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Heating behavior of households is key for reducing domestic energy demand and mitigating
climate change. Recently, various technical devices have been developed, providing households
with feedback on their heating behavior and supporting energy conservation behavior. The
impact of such devices on overall energy consumption depends on (1) the impact of a device
within a household, (2) the diffusion of devices to other households and the number of adopters,
and (3) the diffusion of the induced behavioral change beyond these households. While the first
two processes are currently established in assessments of sustainable household devices, we
suggest that adding behavior diffusion is essential when assessing devices that explicitly target
behavioral change. We therefore propose an assessment framework that includes all three
processes. We implement this framework in an agent-based model by combining two existing
simulation models to explore the effect of adding behavior diffusion. In three simulation
experiments, we identify two mechanisms by which behavior diffusion (1) spreads the effect of
such devices from adopters to non-adopters and (2) increases the average speed of behavioral
change of households. From these results we conclude that behavior diffusion should be included
in assessments of behavior-changing feedback devices.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Reducing heating energy that households consume is
needed to mitigate climate change and the depletion of energy
resources and, more specifically, to reach the EU target of a 20%
gain in energy efficiency until 2020 (McDonnell, 2010). This is
particularly important, because approximately 30% of energy
in the EU is used in residential buildings and the bulk of this
(ca. 57%) is used for heating (Itard and Meijer, 2008).
. Jensen),
elft.nl (É.J.L. Chappin).
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Changing the energy consumption behavior in households,
e.g. setting lower space heating temperatures and heating
fewer rooms, can significantly reduce heating demand at low
investment costs and with few physical resources (Guerra-
Santin and Itard, 2010). This is illustrated by the fact that
different heating behavior in similar buildings can induce a
three-fold difference betweenmaximum andminimumenergy
consumption (Gill et al., 2011).

In this paper, we focus on technical devices that provide
feedback to households on their heating behavior and offer
promise for supporting them to reduce their heating demand,
i.e. to practice energy conservation. It has been shown that such
devices can lead to typical energy savings of 10%, varying
between an increase in energy consumption and savings of up
to 30% (Darby, 2006; Karlin et al., 2014). Their success is based
on the high frequency and the long duration of their feedback.
First, frequent (e.g. daily) feedback supports habituation of
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Fig. 1. Operation of behavior-changing feedback devices through interaction
with the user. The varied dashing of the arrows distinguishes the feedback
between a heating system and its users (dotted lines) from the users' decision
making (continuous lines). Underlined are the two presented means of
feedback: persuasion and situated awareness.
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changed behavior (Jager, 2003). Second, providing feedback
over a relatively long time-span prevents behavioral relapse
and preserves the adopted energy conservation behavior (see
Peschiera et al., 2010; Han et al., 2013; Kevin Burchell and
Roberts, 2014).

Ex-ante assessment of novel behavior-changing feedback
devices is needed because different types of feedback vary
significantly in their acceptance (Han et al., 2013) and how
they reduce energy consumption (Karlin et al., 2014). Ex-ante
assessments can reduce this uncertainty by eliminating the
need to wait for data generated from actual market trials on a
technology's effect. Failed market trials rooted in promoting
and launching the ‘wrong’ types of products waste resources
and time that could otherwise be directed to reducing energy
consumption in households. Instead, distinguishing between
more and less promising devices upfront helps support the
diffusion of those devices that promise the greatest impact on
energy conservation.

Existing methods for ex-ante assessment, e.g. trial testing
(see Kevin Burchell and Roberts, 2014; Grønhøj and Thøgersen,
2011; Darby, 2006), are useful for describing direct within-
household effects of feedback devices. This approach estimates
the direct impact of a device by comparing behavioral changes
between a treatment and control group (Padonou et al., 2013).

However, we hypothesize that assessing only effects within
households that use feedback devices underestimates the
overall impact of feedback technology on energy consumption
in a society. Instead, we argue that effects between households
play an important role, as was shown for technology diffusion
in assessments of environmental-friendly household technol-
ogy (Schwarz and Ernst, 2009; Sopha et al., 2013; Chappin and
Afman, 2013; Delre et al., 2010). Additionally, we propose that
diffusion of (changed) behavior needs to be included in
assessments of behavior-changing feedback devices, too.

We argue that, in addition to within-household effects,
assessing the overall impact of behavior-changing feedback
devices on energy consumption needs to consider both the
diffusion of behavior-changing feedback devices and the
spread of behavior. The latter processes are both driven by
the interactions between households. Direct communication,
the so called ‘word of mouth’ interaction, strongly influences
the number of households that adopt a new technology
(Rogers, 2003), often reinforcing the extent that new products
are adopted and spread (Janssen and Jager, 2002; Schwarz,
2007; Rogers, 2003). Additionally, household interactions can
spread the behavior induced by feedback devices beyond
households adopting the devices (Nolan et al., 2008; Göckeritz
et al., 2010). In particular, communicating energy consumption
behavior between households is common (Baedeker, 2014)
and comparing individual to peer behavior can trigger shifts in
energy consumption behavior (Peschiera et al., 2010; Chen
et al., 2012; Azar and Menassa, 2014).

In this paper, we combine the aforementioned concepts to
create a single technology assessment framework that covers
(1) the direct impact that a feedback device unfolds within
a household, (2) diffusion of the feedback devices among
households, and (3) diffusion of (changed) energy consump-
tion behavior. We furthermore implement an agent-based
model based on this framework. We use simulation experi-
ments to explore the relevance of the added behavior diffusion
and to identify the relevant mechanisms.
The remainder of thepaper is structured as follows. First,we
describe the functions of behavior-changing feedback technol-
ogy (Section 2). Second, we describe the framework capturing
the three relevant processes mentioned above (Section 3).
Third, two existing agent-based models are combined into a
model that implements the presented framework (Section 4).
Finally, we use simulations from the combined model to
identify and demonstrate the relevant interactions between
the spreading of both feedback devices and energy consump-
tion behavior.

2. Behavior-changing feedback technology

Fig. 1 shows how feedback devices can influence heating
behavior. The context in which these devices interact has two
components: (1) the feedback loop between a user and a
heating system, and (2) human decision making on heating
behavior.

2.1. Feedback loop

Even without feedback devices, heating systems provide
feedback on their performance to the users, who can then alter
their behavior. For example, a user controls the temperature,
which, if is too warm or cold, incentivizes the user to change
her heating behavior. Feedback devices can alter and enrich
this feedback, e.g. by associating higher energy costs with high
temperatures, thereby motivating the user to change her
heating behavior (Wood and Newborough, 2003).

The most common mechanism of feedback devices is using
information to persuade users to change their behavioral
intentions, i.e. “the motivation required to perform a particular
behavior, reflecting an individual's decision to follow a course of
action” (Armitage and Christian, 2003, p. 190). Feedback
devices that rely on persuasion by information to address the
user on a conscious level, e.g. bymonitoring the user's behavior,
visualizing it to the user, and thus creating awareness (Laschke
et al., 2011), make energy consumption transparent and
understandable (Wood and Newborough, 2003) and advocate



Fig. 2. Conceptual framework for assessing behavior-changing feedback
technology. A household's technology adoption decision (partially) depends
on the adoption state of its N neighbors and in turn influences these peers'
adoption decisions. Likewise, a household and its peers are mutually
influencing their energy consumption behavior. If a household adopts feedback
technology, then the feedback effect can also change its energy consumption
behavior.
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a change in behavior. Smart Meters are a prime example for
this (see Wood and Newborough, 2003). Another example is
feedback devices that make energy consumption levels
mutually transparent between friends so that behavior is
influenced by peer pressure (Peschiera et al., 2010). Related
to heating, an example is the E-quarium, which uses sensors
distributed in the household to evaluate the users' energy
consumption behavior (see Delft University of Technology,
2014). By scoring behavior, it involves the user in an incentive
game that encourages use of lower heating temperatures.
The scores are continuously shown by the ‘happiness’ of a
virtual fish.

Feedback can also be given immediately at specific
instances of behavior to create situated awareness. This can
lead to users correcting performance. For example, Laschke
et al. (2011) present the ‘never hungry caterpillar’, a so-called
Transformational Product that is a caterpillar-like device placed
next to a TV. If the TV is switched to standby mode, the device
twists, symbolizing discomfort. This creates situated awareness
of wasted energy and reminds the user that the TV can be
switched off completely. Another Transformational Product
could be a household item located close to awindow that starts
shivering if the window is open for too long during winter,
emulating being cold and remind the user to conserve heating
energy by closing windows.

2.2. Decision making

Heating behavior follows intentions, but it is constrained by
habits. Habits are action sequences that are performed without
significant deliberation (Jager, 2003). They are triggered by so-
called environmental cues. Repetition and positive outcomes of
actions increase the strength of association between cues and
behavior (Jager, 2003). For example, saving energy costs by
repeatedly turning down radiator thermostats, before leaving
the home, supports habit formation. With frequent repetition
in a stable environment, habits become reinforced, which
makes them increasingly dominant over intentional behavior
(Jager, 2003).

The feedback mechanism that uses situated awareness has
the potential to change heating habits by interrupting them.
This is because habits can effectively “be changed through
interventions that disrupt the environmental cues that trigger
habit performance automatically” (Verplanken andWood, 2006,
p. 90). Transformational Products, implementing situated
awareness, thus seem particularly suited for changing heating
habits.

3. Conceptual framework for technology assessment

In this section, we propose a framework for assessing the
effect of behavior-changing feedback devices. In this frame-
work, we combine the direct effect of heating feedback devices
with first, the diffusion of this technology, second, the effect of
feedback within a household, and third, the diffusion of the
changed behavior. This framework is shown in Fig. 2 and
defines the direction and interplay of these three processes
from the perspective of one household as a model.

Technology diffusion is the process in which households
adopt technology, i.e. choose to take up a specific feedback
device. Awell-knowngeneral characteristic of such processes is
that the initial adoption by a few ‘innovators’ self-reinforces via
word of mouth until a saturation level is reached (Rogers,
2003). Asmore people adopt a technology, the adoption choice
persuades non-adopters to adopt.

For example, empirical research shows that adopting
water-saving shower heads by households can be positively
influenced by the number of that household's peers who have
already adopted such shower heads (Schwarz and Ernst, 2009).

The feedback effect is the direct effect of feedback devices on
their users' heating behavior. It links the processes of technology
diffusion and behavior diffusion.

We coin behavior diffusion as the spreading of energy
consumption behavior (see Azar and Menassa, 2014), i.e. the
phenomenon that “behavior can be spread from one person to
another via peer networks” (Chen et al., 2012, p. 517). A key
driver for behavior to spread is that of subjective norms, i.e. “the
perceived social pressure to perform or not to perform (a) behavior”
(Ajzen, 1991, p. 188). The social pressure is formed by what a
person perceives to be common and approved behavior.
Subjective norms of conservation, which influence behavior of
households, can explain why conservation levels between peers
are highly correlated (Nolan et al., 2008; Göckeritz et al., 2010).
Because people with strong social ties mutually influence their
behavior (Bandura and McClelland, 1977), this influence is
potentially transitive. This effect can thus spread further than
one link in a social network. Consequently, heating habits are
relatively similar within social groups (see Wilhite et al., 1996).

Behavior diffusion can act in any direction and may cause a
so-called boomerang effect. This effect occurs when a person
who uses less energy than her peers adopts a less stringent
energy conserving strategy due to social influence (see
Goldenberg et al., 2010). If this ‘negative’ social influence is
strong, households could be resistant against the effects of
behavior-changing feedback devices.

4. Model development

In this section, we develop a simulationmodel based on the
presented framework. We first argue that agent-based model-
ing is a well-suited approach for this. We then present two



Table 1
Share of overall population of lifestyles, based on commercial
marketing data for an area in Bavaria, Germany, with ca. 10
million inhabitants.(see Schwarz and Ernst, 2009)

Sociological lifestyle Share (%)

Postmaterialists 10.9
Social leaders 20.4
Mainstream 24.7
Traditionalists 26.3
Hedonistic 17.8
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existing agent-based models that both capture a substantial
part of the framework, i.e. technology diffusion and behavior
diffusion, respectively. Finally, we integrate these two models
into a combined model.

4.1. Agent-based modeling

An agent-based model (ABM) captures real-world entities
as autonomous computer agents, which “have behaviors, often
described by simple rules, and interactions with other agents,
which in turn influence their behaviors” (Macal and North, 2010,
p. 151).

Agent-based modeling is a suitable tool for the given
application for three reasons. First, ABMs are able to capture
socio-technical systems that ‘generate’ emergent phenomena
in a bottom-up manner (van Dam et al., 2012; Chappin, 2011;
Epstein, 1996). Simulation results are thereby directly based on
themicro-level units of assessment—in this case the household
agents—and their behavioral rules and interactions. For
example, the spreading of feedback technology and specific
energy-consumption behaviors emerges from household in-
teractions that can be modeled explicitly by an ABM.

Second, agent-based models are highly flexible in design
because specifying rules is only limited by the programming
language. This flexibility allows ABM to assimilate virtually all
kinds of existing models, be they analytical or rule based, thus
allowing us to integrate different existing models.

Finally, ABM is advantageous over many other modeling
approaches when model entities are adaptive, heterogeneous
and interact locally (Railsback and Grimm, 2011), all of which
meet our modeling criteria. Households adapt their energy
consumption behavior and adopt feedback devices depending
on their peers. They are naturally heterogeneous in their product
adoption preferences (Schwarz and Ernst, 2009). Further,
interaction between households is more likely at smaller spatial
scales (Baedeker, 2014; Holzhauer et al., 2013).

4.2. Existing technology and behavior diffusion models

Various ABMs have been developed for diffusion of
sustainable household technology (Schwarz and Ernst, 2009;
Sopha et al., 2013; Kroh et al., 2012; Zhang and Nuttall, 2011)
and energy consumption behavior (Azar and Menassa, 2014;
Chen et al., 2012; Anderson et al., 2014; Zhang et al., 2011). A
previous reviewby Jensen andChappin (2014) found that none
of these models capture the proposed framework by
connecting the two diffusions of technology and behavior.
However, the two models by Schwarz and Ernst (2009) and by
Anderson et al. (2014) were identified as particularly useful to
model one of these two diffusion processes, respectively. In the
following, we present these models and their potential to
contribute to the proposed framework.

4.3. Technology diffusion

The model by Schwarz and Ernst (2009) simulates the
diffusion of environmentally friendly technologies between
households. Households are of specific sociological lifestyles,
i.e. social groups that share values and attitudes (Bourdieu,
1984). The empirical-based distribution between these life-
styles is shown in Table 1.
A key component of themodel is an empirical-based decision
model for adopting environmental-friendly household technol-
ogy. Adoption decisions are modeled on an empirical survey
inspired by the Theory of Planned Behavior (see Ajzen, 1991),
which stipulates that a decision depends on theweighted sumof
(1) the attitude towards the product, (2) the subjective norm, i.e.
the ratio of an agent's adopting peers and (3) the perceived
behavior control, which is the subjective effort of implementation
(see Schwarz andErnst, 2009, Figs. 1&2). These three criteria are
partly sensitive to the lifestyle (which weigh decision criteria
differently) and the specific sustainable technologies analyzed
(which have product properties regarding these criteria).

Schwarz modeled the adoption choice with 13 parameters,
which are derived from surveyed stated preferences. In the
resulting ABM, some lifestyles are modeled to rationally
deliberate on technology adoption, whereas others use a
decision heuristic of bounded rationality. Postmaterialists and
Social Leaders compare and weigh many product characteris-
tics to reach an adoption decision (Schwarz, 2007). Therefore,
they are modeled to deliberate but not be influenced by
the subjective norm. Conversely, Hedonists, Mainstream, and
Traditionalist lifestyles consider fewer criteria when deciding
on adoption of technology. They are modeled to apply the
so-called take-the-best heuristic, i.e. they decide according to
the most important stated decision criterion that clearly favors
one choice option. If the most important criterion does not
clearly favor one option decision, the next most important
criterion is used. If no clear decision can be reached, agents
imitate the majority of their peers. Note that the subjective
norm may be one decision criterion, and that the social
environment hence may have an effect on these lifestyles.

For the scenario of diffusing water-saving shower heads for
which Schwarz and Ernst have implemented the ABM, this
detailed empirical decision model is mathematically equivalent
to simpler decision rules: If deciding (at probability δα), each
agent—according to its lifestyle—either adopts the technology or
decides according to the majority of its peers. Lifestyles that
deliberate are always deciding in favor of the environmental-
friendly option. The Mainstream and Traditionalist lifestyles
adopt water-saving shower heads with a probability of 0.5 and
imitate the majority of their peers otherwise. Households of the
Hedonistic lifestyle always imitate the majority of their peers.
Because only three different decision rules exist for five lifestyles,
we are grouping the lifestyles according to their decision-making
rules.

4.4. Behavior diffusion

The model by Anderson et al. (2014) captures how energy
consumption behavior spreads in social networks and describes
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how households change the energy they consume by social
influence. Thereby, the greater the difference in behavior
between a household and its social environment, the greater is
the household's motivation to change behavior towards its
peers (Festinger, 1962).

Behavior diffusion is described by a general social influence
model, see Eq. (1).

βi;t ¼ βi;t−1 þ si �

XN

j¼1

wij � β j;t−1

XN

j¼1

wij

−βi;t−1

0
BBBBB@

1
CCCCCA
: ð1Þ

The energy consumption behavior (βi,t) of an individual
(i) at a certain time (t) depends first on her previous energy
consumption (βi,t − 1) and second on how much the previous
energy consumption of her N − 1 peers (βj,t − 1) differs from
the individual's own energy consumption, weighted by the
strength of social ties (wij). Behavioral change according to the
second factor is scaled by the individual's susceptibility to
subjective norms (si).

This model captures empirical phenomena of behavior
diffusion that other models do not (see Chen et al., 2012;
Zhang and Nuttall, 2012; Azar and Menassa, 2014). First, in
addition to spreading more stringent energy conservation,
more stringent energy conservation can diffuse. The model
thus captures the boomerang effect (see Section 3). Second,
individual susceptibility to behavior diffusion (si) provides
one way to capture habits. According to the model, if an
agent's behavior were habitual, si would be lower and
behavior would thus change (significantly) slower. This
model, however, does not capture the processes of habit
formation and reinforcement.
4.5. Integrating two existing models into a combined model

Rather than developing a model from scratch, we empha-
size the importance of integrating these two selected existing
models into one combined model to implement the proposed
framework. Continuing to develop existing models promotes
good scientific discourse because existing models strengthen
the empirical andmethodological basis of a newmodel directly
and transparently (Windrum et al., 2007). It thus roots the
model developed in this paper directly in existing knowledge.
It also furthers knowledge on the existingmodel. This transfer of
model validity is also called TAPAS validation, which is abbrevi-
ated from Take A Previous model and Add Something (Frenken,
2004).

In the following, we present the integration of the two
existing models in four steps: First, we discuss their theoretical
alignment, given their theoretical differences. Second, model
adaptionsweremade to them tomake them compatible and to
transfer them to the case of heating feedback devices. Third, we
re-implemented them according to these adaptions. Finally,
these two models were linked via the effect of adopted
feedback devices on heating behavior and a social network
based on empirical data.
4.6. Theoretical alignment

Despite their strong similarities, the two combined models
have theoretical differences. Both model how innovations
diffuse and emphasize social network interactions as their
driver. However, two differences remain.

First, the behavior diffusion sub-model emphasizes imita-
tion between agents, whereas the technology diffusion sub-
model assumes mixed deliberation and imitation. This dispar-
ity is justified by varying levels of uncertainty in both decisions
(Festinger, 1954) and has been successfully applied in previous
ABMs (e.g. Janssen and Jager, 1999). On the one hand, adoption
of a household device involves a one-time decision, based upon
the perceived device properties. For example, a feedback device
needs to be purchased and installed only once and thereafter
remains active. Because this is a one-time action, it involves a
delimited process of deliberation, which is driven by intentions.
Conversely, behavior change “must be repeated or continual to
achieve maximum energy-savings: they rarely cost money, but
they do ask change in habit and lifestyle adjustment …” (Han
et al., 2013, p. 707). Repetitive actions, which lack a delimited
deliberation process, are thus less rational and, importantly, are
commonly highly uncertain in their energy related effects (see
Costanza et al., 2012).

Second, due to different qualities of available empirical
knowledge, the models differ in household heterogeneity. The
model of Schwarz and Ernst differentiates between lifestyle
groups, while the model of Anderson does not. However, we
argue that this difference in detail does not compromise the
theoretical compatibility of the two models.

4.7. Model adaptions

The technology diffusionmodel by Schwarz andErnst (2009)
had to be reinterpreted as a model of individual households,
which involved changes to the social network. Originally, the
model uses spatially aggregated household agents (i.e. each
represents all households of one lifestyle within one square
kilometer) which are connected in a small-world network.
When diffusing novel technologies, the initial phase of diffusion
is relevant, where only a few adopters exist. Therefore, a higher
resolution is more appropriate for representing these few first
adopters. We thus assume that the agents represent individual
households in a social network.

Because detailed adoption decision models for heating
feedback devices are not available yet, we use water saving
shower heads, which are better researched by Schwarz and
Ernst (2009), as a proxy technology. In this conceptual study, a
proxy technology needs to meet the requirement of being
qualitatively similar regarding its diffusion (e.g. the device
should be preferred by the same lifestyle groups).We argue our
model meets this requirement, because they generally serve
the same function in households: they save energy related
resources (i.e. hot water and space heating energy, respective-
ly) in daily household routines. Further, both technologies are
similar according to at least three of Rogers' (2003) innovation
characteristics: Compatibility (i.e. which sociocultural values
and beliefs are affected by the innovation) is similar, as the
technologies both conserve thermal energy linked to daily
consumption behavior and are both installed inside the
household. Complexity (i.e. perceived difficulty of use) is low
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110 T. Jensen et al. / Technological Forecasting & Social Change 98 (2015) 105–119
for both technologies. Water saving shower heads are quickly
installed. Likewise, messages from feedback devices should
be self-explanatory. Trialability (i.e. “the degree to which an
innovationmay be experimentedwith on a limited basis” (Rogers,
2003, p. 16)), is also similar, because both devices are low-cost
and easy to start and discontinue within the household.

The behavior diffusion model by Anderson et al. (2014)
need not be adapted to be integrated into the combinedmodel.
The behavior state variable was altered to represent heating
behavior, defining the modeled heating behavior as average
space heating temperature. This function was chosen because
heating temperature significant affects energy consumption in
buildings (Guerra Santin et al., 2009).

4.8. Reimplementation

The existing models were re-implemented in the NetLogo
framework (Tisue and Wilensky, 2004). Previously, the model
by Schwarz and Ernst (2009) had been implemented in Java.
Because the initial model implementation was not completely
available, re-implementation was based on a PhD thesis (see
Schwarz, 2007). Themodel by Anderson et al. (2014) had been
implemented in the Repast J 3.0 framework (North et al., 2013).
Being structurally simple, this model was re-implemented
based on Eq. (1).

4.9. Linking existing models to implement the framework

To implement the framework, we considered how feedback
technology affected heating behavior for adopting households.
Modeled by Eq. (2), we assume that feedback devices alter
behavior towards an incentivized level (β∞⁎) and that this
behavioral change proceeds asymptotically (with the rate of
Δβ).

βt ¼ βt−1 þ β�
∞−βt−1

� � � Δβ : ð2Þ

The principle of an incentivized target behavior is demon-
strated, for example, by the E-quarium, which offers its most
positive heating feedback only if the room temperature is at
the normative goal of 18 °C. An asymptotic learning curve
is appropriate because it simulates two important aspects
regarding behavioral change. First is a steadily decreasing
behavioral change effect of feedback technology. At later stages,
user engagement in feedback can decrease, suggesting the
early phase of feedback is the most important for behavioral
change (see Peschiera et al., 2010). Second, the asymptotic
learning curve suggests that feedback has a higher potential to
alter behavior if the normative goal of feedback is significantly
different from the user behavior. This is because saving energy
by altering behavior has decreasing returns: the lower a
person's energy consumption behavior is, the less options
available to further reduce energy consumption. These remain-
ing options are likely to be less practical and effective. For
example, turning off the thermostat when leaving a room or
the house is practical and effective, whereas turning down the
thermostat when inside the room is likely less appealing to
many people.
Finally, the agents are linked to each other via a social
network, which models the communication regarding adop-
tion of both technology and behavior. We based the network
structure on interviewed ego-networks of communication on
heating behavior between households (Baedeker, 2014), and
on literature (Watts and Strogatz, 1998). The modeled social
network matches two statistical properties of the empirical
ego-networks: the degree distribution (i.e. with how many
other households does an agent communicate, see Fig. 3) and
the probability for such communication to be of short distance
(pNBHD) (i.e. within the same neighborhood of a city). In
principle, all lifestyles can connect. But to account for homophily
within lifestyles, there is an increased probability of connections
within the same lifestyle (scaled by parameter h). The network
creation is presented in detail in Appendix A.

We implemented the proposed framework using this
integration. For its initialization, agents are created and linked
in a social network. Then, at each time step, the sub-models
technology diffusion, feedback effect and behavior diffusion are
applied successively. For furthermodel details, see Appendix A.
5. Simulation experiments

The purpose of this study is to propose, implement and
explore an assessment framework for behavior-changing
feedback devices. This framework complements trial testing of
such devices and simulating their diffusion by also simulating
the diffusion of the behavioral change they create. In this
section, we are using simulation experiments to investigate
the relevance of combing these three processes into one
framework.

We present three simulation experiments. In the first one
we simulate only the diffusion of feedback devices, but not the
diffusion of behavior, and reproduce the simulation results of
Schwarz and Ernst. This verifies the way we re-implement the
model and serves as a reference against the effects of adding
processes in the following experiments. The second experi-
ment extends this scenario to the proposed framework by
adding the two processes of feedback effect on behavior and
behavior diffusion. In this simulation we focus on the
heterogeneity of the agents' heating behavior in order to
identify the added effect of behavior diffusion in detail. In the
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third simulation we vary strength of the feedback effect and
behavior diffusion to explore how heating feedback devices
affect the behavior of different lifestyles. This aims to observe
the effect of behavior diffusion on a larger scale.

The model proceeds at time steps of one month and
the simulation runs terminate after 30 simulated years. The
parameterization for the simulation experiments is given in
Table 2.

5.1. Reference scenario of technology diffusion

In the first simulation experiment we present the spread
of environmental-friendly technology between households
generated by the technology diffusion sub-model. This serves
as a reference scenario to consider only the spread of heating
feedback devices and not the diffusion of behavior. Fig. 4
compares simulation results to empirical market shares of a
proxy technology.

The simulation results show that adopting environmental
friendly household technology significantly differs between
households. The lifestyles of Postmaterialists and Social Leaders
are adopting this technology with the greatest rate. Conversely,
theHedonistic lifestyles barely adopt the technology. In between,
the Mainstream and Traditional lifestyles show intermediate
adoption.

These results successfully reproduce the previous results of
Schwarz & Ernst (Schwarz and Ernst, 2009). First, the model
generally matches the empirical market shares of the
environmental-friendly proxy technology, see Fig. 4. Second,
it matches these empirical data in the same range as the model
as Schwarz & Ernst did, see Table 3. Our model deviates less
than 20% greater than the empirical market share when
comparing the model it is reproducing with the empirical
market share. In addition, if we disregard the Hedonistic
lifestyles, for which only three empirical adoption data points
were given (see Table 3), the cumulative deviation is the same
for both the original and the here reproduced model.

We can easily infer that, assuming no behavior diffusion and
homogenous effect of feedback devices on households, the
simulated difference in adoption between lifestyleswould imply
a proportionate difference in the effect of environmental-
Table 2
Parameterization for the simulation experiments. Where a source is given, the parame
extensively.

Parameter Value Meaning

|N| 3000 Number of hou
dNBHD 10 Range for links
pNBHD 0.5 p (link within
h 0.4 Homophily in
deg i

⁎ [1,8] Degree of agen
t0 1990 Initial time ste
tmax 2020 Final time step
Δt 1 Months of tim
αi,t ∈ {0, 1} – Technology ad
δα 0.004 Tech. adoption
p(αi,t = 0) 0 Init. technolog
βi,t ∈ ℝ – Energy consum
βi;t0 ;∀i∈N 21.1 Init. energy co
β∞
⁎ 18 Behavior incen

Δβ [0,1] Susceptibility
si [0,1] Susceptibility
wij {0,1} Link strength b
friendly technology between these lifestyles. The lifestyles that
adopt such technology the most, i.e. Postmaterialists and Social
Leaders, could thus profit themost from its effect. In contrast, the
Hedonistic lifestyles could not profit from the energy-saving
effects of this technology.

5.2. Adding feedback effect and behavior diffusion

In the second simulation experiment, we added to the
above reference scenario the effect that feedback devices have
on households' heating behavior as well as behavior diffusion.
We assumed a fixed feedback effect strength which is identical
for all lifestyles (Δβ = 0.1) and varied the level of behavior
diffusion (si), the latter one being the innovative component
we have added to previous studies and thus of specific interest
to us.
ter value is empirical based. Else, the value is either chosen generically or varied

Source

sehold agents –
within neighborhoods –
neighborhood) Baedeker (2014)
social network –
t i Baedeker (2014)
p Schwarz and Ernst (2009)

Schwarz and Ernst (2009)
e step length Schwarz and Ernst (2009)
option variable –
decision probability Schwarz and Ernst (2009)
y adoption rate Schwarz (2007)
ption behavior –

nsumption behavior Shipworth et al. (2010)
tivized by feedback –
to feedback –
to behavior diffusion –
etween agent i and j Baedeker (2014)



Table 3
Comparison of model reproduction with results of Schwarz and Ernst (2009)
and empirical market shares.

Lifestyle Model resulta Original modelb Market sharec

Postmaterialists 51 53 55 (n = 35)
Social leaders 51 53 42 (n = 24)
Mainstream 32 18 29 (n = 28)
Traditionalists 32 18 21 (n = 21)
Hedonistic 5 0 0 (n = 3)

a Mean adoption share (%) at simulation time December 2005.
b Adoption share (%) postdicted by Schwarz and Ernst (2009) at simulation

time December 2005.
c Empirical market share (%) provided by Schwarz and Ernst (2009) for

December 2005 (n ≡ sample size).
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In this scenario, we are interested in the change of agent
heating behavior. We focus on heterogeneity of the agents'
behavior because there are two contradictory processes at
work: adopting feedback devices lead to behavioral change of
(only) those households that have adopted and thus tend to
increase heterogeneity of behavior; and behavior diffusion
tends to smoothen the differences and make households more
homogeneous. The interaction effects of these processes are not
obvious but determine how behavior diffusion affects overall
energy consumption.

The results of typical single simulation runs are shown in
Fig. 5. For each level of behavior diffusion strength, a separate
plot is shown. For each time step,we visualized the distribution
of agents' heating behavior, i.e. their individual room heating
temperature. Additionally, the aggregated average space
heating temperature of all agents is plotted for each time step.
We limited the observation to agents of the lifestyles of Social
Leaders, the lifestyle group that most rapidly adopted feedback
devices. This lifestyle group was thus expected to show a
clear contrast in heating behavior between adopters and non-
adopters.

The figure shows that feedback devices have a different
overall effect at different levels of behavior diffusion, regarding
heterogeneity of agents' behavior and change of average
behavior. For all behavior diffusion levels, the agents' heating
Fig. 5. Change in heating behavior of agents of the lifestyle Social Leaders when con
behavior diffusion. Strength of behavior diffusion (si) varies between plots. The color g
simulation run and its change over time shownhorizontally. The line represents theme
to color in this figure legend, the reader is referred to the web version of this article.)
behavior shifts from the initial temperature of 21.1 °C towards
18.0 °C, the temperature being incentivized by feedback
devices. The distinction between the levels of behavior
diffusion appears to be especially clear because the process of
behavior change induced by the feedback devices operates on
time-scales that are much shorter than the process of the
diffusion of the devices. Yet, greater behavior diffusion causes
(1), less heterogeneity in agents' heating behavior and (2),
faster rate and extent of average behavioral change. Note that
both patterns are consistent between simulation runs. We
discuss these two phenomena in the following section and
analyze the underlying mechanisms.
5.2.1. Heterogeneity between adopters' and non-adopters' heating
behavior

Simulation results show that stronger behavior diffusion
strength reduces the behavioral gap between adopters and
non-adopters. At one extreme, without behavior diffusion, two
space heating temperatures dominate, 21.1 °C and 18 °C:
heating temperatures generally decrease from 21.1 °C to
18 °C. Thus, an increasing number of agents quickly change
from the former to the latter heating behavior over time. This
behavioral heterogeneity clearly distinguishes adopters from
non-adopters of feedback devices. When behavior diffusion
strength is greatest, heterogeneity between adopters and
non-adopters is minimal and the transition for adopters and
non-adopters from 21.1 °C to 18 °C is simultaneous. In
between these two extremes, increasing behavior diffusion
allows the heating behavior of adopters and non-adopters
successively converge during the transition from 21.1 °C to
18 °C.

According to the applied model, peers imitate each other
more when the strength of behavior diffusion (si) increases; at
maximum, individual behavior is equal to the (weighted)
average of peers' behavior, regardless of own previous behavior
and the effect of feedback devices (see Eq. (2)). Note that
imitation is bidirectional and thus causes both adopters and
non-adopters to approach the behavior of the other group.
sidering diffusing feedback devices, effect of these devices on households and
auge shows vertically the distribution of space heating temperatures within one
anof the agents' space heating temperature. (For interpretation of the references
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5.2.2. Speed of change in average behavior
At higher levels of behavior diffusion, the mean agent

heating temperature decreases faster. Without behavior
diffusion, a decreasing average heating behavior mirrors the
increasing adoption of feedback devices. For instance, at the
simulation year 2005, ca. 50% of Social Leaders adopt feedback
devices (see 5.1). At the same time step,meanheating behavior
has reached approximately half way from 21.1 °C to 18 °C. At
increasing levels of behavior diffusion, the transition from
21.1 °C to 18 °C speeds up.

We argue that bidirectional imitation between agents alone
fails to explain the increasing speed of change in average
behavior. This is because even though adopters influence non-
adopters towards lower heating temperatures, non-adopters
similarly influence adopters to a similar extent. Behavior
diffusion simply distributes the behavioral change from
feedback devices between adopters and non-adopters. Because
behavior diffusion is bidirectional, it can only result in a zero-
sum game.

Instead, we argue that this phenomenon is caused by an
interaction between the feedback effect and behavior diffusion.
The feedback effect varies depending on the adopters' level of
heating temperatures. As soon as adopters approach heating
temperatures of 18 °C, no further behavioral change occurs,
which could be ‘redistributed’. In contrast, at greater behavior
diffusion, behavior heterogeneity between adopters and non-
adopters decreases and adopters thus heat at higher temper-
atures. These higher heating temperatures increase the effect of
feedback devices due to the modeled asymptotic feedback
effect function. Additionally, behavior diffusionmore efficiently
distributes this effect.

In summary, stronger behavior diffusion leads to two
phenomena. First, is a decreased heterogeneity of heating
temperatures between adopters and non-adopters of feedback
devices. Second, feedback devices motivate a faster transition
to this behavior. The first phenomenon is influenced by agents
imitating each other. The second by a combination of three
factors: (1) greater behavior diffusion causes adopters and
non-adopters to converge in their behavior, (2) which causes
higher heating temperatures for adopters whose behavior is
consequently more effected by feedback devices, and (3) at
high levels of behavior diffusion, this greater effect can be
efficiently distributed between adopters and non-adopters.
1 Each simulation run resulted in one multivariate timeline of average space
heating temperatures over time, distinguished by the different lifestyles. The
pairwise distance between these multivariate timelines was defined by their
Manhattan distance. Hierarchical clustering into 4 groups was conducted
applyingWard's minimum variance method.
5.3. Variation in feedback effect and behavior diffusion

With the following simulation experiment, we examine the
effect of added behavior diffusion when different lifestyles are
considered simultaneously: Which social groups are most
affected by this effect? How does this effect differ between
social groups?

As indicators we use the mean space heating temperatures
of the households of each lifestyle. Detailed simulation settings
are given in Table 2.

We both varied the strength of behavior diffusion (si) and
the feedback effect on behavior (Δβ), to systematically observe
their added effect. This variation is motivated by uncertainty
about de facto speeds of these sub-processes (see Anderson
et al., 2014). We vary the parameters as follows to compare
four scenarios:
• Scenario 1: Feedback does not change behavior (Δβ = 0),
• Scenario 2: Feedback changes behavior, but behavior diffusion
is not present (0 b Δβ b 1 ∧ si = 0),

• Scenario 3: Feedback and behavior diffusion act at interme-
diate strengths (0 b Δβ b = 1 ∧ 0 b si b = 1),

• Scenario 4: Both feedback and behavior diffusion act at
maximum strengths (Δβ = 1 ∧ si = 1).

The simulation results for these scenarios are shown in
Fig. 6. Between the scenarios, mean heating behavior of the
respective lifestyles differs significantly. This is confirmed by
statistical clustering of the simulation results separating these
scenarios.1

In scenario 1, inwhich technology does not change behavior
(Δβ = 0), overall energy consumption behavior remains
unchanged for all lifestyles. Thus, as can be expected, with no
behavioral change, behavior diffusion simply has no added
effect.

In scenario 2 (with feedback effect but without behavior
diffusion), the pattern of behavioral change is similar to that
when feedback devices are adopted. Feedback technology
changes energy consumption behavior of adopters, but this
behavior does not diffuse. Thus, behavioral change is directly
determined by technology adoption (see Table 3). As with
the first simulation experiment, Postmaterialists and Social
Leaders were similarly affected first and to the highest degree.
Mainstream and traditional lifestyles were affected shortly
after. The Hedonistic lifestyle was affected last and to the
lowest degree. The behavioral change over time was not
sensitive to the strength of feedback effect on behavior (Δβ).
We assume this to be caused by households adopting
technology relatively slowly compared to the time-scales on
which the feedback effect operates.

In scenario 3 (with both feedback effect and behavior
diffusion at intermediate levels), stronger behavior diffusion
caused smaller differences in behavior between lifestyles,
and absolute levels of energy consumption of all lifestyles
decreased. At maximal behavior diffusion within this scenario,
the differences in behavior seemingly disappeared, similar to
those observed in Section 5.2. For agents of the Hedonistic
lifestyle, stronger behavior diffusion led to significantly lower
room temperature compared to without behavior diffusion. A
similar effect occurred for the other lifestyles, but to a lesser
extent. Thus, the lesser a lifestyle adopted technology the higher
the added effects of behavior diffusion to its heating behavior. Of
note, even the leading lifestyles (Postmaterialists and Social
Leaders) reduce room temperature quicker if behavior diffusion
is assumed, i.e. the additional ‘redistribution’ of changed
behavior to other lifestyles does not (over-)compensate the
effect discussed in Section 5.2.

In scenario 4 (both feedback effect and behavior diffusion at
maximum level), heating behavior changed the quickest for all
lifestyles, implying a synergistic effect of technology and
behavior diffusion on energy consumption behavior.



Fig. 6. Median of average space heating temperature of lifestyles over time. Varying strength of feedback effect (Δβ) and behavior diffusion (si). The multivariate
timelineswere clustered statistically to highlightmodel sensitivity. Line dashing represents the clustering result for eachparameter combination (see legend).Whiskers
show the empirical 2.5th and 97.5th percentiles of the lifestyles' average heating temperature of 25 simulation runs each.
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6. Discussion and conclusions

In this paper, we have proposed, implemented and simulat-
ed an assessment framework for the overall effect of heating
feedback devices on energy consumption. This framework
includes the process of behavior diffusion for assessing heating
feedback devices, which commonly considers their direct effect
on adopters and, to a lesser extent, howdevices diffuse between
(potential) adopters.

This paper confirms our initial proposition: the relevance of
incorporating behavior diffusion into the assessment of such
devices. Simulations revealed two mechanisms behind behav-
ior diffusion driving the overall effect of heating feedback
devices. First, behavior diffusion spreads the effect of feedback
devices between adopters and non-adopters. It thus not only
decreases heterogeneity of these two groups' behavior but also
introduces a qualitative difference compared to technology
diffusion by reaching non-adopters of devices. Second, simula-
tions show that behavior diffusion can considerably speed
up the overall behavioral change caused by feedback devices.
The convergence of energy-consumption behavior between
adopters and non-adopters slows down adopters reaching the
energy conservation level incentivized by feedback devices.
This prolongs the effect of feedback devices on adopters, which
is further propagated to non-adopting households through
behavior diffusion.

In summary, we observe that behavior diffusion contributes
significantly to the overall effect of feedback devices on energy
consumption. Without behavior diffusion, lifestyles are only
affected according to their share in adopting technology.
Behavior diffusion reduces the differences in behavior between
adopters and non-adopters and, when interacting with the
feedback effect, synergistically increases the speed and degree
of behavioral change for all lifestyle groups so the overall effect
of feedback devices is stronger.

This finding supports previous research highlighting the
potential for behavior diffusion to reinforce interventions for
changing energy consumption behavior (see Peschiera et al.,
2010; Chen et al., 2012; Anderson et al., 2014). In this paper, we
confirmed that such an added effect of behavior diffusion with
heating feedback devices exists, particularly when their
simultaneous diffusion interacts.
6.1. Implications and recommendations

We focus on three aspects highlighting the implications of
our study: (1) lessons on the difference between behavior-
changing feedback devices and automation technology, (2) the
fruitful interaction of two existing fields of diffusion research
and (3) future applications of the proposed framework.

First, we stress that feedback devices that support energy
conservation can spread changed behavior beyond households
adopting these devices, thus creating the positive externality of
benefiting more households. We assume that this kind of
externality is not specific to feedback devices, but to varying
degrees inherent to any intervention that changes energy
consumption behavior. In contrast, energy efficiency devices
that donot change behavior, such as domestic energy efficiency
automation technology, do not provide this externality. For
example, heating automation devices, e.g. Google Nest, can
potentially increase heating energy efficiency, but does not
incentivize behavior change capable of spreading via behavior
diffusion. These considerations underline the relevance of
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(also) analyzing behavior diffusion when assessing energy-
efficiency devices.

Second, we highlight the added value of integrating technol-
ogy diffusion and behavior diffusion models. In this paper,
integrating both types of diffusion models identified indirect
effects from feedback devices that normally would not emerge
with either diffusion model. We also assume that interactions
between these types of diffusions might be relevant in contexts
where the effect of technology is behavior change.

Third, the synergy between diffusion of feedback devices
and energy conservation encourages further research with
this framework. This includes refining the simulation model to
empirical scenarios.

6.2. Limitations and future research

Findings from the proposed technology assessment frame-
work were based on a simulation model that integrates two
existing models. The tight coupling between the conceptual
framework and its implementation in this simulation model
allowed us to analyze its concepts and integrate the framework
more generally. However, as the main limitation of this study,
the findings lack empirical support. Improving the model with
empirical data thus constitutes a major route for future work.

We outline below methods for developing the presented
framework into a more empirical-based model. Such a model
would allow estimating more precisely the overall effect of
feedback devices on heating energy consumption. Conversely,
behavior-changing feedback devices could be compared ex-
ante in how they conserve energy. Encompassing the mecha-
nisms, speed and intensity of technology diffusion, feedback
effect, and behavior diffusion for both applications should be
based on empirical data. We present three practical steps for
strengthening the empirical foundations required by both
applications.

First, empirical data can make the model more realistic, e.g.
by using pattern oriented modeling (see Grimm et al., 2005).
Collecting data on how society influences energy consumption
behavior is particularly challenging. Yet, research on how
households interact regarding energy conservation levels
identifies patterns useful for developing future model (see
Baedeker, 2014;Nolan et al., 2008). In addition, field research in
the realm on Living Labs and Smart Cities provides opportuni-
ties to gather empirical data on influence between households
(e.g. respective to their belonging to lifestyle groups) (see
(Pentland, 2014)).

Second, another route forward is making the decision-
making more specific to heating behavior than in the existing
models. One possibility is using empirically-based choice
modeling (see Araghi et al., 2014). This allows considering
other effects on heating behavior, e.g. fuel price.

Third, current field tests of novel feedback devices, e.g.
Transformational Products, can better estimate the direct effect
of feedback on behavior (see Liedtke et al., 2014). Focus groups
of field testing participants can further generate knowledge on
acceptance over longer times periods, an important factor
contributing to diffusion success (Rogers, 2003). This allows
further investigation of the role that habits play in the
repeatedly observed relapse of behavior during long-term
behavioral change interventions (see Peschiera et al., 2010;
Chen et al., 2012).
Additionally, we can use the presentedmodel to investigate
heating feedback devices combined with energy-efficient
retrofits of buildings, an important energy efficiency approach
for the built environment (Guerra Santin et al., 2009). In this
paper, we model the overall effect of ‘stand-alone’ feedback
devices on heating temperatures. Alternatively, one could
model the application of feedback devices where both
approaches, i.e. renovation and behavioral change, interact.
Investigating how interaction of feedback devices and renova-
tion interact is interesting as it has been found that retrofitting
saves less energy (and heating costs) than expected due to the
rebound effect (Friege and Chappin, 2014), i.e. users commonly
increase heating temperatures after energy-efficient renova-
tions and hence decrease the energy efficiency gain from the
renovation. The assessment framework we developed could
help in investigating the effect of feedback devices if they
are available to households after energy-efficient renovations,
e.g. through craft businesses.

6.3. Conclusion

Considering behavior diffusion when assessing behavior-
changing feedback devices is important because it can
significantly influence their overall effect. We identified two
mechanisms through which behavior diffusion increases both
the reach and speed of behavioral change induced by such
devices.

We suggest that interventions that aim at changing
behavior should exploit this synergy for increasing their effects.
The proposed framework is useful for better capturing and
eventually assessing the effect of such interventions on energy
consumption behavior ex-ante.
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Appendix A

A.1. Model description

In the following, the agent-based model developed in this
paper is described using the ODD (Overview, Design concepts,
Details) protocol (Grimm et al., 2010).

Purpose
The purpose of this model is to investigate the effect of

behavior-changing feedback devices on heating behavior by
capturing the diffusion of technology and behavior among
households communicating on technology adoption and
energy consumption behavior. Both processes are combined
in onemodel to explore their relative importance on the overall
effect of behavior-changing feedback technology.
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Entities, state variables, and scales
Central entities of the model are agents that represent

individual households in one city. Each household agent
has three static attributes. First, an agent is of one of five
sociological lifestyles (Postmaterialists, Social Leaders, Tradi-
tionalists, Mainstream or Hedonistic lifestyle) defining its
preferences to adopt environmental-friendly household tech-
nology (see Schwarz and Ernst, 2009). Second, agents have a
set of social ties to other household agents, their peers. The
number of peers is based on empirical observations (see Fig. 3).
Third, each household has a static position in the two-
dimensional space. Location defines the likelihood that peers
are linkedwith one another, because spatial proximity makes a
link between two households more likely (Holzhauer et al.,
2013).

Additionally, each household has two dynamic state
variables. First, a household has either adopted technology or
not, represented by a binary variable. Second, a household has a
specific energy consumption behavior. Here, we defined this as
the mean space heating temperature, with unit °C.

Temporal resolution of themodel ismonthly time steps from
January 1990 to December 2019.

Spatial resolution is abstract. Households have a randomand
fixed position in a two-dimensional rectangular planewith side
length of 100 continuous spatial units. This plane does neither
wrap to a cylinder nor torus, but represents a well-delimited
spatial area, such as a city.

Process overview and scheduling
Themodel consists of the sub-models ‘technology diffusion’,

‘feedback effect’ and ‘behavior diffusion’, which are executed
successively at each time step.Within these sub-models, agents
change their state variables concurrently, i.e. their future states
are partly influenced by the state variables of their peers at the
previous time step. Model initialization, steps, and sub-models
for each time step are as follows:

1. Initialization
2. While (t b tmax):

(a) Technology diffusion
(b) Feedback effect
(c) Behavior diffusion.

Design concepts
Basic principles applied in themodel aremainly four scientific

theories. First, Diffusion of Innovations Theory (see Rogers,
2003) is applied as a general model guideline. It contributes to
representing the spread of technology and behavior innovations
when potential adopters interact. Thereby, Rogers' distinction
between earlier and later adopters is captured by the different
decision making of the five sociological lifestyles for adopting
feedback technology. Second, Social Network Theory is applied
by connecting households in a social network graph. This graph
defines social ties between households, among which these
communicate. This informs agents of the adoption and energy
consumption behavior of their peers. Consequently, social
influence can affect the households' decisions in these realms.
Third, technology adoption is partly based on the Theory of
Planned Behavior (see Ajzen, 1991). This decision theory
underlies agents' decision to adopt technology. According to
this theory, an innovation adoption decision depends on both
the adopter's preferences and her peers' decisions (Rogers,
2003). Finally, behavior diffusion is based on Social Learning
Theory (see Bandura and McClelland, 1977), which suggests
peer behavior influences energy consumption behavior of
households.

Emergence occurs through the diffusions of technology and
behavior. These diffusions are macro processes based on
adoption decisions at the micro level, i.e. the level of agents.

Sensing of household agents occurs through social ties of the
social network graph. Agents perceive which of their peers
adopt feedback devices and what temperature they set for
heating. This sensing of peer behaviormarks the origin of social
influence.

Interaction occurs through social influence between house-
hold agents sharing relationship links. For technology diffusion,
adopting peers increases the probability (where this equals
not already 1) a household adopts feedback technology.
For behavior diffusion, a household agent gradually adapts its
energy consumption behavior according to the mean behavior
of its peers.

Objectives of household agents drive their choices on
technology adoption or energy consumption behavior. Agents
adopt feedback devices if it incurs a relative advantage over not
adopting. Inspired by the Theory of Planned Behavior, this
decision can be influenced by the number of adopting peers.
For behavior diffusion, household agents follow objectives:
habituality and conformity.With no social influence, household
agents habitually practice their previous behavior. Social
influence, however, motivates behavioral change towards the
mean peer behavior. The strength of this social influence is
defined by si, the households' susceptibility to behavioral
change (see below).

Adaptation appears when agentsmake different decisions at
varying levels of social influence. All peers of a household
supporting a certain decision can increase the likelihood that
this household makes the same decision.

Stochasticity occurs in three aspects. First, location of agents
and their social network are initialized randomly. Second, at
each time step, each agent has a random probability to consider
technology adoption. Finally, the lifestyles Mainstream, Tradi-
tionalists and Hedonists do not decide on technology adoption
by deterministic deliberation, but by applying the so called
‘take-the-best’ heuristic.

Observations lead model design decisions on the social
network topology, preferences to adopt technology, and energy
consumption behavior. From interviews on ego-networks of
communication on energy consumption behavior, provided by
Baedeker (Baedeker, 2014), have been derived the degree
distribution in the social network (see Fig. 3) and the
probability of a network tie to be of short spatial distance
(pNBHD = 0.5). From surveys on the mean space heating
temperatures in British households by Shipworth et al.
(Shipworth et al., 2010), the initial energy consumption
behavior is set to 21.1 °C. The technology adoption decision of
agents is based on extensive surveying conducted by Schwarz
(2007).

Initialization
Model initialization follows three successive steps: creating

household agents, generating the social network and setting
the adoption state variables of the agents.
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Initialization creates N household agents. Each agent is
assigned a random location and a random lifestyle, weighted by
an empirical distribution (see Table 1).

The social network is built on two empirical foundations.
First, we extract two statistical ego-network properties from
interviews with households about energy consumption behav-
ior (Baedeker, 2014). These properties include the ‘degree
distribution’ of network nodes (see Fig. 3) and the probability
of relevant communicationwithin a city that occurs in the same
neighborhood (pNBHD = 0.5). The second theoretical founda-
tion is that members of a certain sociological lifestyle
communicate more with members of the same lifestyle. We
developed an algorithm that was inspired by Watts and
Strogatz (Watts and Strogatz, 1998) to generate a social
network that meets these empirical characteristics:

1. Assign a degree target deg*(i), i.e. the ideal number of peers
of each agent, for fitting the overall degree target distribu-
tion to the empirical degree distribution.

2. Create a number of links equal to the respective degree
target by repeatedly applying for the agents with fewer
assigned peers than their degree target:
(a) Randomly choose lifestyle with which to connect

(probability to connect to own lifestyle is set by the
homophily-probability h, while all other lifestyles
share the residual probability equally).

(b) Connect to a random agent of the chosen lifestyle,
who has less peers than its degree target and who is
closer than dNBHD.

3. Remove each relationship linkwith a probability (1− pNBHD).
4. Repeat step 2 with the altered constraint forging connec-

tions between agents with distance greater than dNBHD.

Finally, the adoption state variables are initialized for all
agents. Household agents are assumed not to initially adopt
feedback technology. The initial energy consumption behavior
(yi;t0 ) is homogeneously set to 21.1 °C for all agents, based
on the mean of space heating temperatures observed by
Shipworth et al. (Shipworth et al., 2010).

Submodel: technology diffusion
This submodel represents the decision framework for

agents to adopt a technology, which is based directly on the
empirical-based model presented by Schwarz (2007).

Agents have a fixed probability at each time step to decide
on adoption (δα). When deciding, the adoption decision is
modeled to be qualitatively different between lifestyles. For
some lifestyles, i.e. Postmaterialists and Social Leaders, survey-
ing shows that they trade-off many criteria when deliberating
on adoption (Schwarz, 2007). The decision for these lifestyles is
thus modeled on rational deliberation, similar to the Theory of
Planned Behavior (see Ajzen, 1991), but without underlying
social influence. Conversely, Hedonists, Mainstream, and
Traditionalists generally consider fewer criteria when deciding
on technology adoption. Thus, agents of these lifestyles are not
deliberating rationally on technology adoption, but apply the
so-called take-the-best heuristic (see Schwarz, 2007). They
decide according to the most important stated decision criteria
that clearly favor one choice option. Two decision criteria with
the same stated importance are processed in a random order. If
this heuristic does not lead to a clear decision, agents imitate
the majority of their peers.
We parameterized the decision model for adoption prefer-
ences using surveyed parameters at Schwarz (2007) on water-
saving shower heads for energy-saving feedback technology.
This transfer is motivated by the relatively high similarity
between these two resource-saving technologies.

These adoption decisions are equivalent to simpler decision
rules. First, the lifestyles Postmaterialists and Social Leaders
always decide in favor of the environmental-friendly option.
Second, the Mainstream and Traditionalist lifestyles are, with
an equal probability, randomly choosing between imitating the
majority of their peers and adopting the eco-friendly option.
Finally, agents of the Hedonistic lifestyle always decide to
imitate the majority of their peers.

Submodel: feedback effect
The sub-model Feedback Effect describes how adopted

feedback technology changes the agent's heating behavior
state variable. We model behavioral change from feedback
technology over time as an asymptotic learning process, see
Eq. (3). Thereby, energy consumption behavior (βt) asymptot-
ically approaches a behavior suggested by the feedback (β∞⁎)
with the rate Δβ.

βt ¼ βt−1 þ β�
∞−βt−1

� � � Δβ ð3Þ

Submodel: behavior diffusion
The sub-model behavior diffusion describes how peer

behavior influences agent heating behavior, see Eq. (4). The
strength of social influence (si) drives a household to approach
from its own previous behavior (βi,t − 1) towards the behavior
of its peers (βj,t − 1) weighted by the strength of their mutual
social relationship (wij).

βi;t ¼ βi;t−1 þ si �

XN

j¼1

wij � β j;t−1

XN

j¼1

wij

−βi;t−1

0
BBBBB@

1
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: ð4Þ
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