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Preface

What you have in your hand is my MSc thesis project report. Although this report is only
disclosing my thought process regarding one Reinforcement Learning flight controller, it rep-
resents more. It is a tiny step towards artificial general intelligent aircraft, which I aspire to
see in reality. It encompasses three concepts that intrigue me the most: time, consciousness,
and flying. Once you have read it, I believe that you will have more ideas on Reinforcement
Learning, Adaptive Critics, Fault Tolerant Flight Controllers, and the direction to realize
intelligent aircraft in the near future.

I have worked on this piece for more than one and a half years, but I still feel that it is
incomplete. While writing this, I have learned a lot about aircraft, macro world dynamics,
optimizations, motion control, machine learning, and system identification. It has made
me appreciate academia, the systematic process of knowledge creation, and approaching the
unknown with realistic means. It has given me a glimpse into the universe’ working. It has
pointed out strengths and weaknesses. Lastly and most importantly, it has killed a schoolboy
and given birth to a scientist.

Working on this project was not as easy as it might seem. It required several trials and
tribulations. The literature concerning the topics in this report are not coherent to each other;
they use different terminologies to make the life difficult for a perfectionist and information
hoarder. Besides that, I had accommodated demons within me that impeded this report’s
completion. Only when I started reading the literature with my terms and had purged the
demons, this report wrote itself through me.

This piece would not have been completed without support from great people. First of all,
I would like to thank my parents, for being themselves and patient with me. Secondly, my
utmost gratitude goes to my supervisor Dr. Ir. Erik-Jan Van Kampen. I do not have
enough words to explain how much I have appreciated his guidance, encouragements and
ever so slight pushes. Then I would like to thank my sisters Habiba, Esem, and Nusrat
for reminding me what is most important. A ton of thanks goes to my colleague and dear
friend, Ir. Manan Siddiquee, for decluttering my thoughts and showing me the way to be
a true academician. After that, I would like to thank Anton, Tigran, Ishaq, and Malik
for sharing their experience of writing MSc thesis. I would also like to thank my friend
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Rakesh for his proofreading and edits. Then I would like to thank Tariqul, Kenan, Vashish,
Usama, Niek, Valentin, Roberto and G. for their moral support. Last and not least, I would
like to convey deep gratitude towards past and present C&S upper house members for the
stimulating conversations, encouragements and engaging workplace. I would also like to thank
my unmentioned friends and family for their empathy and kindness.

Imrul Kayesh Ashraf

Delft, November 2018
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Chapter 1

Introduction

Improvement of safety and performance are two essential criteria for the development of new
technology. According to recent statistics, Loss of Control-In Flight (LOC-I) causes most
of the catastrophic aircraft accidents [1, 2]. Currently, advanced methodologies are being
investigated to prevent and recover aircraft from its precursors [3–5]. One such promising
technology is adaptive control system. Such system promises to improve the fault tolerance
by analytically adjusting the onboard control strategies [3, 4].

In so far, multiple methods have been proposed to design adaptive control systems [4, 6–
13]. Among these methods, one promising group is Adaptive Critic Design (ACD)[14, 15].
These are a class of Reinforcement Learning (RL) algorithms that can learn control law for
any arbitrary system [16]. The learning capability make these techniques better suitable for
accommodating a wide range of non-nominal conditions [17]. However, due to the recency
of their emergence, these methods are yet to be validated for Flight Control Systems (FCS)
design.

In previous research, few of ACD algorithms were used to develop task-specific flight con-
trol laws [16, 18–25]. These works demonstrated that such algorithms could learn to attain
different flight objectives, e.g., aircraft landing, pitch tracking and pull up maneuver, and
could adapt the control law when warranted. However, most of these research considered
only to control the longitudinal dynamics and have used relatively computationally heavier
ACD architectures [26–28]. This thesis project is set out to address these two limitations
by recommending a lateral-directional flight controller with a computationally simpler ACD
architecture.

1-1 Thesis Objective

The objective of this thesis is to improve the fault-tolerance of fixed-wing aircraft by
investigating the applicability of J-SNAC algorithm for the design of an adaptive
lateral-directional flight controller.
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1-2 Research Questions

Four sets of tasks were defined to attain the stated objective. These tasks concerned with de-
termining the working principle of ACD algorithms, developing a controller with the J-SNAC
algorithm, identifying the conditions for its successful implementation and evaluating the
controller for driving lateral-directional dynamics of fixed-wing aircraft. Following research
questions and subquestions were used to guide these tasks.

R.Q.1 What is ACD, specifically J-SNAC, in state-of-the-art literature?

R.Q.1.1 What is ACD?

R.Q.1.2 What are the theoretical differences between the different ACD architectures?

R.Q.1.3 How does J-SNAC algorithm perform in comparison to other ACD architectures?

R.Q.2 What are the conditions for successful implementation of a J-Single Network Adaptive
Critic (SNAC) controller?

R.Q.2.1 How to use J-SNAC for the design of a controller for a nonlinear system?

R.Q.2.2 What are the hyper-parameters of a controller designed with J-SNAC?

R.Q.2.3 How sensitive is the controller performance to changes in hyper-parameters?

R.Q.3 To what extent does the proposed controller improve the performance and survivability
of fixed wing aircraft?

R.Q.3.1 How does the proposed controller perform in comparison to a traditional fixed-
gain linear controller?

R.Q.3.2 How does the proposed controller perform as an adaptive controller?

R.Q.3.3 To what extent can the controller performances be generalized for fixed-wing
aircraft control?

1-3 Research Approach

The research activities are distributed in three phases, namely, literature review, preliminary
study, and the aircraft implementation phases.

Literature Review

In the first phase, state-of-the-art literature was studied to answer research question R.Q.1.

Preliminary Study

In the preliminary study phase, the J-SNAC algorithm was analyzed. The goal of this study
was to confirm the design methodology and identify the hyperparameters of the algorithm.
This study aimed to answer research question R.Q.2.
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1-4 Report Outline 3

Controller Implementation and Evaluation

Subsequently, a lateral-directional flight controller was developed with the J-SNAC algorithm.
The controller was implemented to control a simulation model of F16 [29]. The performance of
the controller was evaluated for tracking tasks and adaptation to unanticipated changes in the
aircraft dynamics. The tracking performance was compared with a traditional flight controller,
designed with linear control theory. The adaptability of the controller was investigated by
measuring its efficacy with a specified performance index. Activities of this phase aided to
answer the remaining research questions and conclude the research.

1-4 Report Outline

Following this introduction is an article, summarizing most of this research work. After that,
Part II presents the results from the literature review and preliminary analysis phase. Then,
Part III presents additional findings from the implementation and evaluation phase. Finally,
the report concludes in Part IV with conclusions and recommendation.

For the reader who needs familiarization with fault-tolerant flight control and reinforcement
learning, please refer to Chapter 2 and 3 in part II.
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Adaptive Critic Control For Aircraft

Lateral-Directional Dynamics

Imrul K. Ashraf∗

Delft University of Technology, PO Box 5, 2600 AA Delft, The Netherlands

Loss of control-in flight (LOC-I) is one of the causes of catastrophic aircraft accidents.
Fault-tolerant flight control (FTFC) systems can prevent LOC-I and recover aircraft from
LOC-I precursors. One group of promising methods for developing Fault-Tolerant Con-
trol (FTC) system is the Adaptive Critic Designs (ACD). Recently one ACD algorithm,
called value function based single network adaptive critic (J-SNAC), has emerged and it
promises to make applications of ACD more practical by reducing the required amount of
computations. This paper discusses the implementation of this framework for the design of
a lateral-directional flight controller. The proposed flight controller is trained to perform
coordinated-turns with an F16 simulation model. The trained controller was evaluated
for tracking two different heading command signals, robustness against sensor noises and
partial failure of the ailerons. The controller is found to be effective for the considered
assessments.

Nomenclature

ACD Adaptive Critic Designs
ADP Approximate Dynamic Programming
CE Control Effectiveness
FA Function Approximator
FCS Flight Control System
H.O.T Higher Order Terms
J-SNAC Value Function Based Single Network Adaptive Critic
LOC-I Loss Of Control-In Flight
PI Performance Index
PID ProportionalIntegralDerivative
RL Reinforcement Learning
RLS Recurssive Least Square
RMS Root-Mean-Square
TD Temporal Difference

I. Introduction

Loss of control is one of the causes of catastrophic aircraft accidents.1–4 Enhanced dynamics control
strategies, that can accommodate onboard system failures and persist in adverse operational environment,2

can be employed to diminish this cause. “Adaptive Critic Design” (ACD) algorithms are a group of such
strategies.5–11 These are a class of Reinforcement Learning (RL) algorithms, that uses function approxima-

tors (FA) and Approximate Dynamic Programming (ADP) technique to learn solutions to complex control
problems autonomously. Their learning capability may enable Flight Control Systems (FCS) to adapt in
response to unanticipated changes in the aircraft sub-systems or operating conditions. However, due to lack
of maturity, these algorithms are yet to be implemented in FCS.

∗MSc. Student, Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology
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Until now several RL Flight Controllers have been proposed with different ACD frameworks.12–20 One
limitation of these controllers is that they have an exorbitant computational requirement. This requirement
comes from learning two different functions with separate function approximation structures. Utilizing one of
the modern ACD architectures,21–24 can circumvent the computational burden. These modern frameworks
make half of the required computation in ACD algorithms superfluous by eliminating one of the function
to be learned. Furthermore, most of the research mentioned above have focused their work on the control
of aircraft longitudinal dynamics. Control of the lateral-directional flight dynamics with ACD would reveal
the efficacy of these algorithms to control the coupled roll and yaw motions and thus facilitating their
implementation in future FCS.

This article contributes by addressing the mentioned limitations of the previous studies. It focuses on
the theoretical development and performance analyses of a lateral-directional flight controller designed with
Value Function based Single Network Adaptive Critic (J-SNAC) algorithm. The organization of this article
is as follows. Section II introduces the preliminaries to rest of the article. Next, Section III presents the
objective of the proposed controller and its design. Then Section IV gives the controller training schedule
and performance evaluation strategies. Subsequently, Section V presents the results and discussions from
the training and evaluation processes. Finally, Section VI concludes the article with the implications of this
paper and future research directions.

II. Preliminaries

This section presents the preliminaries to the development of lateral-directional flight control law with the
J-SNAC algorithm. Firstly, it describes the lateral-directional flight dynamics. Next, it presents the Infinite

Horizon Discounted Return Problem and few essential concepts required to solve this problem. Finally, it
provides an overview of the J-SNAC algorithm.

A. Lateral-Directional Flight Dynamics

The objective of this work is to synthesize a reinforcement learning controller to drive aircraft heading angle
ψ, roll angle φ, side slip angle β, roll rate p and yaw rate r (see Figure 1 for the definitions) by manipulating
of the aileron δa and rudder δr deflections. The system of equations that governs these dynamic states is as
follows,

ψ̇ = 1
cos θ (q sinφ+ r cosφ)

φ̇ = p+ tan θ(q sinφ+ r cosφ)

β̇ = Y
m

+ p sinα− r cosα+ g
V
cosβ sinφ cos θ + sin β

V

(

g cosα sin θ − g sinα cosφ cos θ + T cosα
m

)

ṗ = 1
IxxIzz−I2xz

(

IzzL+ IxzN + (Ixz(Ixx − Iyy + Izz))pq + (Izz(Iyy − Izz)− I2xz)qr
)

ṙ = 1
IxxIzz−I2xz

(

IxzL+ IxxN − (Ixz(Ixx − Iyy + Izz))qr + (Ixx(Ixx − Iyy)− I2xz)pq
)

(1)

The dynamics of the lateral-directional state variables are coupled with longitudinal state variables (e.g., the
involvement of airspeed V , body pitch rate q, pitch angle θ and angle of attack α in Eq. 1). The aerodynamic
forces and moments that influences the lateral-directional dynamics most are side-force Y , rolling moment L
and yaw moment N . These forces and moments depend on the Mach number, aerodynamic angles (α and β)
and deflections of the aerodynamic surfaces (δa, δe and δr). Next to these force and moments, gravitational
attraction g influences the lateral-directional dynamics. Last but not least, the state variables are dependent
on aircraft inertial properties, i.e., mass m, and mass moment of inertia Ixx, Iyy, Izz and Ixz.

This work assumes that airspeed and altitude controller are in-place so that the cross-coupling between
longitudinal and lateral-directional state variables are negligible. Additionally, the effects of thrust T on
side-slip dynamics β̇ is considered to be weak.

B. Infinite Horizon Discounted Return Problem

Reinforcement Learning (RL) algorithms are a group of data-driven approaches to solving optimal control
problems.10, 25 The type of optimal control problem considered for the development of flight controller is
called “Infinite Horizon Discounted Return Problem”.21 This problem is defined as follows.
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Figure 1. Definition of aircraft state variables with body reference frame F b and geodetical reference frame
F g.

Given a continuous-time-nonlinear system,

ẋ(t) = f [x(t),u(t)] (2)

with x ∈ X ⊂ R
n being the states, u ∈ U ⊂ R

m being the control inputs. An associated one-step-control
performance for this system is given by the reward function r(t),

r(t) = ρ[x(t),u(t)] (3)

The objective is to find a state feedback control law,

u(t) = h[x(t)] (4)

such that the following performance measure is maximized for any initial state x(t0) ∈ X .

R[x(t)] =

∫ ∞

t

e−
s−t
τ ρ[x(s),u(s)]ds (5)

In Eq. (5), R[x(t)] is the return of the state x and τ is the time constant to discount future rewards.

C. Value and Policy Functions

ACD compute solutions to control problems (i.e. optimal control policy) through the optimal value function.
Below are definitions of policy function, value function and their optimal forms.

A policy h(x) is defined as the stationary mapping of states to control actions,

h(x) : x → u, ∀x ∈ X (6)

The stationary mapping of return R(x) from each state x ∈ X for a given control policy h(x) is defined
as the value function V h(x),

V h(x) : x → R(x), ∀x ∈ X, u(t) = h[x(t)] (7)

The optimal value function V ∗(x) is that corresponds to the optimal control policy h∗(x). It is defined
as following,

V ∗(x) =
∫∞

t
e−

s−t
τ ρ[x(s), h∗[x(s)]]ds

= maxu[t,∞)

[

∫∞

t
e−

s−t
τ ρ[x(s),u(s)ds

] (8)
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Where u[t,∞) is the time course of u(s) ∈ U for t ≤ s < ∞. According to the principle of optimality,26

at time t, the optimal value function satisfies following self-consistency property.21

1

τ
V ∗(x) = max

u(t)∈U

[

ρ[x(t),u(t)] +
∂V ∗(x)

∂x
f [x(t),u(t)]

]

(9)

Eq. (9) presents the Hamilton-Jacobi-Bellman (HJB) equation for the Infinite Horizon Discounted Return
problem. The optimal policy consists of actions that maximize the right-hand side of the HJB equation, i.e.,

u∗(t) = h∗[x(t)] = argmax
u∈U

[

ρ[x(t),u] +
∂V ∗(x)

∂x
f [x(t),u]

]

(10)

D. Policy Evaluation and Improvement

Policy Evaluation and Policy Improvement are two interactive processes through which ACD algorithms learn
the optimal value and policy function. Below are descriptions of policy evaluation and policy improvement
processes in J-SNAC algorithms. Detailed descriptions of these processes can be found in21 for complete and
their derivation.

1. Policy Evaluation

Policy Evaluation is the process of estimating the value function V h(x) corresponding to the policy h(x).
Given, a parametric function V̂ (x(t);w) that approximates the V h(x), with w being a set of function
approximator parameters. When the estimated value function V̂ (x(t)) is a equivalent to V h(x) , it satisfies
following consistency condition.

V̇ h(x(t)) =
1

τ
V h(x(t)) − r(t) (11)

When the consistency condition is not satisfied, the disparity between the predicted and the real function
can be reduced by minimizing the Temporal Difference (TD) error δ(t).

δ(t) ≡ r(t) − 1

τ
V̂ (t) +

˙̂
V (t) (12)

TD error diminishes when the loss function Ec(t) is minimized by adjusting the parameters of the value
function approximator.

Ec(t) =
1

2
δ2(t) (13)

One approach to adapting the function approximator is to utilize the TD(0) algorithm, where parameters
are adjusted with the following gradient estimate.

∂Ec(t)

∂wi
= −δ(t) 1

τ

∂V̂ (t)

∂wi
(14)

However, further improvement in the learning performance can be made by adding eligibility traces in the
parameter update law (TD(λ) algorithm). Eligibility traces smoothen the descending gradient and distributes
the credits of receiving rewards to the visited states according to their the recency of visits. The weight
update law with eligibility trace is given by,

wi = wi − α(t)δ(t)ei

ėi(t) = − 1
κ
ei(t) +

∂V̂ (x(t);w)
∂wi

(15)

Where α(t) is a variable learning rate, and 0 < κ ≤ τ is the time constant of the eligibility trace.
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2. Policy Improvement

Policy improvement is the process of improving the policy h(x) by making the policy greedy with respect
to the current estimate of the value function V h(x). This process entails searching for value function
optimizing actions (greedy actions). When the system dynamics ẋ is affine-in-input (see Eq. (16)) and the
reward function ρ(x,u) is convex with respect to the action u, the searching operation has a unique solution
and it can be expressed in a closed form function.21, 22, 24, 33

ẋ(t) = f [x(t)] + g[x(t)]u(t) (16)

Assuming that reward function can be separated into state dependent ρx(x) (defined to encompass the
control objective) and action dependent ρu(u) parts (defined to engrave physical limits and/or learning
strategy). The reward function can be expressed as,

ρ(x,u) = ρx(x) −
m
∑

i=1

ρui(ui) (17)

From the definition of optimal policy in Eq. (10), an action is said to be greedy if it satisfies,

0 = ∂
∂u

[

ρ[x(t),u] + ∂V ∗(x)
∂x

f [x(t),u(t)]
]

= ∂
∂u

[

ρ(x(t),u) + ∂V ∗(x)
∂x

(f [x(t)] + g[x(t)]u)
]

= −ρ′ui(ui) +
∂V ∗(x)
∂x

g(x(t)) (i = 1, · · · ,m)

(18)

From this derivation, the closed form function for greedy policy (named as the actor) is given as,

u(t) = ρ′−1
u

(

∂V ∗(x)

∂x
g[x(t)]

)

(19)

As per Eq. (19), the computation of greedy actions requires an estimate of Control Effectiveness (CE)
parameters and the co-states.

E. Value Function Based Single Network Adaptive Critic

Figure 2 presents a pictorial depiction of the Value Function Based Single Network Adaptive Critic (J-SNAC)
algorithm. It solves infinite horizon discounted return problem defined for an input-affine system, forward
in time. It consists of five subsystems, namely the critic, the plant model, the reward function, the action
modifier, and the actor. The derivation of this algorithm can be found in.21

1. The Critic

The critic learns the optimal value function V ∗(x) and reads out the state values V (x) and the co-state-
values ∂V (x)/∂x to other subsystems of the controller. The critic system uses a TD(λ) algorithm to learn
the optimal value function. It reads out the state value from the learned function and calculates co-states
by performing backpropagation on the approximated function.

In this work Normalized Radial Basis Function (NRBF) network21, 27, 28 is used for the critic. The choice
of this parametric structure is motivated by its ability to alter the estimated function in a local region of the
state-space without altering the global shape. Assuming K basis functions in the network, output V from
the NRBF structure for a given input x is given by

V (x; a) =
∑K

k=1 akvk(x)

vk(x) = uk∑
K
l=0 ul(x)

uk(x) = e‖r
T
k (x−ck)‖

(20)

Where ak, ck and rk are the amplitude, location and spread of the kth basis function.
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2. The Reward Function

The reward function computes the one step performance of the controller. It is a user defined function
to encapsulate the control objective and physical constraints. J-SNAC algorithm assumes that the reward
function is action-dependent, i.e., r(x,u) and convex with respect to the action u.

3. Action modifier

-

+

+

-+

Σ

Σ

Actor

Critic

P lant

Model

Action

Modifier

Reward

Function

1

τ

∇t

∇t

x(t)

V (t)

V̇ (t)

r(t)

δ(t)

un(t)

∇xV (x)

∇uf(x, u)

u(t)

em(t)

Figure 2. J-SNAC control algorithm. At time t, x(t) is the
state measurements, u(t) is the action to be applied, V (t) is
value of the state x, r(t) is the reward for being in state x

and applying action u, un(t) is an additive noise signal, δ(t) is
the temporal difference, f(x, u) is the system dynamics, and
∇ is system/operator to calculate partial derivatives (e.g.
∇tx is the partial derivatives of x with respect to t.)

To learn a stationary, near-optimal value func-
tion and to estimate the control effectiveness
parameters, the action applied by the actor
needs to excite the system-to-be controlled per-
sistently. This excitation signal is called explo-
ration action signal. J-SNAC uses a filtered and
modulated noise signal as its excitation signal21

and it is generated with the following system of
equations.

un(t) = σ(t)n(t)

τnṅ(t) = −n(t) +N(t)

σ(t) = σ0 min
[

1,max
[

0, rmax−V (t)
rmax−rmin

]]

(21)
Where, σ0 is the maximum perturbing ac-

tion, N(t) is a zero-mean Gaussian noise signal,
V (t) is the estimated value of the state at time t,
rmax and rmin are the maximum and minimum
value of expected rewards r(t).

4. The Plant Model

The plant model estimates of the Control Ef-

fectiveness (CE). In this work, CE is ap-
proximated incrementally with Recursive Least
Square (RLS) estimator.29, 30 The central idea
in this estimation process is to linearize the
plant locally in time and space and use sampled
input-output data to estimate the parameters of
the linearized plant.

Given a continuous-time nonlinear system
(e.g., Eq. (2)), it can be linearized around a
time t0 using Taylor series expansion,

ẋ(t) = ẋ(t0)+
∂f(x(t), u(t))

∂x(t)

∣

∣

∣

∣

x(t0),u(t0)

(x(t)−x(t0))+
∂f(x(t), u(t))

∂u(t)

∣

∣

∣

∣

x(t0),u(t0)

(u(t)−u(t0))+H.O.T

(22)
Truncating the expansion up-to linear terms and rewriting the terms (ẋ(t)− ẋ(t0)), (x(t)−x(t0)), (u(t)−

u(t0)),
∂f(x(t),u(t))

∂x(t)

∣

∣

∣

x(t0),u(t0)
, ∂f(x(t),u(t))

∂u(t)

∣

∣

∣

x(t0),u(t0)
as ∆ẋ(t), ∆x(t), ∆u(t), F [x(t0), u(t0)], G[x(t0), u(t0)]

respectively, following linear system can be approximated,

∆ẋ(t) ≈ F [x(t0), u(t0)]∆x+G[x(t0), u(t0)]∆u (23)

Assuming that states and actions are sampled at a fast rate, the linearized drift dynamics F [x(t0), u(t0)]
and control effectiveness G[x(t0), u(t0)] can be estimated with an RLS estimator.31 The system of equations
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for the RLS estimator is as follows,

∆ˆ̇x(t) = X(t)T Θ̂(t− 1)

e(t) = ∆ẋ(t)−∆ˆ̇x(t)

Θ̂(t) = Θ̂(t− 1) +K(t)e(t)

K(t) = Q(t)X(t)

Q(t) = P (t−1)
Λ+X(t)TP (t−1)X(t)

P (t) = 1
Λ

[

P (t− 1)− P (t−1)X(t)X(t)TP (t−1)
Λ+X(t)P (t−1)X(t)T

]

(24)

Where ∆ˆ̇x(t) is the estimation of the incremental change in state rate ∆ẋ(t), X is the regression vector
[∆x ∆u]T , Θ̂(t) is the concatenated matrix of estimated drift dynamics and control effectiveness [F̂T ĜT ]T

at time t, K is the estimator gain, Q is the innovation matrix, P is the estimator covariance matrix and
finally Λ ∈ [0, 1] is the data forgetting factor of the estimator.

5. The actor

The actor commands the control effectors. In the J-SNAC algorithm, its definition comes the reward function
and requires values of the co-state, control effectiveness, and exploratory actions to compute the control
signal. These signals come from the critic, the model, and the action modifier systems.

6. Partial Derivative Estimation

In Figure 2, it can be seen that J-SNAC algorithm requires co-states (partial derivative of the value function
with respect to the state measurements ∂V/∂x) and time derivative of the value (∂V/∂x · ẋ ≡ ∂V/∂t).
Furthermore in order to update estimate the control effectiveness parameter the time rate of the state mea-
surements ∂x/∂t are required. A back-propagation through the function approximator is used for estimating
the derivative ∂V/∂x. The time derivatives of the states and the value function is estimated by using a
derivative filter. The equation for this derivative filter in Laplace domain is given as,

Y (s) =
s

d · s+ 1
U(s) (25)

with Y being the estimated time derivative of the signal U , s being the Laplace variable and d being an
adjustable filter coefficient.

III. Flight Control Systems Design

This section explains the objective of the proposed lateral-directional flight control system. Furthermore,
this section elaborates the use of J-SNAC for the design of the flight control system.

A. Control Objective

The control objective considered here is to perform coordinated turns at a given flight altitude and airspeed.
Such a task entails maintaining a zero side-slip condition (regulation problem) and tracking the desired
aircraft heading angles (tracking problem). The strategy is to manipulate the rudder deflections δr to
regulate the side-slips (β = 0) and produce desirable roll angles φr to track the heading angles ψr. The
desired roll angles φr are attained by manipulating the aileron deflections δa.

B. Lateral-Directional Flight Control System Design with J-SNAC

In this work, a distributed architecture is chosen for the design lateral-directional flight control system. Its
modularity and minimization of dimensionality motivate the choice of the architecture. The proposed flight
control system consists of three J-SNAC controllers, one for regulating side-slip (β) angle, one for tracking
desired roll angle φr and the other one is for producing desired roll angle φr to track desired heading angle
ψr. All three controllers have the structure depicted in Figure 2.
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Figure 3. Placement of Normalized Radial Basis Functions in the state-space for the side-slip regulator and
the roll tracker

1. Side-Slip Regulator Design

The J-SNAC side slip regulator takes the vector signal [βm rm(t)]T as its input and outputs the scalar signal
ur(t). βm is the measured/estimated side-slip angle, rm is the measured body yaw rate and ur(t) is the
command signal for the rudder actuator.

The reward function for this regulator is defined as,

ρ(βm, rm, ur) = −2β2
m − cr

4

π2
urmax log





∣

∣

∣

∣

∣

∣

1

cos
(

π2

4
ur

urmax

)

∣

∣

∣

∣

∣

∣



 (26)

The action-depended part in the reward function implies following the actor function,

ur(t) =
2 · urmax

π
arctan

(

π

2

(

1

cr
[∂V/∂β ∂V/∂r]

[

∂β̇/∂ur

∂ṙ/∂ur

]

+ un,β

))

(27)

Table 1. Hyper-Parameters for side-slip controller

Variable Value Units

Maximum surface deflections (urmax) 30 degrees

Discounting time horizon (τβ) 0.1 s

Eligibility trace time constant (κβ) 0.01 s

Action cost parameter (cβ) 0.1 -

Exploration noise filter time constant (τn,β) 5 s

Learning rate (αβ(t)) 1 -

Exploration noise intensity (σ0,β) 30 degrees

Derivative filter time constant (dβ) 0.02 s

The NRBF network used in side-slip regulator for learning the value function consists of 181 basis
functions distributed in a hexagonal pattern (see Figure 3). The spreads of each basis function are the
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defined with Eq (28), where ri is the spread of ith basis function and ζi is the Euclidean distance to the
nearest basis function. The learning process only updates the amplitudes of the basis functions to reduce
the required computations further.

ri =
1√
2ζi

(28)

The control effectiveness parameters has been estimated with the incremental identification procedure
(see Eq. (24)). The state vector and control vector for the estimator are [∆φ ∆β ∆p ∆r]T and [∆ua ∆ur]

T .
Implemented hyper-parameters for this controller are given in Table 1.

2. Roll Angle Controller

The J-SNAC roll angle controller takes the vector signal [eφ pm(t)]T as its input and outputs scalar signal
ua(t). eφ is the difference between the reference for roll angle φr and the measured roll angle φm. pm is the
measured body roll rate and ua is the command signal for the aileron actuator. The reward function for this
tracker is defined as

ρ(eφ, pm, ua) = −e2φ −
p2m
8

− ca
4

π2
uamax log





∣

∣

∣

∣

∣

∣

1

cos
(

π2

4
ua

uamax

)

∣

∣

∣

∣

∣

∣



 (29)

The action-depended part in the reward function implies following actor function for the roll tracker,

ua(t) =
2 · uamax

π
arctan

(

π

2

(

1

ca
[∂V/∂eφ∂V/∂p]

[

∂ėφ/∂ua

∂ṗ/∂ua

]

+ un,φ

))

(30)

Table 2. Hyper-Parameters for roll controller

Variable Value Units

Maximum surface deflections (umax) 21.5 degrees

Discounting time horizon (τφ) 0.1 s

Eligibility trace time constant (κφ) 0.01 s

Action cost parameter (cφ) 0.1 -

Exploration noise filter time constant (τn,φ) 5 s

Learning rate (αφ) 1 -

Exploration noise intensity (σ0,φ) 21.5 degrees

The NRBF network and control effectiveness identification for roll tracker is identical to that of the
side-slip regulator. Implemented hyper-parameters for roll tracker are listed in Table 2.

3. Heading Angle Controller

The J-SNAC heading angle controller takes the scalar signal eψ(t) as its input and outputs the scalar signal
φr(t). eψ(t) is the difference between the reference for heading angle ψr(t) and the true heading angle ψm(t).
φr(t) is the reference signal for the roll angle controller. The reward function for this tracker is defined as

ρ(eψ , φr(t)) = −0.5e2ψ − cφr
4

π2
φrmax log





∣

∣

∣

∣

∣

∣

1

cos
(

π2

4
φr

φrmax

)

∣

∣

∣

∣

∣

∣



 (31)

The action-depended reward part implies following actor function for the heading angle tracker,

ur(t) =
2 · φrmax

π
arctan

(

π

2

(

1

cφr

∂V

eψ

∂ėψ
∂φr

+ un,ψ

))

(32)

The NRBF network for heading angle tracker consisted of 25 basis function evenly distributed in within
the space of [−2π 2π]. The spread of each basis function is according to Eq. (28). Since the kinematic
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equation that determines the heading angle is non-changing, the control effectiveness is set with a desired
value of ∂ψ/∂φr = 0.5. Implemented hyper-parameters for this controller are listed in Table 3.

Table 3. Hyper-Parameters for heading controller

Variable Value Units

Maximum roll command (φrmax) 68.76 degrees

Discounting time horizon (τψ) 0.1 s

Eligibility trace time constant (κψ) 0.01 s

Action cost parameter (cψ) 0.001 -

Exploration noise filter time constant (τn,ψ) 5 s

Learning rate (αψ) 0.002 -

Exploration noise intensity (σ0,ψ) 68.76 degrees

IV. Controller Training and Evaluation Method

This section presents the simulation setup, the controller training, and evaluation methods. Furthermore,
it gives the design of the PID flight controllers, used for stabilizing the longitudinal flight dynamics and
benchmarking the proposed J-SNAC flight controller.

A. Aircraft Model and Simulation Setup

The proposed lateral-directional flight control system was trained and evaluated in a Simulation environment
made with MATLAB and Simulink. This setup used Fourth-Order Runge-Kutta Solver with a fundamental
time step of 0.02s to calculate the state evolution. The simulation setup consisted a nonlinear model of the
F16 aircraft34 and the controllers (see Figure 4).

The aircraft model used in the setup has traditional aerodynamic control surfaces (i.e., aileron, elevator,
and rudder) and a single engine. Furthermore, the model consists first order lag filters with bounded rate
and values to model the aerodynamics surface actuators and the engine.

The aircraft is initialized at a steady-symmetric flight condition at an altitude of 5000 ft and airspeed of
600 ft/s. The state values at this trim conditions are given in Table 4.

Table 4. Trim condition for the simulation setup

Variable Value Units

Altitude (h) 5000 ft

Airspeed (V ) 600 ft/s

Mach number (M) 0.5470 -

Angle of attack (α) 1.5579 degrees

Angle of Side slip (β) 0 degrees

Pitch angle (θ) 1.5579 degrees

Throttle Setting (δth) 2.5942× 103 lbf

Elevator Deflection (δe) 1.7640 degrees

Rudder Deflection (δr) 0 degrees

Aileron Deflection (δa) 0 degrees

B. Fixed Gain Controller Design

In Section II, it was assumed that the effects of longitudinal state variable on lateral-directional state dy-
namics are minimum. For this assumption to hold, longitudinal dynamics controllers are necessary. Here,
a set of fixed gain linear controllers were designed to hold the longitudinal states close to their trimmed
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values. Furthermore, to provide a benchmark for the proposed J-SNAC based lateral-directional flight con-
troller, another set of fixed-gain linear controllers were designed for controlling the lateral-directional flight
controller. Figure 4 depicts how longitudinal flight controllers work in tandem with the lateral-directional
flight controller.

1. Longitudinal Dynamics Controller Design

The function of the longitudinal flight controller is to hold a longitudinal state (i.e., altitude h, airspeed V ,
pitch angle θ, the angle of attack α, pitch rate q) at a constant value. Figure 5(a) shows the structure of the
longitudinal flight controller used in this work.

This flight controller consists of three PID control laws, two of which work together to hold a reference
flight altitude hr and the other one holds a reference airspeed Vr(t). The altitude regulator takes in desired
altitude hr(t) and measured altitude hm(t) as its input and outputs a desired pitch angle θr(t). The control
law for this controller is defined with Eq. (33). In these equations θr, KPeh

, KIeh
, KDeh

stands for desired
pitch angle and PID gains of the controller.

θr(t) = KPeh
eh(t) +KIeh

∫ t

t0
eh(τ)dτ +KDeh

ėh(t)

eh(t) = hr(t)− hm(t)
(33)

xref
long

xm
long

xm
lat

xref

lat

uth ue

ur ua

Longi-

tudinal

Controller

F16

with

Actuator

Dynamics

Lateral-

Directional

Controller

Figure 4. F16 aircraft model with flight controllers.

xref
long

and xref
lat

are the external command signals for

longitudinal and lateral states respectively. xm
long

and

xm
lat

are the measured/estimated signals for longitu-
dinal and lateral states. uth, ue, ua and ur are the
command signals for the flight control surfaces and
the engine.

The pitch controller takes in the desired pitch an-
gle θr(t) from the altitude regulator, measured pitch
angle θm(t) and pitch rate qm(t) from the sensors as
its input and outputs dynamic command for elevator
deflections uce(t). The control law for this controller
is defined in Eq. (34).

uce(t) = θr(t)−Kθθm(t)−Kqqm(t) (34)

The combination of two signals determines the ac-
tual elevator deflection. The first signal is a dynamic
signal uce(t) generated by the pitch controller and the
second signal is a static signal utre (t) determined from
trimming routine.

The airspeed regulator takes in the desired air-
speed Vr(t) and the measured airspeed Vm(t) as its
input and outputs a dynamic throttle command sig-
nal determined with Eq. (35). In these equations,
ucth(t) stands for dynamic throttle command signal,
KPeV

, KIeV
and KDeV

stands for the PID gains.

ucth(t) = KPeV
eV (t) +KIeV

∫ t

t0
eV (τ)dτ +KDeV

ėV (t)

eV (t) = Vr(t)− Vm(t)
(35)

Similar to the elevator, the throttle setting is de-
termined by the combination of a dynamic ucth and a
static signal utrth. The dynamic signal comes from the
airspeed controller, and the static signal comes from
the trimming routine.

There are eight parameters, namely KPeh
, KIeh

,
KDeh

, Kθ, Kq, KPeV
, KIeV

andKDeV
, in the longitu-

dinal flight controller. These parameters were tuned
with root locus and successive loop closure methods, to meet the specifications for the category B flight phase
and level 1 flying qualities, as stipulated in MIL-F-8785C.35 The determined gain values are given in Table
5.
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Figure 5. Internal structure of decoupled flight controllers. The purpose of the longitudinal flight control-
system is to hold a specific altitude and flight velocity. The purpose of lateral-directional control-system is
to perform coordinated turns. Sub-controllers in longitudinal flight controller consist of a PID law. Sub-
controllers of the lateral-directional flight controller consist of either J-SNAC or PID control law.

2. Lateral-Directional Dynamics Controller Design

The purpose of lateral-directional flight control system is to perform the same control objective as J-SNAC
flight controller, i.e., coordinated turns. This linear flight controller has a similar structure to the J-SNAC
controller (see, Figure 5(b)).

Similar to the longitudinal-dynamics controller, these controllers were designed to meet the specification
provided in MIL-F-8785C, with root-locus and successive loop closure methods.

The linear heading tracker takes desired heading angle ψr(t) and measured heading angle ψm(t) as its
input and outputs a desired roll angle φr(t). The control law is defined with Eq. (36). In these equations
φr, KPeψ

, KIeψ
, KDeψ

stands for desired roll angle and PID gains of the controller.

φr(t) = KPeψ
eψ(t) +KIeψ

∫ t

t0
eψ(τ)dτ +KDeψ

ėψ(t)

eψ(t) = ψr(t)− ψm(t)
(36)

Table 5. Longitudinal controller parameter values for holding F16 at an altitude of 5000 feet and with an
airspeed of 600 feet per second.

Parameter Values Parameter Values

KPeh
-0.0113 Kq -0.0682

KIeh
-0.0059 KPeV

16759

KDeh
-0.0328 KIeV

9545

Kθ -0.0367 KDeV
5206

The side-slip regulator takes in the reference side slip angle βr(t) = 0, measured side slip angle βm(t)
and measured yaw rate rm as its input and outputs a dynamic rudder command signal determined with Eq.
(38), (39) and (40). This rudder controller contains a wash-out filter to augment yaw rate measurements.
In the controller Equations the washed-out yaw rate measurement is given by w(t). Furthermore, in the
equations ucr(t) stands for dynamic rudder deflection signal, KIeβ

and Kw stands for the controller gains.

The roll angle controller takes desired roll angle φr from the heading tracker, measured roll angle φm
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and roll rate pm from the sensors/estimators. The control logic for this controller is given by Eq. (37). In
these equations pm is the measured roll rate, φm is the measured roll angle, uca(t) is the dynamic command
for aileron deflections, KPeφ

, KIeφ
, KDeφ

and Kp are the tunable controller parameters.

uca(t) = KPeφ
eφ(t) +KIeφ

∫ t

t0
eφ(τ)dτ +KDeφ

ėφ(t)−Kppm(t)

eφ(t) = φr(t)− φm(t)
(37)

The combination of two signals determines aileron deflection. The first signal is a dynamic signal uca(t)
generated by the aileron regulator and the second signal is a static signal utra (t) determined from trimming
routine.

ucr(t) = KIeβ

∫ t

t0

eβ(τ)dτ +Kww(t) (38)

eβ(t) = βr(t)− βm(t) = −βm(t) (39)

ẇ(t) = −w(t) + rm(t) (40)

Similar to all other controllers, the combination of a dynamic ucr and a static signal utrr determines the
rudder deflection. The dynamic signal comes from the rudder regulator, and the static signal comes from
the trimming routine.

There are nine parameters, namely KPeψ
, KIeψ

, KDeψ
, KPeφ

, KIeφ
, KDeφ

, Kp, KIeβ
and Kw, in the

linear lateral-directional-flight controller that needs tuning. The determined gain values are given in Table
6.

Table 6. Lateral-directional-controller parameter values for making coordinated turns to track heading com-
mands with F16 at an altitude of 5000 feet and with an airspeed of 600 feet per second.

Parameters Values Parameters Values Parameters Values

KPeψ
27.40 KPeφ

-1.71 Kp -0.07

KIeψ
1.45 KIeφ

-1.50 KIeβ
0.70

KDeψ
-16.54 KDeφ

-0.48 Kw 0.12

C. J-SNAC Flight Controller Training Method

The J-SNAC controller was initialized with zero knowledge about control task and then was trained in a
two-step training procedure. In the first training sequence, the side-slip regulator and the roll angle controller
was trained to track roll command signals with zero side-slips. Next, the heading angle controller was added
to the flight control system and then trained together to follow heading angle commands.

1. Training of Side-Slip Regulator and Bank Angle Controller

During this phase of training, the slide slip regulator and roll angle controller is trained to track roll command
signals with zero-side slips. The training session consisted of 305 episodes, where each episode lasted for 180
seconds. Each episode started at the trimmed condition mentioned earlier.

A cascaded system consisting of a sine wave generator, a static-gain, and a zero-order hold filter (see
Figure 6) generates the commanded roll angles. Throughout training sessions, the sine wave generator
produced a sine wave with an amplitude of π/3 radian and frequency of 1/180 Hz. The gain block is
responsible for altering the sign of the sine signal randomly. This random switching is done to promote even
exploration of the state-space. The zero-order hold filter is used to convert the sine signal into variable step
signal. The variable step signals are generated by setting the sampling time of the zero-order filter with
following law.

T = mod(N − 1, 61) (41)
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Figure 6. System to generate reference signals for training.

In Eq. 41, T stands for sampling time, and N is the episode number and “mod” stands for remainder
operator. When the T = 0 the reference signal is a pure sine signal. When T is an integer, the reference
generator produced block signals with varying levels.

These type of reference signals are chosen to make the tracking task gradually demanding across the
training episodes and then repeating the tracking tasks five times.

2. Training of Heading Angle Training

Upon the completion of initial training of side-slip regulator and roll angle controller, the heading angle
controller is added to the flight control system. The learning rate of the roll tracker and side-slip regulator
is set to zero as it is desired to train the heading controller alone. The training session is similar to the
previous training sequence, i.e., using the same reference signal generator. One of the differences between
this and previous training session is that the heading angle controller was trained over 124 training episodes.
Other difference is that the sinusoidal signal generator generated following the reference signal,

ψr(t) =
3

4
π sin(

2π

180
t− π

2
) +

π

2
(42)

D. Controller Performance Evaluation

After the training, the proposed J-SNAC based lateral-direction flight controller was evaluated for its learning
and control performance. At first, the controller is qualitatively assessed for its learning performances. Next,
the controller is evaluated quantitatively for its control performances.

1. Training Performance Evaluation

The goal of this evaluation is to assess the training process and its effects on the value and policy functions.
The training process is evaluated by observing the region of state-space covered by the controller and ob-
serving the change of policy function across the training episodes. Effects of training on the value and policy
functions are evaluated by comparing their surfaces before and after the training processes.

2. Control Performance Evaluation

The goal of this evaluation is to quantify the control performance of the proposed controller before and
after the training, then compare these performances with the performance of the benchmarking controller.
Furthermore, control performance was also evaluated for robustness against sensor noise and partial failure
of the aileron.

The performance of the proposed controller is quantified with the performance index PI defined in Eq.
43. The defined performance index is a weighted sum of normalized root mean squared (RMS) errors in
desired altitude, airspeed, side-slip angle, and heading angle. Altitude and velocity are included in the PI to
quantify the effects on the longitudinal flight controller. Side-slip and heading angles are included in the PI
because they are the principal variables of interest. The error in altitude and airspeed are normalized with
25 feet and 10 feet per second. The error in heading and the side-slip angle is normalized with 2 degrees.

PI = −0.1 ·
√

1
T

∫ T

0

(

h(t)−hr(t)
25

)2

dt− 0.1 ·
√

1
T

∫ T

0

(

V (t)−Vr(t)
10

)2

dt

−0.4 ·
√

1
T

∫ T

0

(

β(t)−βr(t)
2

)2

dt− 0.4 ·
√

1
T

∫ T

0

(

ψ(t)−ψr(t)
2

)2

dt

(43)
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The control performance of the controller was compared with the bench-marking fixed gain controller for
tracking a sinusoid and a smoothened step signal under nominal conditions.

Then the controller was evaluated for robustness against sensor noise and partial failure of the aileron.
The sensor noise is simulated by corrupting the rotational rate signals (i.e., roll rate p and yaw rate r) with
zero mean Gaussian noise. The partial loss of aileron was simulated by halving the command signals and
adding 7 degrees bias to this split signal.

V. Results and Discussion

This section presents and discusses the results from the training and performance evaluation procedures.

A. Affects of Training on the Value and Policy functions

Figure 7 shows the region of state-space that the J-SNAC flight controllers have explored while being trained.
Although the roll and heading angle trackers have experienced most parts of the state-space, the side slip
regulator has not experienced much of the state-space. This disparity between the explored regions by
controllers is because of the training schedule. The reference signals used for training have made the roll and
heading angle trackers explore most of the allowed state-space. However, since all training episodes started
at zero-side-slip conditions, the exploration signal produced by J-SNAC side-slip regulator was insignificant.
Furthermore, disturbances in side-slip angles while rolling was also small.

(a) side slip controller (b) roll angle controller

Figure 7. Depiction of parts of the state-space visited by the J-SNAC controllers during their training. The
rectangular box represents the bounds in the state-space within which the controllers can learn its policy.

Figure 8 depicts the trajectory of policy function monitoring parameters (∆hδr ,∆hδa ,∆φr) across the
training episodes. The policy function monitoring parameters were defined with the RMS of changes in
control actions assigned to a list of preselected states. In figure 8(a) and 8(b), it is observed that initially
both the side-slip regulator and roll angle tracker changes rapidly. This rapid change is because of large initial
TD errors. Next notable observation in these figures is that every 61 training episode there is a drop in the
rate of change. This drop in the rate of change is because of the process of generating the tracking reference
signal, which changed gradually over 61 episodes and then repeated after every 61 episodes. Additionally, the
rate of change of side-slip and roll tracker policies are decreasing over the episodes, due to the declining TD
error. The policies did not converge to a stationary form as there are unexplored regions in the state-space.
With more training and possibly with better training scheme policy could converge.
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According to Figure 8(c), the heading angle policy changed rapidly during the first episode and afterward
there is a slow increase in the change of policy with some fluctuations. Rapid change in the first episode is
due to high TD error in the first episode, and small variations after that are due to the exploration of state
space and declining TD error.
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Figure 8. Change in policy function tracking parameter across training episodes.

Figures 9 and 10 and shows the value and policy functions learned by the J-SNAC controllers after their
training. Before the training, all of these functions have zero outputs for all input.
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Figure 9. Value functions after training.

From these observations, it can be concluded that the J-SNAC algorithm could perform its learning
function. However, the learned functions did not convergence due to the training program and the chosen
hyper-parameters.

B. Difference in Performances Before and After Training

Figure 11 shows the state trajectories of the aircraft when it used benchmarking PID controller, non-trained
and trained J-SNAC controllers for tracking sinusoidal reference signal. As expected, non-trained flight
controller failed to follow the reference signal and eventually crash the aircraft after 50 seconds. The crash
is due to unreasonable deflection of ailerons, causing high roll rate which then destabilizes the longitudinal
controllers. After the training performance of PID and J-SNAC controller are almost similar. One of the
differences between the performances of these controllers is that side-slip regulator designed with PID law
attenuates incurred side-slips better. Furthermore, the J-SNAC controller has a delay in following heading
commands compared to the PID controller.

Figure 12 depicts the state evolution of the aircraft for tracking a smoothened step signal. Similar to the
tracking of the sinusoid, non-trained J-SNAC controller failed to perform the tracking while trained J-SNAC
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Figure 10. Policies learned by each of the controllers

and PID controller performs almost the same. Again, PID side-slip regulator attenuates incurred side-slip
better, and J-SNAC controller has a small delay in tracking. One additional difference is that PID controllers
create more aggressive commands for the aerodynamic surface actuators.

Table 7 shows the performance score of PID, non-trained and trained J-SNAC controller according the
Eq.(43). The performance scores are in agreement with the visual analysis, i.e., the non-trained controller
cannot perform the control task; trained controller performs almost similar but lower than that of the PID
controllers. The lower score is due to the delay in tracking and lower attenuation of side-slips.

Table 7. Performance according to the Index given in Eq. (43)

Tracking task Controller setting PI value

Non-trained J-SNAC -52.0257

sin wave Trained J-SNAC -1.5802

PID -0.1839

Non-trained J-SNAC -4.8565

smooth-step Trained J-SNAC -0.3440

PID -0.1623

C. Robustness Against Sensor Noise

Figure 14 shows the aircraft state evolution while tracking sinusoidal heading commands in the presence of
noise in the rate measurements. The sensor noise is simulated by adding zero-mean noise signals with the
roll and yaw rate signals. The noise signals have a standard deviation of 5 degrees/s.

The tracking performance for both controllers was satisfactory, as both have tracked the reference heading
angles. Although, J-SNAC controller produced a more noisy command signal for the aileron actuators and
almost no commands for the rudder actuator. The noisy command signal is because the J-SNAC algorithm
does not have any internal filtering procedures. Concerning the tracking, J-SNAC controller again has
a delay. Also, J-SNAC controller did not compensate for a small increment in side-slips, because in the
learned policy these small side-slips are mapped to no-rudder actions.

According to the defined performance index, the score of J-SNAC flight controller is -1.5917 and the score
of the PID controller is -0.2719.

D. Control Adaptation During Partial Loss of Flight Control Surfaces

Figure 14 shows the aircraft state evolution while tracking sinusoidal heading commands in the presence of
aileron actuator failure.
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Figure 11. Tracking of sinusoidal reference signal with PID, non-trained and trained J-SNAC controller
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Figure 12. Tracking of smooth step signal with PID, non-trained and trained J-SNAC controller.
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Figure 13. Effect of noise in rate measurements for the PID and J-SNAC flight controllers.
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As can be seen, the performance from the J-SNAC controller is smooth, and it provides an excellent
tracking performance while PID controller fails to track after few seconds of failure. The continuous tracking
by J-SNAC is due to the immediate identification of the reduced CE and adaptation of the control law
according to this new CE. Where PID does not have any CE identification procedure, and due to the
mismatch between the design and real model, the PID controller produces aggressive and high deflections
for aileron which then destabilizes the aircraft flight.

According to the defined performance index, the score of J-SNAC flight controller is -1.7953 and the score
of the PID controller is -92.9344.

VI. Conclusion

In this paper, design, and evaluation of a reinforcement-learning lateral-directional flight controller have
been discussed. The proposed flight controller has a modular structure and is designed with the J-SNAC
algorithm, incremental identification of control effectiveness and normalized radial basis function network.
The proposed flight controller was applied to an F-16 non-linear model and trained to track heading com-
mands with co-ordinated turns. The trained controller was evaluated for tracking tasks under the nominal
condition, in presence sensor noise, and with aileron hard-over.

The simulation results confirm that J-SNAC algorithm along with incremental identification of control
effectiveness is viable for the design of adaptive flight controllers. The control performance of a semi-trained
J-SNAC flight controller close to a human-designed linear flight controller both with and without sensor noise.
However, non-convergent policies make the tracking performance of the proposed controller lower. However,
its autonomous learning and adaptability in the presence of uncertainty allow the proposed controller to
adapt aileron hard-overs.

The tracking performance of the proposed controller can be further improved by adopting training pro-
cedures that facilitate more exploration of the state-space and guarantee the convergence of learned poli-
cies. Further improvement in the ACD based flight controller could be made by investigating on use of
different function approximation structures with the J-SNAC algorithm and utilizing the best performing
structure. In this work, control effectiveness was determined with an ad-hoc estimator, improvement in
control-effectiveness determination can improve the learning and control performance. Also, the stability
of the learning process was neglected in the current study. Before implementing on physical aircraft, the
stability of the learning process is required to be ensured. Capabilities of the proposed flight controller can
be expanded by combining it with reinforcement-learning longitudinal flight controllers; incorporating infor-
mation exchange within sub-controllers; enlarging the training schedule to include the full-flight envelope
(altitude and airspeed); incorporating flight-envelope protection while learning; investigating the controller
performance for other fault scenarios and validating the simulation studies with experimental studies.
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Chapter 2

Background Study

The main goal of this chapter is to situate the current research in the field of aircraft guidance,
control, and navigation. It presents an overview of LOC-I and Fault Tolerant Flight Control
(FTFC). Furthermore it gives the justifications for using ACD in future FTFC.

Section 2-1 defines the LOC-I and lists some potential technologies for its mitigation. Next,
section 2-2 defines FTFC and gives a short summary of present and future FTFCs. Then in
section 2-3, various approaches for developing FTFC is presented. Finally, section 2-4 justifies
for the use of ACD in future FTFCs.

2-1 Loss of Control- In flight (LOC-I)

LOC-I is one of the three high-risk aircraft accident categories [30], that causes the most
onboard fatalities [1, 2, 30]. Unlike the other high-risk accident categories, the number of
LOC-I occurrences has not decreased in recent years [1, 2]. LOC-I accounted for 42.9 % of
all fatal accidents in the year 2016 [2].

LOC-I is a complex problem, caused by a plethora of causes that either act individually or in
combination [31]. As a result, there is no standard method for preventing or recovering from
LOC-I events. However, a collection of new technologies are in the research and development
phase that has the potential to accomplish this goal [31]. According to [31], below are few of
the important technologies that are currently being considered.

• Advanced mathematical models for characterizing LOC-I conditions and their effects
on aircraft dynamics and control characteristics.

• Onboard systems technologies that can detect the effects of LOC-I hazards on vehicle
dynamics and control.

• Onboard systems technologies that can assess and predict the flight safety.

• Onboard systems technologies that can mitigate the effects of LOC-I hazards.
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• Onboard systems technologies that can provide guidance or automatic upset recovery.

• Onboard systems technology that enables improved situational awareness and decision
support to the flight crew.

• Onboard systems technology that provides enhanced dynamics and control capabilities
under LOC-I precursor conditions.

• Advanced simulation model and technologies to simulate an impaired vehicle in real
time for training flight-crew under LOC-I hazards.

• Advance tools to perform validation and verification (V&V) of the technologies men-
tioned above to aid their certification.

2-2 Fault Tolerant Flight Control System (FTFC)

FTFCs are the onboard systems that can mitigate the LOC-I hazards by providing enhanced
dynamics and control capabilities under the LOC-I precursor conditions. The current gener-
ation of FTFCs employs redundancies in hardware, distributed systems, and other controls
and sensors to handle faults in critical components [3]. These FTFCs accommodate a specific
class of faults named as additive faults.

However, recent aircraft accident analyses show that parametric failures cause the most num-
ber of LOC-I [3]. Parametric failures can be accommodated with advanced control methods
that have improved robustness properties and real-time reconfiguring or adaptive capabilities
[3]. Although several of such methods already exist (see [6, 7, 10–12]), lack of experimental
evidence have deemed these methods unreliable [9]. Simulation and scaled model experimen-
tal studies are required for maturing these technologies and introduce them in the future
aircraft.

2-3 Classification of FTFC Design Methods

While there are a plethora of techniques that can be used in reconfigurable FTFCs (see
[6, 7, 10–12]), many new methods are being developed at the moment. The main drive for
such development is to improve on previous systems regarding efficiency, performance and
design simplicity. Figure 2-1 shows the relevant and currently considered methods for FTFC
design. This illustrated classification is neither unique nor exhaustive. Literature such as
[3, 6, 7, 10–12, 32] can provide a detailed perspective on these methods.

As in the Figure 2-1, FTFCs can be classified into two categories: Active FTFC (AFTFC)
and Passive FTFC (PFTFC). PFTFC are designed with robust control methods and are
suitable for addressing the failures that can be modeled as uncertainty around a nominal
model. Whereas AFTFC design techniques employs either a on-line redesign method or a
projection based method. The main differences between PFTFC and AFTFC are:

• AFTFC methods account fault informations explicitly and do not assume a static nom-
inal model.
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Figure 2-1: Classification of the state-of-the-art FTFC design methods
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• Unlike PFTFC, AFTFC generally requires other supporting systems such as FDI/FDD
and RM [11].

The controllers designed with PFTFC methods can provide satisfactory stability and perfor-
mance guarantees for the failures that do not make the closed-loop system cross the controller
stability boundaries [11]. In [10], the authors presented few methods used for the design of
PFTFC systems. Two advantages of using PFTFC are: 1) they are easy to develop and
implement, 2) they do not require any fault isolation and identification schemes. The main
disadvantage of using PFTFC techniques is that they are only suitable for a certain class
of failure modes; the vast majority of the faults cannot be modeled as uncertainty around a
nominal model. [11]

The AFTFC systems designed with projection based methods perform its control reconfigu-
ration tasks by either selecting one or mixing multiple controllers from a set of pre-designed
controllers. Ordinarily, each controller in the set is designed for a particular fault and is
selected by the Control Reconfiguration Mechanism (RM) when the Fault Detection and
Identification (FDD) system has identified the designated fault. Similar to PFTFC, these
controllers can deal with a finite and known number of faults [11].

The AFTFC systems designed with on-line redesign methods reconfigure their control laws by
either recomputing the controller parameters or recalculating the structure and the parameters
of the controller. Online redesign methods are more computationally expensive; as they often
turn out to be on-line optimization procedures. Additionally, similar to projection based
methods most of the online redesign methods require RM and FDD/Fault Detection and
Isolation (FDI) systems. The attainable post-fault system performance of the on-line redesign
methods surpasses that of PFTFC and projection-based AFTFC systems[11]. Some of the
methods for designing AFTFC can be found in [10–12].

2-4 Use of Adaptive Critic Design (ACD) in FTFC design

Considering the goal of creating a general-purpose FTFC that can accommodate parametric
failures attain better post-fault performances, it would be wise to mature one of the on-line
redesign methods. Specifically, one of the direct adaptive control design methods, because
these types of controllers have the inherent ability to adapt to changes in the system param-
eters while remaining free of the issues faced by indirect methods [11]. Many methods can
be used to design direct adaptive controllers. Some of these methods are model reference
adaptive control, self-tuning control, adaptive neuro controller, adaptive critic designs, L1

adaptive controller, adaptive back-stepping and adaptive nonlinear dynamic inversion [3, 11].

Although all of the techniques mentioned above can be used to design direct-adaptive con-
trollers, there is a lack of trust in ACD based FTFCs in the FCS design community. The
main reason for this is the limited information on the performances of these controllers. ACD
methods pose severe computational load which was not previously matched by flight comput-
ers’ capability [3]. However, the current state of computing technology allows reconsidering
this view.

Also considering that when an aircraft incur unanticipated failures, the parametric properties
of the aircraft moves far away from nominal set points. The goal of a reconfigurable FTFC
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is then to find the best control strategy rapidly and make the aircraft stable and controllable
again. This reconfiguration is a dynamic optimization problem, characterized by stochastic
and nonlinear aspects. Dynamic programming proposed by Bellman [33] is the only exact
method for solving stochastic dynamic optimization problems [17]. However, dynamic pro-
gramming cannot be applied online. ACD solve dynamic optimization problems efficiently by
computing an approximate solution to the problem in real and forward in time [17].

Furthermore, ACD methods are based on MIMO, nonlinear and optimal control design prin-
ciples. These principles as a combination make ACD an elegant method from the design point
of view. These principles allow having lesser assumptions and approximations during the de-
sign phase. They enable to consider more realistic cases of nonlinearities. Optimal nature of
these type of control laws also allows incorporating the model uncertainties (parameter vari-
ation, external disturbances, un-modeled dynamics) and the optimality requirements. Thus
such control laws also allow meeting the limits of states, inputs, and outputs.

2-5 Conclusion

This chapter presented a summary of the literature that aided to frame the current research.
The initial research entailed an exploration of state-of-art literature to identify and situate the
current work in the field of aircraft guidance, control, and navigation. From the background
study, it was found that there is a strong desire for advanced FTFC systems in the aviation
community. Moreover, it was found that ACD has the potential to improve on existing FTFC
by simplifying the design procedure and accommodate unanticipated faults. However, in order
to apply ACD in FCS, these algorithms are required to be evaluated.
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Chapter 3

Review on Adaptive Critic Designs

In the previous chapter, it was motivated that ACDs have the potential to overcome limita-
tions of current generation FTFCs while simplifying the overall design effort. This chapter
presents a review of this class of algorithms and their implementation on FCS.

In the following section, the preliminary information concerning ACDs is presented. Next
in Section 3-2, the notable ACD architectures are presented. Then in Section 3-3, existing
applications of ACD in FCS are given. Finally the chapter concludes in Section 3-4, where
the notable ACD architectures are contrasted with existing FCS applications .

3-1 Preliminaries

ACDs are a class of algorithms that combine the concept of Dynamic Programming (DP),
Temporal Difference (TD) learning and function approximation to find approximate solution
to large-scale Markov Decision Processes (MDPs). Before delving into ACDs, these prelimi-
naries are elucidated in this section. The source materials for these preliminary information
include [34–40].

3-1-1 Markov Decision Processes (MDP)

ACD concerns with sequential decision-making problems. Such problems are generally formal-
ized with Markov Decision Process (MDP). Figure 3-1 depicts a control theoretic perspective
on MDP. In this setting, there is a controller, a dynamic plant, and a reward function. At a
given time instant tk, the controller observes the state of the plant x[tk] and applies an action
u[tk]. The action changes the state of the plant to x[tk+1] and in response to this change, the
reward function rewards the controller with a scalar reward r[tk+1]. The goal of the controller
is to continue this process of state observation, action application and reward reception for
a duration of time; and uses its observations (i.e., state transitions and rewards) to learn a
control policy that allows it to accrue maximum possible rewards.
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Controller Plant

Reward
Function

r[tk]

x[tk]
u[tk]

Figure 3-1: A control theoretic perspective on Markov Decision Process

Formal Framework of MDP

Formally, an MDP is modeled with the tuple M = {X,U, f, ρ}. In this tuple,

• X is the set of Markovian states.

• U is the set of control actions.

• f is the mapping f : X × U × X → [0, 1], describing the one-step state transitions
as conditional probabilities f(x, u, x′) = Pr(x′|x, u) of moving to state x′, given that
controller applied action u when it observed the state x.

• ρ is the reward function ρ : X × U ×X → R, giving the expected reward ρ(x, u, x′) =
E(R|x, u, x′) for moving to state x′, given that controller applied action u when it
observed the state x.

A state is called “Markovian” if the transition probabilities f and the reward function ρ
depend only on the current state x and not on the past state trajectory of the MDP.

The transition function f and reward function ρ together are called the model of MDP.

Policies of MDP

A policy h is a rule of behavior that the controller follows to interact with the plant under
all circumstances. A policy is the mapping h : X × U → [0, 1], describing the probabilities
h(x, u) = Pr(u|x) of taking action u when the controller observes the state x. This probabilis-
tic distribution makes the policies of MDP stochastic. However, there are also deterministic
policies for MDP. A policy is called deterministic if only one action is mapped to each state;
a deterministic policy is generally expressed as a direct mapping of the states to action, i.e.,
h : X → U . Furthermore, the policy is called stationary if h(x, u) is independent of the time
and otherwise it is called non-stationary.
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Optimal Control of MDP

The goal of the controller is to find a stationary-policy that allows it to maximize a measure
of rewards to be accrued. This measure is called the return value in the literature. The max-
imization of the return value makes this type of problems an optimal control problem. From
the perspective of control-system synthesis, the return value abstracts the overall control ob-
jective. Although several definitions of the return exist, most works in the literature advocate
the use of the discounted-infinite-horizon formulation. This formulation is used because most
convergence analysis and stability proofs are done for this class of objective functions.

R[tk] =
∞
∑

i=k

γi−kr[ti+1] (3-1)

Equation 3-1, shows the definition of discounted-infinite-horizon return. There, r[ti] is the
reward received at time instant ti and γ ∈ [0, 1] is the discount factor. The discount factor
determines the length of the time horizon that the controller considers for optimizing its
actions. If the desire is to optimize the controller’s actions for a near future event, γ is set
closer towards 0. On the contrary cases, γ is set closer towards 1.

Value Functions and Bellman Equations

The suitability of a given policy h for an MDP can be determined by finding the state-values
of the policy. The state-value of policy h for a given state x ∈ X is defined as the expected
return to be received by the controller, given that it starts to execute the policy from the
state x. State values of policy for all states of the plant are generally stored in a functional
or tabular form. This stored form of values is called the state-value function. State value
function is denoted with V h(x) in this work.

V h(x) = E
h {R[tk]|x[tk] = x} = E

h

{

∞
∑

k=0

γkr[tk+1]

∣

∣

∣

∣

∣

x[tk] = x

}

(3-2)

Alternatively, the value of a policy can also be determined by finding its action values. Action
values of a policy h for a given state action pair (x, u) is defined as the expected return to be
received by the controller, given that the controller takes action u in the state x and follows
the policy h after that. Similar to state values, action values are also stored in a functional
or tabular form. This stored form of action values is called action-value function, which is
denoted with Qh(x, u) in this work.

Qh(x, u) = E
h {R[t]|x[tk] = x, u[tk] = u} = E

h

{

∞
∑

k=0

γkr[tk+1]
∣

∣

∣
x[tk] = x, u[tk] = u

}

(3-3)

The definitions of the value functions can be restructured to find a recursive nature within
them. This recursive relation is presented in Equation 3-4 and 3-5. These equations are
referred to as Bellman Equations.
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V h(x) =
∑

u

h(x, u)
∑

x′

f(x, u, x′)
[

ρ(x, u, x′) + γV h(x′)
]

(3-4)

Qh(x, u) = ρ(x, u, x′) + γ
∑

u

h(x, u)Qh(x′, u) (3-5)

The state value function and the action value function for a given policy are inter-related. This
corollary comes from the definitions of the value functions. For a given policy h, determining
any one of the value functions is sufficient to characterize the policy. The availability of the
MDP model dictates the choice of the value function. If the model is available, the state
value function is preferable. In the absence of the model of the MDP, action value function
is preferred as it implicitly stores the MDP model.

Optimal Value Functions and Optimal Policies

Optimal value function, V ∗(x) (or Q∗(x, u)), is defined as the mapping of the states (or state-
action pairs) of the MDP to the maximum possible return that can be obtained from any
policy. The definitions of the optimal value functions are given in equations 3-6 and 3-7. Since
optimal value functions are unique to a given problem they can simplified, as in Equations
3-8 and 3-9. These simplified equations are called Bellman optimality Equations.

V ∗(x) ≡ max
h

V h = max
h

{

∑

u

h(x, u)
∑

x′

f(x, u, x′)
[

ρ(x, u, x′) + γV h(x′)
]

}

(3-6)

Q∗(x, u) ≡ max
h

Qh = max
h

{

ρ(x, u, x′) + γ
∑

u

h(x, u)Qh(x′, u)

}

(3-7)

V ∗(x) = max
u

{

∑

x′

f(x, u, x′)
[

ρ(x, u, x′) + γV ∗(x′)
]

}

(3-8)

Q∗(x, u) = ρ(x, u, x′) + γmax
u′

Q∗(x′, u′) (3-9)

Optimal policies, denoted with h∗(x), are the policies that correspond to the optimal value
functions. Moreover, by definition, optimal policies allow accruing maximum possible reward
from any given state.

3-1-2 Dynamic Programming (DP)

Dynamic Programming is a collection of model-based methods for solving MDPs. The main
idea in DP is to use the model of the MDP to find the optimal value function and then syn-
thesize the optimal policy from the computed optimal value function. Although the processes
of DP are intuitive, their applications are limited to problems with a finite and small number
of states and actions. This is because of the following three reasons:
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• DP requires a stationary model of the MDP. For large and complex system it may not
be possible to obtain this model.

• DP is computationally intractable for large state-action space systems as it stores values
for each of the states (and actions).

• DP is a backward search technique and thus precludes its use in real-time control ap-
plications.

Although ACD and other approximate dynamic programming techniques are developed to
overcome the limitations of DP, their working principles are closely related to that of DP. DP
techniques consist of two computational processes, policy evaluation and policy improvement.
These processes are executed iteratively to find optimal value function and optimal policy.
Below are an account on these processes and few relevant DP techniques.

Policy Evaluation

Policy evaluation is the process of computing a value function corresponding to a given pol-
icy h(x, u). Value functions of a given policy are found by solving Bellman Equations (see
Equation 3-4 and 3-5). The main idea is to assume an initial value function for a given policy
and then use the appropriate Bellman Equation to iterate over the assumed value function
until convergence.

Policy Improvement

Value functions define a partial ordering over the set of all possible policies. A policy h′ is
said to be equal or better than the policy h, if, for example, the value function V h′(x) is
greater than or equal to the value function V h(x). This partial ordering of policies by a given
value function can be utilized to obtain a better or equal policy. The process of obtaining
improved policy from a given value function, V h(x) or Qh(x, u), is called policy improvement.
This improved policy is often referred to as greedy policy. Equations for finding the improved
policies from given value functions are presented in Equations 3-10 and 3-11.

h′(x, u) = argmax
u

{

′
∑

x

f(x, u, x′)
[

ρ(x, u, x′) + γV h(x)
]

}

(3-10)

h′(x, u) = argmax
u

Qh(x, u) (3-11)

Policy Iteration Algorithm

In the policy iteration algorithm, policy evaluation and policy improvements steps are exe-
cuted in sequential manner. This procedure is repeated until both the value function and the
policy function becomes stationary. These stationary functions are the optimal policy and
value functions.
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Value Iteration Algorithm

The main idea of value iteration algorithm is to assume a value function and iteratively
execute the Bellman optimality equation (Equation 3-8 or 3-9) until the convergence of value
function. The converged value function is the optimal value function. Once this function is
found, optimal policy can be computed using appropriate policy improvement Equations (i.e.
Eq. 3-10 or 3-11).

The use of the Bellman optimality equation can be seen as executing one iteration of policy
evaluation and immediately executing the policy improvement process.

Asynchronous Policy/Value Iteration Algorithm

The standard policy iteration and value iteration requires performing the value evaluation
for all states of the MDP in one iteration of policy evaluation process. In asynchronous
methods, the idea is to perform policy evaluation and policy improvement in a sub-space of
the state-action-space. This is useful when state space is large, and a limited model or data
is available.

Generalized Policy Iteration Algorithm

Policy iteration was introduced as performing policy evaluation until the convergence of the
value function and value iteration was introduced as performing only one step of policy eval-
uation. GPI presents the spectrum in-between value iteration and policy iteration. The
main idea is to stop the evaluation step earlier for the sake of convergence of the policy by
compromising the accuracy of the converged policy as the optimal policy.

GPI represents the idea of interleaving of the policy evaluation and policy improvement steps
at any time, without completing the policy evaluation and policy improvement steps. This
gives further granularity over the DP techniques, which can be harnessed in application-
specific tasks.

3-1-3 Temporal Difference (TD) Learning

TD learning refers to a class of model-free methods for solving MDP. The main idea of TD
learning is to estimate the optimal value function for a given MDP and adapt this estima-
tion with samples from the state and reward trajectories. The use of samples removes the
requirement for the model of the MDP to find the optimal policy.

The main benefits of using TD in comparison to DP are:

• The model of MDP is not required.

• TD can be used to improve the estimation of value function online and thus usable in
real-time control.

• It is an incremental learning scheme and thus allows to update value function locally
and before the end of a learning cycle.
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TD(0)

The basic form of TD learning algorithm is called TD(0). The equation for updating state
value function with this algorithm is given in Equation 3-12. In the equation rk is the current
reward received by the controller; Vk+1(x) and Vk(x) stands for the new and the current
estimate of the value of the state x; Vk(x

′) stands for the current estimate of value of the
state x′ that follows from the state x; and α ∈ [0, 1] is the learning rate that determines
increment to the new estimate.

Vk+1(x) := Vk(x) + α(rk + γVk(x
′)− Vk(x)) (3-12)

TD(λ)

One limitation of TD(0) is that it only updates the value function for one state at a time. This
makes this scheme a slow learning process. This limitation can be overcome by the use of the
so-called eligibility trace. The main idea is to assign trace parameters to the states of the MDP
and exponentially decay this parameter according to the recency of visits. Every time a state
is visited, the respective parameter is incremented and subsequently decayed exponentially
with time. When a new reward is received, the credit of this reward is shared with recently
visited states by updating the value function for states according to their eligibility trace.

The TD learning scheme that uses this trace is called TD(λ). In this scheme the value function
gets updated with some form of Equation 3-13. In this equation, α is still the learning rate;
δ is the temporal difference (see Equation 3-14); and ek(x) is the vector of eligibility traces.

Vk+1(x) := Vk(x) + αδkek(x) (3-13)

δk = rk + γVk(x
′)− Vk(x) (3-14)

The update of eligibility traces depends on the parameter λ ∈ [0, 1]. These traces can be
updated in a variety of ways; the most used scheme in the literature is called the replacing
traces. In this scheme, ek(x) is updated with Equation 3-15.

ek(x) =

{

γλek−1(x), if x 6= xk

1, if x = xk
(3-15)

Need for Exploration

One advantageous aspect of TD methods is that they do not require any model. However,
to guarantee that TD methods would find the optimal policy or at least get close to it,
exploration of the state-action space becomes an imperative. State-action space exploration
is incorporated by adopting a stochastic policy. Stochasticity can be brought in many ways;
for continuous time systems, this is brought by adding a noise signal to the computed action
signal.
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3-1-4 Function Approximation

Function approximation is the data-driven approach to approximate the underlying relation-
ship between a given set of input and output signals. A function can be approximated with a
parameterized functionals such polynomial functions or with non-parameterized functionals
such as decision tree. In ACD, function approximation is used to approximate the value
function, policy function and sometimes the model of the system that the controller is trying
to control.

ACDs, are a type of GPI algorithms. Therefore these methods improve the approximation
of the value and policy function iteratively. These improvements of approximations are often
made with gradient-based algorithms. As a result, ACD poses the need for a function approx-
imator that is differentiable with respect to their parameters and the states. In the literature,
ACDs are often deployed with Artificial Neural Network (ANN). This choice of function ap-
proximation is rationalized by the fact that ANNs are universal function approximators, and
are infinitely differentiable.

3-2 Adaptive Critic Designs

ACD are a class of algorithms that attempts to circumvent “the curse of dimensionality” in DP
by approximating its solution in the most general case [41]. The utility of this approximation
is that complex optimization over time problems can be addressed in a tractable manner.

``

Critic
Reward
Function

Actor Plant

r[tk]

x[tk]u[tk]

δ[tk]

Figure 3-2: A pictorial depiction of working mechanism of ACD algorithms

Figure 3-2 presents an overview of the ACD algorithms. ACDs utilizes function approximation
and temporal difference learning to approximate DP. ACDs consist of two “entities” called the
actor and the critic. The actor uses a parametric function to approximate the optimal policy
function (h∗). Moreover, the critic uses a parametric function to approximate the optimal
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value function (V ∗ or Q∗). The critic improves its approximation of the optimal value function
using a suitable TD learning method. Simultaneously the actor improves its approximation of
the optimal policy by tuning its parameters to maximize the expected return according to the
newly adapted value function. This process of adaptation is a GPI scheme, which overtime
contract the estimated value and policy functions to their (near) optimal forms. The use of
TD learning enables ACDs to learn to make better decisions over time. The use of function
approximator reduces the number of parameters to be updated in policy evaluation and policy
improvement steps drastically and aids to generalize the control policy for similar states.

ACD encompasses a plethora of architectures. Few studies, namely [15, 42–46], surveys
a great portion of these algorithms and their recent advancements. Among the existing
ACD algorithms, four are the fundamental as all others are either extended or modified
versions of these four. The theories and design procedures for various ACD are found in
[14, 15, 36, 38, 43, 47–49] and the references therein. Below is an account of the four basic
ACD algorithms and how they are extended or modified to build other ACD algorithms.

3-2-1 Fundamental ACD Architectures

There are four basic ACD algorithms with improving performance and complexity. These
structures are derived for discrete-time systems and are called Heuristic Dynamic Pro-
gramming (HDP), Dual Heuristic Programming (DHP), Action Dependent (AD)HDP and
ADDHP. Following aspects can distinguish these architectures,

• Critic Output: The critics are designed output either the approximated state values
(V (x)) or action values Q(x,u)) or the derivatives of the value functions (∂V (x)/∂x or
[∂Q(x)/∂x ∂Q(x)/∂u]T ).

• Critic Input: When the critic is designed to approximate the state value function or
its derivatives, the critic takes the state measurements as its inputs. On the other hand,
when the critic is designed to approximate the action value function or its derivatives,
the critic takes in both the state and action measurements.

• Requirement of Plant Model Derivatives: ACDs adapt the parameters of the
critic and actor with gradient-based methods. Depending on the architectures, plant
model derivatives are required to update either the actor or the critic or both of them.

Heuristic Dynamic Programming (HDP)

In HDP, the critic approximate the optimal state value with a function approximator. Because
of this choice of value function, the HDP critic takes the state measurements as its input. The
critic’s approximation is improved incrementally by minimizing following temporal difference
error,

Ec =
1

2
||ec||

2 =
1

2

∑

k

e2c [tk] =
1

2

∑

k

[

V̂ [tk]− r[tk]− γV̂ [tk+1]
]2

(3-16)
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Where, V̂ [tk] = V̂ (x[tk],Wc) with Wc being the critic parameters. This architecture requires
a plant model to train the actor. This is because the actor parameter update requires an
estimation of ∂V (x[tk+1])/∂u[tk]. Since there is no direct link between the critic and the
actor, this estimation is done by back-propagating the signal ∂V (x)/∂x through the plant
model. The plant model does not have to be an accurate one, when there is a mismatch
between actual plant and model output HDP uses an online system identification procedure
to adapt the model.

Dual Heuristic Programming (DHP)

In this structure, critic directly estimates the derivative of the state value function ∂V/∂x.
The identity for this derivative is given by,

∂V [tk]

∂x[tk]
=
∂r[tk]

∂x[tk]
+
∂r[tk]

∂u[tk]

∂u[tk]

∂x[tk]
+
∂V [tk+1]

∂x[tk+1]

[

∂x[tk+1]

∂x[tk]
+
∂x[tk+1]

∂u[tk]

∂u[tk]

∂x[tk]

]

(3-17)

To evaluate the right hand side of this equation, a model of the plant dynamics is needed.
This includes all the terms of Jacobian matrix of the coupled plant-controller system, i.e.,
∂x[tk+1]
∂x[tk]

and
∂x[tk+1]
∂u[tk]

. The TD error for this architecture is given by,

Ec =
1

2
||ec||

2 =
1

2

∑

k

e2c [tk] =
1

2

∑

k

[

∂V̂ [tk]

∂x[tk]
−
∂r[tk]

∂x[tk]
− γ

∂V̂ [tk+1]

∂x[tk]

]2

(3-18)

Where, ∂V̂ [tk]
∂x[tk]

= λ̂(x[tk],Wc) with Wc as the critic parameters. The actor training is much
like that in HDP, except that the actor training loop directly utilizes the critic outputs
(∂V̂ [tk]/∂x[tk]) along with the system model. Thus, DHP uses models for both critic and
actor training.

Action Dependent Heuristic Dynamic Programming (ADHDP)

This is the continuous state analog of well known Q-learning [35]. It is similar to HDP except
that critic approximates the action values (Q(x,u)) instead of the state value V (x). The use
Q-function replaces the TD error to be minimized with

Ec =
1

2
||ec||

2 =
1

2

∑

k

e2c [tk] =
1

2

∑

k

[

Q̂[tk]− r[tk]− γQ̂[tk+1]
]2

(3-19)

Where, Q̂[tk] = Q̂(x[tk],u[tk],Wc) andWc is the parameters of the critic. In this architecture,
there is a direct link between the critic and the actor. As a result, a system model is not be
required to train the actor. To train the actor, the derivative ∂Q(x,u)/∂u is required, and
this term is directly computed by back-propagation. Thus ADHDP requires no model for the
training of the critic or the actor.
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Action Dependent Dual Heuristic Programming (ADDHP)

It is similar to DHP except that critic approximates the derivatives of the action values
([∂Q(x,u)

∂x
∂Q(x,u)
∂u

]T ) instead of the derivatives of state value V (x). Similar to DHP, this
architecture also requires a system model to estimate the derivative. The TD error equation
for this architecture can be derived by using a chain rule that considers all the contributing
pathways to the derivatives. It is not presented here for the sake of brevity.

Since critic is already approximating ∂Q/∂u, no model is needed for training the actor in this
architecture. Therefore ADDHP uses a plant model for critic training but not for the actor
training.

3-2-2 Modified ACD Architectures

On top of the mentioned four architectures, there are many more ACD architectures. However,
the majority of these architectures are modified versions of the basic four algorithms. Among
these, two promising architectures are SNAC [50] and J-SNAC [51]. These architectures have
been proposed to alleviate the computation load in basic four ACD algorithms. Below are
overviews of these two modified architectures.

Single Network Adaptive Critic (SNAC)

This architecture is a modified version of DHP. The main modification is the replacement of
the parametric function of the actor with a closed form function. This replacement brings
about three advantages,

• Simpler architecture.

• Lesser computational load.

• Elimination of the approximation error associated with the eliminated actor function.

The elimination of the actor-network makes this architecture only valid for input affine sys-
tems. However, this limitation is not an issue from the perspective of aircraft control as
aircraft is an input affine system.

The critic training in this architecture is the same as the DHP architecture. There is no need
to train the actor in this architecture, however the closed-form actor function do require the

term
∂V (xtk+1

)

∂utk
. In order to compute this derivative, a model of the system is required.

J-Single Network Adaptive Critic (J-SNAC)

This architecture is similar to SNAC, except that it is a modified version of HDP. This
architecture provides the same benefits as SNAC and has the same limitation. One additional
advantage of this architecture is that it outputs the state values. State values have physical
meaning as opposed to its state value derivatives. Furthermore, learning the state value alone
makes this architecture a faster learning algorithm.
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The training of the critic is similar to HDP, and there is no need of training the actor. Similar

to SNAC, this architecture requires a model of the system to compute
V (x[tk+1])
∂u[tk]

and it does
so by backpropagation through the critic and the model of the system.

3-2-3 Extended ACD Architectures

Two important extended ACD architectures that are also derived for discrete time systems are
Generalized Dual Heuristic Programming (GDHP) and ADGDHP [15]. Other extended ACD
architectures include continuous time analogues of the discrete time ACDs [16, 27, 43, 52, 53].

Below are an overview on GDHP and ADGDHP. Other extended ACDs are precluded from
the discussion for the sake of brevity.

Generalized Dual Heuristic Programming (GDHP)

This architecture combines HDP and DHP into one. The critic approximates both V (x)
and its gradients ∂V (x)/∂x. This combination is done to improve the approximation of the
state value function and bring about superior performance. In this architecture, the critic
training is done through a procedure that reduces the temporal difference error for both
the value function and its gradient. Combination of the two TD error introduce additional
complexities and hence requires relatively higher computational memory and processing. The
actor training in this architecture is the same as that of DHP. Therefore GDHP uses models
for both critic and actor training.

Action Dependent Generalized Dual Heuristic Programming (ADGDHP)

Similar to GDHP, ADGDHP also combines two other ACD architecture. This architecture
combines ADHDP and ADDHP. Thus the critic of ADGDHP estimates the Q(x,u) and its
gradient with respect to states ∂Q(x)/∂x and controls ∂Q(x)/∂u. As with GDHP, critic
training utilizes both the ADHDP and ADDHP procedures, and actor training is similar to
that of ADDHP. Therefore ADGDHP uses a model for critic training but not for controller
training.

3-2-4 Comparison Between Different ACD Algorithms

Different ACD algorithms can be compared to each other for their learning and control per-
formance. Until now there has been no study that compared all ACD algorithms in one single
setup. However, there has been some comparison studies where a few of the architectures
have been compared.

One such study is that of Prokhorov et al. [15]. In their work, the authors have compared
HDP, ADHDP, DHP, and GDHP for an aircraft auto-landing problem. From their findings,
they have concluded that HDP and ADHDP do not improve the controller performance af-
ter a finite number of training iterations. Furthermore, they have noted that GDHP and
DHP achieve similar control performance and these architectures have superior control per-
formances compared to HDP and ADHDP.
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In [24], Van Kampen et al. have compared HDP and ADHDP for the control of longitudi-
nal dynamics of F16. Their comparison of learning performance showed HDP has a higher
chance of converging to the correct control behavior than ADHDP. Their control performance
comparison showed that both of the architectures could adapt to changes in the plant param-
eters and external disturbances. However, they have noted that HDP is better in adapting
when there are changes in plant parameter, and ADHDP is more robust towards external
disturbances.

Another comparison study is that of Venayagamoorthy et al. [54]. In their study, the authors
have compared HDP and DHP for the control of a Turbogenerators. Their findings agree with
that Prokhorov et al., as in they have found better control performance with DHP. However,
they did not compare any learning performances of these architectures.

In [26], Pohl has researched on the same problem as Van Kampen et al. except that he has
compared HDP and DHP architectures. His results demonstrated that DHP converges faster
and takes much lower time to learn desired behavior. Furthermore, his control performance
comparison showed that DHP has superior control and adaptation performance than HDP.
In so much his results support the findings of the Venayagamoorthy et al. regarding control
performance.

In [50], Padhi et al. have compared DHP and SNAC for controlling Piezoelectric microac-
tuators and van der Pol oscillators. The comparison showed that SNAC performed as good
as DHP while taking half the time needed for learning. And in [51]. Ding et al. researched
the same application as Padhi et al. except that they have compared learning and control
performance of the HDP and J-SNAC algorithms. Their analysis had demonstrated that J-
SNAC performs as good as HDP while taking half the time to learn desired control behavior.
When the studies of Padi et al. and Ding et al. are compared, it can be found that SNAC
is the best architecture regarding learning and control performances. Furthermore, it was
observed that DHP and J-SNAC have similar learning performances, but DHP has better
control performances than J-SNAC. Lastly, it is observed that among these four architectures
HDP is the slowest learning algorithm and has similar performance as J-SNAC.

3-3 Application of ACD in Flight Control Systems

The ADHDP algorithm has been used for trimming and adaptive control of Apache helicopter
under the name of direct neuro-dynamic-programming in [18, 55].

DHP is used to control a wide variety of aircraft, from nimble fighter planes to large transport
aircraft. It has been used to improve controller performance when unexpected changes in
aircraft parameters occur [23] or to tune parameters of a reference model [56]. DHP has been
used to control the longitudinal dynamics of a linearized aircraft model [57] and to expand the
stable region of operations of a simplified model of F8 [58]. DHP has also used in developing
controllers for missiles and helicopters [20, 20–22, 59] and in a guidance trajectory generator
for reusable launch vehicles [60].

SNAC has been used for optimizing longitudinal dynamics controllers either directly or
through a reference model[61, 62] and for controlling a morphing fighter during a pull-up
maneuver [63]. It was also used to control aircraft landing on a carrier in the presence of
control system model errors [64].
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The J-SNAC algorithm has been used to solve nonlinear control problems with model uncer-
tainties. It was only demonstrated to control short period dynamics of a fighter plane and
the attitude of a spacecraft with reaction wheel [65, 66]. J-SNAC controllers have not been
validated fora large variety of systems, but it is expected to control the full dynamics of an
aircraft.

3-4 Conclusion

This chapter presented a review of relevant literature on ACD’s. The goal of this chapter
was to discuss various ACD algorithms, explore existing applications of ACD’s in FCS design
and delineate a research and design problem. In so much, this chapter served to answer
R.Q.1.1: What is ACD?, R.Q.1.2: What are the theoretical differences between

the different ACD architectures? and R.Q.1.3: How does J-SNAC algorithm

perform in comparison to other ACD architectures?

State-of-the-art literature was studied to get insights on ACD. In this chapter basis of ACD
algorithms and overview on eight ACD algorithms has been presented. Other ACD architec-
tures were left from this discussion because they are either extended or modified versions of
these eight architectures. In the literature, it was found that DHP is the most popular archi-
tecture for FCS design. However, there has been a growing interest in SNAC and J-SNAC
algorithms in the recent studies, because of their faster learning capabilities.

Being the simplest ACD algorithm, J-SNAC promises to be fast learning and rapidly deploy-
able. However, until now J-SNAC has only been validated for controlling the short-period
dynamics of F-16. It is expected that this controller is also capable of controlling the full
dynamics of an aircraft. However, there is no such validation at the moment. Therefore,
in this research, an attempt will be made to validate this architecture for lateral-directional
dynamics control.
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Chapter 4

Preliminary Analysis on J-SNAC

The previous chapter presented a review of ACD algorithms. There, several ACD architec-
tures were presented. Furthermore, it was concluded that this research would focus on the
least computationally expensive ACD architecture, called J-SNAC. This chapter gives the
design and analysis of a controller, based on this algorithm. Functionally, this chapter serves
to answer the Research Question 2: What are the conditions for successful implementation of
a J-SNAC algorithm.

Section 4-1 describes the control problem, used for defining the paradigm for this design and
analysis. Next, Section 4-2 describes the controller, its sub-systems, the learning procedure,
and the implemented algorithm. Then, Section 4-3 presents the training and post-training
performance of the controller. Afterward, Section 4-4 presents sensitivity analysis on the
controller hyper-parameters. Finally, Section 4-5 presents concluding remarks from this pre-
liminary analysis.

4-1 Control of an Under-Actuated Pendulum

In this phase of the study, J-SNAC is used to develop a learning control law for an under-
actuated pendulum. The pendulum consists of a pole and a torque motor attached to a
pivot point. The motor can exert a limited amount of torques to rotate the pole about the
pivot. The control objective is to use the limited torques to hold the pendulum in the upright
position. Restricted torques make this task difficult when the pendulum is in a downright
position. In such case, the controller has to swing the pendulum back and forth to gain
kinetic energy and use this energy to drive the pendulum to the upright position. Learning
to attain this swing-up objective demonstrates the applicability of the algorithm, for solving
non-trivial control problems.

Figure 4-1 shows kinematics and dynamics of this setup. Equation 4-1 gives the equation of
motion of the pendulum. Moreover, relevant system parameters are given in Table 4-1.

Adaptive Critic Control For Aircraft Lateral-Directional Dynamics Imrul Kayesh Ashraf



54 Preliminary Analysis on J-SNAC

θ

u

bθ̇

mg l

(a)

θ̇

θ

θ̈

(b)

Figure 4-1: Dynamics of the pendulum states. Figure (a) shows the forces and moment acting
on the pendulum and Figure (b) shows its sign conventions for the pendulum states.
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Table 4-1: System parameters for the pendulum swing up and balance problem

Parameter Description Values

J Lumped mass moment of inertia 1.00 kgm2

m Lumped mass of the pendulum 1.00 kg
g Gravitational acceleration 9.81 ms−2

l Length of the pole 1.00 m
b Lumped damping coefficient 0.01 kgm2s−1

4-2 The J-SNAC Controller

The Figure 4-2 shows the architecture of the J-SNAC controller. It consists of four subsystems,
namely critic, actor, plant model and the reward function, and a parameter adaptation process
that updates the critic system. Below are descriptions of the subsystems, the critic adaptation
process, hyper-parameters of the controller and the J-SNAC algorithm. The derivation of this
algorithm can be found in [27].

4-2-1 Elements of the Controller

Following are the description of subsystems in the J-SNAC controller.
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Figure 4-2: J-SNAC control architecture

Critic

The critic has two functions, namely, store the state-value function V (x) and transmit state-
values V (x(t)) and co-state-values ∂V

∂x

∣

∣

x(t)
to other subsystems of the controller. The critic

system stores the state-value-function with a function approximation structure. Additionally,
it reads out the state values from the approximated state value function and calculates the
co-state-values by performing a backpropagation on the approximated function.

For the pendulum problem, the critic was developed with a Normalized-Radial-Basis-Function
(NRBF) network. The choice of this parametric structure is motivated by the fact that NRBF
allows changing the approximated function in a local region of the state-space. The system
of equations for this structure is given in Equation 4-2, 4-3 and 4-4. Where, x represent the
state of the pendulum, K is the total number of basis functions in the function approximator
and ak, rk, ck are the amplitude, spread, and location of the basis functions respectively.
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V (x;a) =
∑K

k=1 akvk(x) (4-2)

vk(x) =
uk∑K

l=0
ul(x)

(4-3)

uk(x) = e‖r
T
k
(x−ck)‖ (4-4)

Plant model

Computation of control actions in ACD architectures requires calculation of Jacobian of the
system dynamics with respect to the control input (control effectiveness matrix). A plant
model is needed to perform this calculation. If the control effectiveness matrix is not known,
then the plant model has to estimate this matrix with state measurements and actions applied
by the controller. Typically, plant model is approximated with a function approximation
structure, and control effectiveness is computed by performing backpropagation. However,
other ways of obtaining the control effectiveness matrix would suffice for the function of the
plant model.

For the considered pendulum, the control effectiveness matrix is time-invariant, see Equation
4-5. Hence, no estimation procedure is developed for the plant model, and rather this constant
matrix is directly provided to the controller.

∂f(x, u)

∂u

∣

∣

∣

∣

x(t)

=

[

0
1
J

]

(4-5)

Reward function

The purpose of the reward function is to compute the one step performance of the controller.
The most important task in developing an ACD controller is to define this function, as rewards
are the primary means to shape the controller behaviors.

The chosen reward function for pendulum problem is given in Equations 4-2 to 4-4. The state-
dependent part of the reward function penalizes the controller quadratically for deviating from
the desired upright position. The action dependent part of the reward function penalizes the
controller for crossing the limits of the torque motor. In Equation 4-8, c is the control cost
parameter and umax is the maximum available torque.

r(x, u) = r(x) + r(u) (4-6)

r(x) = −0.5 ·
4

π2
· θ2 (4-7)

r(u) = −c ·
4

π2
· umax · ln

(∣

∣

∣

∣

sec

(

π2

4
·

u

umax

)∣

∣

∣

∣

)

(4-8)
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Action modifier

The purpose of the action modifier is to add exploratory actions to the approximated optimal
actions. These exploratory actions are needed for the identification of the optimal value
function. In classical control literature, this process is known as persistence of excitation.
Exploratory actions can be synthesized in different ways; the only requirement is that they
have to be rich enough for the identification of the value function.

For the pendulum problem, a modulated-filtered-Gaussian-noise is used as the exploratory
action. The modulation is performed based on the estimate of the state values. This mod-
ulation allows stopping the exploratory actions when the controller is close to the objective
state. A filter is used to produce colored noise.

The action modifier system receives the approximated state value from the critic and outputs
the exploratory action for the actor function. It uses Equations 4-9, 4-10 and 4-11 to generate
the exploratory actions. Where, un(t) is the exploratory noise, σ is the modulation factor,
n(t) is filtered noise, τn is filter time constant, N(t) is the Gaussian noise, σ0 is the size of the
modulation, rmax is maximum expected reward, rmin is the minimum expected reward and
V (t) is the value of the current state.

un(t) = σn(t) (4-9)

τnṅ(t) = −n(t) +N(t) (4-10)

σ = σ0min

[

1,max

[

0,
rmax − V (t)

rmax − rmin

]]

(4-11)

Actor

The function of the actor is to command the torque motor. The action signals are a function
of co-state, control effectiveness matrix, and exploratory input. These signals come from the
critic, the model, and the action modifier systems.

The actor system of the pendulum controller generates the command signals with Equation
4-12 (see [27] for the derivation).

u(t) =
2 · umax

π
arctan

(

π

2

(

1

c

∂v

∂x

∣

∣

∣

∣

x(t)

·
∂f

∂u

∣

∣

∣

∣

x(t)

+ un(t)

))

(4-12)

4-2-2 Critic Update Scheme

In the J-SNAC algorithm, the control policies are learned by estimating the state-value func-
tion and improving this estimation with a temporal difference learning scheme. The update
scheme can be made simple for faster learning or complex for better performance.

For the pendulum problem, the value function is updated with a TD scheme that uses an
eligibility trace. The eligibility trace is used to resolve the credit assignment problem and
speed up the learning. Furthermore, the value function is updated by manipulating the
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amplitudes of the RBFs (i.e., ak) alone. This was done to simplify the computations in the
learning scheme. Equations 4-13 to 4-16 are used to execute this learning scheme. In these
equations, w and w′ are the vector of critic function approximator parameters before and
after the updates, ∆w is the change in function approximator parameters, α is the learning
rate, δ(t) is the continuous time temporal difference, e(t) is the eligibility trace vector at time
t, r(t) is the reward received at time t, τ is the time horizon used in the definition of the
return value, V (t) is the current state value, V̇ (t) is the current time derivative of the state
value and κ is the time constant for decay of the eligibility trace.

w′ = w +∆w (4-13)

∆w = αδ(t)e(t) (4-14)

δ(t) = r(t)−
1

τ
V (t) + V̇ (t) (4-15)

ė(t) = −
1

κ
e(t) +

∂V (x(t);w)

∂w
(4-16)

4-2-3 Hyper-parameters of J-SNAC

Hyper-parameters of the implemented controller comes from its subsystems. The identified
hyper-parameters of this controller are given in Table 4-2. The critic performance depends on
the number of its radial basis functions (K). The learning scheme depends on the sampling
time ∆t, eligibility trace time constant κ, the time constant of return functional τ and the
learning rate α. Action modifier outputs depend on the intensity of the exploratory action
σ0 and time constant of noise filter τn. Moreover, c shapes the reward function and gradient
of the estimated policy function.

Table 4-2: Hyper-parameters of the implemented HDP algorithm

Parameter Description

K Number of basis functions in critic network
τ Time constant of return functional
κ Time constant for eligibility trace
∆t State sampling time
α Value function learning rate
σ0 Intensity of exploration noise
τn Time constant of action modulator
c Control cost coefficient

4-2-4 The J-SNAC algorithm

Algorithm 1 presents the implemented J-SNAC algorithm for controlling the pendulum.

Imrul Kayesh Ashraf Adaptive Critic Control For Aircraft Lateral-Directional Dynamics



4-3 Controller Implementation and Results 59

Data: Parametric structure for critic; Reward function; Plant model; and Actor Function
Result: Improved value function and control policy
Initialize the hyper-parameters ;
Initialize the duration of episode T ;

Initialize the initial states [θ0 θ̇0];
for t = 0 : ∆t : T do

Observe the state measurement x(t) ;

Compute critic and the model outputs V (t), ∂V
∂x

∣

∣

x(t)
and ∂f(x,u)

∂u

∣

∣

∣

x(t)
, using the observed

state x(t) ;
Compute the exploration noise un(t) using V (t);

Compute the action u(t) using ∂V
∂x

∣

∣

x(t)
, ∂f(x,u)

∂u

∣

∣

∣

x(t)
and un(t);

Compute the reward r(t) with x(t) and u(t);

Compute temporal difference δ(t) using r(t), V (t) and an estimate of V̇ (t);

Compute derivative of the value function with respect to its parameters ∂V (x(t);w)
∂w

;

Compute the eligibility trace e(t) using ∂V (x(t);w)
∂w

;
Compute the increment in value function parameters ∆w;
Apply the value function increment with w← w +∆w ;

end

Algorithm 1: J-SNAC algorithm

4-3 Controller Implementation and Results

The closed-loop system consisting the J-SNAC controller and the pendulum is shown in Figure
4-3. This setup was produced in the Simulink environment, and subsequently, the controller
was trained to perform the pendulum control task. Once the initial training was over, the
robustness of the learned policy was tested with two experiments. In the first experiment,
the controller was tested for its sensitivity to high-frequency sensor noise. Also, in the second
experiment, the available torque was further reduced to see if the controller could perform
the same task with reduced torques.

d(t)
u(t)

x(t)

J-SNAC
Controller Pendulum

Figure 4-3: Closed loop system with pendulum and the J-SNAC controller. d(t) is the desired
state, which is 0 vector. x(t), u(t) are the state vector and the controlled actions
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4-3-1 Learning of the Control Policy

The controller was initialized with hyper-parameters in Table 4-3 and was set to be trained
for 1000 episodes. Each of the training episodes lasted for 20 seconds. The initial position of
the pendulum was randomized during each of the training episodes, to ensure that all states
are visited. The training was stopped when there was no significant change in the policy
function.

Table 4-3: Hyper-parameters values used in the pendulum controller

Parameter Value

K 676
τ 10 s
κ 0.1 s
∆t 0.01 s
α 2
σ0 50
τn 0.1
c 0.01

Figure 4-4 shows the trajectory of the root mean square of the change in RBF amplitudes
and accumulated rewards received by the agent in each episode. It can be seen that the
learned policy had fully converged after 538 training episodes. The converging trend in these
figures shows the improvement of the control law from episode to episode. The noise in this
measurements comes from the fact that each episode started from a random initial position
and the controller was exploring the state and action-spaces while it was being trained.

Figure 4-5 shows explored the state and action space during the training sessions. The
controller had encountered most of the states within the space of [−π, π] rad × [−9, 9] rad/s
and have tried almost all admissible torques (i.e. within [−5, 5] Nm. ) in the visited states.

Figures 4-6 and 4-7 shows the surfaces of value and policy functions, before and after the
training.

Figure 4-8 shows the performance of the controller after its training. The controller had
successfully learned to swing up the pendulum to its unstable equilibrium state and hold this
state for a long duration.

4-3-2 Robustness of the learned control policy

Figure 4-9 shows the performance of the controller in two robustness tests. In the first test, the
pendulum state measurements were corrupted by noise. The learned policy of the controller
allowed it to overcome this noise and got state measurements to the desired value.

The second robustness test concerned with performing the task with further limited torques.
To cause this the controller’s maximum torque was reduced by 40%, i.e., umax = 3 Nm. The
test was to observe if the controller could perform the same task with limited torque or if it
could adapt the control policy to perform the task. The controller could perform the swing
up with this limited torque, without any further training.
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Figure 4-4: Learning performance measurements while being trained. Figure (a) shows the RMS
of change in RBF amplitudes and Figure (b) shows cumulative rewards collected by the controller,
across the training episodes.
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Figure 4-5: Figures showing the exploration of the state and action space by the agent while it
was being trained

Figure 4-6: Surface of the value function before and after training

4-4 Effects of Hyper-parameters Values on Controller Performance

To determine how the variation of the training routine and hyper-parameters effects the con-
troller performance, 26 controllers were trained and their learning and post-learning control
performance were compared. The controllers were trained for 1000 episodes, with each set of
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Figure 4-7: Surface of the policy function before and after training
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Figure 4-8: Performance of the agent after its training on the swing-up and balance task

the hyper-parameters. No stopping criteria were used to stop the training, to keep the number
of training episode as a control variable. Each episode started with random initial position
and lasted for 20 seconds. The effect on learning performance was determined by comparing
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the rate of change of policy over episodes. The rate of change of policy over episode was
measured by calculating the root mean square (RMS) of changes of control actions assigned
to 10201 preselected states. The changes in RMS value over episodes have a stochastic na-
ture; therefore a moving average filter was used to smoothened this measure before they were
compared. The effect on post learning control performance was determined by comparing the
efficacy of the controllers to perform the swing-up-task, cumulative rewards collected while
using the learned control policy to perform the swing up task and state of the pendulum after
20 s.

Table 4-4 shows the hyper-parameters values used for the sensitivity analysis. In the table,
the second column gives the value of the parameters when they were kept constant, and other
columns give the values when they were changed.

Table 4-4: Hyper-parameters values used for sensitivity analysis

Parameter
Control Changed Changed Changed

Value Value 1 Value 2 Value 3

K 1600 100 400 6400
τ 1 s 0.1 s 0.01 s 10 s
κ 0.1 s 0.05 s 1 s 10 s
∆t 0.1 s 0.005 0.01 0.2
α 0.5 0.005 0.05 5
σ0 5 0.05 0.5 50
τn 1 0.02 1 10
c 0.1 0.01 1 10

Firstly, the effect of changing the number of basis functions in the value function architecture
was determined. Figure 4-10 and Table 4-5 compares the learning and post learning perfor-
mance of four controllers, with varying number of basis functions. The policy converging rate
seemed independent of the number of basis function used, as initial, final and global rate of
change of policy does not follow any trend when the number of basis function is increased.
However, the post-learning performance of the controller was best when 1600 RBF were used,
after that is the controller with 400 RBF. The controller with 100 and 6400 basis-functions
failed to perform the swing- up-task. From this observation, it can be said that the number
of basis functions affects the learned knowledge non-linearly but does not affect the learning
process.

Secondly, the effect of changing the time constant of return functional τ was determined. Fig-
ure 4-11 and Table 4-6 compares the learning and post learning performance of the controller,
trained with four different τ values. The policy converging rate seemed to decrease with the
increasing τ values. Also, final change in policy also reduces with increasing τ values. The
post learning performance is also better with increasing τ values. Therefore it can be said
that the post-learning performance of the controller can be improved, at the expense of the
learning rate, by increasing the time constant of return functional.

Thirdly, the effect of changing the time constant of eligibility trace κ was determined. Figure
4-11 and Table 4-6 compares the learning and post learning performance of the controller,
trained with four different κ values. The policy converging rate seemed to increase with the
increasing κ values. There are more numbers of sudden spikes in the change in policy when κ
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is increased. The controllers with κ of 0.1 s, 1 s and 10 s learned to perform the swing-up-task.
However, the performance is best when κ had the value of 1 s. From these observations, it can
be said that the learning rate improves when κ has higher values, but it does not necessarily
improve the controller performance.

Fourthly, the effect of changing the state sampling time ∆t was determined. Figure 4-13 and
Table 4-8 compares four controllers trained with four different sampling rate. The learning
and control performance deteriorates with the increase in sample time. This can be attributed
to the fact that with higher sampling time, less data is available for training the controller.
One anomaly in this trend is that post-training performance is better with ∆t = 0.01 s than
that of ∆t = 0.005. Therefore, it can be concluded that sampling time needs to be small, but
the exact value has to be tuned with diligence.

Fifthly, the effect of changing the value function learning rate α was determined. Figure 4-14
and Table 4-9 compares the sensitivity of the learning and post learning performance for four
different values of learning rate. The learning is faster with higher value learning rate, which is
a logical consequence. However, the post-training performance deteriorates when the learning
rate is increased from 0.5 to 5. This deterioration is due to over-training. Therefore, if this
learning scheme is used, the learning rate has to be tuned beforehand or adapted on-line, in
such a manner that it learns relatively fast but avoids overtraining issues.

Sixthly the effect of changing the intensity of exploratory noise was determined. Figure 4-15
and Table 4-10 compares the sensitivity of the learning and post learning performance for
four different noise intensities. Although the controller learned to perform the swing-up-task
with all of the noise settings, the initial learning rate is higher with lower noise intensities.
Furthermore, there is no direct correlation between the level of noise intensity and controller
performance. Anyhow, the performance is best when noise intensity is 5. From this, it can be
concluded, similar to previous parameters, this parameter effect the performance nonlinearly
and hence has to be tuned or adapted with diligence.

Subsequently, the effect of changing time constant of the action modulator filter, τn, was
determined. Figure 4-16 and Table 4-11 compares the sensitivity of the learning and post
learning performance for four different filter time constant. τn is related to the cutoff frequency
of the exploration noise filter. The change in bandwidth of the noise frequency does not
affect the learning rate. It is seen that the controller performs worse, with both high and
low frequency of noise. This non-linearity prohibits making a conclusive remark on what
bandwidth of noise makes the exploratory signal most useful.

Next, the effect of changing the control cost coefficient parameter c was determined. Figure
4-17 and Table 4-12 shows the learning and post learning performance of four controller with
varying values of c. The changes in learned control law are higher with lower c values. Fur-
thermore, the controller also performs better when c has lower values. This can be attributed
to the fact that with lower c, high torques are cheap. This allows the controller to apply
high torques, leading to more exploration of the state-action space. As a consequent, the
approximation of the optimal policy gets better.

Lastly, the effect of randomization of the initial position in training episodes was determined.
For this, learning and post learning performance of two controllers, trained with same hyper-
parameters (listed second column of Table 4-4) but one was trained by randomizing the initial
position, and other one started all its training episode at downright position, was compared.
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Figure 4-18 shows the change in policy over episodes for these controllers and Table 4-13
shows the post-training performance of the controllers. As can be seen in the figure, the rate
of change in policy is higher, when the initial position is randomized. Furthermore, the rate
of learning converged later when the initial position is randomized. The final rate of change
of policy seemed to stabilize at the same value for both conditions. After training, both of the
controllers could learn to achieve the swing-up-task. However, rewards collected is higher, and
the final state is closer to the desired zero state when the initial position is randomized. From
this, it can be said that encouraging exploration by randomizing the initial state, improves
the learning and post learning performance of the controller.

4-5 Conclusion

This chapter presented the development, implementation, and analyses of J-SNAC controller.
The goal of this chapter was to answer R.Q.2.1: How to use J-SNAC for the design of

the controller for a nonlinear system?, R.Q.2.2: What are the hyper-parameters

of a controller designed with J-SNAC? andR.Q.2.3: How sensitive is the controller

performance to changes in hyper-parameters?

A J-SNAC controller was developed and successfully implemented for a swing up pendulum
problem. Eight hyper-parameters were identified, and sensitivity analysis was performed for
them. The implementation results confirm that J-SNAC algorithm is suitable for learning
and performing non-linear control tasks. Sensitivity analysis on hyper-parameters shows
that encouraging exploration, either by decreasing the control cost co-efficient or by starting
randomly or by increasing the intensity of the exploration noise, improves the controller
performance. However, encouraging exploration delays the convergence of the learned policy.
The convergence property could be enhanced by improving the training procedure. The
sensitivity study also showed that the effects of change in hyper-parameters are non-linear.
For the pendulum problem, hyper-parameters were tuned with error and trial method, until
satisfactory results were obtained. Better search methods could be used to find the optimal
set of hyper-parameters.

The training of the controller could be improved by scheduling the hyper-parameters values
or by tuning them with more sophisticated methods like grid search algorithm. However,
such a task is another research in itself. For the sake of brevity, no improvement in learning
scheme would be made on this research. Instead, it would be considered as a limitation of
the design, and further improvements will be proposed at the end of the research.
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(a) State action trajectory in the first robustness test
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(b) State action trajectory in the second robustness test

Figure 4-9: Results from the tests of robustness of the control law . Figure (a) shows the
performance of the controller when there are additive noise on the state measurements. Figure
(b) shows the the performance of the controller when the effectiveness of the torque motor is
reduced by 40 %.
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Figure 4-10: Change of policy across training episodes when the number of RBF K in the critic
structure is changed. The top figure shows the measured RMS of changes in the policy. The
middle figure shows the global trend, obtained by passing a moving average filter through the
measured data. The bottom figure shows the residuals from the filter

Table 4-5: Performance indices when the number of RBF K in the critic structure is changed.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

Number of RBF = 100 0 -05.3304 (−2.1222,−09.2641)
Number of RBF = 400 1 -07.6863 (−0.1321,−00.0001)
Number of RBF = 1600 1 -04.5552 (−0.0048, 00.0000)
Number of RBF = 6400 0 -11.2300 ( 2.1506, 10.1114)
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Figure 4-11: Change of policy across training episodes when the time constant of return func-
tional τ is changed. The top figure shows the measured RMS of changes in the policy. The
middle figure shows the global trend, obtained by passing a moving average filter through the
measured data. The bottom figure shows the residuals from the filter

Table 4-6: Performance indices when the time constant of return functional τ is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

τ = 00.01 0 -37.7079 ( 3.0398, 0.0000)
τ = 00.10 0 -45.0875 (−3.1363,−0.0337)
τ = 01.00 1 -04.5551 (−0.0048, 0.0000)
τ = 10.00 1 -04.2549 ( 0.1670, 0.0000)
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Figure 4-12: Change of policy across training episodes when the time constant of eligibility trace
κ is changed. The top figure shows the measured RMS of changes in the policy. The middle
figure shows the global trend, obtained by passing a moving average filter through the measured
data. The bottom figure shows the residuals from the filter

Table 4-7: Performance indices when the time constant of eligibility trace κ is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

κ = 00.05 0 -35.1633 (−2.6848, 0.0027)
κ = 00.10 1 -04.5552 (−0.0048, 0.0000)
κ = 01.00 1 -04.3853 ( 0.0195, 0.0000)
κ = 10.00 1 -06.1716 (−0.0576,−0.0326)
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Figure 4-13: Change of policy across training episodes when the state sampling time ∆t is
changed. The top figure shows the measured RMS of changes in the policy. The middle figure
shows the global trend, obtained by passing a moving average filter through the measured data.
The bottom figure shows the residuals from the filter

Table 4-8: Performance indices when the state sampling time ∆t is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

∆t = 0.005 1 -4.6094 ( 0.0101, 0.0000)
∆t = 0.010 1 -4.4028 ( 0.0077, 0.0000)
∆t = 0.100 1 -4.5552 (−0.0048, 0.0000)
∆t = 0.200 0 -9.1419 ( 2.5468, 9.0313)
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Figure 4-14: Change of policy across training episodes when the value function learning rate α
is changed. The top figure shows the measured RMS of changes in the policy. The middle figure
shows the global trend, obtained by passing a moving average filter through the measured data.
The bottom figure shows the residuals from the filter

Table 4-9: Performance indices when the value function learning rate α is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

α = 0.005 0 -18.8144 (−0.1290, 1.4636)
α = 0.050 1 -05.1194 (−0.0029, 0.0003)
α = 0.500 1 -04.5552 (−0.0048, 0.0000)
α = 5.000 1 -04.7486 ( 0.0420, 0.0000)
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Figure 4-15: Change of policy across training episodes when the maximum value of exploration
noise σ0 is changed. The top figure shows the measured RMS of changes in the policy. The
middle figure shows the global trend, obtained by passing a moving average filter through the
measured data. The bottom figure shows the residuals from the filter

Table 4-10: Performance indices when the maximum value of exploration noise σ0 is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

σ0 = 00.05 1 -05.9064 ( 0.0632, 00.0000)
σ0 = 00.50 1 -06.1980 (−00.0952, 00.0000)
σ0 = 05.00 1 -04.5552 (−00.0048, 00.0000)
σ0 = 50.00 1 -04.9555 ( 0.1168, 00.0000)
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Figure 4-16: Change of policy across training episodes when the time constant of action mod-
ulator τn is changed. The top figure shows the measured RMS of changes in the policy. The
middle figure shows the global trend, obtained by passing a moving average filter through the
measured data. The bottom figure shows the residuals from the filter

Table 4-11: Performance indices when the time constant of action modulator τn is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

τn = 00.02 0 -07.7088 ( 1.8909, 9.6632)
τn = 00.10 1 -06.6351 (−0.1380, 0.0000)
τn = 01.00 1 -04.5552 (−0.0048, 0.0000)
τn = 10.00 1 -06.3426 ( 0.1234, 0.0000)
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Figure 4-17: Change of policy across training episodes when the control cost parameter c is
changed. The top figure shows the measured RMS of changes in the policy. The middle figure
shows the global trend, obtained by passing a moving average filter through the measured data.
The bottom figure shows the residuals from the filter.

Table 4-12: Performance indices when the control cost parameter c is varied.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

c = 00.01 1 -03.9959 ( 0.1181, 0.0311)
c = 00.10 1 -04.5552 (−0.0048, 0.0000)
c = 01.00 0 -20.8582 ( 0.8195, 1.3120)
c = 10.00 0 -39.9890 ( 3.1331,−0.0021)
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Figure 4-18: Change of policy across training episodes when the number of RBF K in the critic
structure is changed. The top figure shows the measured RMS of changes in the policy. The
middle figure shows the global trend, obtained by passing a moving average filter through the
measured data. The bottom figure shows the residuals from the filter

Table 4-13: Difference between the controller performance indices. In the first condition, each
of the training episodes started from the downright position. While, in the second condition, the
initial positions were randomized across the episodes.

Parameter Efficacy Cumulative Final state

setting index rewards (θ, θ̇)

Random initial state 1 -04.5552 (−0.0048, 0.0000)
Fixed initial state 1 -08.3406 (−0.1060, 0.0000)
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Chapter 5

Linear Flight Control Systems

In the article, it was stated that a longitudinal and lateral-directional flight controllers were
designed with linear control theory. The longitudinal flight controllers served to hold the
airspeed and flight altitude of the F16 model at a reference value of 600 feet and 500 feet
per second respectively. The lateral-directional flight controllers served as a benchmark to
the proposed J-SNAC based flight controller. This chapter elaborates on the design and the
performances of these controllers. Section 5-1 and 5-2 presents the structure and the design of
these controllers. Then Section 5-3, presents the performance of these controllers for tracking
tasks under various condition.

5-1 Longitudinal Dynamics Controllers

This section presents the structure and design of the longitudinal dynamics controller for the
F16 aircraft. The objective of this controller is to hold a specified altitude level and airspeed
of the F16 model at 5000 feet and 600 feet per seconds, by manipulating the elevator deflection
and the throttle settings.

5-1-1 Controller Structure

Figure 5-1 depicts the chosen structure for longitudinal dynamics controller. This controller
consist of three linear control laws, namely Altitude Regulator, Pitch Regulator and Airspeed
Regulator.

The Altitude Regulator takes desired altitude (hr(t)) and measured altitude (hm(t)) as its
input and outputs a desired pitch angle (θr(t)). The control law is defined with Equations
5-1 and 5-2. In these equations θr, KPeh

, KIeh
, KDeh

stands for desired pitch angle and PID
gains of the controller.
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Figure 5-1: The longitudinal dynamics controller structure

θr(t) = KPeh
eh(t) +KIeh

∫ t

t0

eh(τ)dτ +KDeh
ėh(t) (5-1)

eh(t) = hr(t)− hm(t) (5-2)

The Elevator Regulator takes the desired pitch angle, measured pitch angle and pitch rate
from the Altitude Regulator and the sensors. The policy of this controller is given in Equation
5-3. In this equation qm stands for measured pitch rate, θm stands for measure pitch angle,
and uce(t) stands for dynamic command for elevator deflections.

uce(t) = θr(t)−Kθθm(t)−Kqqm(t) (5-3)

The combination of two signals determines elevator deflection. The first signal is a dynamic
signal (uce(t)) generated by the elevator regulator and the second signal is a static signal utre (t)
determined from the trimming routine.

The airspeed regulator takes in the desired airspeed Vr(t) and the measured airspeed Vm(t) as
its input and outputs a dynamic throttle command signal . The control law of this controller
is given in Equations 5-4 and 5-5. In these equations, ucth(t) stands for dynamic throttle
command signal, KPeV

, KIeV
and KDeV

stands for the PID gains.

ucth(t) = KPeV
eV (t) +KIeV

∫ t

t0

eV (τ)dτ +KDeV
ėV (t) (5-4)

eV (t) = Vr(t)− Vm(t) (5-5)
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Similar to the elevator, the throttle setting is determined by the combination of a dynamic
ucth and a static signal utrth. The dynamic signal comes from the airspeed controller, and the
static signal comes from the trimming routine.

5-1-2 Controller Gain Determination

There are eight parameters, namely KPeh
, KIeh

, KDeh
, Kθ, Kq, KPeV

, KIeV
and KDeV

, in
the longitudinal-controller that needs tuning for achieving the control objective.

These parameters were tuned with root locus and successive loop closure methods, to meet
the specifications in MIL-F-8785C [67] for the category B flight and level 1 flying qualities.
The determined gain values are given in Table 5-1.

Table 5-1: Longitudinal controller parameter values for holding F16 at an altitude of 5000 feet
and with an airspeed of 600 feet per second.

Parameter Values

KPeh
-0.0113

KIeh
-0.0059

KDeh
-0.0328

Kθ -0.0367
Kq -0.0682
KPeV

16759

KIeV
9545

KDeV
5206

5-2 Lateral-Directional Dynamics Controllers

This section presents the structure and design of the PID lateral-directional dynamics con-
troller for the F16 aircraft. The objective of this controller is to make coordinated turns to
track heading commands by manipulating the aileron and rudder deflections. The controller
parameters have been designed to attain its objective at an altitude of 5000 feet and with an
airspeed of 600 feet per second.

5-2-1 Controller Structure

Figure 5-2 depicts the chosen structure for lateral-directional dynamics controller. This con-
troller consist of three linear control laws, namely Heading Regulator, Aileron Regulator and
Rudder Regulator.

The Heading Regulator takes the desired heading angle (ψr(t)) and measured heading angle
(ψm(t)) as its input and outputs a desired roll angle (φr(t)). The control logic is defined in
Equations 5-6 and 5-7. In these equations φr, KPeψ

, KIeψ
, KDeψ

stands for desired roll angle
and PID gains of the controller.
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Figure 5-2: The lateral-directional dynamics controller structure

φr(t) = KPeψ
eψ(t) +KIeψ

∫ t

t0

eψ(τ)dτ +KDeψ
ėψ(t) (5-6)

eψ(t) = ψr(t)− ψm(t) (5-7)

The Aileron Regulator takes the desired roll angle, measured roll angle (φm) and roll rate (pm)
from the Heading Regulator and the sensors/estimator. The control logic for this controller
is given by Equations 5-8 and 5-9. In these equations pm is the measured roll rate, φm is the
measured roll angle, uca(t) is the dynamic command for aileron deflections, KPeφ

, KIeφ
, KDeφ

and Kp are the tunable controller parameters.

uca(t) = KPeφ
eφ(t) +KIeφ

∫ t

t0

eφ(τ)dτ +KDeφ
ėφ(t)−Kppm(t) (5-8)

eφ(t) = φr(t)− φm(t) (5-9)

The combination of two signals determines aileron deflection. The first signal is a dynamic
signal (uca(t)) generated by the aileron regulator and the second signal is a static signal utra (t)
determined from trimming routine.

The Rudder Regulator takes in the reference side slip angle (βr(t) = 0), measured side slip
angle (βm(t)) and measured yaw rate rm as its input and outputs a dynamic rudder command
signal determined with Equations 5-10, 5-11 and 5-12. This rudder controller contains a wash-
out filter to augment yaw rate measurements. In the controller Equations the washed-out yaw
rate measurement is given by w(t). Furthermore, in the equations ucr(t) stands for dynamic
rudder deflection signal, KIeβ

and Kw stands for the controller gains.
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ucr(t) = KIeβ

∫ t

t0

eβ(τ)dτ +Kww(t) (5-10)

eβ(t) = βr(t)− βm(t) = −βm(t) (5-11)

ẇ(t) = −w(t) + rm(t) (5-12)

Similar to all other control surfaces, the rudder deflection is determined by the combination
of a dynamic ucr and a static signal utrr . The dynamic signal comes from the rudder regulator,
and the static signal comes from the trimming routine.

5-2-2 Controller Gain Determination

There are nine parameters, namely KPeψ
, KIeψ

, KDeψ
, KPeφ

, KIeφ
, KDeφ

, Kp, KIeβ
and Kw,

in the lateral-directional-controller that needs tuning for achieving the control objective.

Similar to the longitudinal controller, these parameters were also tuned with root locus and
successive loop closure method. Again, the parameters are tuned to meet the specifications
in MIL-F-8785C [67], for the category B flight and level 1 flying qualities. The determined
gain values are given in Table 5-2.

Table 5-2: Lateral-directional-controller parameter values for making coordinated turns to track
heading commands with F16 at an altitude of 5000 feet and with an airspeed of 600 feet per
second.

Parameter Values

KPeψ
27.40

KIeψ
1.45

KDeψ
-16.54

KPeφ
-1.71

KIeφ
-1.50

KDeφ
-0.48

Kp -0.07
KIeβ

0.70

Kw 0.12

5-3 Performance Of The Linear Controllers for Tracking Tasks

Figure 5-3 presents the configuration for implementing the designed controllers on F16 model.
Before the deployment of the controllers, the aircraft is trimmed at the mentioned operating
point with the trimming program provided with the F16 model [29]. Subsequently, the con-
troller is made to track reference signals under different conditions. The performance of the
controller is quantified with the weighted root mean square errors in relevant state variables
(defined in Equation 5-13).
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(5-13)

5-3-1 Tacking Of A Sinusoid Reference Signal Under Ideal Conditions

The linear flight controller was made to track a sinusoidal heading reference signal. This
reference signal is given in Equation 5-14 and it is chosen to observe turning performance in
all possible directions. Figures 5-4 to 5-9 presents the response of the linear controllers in
this tracking task. According to the defined performance index, the controller’s performance
is -0.1839.

ψr(t) =
3

4
π sin(

2π

180
t−

π

2
) +

π

2
(5-14)

5-4 Conclusion

This chapter served to elaborate on the partial answer to research question R.Q.3.1: How

does the proposed controller perform in comparison to a traditional fixed-gain

linear controller?. It has presented the design of the linear flight controllers and its perfor-
mances for tracking of a sinusoid reference signal.
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Figure 5-4: Altitude and position response
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Figure 5-5: Heading and attitude angle response
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Figure 5-9: Ground Track
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Chapter 6

Additional Results And Discussion On
J-SNAC Flight Control System

In the article, the design and performance of the J-SNAC based lateral-directional flight con-
trollers were presented. This chapter elaborates further on this flight controller and presents
some additional results. Section 6-1 and 6-1 presents discussions on the structure of the con-
troller and its hyper-parameters. Then Section 5-3, presents further performance evaluations
results. Afterwards Section 6-4 discusses verification and validation of this flight controller.

6-1 Discussion On The Controller Structure

As stated in the article, a distributed architecture with three J-SNAC controllers is chosen
for the lateral-directional flight controller. This distributed architecture brought modularity
in the flight control system and reduced the number of state variables for each sub-controller.
Splitting of the controller into sub-controllers made the state definitions in the sub-controllers
non-Markovian. For example, the proposed side slip regulator took in the body yaw rate r
and side-slip angle β measurements as its input. The choice of these variables was motivated
from the fact that rudder deflection δr changes the yaw rate r and yaw rate can be chosen
as pseudo-control for side-slip angles. However, as per the equations of motion, the side-slip
dynamics depends on other state variables too, e.g., roll rate p and velocity V . If the state
definition for the side slip regulator consisted all state variables, it could perhaps use the other
state variables as a pseudo-control to side-slip angles. Including other state variables in the
input state can restore the Markovian property and can bring better adaptability. However,
it will expand the hyperspace of the value function and makes learning more complicated.

Another limitation of the proposed flight controller is in the state definition of the roll and
heading angle trackers. A tracking problem is fundamentally different from a regulation
problem. It requires knowledge of the error dynamics, implying knowing the reference signal
dynamics. In the proposed trackers, full error dynamics was not utilized. Working with full
error dynamics can restore the Markovian property for the trackers’ input states and can
improve the controller performance.
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6-2 Discussion on Hyper-parameters Selection

Assuming that NRFB network is chosen as the value function approximator and only the
amplitudes of these basis function are updated to learn the value function, there are eight
hyper-parameters in the J-SNAC algorithm. These parameters include the number of basis
function, the time constant to discount future rewards, the time constant for eligibility trace,
the time constant for exploration noise filter, the time constant for the derivative filter, explo-
ration noise intensity, learning rate, and action cost parameter. The learning and the control
performance of the J-SNAC controller are highly dependent on these parameters’ value. How-
ever, tuning these variables for best performance can be tedious. In this work, a coarse golden
section search was used to determine the parameter values. However, the optimality of these
values cannot be guaranteed as no evaluation was performed on this aspect. To improve the
convergence and to ensure the optimality of the learned policy, other techniques like grid
search and Bayesian optimization can be implemented to tune the hyperparameters.

6-3 Control Performance Evaluation

Six tracking tasks were used to evaluate the control performances of the proposed flight con-
troller. First three of the tasks concerned with tracking under ideal condition, then one task
concerned with the effects of sensor noise and then two tasks concerned with adaptability. The
Performance Index (PI), defined in Equation 5-13, is used to quantify control performances.
Below are the results and discussion of these evaluation process.

6-3-1 Tacking Of A Sinusoid Reference Signal Under Ideal Conditions

The first evaluative task was to track a sinusoid reference signal. Figure 7-1 to 7-6 depicts
the state trajectories of the aircraft with PID, untrained and trained J-SNAC controllers.
Visually, it can be seen that the untrained controller could hardly follow the command signal,
but both PID and trained J-SNAC controller have an almost identical response. However,
there are two notable difference between the PID and trained J-SNAC controller responses.
The first difference is that The PID law produces better side slip attenuation. The second
difference is that the J-SNAC controller has a delay in tracking when compared to the PID
controller.

As per the Performance Index the PID, untrained, and trained J-SNAC controller has the
score of -0.1839, -52.0257, and -1.5802 respectively. The higher score of PID controller can
be directly attributed to better slip attenuation and faster response.

6-3-2 Tacking Of A Smoothened Step Reference Signal Under Ideal Conditions

The second evaluative task was to track a smoothened step reference signal. This signal
is chosen to verify the control performance on a task that was not in the training program.
Figure 7-7 to 7-12 shows the state trajectories of the aircraft with PID, untrained, and trained
J-SNAC controller for this tracking task. Similar to the tracking of the sinusoid, non-trained
J-SNAC controller failed to perform the tracking while the trained J-SNAC and PID controller
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Figure 6-1: Altitude and position responses while tracking sinusoid reference signal with PID,
untrained, and trained J-SNAC controllers.
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Figure 6-2: Heading and attitude angle responses while tracking sinusoid reference signal with
PID, untrained, and trained J-SNAC controllers.
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Figure 6-3: Airspeed and aerodynamic angles responses while tracking sinusoid reference signal
with PID, untrained, and trained J-SNAC controllers.e
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Figure 6-4: Angular rate responses while tracking sinusoid reference signal with PID, untrained,
and trained J-SNAC controllers.
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Figure 6-5: Control actuator responses while tracking sinusoid reference signal with PID, un-
trained, and trained J-SNAC controllers.
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Figure 6-6: Ground track produced by the aircraft while tracking sinusoid reference signal with
PID, untrained, and trained J-SNAC controllers.

Adaptive Critic Control For Aircraft Lateral-Directional Dynamics Imrul Kayesh Ashraf



94 Additional Results And Discussion On J-SNAC Flight Control System

0 20 40 60 80 100 120 140 160 180
0

5

10

15
10 4

0 20 40 60 80 100 120 140 160 180
-1

0

1

2

3
10 4

0 20 40 60 80 100 120 140 160 180
4900

4950

5000

5050

Non-Trained J-SNAC

Trained J-SNAC

PID

Reference

Figure 6-7: Altitude and position responses while tracking smoothened step reference signal with
PID, untrained, and trained J-SNAC controllers.

performs almost similarly. Again, PID side-slip regulator attenuates incurred side-slip better
than the J-SNAC controller, and it responds faster in tracking commands. One additional
difference is that PID controllers create more aggressive controls for the aerodynamic surface
actuators.

As per the Performance Index the PID, untrained, and trained J-SNAC controller has the
score of -0.1623, -4.8565, and -0.3440 respectively. The higher score for PID controller is still
due to better slip attenuation and faster response.

6-3-3 Tacking Of A Ramp Signal Under Ideal Conditions

The third evaluative task was tracking of a ramp signal. This signal is also chosen to verify
the control performance on a task that was not in the training program. Figure 7-13 to
7-18 shows the state trajectories of the aircraft with PID, untrained, and trained J-SNAC
controller for this tracking task. In these figures, it can be seen that the PID controller creates
more oscillations in the state responses. These oscillations are because of higher aerodynamic
surface deflection commands. Furthermore, the J-SNAC controller does not compensate for
a small side-slip angle whereas the PID controller attenuates the side-slip angle over time.

As per the Performance Index the PID, untrained, and trained J-SNAC controller has the
score of -0.1261, -57.2332, and -1.1436 respectively.
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Figure 6-8: Heading and attitude angle responses while tracking smoothened step reference
signal with PID, untrained, and trained J-SNAC controllers.
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Figure 6-9: Airspeed and aerodynamic angles responses while tracking smoothened step reference
signal with PID, untrained, and trained J-SNAC controllers.
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Figure 6-10: Angular rate responses while tracking smoothened step reference signal with PID,
untrained, and trained J-SNAC controllers.

Figure 6-11: Actuator responses while tracking smoothened step reference signal with PID,
untrained, and trained J-SNAC controllers.
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Figure 6-12: Ground track produced by the aircraft while tracking smoothened step reference
signal with PID, untrained, and trained J-SNAC controllers.
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Figure 6-13: Altitude and position responses while tracking ramp reference signal with PID,
untrained, and trained J-SNAC controllers.
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Figure 6-14: Heading and attitude angle responses while tracking ramp reference signal with
PID, untrained, and trained J-SNAC controllers.
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Figure 6-15: Airspeed and aerodynamic angles responses while tracking ramp reference signal
with PID, untrained, and trained J-SNAC controllers.
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Figure 6-16: Angular rate responses while tracking ramp reference signal with PID, untrained,
and trained J-SNAC controllers.

Figure 6-17: Actuator responses while tracking ramp reference signal with PID, untrained, and
trained J-SNAC controllers.
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Figure 6-18: Ground track produced by the aircraft while tracking smoothened ramp reference
signal with PID, untrained, and trained J-SNAC controllers.

6-3-4 Tacking Of A Sinusoid Reference Signal With Sensor Noise

The fourth evaluative was tracking the sinusoid reference signal, while the angular rate mea-
surement was corrupted with noise. This signal is chosen to evaluate the robustness of the
learned control policy to sensor noise. Figure 7-7 to 7-12 shows the state trajectories of the
aircraft with PID and the trained J-SNAC controller for this tracking task. One of the main
differences in the state responses in this scenario is that the PID controller makes aggressive
maneuvers in the presence of the noise, whereas the J-SNAC controller does not. Another
difference is in the command signals sent by these controllers. The PID control law sends
smoother commands to the aileron actuators in comparison to the J-SNAC controller.

As per the Performance Index, the PID and the trained J-SNAC controller has the score of
-0.2719, and -1.5917 respectively.

6-3-5 Tacking Of A Sinusoid Reference Signal With Aileron Handover

The fifth evaluative task was to track the sinusoid reference signal, while the aircraft incurs
an aileron hard-over. Aileron hard-over was simulated by dividing the command signal with
2 and then adding 7 degrees bias to the command signal. The hardover is set to onset at
t = 25 s. Figure 7-25 to 7-30 shows the state trajectories of the aircraft with PID and the
trained J-SNAC controller for this scenario. As expected, the PID controller fails to track
the reference signal after a few seconds of failure and eventually crash the aircraft. However,
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Figure 6-19: Effect of sensor noise on the altitude and position responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 6-20: Effect of sensor noise on the heading and attitude angle responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-21: Effect of sensor noise on the airspeed and aerodynamic angles responses while
tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-22: Effect of sensor noise on the angular rate responses while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Figure 6-23: Effect of sensor noise on the actuator responses while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Figure 6-24: Effect of sensor noise on the ground track while tracking sinusoid reference signal
with PID, and trained J-SNAC controllers.
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Figure 6-25: Effect of aileron hardover on the altitude and position responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.

the J-SNAC controller provides a smooth tracking performance. The continuous tracking
by J-SNAC is due to the immediate identification of the reduced control effectiveness and
instantaneous adaptation of the control law according to this new control effectiveness.

As per the Performance Index, the PID and the trained J-SNAC controller has the score
of -92.9344, and -1.7953 respectively. The lower score of PID controller is attributed to its
failure to adapt.

6-3-6 Tacking Of A Sinusoid Reference Signal With Partial Rudder Failure

The sixth and the last evaluative task was to track the sinusoid reference signal, while the
aircraft incurs partial failure on the rudder. This failure was simulated by multiplying the
rudder command signals with 0.1 and then adding 5 degrees bias to this reduced command
signal. The failure is also set to onset at t = 25 s. Figure 7-31 to 7-36 shows the state
trajectories of the aircraft with PID and the trained J-SNAC controller for this scenario.
Similar to the aileron hardover scenario, the PID controller fails to track the reference signal
after a few seconds of failure and eventually crash the aircraft. Whereas J-SNAC controller
can track the command signal but with a small bias after the failure. Again, the immediate
identification of the reduced control effectiveness and instantaneous adaptation of the control
law according to this new control effectiveness is the main reason for this adaptability.

As per the Performance Index the trained J-SNAC controller has of -5.0370 and PID controller
has a large negative score. The lower score of PID controller is again attributed to the non-
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Figure 6-26: Effect of aileron hardover on the heading and attitude angle responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-27: Effect of aileron hardover on the airspeed and aerodynamic angles responses while
tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-28: Effect of aileron hardover on the angular rate responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 6-29: Effect of aileron hardover on the actuator responses while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Figure 6-30: Effect of aileron hardover on the ground track while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.

adaptive property.

6-4 On Verification And Validation Of The Proposed Flight Con-

troller

One of the goals of this research project was to validate the J-SNAC algorithm for Flight
Control System design. Results obtained from the training and control performance evalua-
tion process have proven that this algorithm can learn control laws to drive lateral-directional
state variables of F16 aircraft. Furthermore, the adaptability of the proposed controller was
also verified by evaluating its performance under unanticipated conditions like sensor noise,
aileron hardover and partial failure of the rudder. However in-order to generalize observed
results and eventually implement the controller in a flight control system, further verification
and validation studies are required. Below are some guidelines to verify and validate the
proposed flight controller as an intelligent flight controller:

1. Verify the control performance for same tasks but in a different point of the flight
envelope.

2. Verify the control performance for other possible faults.

3. Verify the optimality of the control policy by performing Monte-Carlo Simulation.
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Figure 6-31: Effect of partial rudder failure on the altitude and position responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-32: Effect of partial rudder failure on the heading and attitude angle responses while
tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-33: Effect of partial rudder failure on the airspeed and aerodynamic angles responses
while tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 6-34: Effect of partial rudder failure on the angular rate responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.

Adaptive Critic Control For Aircraft Lateral-Directional Dynamics Imrul Kayesh Ashraf



110 Additional Results And Discussion On J-SNAC Flight Control System

0 20 40 60 80 100 120 140 160 180
0

1

2
10 4

0 20 40 60 80 100 120 140 160 180
-20

-10

0

J-SNAC

PID

0 20 40 60 80 100 120 140 160 180
-50

0

50

0 20 40 60 80 100 120 140 160 180
-50

0

50

Figure 6-35: Effect of partial rudder failure on the actuator responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 6-36: Effect of partial rudder failure on the ground track while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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4. Verify the benefits of using J-SNAC by comparing its performance with other ACD
algorithms specifically for the flight controller design.

5. Verify the stability of the learning process by performing extended training.

6. Validate the control performance for other fixed-wing aircraft with simulation studies.

7. Validate the controller by implementing the controller in small-scale aircraft.

6-5 Conclusion

This chapter has presented discussions on the structure and hyper-parameters for the proposed
flight controller. Then it has presented and discussed results from six control performance
evaluation tasks. Additionally discussed on the verification and validation of the proposed
flight controller. The goal of this chapter was given additional information on the proposed
flight controller and to answer the research questions R.Q.3.1: How does the proposed

controller perform in comparison to a traditional fixed-gain linear controller?,
R.Q.3.2: How does the proposed controller perform as an adaptive controller?

and R.Q.3.3: To what extent can the controller performances be generalized for

fixed-wing aircraft control?.

Control performance evaluation showed that under nominal conditions the benchmarking PID
controller performs slightly better than J-SNAC flight controller. This better performance
is because of better side-slip attenuation property and faster response of the PID controller.
However, when there are parametric failures in the aircraft, J-SNAC flight controller outper-
forms the PID controller by adapting the in-place control law. As per these results, J-SNAC
is a viable algorithm for flight control design, however, to generalize the performance for
fixed-wing aircraft, verification and validation studies are required to be performed.
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Chapter 7

Detailed Control Performances Of The
J-SNAC Flight Controller

The Performance Index (PI), defined in Equation 5-13, is used to quantify control perfor-
mances. Detail explanation of the PI is given in the article.

7-1 Tacking Of A Sinusoid Reference Signal Under Ideal Condi-
tions

The first evaluative task was to track sinusoid reference signal. Figure 7-1 to 7-6 shows
the state trajectories of the aircraft with PID, untrained and trained J-SNAC controller.
Visually, it can be seen that the untrained controller could hardly follow the command signal
and both PID and trained J-SNAC controller have almost identical response. However, there
are two notable difference between the PID and trained J-SNAC controller responses. The
first difference is that The PID law produce better side slip attenuation. The second difference
is that the J-SNAC controller has a delay on tracking when compared to the PID controller.

As per the Performance Index the PID, untrained, and trained J-SNAC controller has the
score of -0.1839, -52.0257, and -1.5802 respectively. The higher score of PID controller can
be directly attributed to better slip attenuation and faster response.

7-2 Tacking Of A Smoothened Step Reference Signal Under Ideal
Conditions

The second evaluative task was to track a smoothened step reference signal. This signal
is chosen to verify the control performance on a task that was not in the training program.
Figure 7-7 to 7-12 shows the state trajectories of the aircraft with PID, untrained, and trained
J-SNAC controller for this tracking task. Similar to the tracking of the sinusoid, non-trained
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Figure 7-1: Altitude and position responses while tracking sinusoid reference signal with PID,
untrained, and trained J-SNAC controllers.
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Figure 7-2: Heading and attitude angle responses while tracking sinusoid reference signal with
PID, untrained, and trained J-SNAC controllers.
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Figure 7-3: Airspeed and aerodynamic angles responses while tracking sinusoid reference signal
with PID, untrained, and trained J-SNAC controllers.e
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Figure 7-4: Angular rate responses while tracking sinusoid reference signal with PID, untrained,
and trained J-SNAC controllers.
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Figure 7-5: Control actuator responses while tracking sinusoid reference signal with PID, un-
trained, and trained J-SNAC controllers.
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Figure 7-6: Ground track produced by the aircraft while tracking sinusoid reference signal with
PID, untrained, and trained J-SNAC controllers.
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Figure 7-7: Altitude and position responses while tracking smoothened step reference signal with
PID, untrained, and trained J-SNAC controllers.

J-SNAC controller failed to perform the tracking while the trained J-SNAC and PID controller
performs almost similarly. Again, PID side-slip regulator attenuates incurred side-slip better,
and J-SNAC controller has a small delay in tracking. One additional difference is that PID
controllers create more aggressive commands for the aerodynamic surface actuators.

As per the Performance Index the PID, untrained, and trained J-SNAC controller has the
score of -0.1623, -4.8565, and -0.3440 respectively. The higher score for PID controller is still
due to better slip attenuation and faster response.

7-3 Tacking Of A Ramp Signal Under Ideal Conditions

The third evaluative task was tracking of a ramp signal. This signal is also chosen to verify the
control performance on a task that was not in the training program. Figure 7-13 to 7-18 shows
the state trajectories of the aircraft with PID, untrained, and trained J-SNAC controller for
this tracking task. In these figures it can bee seen that PID controller creates more oscillations
in the state responses. This is because it commands higher aerodynamic surface deflections.
Furthermore the J-SNAC controller do not compensate for a small side-slip angle where as
the PID controller attenuates the side-slip angle over time.

As per the Performance Index the PID, untrained, and trained J-SNAC controller has the
score of -0.1261, -57.2332, and -1.1436 respectively.
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Figure 7-8: Heading and attitude angle responses while tracking smoothened step reference
signal with PID, untrained, and trained J-SNAC controllers.
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Figure 7-9: Airspeed and aerodynamic angles responses while tracking smoothened step reference
signal with PID, untrained, and trained J-SNAC controllers.
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Figure 7-10: Angular rate responses while tracking smoothened step reference signal with PID,
untrained, and trained J-SNAC controllers.

Figure 7-11: Actuator responses while tracking smoothened step reference signal with PID,
untrained, and trained J-SNAC controllers.
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Figure 7-12: Ground track produced by the aircraft while tracking smoothened step reference
signal with PID, untrained, and trained J-SNAC controllers.
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Figure 7-13: Altitude and position responses while tracking ramp reference signal with PID,
untrained, and trained J-SNAC controllers.
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Figure 7-14: Heading and attitude angle responses while tracking ramp reference signal with
PID, untrained, and trained J-SNAC controllers.
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Figure 7-15: Airspeed and aerodynamic angles responses while tracking ramp reference signal
with PID, untrained, and trained J-SNAC controllers.
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Figure 7-16: Angular rate responses while tracking ramp reference signal with PID, untrained,
and trained J-SNAC controllers.

Figure 7-17: Actuator responses while tracking ramp reference signal with PID, untrained, and
trained J-SNAC controllers.
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Figure 7-18: Ground track produced by the aircraft while tracking smoothened ramp reference
signal with PID, untrained, and trained J-SNAC controllers.

7-4 Tacking Of A Sinusoid Reference Signal With Sensor Noise

The fourth evaluative was tracking the sinusoid reference signal, while the angular rate mea-
surement were corrupted with noise. This signal is chosen to evaluate the robustness of the
learned control policy to sensor noise. Figure 7-7 to 7-12 shows the state trajectories of the
aircraft with PID, and the trained J-SNAC controller for this tracking task. One of the main
differences in the state responses in this scenario is that the PID controller makes aggressive
maneuvers in presence of the noise, where as the J-SNAC controller does not. Another differ-
ence is in the command signals sent by these controllers. The PID control law sends smoother
commands to the aileron actuators in comparison to the J-SNAC controller.

As per the Performance Index the PID, and the trained J-SNAC controller has the score of
-0.2719, and -1.5917 respectively.

7-5 Tacking Of A Sinusoid Reference Signal With Aileron Han-

dover

The fifth evaluative task was track the sinusoid reference signal, while the aircraft incurs a
aileron hardover. Aileron hardover was simulated by dividing the command signal with 2 and
then add 7 degree bias to the command signal. The hardover is set to onset at t = 25 s. This
scenario is chosen to evaluate the adaptability of the J-SNAC control policy. Figure 7-25 to
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Figure 7-19: Effect of sensor noise on the altitude and position responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 7-20: Effect of sensor noise on the heading and attitude angle responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-21: Effect of sensor noise on the airspeed and aerodynamic angles responses while
tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-22: Effect of sensor noise on the angular rate responses while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Figure 7-23: Effect of sensor noise on the actuator responses while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Figure 7-24: Effect of sensor noise on the ground track while tracking sinusoid reference signal
with PID, and trained J-SNAC controllers.
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Figure 7-25: Effect of aileron hardover on the altitude and position responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.

7-30 shows the state trajectories of the aircraft with PID, and the trained J-SNAC controller
for this scenario. As expected, the PID controller fails to track the reference signal few
seconds of failure and eventually crash the aircraft. Whereas J-SNAC controller provides an
smooth tracking performance. The continuous tracking by J-SNAC is due to the immediate
identification of the reduced control effectiveness and instantaneous adaptation of the control
law according to this new control effectiveness.

As per the Performance Index the PID, and the trained J-SNAC controller has the score
of -92.9344, and -1.7953 respectively. The lower score of PID controller is attributed to its
failure to adapt.

7-6 Tacking Of A Sinusoid Reference Signal With Partial Rudder

Failure

The sixth and the last evaluative task was track the sinusoid reference signal, while the
aircraft incurs partial failure on the rudder. This failure was simulated by multiplying the
rudder command signals with 0.1 and then adding 5 degree bias to this reduced command
signal. The failure is also set to onset at t = 25 s. This scenario is also chosen to evaluate the
adaptability of the J-SNAC controller. Figure 7-31 to 7-36 shows the state trajectories of the
aircraft with PID, and the trained J-SNAC controller for this scenario. Similar to the aileron
hardover scenario, the PID controller fails to track the reference signal few seconds of failure
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Figure 7-26: Effect of aileron hardover on the heading and attitude angle responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-27: Effect of aileron hardover on the airspeed and aerodynamic angles responses while
tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-28: Effect of aileron hardover on the angular rate responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 7-29: Effect of aileron hardover on the actuator responses while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Figure 7-30: Effect of aileron hardover on the ground track while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.

and eventually crash the aircraft. Whereas J-SNAC controller can track command signal but
with a small bias after the failure. Again, the immediate identification of the reduced control
effectiveness and instantaneous adaptation of the control law according to this new control
effectiveness is the main reason for this adaptability.

As per the Performance Index the trained J-SNAC controller has of -5.0370 and PID controller
produces a very large negative number respectively. The lower score of PID controller is again
attributed to the non-adaptive property.

7-7 Conclusion

This section has presented and discussed results from six control performance evaluation
tasks. The goal of this chapter was to answer the research question R.Q.3.1: How does

the proposed controller perform in comparison to a traditional fixed-gain linear

controller? andR.Q.3.2: How does the proposed controller perform as an adaptive

controller?. Under nominal conditions, the benchmarking PID controller performs slightly
better than J-SNAC flight controller because of its better side-slip attenuation property and
faster response to command signals. However, when there are parametric failures in the
aircraft, J-SNAC flight controller outperforms the PID controller by adapting the in-place
control law.
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Figure 7-31: Effect of partial rudder failure on the altitude and position responses while tracking
sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-32: Effect of partial rudder failure on the heading and attitude angle responses while
tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-33: Effect of partial rudder failure on the airspeed and aerodynamic angles responses
while tracking sinusoid reference signal with PID, and trained J-SNAC controllers.
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Figure 7-34: Effect of partial rudder failure on the angular rate responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 7-35: Effect of partial rudder failure on the actuator responses while tracking sinusoid
reference signal with PID, and trained J-SNAC controllers.
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Figure 7-36: Effect of partial rudder failure on the ground track while tracking sinusoid reference
signal with PID, and trained J-SNAC controllers.
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Chapter 8

Conclusions

The design, implementation, and evaluation of a Reinforcement Learning (RL) Lateral-
Directional Flight Controller has been presented. The proposed controller and its assessment
contribute to the field of Fault-Tolerant-Flight-Control systems, by validating the use of an
improved RL algorithm for flight control system design and being one of the early attempts
to developing lateral-directional flight control system with RL.

The objective of this thesis was to “Improve the fault-tolerance of fixed-wing aircraft

by investigating the applicability of J-SNAC algorithm for the design of an adap-

tive lateral-directional flight controller”. Three main research questions were posed
to structure the research and organize the process towards achieving the stated objective.
The first research question, R.Q.1, concerned with investigating on Adaptive Critic (AC)
algorithms, their use in flight control systems and delineating a design problem from the
state-of-the-art literature. The second research question, R.Q.2, concerned with the finding
of the conditions for successful implementation of a J-SNAC controller. Finally the last re-
search question, R.Q.3, concerned with the extent to which J-SNAC based flight controller
improves the performance and survivability of fixed-wing aircraft.

R.Q.1 has been answered in Chapter 3. This chapter presented various AC algorithms,
explored existing applications of AC in Flight Control System design and compared these
two aspects to conclude that there is a growing interest in the use of single network adaptive
critic algorithms for the flight control system design. Next R.Q.2 has been answered in
Chapter 4. This chapter presented the development of a controller for an under-actuated
pendulum with the J-SNAC algorithm. This development work had elucidated on the use
of J-SNAC in the controller for a nonlinear system, found the hyper-parameters of the J-
SNAC algorithm and analyzed the sensitivity the controller performance to changes in hyper-
parameters. The results in the Article and in the Chapters 5 and 6 helped to answer the
R.Q.3. In these chapters and article, the control performance of the proposed J-SNAC
based flight controller was compared to that of a PID control law. The comparison showed
that the proposed controller has a slight delay in sending commands to the actuators and
lower side-slip attenuation in comparison to the PID controller. However, unlike the PID
control law, the proposed flight controller is adaptable to unanticipated changes and gives an
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improved performance under parametrically changed conditions. From the comparisons, it
can be concluded that the use of J-SNAC improves the fault-tolerance of fixed-wing aircraft
by bringing the capacity to learn control policies that can fly degraded or damaged aircraft.
Verification and validation studies have been recommended to generalize the performance of
the proposed flight controller for all fixed-wing aircraft.
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Recommendations

The performance of the proposed controller is dependent on the selected hyperparameters.
Further improvement on the proposed flight controller could be made by automating the
hyper-parameter tuning. Additionally, the adaptation of hidden parameters of the func-
tion approximators can improve the proposed controller’s performance further. Changing
the function approximator from NRBF network to multi-variable splines may improve the
performance, as they have similar properties but more manageable to adapt.

Also, investigations are required on combing of the critics of all three controllers into one and
use the same critic to adapt all three actor functions in a hierarchical order. This combination
would resolve any conflicts among the sub-controllers. Furthermore, the proposed controller
can be merged with the previously designed RL longitudinal flight controllers to synthesize a
global flight controller.

Further progress can be made by validating this control law in a physical setup and figuring
out the additional limitations. In the development of the controller, it was assumed that
actuator saturation limit and physical limits for roll rate and yaw rate were known. However,
for a truly intelligent controller, this parameter must be learned online. Furthermore, safe
exploration and intelligent flight envelope protection scheme can be incorporated with the
controller to have a general purpose intelligent flight controllers.

Adaptive critic flight controller can further be improved by separating the states that differ
in timescale. Instead of using only longitudinal dynamics or lateral dynamics, one can use the
three loops structure used in nonlinear dynamic inversion controller (innermost loop concerns
with control of body rotation rate, central loop concerns with control of aerodynamic angles
and outer-loop concerns navigational states). This separation also helps to merge control
allocation methods with ACD based flight control system. Also, the load on computations
in learning can be reduced by incorporating known non-changing dynamics. For example, in
aircraft dynamics, the kinematic relations never changes. Therefore it does not add further
values by learning this relationship online, the thing that is to be tracked is inertial properties
such as the mass moment of inertia and inertial mass; such features are already being identified
in modern aircraft with the various identification techniques. Also in the domain of aircraft

Adaptive Critic Control For Aircraft Lateral-Directional Dynamics Imrul Kayesh Ashraf



140 Recommendations

control, the control effectiveness is already being learned. Instead of learning the dynamics
of aircraft online, this control effectiveness can be used in ACD algorithms. Another further
comment is on the design of reward function. There already exists a vast amount of literature
on incorporating handling and control quality in optimal control of aircraft. The objective
function of this optimal control problems can directly be used as reward function to have
desired handling and control quality.

In essence, ACD works based on simple mechanics. However, the challenge arises when the
optimal actions are to be calculated. The search for optimal action requires the identification
of the control effectiveness matrix and making sure that the learned value function remains
bounded and have a maximum value in the origin of the concerned state-space. This task is
related to system identification methods. Therefore the improvement in system identification
techniques improves ACD based flight controllers. Moreover, the stability of the learning
scheme has been left out in this work. Guaranteeing stability of the learning scheme needs
to be incorporated into the value function learning scheme to increase the reliability of the
proposed flight controllers.
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