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Abstract

In the last years, there has been a renewed interest in security applications designed

to detect potentially dangerous concealed object carried by an individual. In partic-

ular automatic detection and classification of concealed weapons is a fundamental

part of every surveillance system.

Until now merely all the research in image processing for Concealed Weapon De-

tection has been focused on millimeter wave imagers and X-ray imagers with very

little work done in the microwave range.

The main objective of this thesis is to develop robust novel image processing algo-

rithms for detection and classification of concealed weapon.

In particular, the developed algorithms are specifically tailored to work with mi-

crowave radar images. The algorithms shall also perform efficiently with a low false

alarm rate in a reduced contrast envinroment such as the one of microwave images.

Depolarization Analysis and SIFT Analysis which are two novel algorithms for con-

cealed weapon detection and classification in the field of 3D high resolution mi-

crowave radar imaging are presented in this thesis research project.

Keywords– Concealed Weapon Detection, 3D high-resolution microwave images,

Depolarization, SIFT, image processing, PCA, Phase Symmetry
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1. Introduction

“The tongue can conceal the truth, but the eyes never!”

The Master and Margarita,M.Bulgakov

1.1. Overview

In the last fifteen years, and in particular after 11th Sept. 2001, there has been a

renewed interest in security applications designed to detect potentially dangerous

concealed objects. It is a common experience in everyone’s life to go through a portal

type metal detector at the airport or when entering sensitive buildings. Despite the

fact that portal type metal detectors screening approach is successful and widely

used around the world it has some major flaws and in particular it cannot detect

dielectric weapons (e.g. ceramic knifes) , explosives, inflammables and it may fail

to detect very small items such as rounds of ammunition [1] . On top of that, it

cannot discriminate between innocuous items (e.g. keys) and dangerous objects.

Furthermore, in order to be screened, people have to go one by one through a

gate, creating longer queues in places such as airports. This also implies that it

is not possible to perform security screenings in crowded situation such as public

gatherings. Nevertheless a wide area metal detector is currently being developed

which allows to locate concealed metal weapons in a crowd [2] .In order to overcome
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Chapter 1 Introduction

these limitations, a wide choice of valid concealed weapon detection systems(CWDS)

alternatives to metal detectors have been developed in the last twenty years. CWDS

can be classified accordingly to five parameters [3] :

1. Form of detected energy: It specifies the type of energy source collected and/or

emitted by the CWDS. It can be Electromagnetic or Acoustic.

2. Type of Illumination: It can be passive or active. Passive systems do not ra-

diate any form of energy and they simply measure the energy that is naturally

emitted or reflected by the target. Active illumination systems, on the other

hand, stimulate the environment by emitting in a controlled way EM or acous-

tic energy which interacts with the target and , as a result of this interaction,

it is partly scattered back to the active system sensors.

3. Proximity: Defines the operational range of the CWDS. Some devices are able

to detected dangerous items carried by an individual from a standoff distance

(e.g. MM wave radar detectors) while other requires the detection system to

be placed near the person (e.g. walk-through metal detector) . A proximity

distance is considered near if it is less than one meter.

4. Portability: Describes how easy is to transport the CWDS from one location

to another and if it can be hand held. There is a substantial difference between

a body cavity imager which is a really large devices that cannot be moved and

a metal detector which in some versions can be hand held and can operate on

batteries.

5. Operating frequency range: This usually affects the resolution,operational

range (i.e. proximity) , and material penetrating properties of the system.

The systems marked as imagers in Table 1.1 are not only capable of detecting con-

cealed weapon but also, each one to a different extent depending on the operating

10



1.2 State of the art

Description Frequency range Illumination Proximity Portability Energy

Acoustic object detector 2 Hz to 1 Mhz active far yes Acoustic

Metal object detector Up to 5 Mhz active near yes Magnetic

Body cavity imager Up to 400 Mhz active near no Magnetic

EM resonance 200 Mhz to 2 Ghz active far yes EM wave

Microwave imager 3 to 30 Ghz active far yes EM wave

MM-wave imager 30 Ghz to 300 Ghz active/passive far yes EM wave

THz wave imager 300 Ghz to 300 Thz active far yes EM wave

IR imager 1 to 400 Thz passive far yes EM wave

X-ray imager 30 Phz to 30 Ehz active far yes EM wave

Table 1.1.: An overview of the more important CWDS technologies. Data retrieved
from [3, 5] .

frequencies, to see through clothing and walls and to provide an image of the target

and the concealed objects if there is any present [4] . Typical frequency range where

concealed weapon detection imagers operate are Microwave, MMW (i.e. millimiter

waves) , Thz, IR (infrared) and X-ray.

1.2. State of the art

Considering the previous discussed classification let us focus in the frequency range

that goes from the microwave imagers to the X-ray imagers and discuss properties

and up to date, according to research, capabilities of these imagers:

• Thz imaging is an attractive technique for CWD due to its really high spatial

resolution and harmlessness to human body [6] . Furthermore many danger-

ous materials possess an unique signature in the Thz spectrum which allows

spectral identification of them. On the other side operational range of Thz

imaging systems is limited due to atmospheric attenuation [7]. The system

resolution of a Thz imager is such that anatomical details of the human body

are revealed causing privacy concerns. An example of a Thz CWDS produced

11



Chapter 1 Introduction

image is shown in Figure 1.1.

• X-ray imaging provides the best quality images but it radiates ionizing radia-

tion which is harmful for human body therefore it still remains the best option

for screening objects[8] (e.g, suspicious luggages) .

• Infrared imagers are known for its use as a night vision technology rather

than CWDS. This is due to the fact that IR sensors do not have a small

enough wavelength to penetrate through clothes therefore making the system

not reliable for CWD.For the particular property of allowing night vision it

can be combined with other CWDS such as MM wave imaging to give better

results[9].

• Millimiter wave imagers can as well penetrate many optical opaque materials

despite the relatively long wavelength using very low power which eliminates

the ionizing radiation harmness problem which affects the X-ray imaging sys-

tems [12]. The resolution of a MM wave system is still really good and privacy

concerns are still valid.An example of an algorithm developed for overcom-

ing the privacy problem is shown in [11]. An example of a MM wave CDWS

produced image is shown in Figure 1.3.

Figure 1.1.: 350 Ghz image of a Glock 17 9-mm gun.Image from [13].

• Microwave imagers properties are quite similar to the ones of a MM wave

12



1.2 State of the art

one. A microwave CWDS differs from the millimiter one by using a lower

operation frequency which in turns give a lower cross-range resolution, which

is still sufficient for CWD detection, without breaching personal privacy and a

comparable down range resolution[14]. On top of that microwave CWDS are

cheaper than MM wave ones and are easier to integrate.

Figure 1.2.: Mannequin under test(left) and microwave image of it (right) . Image
from [14].

Nevertheless all these systems require the intervention of a trained human

operator to visually inspect the output of the CWDS (i.e. an image) in order

to highlight and classify any possible threat.

13



Chapter 1 Introduction

Figure 1.3.: Optical (left) and 110-112 Ghz image (MM wave on the right) of a
clothed mannequin with a concealed Glock-17 handgun. Image from [13].

Due to the fact that,as already said, these imaging systems can see through

clothes and usually produce an image that looks like an optical one it is clear

that this modus operandi arises privacy concerns and also reliability issues

since the operator may not notice a dangerous item or give a false alarm.To

overcome these problems, digital image processing techniques are fundamental

to improve both privacy (e.g.an image of a person can be replaced by a silouette

while still pointing out the location of the dangerous object on the body)

and detection by introducing an automated concealed weapon detection and

classification algorithms.

1.2.1. Imaging processing for CWD

A typical image processing architecture (see Figure 1.4) tailored for concealed weapon

detection is composed by a preprocessing unit and a facultative automatic weapon

detection one [15]. The preprocessing unit has the task to remove noise (e.g. removal

of artifacts) and enhance some characteristics of the image (e.g. weapons) useful

for detection. A popular approach in recent literature for denoising/enhancing a

concealed weapon image it is based on wavelet transform methods usually combined
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1.2 State of the art

with edge detection [16, 17]. Moreover, if the CWDS has more than one sensor,

the images produced by the different sensors need to be combined in a smart way

and this is done by the fusion sub-unit which it may also record multiple versions

of the image. Two fusion algorithms are described in [18] where a MM wave image

is combined with a gray scale optical image and in a second case an infrared image

is combined with a color optical image. The infrared or MM wave image provides

the position of the concealed weapon while the visual image can provide personal

identification. An example is given in Figure 1.5. After preprocessing, the enhanced

Figure 1.4.: Block diagram of a typical image processing architecture for CWD.
Image from [15].

image can be sent directly to the output in order to be checked by a trained oper-

ator or can be transmitted to the automatic detection unit for further processing.

In this unit several operations need to take place in order to detect and classify

objects. First, the enhanced image need to be segmented to allow the extraction

of weapons from it. Subsequently, each image segment is processed in order to ex-

tract meaningful features that will allow classification. Algorithms for processing

image segments need to take into account that the potential dangerous items are

not always in the same position (i.e. they can be rotated,scaled and translated) . In

accordance with this, it is natural that a feature extraction algorithm has to rely on

a mathematical shape descriptor of the object that describes it uniquely which also
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Figure 1.5.: An image fusion approach to CWD. Here an optical image is combined
with an Infra red image. The combination of the two images produces an improved
fused image where both the identity of the subject and the concealed weapon are
highlighted. Images from [18].

it has to be invariant to the position of the object. A popular approach is based on

taking a spatial Fourier transform of each segment. This is based on the assumption

that, on average, man made objects produce a different spatial fourier transform

than natural occuring object and exhibit certain directional pattern in the spatial

fourier domain [19, 20]. An example of this is shown in Figure 1.6. Three shape

descriptors commonly used are circularity,Fourier descriptors and moments which

are presented in [21]. These shape descriptors are invariant,each one to a different

extent depending on the descriptor,to a change in the position of the object. After

mapping each segment of the image into a mathematical descriptor a further step

is required in order to verify if that particular segment contains a dangerous object

(i.e. weapon recognition and classification). The mapping from a mathematical

descriptor back to a correspondent object is usually performed by a Neural Net-

work or by Euclidean distance between the feature vectors. The entire procedure is

shown in Figure 1.7. Three others weapon recognition algorithms are described in

[22]. The first approach described in the paper is an edge dection combined with

pattern recognition algorithm which has been employed to determine the presence
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of a concealed gun. This approach turned out to reveal the existence of the gun

but the processing time was too long and too many false alarms were generated.

Second approach based on Daubechies transforms gave inconclusive results while

the third approach based on SIFT algorithm appears to be promising but further

investigations are required according to the author.Finally the processed image is

sent to the output where the dangerous object is automatically pointed out.

Figure 1.6.: An example on how an object can be mapped to a mathematical
shape descriptor. In this case the spatial frequency distribution of a revolver (a)
is different from the one produced by the chest of the human body (b) . This
property can be exploited to classify objects. Images from [20] .
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Figure 1.7.: A common object recognition procedure

Figure 1.8.: Block diagram for the automatic weapon detection algorithm de-
scribed in [19].

18
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1.3. Research objective

Until now merely all the research in image processing for CWD has been focused on

MM wave imagers and X-ray imagers with very little work done in the microwave

range. The main objective of this thesis is to develop robust novel image processing

algorithms for detection and classification of concealed weapon. In particular, the

developed algorithms are specifically tailored to work with microwave images. The

algorithm shall be able to efficiently detect and classify different objects with:

• Different shapes

• Different materials: The objects can be made of metal such as guns and keys

or can be made of dielectric such as ceramic knifes and mobile phones.

• Different positions: The same object may have a different scale, position, 3D

orientation or a combination of those geometric transformations.

Figure 1.9.: Target output (on the right) of the CWD algorithm for a specific input
(left image) .
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The algorithms shall perform efficiently with a low false alarm rate in a reduced

contrast envinroment such as the one of microwave images. The ideal target output

of the algorithms ,for an input image, shall be a dot pointing out the position of

the object and an associated text specifying which kind of object is as in Figure 1.9.

Moreover, the possibility to port the developed algorithms to other frequency ranges

produced images ( e.g. MM wave imagers) shall be made possible.

1.3.1. Approach and feasibility

In subsection 1.2.1 the importance of shape descriptors in CWD has been discussed.

In order to make reliable detection in the microwave imaging environment a ro-

bust shape descriptor with invariant properties to geometric transformations shall

be formulated. In this thesis two different approaches with such a requirement are

described. First approach is called Depolarization analysis. In this method polar-

ization properties of the waves scattered by objects and symmetry considerations

of the image are exploited in order to provide reliable detection of objects. Second

approach is an adaptation of the SIFT algorithm that is widely used to detect and

classify objects by mathematical features matching in the optical images to the mi-

crowave images. Both approaches will be first described in their working principles

and then the individual feasibility of the approaches will be tested by MATLAB

simulations.

1.4. Thesis outline

The Thesis has the following outline. Chapter 2, after an introduction to shape

descriptors, is mainly devoted to the analysis and synthesis of new shape descriptors

for microwave radar imaging for concealed weapon detection. Chapter 3 and chapter
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1.4 Thesis outline

4 are then dedicated to the design of two new robust concealed weapon detection

methods based on the content of chapter 2. The first novel algorithm, which is

proposed in chapter 3, is Depolarization Analysis while chapter 4 is dedicated to

SIFT analysis. After introducing the working principles of both algorithms, in

chapter 5 results and a comparison of the two methods will be discussed. Finally,

in chapter 6 conclusions will be presented.
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2. Shape Descriptors

“Well, but reflect; have we not several times

acknowledged that names rightly given are the

likeness and images of the things which they name?”

Socrates

2.1. Overview

Shape descriptors have been introduced in section 1.2. This chapter deepens the

knowledge on shape descriptors and introduces new ones specifically tailored for

microwave imaging radar concealed weapon detection. In section 2.2 an introduc-

tion to the topic is presented. After the introduction, in section 2.3, section 2.4 and

section 2.6 three new shape descriptors named respectively Polarization Angle, Fea-

ture Angle and SIFT descriptor, which will be used in the design part of this thesis,

are proposed. In section 2.5 the Polarization Angle and Feature Angle are combined

together into a new shape descriptor called Depolarization Angle. These shape de-

scriptors exploit polarimetric and structural properties of the image to detect and

classify objects. Moreover, in section 2.7 mathematical tools such as segmentation

and histogram thresholding are introduced in order to enhance the detection perfo-

mances of the shape descriptors described in this thesis. Finally, section 2.8 contains
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the conclusion for this chapter. The novel shape descriptors are then employed to

design a new robust concealed weapon detection algorithms which will be described

in chapter 3 and 4.

2.2. Introduction to Shape Descriptors

Shape descriptors are fundamental quantities in CWD since they allow us to rep-

resent an object via a mathematical quantity. In particular, shape descriptors are

mathematical functions which are applied to an image and produce numerical values

which are representative of a particular characteristic of that image. These numer-

ical values can then be processed in order to provide some information about the

objects which are concealed.

Two dimensional shape descriptors can be divided according to the following classification[1]:

• External representation: It makes use of the boundary and its features to

describe the object. For example, the boundary can be described by features

such as its lenght, the orientation of the straight line joining its extreme points

or the number of concavities in the boundary.

• Internal representation: It makes use of the description of the region occupied

by the object on the image plane. An example of an internal shape descriptor

is compactness/circularity described by the equation C = P 2/A where P is the

length on the region perimeter and A is the area of the region. Compactness

is a dimensionless quantity providing a measure of contour complexity versus

area enclosed of the target. In addition to that, it is insensitive to rotation,

scale and translation of the object which is a really important quality for a

shape descriptor when applied to concealed weapon detection.

Shape representation schemes must have certain desiderable properties:
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• Uniqueness: Each object must have a unique representation.

• Completeness: Each object must have an unambiguous representation.

• Invariance under geometrical transformations: Invariance under translation,

scaling and rotation is very important in concealed weapon detection applica-

tions.

• Abstraction from details: Ability of the shape descriptor of representing the

basic features of a shape and to abstract from details. This property is directly

related to the noise robustness of the representation.

So far a classification and the main properties expected from a shape descriptors

have been introduced. The next sections of this chapter are dedicated to introducing

new shape descriptors for concealed weapon detection in radar microwave imaging.

2.3. Polarization

Polarization is a property of microwaves that describes the orientation of the elec-

tric field vector. The main phenomena which affect the polarization of a wave are

reflection and diffraction. In particular these phenomena, which are caused by the

interaction of an electromagnetic field with the objects, play an important role in

CWD since it is mainly due to them that the radar is able to reconstruct an image

of the target. Different materials have different properties with respect to the above

described phenomena. To give an example of reflection, metallic materials totally

reflect microwaves while non-metallic materials such as glass and some plastics are

mostly transparent to microwaves. The interaction between these materials and the

wave can induce a change in the polarization characteristics of the radiated wave.

There are three types of reflection which can affect polarization[2]:
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• Specular Reflection: A smooth surface acts like a mirror for the incident radar

pulse. Most of the incident radar energy is reflected away according to the law

of specular reflection. Very little energy is scattered back to the radar sensor.

This kind of reflection do not produce considerable change of polarization

• Diffused Reflection: A rough surface reflects the incident radar pulse in all

directions. Part of the radar energy is scattered back to the radar sensor. The

amount of energy backscattered depends on the properties of the target.

• Corner Reflection: When two smooth surfaces form a right angle facing the

radar beam, the beam bounces twice off the surfaces and most of the radar

energy is reflected back to the radar sensor.

Figure 2.1.: (a) Specular Reflection (b) Diffused reflection (c) Corner Reflector

Microwaves scattering works in the following way. The interaction between a mi-

crowave field and an atom will have the effect of exciting the atom electrons. By

this interaction the atom will produce its own electromagnetic field at the same

frequency of the incoming wave. The EM field produced by the atom is radiated in

all directions and it excites the electrons of other atoms in its surrounding which,
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in turn, are reradiating the EM field. The process of absorbing and reradiating the

incoming microwaves by the atoms has the effect of scattering the EM field about

the medium. Scattering is very likely to produce changes in the polarization of the

radiated wave by the radar depending on the material and shape of the object.

From the above considerations it is possible to infer that each object interacts with

the radiated electromagnetic field in its own peculiar way due to its specific material

and shape. This interaction can cause a change in the polarization of the wave

transmitted by the radar.

Typical objects employed in CWD have complex shapes and a priori knowledge of

their specific interaction with the electromagnetic field radiated by the antenna is

not known but general considerations can be done. In particular, diffraction refers

to various phenomena which occur when a wave encounters an obstacle that may

induce a strong polarization change in the radiated field. What is known is that

objects employed in CWD present many edges which can cause diffraction thus

polarization changes. By focusing on this very general consideration the goal is

to find a mathematical quantity (i.e. a shape descriptor) able to describe objects

by highlighting the polarization changes from the rest of the image due to edge

interaction.

A new shape descriptor called Polarization Angle which exploits polarimetric prop-

erties of the image will be introduced in the next section.

2.3.1. PCA and Polarization Angle

Let us define xhh and xvv as the pixel intensity which are normalized between 0 and

1 received by the radar when it is respectively radiating and receiving in horizontal
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and vertical polarization. Each 2D1 microwave radar image is composed of many

pixels. For each pixel in the image we define the covariance matrix:

C =

 xhh

xvv

 [
xhh xvv

]
=

 x2
hh xhhxvv

xhhxvv x2
vv



C is a real and symmetric matrix with the following real eigenvalues:

λ1,2 =
x2

hh + x2
vv ±

√
(x2

hh − x2
vv)2 + 4(xhhxvv)2

2
(2.1)

Equation (1) leads to the conclusion that λ1 = x2
hh + x2

vv and λ2 = 0 .

By solving the equation (C − λI)X = 0 for each eigenvalue the two correspondent

eigenvectors X1 =

 x11

x12

 = x11

[
1 xvv

xhh

]T
and X2 =

 x21

x22

 = x22

[
− xvv

xhh
1

]T

of the covariance matrix are computed. From the previous equations it is possible

to demonstrate that x12 = −x21 and x11 = x22. Requiring that XT
1 X1 = 1 and

XT
2 X2 = 1 we obtain x11 = ± xhh√

x2
hh

+x2
vv

and x22 = ± xhh√
x2

hh
+x2

vv

.

In this bidimensional case, by choosing x11 > 0, the eigenvectors of the covariance

matrix C form the following matrix:

T = [X1, X2] = xhh√
x2

hh + x2
vv

 1 − xvv

xhh

xvv

xhh
1

 =


xhh√

x2
hh

+x2
vv

− xvv√
x2

hh
+x2

vv

xvv√
x2

hh
+x2

vv

xhh√
x2

hh
+x2

vv

 =

 T11 T12

T21 T22



where each column of T is an eigenvector of C. T satisfies TT T = TTT = I which

1The original images from the microwave radar are three-dimensional. In order to obtain a 2D
image the data is energy projected on a frontal plane with respect to the position of the objects.
More information on energy projection are given in section 3.2.1
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means that is an orthogonal matrix. By defining

cos(ϕ) = xhh√
x2

hh + x2
vv

sin(ϕ) = xvv√
x2

hh + x2
vv

the eigenvector matrix can be written as a rotation matrix in the following way:

T =

 cos(ϕ) −sin(ϕ)

sin(ϕ) cos(ϕ)

 =

 T11 T12

T21 T22



This can be explained by the fact that PCA2 finds the most meaningful basis for

expressing a set of data. In other words, the new basis, which is found by the trans-

formation T, in the two dimensional case is aligned with the direction of maximum

variance of the data. This direction for each pixel is specified by the Polarization

Angle[3] :

ϕP = arctan(T21

T11
) − π

4

The Polarization Angle takes into account how each pixel of the object scatters back

the energy, and in which preferred direction, by looking at the relationship between

the scattered intensity of the vertical and horizontal polarization data.

(xhh, xvv) ϕP

(1,0) −π
4

(0,1) +π
4

(1,1) 0
(1,0.5) -0.322
(0.5,1) +0.322

Table 2.1.: ϕP for different values of (xh, xv)

2For more informations regarding PCA please refer to Appendix A

33



Chapter 2 Shape Descriptors

A SAR measurement of five objects in the free space has been carried out in order to

perform a polarization study on the interaction between the EM field and the objects

employed in CWD. Also, the measurements are needed to validate Polarization

Angle as a shape descriptor. The free space has been simulated by positioning a

foam panel ,which appears transparent to microwaves, behind the objects. As shown

in Figure 2.2 the set of five objects consisted in:

• A: Ceramic knife

• B: Tester which has the shape and material of a mobile phone

• C: Metallic gun

• D: Bottle of water

• E: Pair of keys

The radar first scanned the target area and received the data in horizontal polar-

ization. Afterwards, it scanned and received the data of the same scene in vertical

polarization. The resulting two microwave images are shown in Figure 2.3.
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The two sets of data (i.e. HH and VV) are then combined together by computing

the Polarization Angle which is shown in Figure 2.4. According to Figure 2.4, all

the objects assume an average ϕP value equal to -0.7 while their edges present an

opposite behavior assuming on average a Polarization Angle value of 0.7.

Figure 2.2.: Measuring scenario for experiment 1

According to the above considerations, this first experiment is showing that the

edges of the objects are causing diffraction phenomena which are inducing an alter-

ation in the value of the Polarization Angle. This confirms the initial hypothesis

of polarization changes due to edge diffraction formulated at the end of section 2.3.

Moreover, the background assumes Polarization Angle values between -0.4 and 0.4

allowing to clearly distinguish between background, objects and their edges.
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Figure 2.3.: (a) VV image (b) HH image of the five objects in free space
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Figure 2.4.: Polarization Angle for the first experiment

A second experiment has been performed by measuring the reflections from a gun

and a ceramic knife. In this testing scenario the objects are positioned on a metal

plate. The goal of this experiment is to study the polarization phenomena occur-

ing due to the interaction between the objects and the metal plate. According to

Figure 2.5(c) the objects, their edges and the background show different Polariza-

tion Angle values among each other. In particular from Figure 2.5 it is possible to

notice how the trigger and the handle of the gun are causing a polarization shift

due to their sharp edges. The values assumed by objects, their edges and by the
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background in the two experiments are shown in Table 2.2. By looking at the table,

it is possible to state that edges cause polarization shift which is mathematically

interpreted as a shift in the value of the Polarization Angle.

Figure 2.5.: (a) VV data (b) HH data (c) Polarization Angle for the second
experiment

Feature (First Experiment) average ϕP

Objects -0.7
Edges 0.7

Background (Foam) 0

Feature (Second Experiment) average ϕP

Objects 0.5
Edges -0.3

Background (Metal) 0.7
Table 2.2.: Values of the Polarization Angle for the two experiments
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To further investigate polarimetric properties of microwave radar images, the upper

chest and head of a mannequin have been scanned by a SAR polarimetric radar.

The idea behind this third experiment is to verify whether the shape and material

of the mannequin induce polarization changes. As it possible to see in Figure 2.6

the mannequin head and upper chest present negative values of the Polarization

Angle while the edges between the mannequin and the background cause a positive

shift of ϕP . It is important to notice that a shift from negative to positive of the

Polarization Angle value can be also found in the eye region due to a corner reflector

effect caused by the indentation of that particular area of the body. According to

the last experiment, it is possible to deduce that, since the Polarization Angle value

across the mannequin is approximately uniform, if an object is placed on the body

of the mannequin there must be a shift in the Polarization Angle. This change in

the Polarization Angle value is likely to happen at the mannequin-object separation

(i.e. edges).
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Figure 2.6.: (a) VV data (b) HH data (c) Polarization Angle for experiment 3

The new shape descriptor called Polarization Angle, which has been described in

this section, exploits the polarimetric properties of the image to obtain meaningful

information regarding edges of objects. The experiments presented in this section

showed that edges induce a shift in the Polarization Angle from negative to positive

values and viceversa. It is important to notice that objects, their edges and the

background assume always different values with respect to each other. Unfortu-

nately, this value is not constant from one measurement to another one (e.g. in the

first experiment the gun assumed an average ϕP of 0.7 while in the second one the
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average was 0.5). This affects the classification capabilities of Polarization Angle

since it is not possible to distinguish between different objects. On the other hand,

by referring to the shape descriptors general characteristics described in section 2.2,

Polarization Angle is achieving invariance to geometrical transformations and ab-

straction from details. Moreover, some part of the body due to their particular

structure are causing a shift in the value of ϕP . This makes difficult to distinguish

between edges of object and edges caused by indentation of the human body.

Another possible approach, which will be developed in the next section, is to exploit

structural informations of the image to obtain a new shape descriptor for concealed

weapon detection called Feature Angle.

2.4. Symmetry and Feature Angle

Symmetry is an important mechanism by which structure of objects are identified by

the human brain. Man-made object which are needed to be detected in concealed

weapon detection can be recognized by the symmetry or partial symmetry that

they exhibit. In particular, symmetry found within man made objects is usually

related to structural stability. Moreover, phase information plays an important role

in human perception of discontinuities (e.g. edges) in images.

By exploiting symmetries is possible to detect concealed object due to the symmetric

structures that they produce. It is important to notice that the human body is also

symmetric therefore it may be not trivial to distinguish between human body sym-

metries and man-made objects ones. From these assumptions, an algorithm called

phase symmetry is employed in order to extract symmetries from an image. Phase

symmetry, which is described in [4], consists of 2D log-Gabor filter banks which are

defined by a gaussian amplitude spectrum multiplied by an angular component.
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The transfer function for this type of filter can be expressed as:

Hsym(ω, θ) = exp(−log(ω/ω0)2

2log(k/ω0)2 − (θ − θ0)2

2σ2
θ

)

Where ω and ω0 are the frequency range and center frequency. k is a scaling factor,

θ0 the specified filter orientation and σθ the standard deviation for the angular com-

ponent of the gaussian filter. By applying Hsym over multiple scales and orientations

it is possible to obtain a filter bank representation of of the image. This represen-

tation consists of an even er,n(i, j) and odd or,n(i, j) symmetric filter outputs. The

parameter r represents a specific orientation of the filter while n a specific scale. It

is natural to expect points which present high symmetry will be characterized by

high magnitudes in the even symmetric filter and by low magnitudes in the odd

symmetry filter output. Phase Symmetry at the spatial coordinates of the image

(i, j) is defined as:

S(i, j) = max

{∑
r,n (|er,n(i, j)| − |or,n(i, j)| − T )∑

r,n Ar,n(i, j) + ε
, 0

}

with:

Ar,n(i, j) =
√

e2
r,n(i, j) + o2

r,n(i, j)

T represents a noise compensation term and ϵ avoids instabilities by zero division

when the signal is uniform and no filter response is obtained. It is important to

notice that S(i, j) is always normalized between 0 and 1. Before applying phase

symmetry the images are preprocessed by applying a Laplacian filter in order to

enhance edges[5].
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Another important property of phase symmetry is its ability to extract symmetry

features of objects under the presence of noise. The syntethic experiment described

in [1] shows how phase symmetry is able to extract the symmetry axis of two objects

under the presence of gaussian noise conditions in a more efficient way compared to

a canny edge detector. The ability to perform under noisy conditions it is a very

desiderable quality since microwave images ,which are employed in this thesis for

concealed weapon detection, are substantially affected by noise.

After applying the phase symmetry algorithm to the horizontal and vertical polar-

ization data the two images are combined together by selecting the maximum for

each pixel by comparing the two polarization images. Let us define Sm(i, j) as the

merged image. Then we can define the feature angle as ϕF = arctan (Sm(i, j)) − π
4

. Feature Angle is a shape descriptor which expresses the predominant geometric

orientation of an object or of parts of the human body.

The results of applying phase symmetry to experiment 1 of subsection 2.3.1 are

shown in Figure 2.7. By comparing Figure 2.7(c) and Figure 2.3 it is possible to

notice how phase symmetry is higlighting the structural information of the objects

making them easier to be recognized with respect to the unprocessed microwave

image of them.

To further explore symmetry properties, the phase symmetry algorithm has been

applied to experiment 3 of subsection 2.3.1 which consisted in a scan of the head

and upper chest of a mannequin. By inspecting Figure 2.8 it is possible to see that

also in this case phase symmetry is highlighting structural information of the image.

From the above described experiments, we can expect that by superimposing an

object on the mannequin this will cause in the area of superimposition an increase

in density and strength of symmetry lines which may indicate the presence of an

object. The goal is to mathematically quantify symmetry in a particular region
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Figure 2.7.: (a)HH data (b)VV data (c) merged image for phase symmetry algo-
rithm applied to experiment 1

of the image. This can be achieved by performing histogram thresholding ,which

will be described in subsection 2.7.1, of simmetry lines intensity in a portion of the

image.

In this section, it has been shown that it is possible to exploit symmetry to extract

and enhance structural information from the image. An internal shape descrip-

tor ,which expresses the predominant geometric orientation of a feature, has been

defined as Feature Angle. In order to extract the Feature Angle a symmetry ex-
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2.4 Symmetry and Feature Angle

Figure 2.8.: (a) VV data (b) HH data (c) merged phase symmetry data for exper-
iment 3

traction algorithm named Phase Symmetry has been employed. By applying Phase

Symmetry to the horizontal and vertical polarization data we can conclude that

regions where concealed objects are located are likely to present an increase in den-

sity and strength of symmetry lines which can be detected by applying histogram

thresholding described in subsection 2.7.1.
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2.5. Depolarization Angle

In order to exploit both physical and structural information, Polarization Angle

ϕP and Feature Angle ϕF , which can be classified respectively as an external and

internal shape descriptors, are combined together to form a new attribute called

Depolarization angle[7] Dp :

Dp(i, j) =


ϕP (i, j)/ϕF (i, j) , ∥ϕF (i, j)∥ ≥ ∥ϕP (i, j)∥

ϕF (i, j)/ϕP (i, j) , ∥ϕF (i, j)∥ < ∥ϕP (i, j)∥
(2.2)

It is clear from this definition that ∥Dp∥ < 1 since ϕP and ϕF are both varying

from −π
4 to π

4 . If Dp value is equal to 1 this indicates a feature exhibiting maximum

polarization when the front edge3 of the Vivaldi Antenna is parallel to the long axis

of the feature. If Dp equals to -1 this means that the feature is exhibiting maximum

polarization when the front edge of the Vivaldi Antenna is perpendicular to the long

axis of the feature. An example for the latter case is shown in Figure 2.9.

Figure 2.9.: A typical case when Dp = −1. The object is exhibiting its maximum
polarization in the direction orthogonal to its long axis.

3The front edge is considered as the one of the Vivaldi antenna which is the closest in distance
to the mannequin
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2.5 Depolarization Angle

The result of applying equation (1) to the first experiment of subsection 2.3.1 is

shown in Figure 2.10. Depolarization Angle is enhancing both structural and po-

larimetric properties of the combination of the vertical and horizontal unprocessed

data image (see Figure 2.3). From the line scan of Figure 2.11, which has been ex-

tracted from the central row marked in red in Figure 2.10, it is possible to notice

how edges cause a shift from positive to negative (i.e. the deep negative valley in the

figure is the gun) in the value of the Depolarization Angle. This shifting property of

the Depolarization Angle can be exploited to detect edges of objects. In Figure 2.12

we can see how the mannequin head and upper chest produce a negative Depolar-

ization Angle value while the areas marked as F (head-background separation) and

G (eye indentation) are causing a shift in the value of Dp. Therefore Depolariza-

tion Angle while improving the detection of edges is inheriting the false alarm issue

caused by body indentation of the Polarization Angle described in subsection 2.3.1.

The number of false alarms can be greatly reduced by applying histogram thresh-

olding as explained in subsection 2.7.1. By comparing the two above experiments

we can state that the background and objects always assume a Dp value which is

shifted in sign compared to the edges.
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Figure 2.10.: Dp for experiment 1 of subsection 2.3.1

Figure 2.11.: Line scan of Figure 2.10
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2.5 Depolarization Angle

Figure 2.12.: Depolarization Angle value for mannequin head and upper chest

In this section the polarimetric features introduced in section 2.3 are combined with

the structural features described in section 2.4. The new shape descriptor which

is a combination of Polarization and Feature Angle is called Depolarization Angle.

Depolarization Angle allows to detect edges of objects by looking at its value on the

edges of objects (e.g. background and objects on average assumes a Depolarization

Angle value changed is sign compared to edges). Unfortunately, Depolarization

Angle is inheriting the Polarization Angle issue of false alarms caused by body

indentation. This issue can be solved by applying histogram thresholding as will be

explained in subsection 2.7.1.

The shape descriptor which will be presented in the next section represents a different

approach to shape description for concealed weapon detection compared to the ones

presented in subsection 2.3.1 and section 2.4. The idea in this case is to try to

match an unknown concealed object features set to another set of known features

belonging to different objects which are stored in an object library by using only one
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polarization data. If the set of features of the unknown object have a match in the

library then it means that the unknown object can be detected and classified. In

order to do this, a computer vision algorithm named SIFT, which is able to detect

and describe local features in optical images by locating pixel intensity maxima and

minima will be adapted to microwave imaging radar.

2.6. SIFT Descriptors

What usually happens in airport security is that an operator looks at the image

of a person carrying suspicious objects and then attempts to match what he sees

in the image with his personal knowledge of objects. The goal of this section is

to develop a shape descriptor which takes inspiration from human vision and from

the matching process described above. Computer vision is a field that includes

methods for acquiring, processing, analysing, and understanding images and, in

general, high-dimensional data from the real world in order to produce numerical or

symbolic information[8].

Microwave imaging play a key role in detecting object due to the ability of mi-

crowaves to penetrate through clothes. On the other hand, microwave images suffer

a lack of resolution when compared to optical images. A comparison between an

optical and microwave image of a bottle of water is shown in Figure 2.13. Despite

the fact that the resolution of the microwave image is way lower than the optical one,

the main features of the bottle are still recognizable (e.g. position of edges). In par-

ticular the intensity maxima/minima of the bottle image are approximately at the

same position in both images. An example of the preservation of maxima/minima

is point P1 and P2 in Figure 2.13. The comparison between an optical image and

microwave image of a gun (figure Figure 2.14) confirms the fact that the shape is
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preserved and the main features of the objects such as the trigger, the handle and the

barrel are still clearly recognizable. The property of microwave images of preserving

intensity maxima/minima of an image allows to apply computer vision algorithms

originally designed for optical images which exploit gradient detection to compare

and find matches between two images.

Figure 2.13.: (a) Optical and (b) Microwave image of a bottle of water

Figure 2.14.: (a) Optical and (b) Microwave image of a gun

A computer vision algorithm named SIFT has been found suitable for microwave
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concealed weapon detection due to its peculiar characteristic. SIFT algorithm was

first introduced by D.Lowe in 1999. This algorithm is widely used and has proven to

be very successful in computer vision to detect and describe local features in optical

images. What makes SIFT so noteworthy is its ability to match features between

two images with invariance to image scaling and rotation and has shown to be robust

with respect to a range of affine distortions, change in 3D viewpoint, addition of

noise and change in illumination[9]. Despite not being computationally fast, SIFT

has the best performance, when compared to similar feature detection methods such

as PCA-SIFT and SURF, in detecting objects when scaling and rotations occurs[10].

In SIFT objects key locations are defined as maxima and minima of the result of

difference of Gaussians functions applied in the scale space to a series of smoothed

and resampled images4. Points with low contrast and edges responses are discarded

due to their instability. Once keypoints have been localized, a dominant orienta-

tion is assigned to each of them and to the neighbour pixel of the keypoint. Each

frame which contains information about a keypoint is characterized by four number

which are (x, y) for the position of the frame in the image, σ which is its scale (i.e.

smoothing scale) and θ which is the orientation. Each SIFT frame is summarized by

a descriptor vector which describes coarsely the appearance of the image patch cor-

responding to the frame. By matching the SIFT descriptor of the unknown object

with the ones stored in the library the algorithm is able to perform image matching

and classify concealed objects.

In Figure 2.15 a SIFT feature matching experiment on microwave images has been

carried out. The experiment consisted in indentifying a gun among five objects

which where the same as experiment 1 of subsection 2.3.1. The matching procedure

for this particular experiment presented many false alarms even though the number

4For more information regarding SIFT please refer to Appendix C
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of correct matching for the gun was superior to the number of false matches with

the other objects. In another experiment a gun was positioned on the body of a

mannequin and SIFT algorithm was applied. The algorithm correctly identified

the gun but there were many false alarms due to indentations of the human body

which looked like objects. To reduce the number of false alarms a combination

of segmentation and histogram thresholding needs to be applied. This two image

processing techniques are described in subsection 2.7.1.

Figure 2.15.: Gradient detection of a gun

The main goal of this section was to find a shape descriptor that allows to perform

microwave radar imaging feature matching between an unknown object and a set of

object stored in a library by using only one polarization data. We have seen how

microwave images differ from optical ones. The lack of resolution of microwave image

do not substantially affect the shape and main features of the objects being imaged.
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In particular the property of preserving maxima and minima in an image allows to

apply gradient detection techniques employed for optical images which allow feature

matching. It has been shown in the experiment of Figure 2.15 that a number of

false alarms are generated. To reduce the number of false alarms segmentation and

histogram thresholding of the image are valuable tools which will be described in

section 2.7.

2.7. Shape Descriptors enhancement

In this chapter four new different shape descriptors for microwave radar imaging

concealed weapon detection have been described. These descriptors exploit physical

and structural information of the image in order to detect objects. In particular Po-

larization Angle and Feature Angle have been combined together into Depolarization

Angle in order to combine the polarimetric and structural data provided by the mi-

crowave images. It has been shown in subsection 2.3.1, section 2.4, section 2.5 and

section 2.7 that each descriptor is not completely reliable (i.e. it causes false alarms)

without some sort of enhancement procedure. This section introduces segmentation

and histogram thresholding which are mathematical tools needed in order to en-

hance the detection capabilities of the shape descriptors described in the previous

sections of this chapter.

2.7.1. Segmentation and Histogram Thresholding

Segmentation is the process of partitioning a digital image into multiple segments.

It is useful for image analysis since it divides the image into small portions which

are more meaningful and easier to analyze. It has been discussed in section 2.6

that the detection of a gun by the means of a SIFT descriptor caused many false
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alarms. In order to perform a more accurate detection a prior segmentation of

the image before applying the shape descriptor is necessary. In this thesis the

segmentation is performed by dividing the image in an overlapping primary and

secondary grid as shown in Figure 2.16. The most important factor that affects the

segmentation efficiency is the size of the segments. Segmentation efficiency affects

detection capabilities of a CWD system. In particular the size of the segments have

to be chosen accordingly to the size of the concealed objects that an individual can

carry. If the segments are too small the object may be splitted in two different

segments which will cause a drop in the detection rate. On the other hand, if the

size of the each segment is too large then multiple of objects and too many features

of the human body will end up in the same segments. This second hypothesis is also

likely to decrease the detection rate.

Figure 2.16.: Typical example of primary and secondary grid. The yellow box is
an example of a secondary grid segment while the green one of a primary one.

After segmentation, histogram thresholding can be applied to obtain meaningful in-

formation regarding the content of a particular segment. An histogram is a graphical
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representation of the distribution of a particular set of data. For Symmetry described

in section 2.4 the data in which we are interested is the intensity of symmetry lines

while for SIFT descriptor of section 2.6 is the pixels intensity. To give a first exam-

ple on histogram thresholding, many segments for which the SIFT descriptor finds

a matching unfortunately do not contain an object but just random background.

Histogram thresholding allow us to discard those background segments which are

causing false alarms. In the example of Figure 2.17 it is possible to see how a seg-

ment containing a concealed (upper part of the image) shows an intensity histogram

richer in high intensity values when compared to a background segment. Therefore

we can discriminate between segments containing a suspicious object or background

by looking at the high intensity values bins of an histogram. The same process can

Shape Descriptor Flaws Solution

Depolarization Angle False alarms (body indentations) Histogram thresholding (Simmetry lines intensity)

SIFT Descriptors False alarms (body indentations) Segmentation and histogram thresholding (Pixel intensity)

Table 2.3.: Shape Descriptors flaws and solution

be repeated for the symmetry lines described in section 2.4. In this case a portion of

the merged symmetry image Sm is extracted and histogram thresholding is applied

to that particular portion looking for intensity of symmetry lines greater than a

certain threshold. The values assumed by the thresholds and how segmentation and

histogram considerations are implemented will be described in chapter 4 and 5. A

summary of the shape descriptors flaws and solution is shown in Table 2.3.
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Figure 2.17.: Histogram thresholding example

2.8. Conclusions

This chapter was dedicated to shape descriptors. As said in section 2.2, shape

descriptors are mathematical functions which are applied to an image and produce

numerical values which are representative of a particular characteristic of that image.

These numerical values can then be processed in order to provide some information

about the objects which are concealed.

For the purpose of this thesis, four new shape descriptors for microwave radar imag-

ing of CWD has been introduced. In section 2.3 physical phenomena such as re-

flection, diffraction and scattering which affect the polarization of a microwave have

been studied in order to obtain meaningful information regarding concealed objects.

The result of this physical analysis is an external shape descriptor called Polar-
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ization Angle described in subsection 2.3.1 which has been found, by performing a

series of experiments, to be able to detect edges of concealed objects by exploiting

polarimetric properties of the combined vertical and horizontal polarization data.

Furthermore, in section 2.4 an analysis on structural and symmetry information

contained in a microwave radar image lead to the formulation of an internal shape

descriptor named Feature Angle. Polarization and Feature Angle are then combined

together in section 2.5. The result of this combination is shape descriptor named

Depolarization Angle which can be exploited to detect edge of objects in a more

reliable way compared to Polarization Angle since it contains also structural infor-

mation of the image. As explained in section 2.5 indentation of the human body

are causing a shift in the Depolarization Angle which is equal to the one produced

by edges of actual objects. In order to discriminate between actual objects and in-

dentation of the human body histogram thresholding is required which is explained

in subsection 2.7.1.

In section 2.6 a shape descriptor inspired by human vision and brain’s associative

properties is introduced. The main idea was to try to match an unknown concealed

object features set to another set of known features belonging to different objects

which are stored in an object library by using only one polarization data. After a

comparison study between optical and microwave images it has been found that they

share in common the same position of pixel intensity maxima and minima in the

image despite their consistent difference in resolution (i.e. microwave images have

a poorer resolution compared to optical ones). Therefore it appeared as a feasible

approach to apply a computer vision algorithm employed on optical images to the

field of microwave imaging. The algorithm which resulted to be the more suitable

to be applied to microwave image was SIFT. The experiments in section 2.6 showed

that the algorithm was able to correctly match between an concealed object in a
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scene with the same one in the library. Unfortunately, many false alarms where

present due to specific parts of the human body which where interpreted as objects.

Segmentation and histogram thresholding are two mathematical tools described in

section 2.6 which can be employed in this particular case to reduce the false alarm

rate.

The shape descriptors which have been analyzed and synthesized in this chapter (e.g.

Depolarization Angle and SIFT descriptors) along with the enhancing techniques

presented in section 2.7 will be employed in the following chapters to design two

novel robust microwave radar imaging concealed weapon detection algorithms.
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3. Depolarization Analysis

“Symmetria est in rebus”

Aristotle

3.1. Overview

The main objective of this thesis report is to develop a novel CWD method which

is able to detect concealed objects carried by an individual in a low contrast envi-

ronment such as the microwave radar imaging one. A novel CWD method called

Depolarization Analysis is presented in this chapter. Depolarization Angle, which

has been described in section 2.5, represents the core of the hereby presented method.

Therefore the presented algorithm exploits and combines physical and geometric fea-

tures of the target which are provided by a dual polarization SAR to achieve object

detection. The method is divided in two processing blocks which are named respec-

tively Depolarization unit and Detection unit. In section 3.2 the processing blocks

which form the Depolarization unit shown in Figure 3.1 are described in details.

This unit has the main task of computing the Depolarization Angle. It has been

discussed in section 1.5 how the Depolarization Angle is affected by false alarms and

how it is possible to reduce them by applying histogram thresholding. In section 3.3

the processing blocks enclosed in the detection unit needed to reduce the false alarm
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rate are discussed. Conclusions are presented in section 3.4.

Figure 3.1.: Block diagram of the algorithm for Depolarization analysis

3.2. Depolarization unit

Figure 3.2.: Depolarization unit block diagram

The Depolarization unit is the first building block of the algorithm and its final

purpose is to compute the Depolarization Angle. It can be divided in two parts.

After an initial energy projection described in subsection 3.2.1 for both polarization

data which transforms the 3D volumetric scalar data into a 2D image, there are

two processing paths for each polarization image[1, 2]. One path is dedicated to

compute the Feature Angle by a cascade of image processing filters (i.e. Laplacian,

Prewitt and Phase symmetry) described in subsection 3.2.2 and subsection 3.2.3.

The other processing path described in subsection 3.2.4 computes the Polarization

Angle by performing PCA. The Polarization and Feature Angles are then combined

together into a new attribute called Depolarization Angle which is described in
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3.2 Depolarization unit

subsection 3.2.5. Depolarization Angle is then sent to the Detection unit for further

processing.

3.2.1. Energy Projection

Figure 3.3.: Grid arrangement

Let us define I ϵCP×Q×R as the complex matrix containing the 3D volumetric scalar

data of the mannequin being measured by the radar1 . Accordingly to the grid

arrangement of Figure 3.3 we can define each point in I as I(xp, yq, zr) with p =

1, 2, ..P , q = 1, 2, ..., Q and r = 1, 2, ..., R . Being the axis of the mannequin image

oriented as in Figure 3.4, the matrix I is energy projected along the y dimension in

the x-z plane by performing I(xp, zr) = ∑Q
q=1 ∥I(xp, yq, zr)∥2 ∀ p, r . There are two

reasons behind the choice of projecting the image in a 2D plane. The first one is

that well known 2D image processing algorithms can be applied. The second one

is related to the choice of the x-z plane as projection plane. This plane, according

to the axis orientation in Figure 3.4 , is of specular simmetry for the mannequin

body which allows to make symmetry considerations. Moreover, the approach of

applying image processing algorithms to several (i.e. the number of slices is Q) x-z

plane energy slices proved to be unsuccessful due to the fact that each object, due
1For more informations regarding the measurement setup please refer to appendix B
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to its three dimensional nature, is contained in many slices and phase symmetry

algorithm requires the entire ’energy information’ of the concealed object to work.

Figure 3.4.: (a) A typical 3D volumetric scalar measurement of a mannequin.
Radar is transmitting and receiving in vertical polarization (b) Energy projec-
tion in the x-z plane
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3.2 Depolarization unit

Figure 3.5.: (a) 3D volumetric scalar measurement of five objects in the free space.
Radar is transmitting and receiving in vertical polarization. (b) Energy projection
in the x-z plane 67
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3.2.2. Image filtering

Let us define IH(xp, zr) as the image matrix containing the projected horizontal

polarization data and as IV (xp, zr) the one containing the vertical polarization one.

In order to enhance edges of the image, both components are convolved with a

Laplacian 3x3 filter of the type ∇2 = 4
α+1


α
4

1−α
4

α
4

1−α
4 −1 1−α

4

α
4

1−α
4

α
4

. The value of α,

which controls the shape of the Laplacian, has been set to 0.9 since it offered the best

tradeoff between edge enhancing and noise. To further enhance edges depending on

the polarization the Laplacian filter is combined with a Prewitt operator sensitive to

the horizontal direction when it is applied to IH(xp, zr) and with a Prewitt operator

sensitive to the vertical one when it is being applied to IV (xp, zr).

3.2.3. Phase Symmetry and Feature Angle

After the image processing steps described in subsection 3.2.2, the horizontal filtered

image I
(H)
f (xp, zr) and vertical one I

(V )
f (xp, zr) are then processed with a Phase

Symmetry filter Hsym with the following parameters :

• Number of wavelets scales = 5

• Number of orientations = 6

• Wavelenght of smallest scale filter = 12

• Scaling factor between successive filters = 2.1

• ϵ = 10−4

• T (i.e. noise compensation term) is computed by using the median of the

smallest scale filter response. This is due to the fact that the smallest scale
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3.2 Depolarization unit

filters spend most of their time responding to noise, and only occasionally

responding to features.

This values have been chosen since they offer the best tradeoff between noise reduc-

tion and symmetry enhancement. An example is shown in Figure 3.6.

Figure 3.6.: (a) Wavelenght of smallest scale filter = 3 (b) Wavelenght of smallest
scale filter = 12 . In both cases the number of wavelets scales is equal to 5 and
the number of orientations is equal to 6

Let us denote as SH(xp, zr) the output of the Phase Symmetry filter when applied to

I
(H)
f (xp, zr) and as SV (xp, zr) when applied to I

(V )
f (xp, zr). Subsequently, SH(xp, zr)

and SV (xp, zr) are then merged by the following rule:

Sm(xq, zr) =


SH(xq, zr) , SH(xq, zr) ≥ SV (xq, zr)

SV (xq, zr) , SH(xq, zr) < SV (xq, zr)
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The reason why SV and SH are merged is to highlight the objects on the man-

nequin and to ensure maximum information from both components. This is based

on the assumption that concealed objects should present many symmetry lines in

many directions compared to the human body since they can be considered as a

combination of many geometric shapes (e.g. a gun can be considered approximately

as a combination of two rectangles). As we can see in Figure 3.7(c) the marked

areas are rich of symmetry lines and may underline the presence of an object. Un-

fortunately not only objects, marked in red, are detected but also human body

symmetries which are marked in yellow. The feature angle ϕF (xq, zr) is defined

as ϕF (xq, zr) = arctan (Sm(xq, zr)) − π
4 . In a way, the feature angle expresses the

predominant geometric orientation of an object or of parts of the human body.
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Figure 3.7.: (a) SH (b) SV (c) Sm for a mannequin with concealed objects
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3.2.4. PCA and Polarization Angle

The Polarization Angle, which has been described in section 2.3.1, quantifies the

scattering properties of an object and the dominant polarization characteristic from

a dual polarization SAR. Polarization Angle is computed by the algorithm by per-

forming PCA as:

ϕP = arctan(T21

T11
) − π

4

Where T21 and T11 are the elements of one of the two eigenvectors of the pixel

intensity covariance matrix. As it is possible to see in Figure 3.8 and according to

the considerations of section 2.3.1 edges of the objects which are marked in red, and

edges of the mannequin which are marked in blue, present Polarization Angle values

which are switched in sign compared to the rest of the image. This is caused by

diffraction phenomena due to the interaction of the microwave field with the edges.

In order to extract edges from the image, the Polarization Angle and the Feature

Angle respectively quantifying polarimetric and structural data of the image are

then combined togheter to form the Depolarization Angle.
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3.2 Depolarization unit

Figure 3.8.: Polarization angle for a mannequin carrying concealed objects

3.2.5. Depolarization Angle

Depolarization Angle, as explained in section 1.5, is a combination of the Polariza-

tion and Feature Angle and it is computed by performing:

Dp(i, j) =


ϕP (i, j)/ϕF (i, j) , ∥ϕF (i, j)∥ ≥ ∥ϕP (i, j)∥

ϕF (i, j)/ϕP (i, j) , ∥ϕF (i, j)∥ < ∥ϕP (i, j)∥

Where (i,j) are the coordinates of the pixels of the image. As it possible to see in

Figure 3.9 and, as explained in the previous chapter, Depolarization Angle is able to

highlight the edges of objects. In particular by looking at the line scan of Figure 3.10,
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the edges of the bottle, which is located on the upper right part of the chest of the

mannequin, present an higher value of the Depolarization Angle compared to the rest

of the image. Unfortunately, not only the edge of the objects but also indentations

of the human body, produce a shift in the value of the Depolarization Angle. An

example of this phenomenon is shown in the line scan of Figure 3.11. From this

figure we can see how a left arm indentation causes a shift in the Depolarization

Angle value from negative to positive which is greater than the one caused by the cap

of the bottle but still significantly lower compared to the edge of the gun. In order to

separate the Depolarization Angle shifts caused by indentation of the human body

from the one of actual object histogram tresholding is required. This procedure will

be described in the following section.

Figure 3.9.: Depolarization angle for a mannequin carrying concealed objects
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3.2 Depolarization unit

Figure 3.10.: Scan of row 137 of Figure 3.9

Figure 3.11.: Scan of row 93 of Figure 3.9
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3.3. Detection unit

Once Depolarization angle has been computed, it has to be exploited in order to

highlight the objects on the mannequin. The Detection unit is the part of algorithm

in charge of doing that. As shown in Figure 3.12 , the Detection unit is divided

in four parts. The Threshold selector unit described in subsection 3.3.1 works on

the assumption that interesting objects on the mannequin have similar Depolar-

ization Angle values. After a threshold selection, symmetry considerations within

the image are taken into account by the Symmetry Verification, Inset Inspection

and Specular Symmetry verification units described respectively in subsection 3.3.2,

subsection 3.3.3 and subsection 3.3.4 in order to reduce the number of false detec-

tions before output.

Figure 3.12.: Detection unit block diagram

3.3.1. Threshold selector

We have seen that Depolarization Angle assumes particular values on the edges of

objects of interest. Objects employed in concealed weapon detection always present

a complex scattering response which is difficult to interpret as a consequence of their

complex geometrical structures. A possible solution to interpretate the scattering

response is to decompose the object under analysis into a combination of simpler

shapes for which the response is known. In the literature, no theorical studies have

been performed on the scattering response of objects which are typically employed

in concealed weapon detection and their depolarization properties. Due to the above

considerations, an experimental approach to extract meaningful range of values of
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3.3 Detection unit

the Depolarization Angle is employed in this thesis. Let us define the average value

of the Depolarization Angle of the image as µ. It has been experimentally verified

in this thesis that by applying the following adaptive thresholds, which depends on

the value of µ, we can extract concealed objects edges from the image:

D(xq, zr) =


1 if Dp(xq, zr) ≥ 0.8 and µ < 0

0 if Dp(xq, zr) < 0.8 and µ < 0

D(xq, zr) =


1 if Dp(xq, zr) ≤ −0.8 and µ > 0

0 if Dp(xq, zr) > −0.8 and µ > 0

Where D(xq, zr) is defined as the detection image. In other words, concealed objects

due to their sharper edges compared to the background are producing a shift in

Depolarization Anglue for which |Dp| > 0.8.

3.3.2. Symmetry Verification

The threshold selection procedure described in subsection 3.3.1 is not sufficient to

guarantee that all the points with a Depolarization angle value exceeding the thresh-

old of 0.8 are actual objects due to human body indentations. According to section

2.4, Phase Symmetry is capable of revealing structural information of the image by

highlighting symmetry lines which are typical of human made objects.

Therefore it appears natural to do a pixel by pixel comparison of Sm(xq, zr) and

D(xq, zr) by applying the following rule:

D(xq, zr) = 1 if Sm(xq, zr) = 1
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Therefore if symmetry lines, which can underline the presence of an object, are

present in a particular region of the image it means that the detected points, in the

same region, via Depolarization Angle thresholding (i.e. D(xq, zr) ) are potentially

correct otherwise they are discarded.

3.3.3. Inset Verification

After Symmetry verification a further inspection is required to reduce the false

alarm points in D(xq, zr). The detected points in D(xq, zr) which are spatially close

in the image are merged together by perfoming morphological dilation with a disk

of radius 4. Dilation is needed in order to compute the centroid for each of these

agglomerate of detected points. For each centroid, an inset is built around it which

it has the size of 10 pixels by 10 pixels. The size of the inset has been chosen in order

to cover an image area consistent with the average size of the objects involved in

concealed weapon detection. This set of insets (i.e. one for each centroid) are drawn

on the image Sm(xq, zr). For each inset a Contrast Limited Adaptative Histogram

Equalization[4] is performed in order to improve the local contrast of the image

without over amplifying noise. After computing CLAHE each inset histogram2

is inspected in order to look for symmetry lines with values greater of a certain

threshold (i.e. the ’stronger’ is the line the more likely is that is belonging to an

object). The threshold has been experimentally found to be effective when it is

set to 0.8. Furthermore the presence of a greater density of symmetry lines in an

inset may also indicate the presence of an object. An example of this procedure is

shown in Figure 3.13 and Figure 3.14. In this example it is possible to see how the

histogram of inset 2 (Figure 3.14(b) ) which represents a gun contains symmetry

line values greater than 0.8 while inset 1 (Figure 3.14(b) ) that represents part

2For more information regarding histogram thresholding please refer to section 2.7.1
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of the background only contains simmetry lines intensity values ranging from 0

to 0.6. The two insets are referring to Figure 3.13. Candidate points (i.e. the

remaining centroids which are not discarded) are then sent to the specular symmetry

verification unit for further investigations.

Figure 3.13.: Inset Verification procedure. (a) Detected points over Depolarization
Angle (b) Dilation and centroids positions (c) Inset for each centroid over Sm

Figure 3.14.: (a) Histogram for inset 1 for Figure 3.13 (b) Histogram for inset 2
for Figure 3.13
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3.3.4. Specular Symmetry Verification

This final stage before final output has the task to eliminate points which present

a specular symmetry with respect to the center of the image (i.e. the mannequin

is centered). This procedure is based on the assumption that in most cases only

detection points caused by the human body and not by the objects present this type

of symmetry. Therefore two points (x1, y1) and (x2, y2) are discarded if

d1 ∼= d2 and y1 ∼= y2

with d1 =
√

(x1)2 + (y1)2 and d2 =
√

(x2)2 + (y2)2.

Figure 3.15.: Specular symmetry setup

3.4. Conclusions

The main idea behind this work is to combine the physical and simmetry informa-

tions of the target (i.e. a mannequin with concealed weapons on its body) which

are provided by a dual polarization imaging SAR. The physical informations are ex-
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tracted from the polarization-dependent scattering properties of the target while the

simmetry properties are extracted from the structural information provided by both

VV and HH data sets. In order to extract the physical information, a Polarization

Angle is defined which is computed by performing Principal Component Analysis.

To extract the structural and symmetry properties under the form of an attribute

called Feature Angle, an imaging processing filter known as Phase Symmetry is em-

ployed. The Polarization Angle and Feature Angle are then combined together in

a new attribute called Depolarization Angle. By exploiting the properties of the

Depolarization Angle it is possible to detect objects.

In order to get meaningful information from the Depolarization Angle and to discard

false alarm points additional symmetry considerations and thresholding procedures

are required. This tasks are performed by the processing block named as Detection

unit in Figure 3.1. It has been experimentally verified that a particular range of

values (i.e. |Dp| > 0.8) of the Depolarization Angle can be considered as a robust

descriptor for the detection of objects. Moreover, a key role for successful detec-

tion is played by the thresholds described in subsection 3.3.1 and in subsection 3.3.3

which allow the method to locate the objects by lowering the false alarm rate. It

has be seen in subsection 3.3.2 and subsection 3.3.3 that symmetry analysis of the

image plays a major role in identifying the objects and discarding false alarm points

before output. Practical results of this algorithm will be presented in chapter 5.
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4. SIFT Analysis

“Symmetria est ante res”

Plato

4.1. Overview

After Depolarization Analysis which has been described in chapter 2, this chapter

of the thesis is dedicated to the development of an another novel concealed weapon

detection method called SIFT Analysis. Depolarization Analysis exploited physical

and geometric information of the image provided by a dual polarization SAR radar

in order to detect objects. The fact that Depolarization algorithm needs a dual

polarization radar to work makes it more expensive and technically complex from

the point of view of the antenna than a single polarization one. In this chapter, a

novel concealed weapon detection algorithm that uses only the vertical polarization

data to detect concealed objects will be presented.

The main idea behind the algorithm, as explain in section 2.6, is to compare the

microwave image of a specific object, which is stored in an item library, with the

image of the mannequin carrying concealed harmful and harmless objects and look

for correlations.

A block diagram of the proposed algorithm is shown in Figure 4.1 and in figure
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Figure 4.2 . This chapter is divided in the following way. First energy projection and

image segmentation will be described in section 4.2. After segmentation a three step

detection procedure which is based on SIFT, histogram thresholding and correlator

is explained in section 4.3, section 4.4 and in section 4.5. Finally the segment which

is considered as the one containing the object under analysis is chosen by forming a

Ranking and Global Ranking Matrix which are described respectively in section 4.5

and section 4.6.

Figure 4.1.: SIFT Analysis block diagram

Figure 4.2.: Detection unit block diagram
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4.2 Energy Projection and Image Segmentation

4.2. Energy Projection and Image Segmentation

Following the exact same approach described in subsection 1.2.1, the 3D volumetric

scalar data of the mannequin, defined by the matrix I ϵCP×Q×R, being measured by

the radar is projected in a 2D plane by performing I(xp, zr) = ∑Q
q=1 ∥I(xp, yq, zr)∥2 ∀ p, r

with p = 1, 2, ..., P and r = 1, 2, ..., R. The reason behind the projection of the 3D

volumetric scalar data in a 2D plane is to make the application SIFT algorithm

possible.

Since the three step detection unit based on SIFT, Histogram thresholding needs

small portions of the image to work and correctly locate objects, after energy pro-

jection the image I(xp, zr) is sent to the segmentation unit. This unit segments the

image accordingly to a partially overlapping with each other primary and secondary

grid.

The primary grid gives the following segments:

Iij(xp, zr) for i = 0, 1, ...kx − 1 j = 0, 1, .., kz − 1

Within each segment we have the points with the following index values p = i ·Nx +

1, i ·Nx +2, ..., (i+1)Nx and r = j ·Nz +1, j ·Nz +2, ..., (j +1)Nz. Moreover, kx and

kz are the integer segmentation parameters (i.e. the total number of image segments

is kxkz) . The stepsizes are Nx =
⌊

P
kx

⌋
and Nz =

⌊
R
kz

⌋
. Secondary grid segments are

described by the following equations:

Imn(xp, zr) for m = 0, 1, ...kx − 2 n = 0, 1, .., kz − 2

With p = Nx

2 + m · Nx, Nx

2 + m · Nx + 1, ..., Nx

2 + (m + 1) · Nx and r = Nz

2 +

n · Nz, Nz

2 + n · Nz + 1, ..., Nz

2 + (n + 1) · Nz. Regarding the choice of the values

of kx and kz, the algorithm takes under consideration four possible combinations
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which are considered meaningful for detection. Since the pair (kx, kz) governs the

shape of the segment it is important to select pair values which are able to create

segments which are large enough to fully include inside them all the possible objects

which are stored in the library. According to this, the chosen combinations for the

segmentation parameters are (kx, kz) = {(4, 4), (5, 5), (6, 6), (3, 6)} .Therefore at the

output of the segmentation unit there are 4 primary grids and 4 secondary grids

which are processed in parallel as shown in Figure 4.1. Such a high number of

generated segments from a single image it is likely to guarantee that the object will

be fully contained in at least one of them since there is the possibility that, for a

chosen segmentation, an object may end up half in one segment and half in another

one which can lead to misdetection.
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After segmentation, each segment is contrast enhanced by performing a contrast

limited adaptative histogram equalization [1]. CLAHE differs from ordinary his-

togram equalization by operating in small regions of the image, called tiles, rather

than the entire image. Each tile is contrast enhanced so that the histogram of the

output region matches the histogram of a uniform distribution. The neighboring

tiles are then combined using bilinear interpolation to eliminate artificially induced

boundaries. Compared to AHE, CLAHE do not have the tendency of overamplifying

noise in relatively homogenous regions of the image while highlighting the details.

As it is possible to see in Figure 4.3 traditional histogram equalization deteriorates

the quality of the image while CLAHE is enhancing the contrast bringing out more

details from the image without overamplifying noise.

Figure 4.3.: (a) Gun with no histogram equalization (b) Gun with histogram equal-
ization (c) Gun with Contrast Limited Histogram Equalization
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4.3. SIFT and Objects Library

SIFT performs consistently on feature detection and matching local features in the

image and it has been introduced in section 2.6. These features are used for detect-

ing objects in the image by identifying stable points in scale space in order to create

image keys. The SIFT function S {·}, as described in [2], returns a matrix F con-

taining the SIFT1 frame (i.e. maxima/minima of the Difference of Gaussians (DoG)

that occur at multiple scales) and a 128x1 matrix D containing their descriptors.

For each segment we are interested in the descriptors matrix which is computed

by performing on each segment S { Iij(xp, zr) } or S { Imn(xp, zr) } if the segments

belongs to the secondary grid. This procedure is done for every pair (kx, kz) chosen

in section 4.2.

For each item Obj(xp, zr) (e.g. guns, keys, mobile phone) stored in the object library

,in the form of a microwave image, the descriptors have been previously computed

by performing S { Obj(xp, zr) }. Following the same approach described at the end

of section 4.2, each object in the library has been contrast improved by perfoming

CLAHE. The main SIFT parameters which gave optimal results were:

• Number of octaves: ⌊log2(min {M, N}) − 2⌋ where M and N are respectively

the number of rows and column of the image.

• Number of levels: 3

• Base smoothing σo: 2.01

• Number of spatial bins: 4

• Number of orientation bins: 8

• Threshold : 0.0067 (i.e. Maxima of the DOG scale space below this threshold

are ignored).
1For more information regarding SIFT please refer to appendix C
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Once descriptors for the segment under analysis have been computed they are com-

pared with the ones for each object in the library in order to estimate the pairs of

matching features in the image. This feature matching is done through a Euclidean-

distance based nearest neighbor approach. Let us denote as α the number of match-

ing features between a segment and a particular object. All the segments for which

α > 0 are sent to the histogram thresholding unit. It is intuitive to state that the

greater is α the more likely is that the segment under analysis contains the target

object due to the greater number of matching features. If α = 0 for all the segments

it means that the object is not present or it has not been detected.

Figure 4.4.: An example of sample objects in the library. (a) gun (b) bottle (c)
ceramic knife

4.4. Histogram thresholding

Candidate segments, which are determined by SIFT, where the target is likely to

appear are sent to histogram thresholding unit for further investigation. Many seg-

ments for which α > 0 unfortunately do not contain an object but just random

background. Histogram thresholding is a really valuable tool that allow us to dis-

card those background segments which are causing false alarms. For each candidate

segment, an image intensity histogram with 1024 bins is computed. The number
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of bins have been set to 1024 in order to guarantee sufficient accuracy. Since all

the segments intensities are normalized between 0 and 1, it has been verified exper-

imentally that segments with a concealed object must contain histogram with pixel

intensities greater than 0.8. Finally, all the segments for which α > 0 not containing

intensity values greater than 0.8 in the histogram are discarded. The remaining

segments (i.e. the ones for which α > 0 and containing histogram intensity values

greater than 0.8) are sent to the correlator.

4.5. Correlator and Ranking Matrix

In order to reduce the false alarm rate all the segments that verified the his-

togram thresholding and SIFT matching conditions are sent to a correlator for fur-

ther investigations. The correlator computes CP (xp, zr) = Iij(xp, zr) ⋆ Obj(xp, zr)

or CS(xp, zr) = Imn(xp, zr) ⋆ Obj(xp, zr) if the segment belongs to a secondary

grid. Subsequently, a correlation coefficient denoted as β is computed as β =∑P
p=1

∑R
r=1 CP (xp, zr) or β = ∑P

p=1
∑R

r=1 CS(xp, zr) depending on the grid. The

value β has been defined in such way in order to guarantee a partial rotational in-

variance of the correlator.

At this point, there are two values denoted as α and β available in order to estimate

the segment which is likely to contain the object under analysis. This two values

are combined together into a new variable denoted as Score:

S = β(1 + α) (4.1)

Equation (1) weights between the correlation coefficient which usually varies between

103 and 104 and the number of matching features which usually varies between 1

and 20.
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Subsequently, for each segmentation parameters (i.e. kx and kz ) a Ranking Matrix

is defined. The segments included in this matrix are the ones for which α > 0 (i.e.

the number of matching features of the segment with a specific object is greater

than 0) and which also fulfilled the histogram thresholding requirement of having

intensities greater than 0.8 in their histogram. Only the segment which present the

greatest value of S is sent to a so called Global Ranking Matrix for final output

decision. The Ranking Matrix is ordered in such a way that S1 > S2 > ... > SK and

its size is Kx8 where K is the number of candidate segments. An example on how

a ranking matrix looks like is shown in Table 4.1.

S α β P/S i j m n
S1 α1 β1 P 1 2 - -
S2 α2 β2 S - - 1 3
S3 α3 β3 S - - 3 1
S4 α4 β4 P 3 3 - -

Table 4.1.: Example of a Ranking matrix for a fixed value of the segmentation
parameters. P=Primary grid segment, S=Secondary grid segment.

4.6. Global Ranking Matrix

The Global Ranking Matrix has the task to choose the segment which it is considered

as the one containing the object Obj(xp, zr) under consideration. For each of the four

possible value choices defined in section 4.2 of the pair of segmentation parameters

kx and kz the two segments with the highest value of S are stored in a newly defined

Global Ranking Matrix . The GRM selects the segment which presents the highest

value of S among all the possible segmentations (i.e. (kx,kz) pairs). Moreover, the

GRM size is always a 4x10 matrix with S1 > S2 > .. > S4. An example of how the

GRM looks in practice is shown in Table 4.2. Finally, the selected segment (i.e. the

one with the greatest Score value) is sent to the output since it is considered as the
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one containing the object.

S α β P/S i j m n kx kz

S1 14 105 P 1 2 - - 4 4
S2 16 104 S - - 2 2 3 6
S3 12 103 P 3 3 - - 5 5
S4 7 102 S - - 2 1 6 6

Table 4.2.: Example of a Global Ranking Matrix. P=Primary grid segment,
S=Secondary grid segment.

4.7. Conclusions

This chapter introduced a new concealed weapon detection method, named as SIFT

Analysis, tailored for the radar microwave imaging environment. The main idea be-

hind the proposed method is to compare the microwave image of a series of harmful

and harmless contained in an object library with the image of a mannequin carrying

those objects on its body. After an initial image projection of the 3D volumetric

scalar data of the mannequin a procedure of image segmentation is performed. The

segmentation is done in such a way that at the output of the unit has a total number

of 8 different segmentations grids which are available for further investigations. Such

number of segmentation grids is needed in order to improve the detection probability

(i.e. the object on the mannequin is more likely to fall entirely in just one segment).

Each segment is then processed by the SIFT unit which looks for the number of

SIFT matching features α between a specific object and the segment under analysis.

SIFT has been employed since it is a computer vision algorithm that has the ability

to match features between two images with invariance to image scaling and rotation

and has shown to be robust with respect to a range of affine distortions, change in

3D viewpoint, addition of noise and change in illumination. SIFT processing is then

followed by an histogram thresholding unit which discards segments that are consid-
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ered false alarms by doing histogram intensities considerations which are described

in section 4.4. The candidate segments which are not discarded by the histogram

thresholding unit are then sent to a correlation unit for further verification. For

each segment a correlation coefficient β is computed. The correlation coefficient is

weighted over α by the Score variable defined as S = β(1 + α). The information

about the candidate segments for each segmentation and their Score values are then

combined together in a Ranking Matrix. Only the segment which present the high-

est value of S for each possible segmentation is sent to a Global Ranking Matrix

which decides the final output by selecting the segment with the highest value of the

Score parameter. Experimental results of this method will be described in Chapter

5.
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5. Experimental Results and

Comparative Analysis

“Symmetria est in mente”

Kant

5.1. Overview

This chapter contains the results and comparative analysis of the Depolarization

and SIFT methods developed respectively in Chapter 3 and Chapter 4. To estabil-

ish the validity and reliability of the two algorithms a measurement campaign has

been carried out. Since concealed weapon detection finds one of its main applica-

tion in airport security, a mannequin with various concealed object under its jacket

has been deployed for the radar measurements1. The measurements have been per-

formed in the DUCAT room of the Delft University of Technology by the means of

a polarimetric SAR providing both HH and VV data. Regarding the choice of the

concealed objects, a representative set of common harmful and harmless items which

an individual may carry at an airport security checkpoint have been chosen. The

object set consisted in a gun, a ceramic knife, a pair of keys, a mobile phone and a
1For more information regarding the measurements setup please refer to appendix B
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bottle of water. It is important to notice that each object have been selected because

it differs from the others in size, shape or material. This choice have been made in

order to widely and accurately test the detection and classification capabilities of De-

polarization and SIFT algorithms. The results of the application of Depolarization

Analysis to the set of microwave images of the mannequin with different concealed

objects on its body will be shown in section 5.2. Subsequently, in section 5.3 results

of application of SIFT analysis to the images will be presented which is followed

by a comparative analysis of the two methods in section 5.4. Finally, section 5.5

contains the conclusions of the chapter.

5.2. Depolarization Analysis Results

In this section, results regarding Depolarization Analysis will be presented and dis-

cussed. As explained in Chapter 3, this method exploits and combines both sets of

polarization data (i.e. HH and VV) provided by the polarimetric radar in order to

achieve concealed weapon detection by the means of a novel attribute called Depo-

larization angle. The Depolarization angle described in section 2.5 is a combination

of the Polarization and Feature angles which are described in section 2.3.1 and sec-

tion 2.4. Polarization Angle is the expression of a physical phenomenon which is

scattering, while Feature Angle is the expression of symmetries in the image.

In order to perform the simulations, Depolarization Analysis has been algorithmi-

cally implemented in MATLAB R2010b. The main computational steps included

the calculation of the main mathematical quantities of the method which are, as

said before, the Polarization Angle, the Feature Angle and the Depolarization An-

gle. Furthermore extra processing time is needed in order to compute the algorithm

steps that are included in the Detection Unit (see section 3.3). The average compu-
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tational time needed to detect objects on a mannequin is about 8 seconds on a 2.00

Ghz Intel Core DUO CPU with 2 GB of RAM.

The measurements campaign which has been briefly in section 5.1 , consists of five

cases (scenarios):

1. Mannequin with a concealed gun and a ceramic knife located respectively in

the upper right part of the torso and upper left part of the leg under a cotton

jacket.

2. Mannequin with a concealed gun and a ceramic knife under a cotton jacket.

The gun is located on the upper right part of the torso but it is rotated

compared to test case 1 while the knife is positioned on the lower left part of

the leg.

3. Mannequin with a concealed gun and a pair of keys under a cotton jacket.

The gun and the pair of keys are located respectively in the upper right part

of the torso and in the lower left part of it.

4. Mannequin with a concealed gun and a mobile phone under a cotton jacket.

The gun and the mobile phone are located respectively in the upper right part

of the torso and in the lower left part of it.

5. Mannequin with a concealed bottle of water, a knife, a gun and a mobile phone

under a cotton jacket. The bottle of water and the gun are located respectively

in the upper right and in the upper left part of the torso. The knife is located

on the upper part of the right leg while the mobile on the upper part of the

left leg.

For each test scenario VV and HH polarization data have been collected. The scan

area for all the measurements was 74x100 cm2 with steps between the consequent

positions of the antennas of 1 cm (75x101 points). The 3D images produced by
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the radar had a size of 149x201x81 points. This is due to the fact that the spacing

employed for the image is of 0.5 cm. Therefore the number of points in width and

height are doubled compared with the one of the raw data. In depth, the number of

points in the 3D image depends on the interpolation factor that has been used for

the IFFT from frequency to time domain.

The test case 1 checked the capabilities of Depolarization Analysis to detect and

classify a metallic dangerous object of medium dimensions represented by a revolver

gun and a dielectric object of medium dimensions represented by the ceramic knife.

After an initial energy projection in the frontal with respect to the mannequin plane,

the horizontal and vertical polarization data are processed with a Laplacian and

subsquently with a Prewitt filter. The Prewitt filter is enhancing edges depending on

the initial polarization of the data (e.g. vertical polarization data edges are enhanced

with a vertical prewitt filter). It is clear from the encircled areas of Figure 5.1 (a)

and (b), which are respectively the barrel and the handle of the gun, that the features

pointing in the horizontal direction are enhanced by the prewitt horizontal filter and

the ones oriented in the vertical direction by the vertical prewitt filter.
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Figure 5.1.: (a) Horizontal Polarization Data (b) Vertical Polarization Data after
Laplacian and Horizontal/Vertical Prewitt filters

We can see in Figure 5.3 the images of horizontal and vertical polarization data for

this test case along with the images of the Polarization and Feature Angle which are

needed for computing the Depolarization Angle. As we can see from Figure 5.3(c)

and (d) even before computing the Depolarization Angle, the visual perception of the

weapons on the mannequin has already improved compared to the original data.The

Polarization Angle highlights very clearly the edges of the objects and in particular

the ones of the gun. This can be explained by the fact that reflections from sharp

edges cause a shift in the Polarization Angle compared to the background (i.e. the

mannequin). On the other hand, Feature Angle is highlighting the symmetric fea-

tures of the objects and especially the gun position on the upper right part of the

torso. In fact, the body areas of the mannequin where the objects are located are

showing a greater density and a greater variability in the direction of symmetry lines
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compared to the rest of the mannequin. After computing the Polarization and Fea-

ture angles, the Depolarization Angle is computed and an example of this is shown

in Figure 5.4 for the test case 1. As explained in section 3.3.1, the threshold which is

considered meaningful for detecting an object has been set to 0.8 or -0.8 depending

on the average Depolarization Angle value of the image. The Depolarization Angle

histogram for test case 1 is shown in Figure 5.2.

Figure 5.2.: Depolarization Angle histogram when the average Depolarization An-
gle value is negative

By inspecting Figure 5.4 it is clear that not only objects, but also some part of the

background, like the one encircled in Figure 5.4, falls in that particular threshold

causing false alarms. As said in Chapter 3, the Detection Unit has the purpose

to reduce the number of false alarm points by performing symmetry verifications

on the image which are described in section 3.3.2, 3.3.3 and 3.3.4. Among all the

Depolarization Angle values which exceed the threshold, in Figure 5.5 the red en-
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circled areas are the one detected by the detection unit. The usefulness of this unit

is clearly shown in Figure 5.6 where the final output for the test case 1 is presented

and which shows detection spots belonging only to the gun or the knife respectively

achieving a perfect detection. From this test case we have seen how Depolarization

Analysis is capable of correctly detecting objects and how it is possible to reduce

the false alarm rate by the mean of the detection unit.
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Figure 5.3.: (a) Horizontal polarization data (b) Vertical Polarization data (c) Po-
larization angle (d) Feature angle for test case 1
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Figure 5.4.: The Depolarization Angle for test case 1

Figure 5.5.: Mannequin image with values for which Dp>0.8 marked in white. Red
circles are the points detected by detection unit. 107
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Figure 5.6.: Image processing chain output for test case 1

The test case 2 is a slight variation of test case 1 which assessed if the algorithm

is able to detect objects when a rotation occurs. In Figure 5.7 the output for this

test case is shown along with the optical image of the mannequin with weapons on

its body. As we can see, the algorithm clearly detected the gun and the ceramic

knife which is marked by points A and B in Figure 5.7, representing respectively the

handle and the tip of the knife. Points C (abdomen-torso separation) and D (neck

indentation) in Figure 5.7 represent two false alarms due to strong reflections from

body areas of the mannequin that, due to their particular shapes, cause a corner

reflector effect that makes them assume a Depolarization Angle value similar to the

one of the objects.
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Figure 5.7.: Output for Test Case 2 (left) and Optical image of the mannequin for
Test Case 2 (right)

The test case 3 and test case 4 verified how the algorithm responds in an almost

similar test scenario as test case 3. In these experiments the gun is kept at the same

place as in test case 2 while in test case 3 the knife has been replaced by a pair of

keys and subsequently by a mobile phone in test case 4. These two experiments, for

which the output is shown in Figure 5.8, demonstrate that Depolarization Analysis

is capable of detecting a small metallic object (i.e. keys) which is marked as A and

B in the left figure and small metal-dielectric objects (i.e. mobile phone) which is

marked as E in the right figure. Is it possible to see in Figure 5.8 that the gun

is consistently detected in both experiments. Moreover, the same issue of false

alarm, which was present in the test case 2, due to corner reflector effect from

indentation in some parts of the human body is also appearing in these experiments
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especially in arm, neck and groin area (points respectively marked as C, D, F and G

in Figure 5.8). False alarms which are caused by the head of the mannequin are of

very little concern and therefore discarded due to the fact that is almost impossible

that a concealed object would be carried in that body region.

Figure 5.8.: Output for Test Case 3 (left) and output for Test Case 4 (right)

The main purpose of test case 5 was to verify if the Depolarization algorithm is

capable of detecting a gun in a different position compared to the other four test

cases along with a medium size dielectric object which is a bottle of water. In this

test case also a mobile phone and a knife are present. According to the results shown

in Figure 5.9 the algorithm is capable to clearly detect the gun and the bottle of

water (point marked as A in figure Figure 5.9). The knife, which is positioned on

the upper right leg of the mannequin, is not detected. This happened not due to an
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algorithm limitation but due to the fact that it was positioned near the edge of the

antenna aperture which made it not clearly visible in the radar image. Furthermore,

this time the algorithm failed to detect the mobile phone and a false alarm, marked

as B in Figure 5.9, is present in the groin area of the mannequin.

Figure 5.9.: Output for test case 5

From the described results we can state that, apart from minor false alarm rates

due to indentation of specific areas of the human body which (i.e. groin,arm and

neck), the Depolarization Analysis was capable to detect objects which differ from

each other in shape, size and material without the need of any form of segmentation

but only exploiting the data provided by the dual polarization radar with a success
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rate of 10 out of 11 trials. Furthermore, the experimental results of the concealed

gun show that detection capabilities are invariant to the position of the object on

the mannequin.

It is important to underline that the algorithm was not able to classify object. This

can be explained by the fact that the majority of objects present similar Depolar-

ization angle values.

5.3. SIFT Analysis Results

After describing in section 5.2 the results of Depolarization Analysis, this section

is dedicated to the results of SIFT Analysis. As explained in Chapter 4, the main

elements of this algorithm are the segmentation unit, the three step detection pro-

cedure composed by SIFT, a correlator and histogram thresholding and a Ranking

Matrix for final output decision. SIFT Analysis is a method that has its core in the

SIFT algorithm which allows to extract interesting points of an object by providing

a mathematical description of it (i.e. feature description) and then try to match this

feature description to the one of a different image (i.e. the matching is successful

if the image contains the same object). In order to start the matching procedure,

an object library in the form of microwave images containing harmful and harmless

object, have been build. The chosen objects set, which is particularly suitable for

aiport security applications, consisted in a gun, a ceramic knife, a mobile phone, a

pair of keys and a bottle of water. This objects were SAR scanned in an anechoic

chamber simulating the free space. Moreover, the object library is also needed for

the operations of the correlation unit described in section 4.5. After the object li-

brary have been built a measurement campaign have been carried out in order to

provide the images of the mannequin with the concealed objects. The following
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test cases have been performed in order to evaluate the automatic detection and

classification performances of the method:

1. Mannequin with a concealed gun and a ceramic knife located respectively in

the upper right part of the torso and upper left part of the leg under a cotton

jacket.

2. Mannequin with a concealed gun located in the right part of the torso under

an heavy winter jacket

3. Mannequin with a concealed bottle of water, a knife, a gun and a mobile phone

under a cotton jacket. The bottle of water and the gun are located respectively

in the upper right and in the upper left part of the torso. The knife is located

on the upper part of the right leg while the mobile on the upper part of the

left leg.

4. Mannequin with a concealed gun and a mobile phone under a cotton jacket.

The gun and the mobile phone are located respectively in the upper right part

of the torso and in the lower left part of it.

5. Mannequin with a concealed gun and a pair of keys under a cotton jacket.

The gun and the pair of keys are located respectively in the upper right part

of the torso and in the lower left part of it.

Moreover, the algorithm as introduced and described in Chapter 4 has been im-

plemented in MATLAB R2010b. The main computational steps involved the cal-

culation of the segmentation branches and of the three step detection procedure

( i.e. SIFT, Correlator and Histogram thresholding). The average computational

time needed to detect objects on a mannequin is about 6 seconds on a 2.00 Ghz

Intel Core DUO CPU with 2 GB of RAM. This slightly longer computational time

compared to Depolarization Analyis is due to the multiple segmentations (refer to
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section 4.2 for more information) that requires only by itself 10 seconds to run. It

is clear that a tradeoff between robustness and computational time has to be taken

under consideration. An increase in number of segmentations will increase detection

rate (i.e. the object is more likely to entirely fall in one segment) but at the cost of

an higher computational time.

SIFT analysis developed in Chapter 4 claimed to be robust in indentifying object

in low contrast condition. In particular an object included in the library can be

matched, if present, on the mannequin even under different scaling, orientation and

also affine distortions and illumination changes. The measurement setup previously

described has been specifically designed to test these capabilities.

Test case 1 assessed the ability of SIFT Analysis to detect a gun and a ceramic knife.

Compared to Depolarization Analyis, SIFT is not exploiting any physical property

of the object therefore the material is not relevant but only the size and the position

over the mannequin. As shown in Figure 5.10 the method is able to recognize the

gun. In particular, in the top box of Figure 5.10 (a) the matching between the

segment considered as the one containing the target and the object in the library

(located in the right part of the box) is shown. As we can see from this box, even

under a 3D rotation of the weapon the algorithm is capable of associating correctly

the points belonging to the barrell of the gun. The final output for the gun of test

case 1 is shown in Figure 5.10 (b). Another example of successful gun detection is

shown, for test case 2, in Figure 5.11. It is important to state that the detection is

sensitive to the number of segmentations. The SIFT algorithm was not recognizing

the gun in test case 1 if more than two parallel segmentations were used due to false

alarms caused by parts of the mannequin’s body. Regarding the ceramic knife, it is

not possible to detect it. The same happens for the ceramic knife in test case 3, for

the mobile phone of test case 3 and 4, for the pair of keys of test case 5 and for the
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gun of test case 3 and 4. This can be explained by the fact that radar measurements

can distort the geometry of objects due to interference patterns that arise between

the items and the mannequin.

For its intrinsic nature SIFT algorithm is likely to find feature points in high-contrast

regions of the image such as objects corners.

Figure 5.10.: ( a ) Measured Mannequin for Test Case 1 ( b ) Output for Test
Case 1

Furthermore, in comparing two images it is important that the relative position

between the object features in the library and the object features, when the same

item is positioned on the body of the mannequin, should not change. Therefore

feature matching would not typically work if any change in the object internal ge-

ometry happens between two images which is the case in microwave images due to

the above described interference phenomena. To make this clear let us consider the

syntethic example in Figure 5.12. As it possible to see in Figure 5.12 (a) and in

Figure 5.12 (b) a change in the object geometry due to interference and noise will
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cause 4 out of 6 features to be different causing the detection to fail. It’s impor-

tant to notice that SIFT algorithm has been developed for optical images where the

problem of geometric distortion due to interference is not as prominent as in the

microwave ones.

Figure 5.11.: (a) Measured Mannequin for Test Case 2 (b) Output for Test Case
2

Figure 5.12.: Syntethic example of image distortion. (a) Distorted object on the
mannequin (b) same object in the library
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Finally, test case 5 have been designed to test the capabilities of the SIFT Analysis

to properly work when a multitude of objects are present in the same image. As it

is possible to see in Figure 5.13 the algorithm is successful to uniquely detect both

guns and bottle of water but fails to detect the knife and mobile phone. In this case

the misdetection of the knife can be attributed to the fact that the object is not

clearly visible in the radar image due to its position near the antenna aperture edge

and not to the geometric distortion due to interference.
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Figure 5.13.: (a) Measure Mannequin for Test Case 3 (b) Output for gun recogni-
tion (c) Output for bottle recognition

According to the above presented results, SIFT Analysis is capable of detecting and

classifying a concealed gun on a mannequin under different experimental conditions

(i.e. change in position, scale and orientation of the object) which is one of the

thesis research objectives. Furthermore, a bottle of water was detected in a single
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experiment. At the current implementation the algorithm proved not to be reliable

and robust since it failed to detect different objects such as a pair of keys and a

mobile phone. Moreover, the detection of the gun proved to be partially robust

since was only detected three times out of five experimental trials.

5.4. Comparative Analysis

Depolarization and SIFT Analysis represent two different approaches to concealed

weapon detection. The first one (i.e. Depolarization Analysis) exploits both phys-

ical and geometrical properties of objects, which can be retrieved by the radar to

robustly detect objects in a microwave image. On the other hand, SIFT Analysis

is inspired by typical optical imaging matching procedures which relies only on the

geometric shape of the objects. According to what it has been shown in section 5.2

and section 5.3 the following considerations can be done:

• Depolarization Analysis is only capable of detecting objects while SIFT Analy-

sis is capable of both detecting and classifying them. However, Depolarization

is more consistent than SIFT. In particular SIFT method fails to detect keys,

knifes and mobile phones due to geometric distortions in the image while De-

polarization is able to detect all of them.

• Depolarization Analysis does not require segmentation while SIFT do. The

ability of an algorithm to work without a segmentation procedure is likely to

increase its detection rate while keeping the computational costs low.

• Depolarization Analysis does not require an object library to work. This means

that a priori knowledge of the entire set of objects that an individual may

carry is not required, making the algorithm versatile and more efficient. On

the other hand, SIFT do require an object library to classify objects but at
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the price of being less versatile.

• Depolarization Analysis requires both polarization data (i.e. VV and HH )

in order to work while SIFT Analysis requires only the vertical polarization

data. The fact that SIFT does not require a dual polarization antenna makes

it more likely to be practically applied in surveillance systems due to the lower

price and technological complexity of the antenna system.

• Depolarization Analysis and SIFT Analysis are both affected by false alarms

caused by indentations of the human body which appear as objects in the

microwave radar image.

A summary of the above considerations is shown in Table 5.1.

Method Detection Classification Polarization Segmentation Object Library
Depolarization yes no dual no no

SIFT yes yes single yes yes
Table 5.1.: Comparative Analysis between the two proposed methods

5.5. Conclusions

This capter was dedicated to the assessment of the performance of the concealed

weapon detection methods developed in Chapter 3 (i.e. Depolarization Analysis)

and Chapter 4 (i.e. SIFT Analysis). In order to do so, a measurement campaign

was carried out in the anechoic chamber of the Delft University of Technology.

In the measurement campaign described in section 5.1 a mannequin with different

harmful and harmless concealed objects has been scanned by a SAR radar. The
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measurements have been carefully planned in order to evaluate the performance

of the algorithms under different circumstances such as different position, material

and size of the objects which were positioned on the mannequin. Subsequently,

the obtained microwave images were processed by the means of MATLAB code

implementing Depolarization and SIFT analysis respectively.

Depolarization analysis results are presented in section 5.2 and they show that this

method is capable of robustly detecting a variety of objects (i.e. a gun, a pair of

keys, a mobile phone, a ceramic knife and a bottle of water) which differ from each

other for shape, size and material with a 90% success rate. Moreover, detection has

proven to be invariant with respect to the position of the object on the mannequin.

Despite the good detection performances, there are some false alarms caused by

indentation of the human body from the arm, neck, abdomen and groin area. These

body indentations, due to their particular interaction with the eletromagnetic en-

ergy radiated by the radar, assume a value of the Depolarization Angle which is

similar to the one of actual objects. Therefore it is important to choose an appro-

priate threshold for the Depolarization Angle which has experimentally found to be

effective when set to 0.8.

In section 5.3 SIFT analysis results are presented. From the experimental results

SIFT method was able to detect and classify a concealed gun (success rate was

three out of five test cases) under different measurement conditions such as rotation,

scaling and different position of the object. In addition to this, a bottle of water

was detected in a single trial. The method was not consistent in detecting a pair

of keys, a mobile phone or a knife due to the geometric object distortions described

in section 5.3. These distortions are caused by the interference patterns due to the

interaction between the mannequin and the objects positioned on it. The choice
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of segmentation parameters (i.e. kx and kz) is really important since it affects the

detection rate. If the segments size are too small the object may be splitted in

two different segments which will cause a drop in the detection rate. On the other

hand, if the size of the each segment is too large then multiple of objects and too

many features of the human body will end up in the same segments. This second

hypothesis is also likely to decrease the detection rate.

Finally, in section 5.4 a comparative analysis between the two methods is presented.

Referring to Table 5.1 we can state that Depolarization Analysis is able to detect

object but not to classifying them while SIFT method also has the possibility to

identify them. Also, Depolarization Analysis proved to be more versatile than SIFT

analysis due to the fact that it does not need a segmentation procedure or an object

library to work. It is important to notice that Depolarization Analysis requires a

dual polarization radar to work while SIFT Analysis does not making the latter

method more likely to be applied in the field due to the lower price and complexity

of the antenna system. We have seen how both methods are affected by false alarms

caused by the human body. As shown in Table 5.2 body indentations are showing

Depolarization Angle values on edges similar to the ones of actual objects.

Feature max {|Dp|}
Bottle 0.83
Gun 0.96
Knife 0.81
Keys 0.99

Mobile 0.94
Body indentations 0.92

Table 5.2.: Maximum value for the Depolarization Angle for different features
edges

An important role is this phenomenon is played by the resolution of the image.

Microwave radar image do not offer a good resolution compared to the millimeter
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and optical ones. By increasing the number of points in the image the objects are

more detailed and the same happens with the anatomical details of the mannequin.

Moreover, the number of indentations of the human body in the radar microwave

image increases with the resolution. From the above considerations we can conclude

that a higher resolution improves the details of the object allowing to better detect

edges but at the same increases the rate of false alarms due to the increased number

of indentations that look like object in the radar image. On the other hand, a

coarser resolution compared to the microwave range is likely to reduce the number

of indentations but at the same time it smoothes the edges of the image decreasing

the detection rate.
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6. Conclusions and

Recommendations

6.1. Overview

This chapter concludes the thesis. The main objective of this thesis was to de-

sign novel robust image processing algorithms for the detection and classification

of concealed weapons. Automatic weapon detection is an important part of every

surveillance system. In the particular case of the body scanners at airports privacy

concerns prevent showing high-resolution body images to the security operators and

thus limiting application of the body scanners. By replacing the airport security

operator with an automatic detection system this type of privacy concerns will no

longer be present. In section 6.2 a summary of the developed methods is presented

and the results will be compared to the research objectives stated in Chapter 1. In

section 6.3 the scientific contributions made by this project are described. Finally,

in section 6.4 a series of recommendations for further research are presented.
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6.2. Conclusions

Two algorithms have been developed in the thesis for the automated target de-

tection in the 3D high-resolution microwave images. The proposed algorithms are

specifically tailored for working on images of humans (mannequin) produced by

a microwave imaging radar and they are validated by MATLAB simulations and

experiments.

The first method, which was developed in Chapter 3, is called Depolarization Analy-

sis. This method exploits polarization properties of the radar (i.e. HH and VV data

is retrieved by a SAR dual polarization radar) and geometric symmetry features

of the combined image (i.e. the vertical polarization produced image is combined

with the horizontal produced one) to create a novel shape descriptor called Depo-

larization Angle. Depolarization Angle can be considered as the ratio between the

Feature and the Polarization angle which are respectively an internal and external

shape descriptors introduced in chapter 2. In particular PCA and Phase symmetry

algorithms play a major role in the processing stage by extracting respectively the

Polarization Angle and the Feature Angle. It has been shown in section 2.3.1 and

section 5.2 that Polarization Angle highlights very clearly the edges of the objects

while the Feature Angle enhances the symmetry features of them. By selecting

an appropriate threshold for the Depolarization Angle and by doing filtering, as

explained in section 3.3, based on histogram thresholding and symmetry consider-

ations it is possible to drastically reduce the false alarm rate and detect concealed

objects in the image.

A measuring campaign of a mannequin carrying different concealed harmful and

harmless for safety objects has been carried out in order to assess the validity and

reliability of the algorithm. The campaign has been designed in such a way that

the capabilities of the algorithm to detect objects with different shape, size, mate-
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rial and position over the mannequin have been tested. Results of the measuring

campaign, which are described in Chapter 5, show that Depolarization Analysis is

capable of detecting various objects which included a gun, a pair of keys, a mobile

phone, a ceramic knife and a bottle of water in ten out of eleven cases. Moreover,

the results have shown that a minor number of false alarm points are present. This

false alarms are originated by indentations of the human body that, due to their

particular shapes, cause a corner reflector effect that make them assume a Depolar-

ization Angle value similar to the one of the actual objects. Experimental results

of the concealed gun show that detection capabilities are invariant to the position

of the object on the mannequin. It is important to underline that the algorithm is

not able to classify objects which can be explained by the fact that the majority of

objects present similar Depolarization Angle values. In conclusion, Depolarization

Analysis accomplished the thesis objective of reliably detecting objects but failed in

the task of classifying them.

The second method, which was developed in Chapter 4, is called SIFT analysis.

The research approach in this case, as explained in section 2.6, was to develop a de-

tection and classification method for CWD inspired by computer vision algorithms

used to detect and describe local features in images. The main task of the devel-

oped method consists in comparing a set of harmful and harmless objects stored in

a library with a mannequin carrying a combination of them and see if the objects

are correctly classified. The SIFT algorithm has been chosen to be the core of this

detection method due to its capability to match features between two images with

invariance to image scaling and rotation and robustness with respect to a range of

affine distortions, change in 3D viewpoint, addition of noise and change in illumi-

nation. It is important to notice that SIFT has been developed for working with

optical images and the application to the microwave range represents a challenge by
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itself. SIFT analysis, apart from its main core which is the SIFT algorithm, also

includes a segmentation unit which it is needed for increasing detection rate and a

two step detection procedure formed by a Correlator and Histogram Thresholding

which is needed to reduce the false alarm rate. A global ranking matrix, which

it is introduced in section 4.6, finally declares which segment is considered as the

one containing the object under test by producing a mathematical quantity called

Score which takes under consideration the number of matching features α and the

correlation value β for each candidate segment. In order to test the detection and

classification capabilities of the algorithm a measuring campaign similar to the one

of Depolarization Analysis have been carried out. From the results presented in

section 5.3 is it possible to conclude that SIFT Analysis was able to detect and

correctly classify a concealed gun three out of five cases and a bottle of water in

another experiment. The algorithm proved to be not consistent in detecting a pair

of keys, a mobile phone and a ceramic knife due to geometric distortions of ob-

jects caused by interference patterns that arise between the concealed items and

the mannequin. Due to the above explained geometric distortions the matching

between the library object and the correspondent object on the mannequin would

not work due to displacement of the feature points from one image to another. In

conclusion, SIFT Analysis partially accomplished the thesis objective of detecting

and classifying objects but did not reach the objective of having a low false alarm

rate.

From the Comparative Analysis in section 5.4 we can state that Depolarization

Analysis proved to be way more robust than SIFT in detecting objects even though

the algorithm is not able to classify them. Furthermore, Depolarization Analysis

do not require an object library in order to work making it more versatile and

efficient than SIFT. On the other hand, SIFT analysis can classify objects and it
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does not require a dual polarization radar setup to work (i.e. a HH or VV image

is sufficient for the algorithm to recognize the object). The fact that SIFT analysis

does not require a dual polarization radar makes it more likely to be applied in

airport security where a single polarization radar is usually on duty. Finally, no

segmentation is needed in the case of Depolarization Analysis compared to SIFT

making it more computational efficient and more likely to have an higher detection

rate.

6.3. Summary of Contributions

As said in section 6.2 this thesis presents and discusses two novel algorithms, named

as Depolarization and SIFT analysis, for concealed weapon detection.

Depolarization analysis is a new procedure inspired by a previous work on GPR

buried pipes detection by Boniger and Tronicke. Furthermore, the algorithm pro-

posed in Chapter 3 is a completely new method for concealed weapon detection. Due

to this, the author of this thesis is reasonably sure of future prosperous development

which are not known at the moment for this technique.

SIFT analysis takes its inspiration from object recognition method employed in the

optical range. The approach proposed in Chapter 4 has never been employed before

in concealed weapon detection.

Moreover, we can divide the scientific contributions according to Depolarization and

SIFT method. For Depolarization analysis the following contributions are made:

• Novelty: Depolarization analysis is a new concealed weapon detection method

that can detect concealed objects in a low contrast environment such as the

microwave imaging one.
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• Novelty: Successful application of Principal Component Analysis and of Phase

Symmetry algorithm for the first time to the field of concealed weapon detec-

tion.

• Novelty: The algorithm does not require an object library. It is important to

mention that this algorithm is not capable of classifying object but only to

detect them.

• The algorithm does not require a segmentation of the image. This leads to a

more reliable detection and a lower computational time.

For SIFT analysis the following contributions are made:

• Novelty: The SIFT Analysis is a new concealed weapon detection method

which can detect and classify different concealed objects in a low contrast

environment such as the microwave one under a wide spectrum of geometric

transformation.

• Novelty: Application of an optical image matching algorithm (i.e. SIFT) to

radar microwave imaging concealed weapon detection

• The algorithm requires a single polarization to work

6.4. Recommendations

Based on the results achieved by this project, the following recommendations for

further research are given:

• In SIFT analysis some objects are still not recognized or detected with a high

false alarm rate. Therefore the algorithm needs to be further developed in

order to improve detection. As said in section 5.3 geometric distortions of

the image will cause the algorithm to not detect objects. It is also true that
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microwave produced image of objects do not have a fine resolution but some

parts of the scanned object are always recognizable and represent an invariant

feature. Let us consider the gun in figure 4.4 (a) as an example. As we can

see from the image, the handle and the barrel of the gun are more defined

in details than the rest of the object and the same is always true when the

gun is on top of the mannequin. Therefore, by associating to SIFT another

pattern matching algorithm which it is specifically tailored to detect those

clearly recognizable parts of the gun, false alarm rate can be decreased. The

same procedure can be applied to all the others objects in the library.

• Reduce the false alarm rate in Depolarization Analysis. As explained in sec-

tion 5.2 some very specific parts of the human body produce an object like

Depolarization angle value due to a corner reflector effect. By broadening the

measurement campaign will be possible to deeper analyze this phenomenon

and confirm the hypothesis that those reflection are always from the same

specific parts of the body and therefore can be treated as systematic errors.

• Increase the variety of test concealed objects. In this research the algorithms

have been tested to work only with 5 objects which where a gun, a ceramic

knife, a bottle of water, a mobile phone and a set of keys. Objects which can

be useful to detect are plastic explosives and more in general dangerous or

restricted items which are likely to be taken on board of a flight.

• Try to apply Depolarization Analysis and SIFT analysis to other frequency

ranges. In particular the millimiter wave range and X-ray range may be very

suitable for the proposed algorithms due to the superior resolution compared

to microwave range imaging.

• Project the data in different directions. Since the SAR radar which has been

employed in this thesis is producing 3D images, in order to enhance detection
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of extra objects it is possible to project the data in different directions from

the one that has been chosen in this research project.

132



A. PCA

Principal component analysis is a valuable data analysis tool which has the goal of

identifying the most meaningful basis, which is a linear combination of the original

basis, to represent a data set. Let X be a m x n matrix representing the original

data set . Each row element represents a physical quantity (i.e. measurement type)

while each column an experimental trial. To give an example, if we were measuring

voltage and current over a resistor at N different time intervals the matrix would

be X =

 V (t1) V (t2) · · · V (tN)

I(t1) I(t2) · · · I(tN)

. Let us define Y as the matrix Y = TX .

Where Y is a new representation of the data set and T the matrix transformation

that allows to express X in a more meaningful basis. Looking closer at T we can

state that the rows are a set of new basis vectors for expressing the columns of X

and ,from a geometric point of view, T is a strech and rotation of X. We can now

define the covariant matrix CX = 1
n
XXT with the following properties :

1. The diagonal terms are the variances of a particular measurement type.

2. The off-diagonal terms are the covariance between different measurement types.

For the previous example the covariance matrix is

CX = 1
n


∑N

i=1 V 2(ti)
∑N

i=1 V (ti)I(ti)∑N
i=1 V (ti)I(ti)

∑N
i=1 I2(ti)


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We assume that the data has high SNR. Therefore principal components with larger

associated variances represent interesting structure while the others represents noise.

The goal of PCA is to find an orthornal matrix T in Y = TX for which CY is a

diagonal matrix (i.e. Y is decorrelated) . We call the rows of T as the principal

Figure A.1.: PCA of a multivariate Gaussian distribution centered at (1, 3) with
a standard deviation of 3.

components of X. It can be easily demonstrated that ,in order to diagonalize CY ,

each row of T has to be an eigenvector of CX and T has to be orthonormal. To

compute PCA of a data set X it is necessary to subtract off the mean from each

measurement type and then compute the eigenvectors of CXwhich in turns are the

rows of T. The approach described above represents the solution of PCA using

eigenvector decomposition. As we can see in Figure A.1 the new basis, for the

multivariate gaussian in figure, located by PCA is oriented along the direction where

the variance of the data is maximized.
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The measurements campaign needed to validate the methods developed in Chapter 3

and 4 was carried out in the anechoic chamber (DUCAT) of the IRCTR at Technical

University of Delft.

The technical details of the deployed SAR radar shown in Figure B.1 are the follow-

ing:

• The operating frequency range was set from 4 to 20 Ghz

• The employed antennas are two Vivaldi type ones

• The power transmitted by the radar was of 4 dBm

• The effective aperture of the radar was 75 cm in width and 1 meter in height

• The distance between the two feeding points of the antenna was 5.5 cm

• The distance between the antenna and the target mannequin was set 50 cm

• The cable used to connect the vector analyzer to the antenna where two

Sucoflex-100 cables of 2 meters lenght which provide optimal perfomances

up to 50 Ghz.

• The network analyzer employed to collect the data is an AGILENT E8364B

shown in Figure B.4. For more technical details regarding the network analyzer

refer to http://cp.literature.agilent.com/litweb/pdf/5988-7988EN.pdf

135



Chapter B Measurements Setup

Measurements have been performed on a mannequin shown in Figure B.2 which

was hiding different objects under a cotton jacket. The chosen items were a gun, a

ceramic knife, a bottle of water, a pair of keys and a mobile phone. The selection of

object is considered as a representative sample of a variety of dangerous or restricted

items that an individual can carry at an airport security checkpoint.

Figure B.1.: SAR antenna

Figure B.2.: Mannequin which has been employed in the measurements
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Figure B.3.: Mannequin positioned in the anechoic chamber

Figure B.4.: Mannequin positioned in the anechoic chamber with the AGILENT
E8364B network analyzer clearly visible in the front
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C. SIFT

Matching features from one image to another is a common problem in computer

vision. Unfortunately images are not always the same in scale, orientation and

illumination. SIFT algoritm has the ability to match features between two images

with invariance to image scaling and rotation and has shown to be robust with

respect to a range of affine distortions, change in 3D viewpoint, addition of noise

and change in illumination.

The first step of the algorithm is to create an internal representation of the original

image I(x, y) to ensure scale invariance. In order to create a scale space the original

image is progressively blurred out by convolving it with a Gaussian blur operator

described by :

G(x, y, σ) = 1
2πσ2 e−(x2+y2)/2σ2

Where σ is the scale parameter. The scale parameter in a way controls the amount

of blur applied to the image.

The blurred image is defined as:

L(x, y) = I(x, y) ∗ G(x, y, σ)

Let us assume that the blurring in a particular image is σ. Then the amount of blur
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in the next image will be kσ where k is a constant. A set of progressively blurred

images forms an octave. The number of blur levels has been found to be effective

when set to 5. Subsequently, three more octaves are formed by reducing the original

image in the previous octave to half its size and performing for each octave the blur-

ring procedure again. Therefore the number of octaves is set to four. After the scale

space of the image I(x, y) have been generated by the procedure described above,

the blurred images are used to generate another set of images called the Difference

of Gaussians (DoG). The DoG images represent a smart way of approximating the

Laplacian of Gaussian (LoG) operations which are computationally intensive.

To calculate the DoG images the difference between two consecutive scales images is

computed (i.e. L(x, y, kσ)−L(x, y, σ)). The procedure of computing the DoG image

is shown Figure C.1. As said before DoG is approximating the LoG operation which

is represented by ∇2G(x, y). In order to obtain scale invariance the LoG operator

shall be multiplied by σ2. It has been found that the DoG operations are already

performing implicitely the multiplication by σ2 therefore achieving scale invariance.

Figure C.1.: DoG calculations

After the DoG images are computed for each consecutive scale images for every

octave, the next step is to find keypoints. Keypoints are located by a two step
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procedure consisting in finding first the maxima/minima of DoG and then by finding

subpixel maxima or minima. The first step of the procedure is performed by iterating

through each pixel and check all its neighbours and see if that pixel is a maxima or

a minima. The check is performed by comparing the current image to the one above

and below at the same octave as shown in Figure C.2. The pixel marked as x in

Figure C.2 is considered a keypoint if it is the greatest or least of all 26 neighbours.

Figure C.2.: Maxima/Minima of DoG

Subpixel maxima or minima are then found by performing a Taylor expansion of

the scale-space function of the image around the approximate keypoint:

D(x) = D + ∂DT

∂x x + 1
2

xT ∂2D
∂x2 x

The subpixel values are calculated in order to increase the chance of matching and

stability of the algorithm.

By this procedure a lot of keypoints are generated. The ones lying on edges of the

image or not having enough contrast are discarded. Edges are evaluated by comput-

ing for each keypoint two perpendicular gradients and check for their magnitude.

The ones with small gradient magnitudes are discarded. Low contrast feature are

discarded by performing intensity thresholding for each pixel.

Once keypoints have been computed an orientation needs to be assigned to each one

of them. This is needed in order to achieve rotation invariance. For each keypoint
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gradient magnitude and orientations are calculated the following way :

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2

θ(x, y) = arctan((L(x, y + 1) − L(x, y − 1))/(L(x + 1, y) − L(x − 1, y)))

The magnitude and orientation are calculated for all the pixels around the keypoint.

Then a histogram is created in which the 360 degrees of orientation are divided into

36 bins. For each pixel under analysis the relative orientation θ(x, y) weighted by its

magnitude m(x, y) is stored in the relative “angular degree” bin of the histogram.

Once the procedure has been done for every pixel surrounding the keypoint the

algorithm assigns an orientation to the keypoint based on the peak of the histogram.

If there are multiple peaks in the histogram they are all converted into new keypoints.

At this point scale and orientation invariance is achieved for every keypoint.

Figure C.3.: SIFT Descriptor

Subsequently, the next goal is to create a unique identifying mark which is called

descriptor for each keypoint. In order to do so a 16 x 16 window ,which is broken

into sixteen 4x4 windows, is created around the keypoint. Within each 4x4 window,

gradient magnitudes and orientations are calculated and put into an 8 bin histogram

. As explained before the “amount of orientation” added to the bin depends on the
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magnitude of the gradient and, in this case, also on the distance from the keypoint.

The distance weighting is achieved by applying a gaussian window to the magnitude

of orientations. The above procedure is repeated for all the 16 pixels around the

keypoint. Since each histogram contains 8 bins and since this procedure is repeated

for 16 times (i.e. number of neighbouring pixels) the descriptor vector describing the

keypoint contains 128 elements. The keypoint is uniquely identified by the 128x1

descriptor vector.
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Glossary

AHE: Adaptive Histogram Equalization

CLAHE: Contrast Limited Adaptive Histogram Equalization

CWD: Concealed Weapon Detection

CWDS: Concealed Weapon Detection System

GPR: Ground Penetrating Radar

GRM: Global Ranking Matrix

MM: Millimeter

PCA : Principal Component Analysis

PCA-SIFT: Principal Component Analysis Scale Invariant Feature Transform

SAR: Syntethic Aperture Radar

SIFT: Scale Invariant Feature Transform

SURF: Speeded Up Robust Feature
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