 194 

clusters were observed (Fig. 1). Cluster A contained six samples from saline digesters in two 195 

Hong Kong plants due to flushing toilet with sea water. Cluster B contained two samples from 196 

digesters (one from the US and one from the Netherlands) that received feed sludge after 197 

pretreatment with thermal hydrolysis. Cluster C contained three samples from the digester 198 

treating wastewater partially from the tannery industry in a Hong Kong plant. Cluster D 199 

contained 14 samples from thermophilic digesters (>50°C) located in Japan, US, Canada, and the 200 

Netherlands. Cluster E contained seven samples from two Japanese plants and one USA plant 201 

that operated digesters at temperatures < 30°C for at least three months. Cluster F contained six 202 

samples from one non-saline Hong Kong plant (HKSW, digester temperature at 36.0°C) and one 203 

USA plant (USNO, digester temperature at 30.3°C), but the operating conditions that determined 204 

high community similarity of these two plants are still not clear. Cluster G contained 16 samples 205 

from seven Japanese plants, with slightly high operation temperatures between 38 and 42°C, 206 

except for plant JPSS at 36.5°C. The largest cluster (H) contained 91 samples of from 16 USA 207 

plants, six Japanese plants, two Canadian plants, and four Netherlandish plants, which operated 208 

digesters mainly under mesophilic conditions. Samples from plant USLA and NEAV were not 209 

assigned to any cluster due to lack of clear association with operating conditions. Within each 210 

cluster, samples that originated from the same plant generally clustered together, even though 211 

they might be collected from different reactors or on different dates. The clustering of the AD 212 

microbiomes into eight clusters was confirmed by ANOSIM, which gave global R-values close 213 

to 1, showing that the between-cluster distances were significantly larger than the within-cluster 214 
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distances (Table S2B). In contrast, the clustering solely based on the geographical location of the 215 

samples generated much smaller global R-values (less than 0.6) (Table S2C). A UPGMA-based 216 

clustering on Bray-Curtis distance matrix produced very similar results (Fig. S5C), where only 217 

two samples diverged from cluster G and three samples diverged from cluster H compared to the 218 

results based on weighted UniFrac. 219 

3.2. Characterization of feed-derived residue populations 220 

Our previous study revealed that, in a single wastewater treatment plant, AD microbial 221 

communities could contain exogenous populations (i.e., residue populations) that migrated from 222 

the feed sludge, resisted to digestion, and not actively involved in anaerobic metabolism (Mei et 223 

al. 2016a). In the present study with a much broader sampling scale, we identified such residue 224 

populations by comparing the upstream feed sludge and the corresponding AD. To be stringent, 225 

we first defined an OTU as being more abundant in feed sludge in a plant only when its feed/AD 226 

abundance ratio was over 2, and, conversely, an OTU as being more abundant in AD when the 227 

feed/AD abundance ratio was below 0.5. Further, we defined OTUs as residue populations if 228 

they were frequently more abundant in feed sludge (minimum five plants) and rarely more 229 

abundant in AD (maximum five plants) (Fig. 2). Using these criteria, 1,464 OTUs were 230 

identified as residue populations. In agreement, only 172 of them were associated with known 231 

obligate anaerobic taxa based on family-level phylogeny (TableS3) obtained from literature 232 

(Rosenberg et al. 2014, Vos et al. 2011). In total, 704 residue OTUs were associated with 233 

Proteobacteria and 298 OTUs with Bacteroidetes, accounting for 20.8% and 13.4% of 234 

sequences in feed sludge, respectively (Fig. 3A). Abundances of these OTUs in the AD 235 

community decreased drastically to 3.6% and 1.6%, respectively. Other phyla including 236 

Firmicutes, Planctomycetes, and Chloroflexi also contained residues populations but were 237 
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presented by a small number of OTUs (<100) and low relative abundance. Detailed phylogenetic 238 

analysis of the top 50 abundant residue OTUs indicated that 21 of them were associated with 239 

Proteobacteria (excluding Deltaproteobacteria) and 18 OTUs with Bacteroidetes (excluding 240 

Bacteroidales) (Fig. S6), which were mostly known as aerobes or facultative anaerobes and were 241 

consistent with our previous study (Mei et al. 2016a). On the other hand, known anaerobic 242 

populations in AD were not assigned as residue in our analysis, although they were detected in 243 

the feed sludge. These populations included for example methanogens (e.g., Methanobacteriales, 244 

Methanomicrobiales, and Methanosarcinales), fermenters (e.g., Anaerolineales), and syntrophs 245 

(e.g., Syntrophobacterales). Their abundance increased after entering AD, and no residue OTU 246 

was related to these taxa (Fig. S7). 247 

We further observed that the presence of residue populations was a universal 248 

phenomenon in all the digesters sampled (Fig. 3B). The lowest relative abundance of residue 249 

populations in a sample was 0.02% in USSF1 that received feed sludge after pretreatment, and 250 

the majority (117 out of 148 AD samples) were less than 10%. High residue populations were 251 

less common, with 26 samples between 10%-20%, and five samples between 20-30%. The 252 

highest abundance was observed with JPYS1 (27.3%) that was operated below 20°C. 253 

Furthermore, we observed a clear positive correlation (rho=0.846, p<0.01) between residue 254 

populations and alpha diversity (Shannon index) of the AD community (Fig. 3C), indicating the 255 

migration of residue populations increased both species richness and evenness of the AD 256 

microbial community. In contrast, varying abundance of endogenous populations, such as 257 

methanogens or syntrophs, did not correlate with Shannon index of the community (small rho 258 

values, Fig. S8). Also a higher residue population abundance was observed to coincide with a 259 
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lower digestion efficiency (volatile solids reduction) (Fig. S9), but the correlation was weak as 260 

indicated by a low coefficient (rho=-0.361, p<0.01). 261 

The presence of residue populations was also influenced by operating conditions (Fig. 262 

3D). The highest residue population abundance was 21.4%, observed in cluster E (low operating 263 

temperature), followed by 13.9% in cluster F. Correspondingly, clusters E and F had the highest 264 

alpha diversity. The abundance of residue populations in cluster H, which represented most of 265 

the digesters studied, was 6.0%. In comparison, clusters B (pretreatment), D (thermophilic), and 266 

G (>40°C) contained residue population at relative abundances of 0.8%, 3.3%, and 1.6%, 267 

respectively. In addition, residue populations could be more abundant than syntrophs (1.2-7.1%) 268 

and methanogens (0.3-2.6%), such as in cluster E and F (Fig. S10). We also tested whether 269 

residue populations affected beta-diversity by removing residue OTUs from each community. 270 

Based on weighted UniFrac distance, clusters A to G remained intact. Seven samples that were 271 

originally in cluster H were separated from the cluster(Fig. S5A and B). Based on Bray-Curtis 272 

distance, samples in cluster E were split (Fig. S5C and D). 273 

3.3. Identification of cluster-specific core populations 274 

The heterogeneity revealed by the occupancy distribution of OTUs among all 148 AD 275 

samples precluded the ability to define a universal core AD microbiome (Fig. S11A). No OTU 276 

was present in 147 or 148 samples. Only 14 OTUs were detected in more than 136 samples, and 277 

they only accounted for 4.8% of total sequences. In contrast, within each cluster, OTUs shared 278 

by all the samples accounted for a large portion of the total sequences (>50% in each cluster, Fig. 279 

S11B), indicating that samples in the same cluster tended to have highly similar microbiomes. 280 

Thus, we defined cluster-specific core populations (Fig. 4) by including OTUs that were both 281 

prevalent and abundant (top 15 abundant bacterial and top three abundant archaeal OTUs that 282 
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were detected in all samples of that cluster). The phylogeny of core OTUs was confirmed by 283 

building phylogenetic trees (Fig. S12). 284 

In the core communities, OTUs related to known syntrophs were limited to Smithella and 285 

Syntrophomonas (Fig. S12A), known to syntrophically oxidize propionate. Smithella related 286 

OTUs were observed in clusters B, E, F, G, and H, whereas Syntrophomonas related OTUs were 287 

observed in clusters with high salinity (cluster A), industrial influent (cluster C), and high 288 

operating temperature (cluster D). For the methanogenic core populations, there was a similar 289 

trend that an OTU related to Candidatus Methanofastidiosa (hydrogenotrophic methanogen) and 290 

an OTU related to Methanosaeta (aceticlastic methanogen) were consistently observed in 291 

clusters B, E, F, G, and H. The high-temperature cluster D contained two unique core OTUs 292 

related to Methanothermobacter and Methanoculleus. The low-temperature cluster E contained 293 

one unique core OTU related to Methanoregula. Cluster C with industrial influent contained two 294 

core OTUs related to Methanosarcina, absent in the core communities of other clusters. Cluster 295 

A with high salinity contained an OTU related to Methanolinea but at low abundance (<0.05%) 296 

compared with other hydrogenotrophic methanogens. The core community of cluster A also 297 

contained an OTU related to Methanosaeta, but likely a different species from the one shared by 298 

other clusters based on phylogenetic analysis (Fig. S12B).  299 

With regards to residue populations, the core communities of cluster B (plants with 300 

pretreatment) and cluster G (plants operated at ~ 40°C) did not contain any OTU identified as 301 

residue population. For the core communities of other clusters, Proteobacteria were the major 302 

taxa, and the core residue populations were generally related to Zoogloea, Decholomonas, 303 

Azospira, and Acidovorax (Fig. S12C). Cluster F contained residue populations mainly related to 304 

Sphingobacteria in Bacteroidetes, likely because the feed sludge of cluster F had highest 305 
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abundance of Bacteroidetes and lowest abundance Proteobacteria in comparison to other 306 

clusters (Fig. S13).  307 

The remaining core populations were classified as fermenters. Bacteroidetes, as the most 308 

diverse, abundant, and ubiquitous phylum, contained 30 core OTUs, all related to the order 309 

Bacteroidales (Fig. S12D). All clusters contained multiple Bacteroidetes-related core OTUs, 310 

except for cluster B (plants operated at thermophilic conditions) with only one Bacteroidetes-311 

related core OTU. Other major phyla were Firmicutes, Candidatus Cloacimonetes (WWE1), 312 

Spirochaetes, and Thermotogae. The majority of fermenters were only assigned to a taxonomic 313 

level at order or phylum, as a few known closely isolates were available including Mesotoga, 314 

Defluviitoga, Anaerobaculum, Sedimentibacter, and Coprothermobacter. Last, we observed core 315 

populations related to phyla without cultivated representatives, including Candidatus 316 

Aminicenantes (OP8), Candidatus Fermentibacteria (Hyd24-12), Candidatus Atribacteria (OP9) 317 

and Candidatus Marinimicrobia (SAR406). 318 

 319 

4. Discussion 320 

Determining the core microbiome for an ecosystem is an effective approach to delineate 321 

how microbes drive biochemical processes (Consortium 2012, Gilbert et al. 2014, Sunagawa et 322 

al. 2015). This study demonstrated heterogeneity in AD microbial communities, and rejected the 323 

possibility to define a universal core microbiome for all digesters that differed in operational 324 

conditions. This was contradictory to studies using a small number of digesters (Campanaro et al. 325 

2016, Lee et al. 2012, Mei et al. 2016a, Riviere et al. 2009), but consistent with the previous 326 

report that when a relatively large number of digesters were sampled, different types of 327 

communities appeared (De Vrieze et al. 2015). Such heterogeneity in AD microbial communities 328 
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was linked to diversity in operating conditions, which further led to the discovery of cluster-329 

specific core microbiomes. For example, in digesters operated at high temperature (those in 330 

cluster D), core OTUs related to thermophiles, including Methanoculleus (Cheng et al. 2008), 331 

Methanothermobacter (Cheng et al. 2011) Defluviitoga (Hania et al. 2012), Coprothermobacter 332 

(Etchebehere et al. 1998), and Anaerobaculum (Rees et al. 1997) were uniquely detected. OTUs 333 

related to zinc-tolerant Sedimentibacter (Burkhardt et al. 2011) were detected in digesters 334 

(cluster C) receiving tannery industry wastewater that had high Zn concentration. OTUs related 335 

to sulfur-utilizing Mesotoga (Nesbø et al. 2012) were detected in digesters (cluster D) receiving 336 

sea water. These sulfur-utilizing microorganisms could compete for hydrogen and suppress 337 

hydrogenotrophic methanogens in cluster D. An OTU related to Methanoregula that could grow 338 

at 10°C was  detected in digesters in cluster E operated under 30°C (Yashiro et al. 2011). It could 339 

be expected that if more digesters with more diverse operating conditions are included, the 340 

heterogeneity and the clustering complexity will keep increasing as niche diversity increases.  341 

Although there was no shared population among all the eight clusters, some populations 342 

were frequently observed in clusters B, E, F, G, and H. These populations included OTUs related 343 

to the novel archaeal clade Candidatus Methanofastidiosa that is predicted to perform 344 

hydrogenotrophic methanogenesis through methylated thiol reduction (Nobu et al. 2016), and 345 

Smithella that syntrophically oxidize propionate (Liu et al. 1999). Possibly methylated thiol 346 

compounds (e.g., methanethiol and dimethylsulfide) and propionate are critical intermediates 347 

prevalent in most ADs. We also observed abundant and diverse OTUs affiliated with the phyla 348 

Bacteroidetes and Candidatus Cloacimonetes, whose ecological functions in AD are still 349 

difficult to discern. For example, isolates of Bacteroidetes from anaerobic reactors could be 350 

saccharolytic (Su et al. 2014, Sun et al. 2016) or proteolytic (Abe et al. 2012, Chen and Dong 351 
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2005), but the vast majority of the members in this phylum remain uncultivated and, thus, their 352 

metabolism is unknown (Wu et al. 2011). Candidatus Cloacimonetes-related populations have 353 

been proposed to perform amino acids fermentation (Pelletier et al. 2008), syntrophic propionate 354 

oxidation (Nobu et al. 2015), or extracellular cellulose hydrolysis (Limam et al. 2014). Given 355 

that the core OTUs in this phylum were associated with distinct uncultivated phylogenetic clades 356 

(e.g., W22, SHA-116, BHB21, and W5), one can only speculate about their metabolisms until 357 

more genomics information becomes available or until representatives of these clades are 358 

cultured.  359 

Previous studies detected core AD populations related to known aerobic and facultative 360 

microorganisms including Thauera, Brachymonas, and Rhodobacter (Nelson et al. 2011, Riviere 361 

et al. 2009) that were reported as predominant microorganisms in activated sludge (Zhang et al. 362 

2012). Their appearance as core populations in AD is likely due to incomplete digestion, in 363 

contrast to other core populations such as methanogens, syntrophs, and fermenters. It is known 364 

that activated sludge processes sometimes contain anaerobic zones supporting the growth of 365 

anaerobic microorganisms in (Kämpfer et al. 1996). Based on the change in abundance before 366 

and after entering AD, our analysis could effectively distinguish microorganisms in feed sludge 367 

as residue populations (i.e., decreasing abundance) from those contributing to digestion (i.e., 368 

increase in abundance) in AD. Thus, the residue populations we define here were unlikely to 369 

involve in the essential functions in AD, i.e., waste degradation and biogas production. Further 370 

investigations are necessary to elucidate the exact survival mechanisms of the residue 371 

populations in AD. For example, some of them could survive on accumulated carbon reserve like 372 

polyhydroxyalkanoates (Liu et al. 2001) or carry out anaerobic metabolism with different 373 
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electron acceptors (e.g., nitrate reduction by Zoogloea (Shao et al. 2009) and chlorate reduction 374 

by Dechloromonas (Achenbach et al. 2001)).  375 

On the basis of our previous study of AD in a single plant (Mei et al. 2016a), we showed 376 

here that the presence of residue populations was a common phenomenon among all the sampled 377 

digesters. Residue populations could account for at least 6% of total sequences obtained from 378 

digesters under normal conditions (i.e., cluster H community) and were more abundant than 379 

methanogens and syntrophs. Higher abundance of residue populations (i.e., 21.4%) was observed 380 

with cluster E likely due to low operating temperature at <30°C. In addition, pretreatment such 381 

as thermal hydrolysis could successfully reduce residue populations in AD (i.e., 0.8% abundance 382 

in cluster B community).  383 

We observed that the presence of residue populations only contributed to the increase of 384 

alpha diversity of the AD microbiome. By removing residue populations from each community, 385 

we observed almost no change on the beta-diversity, and the topology of the clustering remained 386 

almost the same based on either weighted UniFrac (only seven samples split from cluster H) or 387 

Bray-Curtis distance (only cluster E split). This is likely due to the fact that most residue 388 

populations were affiliated with Proteobacteria and Bacteroidetes, which only represented a 389 

small fraction of the vast phylogenetic diversity of AD microbiome. Moreover, the abundances 390 

of residue populations were generally less than 10% in most digesters, thus their impacts on the 391 

beta diversity calculation were marginal. Only when the abundance of residue populations was 392 

high (i.e., in cluster E), a major impact was observed. Finally, a very weak correlation was 393 

observed between the abundance of residue populations and overall digestion efficiency, likely 394 

because the presence of residue populations could only indicate inefficient cell lysis, the first 395 

step of AD process (Amani et al. 2010). The digestion efficiency of full-scale systems is 396 
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collectively influenced by other factors including compositions of the feed sludge, mixing 397 

condition of the reactor, and monitoring approaches.   398 

 399 

5. Conclusion 400 

The analyses of microbial communities of 90 full-scale anaerobic digesters around the 401 

world lead to the following conclusions: 402 

x The differences of microbial community structures were determined by the operating 403 

conditions of digesters, whereas geographical location of the digesters did not have a 404 

significant impact.  405 

x Residue populations associated with undigested feed sludge were commonly observed in 406 

all the AD samples, with the highest abundance observed in low-temperature digesters 407 

and lowest abundance in digesters with pretreatment. 408 

x There was no population shared by all the sampled digesters due to the operation-driven 409 

heterogeneity. The cluster-specific core microbiome contained methanogens, syntrophs, 410 

fermenters, and residue populations. 411 
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Figure 1. Clustering of digester microbial communities. UPGMA dendrogram was built 
using weighted UniFrac as distance matrix after jackknifed rarefaction to 20,957 sequences 
per sample with 100 iterations. Three feed sludge samples are used as outgroup to root 
the tree. Plants that have samples not clustered together are marked.
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Figure 3. Distribution of OTUs identified as residue populations. Panel (A) shows the top ten phyla that contain high numbers of residue OTUs. 
Dots represent numbers of OTUs of this phylum (primary y axis). Solid bars represent abundance of residue populations of this phylum in feed 
sludge community and open bars represent abundance of residue populations of this phylum in AD community (secondary y axis). Panel (B) 
shows the distribution of residue abundance in 148 AD samples. Panel (C) shows correlation between Shannon index and residue abundance of 
each AD sample. Panel (D) shows residue abundance (dots, primary y axis) and Shannon index (bar, secondary y axis) of each cluster determined 
previously. 
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