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Measuring and modeling the role of time thresholds
in drivers’ pedal control inputs during cornering

speed adaptation
Virgı́lio Gruppelaar

Control and Simulation, Faculty of Aerospace Engineering
Delft University of Technology

email: virgilio@quintadoriodao.com

Abstract—Reducing conflicts between drivers and assistance
systems has become an important issue in recent times, resulting
in a need for a better understanding of how humans drive.
Current models of driver speed choice on curved roads do not
model accelerator and brake pedal deflections, and consequently
do not account for the fact that deceleration usually occurs in
two distinct phases. The contribution of this work lies in the
combination of studies of driver’s visual fixations during curve
driving with research on how drivers use time thresholds as
safety margins, resulting in a more realistic computational driver
model that uses thresholds on a single visual perceptual variable
to trigger the release of the accelerator and the application of the
brakes. A simulator experiment showed that, after individualiza-
tion of the thresholds using a binary classification method, the
model is capable of accurately capturing the speed adaptation of
15 human drivers on single lane roads with multiple curves.

ACRONYMS

ADAS Advanced Driver Assistance Systems
ETP Extended Tangent Point
FN False Negative
FP False Positive
HMI Human-Machine Interaction
HSC Haptic Shared Control
MCC Matthews Correlation Coefficient
OP Occlusion Point
TETP Time to Extended Tangent Point
TLC Time to Line Crossing
TN True Negative
TP True Positive
TP Tangent Point
VAF Variance Accounted For

LIST OF SYMBOLS

Greek Symbols
δa Accelerator pedal deflection [-]
δa,EB Minimum accelerator pedal deflection needed to

overcome engine braking [-]
δb Brake pedal deflection [-]

Roman Symbols
dTa TETP rate of change for re-acceleration [-]
Ka Accelerator pedal depression gain [-]
Kb Brake pedal depression gain [-]
Kd Accelerator pedal release gain [-]

Tb Minimum TETP margin before start of braking
phase [s]

Td Minimum TETP margin before start of deceleration
phase [s]

V Vehicle speed [ms−1]
Vmax Speed limit on current road section [ms−1]

I. INTRODUCTION

DRIVING a car on a curved road is a task most people
are familiar with. As they steer their vehicle along the

road, drivers adapt their speed to suit the road they are driving
on. However, despite a large wealth of research on driver
modeling, the mechanisms that govern this speed adaptation
are not yet well explored. Over the past decade, the focus of
automobile research has shifted to Advanced Driver Assistance
Systems (ADAS) and automated driving. In order to avoid
conflicts between driver and automation, these systems must
understand driver’s intentions. In the context of speed choice,
understanding how drivers control their speed on a curving
road becomes essential.

Field studies show a correlation between curve radius and
speed [1, 2, 3]. Small radius curves are taken at low speeds,
with a marked increase in speed up to radii of 100m, while
curves of radius larger than 300m show little evidence of
any speed adaptation at all, and are essentially treated as
straight road sections [4, 5]. Other geometrical factors that can
influence speed choice are the road width [6], the lengths of
the straight road sections between curves, the curve deflection
angle, the presence of other curves in close proximity, and the
curve superelevation [7]. In addition to this, the lateral position
of the vehicle on the road can alter the effective turn radius,
impacting drivers’ speed choice [8].

When approaching a turn that requires speed adaptation,
drivers have two distinct methods of decelerating: either by
releasing the accelerator pedal, taking advantage of engine
braking, rolling resistance and drag, or by pressing the brake
pedal [1]. The deceleration phase generally begins on the
straight road segments, and in many cases continues into the
entry of the curve, while drivers usually begin to accelerate
before having completely exited the turn [7, 8].

In the context of road design and road safety, many studies
model the speed at which a driver can safely negotiate a turn
based on the geometrical characteristics of said turn. While
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this is a useful limit for assistance systems to take into account
as an upper boundary, it does not provide information about a
driver’s desired speed and is consequently not directly usable
in ADAS applications [9]. We wish to model the manner in
which drivers themselves choose their speed, depending on
their preferences of driving style, risk, or safety margins.

Drivers deliberately stay well within the dynamic capabil-
ities of the vehicles they drive [10], performing a tradeoff
between comfort, mostly measured by lateral acceleration, and
speed [11, 12]. However, in most situations drivers tend to
slow down before reaching a corner [1, 10, 13], which means
that some sort of estimation or anticipation of the lateral
acceleration must take place.

There are several approaches to modeling this anticipation.
The vast majority of these propose a direct relationship be-
tween road curvature and speed, fitting parameters to exper-
imental data [2, 9, 14]. Bosetti et al. [1] developed a model
relating speed to road radius based on the two-thirds power
law relating velocity and curvature of human hand movements.
Reymond et al. [15] argue that drivers have a maximum esti-
mated lateral acceleration and adapt their speed accordingly,
taking into account a safety margin on the maximum tolerable
path curvature deviation, but do not provide any explanation
on how drivers estimate this maximum limit.

These models can provide good fits to experimental data
of individual curves, and can estimate maximum velocity
envelopes with good accuracy. However, the models currently
found in literature have their limitations. As seen in the
naturalistic driving studies described above, curvature is not
the only geometric factor that influences speed. In addition,
the actual path geometry can significantly vary with the lateral
position of the vehicle during the turn [8]. In order to account
for the effects of the geometry of the turn, adjacent road
segments, and lateral position, model complexity will increase
[4, 7]. Another issue with these models is that human drivers
have been shown to be poor judges of road curvature [16],
which means that different cues must play a role.

As described previously, speed control in curves consists of
three different phases: engine braking, braking, and acceler-
ation. Geometrical models limit themselves to describing the
desired speed in curves, ignoring approach and exit phases.
In order to design effective ADAS systems, the modeling of
driver preferred pedal actuation in all three cornering segments
is essential.

The combination of these issues means that in order to gain
insight into the actual mechanisms regulating speed choice,
a different approach is necessary. During driving, humans
tend to control their risk by employing certain safety margins
[17]. In situations where speed needs to be adjusted, these
are usually time margins such as the Time to Line Crossing
(TLC) in lane keeping [18] or the Time Headway and Time
To Contact in car following [19]. Contrasting with their poor
performance in judging distances, velocities, and curvatures
[16], humans can very accurately judge visual angles and
time margins to target or contact points [20]. This leads us to
believe that speed adjustment in turns is very likely dependent
on a time margin to a salient point.

Godthelp and van Winsum [18] used this approach, arguing

that speed and curvature are traded off in order to maintain a
constant TLC. However, later research showed that the TLC
is not constant throughout turns of different radius [6, 15].
In addition, similarly to the previously mentioned geometry
based approaches, this model does not provide insight into the
different phases of longitudinal control in curve negotiation,
and does not describe pedal actuation.

Human drivers tend to manage their risk with as little
cognitive and physical effort as possible [21]. This means that
unless there is a factor requiring immediate action in order to
stay within their acceptable risk limits, humans prefer not to
take any action. In the context of this research, this suggests
that we should not aim at developing a model of driver speed
control that aims at keeping a constant safety margin, such
as the TLC model, but rather use time thresholds that trigger
specific actions, such as the release of the accelerator pedal or
the application of the brakes.

Land and Lee [22] introduced the idea that the Tangent Point
(TP) on the inside of a curve is key to curve negotiation, and
a substantial amount of research has shown that drivers focus
their gaze towards the area containing the apex of the curve,
employing what is called TP orientation [23]. However, driver
eye movement studies have shown that drivers do not fixate
only on this point, but also scan areas further up the road in
a controlled pattern [24]. A particular area of interest is the
far road triangle [25], comprised of the TP, the Occlusion
Point (OP), which is the furthest point of the road that is
not blocked by obstacles in the field of vision, and the point
where the driver’s line of vision through the TP intersects the
opposite lane edge, the Extended Tangent Point (ETP).

The contribution of this work lies in combining existing
studies into driver visual behavior with research on drivers’
tendency to use time margins to control their speed, by devel-
oping a model for speed choice based on ETP perception. The
model uses threshold values to distinguish between braking,
acceleration and gas pedal release.

Section II describes the approach taken in designing the
model, the developed speed control algorithm, and predictions
from simulation. Section III explains the identification proce-
dure used to individualize the model parameters. To validate
the model, an experiment was set up and performed, as shown
in Section IV. The results from this experiment are shown in
Section V and discussed in Section VI.

II. MODEL DESIGN

The Time to Extended Tangent Point (TETP), defined as
the time it would take for the vehicle to reach the ETP in a
straight line, while maintaining its speed, could be an excellent
candidate for the development of a simple, yet accurate model
of speed choice in curve driving. This time margin can be
interpreted as a measure of how much the road opens up after
a turn, as illustrated in Figure 1. The curve on the right of
this figure is less tight than the one on the left, and leads to
less speed adaptation. Consequently, on the right example the
ETP is further away from the car than on the sharp curve on
the left, causing a larger TETP value.

The ETP position also captures variations in the car position
on the road, as seen in Figure 2. On the left, the vehicle is
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ETP
TP

Fig. 1. ETP position on curves of different radii and deflection angles.

driving through the turn, and the location of the ETP changes
with the car as it moves from position 1 to position 2. This
way, a model based on the ETP will be able to represent the
speed variation throughout the entire turn. On the right of
Figure 2 the influence of lateral position on the ETP is shown.
When the vehicle is close to the inside of the turn (2), it
effectively makes the turn tighter than when the car is on the
outside (1). This is represented by the comparatively shorter
distance to the ETP in case 2, which will lead to lower TETP
values.

1

2

1 2

ETP
TP

Fig. 2. Change of ETP position with changes in vehicle longitudinal and
lateral positions.

A. Preliminary findings

A preliminary analysis of data obtained from an earlier
experiment on the influence of steering guidance on speed
choice, performed at the Human-Machine Interaction (HMI)
Laboratory of the Delft University of Technology [26], showed
that drivers used two different time margins for the two phases
of speed regulation: they first released the accelerator at a
certain TETP, and only when the TETP went below a certain
lower value would they begin to press the brake pedal.

The study of mid-corner and corner exit behavior also
showed a correlation between speed and TETP. Close to the

end of the decelerating or braking phases, the TETP decreased
more slowly until eventually becoming constant, before in-
creasing again as a consequence of the road opening up after
the turn. Drivers appeared not to use the same thresholds when
accelerating as when slowing down, but became comfortable
once the rate of change of the TETP approached zero. Then,
drivers began accelerating, and only if the TETP started
decreasing again did they resume decelerating or braking.

The curves in this experiment had large radii (minimum of
300m), and therefore many of the subjects did not adapt their
speed throughout the experiment. Therefore, a new experiment
in which all drivers are required to adapt their speed will be
necessary to confirm or reject this hypothesis.

However, this experiment did show that, as would be
expected, each driver is different. Some drivers never adapted
their speed to the given road, while others felt the need to
brake in certain curves. This can be attributed to the idea that
different drivers feel comfortable at different TETP values.
By identifying these different thresholds, and combining them
with different gains on the pedal actuation, it could be pos-
sible to use a TETP based approach to model each driver’s
individual preferences and driving styles.

The combination of these findings lead us to select TETP
thresholds as the primary perceptual variables for the devel-
opment of a model of driver speed control through pedal
actuation.

B. Model architecture
The TETP is determined following the method described

in Appendix A. After calculation of the TETP, its value is
used in a speed control model. The model is divided into five
phases: acceleration, deceleration, braking, brake release, and
re-acceleration. Two thresholds on the TETP value, one for
deceleration and one for braking, and one threshold on the
TETP rate of change determine which of the five phases of the
model is active. A typical example of how the model works is
shown in Figure 3, where a simulated vehicle (see Section II-E
for details) negotiates a 150m radius left turn with a target
speed of 27ms−1 on the straight sections. In this figure, we can
clearly see the differences between the phases of the model.

Initially, the vehicle is above both the deceleration and
braking TETP thresholds, and therefore the acceleration phase
is active. In this phase, the accelerator pedal deflection is only
dependent on the ratio between the current speed and the target
speed. Since the vehicle is already driving at the target speed,
the gas pedal deflection is just enough to overcome engine
braking, rolling resistance and drag, and therefore the vehicle
maintains its speed.

Once the TETP goes under the deceleration threshold,
the model enters the deceleration phase, where it gradually
decreases the accelerator pedal deflection. If the TETP goes
under the braking threshold, the braking phase starts.

If the model is either in the deceleration or the braking
phase, the rate of change of the TETP becomes the most
important factor in the decision of when the model stops
decelerating or begins releasing the brake pedal.

During the braking phase, once the rate of change of the
TETP approaches zero, the model switches to the brake release
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Fig. 3. Simulated TETP, pedal deflections, and speed on a 150m radius
left turn (negative radius in the figure). Positive pedal deflections correspond
to the accelerator pedal, while negative deflections represent brake actuation.
The shaded area represents the deceleration zone, that is, the accelerator pedal
position values that correspond to a zero or negative acceleration.

phase. In this phase the model begins releasing the brakes, and
can even apply a small deflection to the accelerator pedal once
the brakes have been completely released. The accelerator
pedal deflection during the brake release phase can never be
above the deceleration zone shown in the figure.

If the TETP value is in between the deceleration and braking
thresholds, but its rate of change is positive or close to zero,
the re-acceleration phase will activate. This phase represents
the mid-corner behavior, when the vehicle has already slowed
down to the desired corner speed, but is still inside the corner
and therefore cannot accelerate without limitations.

When all TETP thresholds have been cleared, the model
returns to the acceleration phase, accelerating back to the
target speed.

The remainder of this section will describe the model
parameters, followed by a more detailed description of how
these parameters affect the choice of the model phase, and
how pedal deflections are calculated in each of the five phases.
Finally, the results of a sensitivity analysis performed on the
model parameters are shown.

C. Model parameters

To capture the three distinct methods that drivers use to
adapt their speed during cornering, the model regulates vehicle
speed using six driver dependent parameters: two thresholds
on the TETP and one threshold on the TETP rate of change
to determine the model phase, and three actuation gains to
describe the magnitude of the corresponding pedal actuations
in each phase. The parameters are:

• Td [s]: The minimum TETP drivers keep before releasing
the accelerator pedal, and entering the deceleration phase.

• Kd [-]: The accelerator pedal release gain. Determines
how quickly the driver lets go of the gas pedal during
the deceleration phase.

• Tb [s]: The minimum TETP drivers keep before pressing
the brake pedal, and entering the braking phase.

• Kb [-]: The brake pedal depression gain. Determines how
strongly the driver presses the brake pedal during the
braking phase.

• dTa [-]: The rate of change of TETP at which the driver
feels comfortable to begin accelerating out of a turn.
Determines when the brake release and re-acceleration
phases begin, if the model is already in the braking or
deceleration phases, respectively.

• Ka [-]: The accelerator pedal depression gain. Determines
how strongly the driver presses the accelerator pedal
during the acceleration, brake release and re-acceleration
phases.

In addition to these parameters, the model requires the
following information from the vehicle properties and the road
ahead:

• V : current vehicle speed.
• Vmax: maximum speed, determined by either car charac-

teristics, the speed limit on the current road section, or
other external factors.

• TETP: Current time to the extended tangent point.
• dTETP

dt : Rate of change of the TETP, de-noised with a
moving average filter.

• δa,EB : Accelerator pedal position needed to overcome
engine braking, that is, the pedal position at which the
vehicle acceleration is 0ms−2. This value depends on the
current speed and the engine characteristics.

D. Speed control algorithm

The algorithm the model uses to select one of the five
phases, based on the three thresholds Td, Tb and dTa, is
described in Figure 4.

In each of the five phases, the model finds a desired brake
and accelerator pedal deflection, δa and δb respectively. The
way these deflections are calculated for each phase is described
below. These values are bound between the released and fully
depressed states, corresponding to values of 0 and 1. If the
found value in any of the model phases is outside of this
range, it set to the nearest value between 0 and 1.

1) Acceleration: If the current TETP is above the decelera-
tion threshold Tb, the model will go into the acceleration
phase, where the brake pedal deflection is δb = 0 and
the accelerator pedal deflection, δa, is limited only by
the maximum speed on the road segment, as described
by Equation (1).

δa = δa,EB +Ka

(
1− V

Vmax

)
(1)

2) Deceleration: If the TETP is below the deceleration
limit Td, but above the braking limit Tb, the model
is in the deceleration phase. In this case, the brake
pedal deflection continues to be zero, while the desired
accelerator pedal deflection is a function of how far
the TETP is from both thresholds, as described by
Equation (2). The resulting value is bound between
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Start

TETP < Td Acceleration 1

TETP < Tb
dTETP

dt < dTa

Re-acceleration 5

dTETP
dt < dTa Brake release 4

Deceleration 2

Braking 3

no

yes

no

no

yes
yes

no

yes

Fig. 4. Model phase decision flowchart

the accelerator pedal deflection required to maintain the
current speed, δa,EB , and 0.

δa = min

(
δa,EB ,Kd

(
TETP− Tb
Td − Tb

))
(2)

This phase will continue until either the TETP goes
under the braking threshold Tb and the braking phase
starts, or the moving average of the rate of change
of the TETP approaches zero, at which point the re-
acceleration phase begins.

3) Braking: If the TETP is below the braking threshold,
the accelerator pedal deflection is set to zero, while the
brake pedal deflection is dependent on the ratio between
the current TETP and Tb, as described in Equation (3).

δb = Kb

(
1− TETP

Tb

)
(3)

4) Brake release: As the vehicle brakes, the TETP will
gradually stop decreasing. If the rate of change of TETP

becomes larger than dTa while the braking phase is
active, the brake release phase begins. The brake pedal
deflection is the same as in the braking phase (Equa-
tion (3)), with the added limitation that the deflection
cannot increase while this phase is active. While the
vehicle is braking, there should be no accelerator pedal
actuation (δa= 0). During this phase, once δb becomes
0, the model will begin pressing the accelerator pedal.
The deflection δa is then the minimum value between
the pedal position from the acceleration phase, and a
direct function of the rate of change of the TETP, as
determined by Equation (4).

(4)
δa = min

(
δa,EB +Ka

(
1− V

Vmax

)
,

Ka

(
dTETP

dt
− dTa

))

5) Re-acceleration: This phase is entered when the TETP
is between Tb and Td, but its rate of change is above
dTa. In this case, the driver feels confident enough in
their safety to begin accelerating again. The brake pedal
deflection is δb = 0, while the accelerator pedal is the
minimum value between the one found for the acceler-
ation phase, and the value derived from Equation (5).
This calculation is similar to the one in the deceleration
phase, but uses the acceleration gain Ka instead of Kd.

(5)
δa = min

(
δa,EB +Ka

(
1− V

Vmax

)
,

Ka

(
TETP− Tb
Td − Tb

))

These five phases are combined into a pedal trace, which
can then serve as input to a vehicle model, a driver assistance
system, or any other desired application.

E. Simulation results

In order to verify that the model can produce realistic
pedal deflections in simulation, it was coupled with the lateral
control model developed by Sentouh et al. [27]. The simulated
vehicle characteristics and the engine model are described
in Appendix B. A realistic assumption for the speed control
model parameter set, shown in Table I was used, and the
simulation was performed for a variety of road geometry
combinations.

TABLE I
SPEED CONTROL MODEL PARAMETERS USED IN SIMULATION

Td [s] Tb [s] Kd [-] Kb [-] Ka [-] dTa [-]
4 2.5 0.1 4 1 -0.25

An analysis of the sensitivity of the model to changes in
the different parameters was performed. Each parameter was
varied individually, while the others were kept to the values in
Table I. The effects of the parameters on pedal actuation and
speed, for the same curve as Figure 3, are shown in Figure 5.

For the TETP thresholds (Figures 5a and 5b), the results
correspond to expectations: a larger threshold value means
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an earlier onset of engine braking or brake pedal actuation.
Since the magnitudes of the pedal depressions are affected
by different ratios of the current TETP to the thresholds, we
see differences in the pedal traces at every time step. For the
speed, we can conclude that Td has more of an influence on
the smoothness of the speed curve, while Tb determines how
much the model slows down.

The main effects of Kb and Ka (Figures 5d and 5e) are
relatively straightforward: larger values imply larger magni-
tudes for brake pedal depression in the brake phase, and for
the accelerator pedal depression during the acceleration, brake
release, and re-acceleration phases. Kd affects the magnitude
of the deceleration, with lower values corresponding to faster
releases of the gas pedal. Since this value is limited on the
upside by the engine braking pedal position (Equation (2)), in
practice higher values of Kd will correspond to later releases,
as shown in Figure 5c.

Finally, dTa determines when and how strongly the model
accelerates in the brake release and re-acceleration phases.
Lower values result in peaks in accelerator pedal depression as
the TETP stops decreasing, but this strong, quick depression
will make the TETP decrease again. This could result in
oscillations, so values lower than −0.5 should be avoided.

III. IDENTIFICATION PROCEDURE

The model can be individualized by identifying the different
driver dependent parameters. This identification is performed
in two steps: in the first step the TETP thresholds for pedal
actuation are determined, followed by a second identification
process for the three pedal actuation gains and the dTa
threshold.

A. TETP thresholds

For the identification of the two TETP thresholds, Td
and Tb, a binary classification approach was taken. In the
case of deceleration, pedal actuations can be classified as
accelerating, when the pedal deflection is large enough to
overcome engine braking, rolling resistance and drag, and
decelerating, when the pedal deflection is lower. For braking
the two classifications are braking and not braking. The goal
of the identification process then becomes finding the values
of Td and Tb that can predict these classifications, based on
the TETP values, with the highest accuracy.

Many different methods to measure the performance of a
classifier exist, and the choice of the appropriate one depends
greatly on the characteristics and goals of the classifications.
In our specific application, because drivers use the brake pedal
for only a very small proportion of the total driving time, the
sizes of the classifications of braking and not braking differ
greatly in size. This difference in classification size can affect
the performance of many of these metrics. Since the Matthews
Correlation Coefficient (MCC) [28] is a measure the quality
of fit of a classification that has been shown to perform well
even when the sizes of the two classifications are very different
[29], it was selected as the measure to evaluate the correlation
between the observed pedal actuations and their respective
predictions.

In order to use this criterion, we must first organize the
observations into the categories True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN),
depending on whether the threshold correctly identifies the
real driver behavior. A useful way to visualize this evaluation
is in a confusion matrix, or error matrix [30]. The confusion
matrices for deceleration and braking are shown in Tables II
and III respectively. This evaluation is performed for a range
of possible deceleration and braking threshold values (respec-
tively Td and Tb) from 0s to 10s.

For the gas pedal release TETP threshold, the four cate-
gories for each Td candidate are set up as shown in Table II.
For example, a true positive observation would be one where
the gas pedal deflection is in the deceleration zone, and the
TETP is under the chosen threshold Td. Note that in each case
a margin of 30% below the actual value of δa,EB , denoted as
δ̃a,EB , is used, to ensure that the method actually captures
instances in which drivers consciously decide to slow down,
rather than natural oscillations in gas pedal deflection.

TABLE II
CONFUSION MATRIX FOR ACCELERATOR PEDAL RELEASE

TETP ≤ Td TETP > Td
δa ≤ δ̃a,EB TP FN
δa > δ̃a,EB FP TN

Figure 6 shows an example of how this classification
procedure works in a single turn. Instances when the TETP
is under the Td candidate value and the accelerator pedal
is under δ̃a,EB , are classified as TP. When the driver first
releases the accelerator pedal, the TETP has not yet passed
under the threshold, which means that these points are FN. In
this example, the driver’s gas pedal deflection also goes above
δ̃a,EB before TETP goes above the candidate, leading to FP
observations close to the time when the driver re-accelerates.
All other points without additional markings are labeled as
TN.

For the brake pedal case a similar set up is used. The
classification parameters are displayed in Table III. However,
since the goal of this approach is to find the time margins that
trigger the onset of braking, we wish to exclude points counted
as FN during with the drivers are already in the process of
releasing the brakes. To do this, we subtract the number of
occurrences of FN during which the brake pedal is being
released from the number of FN found, and add the same
value to the TN count.

TABLE III
CONFUSION MATRIX FOR BRAKE PEDAL DEPRESSION

TETP ≤ Tb TETP > Tb
δb > 0 TP FN
δb = 0 FP TN

Once the confusion matrices are set up for each candidate
value, the MCC is calculated according to Equation (6), where
nTP , nFP , nTN and nFN are the number of occurrences
of TP, FP, TN and FN, respectively. The candidate values
with the corresponding highest MCC scores are chosen as Td
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Fig. 6. Example of the classification procedure for accelerator pedal release

and Tb, taking care that the value of the time threshold for
deceleration must always be higher than the one for braking.
MCC =

nTP · nTN − nFP · nFN√
(nTP + nFP )(nTP + nFN )(nTN + nFP )(nTN + nFN )

(6)

B. Other parameters

Once the two time thresholds have been found using the
procedure above, the speed choice model is ran for a range of
values of the parameters dTa (−0.5 to 0), Ka, Kd and Kb (all
from 0.01 to 10). In order to find the optimal values, a non-
linear least squares optimization is performed on the difference
between the experimentally recorded accelerator and brake
pedal traces, and the pedal traces resulting from the model.
The combination of values that results in the best fit for each
subject is chosen as that subject’s parameter set.

IV. EXPERIMENTAL METHOD

An experiment was set up at the fixed-base driving simulator
in the HMI Laboratory, at the Faculty of Aerospace Engineer-
ing of the Delft University of Technology, in order to satisfy
three main goals:

1) Show that a TETP based speed model can capture gen-
eral trends of driver speed adaptation to road geometry.

2) Provide evidence for the three phases of speed adap-
tation, and show that TETP triggers can explain these
phases more accurately than TLC.

3) Provide validation data in order to individualize the
model, and measure its performance in reproducing
individual drivers’ speed control strategies.

A. Apparatus

The simulator, depicted in Figure 7, used passive accelerator
and brake pedals, and the steering wheel had a passive spring,
with simulated mass dynamics. A LCD screen was used
to display speedometer information, while three projectors
displayed the driving scene, generating a field of view close
to 180 degrees. Realistic engine sound was played through
speakers to aid in speed perception. The simulated vehicle
was equipped with an automatic 4-speed gearbox.

Fig. 7. The fixed-base driving simulator at the Faculty of Aerospace
Engineering of the Delft University of Technology

B. Participants

A total of 16 subjects (3 female, 13 male) took part in
the experiment. No financial compensation was offered. One
male subject suffered from simulator sickness after two runs,
therefore his data was removed from further analysis. The
remaining subjects were a mix of experienced and novice
young (25 ± 2 years old) drivers. They were in possession
of driving licenses for 6.1 ± 2.6 years, and drove an average
of 4600± 4200km per year.

C. Road design

Subjects drove on 6 different roads, in random order, with a
posted speed limit of 100kmh−1. These 6 roads correspond to
different combinations of two road widths (3.6m and 2.4m),
two corner radii (150m and 300m), and two deflection angles
(45 and 90 degrees), connected by straight road segments. In
addition, each road has one set of left and right connected turns
(radii of 150m, deflection angles of 45 degrees), and finishes
with a longer straight segment followed by a 90 degree 75m
radius curve. Table IV shows the geometrical parameters of
the roads designed for the experiment, and road 3 is shown in
Figure 8 as an example. In order to improve speed perception,
the road was lined with poles spaced at regular intervals, and
trees were placed in the scenery.
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Fig. 8. Road 3 of the experiment (width not to scale).

Of the designed roads, four were used for identification
(roads 1, 2, 3 and 5) and two for validation (roads 4 and
6) for all subjects.

TABLE IV
GEOMETRY OF THE ROADS USED IN THE EXPERIMENT

Road 1 2 3 4 5 6
Road width [m] 3.6 3.6 3.6 3.6 2.4 2.4

C1
radius [m] 300 300 150 150 300 300
angle [o] 90 90 90 90 90 90
direction R L R L R L

C2
radius [m] 300 300 300 300 300 300
angle [o] 90 90 90 90 90 90
direction L R L R L R

C3
radius [m] 150 150 150 150 150 150
angle [o] 45 45 45 45 45 45
direction R L R L R L

C4
radius [m] 150 150 300 300 150 150
angle [o] 45 45 45 45 45 45
direction L R R L L R

C5
radius [m] 150 150 150 150 150 150
angle [o] 45 45 45 45 45 45
direction LR RL LR RL LR RL

C6
radius [m] 150 150 150 150 150 150
angle [o] 90 90 90 90 90 90
direction L R L R L R

C7
radius [m] 150 150 150 150 150 150
angle [o] 90 90 90 90 90 90
direction R L L R R L

C8
radius [m] 75 75 75 75 75 75
angle [o] 90 90 90 90 90 90
direction R L R L R L

D. Experimental procedure and task

Subjects were informed of the experimental procedure and
their task before the experiment, and this information was
repeated to them before taking place in the simulator. Before
driving, subjects filled in a short questionnaire.

Subjects were instructed to drive as they would in a real
world driving situation, adapting their speed and steering

behavior in order to stay within the lane boundaries. They were
told the roads allowed only for one-way traffic, and that they
could use all of the available road width. They were requested
to treat the speed limit of 100kmh−1 in the same manner they
would treat a speed limit on a real road.

Each road was approximately 4km in length, with the
driving time depending on how fast the subjects drove. The
total experimental time was approximately 30 minutes per
subject.

Before the experiment, drivers were given time to famil-
iarize themselves with the simulator by driving a road with
similar characteristics to the ones used in the experiment twice.
If drivers felt they needed more time to become comfortable
with the conditions after these two runs, they were given extra
time. No subjects drove more than three familiarization runs.

V. RESULTS

This section describes how the model satisfied the three
experimental goals. First, we measured the ability of the
TETP model to capture the general trend of speed adaptation
to corners with different geometrical features in naturalistic
driving. The second evaluation concerns the different phases
of braking, and shows that drivers do indeed use TETP triggers
to control their brake and gas pedal activity, and not TLC.
Finally, we measured the performance of the individualized
driver model for each subject of the experiment.

A. Naturalistic driving

To analyze the effect of road geometry on speed and TETP,
the curves of the experiment were segmented, and driving
data were averaged over identical segments. In the figures
shown in this section, the number of identical segments that
were averaged is denoted by n. The direction of the turn was
not found to have a significant influence on the minimum
(p = 0.87) and average (p = 0.74) speeds in curves. However,
the minimum TETP margin drivers kept on right turns was
approximately 0.1s smaller on right turns when compared to
left turns (p = 0.003), therefore in further analysis left and
right turns are treated separately.

For all subjects and each combination of geometrical factors
(curve radius, road width, curve deflection angle, and turn
direction) the most critical situations in terms of minimum
speed and minimum TETP were found. In order to determine
whether the model can produce the same trends as the experi-
mental results show, the model was run over the two validation
roads using a reasonable assumption for the parameters, shown
on the last row of Table V, and the results were compared with
the experimental data.

Figure 9 shows the results of this comparison for the
minimum curve speed. It can be seen that the model captures
the general trend of the experimental data, showing higher
speeds for larger road widths and larger radii. The chosen
parameters result in minimum curve speeds that are close to
the lower range of minimum speeds kept by drivers on small
radius curves.

The results for the minimum and average TETP kept in each
segment are shown in Figures 10a and 10b. The parameter
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represent experimental data, while the line represents model simulation results
using a typical parameter set. n is the number of identical segments that the
experimental data were averaged over.

assumption results in TETP values on the high side of the
experimental data, but the model captures the trend of the
variation of both minimum and average TETP with curve
geometry quite well.

The same experimental data can also be used to verify the
interaction of geometrical factors on speed and safety margins
found in literature. Since the number of segments was not
balanced, a repeated measures ANOVA with a Bonferroni
correction (α = 0.05) was performed to find significant
differences between the various combinations.

No statistically significant interactions of curve deflection
angle or road width on speed were found in this experiment.
The radius effect was significant (p < 0.0121) for all com-
binations on the same road width excluding the 300m radius
curves.

On wide roads, the combinations with radius of 300m
showed significantly higher minimum TETP values than all
other combinations (p < 0.0174). For the curves with radii
of 75m and 150m, no combinations of geometric factors
showed significant differences to all other combinations, and
no patterns of significance caused by any of the factors were
found.

The average TETP in curves was only decreased signif-
icantly (p < 0.0189) with decreasing road width for the
75m radius turns, while no other combination of curves with
the same radius, deflection angle and direction showed an
influence of road width. For all of the curves of 150m radius,
a higher deflection angle resulted in lower average TETP
(p < 0.0000).

B. TETP thresholds

Figure 11 shows how TETP, TLC (values above 10s are
ignored and set to 10s), speed, and pedal deflection interact
during approach, mid-corner, and exit of a curve.

As predicted, the pedal trace clearly shows the distinct
deceleration methods. As the car approaches the curve, the
TETP decreases linearly. The driver releases the gas pedal
once a certain TETP threshold, indicated by the dashed
vertical line, has been passed, at approximately 50m before
the corner. After releasing the gas pedal, the TETP continues
to decrease, eventually making the driver apply the brakes
(solid vertical line). Once the TETP stops decreasing, the
driver feels comfortable enough to begin re-accelerating, and
after the TETP has increased past any thresholds, the driver
eventually increases the acceleration.

The figure shows the value of using TETP triggers for
modeling speed adaptation: at a TETP of approximately 3s the
driver releases the gas pedal, followed by braking at a TETP
of approximately 2.3s. It also provides evidence that the TETP
is a better candidate than the TLC for curve speed modeling
applications. The TLC shows considerable variability, even on
straight segments of road, as it depends on the steering inputs
of the driver. On the other hand, the TETP depends only on the
speed, the position of the vehicle, and the road geometry. The
figure also shows that the minimum TLC value is reached at
the exit of the corner, when the driver is already accelerating
out of the turn.

The TETP thresholds for decelerating and for braking,
Td and Tb respectively, were calculated using the method
described in Section III for each subject on each of the six
roads individually, in order to determine whether the driver’s
speed adaptation strategy varies with road width. The results
are displayed in Figure 12, and show that neither of the thresh-
olds changed significantly with road width: p(Td) = 0.14,
p(Tb) = 0.73.

C. Model validation
For each subject, data from the four roads designed for

identification were used to identify the driver dependent pa-
rameters, using the procedure detailed in Section III. The
identified model parameters for each subject of the experiment
are shown in Table V, along with their means and standard
deviations. Both Ka and dTa do not exhibit a large variance
between subjects when compared to the other parameters.

The model was validated using two different approaches:
first a single 75m radius turn, followed by an analysis of the
performance over a 4km long winding road.

1) Single turn: In literature, speed control models are
usually judged on their performance in a single turn [2, 6, 9].
In this case, the model was initialized on a straight segment
approximately 500m before a 75m radius 90 degree turn. The
results of this validation are given in Table VI, while Figure 13
shows an example of the model performance. In this example,
the model tracks the speed and pedal deflections with great
accuracy, and the only significant mismatch is the fact that
the real driver releases the gas pedal slightly earlier than the
model and coasts for approximately 50m before applying the
brakes. The braking event timing is extremely accurate, with a
small difference in magnitude of brake pedal actuation caused
by the difference in speed at the onset of braking due to the
extra coasting. The short release of the accelerator pedal on
curve exit is also reproduced.
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Validation results showed that, for most subjects, the TETP
based model can accurately track driver speed choice in an
isolated turn, with an average speed Variance Accounted For
(VAF) above 60%. The acceleration and gas pedal deflection
VAF values are lower, but the fact that they are, on average,
above 30% can be seen as a corroboration the speed results.
The brake pedal deflection VAF values are low, but this can be
attributed to the fact that there are only few occasions where
drivers actually use the brake pedal, resulting in low variance
overall. This can cause small differences in the variance to
result in low VAF values.

The VAF results show large variability, with a standard
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Fig. 12. Change in Td and Tb with road width. The time thresholds are
identified for each subject on each road, resulting in 60 measurements for the
wide road and 30 for the narrow road in each case.

deviation of the speed VAF of approximately 30%. For four of
the subject/road combinations the speed VAF is below 25%:
this occurs for both validation runs of subject 6, the narrow
road run of subject 8, and the wide road run of subject 9. Two
of these runs are exemplified in Figure 14.

In the case of subject 8, shown in Figure 14b, the model
performs as expected, but slows down slightly later and more
strongly than the real driver. The intrinsic variability of human
behavior means that drivers will not perform the same task in
the same manner every time, leading to poor performance of
the model in this instance.

The cases of subjects 6 and 9 are different, as exemplified
in Figure 14a, and show that the model, and especially
the modeling of the relationship between TETP and pedal
actuation, must still be improved. These two subjects use
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TABLE V
IDENTIFIED PARAMETERS FOR EACH SUBJECT

Subject Td [s] Tb [s] Kd [-] Kb- Ka [-] dTa [-]
1 3.7780 3.0710 0.9989 5.1329 1.0031 -0.2500
2 4.8200 2.1230 0.9923 4.9843 0.9988 -0.2495
3 4.3380 2.8460 0.1649 4.1200 1.0027 -0.2480
4 3.8540 2.7940 0.8327 4.7101 0.9988 -0.2487
5 4.6340 3.5960 0.1579 4.3751 0.9930 -0.2496
6 7.1480 3.9040 1.0440 4.6086 0.9916 -0.2497
7 5.6200 3.8060 0.0595 4.9297 0.9983 -0.2500
8 3.2780 2.4930 0.5274 4.7574 0.9910 -0.2543
9 8.3930 6.2850 0.2233 4.9901 1.0001 -0.2500
10 4.8890 2.6760 0.7218 5.2828 1.0269 -0.2408
11 4.7600 2.2770 2.8536 0.9874 0.8727 -0.0118
12 3.9150 1.2150 0.0450 4.8248 0.9969 -0.2501
13 5.1480 4.7130 0.7592 4.9988 1.0000 -0.2500
14 3.4920 2.6490 0.1816 2.9510 0.9552 -0.2462
15 3.0750 1.9780 0.1936 0.5795 0.8721 -0.1391

Mean 4.6673 3.2597 0.6504 4.1488 0.9801 -0.2259
StdDev 1.4342 1.1286 0.7130 1.4776 0.0460 0.0657
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Fig. 13. Example (S4) of the performance of the model on an isolated
75m radius turn. Positive pedal deflections correspond to the accelerator
pedal, while negative deflections represent brake actuation. The shaded area
represents the deceleration zone, that is, the accelerator pedal position values
that correspond to a zero or negative acceleration.

larger values of Td, for different reasons. Subject 6 drove
at consistently high speeds (vavg = 26.8ms−1), but released
the accelerator pedal relatively early and braked as little as
possible, while subject 9 drove at comparatively slow speeds
(vavg = 20.1ms−1) throughout the experiment and started the
brake phase early, as evidenced by a Tb value of 6.29s.

In conclusion, the model captures a typical driver on a single
turn with good accuracy, but there is room for improvement
in the way extreme cases are dealt with.

2) Entire road: In the second validation approach, the
model is initialized at the beginning of a 4km curved road
with various combinations of turn geometry, and the speed
tracking performance is evaluated over the entire length of
the road. The results of the model performance evaluation are
displayed in Table VII.

Figure 15 shows an example of good model performance,
where the largest mismatch between the model and the

TABLE VI
EVALUATION OF THE TETP SPEED CONTROL MODEL PERFORMANCE FOR

A WIDE AND A NARROW ISOLATED TURN WITH 75M RADIUS.

Subject VAF(v) [%] VAF(a) [%] VAF(δa) [%] VAF(δb) [%]
S1W 90.23 70.51 44.85 65.492
S1N 85.06 77.57 48.96 77.40
S2W 85.76 31.11 45.27 0
S2N 80.84 0 22.43 0
S3W 88.29 14.40 50.49 0
S3N 78.36 0 37.03 0
S4W 96.04 78.19 24.95 73.65
S4N 87.14 67.15 40.56 53.75
S5W 93.95 53.79 46.25 37.16
S5N 90.50 50.19 36.38 29.53
S6W 0 25.89 8.07 9.57
S6N 0 0 38.88 0
S7W 50.84 34.20 51.15 0
S7N 73.88 61.65 44.44 42.86
S8W 73.37 48.54 54.25 0
S8N 11.18 0 19.43 0
S9W 0 0 35.85 0
S9N 34.80 0 55.83 0

S10W 77.42 36.47 49.41 0
S10N 63.77 0 38.06 0
S11W 64.67 24.06 23.85 25.91
S11N 77.31 70.26 29.72 85.83
S12W 81.42 54.74 52.01 30.60
S12N 35.62 9.12 46.97 0
S13W 36.60 0 44.67 0
S13N 62.65 6.56 40.75 14.09
S14W 82.03 25.83 24.13 0
S14N 67.24 57.39 53.32 36.62
S15W 54.63 28.26 28.31 0
S15N 91.78 23.38 47.64 0
Mean 63.85 31.64 39.46 19.41

StdDev 29.68 27.18 12.02 27.53

experimental data is an excessive slowdown of the model
during the first curve. For the pedal trace comparison, the
figure shows acceptable model performance, reproducing most
deceleration and acceleration events well. The human driver
shows additional variability on the straight segments, that the
model does not capture. The three braking events are well
reproduced, but the model brakes in three additional situations.

Analyzing the model performance on the complete road, it
stands to reason that the VAF values would be lower. The
average speed VAF is approximately halved, while the values
for the other three measures decrease more. Aside from the
increased influence of inherent human variability on the results
caused by driving for longer periods of time, this reduced
model performance can be attributed to at least two additional
causes.

Since the model is only given the initial conditions (speed,
acceleration, pedal deflections) at the start of the road, errors at
the beginning can accumulate: for example, if the model slows
down more than the real driver in a turn, and accelerates out
of the turn at the same rate as the real driver, the modeled
TETP will be different than the real TETP at the entrance of
the next turn, causing different behavior.

Another issue that reduces model performance in some
situations relates to the target speed on straight sections. In the
validation procedure, this target was set to the maximum speed
that the driver reached during the entire run, on the assumption
that drivers would drive close to the given speed limit on all
straight sections. This proved not to be the case for all subjects,
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(a) Subject 6, narrow road
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Fig. 14. Two examples of decreased model performance.

Fig. 15. Example (S4) of the performance of the model on a 4km length wide road. Positive pedal deflections correspond to the accelerator pedal, while
negative deflections represent brake actuation. The shaded area represents the deceleration zone, that is, the accelerator pedal position values that correspond
to a zero or negative acceleration.

as shown for subject 12 on a wide road in Figure 16. In this
case, the maximum speed (27.87ms−1) was achieved on the
penultimate straight, but on previous straights the speed is
considerably lower. This causes the model to accelerate more
than the real driver, and since a higher speed results in a lower
TETP, also brake earlier and harder. An improvement of this
part of the model would ensure better results, but speed control
on straight roads is outside of the scope of this research.

Despite these flaws, an average speed VAF of 35.6% shows
that the developed model can still reproduce speed control
along a 4km curved road with satisfactory accuracy. Further-
more, when excluding the two subjects (6 and 9) with known
issues described in this section, this average VAF increases to

46.1%.

VI. DISCUSSION

A. Naturalistic driving

In literature, curves with radii of 300m or higher are
generally not considered to require speed adaptation [4, 5].
This experiment showed the same results, with the radius of
the road only influencing speed for curves of radius smaller
than 300m. Similarly, the minimum TETP kept by drivers was
only significantly higher on the segments of radius higher than
300m. This can be seen as evidence that drivers allow for the
same risk, measured as the TETP, on all curves that require
speed adaptation.
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TABLE VII
EVALUATION OF THE TETP SPEED CONTROL MODEL PERFORMANCE FOR

A WIDE AND A NARROW 4KM ROAD.

Subject VAF(v) [%] VAF(a) [%] VAF(δa) [%] VAF(δb) [%]
S1W 60.76 25.43 28.39 4.53
S1N 68.54 48.56 42.46 36.69
S2W 45.87 6.23 4.74 0
S2N 73.55 0 6.47 0
S3W 58.65 0 29.29 0
S3N 73.55 0 6.47 0
S4W 80.87 21.74 7.06 2.44
S4N 73.55 0 6.47 0
S5W 51.17 0 29.48 0
S5N 73.55 0 6.47 0
S6W 0 0 0 0
S6N 0 0 0 0
S7W 24.67 0 25.04 0
S7N 34.68 0 30.00 0
S8W 14.80 0 0 0
S8N 0 0 0 0
S9W 0 0 0 0
S9N 0 0 1.12 0

S10W 64.06 27.35 30.37 0
S10N 50.89 6.89 34.09 0
S11W 66.05 5.45 19.28 0.52
S11N 17.09 7.11 10.80 7.30
S12W 0 0 0 0
S12N 0 0 0 0
S13W 9.99 0 0 0
S13N 0 0 16.28 0
S14W 60.54 5.97 21.21 0
S14N 0 0 0 0
S15W 50.87 33.61 33.12 0
S15N 40.88 29.24 27.09 2.27
Mean 35.6402 8.7438 16.5597 1.7917

StdDev 29.1154 13.2987 14.7633 6.7843

Fig. 16. Example of decreased model performance due to target speed
mismatch (S12, wide road).

The average TETP kept in turns showed more dependence
on road geometry than the minimum TETP. While the curve
deflection showed no significant influence on the minimum
TETP, the average TETP was lower for curves with a higher
deflection angle. This shows that higher angle curves cause
drivers to maintain a higher TETP risk for longer periods of
time, but the maximum TETP risk does not change signifi-
cantly.

However, these conclusions require further confirmation, as
the experiment was not designed to answer these questions,
and therefore did not have enough repetitions of all combina-
tions of geometrical parameters. In order to conclusively deter-
mine the effect of road width on speed and TETP, a different
experiment, with more repetitions, should be performed.

The findings on driver strategy showed no statistically

significant differences between the TETP thresholds used by
drivers on wide and narrow roads. This indicates that drivers
maintained the same strategy independently of the width of
the road.

B. Time to Line Crossing

Godthelp and van Winsum [18] proposed that drivers trade
off steering performance and speed in order to maintain a
constant TLC. Subsequent studies showed that for larger radii,
the TLC is not constant [1, 6, 15], and the same was found in
this experiment. However, we argue that drivers do not strive
for a constant safety margin, but merely intervene once a safety
margin passes a certain threshold. While the TLC provides
excellent information on the criticality of the task, and we
believe that the TLC is an important factor in regulating speed
and steering actions in order to maintain lane position, it
does not appear to be suited to use as a threshold for speed
adaptation to curves. Even though TLC and TETP generally
coincide on turn entry, the TLC usually reaches its minimum
value close to turn exit, when the TETP value has already
increased considerably and the driver is accelerating out of
the curve.

An interesting conclusion can be drawn from the obser-
vation that as the vehicle approaches a turn, the TETP and
TLC values almost coincide, with the TLC being consistently
slightly lower. Since the TLC is a measure of the time the
vehicle would take to cross the road edge if it would maintain
the current trajectory, this can be regarded as evidence that
drivers steer towards an area adjacent to the tangent point in
curve driving: when drivers aim their car in a straight line
towards the tangent point, the TLC will be measured at the
next intersection of this straight line with the road edge. This is
the same principle as the ETP, which is simply the continuation
of the visual line from the driver to the TP onto the next road
edge. If drivers do not aim at the TP, but at an area just to the
inside of the curve from it, the TLC value will be calculated
to a point slightly closer to the driver than the ETP, resulting
in a slightly lower TLC value than the TETP value, which
agrees with the results of this experiment.

C. Model performance

The model performance evaluation suggests that a TETP
threshold based approach for speed modeling is very promis-
ing, and that the current model can reproduce speed behavior
with good accuracy on single turns. Since no speed models
that take into account driver pedal actuation currently exist,
it is difficult to evaluate how good this performance is in
comparison to models from literature.

However, there is still room for improvement in the model
of the relationship between TETP and pedal actuation. The
equations for pedal deflection described in Section II serve
as good initial estimations for this relationship, but further
research should focus on improving these.

The evaluation method itself is also a factor: evaluating
brake pedal deflection tracking with VAF is a flawed approach.
The low amount of braking events result in low overall
variance, causing small mismatches in brake timing to result in
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low VAF. Further research into pedal deflection models should
use a different evaluation procedure, such as the amount of
braking events that were correctly modeled, and a measure of
the time and magnitude differences in the application of the
brakes of the model when compared with experimental data.

Furthermore, the model suffers from two known issues that
should be first priority in any future development of the model.

The first one can be seen in Figure 14a, where the oscillation
in pedal actuation that occurs close to turn exit is worthy
of note. When the TETP value is under the engine braking
threshold, denoted as deceleration zone in the figure, the rate
of change of TETP takes on great importance in the drivers
evaluation of whether it is safe to accelerate. In these cases,
where the TETP can vary considerably while remaining under
the threshold, the current implementation is flawed as it relies
on a hard threshold on the rate of change of the TETP. Further
research is necessary on how exactly this rate of change
relates to pedal actuation is necessary. Furthermore, in real
driving mid-corner speed control is likely to be governed
by the lateral acceleration drivers feel instead of the rate of
change of a visual parameter, casting doubt on the usefulness
of research into mid-corner speed behavior in a fixed-based
driving simulator.

Observing Figure 15, the second flawed behavior of the
model can be identified. In the curve-countercurve section,
just after 2000m, the model brakes strongly, at the same time
as the real driver begins accelerating out of the turn. This is
due to the way the ETP is determined by the model. The issue
is illustrated in Figure 17: as the driver approaches the curve
apex, their line of sight past the tangent point intersects the
road edge on the same side of the TP, meaning that there is
no ETP on the other lane edge (case 1 in the figure). Without
an ETP, the model assumes it is free to accelerate, but once
the TP has moved to the opposite side of the road (case 3
in the figure) the algorithm detects an ETP again, causing a
large change in TETP. At this point the TETP is still under
Td, which as described above means that the rate of change of
the TETP has a great influence on speed control. This sudden
decrease in TETP causes sudden, hard braking. Modifying the
ETP detection algorithm to allow this point to be on the same
side of the road of the TP does not solve this problem, as the
sudden switch between ETP sides once the driver is past the
TP causes the same issue, and the TETP becomes very small
as the driver approaches the turn, causing excessive slowdown
(case 2 in the figure). A new way to deal with the switching
of sides of the ETP must be found in future work.

1
3

2 ETP
ETP

same side
TP

Fig. 17. Diagram illustrating the flaw in the ETP detection algorithm for a
counter-countercurve scenario

D. Practical applications and future work

While this model incorporates much of the current state-of-
the-art of research into human’s visual targets when driving,
some effects could benefit from further investigation. Research
has shown that drivers don’t limit their look-ahead fixations
to the far-road triangle, but occasionally look at points further
ahead, allowing the anticipation of the need for speed adapta-
tion [31].

Another aspect that could affect speed control in a similar
manner is the effect of memory in driving. Not much research
has been performed on this subject, however Lappi et al. [25]
argue that memory has an important influence on where drivers
look. Visual perception during driving occurs in a intermittent
fashion: drivers monitor different targets, rotating their gaze
over the various salient points. On a familiar road, drivers
will know when to look at certain points to obtain crucial
information. In the case of speed adaptation, this could result
in lower safety margins, as drivers will be aware of the points
at which they have to pay more attention to their current TETP,
enabling them to detect crossings of the threshold with more
accuracy. However, these effects are currently not well known,
and further research into the interaction of visual strategies
with memory is necessary.

The experiment was conducted on a single-lane road, mak-
ing it easier for drivers to visualize the location of the ETP. A
possible topic for further research is investigating how driving
on a dual-lane road, where drivers must keep to one side,
affects these results.

The TETP threshold based model showed good performance
reproducing results of a fixed-base simulator experiment. How-
ever, many of the experimental subjects reported that the lack
of motion affected their speed perception, especially during
braking. Reymond et al. [15] compared speed adaptation
behavior in static and dynamic simulators, and argue that
drivers use similar strategies in both cases, but that the factors
influencing these strategies are affected by an underestimation
of speed in fixed-based simulators. In the context of TETP
as a cue for speed adaptation, we expect the driver specific
thresholds to be affected by this underestimation. It would be
worthwhile to conduct an experiment in a dynamic simulator.
The addition of motion should result in lower speeds, and
therefore higher TETP thresholds, without affecting the overall
strategy.

Another issue stemming from the lack of motion feedback
in the performed experiment concerns the mid-corner phase. In
the current implementation of the model, the rate of change of
the TETP is the main indicator governing speed in this phase.
While this results in a model that performs well, we expect the
lateral acceleration felt by the driver to be the dominant factor
in mid-corner speed choice. We recommend an experiment in
a moving-base driving simulator to investigate speed control
in the mid-corner phase. However, we do not expect the felt
lateral acceleration to significantly alter drivers’ behavior on
corner approach and exit.

The developed model offers significant advantages over
models found in literature in the context of the current push
towards better ADAS and self-driving vehicles. By modeling
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the driver’s pedal actuation, we enable future research toward
a haptic pedal assistance system similar to the one developed
by Mulder et al. [32] for car following. We envision a future
Haptic Shared Control (HSC) system that enables the driver
to feel the severity of upcoming turns through forces on the
gas pedal. Such a system has the potential to improve safety
and driving performance on curved roads.

However, for this model to be applicable to HSC systems,
the current knowledge of the neuromuscular dynamics of
driver’s pedal actuation must be combined with the visual
perception model described in this paper [33]. With such an
approach, the realism of the modeled pedal actuation triggered
by TETP safety margins can be greatly improved.

VII. CONCLUSION

To the best of our knowledge, this research is the first
to directly relate visual perception to pedal actuation when
driving on a curved road. Using two thresholds on a single
perceptual variable, the time to extended tangent point, the
developed model is able to accurately capture the different
phases of deceleration and acceleration caused by curves.

This approach offers several advantages over traditional
models of speed choice in curved roads. Previous research
has shown that in car following and lane keeping, time safety
margins are the primary method used for speed regulation. The
developed speed model brings curve driving into the larger
framework of risk-based speed adaptation. Furthermore, by
directly modeling the pedal actuation instead of the resulting
speed, new methods of assisting drivers during cornering using
haptic shared control can be developed.

APPENDIX A
ETP DETECTION

To control speed based on TETP, we must first determine
the location of the extended tangent point. In order to enable
the model to be implemented in future ADAS applications,
it must include a feasible method of finding the necessary
information.

In this case, the algorithm used to find the ETP is based
on a method for locating the TP of a curve developed by
Gallen and Glaser [34]. This method uses a car-mounted
camera to sample discrete locations of points on both lane
edges at a regular interval, calculates the angle between the
current vehicle location and these points, and finds the point at
which this derivative passes through zero. This zero crossing
means that the angle from the car to the side of the road
changes direction, denoting the tangent point of the curve.
This procedure is illustrated in Figure 18a, where the black
points are the candidates the algorithm searches through until
a zero derivative of the change in angle from one point to the
next is found. The TP location is shown in dark gray.

The TP finding method was extended in a similar fashion
to enable the detection of the ETP, by calculating the angles
between the car and the road points on the opposite lane edge
of the TP. When this angle equals the angle to the TP, we have
found the ETP. This is illustrated by Figure 18b. However,
since the discrete road sampling points do not necessarily

Tangent Point
Candidate Points

(a) TP search procedure

Tangent Point
Extended Tangent Point
Candidate Points

(b) ETP search procedure

Fig. 18. Illustration of the methods to find the tangent point and the extended
tangent point.

match, it is possible that an angle exactly equal to the TP
angle does not exist. To solve this, the point on the opposite
road edge where the difference between its angle and the angle
from the car to the TP crosses zero is used.

APPENDIX B
VEHICLE CHARACTERISTICS

The characteristics of the vehicle used in simulation are
shown in Table VIII.

TABLE VIII
SIMULATED VEHICLE CHARACTERISTICS

Vehicle mass 1600 kg
Front tire cornering stiffness 30000 N·rad−1

Rear tire cornering stiffness 30000 N·rad−1

Vehicle yaw moment of inertia 3136 kg·m3

Front wheelbase 1.4 m
Rear wheelbase 1.4 m

Steering wheel rotational inertia 0.5 kg·m2

Steering wheel stiffness 16.8
Steering system damping 5 kg·m

Steering gear ratio 15

A. Longitudinal vehicle model

The vehicle acceleration is calculated according to Equa-
tion (7), where v is the current vehicle speed, G is the
contribution of the gas pedal to the vehicle acceleration, shown
in Equation (8), and B is the brake contribution, shown in
Equation (9).

a =
4 (G−B)−

(
Kres · v2 + 200

)

M + 100 +Kin · gearratio2 (7)

(8)G = 0.9 · gearratio (Krpm,1 · rpm−Krpm,2 · rpm) ·(
Kg,1 · δa +Kg,2 · δ2a +Kg,1 · δ3a

)

(9)B = Kb,2 · pb +Kb,3 · pr
The various parameter values are described in Table IX.
The simulated vehicle uses a four speed automatic gearbox

with the gear ratios displayed in Table X and fixed shift points
depending on the gas pedal position, velocity and current gear.
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TABLE IX
LONGITUDINAL VEHICLE MODEL PARAMETERS

Parameter Value
Krpm,1 0.1186
Krpm,2 0.00001252
Kg,1 3.944358
Kg,2 -5.12919
Kg,3 2.178

pb
0 if δb < δb,threshold

200 · δb if δb ≥ δb,threshold
δb,threshold 0.05

pr
pb if pb < pb,threshold

30 +Kb,1 (pb − 30) if pb ≥ pb,threshold
pb,threshold 30

Kb,1 0.5
Kb,2 29.43
Kb,3 14.0283
M 1600 kg
Kres 1.7504
Kin 1.65289256198347

TABLE X
SIMULATED VEHICLE GEAR RATIOS

Gear 1 2 3 4
Ratio 11.37 6.31 4.08 2.83
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Figure A-1: Variation of experimental and modeled average curve speed with curve radius, road
width, and curve deflection angle. The boxes represent experimental data, while the line represents
model simulation results using a typical parameter set. n is the number of identical segments
that the experimental data was averaged over.

Virǵılio Gruppelaar



A-1 Naturalistic Driving Data 23

2.5

3

3.5

4

4.5

5

5.5

T
E

T
P av

g [
s]

radius [m] / width [m] / angle [deg] / direction / n 

75 150 300
2.4 3.6 2.4 3.6 2.4 3.6
90 90 45 90 45 90 90 45 90
L R L R L R L R L R L R L R L R L R
1 1 2 2 2 2 2 2 3 3 5 5 2 2 1 1 3 3

Simulation Results

Figure A-2: Variation of experimental and modeled average TETP with curve radius, road width,
and curve deflection angle. The boxes represent experimental data, while the line represents model
simulation results using a typical parameter set. n is the number of identical segments that the
experimental data was averaged over.
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Figure A-3: Comulative distribution function of the experimental TETP values.
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A-1-2 TLC distribution
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Figure A-4: Variation of experimental minimum TLC with curve radius, road width, and curve
deflection angle. n is the number of identical segments that the experimental data was averaged
over.

A-1-3 Corner entry lateral position
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Figure A-5: Distribution of lateral position on corner entry. Positive values correspond to the
inside of the curve.
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Figure A-6: Influence of corner entry lateral position on speed.
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Figure A-7: Influence of corner entry lateral position on TETP.

Virǵılio Gruppelaar



28 Additional results

A-2 Comparison with speed models from literature

Figure A-8: Example of the performance of the speed traces model compared to speed models
from literature on a wide road.
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Figure A-9: Example of the performance of the speed traces model compared to speed models
from literature on a narrow road.

A-3 Validation results

A-3-1 One-size-fits-all

Virǵılio Gruppelaar



30 Additional results

Table A-1: Evaluation of the TETP speed control model performance using one size fits all
parameters, for a wide and a narrow isolated turn with 75m radius.

Subject VAF(v) [%] VAF(a) [%] VAF(δa) [%] VAF(δb) [%]

S1W 83.9984 52.7750 46.4160 44.0683
S1N 77.4808 37.6299 48.0066 27.5818
S2W 81.2230 28.0760 35.2275 17.2190
S2N 76.0380 0 8.7645 0
S3W 84.2929 11.4482 47.3604 0
S3N 73.5175 0 31.0089 0
S4W 93.1904 60.1026 13.7231 58.2829
S4N 79.4801 24.6845 37.0417 28.3169
S5W 86.0351 66.9624 44.4168 64.3211
S5N 83.8478 10.0237 23.6368 0
S6W 37.2780 0 8.7107 0
S6N 0 0 34.0794 0
S7W 69.1493 48.5896 50.3959 50.1537
S7N 65.6990 0 40.2361 0
S8W 37.9508 50.0059 51.5619 37.7024
S8N 0 0 8.8674 0
S9W 41.0526 0 29.7754 0
S9N 65.9650 0 27.9564 0
S10W 65.9536 57.4405 54.4612 40.0552
S10N 50.0293 0 29.7506 0
S11W 82.4061 44.2498 27.4842 54.3628
S11N 85.3967 25.7527 20.7641 39.8858
S12W 82.2511 10.8720 48.5510 0
S12N 45.2254 0 29.3959 0
S13W 72.9518 0 36.8107 0
S13N 69.0362 0 30.2461 0
S14W 79.6948 32.0052 26.6636 0
S14N 55.6956 33.5170 32.2785 30.7032
S15W 76.9361 38.9459 10.6036 38.7862
S15N 45.6322 46.0113 0 41.8926

Mean 64.9136 22.6364 31.1398 19.1111
StdDev 23.6519 22.9214 14.5959 22.4896
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Table A-2: Evaluation of the TETP speed control model performance using one size fits all
parameters, for a wide and a narrow 4km road.

Subject VAF(v) [%] VAF(a) [%] VAF(δa) [%] VAF(δb) [%]

S1W 48.1693 38.7364 27.0199 37.0238
S1N 65.2888 49.4318 43.9695 42.4603
S2W 51.8377 0 0 0
S2N 45.8621 0 0 0
S3W 52.1381 0 28.7364 0
S3N 50.9090 0.6289 34.9081 0
S4W 69.3718 23.2617 0 16.0650
S4N 36.5311 26.4561 14.2744 20.2106
S5W 62.8130 25.5786 24.9349 15.0642
S5N 70.5461 25.4575 31.2277 0
S6W 0 0 0 0
S6N 0 0 0 0
S7W 44.6311 0 28.3741 0
S7N 31.6654 0.6498 30.2304 0
S8W 6.1971 0 0 0
S8N 0 0 0 0
S9W 37.4627 0 0 0
S9N 38.4808 0 7.4605 0
S10W 74.5454 62.2211 37.8046 55.6249
S10N 59.0856 25.1909 30.8161 0
S11W 44.0862 0 0 0
S11N 13.3079 0 0 0
S12W 46.3758 0 3.2952 0
S12N 0 0 0 0
S13W 57.8899 0 0 0
S13N 19.0420 0 18.2488 0
S14W 57.5191 20.3771 30.9927 0
S14N 0 0 0 0
S15W 23.6682 0 20.4302 0
S15N 36.6694 0 0 0

Mean 38.1365 9.9330 13.7574 6.2150
StdDev 23.6970 17.0694 15.2062 14.3869
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A-3-2 Individualized parameters - isolated curve
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Figure A-10: Performance of the model on an isolated 75m radius turn for subject 1. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-11: Performance of the model on an isolated 75m radius turn for subject 2. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-12: Performance of the model on an isolated 75m radius turn for subject 3. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-13: Performance of the model on an isolated 75m radius turn for subject 4. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-14: Performance of the model on an isolated 75m radius turn for subject 5. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-15: Performance of the model on an isolated 75m radius turn for subject 6. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-16: Performance of the model on an isolated 75m radius turn for subject 7. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-17: Performance of the model on an isolated 75m radius turn for subject 8. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-18: Performance of the model on an isolated 75m radius turn for subject 9. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-19: Performance of the model on an isolated 75m radius turn for subject 10. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-20: Performance of the model on an isolated 75m radius turn for subject 11. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-21: Performance of the model on an isolated 75m radius turn for subject 12. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-22: Performance of the model on an isolated 75m radius turn for subject 13. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-23: Performance of the model on an isolated 75m radius turn for subject 14. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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Figure A-24: Performance of the model on an isolated 75m radius turn for subject 15. Positive
pedal deflections correspond to the accelerator pedal, while negative deflections represent brake
actuation. The shaded area represents the accelerator pedal position values that correspond to
engine braking.
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A-3-3 Individualized parameters - complete road

(a) Wide road (b) Narrow road

Figure A-25: Performance of the model on a 4km length road for subject 1. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-26: Performance of the model on a 4km length road for subject 2. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.
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(a) Wide road (b) Narrow road

Figure A-27: Performance of the model on a 4km length road for subject 3. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-28: Performance of the model on a 4km length road for subject 4. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-29: Performance of the model on a 4km length road for subject 5. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.
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(a) Wide road (b) Narrow road

Figure A-30: Performance of the model on a 4km length road for subject 6. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-31: Performance of the model on a 4km length road for subject 7. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-32: Performance of the model on a 4km length road for subject 8. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.
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(a) Wide road (b) Narrow road

Figure A-33: Performance of the model on a 4km length road for subject 9. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-34: Performance of the model on a 4km length road for subject 10. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-35: Performance of the model on a 4km length road for subject 11. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.
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(a) Wide road (b) Narrow road

Figure A-36: Performance of the model on a 4km length road for subject 12. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-37: Performance of the model on a 4km length road for subject 13. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.

(a) Wide road (b) Narrow road

Figure A-38: Performance of the model on a 4km length road for subject 14. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.
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(a) Wide road (b) Narrow road

Figure A-39: Performance of the model on a 4km length road for subject 15. Positive pedal
deflections correspond to the accelerator pedal, while negative deflections represent brake actua-
tion. The shaded area represents the accelerator pedal position values that correspond to engine
braking.
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Chapter 1

Introduction

For many people, driving a car is a familiar task, and for most of the past century the manner
in which it is performed has not changed considerably. However, in recent times a large
amount of attention has been devoted to developing assistive or automated systems that can
take away a part, or all, of the workload involved in driving a car. Gordon and Lidberg
(2015) provide a comprehensive overview of the state of driving automation, and conclude
that while a lot of focus is placed on the research of fully automated vehicles, these are still
a long way from being implemented on the roads, and would required complete overhauls of
the current personal transportation infrastructure for effective large scale implementation. In
addition, as argued by Flemisch et al. (2012), even if technology advances as far as to enable
these systems, there is no guarantee that they will provide significant benefits to the human
operator, due to the well known ironies of automation (Bainbridge, 1983).

Current state of the art systems automate some aspects of the driving task, but once they
reach their limits drivers are prompted to take over at short notice. This places the driver in
a supervisory role, a task humans have been shown to perform poorly at (Mulder, Abbink, &
Boer, 2012). When asked to intervene, drivers take time to insert themselves into a manual
control role, resulting in delays that could cause accidents. This is know as the human-out-
of-the-loop problem (Flad, Otten, Schwab, & Hohmann, 2014a; Flemisch et al., 2012).

A promising approach to support drivers without causing them to lose situational awareness
is Haptic Shared Control (HSC) (Abbink, Mulder, & Boer, 2012; Mars, Deroo, & Hoc, 2014).
As the name indicates, HSC entails a shared control approach, in which the human operator
and the assistance system communicate their intentions and actions to each other through a
haptic interface. In the context of the driving task, these haptic interfaces can be implemented
on, for example, the gas pedal (Mulder, Mulder, van Paassen, & Abbink, 2008), or the steering
wheel (Mulder, Abbink, & Boer, 2008).

For the proper development of any assistance system, but especially in the case of a system
that interacts closely with a human operator, it is essential that the system is based on a solid
understanding of the underlying human behavior. The aim of this work is to address haptic
shared control systems applied to curve driving. While there is a significant body of recent
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research into such systems for assistance in cornering at constant speeds (Mulder, Abbink, &
Boer, 2008; Saleh, Chevrel, Claveau, Lafay, & Mars, 2013; Flad, Otten, Schwab, & Hohmann,
2014b), not much focus has been placed on the issue of variable speeds. However, as can be
noted by observing any curved road, human drivers do not drive through turns at the same
speeds that they negotiate straight sections of road, but rather adapt their speed in some
way. This work focuses on HSC applications to variable speed corner driving.

van Paassen, Boink, Abbink, Mulder, and Mulder (n.d.) specify four essential design choices
that must be addressed in order to design a successful haptic shared control implementation.
All of these choices are important, but in order to limit the scope of this research, the focus will
lie on the first design choice, the generation of an appropriate Human Compatible Reference
(HCR). Human drivers control their vehicles by applying torques on the steering wheel and
the gas pedal, and if necessary, by applying a force on the brake pedal. However, driver
models for steering generally use the available information of the environment to produce a
desired steering wheel angle for vehicle control. If no other torques or forces are present,
then this approach is valid and the steering wheel angle corresponds directly to the applied
torque. However, as noted by Abbink, Cleij, Mulder, and van Paassen (2012), in the case
that the human is sharing control with a system that applies assistance, it is essential to know
how humans will react to this assistance in order to be able to design effective systems. It
follows from that statement that, for HSC systems, an appropriate HCR for steering consists
of steering wheel torques, and an appropriate HCR for speed control consists of pedal torques.
Furthermore, in order to to provide effective assistance at variable speeds, knowledge must be
gathered about the changes in human driving behavior with speed. To that end, the research
question that this literature review aims to answer is: How do drivers combine speed choice
and steering behavior during curve negotiation, and how can knowledge of this interaction be
applied in the design of haptic assistance?

The answer to this question is provided over the next chapters. The first chapter gives
a summary of an extensive literature survey into how drivers take corners, followed by a
preliminary analysis, through simulation, of one of the models described in literature. Finally,
the conclusion will address the future work that remains to be done in order to answer this
question.
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Chapter 2

How do drivers corner?

In order to develop an assistance system, first one must understand the task to be accom-
plished, in this case how a driver negotiates a corner. This chapter will address the state
of the art of the available literature on this topic, in three different sections. Before delving
into how speed affects cornering, one must first understand the dynamics behind the simpler
steering task at constant speed. The first section of this chapter concerns this. The second
section aims to explain how corners affect the choice of speed by the driver, and to provide a
way of modeling speed choice. Finally, the third section explores the combination of the two
previous ones, that is, how does the speed choice affect the steering behavior.

2-1 Steering at constant speed

For the purposes of this work, steering is divided into two separate parts: the perception of
the road ahead, including the neurological processing required to generate an intended steer-
ing angle; and the neuromuscular actuation that transforms this desired angle into physical
torques on the steering wheel.

This section is divided into four parts. The first describes the most important models of the
perception component of steering developed since the introduction of the idea of two level of
steering. This is followed by short overview of the current debate on where drivers actually
look during steering. The last two sections describe two different approaches in modeling
of drivers’ neuromuscular behavior during curve driving. The first one concerns the classical
models of the neuromuscular system, while the final section describes the idea of using motion
primitives to explain the control of the steering wheel.

2-1-1 The two levels of steering

Since Donges (1978) first proposed a two level model of human steering behavior, it has been
accepted that human steering can be divided, in general terms, into two patterns of behavior.
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4 How do drivers corner?

The first level is the preview function, where drivers use what is called guidance information
from the visual field to predict the desired path of the vehicle, that is, the forcing function that
they wish to follow. The second level is where drivers use visual information on the deviations
of the vehicle’s current path from the desired path, the so called stabilization information, in
order to stabilize the vehicle’s motion around the forcing function.

The model developed by Donges (1978) uses the curvature of the desired path, extracted from
the drivers’ visual field, as the guidance information. This information is then used in the first
level of control, a feedforward anticipatory open-loop control. The stabilization information
is divided into three parts: the lateral deviation between the driver and the desired path,
the heading angle error, and the difference in current to desired path curvatures, or path
curvature error. These three perceived parameters are combined in the compensatory closed-
loop control level in order the generate a correcting steering angle to ensure the vehicle keeps
to the desired path in a stable fashion. In a simulator experiment, drivers drove a curved
course, and were verbally instructed to maintain certain speeds. The model was found to
predict the low frequency behavior of the drivers well, but some high-frequency behavior
remained unaccounted for. This was attributed to a non-linear driver noise, called remnant
by McRuer, Allen, Weir, and Klein (1977).

Land and Lee (1994) provided a very important contribution by being one of the first works
to link steering behavior with driver’s gaze direction. By monitoring eye movements during
real driving, they discovered that drivers consistently look in the direction of the Tangent
Point (TP) of the curve they are steering around, which is the point where the gaze direction
is tangential to the road edge on the inside of the curve. Drivers focus on the TP because
it is a very good reference point in order to estimate the curvature of the road ahead, as
described in equation (2-1) where Θ is the visual angle between the current heading and the
TP, and yl is the distance between the intended path and the inside lane edge, as shown in
figure 2-1. Many driver models have been developed based on this idea, but in recent times
the notion that drivers use the TP for steering has become the target of much discussion, as
will be described further below.

ρ =
1

R
≈ Θ2

2yl
(2-1)

In further vision-based experiments, Land and Horwood (1995) used partial visual occlusion
to determine what parts of the road are essential for successful steering. It was found that
when driving at moderate to high speeds, in this case 16.9m/s, successful curve negotiation
requires both a near and a far segment of the road to be visible. Only showing the driver a
distant part of the road resulted in a good match of the overall road curvature, but a poor
performance in terms of lateral position in lane. Only showing a near region resulted in very
jerky driving, but lateral position was better maintained. An intermediate view provided
better performance than either of the previous, but at this speed the accuracy was 20% lower
than when the entire road was visible. When driving the road segment at a lower speed of
12m/s, accuracy was actually improved with only a near part of the road visible.

Eye movement tracking showed that driver tend to focus on a far part of the road segment, and
use their peripheral vision to monitor the near segment. The findings support the two-level
model of steering developed by Donges (1978).
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2-1 Steering at constant speed 5

Figure 2-1: Relationship between the visual far point angle and the turn radius for curvature
estimation purposes. (Sentouh et al., 2009a)

Boer (1996) developed a model that is instead based a target point that is adjacent to the TP,
where no estimation of the actual road curvature is made. Instead, drivers use the distance
|T | to the target point and the angle Θ between the current vehicle heading and the target
point direction to intermittently calculate the optimal curvature trajectory. Optimizing the
trajectory means taking the path that generates the lowest lateral acceleration. This can be
achieved either by lowering the speed or choosing the path with the lowest curvature. Since
in this work the speed was kept constant, the model computes a maximum curvature path.
This path predicts that drivers will steer to the opposite side of the curve direction before
entering the turn, start their steering movements before the start of the curve, and come
closer to the inner lane edge at the curve midpoint. Steering along this trajectory is guided
by targets on the path that are intermittently updated. These targets lie next to the TP at a
certain lateral distance into the lane that depends on the longitudinal distance |T |. The driver
uses an internal model of the relationship between the steering wheel angle and the change in
heading of the vehicle, and adapts the intermittence time to ensure that the vehicle does not
exceed a maximum distance from the line between the driver and the target point before the
next intermittent update. Experiments showed that driver appear to use a lateral acceleration
minimization strategy, and that the model correctly predicts the anticipation time in steering
into a curve and the distance to the lane edge at the curve midpoint. However, driver did
not appear to steer in the opposite direction of the curve before entry, suggesting that they
do not completely optimize their path.

Hildreth, Beusmans, Boer, and Royden (2000), used a slightly modified version of the model
of Boer (1996) and compared it to a series of experiments that used visual occlusion to
gain insight on the visual cues used for steering in lane correction maneuvers. The model
was successful in reproducing the human steering behavior, even under complete occlusion
periods of up to 2 seconds.

Salvucci and Gray (2004) note that the models presented by Donges (1978) and Land and
Lee (1994) requires an accurate estimation of curvature, a task at which humans have been
demonstrated to perform poorly (Fildes & Triggs, 1984). In these models, the inaccuracies
introduced by the erroneous curvature estimation can be compensated by the closed-loop
second level of steering. However, Godthelp (1986) showed that in general, drivers were able
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6 How do drivers corner?

to successfully steer around corners, even under a long visual occlusion of 1.5s that began
just after the driver started a steering motion on curve entry. This indicates that it is likely
that drivers to not attempt to judge curvature while negotiating a turn.

Figure 2-2: Near (circle) and far (cross) points for three different scenarios. (Salvucci & Gray,
2004)

This prompted Salvucci and Gray to develop an explicit two point model of steering, shown
in figure 2-2. The near point represents the center of the lane at a close, fixed distance in
front of the driver. This point is not necessarily fixated by the driver, but the necessary
information is gathered through peripheral vision. The far point, on the other hand, can be
any convenient point located somewhere ahead of the vehicle, from which lateral stability can
be easily monitored. The TP of a curve is one of those scenarios, but so is the vanishing
point of a straight road (left in the figure) or a lead vehicle (on the right side). The model
can easily switch between different far points depending on the situation.

The model then attempts to keep both the near and far points stable, that is Θ̇near ≈ 0
and Θ̇far ≈ 0, and the near point in the center of the lane, Θnear ≈ 0. No restrictions
are placed on the far point location. In a validation experiment, the model was shown to
accurately represent human steering behavior at a constant speed, even when only a small
part of the road was visible. In addition, separately occluding parts of the road resulted in
similar behavior as that observed by Land and Horwood (1995) in real driving.

One major issue with this model is that it does not contain a separate open-loop component
that provides predictive steering, and is therefore not capable of reproducing steering behavior
under total visual occlusion. The models of Donges (1978) and Hildreth et al. (2000) described
above do show this capability, but the main advantage of the model by Salvucci and Gray
(2004) is that is able to accurately reproduce human steering in a simple way, using only
two salient visual features of the road ahead. Neumann and Deml (2011) provided further
experimental proof that this model can reproduce human behavior, but also note that no
conclusions can be drawn about whether the drivers actually use the TP as the far point, or
in fact use any other point on the future path.

Sentouh, Chevrel, Mars, and Claveau (2009b) note that the models of Donges (1978) and
Salvucci and Gray (2004) do not incorporate any modeling of how the driver uses kinesthetic
information in the control of the steering wheel. This type of information is essential for
models used for driver assistance systems, as explained in the following section. In order
to remedy this, a new driver model was proposed that, like its predecessors, uses a two-level
model for the driver’s steering behavior but is augmented with a high-frequency compensatory
part that uses kinesthetic feedback.

The developed model assumes the driver’s preview behavior is guided by the TP of the curve,
while visual compensatory control is achieved using the near point, a point on the center line
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2-1 Steering at constant speed 7

of the road a short distance ahead of the vehicle. The points are shown in figure 2-3. The
vehicle dynamics model for lateral handling is a bicycle model that is extended to enable
lane tracking and to model the feeling of the steering system. The outputs of this model are
Θfar (the angle between the heading direction and the curve TP), Θnear (angle to the near
viewpoint), both shown in figure 2-3, and δd (the steering wheel angle).

Figure 2-3: Preview information used in driving model. (Sentouh et al., 2009b)

The preview tracking is achieved by a simple gain Ka applied to Θfar. The visual and
kinestethic compensatory steering models are described by transfer functions with gains,
and lead and lag constants in addition to the human inherent time delays for a total of 11
parameters to be identified. Using grey box identification on test track data, an 88% model
fit to the the driver output torque of validation data was obtained.

van der El, Pool, Damveld, van Paassen, and Mulder (2015) developed a general model
of the human controller in preview tasks, inspired by the well-known cross-over model for
compensatory tracking developed by McRuer, Graham, Krendel, and Reisener Jr. (1965).
While it is not specific to steering tasks, the conclusions drawn in this work agree with the
two level model of steering, and help explain how the human uses the far and near region for
steering control. The model was validated to show that the human controller uses two types
of response: the far preview information is low-pass filtered and used for feedback control to
track the low frequency component of the desired path, while the near information is high-pass
filtered and used in feedforward control to account for high-frequency oscillations near the
target. Interestingly, this corresponds well with the vision experiments performed by Land
and Horwood (1995), which showed that when only the near region was visible to drivers, the
control behavior oscillated very rapidly while maintaining an appropriate lane error. Only
showing the far region resulted in accurate tracking of the low-frequency oscillations of the
target, but with worse in-lane performance.

2-1-2 Where do drivers actually look

MacAdam (2003) notes that during driving visual cues are of the highest importance, ac-
counting for 90% of the information used. In the previous section an overview of the preview
models used in literature is provided, but they do not answer the question of where drivers
look when they steer. This section provides a short overview of the current debate on what
visual information is actually relevant for curve driving.
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8 How do drivers corner?

Since Gibson (1958) first postulated that humans steer by using certain properties of the
optical flow field, a large body of work has been dedicated to discovering the way that humans
perceive heading. The main idea is that by keeping the focus of expansion of the optical flow
on a point that the observer wishes to travel to, the correct heading will be maintained.
However, Wann and Wilkie (2004) mentions one big issue with this reasoning: the optical
flow is only equivalent to the actual Retinal Flow (RF) perceived at the back of the eye when
the observer has a stable gaze position. When a driver fixates on a point that lies on the
side of the current path, as happens in curve driving, or moves his eyes while in motion,
the heading direction is no longer clearly retrievable from the RF without using signals from
other sources as corrections. In addition, Li and Warren (2002) proved experimentally that
humans can control locomotion using only retinal information.

Using these arguments, Wann and Wilkie (2004) developed a model of visual steering control
without recovering heading information. In this model, drivers fixate a point that they want
to travel through while moving on a constant curvature path. If the vehicle speed is constant,
then the change in the angle between the body axis and the direction of gaze, or Visual
Direction (VD), will also be constant. One can imagine this as the fixating point rotating
towards being straight ahead of the observer at a constant rate. If the gaze is fixated, RF
can also provide steering cues. Points that lie on the Future Path (FP) of the trajectory will
move vertically in a straight line towards the observer, as shown in figure 2-4 B. If a steering
error is present, the flow lines will curve in the opposite direction of the error. This is shown
in figure 2-4 A and C.

Figure 2-4: Retinal flow field for steering towards a target at constant speed. In all cases the
initial heading is the same, and the observer fixates the same target. The circle indicates the
current heading due to steering, making A an understeering situation, B correct steering, and C
oversteering. (Wann & Wilkie, 2004)

Lappi (2014) provides an overview of the past 20 years of research into visual models of curve
driving, focusing on studies of real driving. The starting point of most works has been the
work of Land and Lee (1994), who introduced the concept of a TP on the inside lane edge that
drivers use to guide their driving strategy. However, in more recent times this concept has
been questioned with increased frequency, with many authors suggesting that drivers focus
on points located on their FP instead.

Combining several previous studies, Lappi (2014) compiled a list of seven general principles
of visual driving behavior in real driving:
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1. Gaze behavior is repeatable for specific tasks, both withing and across subjects.

2. Gaze fixations are focused on points that are immediately relevant to the task at hand.

3. Each individual fixation has a specific functional role, even if that role is sometimes not
clear on first analysis.

4. Each eye movement is linked to the information that a specific part of a task requires.

5. Drivers tend to minimize the use of short-term memory for their driving information,
rather taking the required visual information from the scene as it becomes necessary.
The use of short-term memory seems to increase with driver experience.

6. Skilled drivers show preview behavior by anticipation fixations to objects that will be
relevant in future for short intervals in between the regular just in time fixations.

7. Humans integrate information obtained about the visual scene across saccades, allowing
the use of a so-called visual buffer that allows for driving under short periods of visual
occlusion. A saccade is a rapid involuntary eye movement that can be used to correct
for drift of the retina during a tracking task.

In general, TP models assume that the the TP is the target of the driver’s gaze, and the
driver explicitly uses it as the source of preview information. On the other hand, FP models
argue that the driver tracks a target point on the FP, using this point to obtain the preview
information. One important note is that points on the FP are close enough to the TP that
when focusing on them, they can still show TP orientation.

Most real driving studies of driver gaze behavior have clearly shown that drivers exhibit TP
orientation, that is, drivers show the highest gaze frequency in an Area Of Interest (AOI)
around the TP. However, as stated above and contrary to what most of these studies conclude,
while this behavior does support the TP model, it does not contradict the FP hypothesis.

Both TP and FP models fall into two categories: steering point models and visual flow models.
A steering point is a point that drivers use as a direct reference for steering, as opposed to
using it to create a more complex mental model from which to retrieve steering references, as
happens in visual flow models.

Itkonen, Pekkanen, and Lappi (2015) conducted a further experiment, measuring eye move-
ments in a way that enables the differentiation of TP and FP behavior. The results clearly
showed that when instructed to drive naturally drivers do not fixate the tangent point. In
addition, when instructed to look at the tangent point during the curve, drivers where still
able to successfully navigate their turn, but their gaze behavior was significantly different
than in the natural condition. The authors recognize however that accurate models on where
on the FP drivers look do not exist yet. Furthermore, gaze behavior on curve entry could not
be analyzed using the same method, leading the authors to speculate on the possibility that
TP information could be used in the approach and entry phase of cornering.

In conclusion, no consensus exists of yet on exactly where drivers look and what information
is useful in cornering. Models that use either TP or FP information can, at this point in time,
represent actual driving behavior with similar accuracy.
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10 How do drivers corner?

2-1-3 The importance of neuromuscular modeling

In addition to knowledge about how drivers perceive turns, Abbink, Cleij, et al. (2012) ar-
gue that for designing shared control it is essential to have information about the driver’s
Neuromuscular System (NMS) in order to reduce conflicts that can arise between the au-
tomation and the human. If the designed assistance torques do not correspond with the
driver’s neuromuscular behavior, any beneficial effect of the assistance system is eliminated
and performance degrades.

In the driver model developed by Sentouh et al. (2009b), neuromuscular information is in-
corporated in the kinestethic compensatory feedback system. The driver’s arms are modeled
as a first-order transfer function. In addition, the way that the feedback torque from the
steering column is received through the muscles and joints is modeled, as is the driver’s com-
pensation for this feedback. The diagram of this model is shown in figure 2-5. The near and
far information, obtained according to the information in the previous sections, as well as the
current steering angle, serve as inputs to the driver model.

Figure 2-5: Road-vehicle-driver model structure, modeling the human driver as a combination
of gains and time delays. (Sentouh et al., 2009b)

Cole (2012) provided a general description of how the human neuromuscular system generates
motion. Muscles are activated by the alpha motor neurons, located in the spine. Usually, to
start a movement the alpha motor neurons receive signals directly from the motor cortex in
the brain. However, there is a second type of activation of the alpha motor neurons, called
the stretch reflex. The muscles contain a type of fibers called muscle spindles whose primary
function is to provide information about changes in length of muscles. A second class of motor
neurons, Gamma motor neurons, can adjust the length of these spindles depending on the
brain’s expectation of muscle extension. When the actual length of the muscle differs from
this expected length, the stretch reflex is activated. The stretch in the muscle spindle causes
increase alpha motor neuron activity, resisting the stretching action in order to achieve the
expected length. Even though there is still a lack of understanding about the precise function
of the stretch reflex, it provides additional muscle stiffness at low frequencies down to zero.

In order to increase this understanding, Cole (2012) developed a driver-vehicle model to
study the effects of steering torque feedback, including the dynamics of the arm and the
brain’s cognitive processing. In this application the vehicle is modeled using a bicycle model
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2-1 Steering at constant speed 11

on which lateral disturbance forces can act on three points: the center of mass, and the rear
and front axles. Three separate cases were studied, as described below.

Initially, parameters for the driver neuromuscular dynamics were identified in tensed and
relaxed states, without taking into account the cognitive path-following control, but including
the human stretch reflex described above. The response of the different relaxation states
to external disturbances when traveling in a straight line at constant speed were analyzed.
Tensing the arm muscles increased the damping of the arms, while the stretch reflex increased
their stiffness. When faced with the lateral disturbances, there was no significant difference
between the relaxed and tensed states, but the reflex action was found to have an effect,
depending on where the disturbance force was applied. The reflex behavior made the total
vehicle dynamics behave more similarly to a system with fixed steering, while its absence lead
to behavior more similar to hands-free steering.

Then, a path following controller was implemented to model the generation of the alpha and
gamma motor neuron signals by the brain. This controller included a cost function that
allowed for a tradeoff between the accuracy of the path-following and the amount of control
activity. The effects of including the steering wheel feedback torque that arose from the
contact of the front tires with the road was evaluated. It was found that when accuracy was
preferred, there was no difference between the condition including feedback and the condition
without. However, when the focus shifted towards minimizing control activity, steering torque
feedback was found to reduce the response bandwidth of the path-following response. This
occurs because when there is steering feedback, muscle activation is needed to counteract
it. Since the aim is to reduce control activity in detriment of accuracy, the controller will
naturally sacrifice accuracy, leading to a smaller bandwidth. The tensed or relaxed state, and
the presence of the stretch reflex or a cognitive delay had little to no influence on the results.
When reacting to a disturbance, the presence of torque feedback, stretch reflex, and cognitive
time delay were all shown to have strong effect on the lateral displacement response of the
vehicle. The tensed or relax state had no significant influence.

Finally, the influence of torque and angle overlays on the pinion of the steering system, as used
in many assistance systems, on the neuromuscular system was studied. For both cases, a unit
step overlay was introduced and the effects analyzed. The inclusion of steering torque feedback
was found to reduce the disturbing effect of both overlays, while the stretch reflex reduced
the effect of the torque overlay, but increased the effect of the angle overlay. An experiment
in a driving simulator was performed where drivers were instructed to drive a straight path,
with step angle overlays occurring at random times. Furthermore, drivers where told to either
tense or relax their arm muscles in advance of the occurrence of the overlay. The results of
this experiment were consistent with the prediction made by the model including the stretch
reflex. In addition, the subjects instructed to contract their arm muscles showed a stronger
reflex response than the relaxed subjects. However, this experiment showed a large variability,
both between and within subjects.

Benderius (2014) also conducted a simulator experiment on the human stretch reflex, in this
case with distracted drivers in a head-on collision situation. Just before the collision, an
assistance torque intended to help avoid the obstacle was applied to the steering wheel. It
was found that both the driver’s stretch reflex and a cognitive mechanism of distracted drivers
actively opposed this assistance torque, resulting in a larger amount of collisions. This led
the author to question the usefulness of steering wheel torque interventions in the case of
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distracted drivers.

Figure 2-6: Neuromuscular driver/vehicle model structure. (Mehrabi et al., 2014)

Mehrabi, Sharif Razavian, and McPhee (2015) developed a complete 3D model of the human
arm, including 15 different muscles, for use in research on steering assistance systems. The
model was experimentally validated using electromyography of a driver’s arm while using
a driving simulator. The general structure of the model is shown in figure 2-6 (Mehrabi
et al., 2014). The model consists of three fundamental parts. The first level is the path
planning module, that results in the necessary steering angle for the vehicle to achieve the
desired path. This is implemented as a Model Predictive Control (MPC) controller that uses
a simple internal vehicle model to find the optimal steering wheel angle. The second part
consists of the model of the arm, that generates the necessary muscle activations that result in
the steering angle from the path-following module. This is achieved by minimizing the steering
wheel angle tracking error. Since the arm is a highly redundant system, an extra criterion
of minimizing some form of muscular effort like fatigue or used force in added. In order
for the model to be able to predict what the optimal muscle actions will be, the kinesthetic
system is modeled as an observer that estimates the arm positions and the expected torque
on the steering wheel. Finally, the last level describes a stabilizing function characterized by
the stretch reflex, which involuntarily compensates for external disturbances or errors in the
internal models of the driver.

Based on this, Mehrabi et al. (2015) performed an experiment to investigate the reaction of
the model to a one second step torque overlay disturbance on the steering wheel during a
lane-change maneuver, with the driver model in relaxed and tensed condition. In the relaxed
state, the observer does not detect the disturbance in time to react the it before it ends, while
when tensed the model attempts to reject the disturbance and follow the same path as taken
without any disturbances. The stretch reflex acts before the voluntary correction has time to
exert any force in both situations.

Finally, one essential thing to note is that the studies mentioned in this section all have
one thing in common: they do not mention the Golgi Tendon Organ (GTO) reflex. This
mechanism is often described as the opposite of the stretch reflex, and is essential for the
effectiveness of HSC (Abbink & Mulder, 2010). Just as the muscle spindles measure muscle
length, the GTO measure the force on the tendons (Smisek, van Paassen, Mulder, & Abbink,
2013) and relax the muscles in case the tension becomes too large for the tendon to bear.
This reflex action can be exploited for the uses of HSC, as described by Abbink (2006) for
application to a haptic gas pedal in a car following task. In this work, Abbink describes
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that when drivers agree with and/or trust in the assistance provided, they will increase their
admittance, that is, they will intentionally give way to the assistance forces provided.

2-1-4 Motor primitive based models

In recent times more attention has been devoted to linking steering behavior with natural
human movements. Flad, Trautmann, Diehm, and Hohmann (2013) developed a driver model
that switches between elements of a set of fundamental building blocks, or motion primitives,
to describe the neuromuscular steering behavior as a grey-box model.

Building on the current state of the art of human movement control, the model describes
a finite set of patterns for the neuromuscular system during steering, called movemes, that
have the steering wheel angle as output and do not take any input. Each moveme can be
described by a state-space model of the form ẋp(t) = Aixp(t)+bi, where xp is the state vector
that contains the steering wheel angle δ and δ̇. Only {Ai, bi} differ for each moveme, and
these parameters are driver-specific and obtained using an identification process described in
Diehm, Maier, Flad, and Hohmann (2013).

A switching mechanism activates the correct moveme to achieve the steering behavior desired
by the higher level cognitive systems of the driver. Flad et al. (2013) described the switching
mechanism using a MPC framework, relying on the driver’s internal models of the collection of
movemes and of the vehicle’s lateral behavior. These models are used to determine the ideal
trajectory for a finite time horizon Ts, and after a time Tc within this horizon, the trajectory
is re-calculated. The objective function used has as main goal the minimization of the lateral
deviation from the intended trajectory, but also includes: the error in the vehicle yaw angle,
weighed more heavily by experienced drivers; the number of moveme switches, which allows
for the reproduction of human error neglecting behavior until a certain maximum is reached;
and the steering wheel rate, as a measure of driver comfort.

A real driving experiment was performed with 6 participants, on a lane change and a slalom
course at a fixed speed. The Root Mean Square Error (RMSE) of the lateral position in lane
varied from 0.047m to 0.080m, while the errors of the steering wheel angle were in the range
of 5.3 to 10.3 degrees. The performance of the model was best when the set of individually
identified movemes for each driver was used, but it was also shown to be possible to use
movemes from a different driver to achieve worse, yet acceptable results. In addition, the
model was used to predict the future steering behavior for prediction times up to 12 seconds,
by increasing Ts and not recalculating the predictions after Tc. After this prediction time,
the lateral position error for the median driver was 0.023m, showing that the model can
accurately predict human steering behavior even at moderately long prediction times.

Inga, Flad, and Diehm (2015) argued that practical application of the MPC framework is
not ideal due to the high computation times involved. Instead, a Hidden Markov Model
(HMM) was used to switch between movemes, yielding the probability that the driver will
each moveme in the current driving situation.

Using a similar philosophy, Benderius and Markkula (2014) analyzed a large volume of driving
data in an effort to show that drivers’ control of the steering wheel follows the same kind of
pattern as human reaching movements. More specifically, this means that there is a linear
relationship between the steering wheel rate and the the corresponding steering wheel deflec-
tion, resulting in a bell-shaped pattern of steering rate over time, as shown in figure 2-7. In

Virǵılio Gruppelaar



14 How do drivers corner?

addition, these patterns can be used as motor primitives to describe more complex steering
movements. Most steering movements were explainable by bell-shaped rate to time relation-
ships. The movements that were not covered by one such pattern could be explained by
superimposing multiple patterns. This leads to the conclusion that driver steering correction
behavior might not be governed by a continuous closed-loop control model, as most previous
literature shows, but instead by many short bursts of open-loop control. Gordon and Zhang
(2015) also found evidence that steering behavior in lane-keeping tasks follows a pulse-like
behavior, and developed a model that accurately fit experimental data.

Figure 2-7: Typical patterns of steering rate over time for steering movements, both in real world
and simulated driving. (Benderius & Markkula, 2014)

Since the introduction of the concept of a remnant by Tustin (1947), it has been considered as
a type of neurological noise or error signal that almost all developed models cannot account
for. By explaining steering as a type of reaching behavior, Benderius (2014) showed that the
error resulting from the remnant can be eliminated. In this work, reaching incorporated in
a satisficing rather than optimizing behavioral framework, which is considered more realistic
for human movement.

With regards path planning, it was found that the two-point model proposed by Salvucci and
Gray (2004) performs well in predicting steering behavior. However, this model suffers from
parameter redundancy, that is, the same behavior could be explained by multiple parameter
sets. This model uses a near and a far aim point that driver use to guide their steering.
Benderius (2014) argues that this is redundant, and that the two points can be replaced by
an egocentric reference frame and a single aim point angle. This angle can be described as
the angle between the current vehicle heading and the driver’s desired angle. The driver uses
near field visual information, gathered primarily through peripheral vision as described by
Land and Horwood (1995), to generate the reference frame. In this way, a near point is no
longer used explicitly, decreasing the number of model parameters.

The above arguments on steering wheel control and planning behavior are combined in the
aim point correction model, which contains four tunable parameters, of which only one is
driver-dependent. This parameter is modeled as a gain ks that describes both the driver
and the urgency of the situation. The other parameters are the aim point Pa = (xa, ya),
the reaction time tr and the sensation threshold Ts. The model seeks satisficing behavior by
providing steering corrections triggered by the driver’s sensation of the aim error η(t) going
above a certain threshold Ts at the correction start time t0i : η(t0i) > Ts. In addition, the
driver only starts a new correction when he is able to react to the previous one, that is, when
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t0i > t0i−1 + tr. The driver’s sensation of the aim point error is defined as η(t) = ks(t)ψε− δt.
Here δ is the current steering wheel angle, and ψε is the aim error described by equation (2-2),
where y is the lateral offset of the driver, and ψh is the current heading of the driver.

ψε = arctan

(
ya − y(t)

xa

)
− ψh(t) (2-2)

The output of the model, the current steering wheel rate, is then defined as the sum of all
applied steering corrections, δ̇(t) =

∑n
i=1 δ̇i(ti). Each steering correction δ̇i(ti) is described

by a bell-shaped profile as shown in equation (2-3). δ̇m = kη(t0i) is the maximum steering
wheel rate, and ti = t− t0i is how much time has passed since the start of the correction. The
constants k, b, and σ were determined in Benderius and Markkula (2014).

δ̇i(ti) = δ̇m exp

(
−(ti − b)2

2σ2

)
(2-3)

The model was able to accurately reproduce human driving behavior in three different scenar-
ios: a double lane change, a head-on collision scenario, and a lead vehicle braking scenario. In
addition, it was able to reproduce the high-frequency peaks that previous models attributed
to the remnant. Work still remains to be done in proving that the model behaves well in a
routine cornering scenario. In addition, Benderius does not explicitly define the methods for
selecting an aim point, and indeed this is still the source of many questions in other literature.
However, it is assumed that any salient point in the driver’s desired path can be used as an
aim point, and the aim point can change depending on the developing situation.

The biggest issue concerning this model is that it only provides steering angle, and not the
torque on the steering wheel. In order for it to be applicable to HSC it is essential to add a
model of the steering system, including the torque feedback resulting from the interaction of
the driver with the vehicle.

Kolekar (2016) developed a driver model, based on the principle of steering as reaching,
that is capable of accurately capturing steering wheel torque in both routine and emergency
scenarios. The model uses optimal feedback control, incorporating the driver’s internal model
of the task and preview information In addition, the model captures the inherent variability
of human steering behavior by modeling the signal dependent noise present in perception and
motor actions. Interestingly, this model is described as a generalized version of the model of
Benderius (2014) that incorporates closed-loop corrections.

2-1-5 HSC applications

While there exists a large body of work on driver modeling, and many of these models mention
their usefulness for implementation in shared control, actual implementations of these models
in a curve driving HSC environment are few in literature.

In Boink, van Paassen, Mulder, and Abbink (2014) and previous related works, a very simple
model that attempts to minimize the lateral error to the center line at a certain look-ahead
time is used, which results in significant conflicts between the driver and the assistance system.
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Saleh et al. (2013) describe a shared control system based on the two-point driver model
of Sentouh et al. (2009b) described previously, including neuromuscular information. This
systems showed benefits of approximately 15% in reduction of the risk of lane departure, and
a reduction of the mean deviation to the center line of almost 30%. The authors note that
driver-dependent factors, including speed, could be the cause of the conflicts of the driver
with the assistance torques that occurred during 20% of the driving time.

2-1-6 Conclusions

In the above discussion, it has become clear that for the generation of an appropriate reference
for HSC, a model needs be able to accurately capture both the driver’s intention, and the
way that this intention is translated into actions.

In terms of driver intention, that is, the manner in which drivers interpret the available
information in the visual scene and relate it to their goal, it has become clear that it is
essential to include preview and compensatory modes. Section 2-1-2 shows that literature
agrees that visual information is obtained through the observation of visual angles. Since
current literature has not yet provided a definitive conclusion on whether TP or FP is the
source of preview information, the choice was made to use the angle to the TP due to the
ease of identifying it for any corner. In the work of Salvucci and Gray (2004) it is clear
that any salient point in the scene can be used as a source of preview information, and the
TP is unmistakeably such a point. The compensatory information is used to stabilize the
steering behavior on the desired path to the far point. The ideal choice for this is the center
of the current lane at a certain preview time ahead, since this provides a simple access to
information about the current in-lane error. This means that the models to use for evaluation
changes with speed should at least be partially based on the two-point approach of Salvucci
and Gray (2004).

Two completely distinct approaches to modeling the actions of the driver have been discussed:
either by modeling the neuromuscular system as a series of gains and time-delays, or by
treating steering as an equivalent to the human reaching task, either as a sum of open-loop
corrections of by applying optimal preview control. Both of these approaches have their
merits: the first one provides clear parameters that can help understand and identify the
consequences of speed changes, while the second one is able to capture the variability and
satisficing behavior properties of human steering. It is therefore interesting to find out what
differences will arise when applying both models in variable speed scenarios.

The model proposed by Sentouh et al. (2009b) and Saleh et al. (2013) combines a two-point
visual model with a model of the neuromuscular system, making it an ideal candidate for
further analysis. A slightly modified version of this model, to account for speed variation
(Saleh, Chevrel, Mars, Lafay, & Claveau, 2011), was implemented in simulation. Results and
further discussion on this will be presented in chapter 3.

In terms of steering as reaching, the simplicity of the open-loop model of Benderius (2014)
shows much promise, but before any implementation can be considered it must be augmented
with a model of the interaction of the human with the steering system and the road, in order
to be able to generate steering torques instead of angles. Kolekar (2016) developed a model
that uses optimal preview control to model steering as a closed-loop reaching tasks. Due to
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time constraints it has not been possible to implement this model in simulation, but it will
surely be the focus of further research.

2-2 Curve speed choice

Having described steering at constant speed, we now wish to know how this behavior changes
with speed. However, when talking about changes in corner driving behavior with speed, it is
important to first know how speed actually varies in corners. That is the question that this
section aims to answer.

The speed choice of drivers is influenced by a multitude of factors, but in general drivers
tend to lower their speed in preparation for upcoming turns in some way. Lechner and Perrin
(1993) convincingly showed that the actual behavior of humans lies far below the dynamic
capabilities of the vehicles they drive. Over the years, many different models have been
developed in order to explain the choices drivers make. In general, these models can be
divided into two general categories: those that are based on maintaining a certain margin of
error, and those based on observed human motion behavior.

This section will begin by providing an overview of studies providing data about curve speed,
as a general observation of driving behavior. Then, an overview of models based on safety
margins is presented, followed by an explanation of models based on human movement control.
The sections finishes with a short overview of the importance of including neuromuscular
information in speed control models.

2-2-1 Speed adaptation in naturalistic driving

In literature, driving velocity data is mostly collected in two ways. It is usually related either
to road curvature, taking into account more or less of the road’s other geometric features, or
to the corresponding vehicle lateral acceleration.

The bulk of the research of driver speed choice against road curvature is in the field of roadway
design and road safety. Velocity is recorded in road curves and compared to radius, in an
attempt to obtain a velocity profile, or in many cases only the 85th percentile of the speed
profile. While this application is quite different from the field of driver assistance systems,
the obtained data is useful in order to obtain a first idea of how fast drivers corner, and for
comparison purposes with simulator data.

Studies such as Turner, Woolley, and Cairney (2015), Bosetti, Da Lio, and Saroldi (2013),
Shino, Yoshitake, Hiramatsu, Sunda, and Kamata (2014), Cafiso and Cerni (2012), among
others, showed that in general, corners with small radius are taken at low speeds. Speed
increases in a curvilinear fashion with radius, sharply up to radii of approximately 100m. In
the range of radii from 200m to 300m, the slope of this variation begins to decrease, and
above radii of approximately 300m the speed stops varying with radius. Figure 2-8 shows
this variation in a double log-scale plot, using data obtained on real roads in Italy (Bosetti et
al., 2013). The horizontal line on this plot corresponds to a curve radius of 300m.

There are a large amount of conflicting theories on what visual information drivers do use
for evaluation and predicting future curves, but there is a consensus that humans have some
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Figure 2-8: Logarithmic variation of longitudinal speed with curve radius from naturalistic driving
data. (Bosetti et al., 2013)

way of predicting a margin of safety that they must keep to safely negotiate a turn. Lechner
and Perrin (1993) argue that longitudinal speed, lateral and longitudinal accelerations, and
steering wheel movements are the most relevant parameters for collecting data on curve
driving.

Ritchie, McCoy, and Welde (1968) were among the first to investigate the relationship between
lateral acceleration and longitudinal speed, and data on this has been collected by many
studies since. Figure 2-9 shows this relationship for driver data obtained on public roads.
The maximum lateral acceleration increases with speed up to a velocity of approximately
10m/s, after which it decreases again. This shows that at low speeds drivers tend to allow
larger lateral accelerations than at high speeds. In this figure, the dotted and dash-dotted
parabolas represent the lateral acceleration that a vehicle would produce while taking a turn
with a constant radius of 10m and 600m respectively. These lines make it easier to distinguish
the two different behavior regions mentioned above. The points under the second parabola
clearly point to these trajectories being driven at constant speeds, while for the points above
it show a trade-off between the two variables. The maximum lateral acceleration presented in
this figure agrees with the 0.5g maximum limit of lateral acceleration on rural roads found by
Lechner and Perrin (1993), and with a majority of the lateral acceleration studies performed
up to this point.

A majority of the examined works assume that speed is constant in corners, and deceleration
occurs entirely on the straight sections tangent to curves. This is a very useful assump-
tion for modeling but, in a study using GPS data on public roads, Pérez Zuriaga, Garćıa
Garćıa, Camacho Torregrosa, and D’Attoma (2010) found that at least 7% of deceleration
occurs in the curve. These findings were confirmed by Montella, Pariota, and Galante (2014),
who performed a study with 39 subjects driving an instrumented vehicle, and found that
approximately half of the observed decelerations continue into the curve. The percentage
of deceleration within the curve increases with radius, but interestingly all but 4% of the
decelerations ended before reaching the middle of the curve.

Seemingly in contrast to this, the data of Lechner and Perrin (1993) and Bosetti et al. (2013),
among others, show that in most situations, drivers tend to avoid combining longitudinal
and lateral acceleration, especially when decelerating. This results in a mushroom-shaped
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Figure 2-9: Relationship between longitudinal velocity and lateral acceleration in naturalistic
curve driving (Bosetti et al., 2013)

g-g plot as shown in figure 2-10 (Bertolazzi, Biral, Da Lio, Saroldi, & Tango, 2010). This
apparent difference can be explained by the fact that drivers tend to cut corners, approaching
the middle of the turn in a trajectory that is as straight as possible (Mars, 2008). This results
in deceleration behavior with low associated lateral acceleration occurring within turns. In
addition, when dividing the data into the regions of low and high curvature described above,
the considered studies show that the trajectories associated with low curvature roads are the
ones where lateral and longitudinal acceleration are more frequently combined.

Moon and Yi (2008) analyzed driver’s longitudinal acceleration limits in car-following driving,
and concluded that 90% of the observations were in the range of −1.03 to 0.91m/s2. Bosetti
et al. (2013) performed a similar analysis for curve driving, and found comparable results,
with a range of −0.89 to 0.96m/s2 for the same percentage of observations.

Having discussed and found trends in the data available in literature, it is time to move on
to the state of the art of curve driving speed models. The next two sections will provide a
comprehensive overview.
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Figure 2-10: Typical g-g diagram for a driver faster than average on public roads. (Bertolazzi
et al., 2010)

2-2-2 Models based on safety margins

In the context of road design and road safety, many models exist for the speed at which a
driver can safely negotiate a turn given the geometrical characteristics of said turn. While
this is a useful limit for assistance systems to take into account as an upper boundary, it does
not provide information about a driver’s desired speed. Therefore, as argued by Zhang, Xiao,
Wang, and Li (2013), it is not directly usable for the design of assistance systems. In this
work the focus lies on how the drivers themselves choose a speed, depending on their own
preferences of driving style, risk, or safety margins. To this effect, this section summarizes
previous research on drivers’ speed selection for cornering.

Many studies since, and including, Lechner and Perrin (1993) have shown that human speed
choice behavior is, in general, divided into two large categories. These categories depend on
the type of road: motorway-like wide roads with a central divider and large (∼> 300m) curve
radii, and two-lane roads with small curve radii. Curves of large radius are usually taken at
constant speed, that is, drivers do not need to adapt their speed to the turn and behave like
they would on straight road segments. On the other hand, on country roads with tight curves
drivers perform some sort of tradeoff between speed, comfort and lateral error.

Bosetti et al. (2013) speculate that drivers still perform this tradeoff on motorways, but prefer
higher speeds due to the larger lane widths and an increase in perceived safety. However, this
hypothesis could not be proved as in their data no drivers drove fast enough to necessitate
tradeoff, and therefore all drivers took motorway curves at constant speed. Shino et al. (2014)
and Shao, Xu, Li, and Yang (2015) also noticed that drivers tend to switch to a constant speed
driving mode as the curve radius increases, for any type of road. Takahashi and Akamatsu
(2012) go as far as only considering road sections with radii smaller than 300m as curves.
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The remainder of this section focuses on curves for which drivers do need to adapt their speed.
As seen in the previous section, when curve radius decreases, so does speed. Many different
explanations have been offered for the manner in which humans adapt their speed to corners,
but the consensus is that some form of tradeoff between a lateral safety or comfort margin
and longitudinal speed occurs.

Ritchie et al. (1968) were one of the first to investigate this tradeoff. In a driving study with
50 subjects it was shown that as lateral acceleration increases, longitudinal speed decreases.
This lead to the conclusion that drivers mainly use the lateral force as a cue to decide how fast
to take a corner. Herrin and Neuhardt (1974) found similar results for drivers on unfamiliar
roads.

Godthelp and van Winsum (1996) argue that this relation is a result of the driver’s effort to
minimize steering errors. Sharper curves or lower steering competence will increase steering
errors, and drivers compensate for this by reducing their speed. In order to achieve this
regulation, drivers strive to keep a constant Time to Line Crossing (TLC). The TLC represents
the amount of time it will take for the vehicle to cross the edge of the current lane, if the
control inputs remain constant.

Speed is traded off with curve radius and steering competence in order to keep a constant TLC,
independently of these two parameters. Experimental results agreed with this hypothesis. In
addition, both drivers with low and high steering competence were found to maintain the same
TLC safety margin, with the former lowering their speed to achieve this margin. Conversely,
drivers with a higher steering competence showed less steering error, and drove faster.

The TLC hypothesis was tested by simulation by Reymond, Kemeny, Droulez, and Berthoz
(2001), using a model based on Godthelp and van Winsum (1996). In the experimental data
collected by Reymond et al. the maximum lateral acceleration decreases much more with speed
than in the TLC based simulated model. It is important to note that this experiment, which
occurred on a closed test track without other traffic, showed maximum lateral accelerations
in the order of 6− 7m/s2, while other experiments performed on public roads (Bosetti et al.,
2013; Levison, Bittner, Campbell, & Schreiner, 2002) do not exceed ∼ 4m/s2.

Since the TLC model did not accurately represent the experimental results, a new model
was developed from the idea that drivers’ speed choice is based on adjusting a safety margin
in lateral accelerations. Therefore, before entering a curve, the driver will adjust the speed
in order to stay below a certain value of lateral acceleration. This maximum value Γmax
depends on the driver. The driver also uses a safety margin for the path curvature deviation
∆Cmax, in case of errors in steering, obstacles, or other deviations. At slow speeds, the lateral
acceleration is limited by physical factors such as the maximum steering angle δmax, and the
wheelbase of the vehicle, L. The resulting envelope for the maximum lateral accelerations is
shown in figure 2-11 (Reymond et al., 2001). The results of the driving experiment are shown
to fit in this envelope.

Reymond et al. note that since the experiment was performed on a closed test track, the
lack of traffic and other uncertainties of driving on public roads can influence the choice of Γ
and ∆C. Bosetti, Da Lio, and Saroldi (2015) adapted these parameters to their results and
obtained an acceptable fit.

On the other hand, Shino et al. (2014) used the same TLC model as Reymond et al. (2001),
and confirmed experimentally that TLC is independent of curve radius for small radii. As the
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Figure 2-11: Lateral acceleration envelope obtained from model. (Reymond et al., 2001)

radius increases, the curve segments becomes more similar to a straight road, and the speed
approaches a constant value. This means that, as seen before, the speed choice model is no
longer valid. At radii under 200m the model was shown to be a good fit.

2-2-3 Models based on human movement control

In human motion a relationship between velocity and curvature exists: the speed of the
movement is related to the path curvature as described in equation (2-4), where v is the
tangential velocity, C the path curvature and α is a velocity gain factor. This relationship is
called the two-thirds power law, as described by Flash, Meirovitch, and Barliya (2013).

v ≤ αC− 1
3 (2-4)

Humans tend to produce smooth trajectories in their movements. Investigating this led
to the development of the minimum-jerk principle, described by Viviani and Flash (1995).
This model states that in order to determine a trajectory, humans select a combination
of motions from the multitude of possible motor primitives that minimizes the jerk in the
movements. Flash et al. (2013) showed that in description of hand tracing of ellipses, the
minimum jerk trajectory shows an exponent that is practically indistinguishable from the one
used on equation (2-4).

Bosetti et al. (2013) found that these same principles also apply for humans driving cars
around turns. They argue that vehicle control is simply a particular case of human move-
ment control, and that the relationships between lateral acceleration and speed described in
previously are analogous to the two-thirds power law. When driving through curves, the min-
imization of steering errors described by Godthelp and van Winsum (1996), or the acceptable
path curvature variance described by Reymond et al. (2001), are illustrations of the minimum
jerk model of human movements.
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Bosetti et al. (2013) and Bosetti et al. (2015) describe an experiment with 24 subjects on
public roads in Italy, where the obtained data is compared to the two-thirds power law, the
model developed by Levison (2007), and the model and results of Reymond et al. (2001)
described above. This comparison is shown in figure 2-12. (Bosetti et al., 2015)

Figure 2-12: Comparison of three curve speed choice models to experimental data. (Bosetti et
al., 2015)

The two-thirds power law with α = 3.70m2/3/s proved to be a very good fit to the obtained
data. Levison’s original criterion is a worse fit than the two-thirds power law. The authors
developed a new criterion that is asymptotic to Levison’s but models the low speed behavior
better. This modified Levison’s criterion is shown in equation (2-5), where C is the path
curvature and a0 and v0 are fitting parameters that describe the data. This model was found
to be only a slightly better fit to the experimental data than the two-thirds power law, by
describing a slight deviation from a straight line shown by the data.

v ≤ v0 4

√√√√
√

a20
C2v40

+
1

4
− 1

2
(2-5)

Reymond’s model does not fit the obtained data. The experimental data on which it is based
is very different to Bosetti et al.’s data, having much higher maximum lateral accelerations.
As mentioned above, this is most probably due to the fact that the experiment was performed
on a closed test track. By adapting the parameters to the new data however, an acceptable fit
can achieved. This model also captures the constant speed part of the data at higher radii, but
this straight line behavior can also be explained by the fact that it occurs at approximately
the legal speed limit.
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2-2-4 Neuromuscular dynamics of gas pedal use and HSC applications

As mentioned for the steering task, driver models for use in HSC should also be able to explain
the interactions between the human and the control surface through models of neuromuscular
behavior. However, as opposed to the steering task, there is not a large amount research into
the neuromuscular dynamics of gas and brake pedal use for speed adaptation.

Abbink (2006) provides a comprehensive overview of the dynamics of the human leg when
actuating a gas pedal in a car following task. The developed model relates the inverse of
the Time To Collision (TTP) to the lead vehicle to forces on the gas pedal. An assistance
system based on this information was shown to decrease the workload of drivers in car-
following tasks by making the driver adopt a force-task strategy. Mulder, Mulder, et al.
(2008) showed that driver prefer stiffness feedback to force feedback during the car following
task. Jamson, Hibberd, and Merat (2013) developed an assistance system based on the work
of Mulder, Mulder, et al., adapting the haptic gas pedal for eco-driving. Their results showed
that a force-feedback task was preferred when the target is a set speed. The design of a
similar system to provide information about the criticality of the cornering task is certainly
an interesting future research topic.

Park and Sheridan (2004) studied the dynamics of the braking task and found many simi-
larities with the open-loop reaching task, where the initial braking motion is described as a
pre-programmed motion that does not rely on any closed-loop feedback until after the initial
force is applied. Building on this notion, they developed a model of the braking system as a
teleoperator, extending it to a system that detects lower grip areas of the road and softens
the impedance of the brake pedal to ensure full ABS activation in these conditions. For most
drivers this improved their perception of the road, allowing them to judge the available grip
for braking more effectively.

2-2-5 Conclusions

In literature, a large collection of models explaining human speed adaptation exist. The vast
majority of these models are simply based on fitting the data, and are used in roadway design.
While they can capture the variation of driver speed with a large variety of road features,
they do not attempt to explain how a driver actually uses this information, and the model
parameters do not provide significant insights into driver behavior.

It must be noted that all the described models require an estimation of curvature. While the
relationship between curvature and speed is certainly interesting in order to discover patterns
of driving behavior, humans are notoriously poor judges of road curvature (Fildes & Triggs,
1984). Due to this, a realistic model of human speed choice cannot require the estimation
of road curvature. In the examined literature, no models were found that do not require it.
One promising approach to solve this problem is to use the Extended Tangent Point (ETP),
which is the point at the intersection of the visual line that passes through the TP with the
lane boundary on the opposite side, as shown in figure 2-13. The angle between the visual
direction on the road boundary at the ETP can provide valuable information about how
much the curve opens up and subsequently about what speed is required to safely negotiate
the corresponding turn. However, this approach has not yet been confirmed by published
experiments, and therefore further research is necessary.
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Figure 2-13: Example of ETP. The red circular marker represents the vehicle position, the blue
cross the TP, and the green asterisk the intersection of the line passing through the previous two
points with the road boundary, called the ETP.

In terms of driver’s slowing down behavior, in a vast majority of cases all deceleration is
done before the middle of the curve is reached. Drivers tend to use accelerations smaller than
1ms−1 in absolute value, both when braking into and accelerating out of turns.

2-3 The effect of speed on steering behavior

The body of research into speed effects on steering in curves is, perhaps surprisingly, small.
Nonetheless, this section provides an overview of the mentions of the influence of speed on
the models described in section 2-1, and of research into steering at variable speeds.

In the work of Donges (1978), the identified parameters of the model were shown to be speed
dependent. For the anticipatory part, the anticipation time for the driver to start steering
when predicting a change in curvature remains constant, but the initial slope of the steering
response increases with vehicle speed. In the compensatory model, the time delay appears to
decrease with speed until some lower reaction time limit. This seems logical since the driver
has less time to react at higher speeds. Furthermore, the path curvature error becomes more
noticeable as speed increases, since it is based on the velocity vector field of the driver’s visual
field. This leads to a higher gain of the correction to this error.

Hildreth et al. (2000) conducted a simulator experiment were subjects were instructed to
correct an initial error in trajectory and return to straight line driving in the center of the
road. This experiment was conducted at different constant speeds, and it was found that
as speed increased, drivers performed the required maneuver more quickly, but no change in
amplitude of the correcting motion was recorded.

Chatzikomis and Spentzas (2009) developed a driver model for evaluating assistance systems,
that predicts the driver’s longitudinal and lateral control actions based on the heading and
position errors to a pre-specified desired path aligned with the center of the road. The lateral
control model uses gain scheduling to model the effects of speed on steering action, based on
the assumption that the average driver reduced the magnitude of their steering action as the
speed increases. However, this assumption is not further justified or proved experimentally.

Saleh et al. (2011) built on the work of Sentouh et al. (2009b) described previously, designing
a speed-dependent driver model using the angles resulting from the two point visual model,
θnear and θfar, and the current steering angle, δSW , as inputs. The general structure of the
model is shown in figure 2-14. A short description of each part of the model, along with
a variation range for each parameter obtained by trial and error, is provided over the next
paragraphs.
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Figure 2-14: Structure of the speed dependent neuromuscular driver model. (Saleh et al., 2013)

The first three blocks of the model represent the visual and central nervous system, of which
the anticipatory part is described by a simple gain, as shown in equation (2-6). Values of Ka

above 5 lead to over-steering, while values below 2 result in under-steering behavior.

Ga(s) = Ka (2-6)

The compensation transfer function relating the near point angle to the driver intention,
equation (2-7) uses three parameters: the compensation gain Kc, the lag time constant TI ,
and the lead time constant TL. The compensation gain is speed dependent, and the authors
describe how with larger speeds drivers rely less on the near point and therefore use less com-
pensation. Values of Kc above 30 lead to instabilities, while at values under 10 significantly
reduce the compensation used by the driver, leading to a larger amount of corner cutting. TI
describes the frequency band of the compensatory behavior: too low values (under 0.5) make
the model attempt to compensate for all frequencies, resulting in instability; too high values
(above 2) filter out the large majority of frequencies, essentially canceling out the compen-
sator behavior. An interesting aside is that the authors note that this parameter could be an
indicator of tiredness in a driver, but no further analysis of this is performed in this work.
Finally, the lead time constant TL describes the rate of the compensatory behavior. Small
values lead to slow reactions, while large values speed up the behavior and can eventually
lead to instabilities. The authors use a range between 2 and 5 for this parameter.

Gc(s) =
Kc

v

TLs+ 1

TIs+ 1
(2-7)

In addition to the two above described blocks, human information processing has an associated
time delay. In this cased it is modeled using the Padé approximation, as shown in equation (2-
8). The authors vary τp from 0 to 0.1 and note that a too high value will result in instability.

GL(s) = e−τps ≈ 1− 0.5τps

1 + 0.5τps
(2-8)
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The result of these three blocks is the desired steering angle by the driver, δ̂SW . The remainder
of the model describes the interaction of the human neuromuscular system with the steering
wheel in order to generate a torque that will apply this angle to the steering wheel. Gk1(s) =
Krv relates the desired angle to a desired torque through an internal model of the steering
system stiffness, which varies with speed. Values of Kr below 0.5 result in under-steering,
while values above 1.5 cause over-steering and instability. Gk2(s) =Kt defines the stiffness
of the driver’s holding of the steering wheel. The higher this value, the more resistant the
driver is to disturbances. Finally, the last block represents the inertia, and passive damping
and stiffness of the drivers arms, as shown in equation (2-9). Here, TN is a neuromuscular
time constant, and the authors note that its value has remained constant at 0.1 during many
precedent works on the same topic.

GNM (s) =
1

TNs+ 1
(2-9)

While the model is speed dependent, and was validated over a large range of speeds, the
experiments carried out by Saleh et al. and in subsequent work (Saleh et al., 2013; Mars,
Deroo, & Charron, 2014: among others) were performed at constant speed. To the best
knowledge of the author, this model has not yet been coupled to a speed controller. In the
next chapter, an implementation in simulation of this model together with a speed regulator
will be described.
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Chapter 3

Simulation results

Before an assistance system can be designed and an experiment can be set up, an evaluation of
the previously described literature must be performed. To better understand driver models,
and to evaluate how the constant speed models perform when extended with a speed controller,
a series of MATLAB simulations were performed. This section describes how the models were
implemented and provides a description of the obtained results.

3-1 Implementation

An approximately 2000m long single-lane road with a width of 4m, consisting of straight
segments and corners varying in radius from 40m to 120m was designed for use in these
simulations. A sample corner with a radius of 50m and a deflection angle of 100o is shown
in figure 3-1, including a trajectory followed by the vehicle and driver. In this work, only
the results from the actions of the driver model in this turn will be shown, for simplicity.
However, the conclusions are valid for the entire road section, including quick successions of
turns. The implementation of the Road-Vehicle-Steering (RVS), driver, and speed control
models is described in this section.
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Figure 3-1: Sample corner of the designed road, with a radius of 50m and a deflection angle
of 100o. Shown in red is the vehicle trajectory, for a run where the driver model was tuned to
prioritize the following of the center of the road. The vehicle travels from the top left to the
bottom right of the plot.

3-1-1 Road-Vehicle-Steering (RVS) model

In order to implement any driver model, first one must have a platform to implement it on.
In this case, it consists of a RVS model that simulates a vehicle, using a simple bicycle model
augmented with a model of the steering system, that travels on a single lane road consisting
of straight sections and constant curvature turns.

The vehicle and steering model is a slightly modified version of the one used by Sentouh et al.
(2009b), and uses the vehicle parameters that Nguyen, Sentouh, Popieul, and Soualmi (2015)
describes for a similar model in straight line driving. The modifications are made to ensure
the model can cope with changes in longitudinal speed, and to decouple the tangent and near
point detection (road model) from the vehicle model, since the implementation described by
Sentouh et al. assumes a vehicle traveling only on a curve, with a constant distance to the
TP. It has the states x = [β, ψ̇, δ, δ̇]T , respectively the current sideslip angle, the current
yaw rate of the vehicle, the angle of the steering wheel, and the steering rate. It takes as
input the torque exerted by the driver on the steering wheel, Tdriver.

In addition to the vehicle and steering models, the RVS also determines the road information
at each timestep: the far (TP) and near points.

The TP detection algorithm is based on the method developed by Gallen and Glaser (2009),
that uses data from an in-vehicle camera to detect zero-crossings of the derivative of the visual
angle from the vehicle to the TP (TPA). The method works by taking samples of points on
both sides of the road at discrete intervals, calculating the TPA, and finding the point where
its derivative passes zero. Figure 3-2 shows how this method works for an example of a left
turn. Since the road a vehicle travels on does not only consist of curves but can also contain
straight segments, a variable maximum TTP is introduced. If the found point lies further
away from the vehicle than this time, the far point is taken as the center of the road at this
time ahead.

The speed regulation algorithm described in section 3-1-3 uses the ETP as the indicator of
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Figure 3-2: Example of the method to find the TP from the road ahead using the derivative of
the visual angle to the tangent point (TPA). (Gallen & Glaser, 2009)

the curve speed. Once the TP is found, the line connecting the vehicle to it is extended until
it crosses the opposite lane marking. This intersection is the ETP.

This method is preferred over the usage of the value of the road curvature ahead, as is used
in most models in literature, due to its realism and applicability to real world driving. This is
especially important since human drivers cannot accurately judge curvature, and assistance
systems will most likely not have access to accurate enough information from maps.

The near point is found by evaluating the road and finding its center point at the preview
distance ahead. The preview distance is simply the distance that will be covered by the
vehicle at the current speed during the specified preview time, which is one of the variable
parameters of the model. The angle to this point is then calculated and serves as the input
for the compensatory part of the driver model.

3-1-2 Driver lateral control model

The driver model used is the only one found in literature that includes a speed dependency:
the one first described by Saleh et al. (2011) as an evolution of the model described by Sentouh
et al. (2009b). Its structure is described in section 2-3. The inputs are the near and far point
angles obtained as described in the previous section, and the current steering angle at the
column. The model is implemented using a state-space representation, and the values of the
driver parameters are taken from the original paper, except for Kt, since the original value
of this parameter (12) appears to cause instabilities when taking high curvature turns at low
speeds. The values are shown in table 3-1.

Table 3-1: Initial parameter values for driver model

Parameter Ka Kc TI TL τp Kr Kt TN
Value 3.4 15 1 3 0.04 1 3 0.01
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3-1-3 Speed controller

As discussed in section 2-2, currently no models that allow for a preview judgment of the
driver desired speed for an upcoming turn without requiring curvature estimation exist. The
use of the ETP as a measure of this was discussed as a promising approach, but at this point
more research is necessary to identify exactly how speed is related to this point. In this work
it is assumed that drivers maintain a safety margin of 2 seconds in Time to Extended Tangent
Point (TETP). This value is chosen based on the work of Boer (1996), who mentions that
drivers usually begin to steer into an upcoming turn at a TTP of less than 1.5s. Since, as
mentioned in section 2-2, drivers tend to brake before they enter a turn, a value of 2 seconds
is acceptable. The desired speed is then calculated as the speed that would take the vehicle
to the ETP in 2 seconds.

The acceleration limits are based on those found for 90% of observations, excluding emer-
gencies, of the experiments conducted by Moon and Yi (2008); Bosetti et al. (2013). The
maximum comfortable accelerations are −0.89ms−2 for braking and 0.91ms−2 for accelerat-
ing. The desired acceleration is calculated such that the driver reaches the target speed at
the tangent point of the curve. As a side-note, if the vehicle happens to leave the road during
the simulation, this model will gradually slow down to 5ms−1 or until the vehicle returns to
the road. When not in a turn, the free speed is set to 15ms−1.

In the future, attention must be given to the values of the time margins that drivers actually
keep, especially since they are likely to depend on individual driving style. In addition, it
is desirable to model the dynamics of the human leg and pedals system, with a view to the
possibility of implementing an assistance system.

3-2 Steering model parameter influence

In this section the parameters of the model will be varied over the range described by Saleh
et al. (2011), in order to verify if the conclusions drawn in that work are valid for this imple-
mentation of the model including a speed controller. In addition, the preview and maximum
TTP parameters will be varied to examine their effect on the model. The parameters are
varied individually, that is, all other values remain constant and equal to those in table 3-1
during each run.

3-2-1 Anticipatory gain Ka

The anticipatory gain, Ka, reflects the intensity of the driver’s reaction to the anticipatory
visual stimulus, the angle to the TP. figure 3-3 shows the effects of varying Ka from 2 to
10 on the lateral position error with regards to the center line (ylat), the steering angle (δ),
the steering torque (Tdriver), and the longitudinal speed (vlong). A low value (red line in the
figure) will cause the model to under-steer, and in some parts of the road, not shown in the
figure, the vehicle will even leave the road. A high value makes the model cut corners more,
as evidenced by the cyan and purple lines in the figure. At Ka = 10 oscillations in steering
angle and torque begin to appear, and even higher values lead to unstable behavior as the
model overcompensates for the far point angle. At approximately 100 meters into the turn,
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the oscillations cause the vehicle to leave the road on the inside. The observed patterns match
the conclusions of Saleh et al..

Figure 3-3: Influence of the anticipatory gain Ka on the simulation results. The top plot shows
the road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-2-2 Compensatory gain Kc

Kc represents the importance the driver assigns to staying close to the center of the lane, and
the results of its variation are displayed in figure 3-4. The higher this value, the closer the
model stick to the central line, and too high values lead to overcompensation and instability.
Lower values see larger deviations from the center line, indicating more corner cutting behavior
and a wider turn exit. As with Ka, the results agree with Saleh et al..
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Figure 3-4: Influence of the compensatory gain Kc on the simulation results. The top plot shows
the road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-2-3 Lag time constant TI

As the name indicates, the lag time constant TI affects the lag characteristics of the response
to the near point. A low TI causes the model to respond to all the frequencies in the stimulus.
This can be seen for for TI = 0.1 in figure 3-5, where in the steering angle and torque plots
after the initial turn-in a correction to stay closer to the center of the lane. Higher values result
in less compensation and therefore higher deviations from the center and more oscillation.
The acceptable values can be lower than the range of [0.5,2] found by Saleh et al., possibly
because the speed controller reduces the speed in the turn.
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Figure 3-5: Influence of the lag time constant TI on the simulation results. The top plot shows
the road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-2-4 Lead time constant TL

TL has the opposite effect as TI on the response: higher values make the system respond
faster to changes in the compensatory visual angle. In figure 3-6, larger values of TL result
in a steeper and larger magnitude of the torque response of the driver than for lower values.
There is an upper limit however, as in the figure a TL value of 7.5 already leads to significant
oscillations. Saleh et al. found acceptable values between 2 and 5, and that agrees with the
behavior found in this simulation.
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Figure 3-6: Influence of the lead time constant TL on the simulation results. The top plot shows
the road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-2-5 Time delay τp

The effect of the human time delay on the response, shown in figure 3-7, seem quite intuitive.
The larger the time delay, the more unstable the response becomes. Saleh et al. found an
acceptable maximum of 0.01, and these results confirm this.
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Figure 3-7: Influence of the time delay τp on the simulation results. The top plot shows the road
curvature, the second the lateral position error with regards to the center line (ylat), the third
the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal speed
(vlong)

3-2-6 Internal model of steering stiffness gain Kr

The gain of the driver’s internal model of the stiffness of the steering system, Kr, affects the
torque that the driver exerts on the steering wheel. A low value, as shown by the red line
in figure 3-8, results in too little torque being applied, and this slow actions result in the
vehicle leaving the road on turn exit after approximately 140 meters. Values above 1.5 result
in over-steering and possible instabilities. These results agree with Saleh et al..
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Figure 3-8: Influence of gain of the internal model of steering stiffness Kr on the simulation
results. The top plot shows the road curvature, the second the lateral position error with regards
to the center line (ylat), the third the steering angle (δ), the fourth the steering torque (Tdriver),
and finally the longitudinal speed (vlong)

3-2-7 Driver stretch reflex gain Kt

This parameter is the only one whose effect is significantly different in the simulation when
compared to Saleh et al.’s results. Kt acts on the difference between the driver’s desired
steering wheel angle and the actual angle of the steering wheel, representing the human stretch
reflex. While in the original work the ideal value was found to be 12, and could increase even
further without issue, in the simulation values above 6 already cause instabilities due to too
strong reactions of the stretch reflex, as shown in figure 3-9. Saleh et al. argue that this value
can theoretically reach infinity, but this would amplify any difference in the desired steering
angle and the steering wheel angle at the column too strongly and directly cause instability.
This parameter should take values between 0 and 6.
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Figure 3-9: Influence of the gain of the driver stretch reflex Kt on the simulation results. The
top plot shows the road curvature, the second the lateral position error with regards to the center
line (ylat), the third the steering angle (δ), the fourth the steering torque (Tdriver), and finally
the longitudinal speed (vlong)

3-2-8 Maximum TTP

Having finished the analysis of the parameters of Saleh et al.’s model, the influence of the
perception time parameters on the response is also analyzed. We begin with the TTP, which
can be seen as a measure of how far before the curve the driver notices the tangent point,
and therefore begins to turn in. As would be expected, lower values such as the red line in
figure 3-10 result in later steering into the corner, and as a consequence, less corner cutting.
In this example, a value of 1 second causes the vehicle to be on the outside of the turn during
the entire curve. The magnitude of the steering actions is unaffected.

This parameter also influences the acceleration of the speed controller. A lower value mean
that the margin the tangent point is smaller, and therefore a larger braking action is needed
to reach the desired speed at the tangent point.
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Figure 3-10: Influence of the TTP margin on the simulation results. The top plot shows the
road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-2-9 Near point preview time Tp

The preview time to the near point is the measure of how far ahead of the vehicle the center
of the road is used as a source of information. As with the TTP described above, the effects
agree with expectations. In figure 3-11 too low values cause instability, as a point too close
of the vehicle is taken. A large value essentially removes the effect of the compensatory
behavior by making it behave more closely to the preview information, resulting in corner
cutting during turns.
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Figure 3-11: Influence of the near point preview time Tp on the simulation results. The top plot
shows the road curvature, the second the lateral position error with regards to the center line
(ylat), the third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the
longitudinal speed (vlong)

3-3 Maximum TETP

The safety margin in the time to the ETP only influences the desired speed of the speed
controller. In figure 3-12, a 1 second margin causes the vehicle to leave the road on the
outside of the turn. In addition, more steering activity is needed to ensure that the vehicle
can still take the turn at higher speeds. Margins of 1.5 and 2 seconds are enough for safe
curve driving with the default parameters of the driver model.
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Figure 3-12: Influence of the TETP margin on the simulation results. The top plot shows the
road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-4 Speed influence on steering model

Finally, the effect of the free speed during the straight line segments is shown in figure 3-13.
The larger speed results in earlier turn-in and more corner cutting, as well as faster steering
actions. Interestingly, the model shows larger magnitudes of steering torque for the higher
speeds, contrary to the conclusions of (Hildreth et al., 2000). The task in that experiment
was the return to straight line driving and not the negotiation of a curve, which could explain
the difference. More experimental validation is needed to determine the realism of the model
when changing speed.
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Figure 3-13: Influence of the free speed vlong on the simulation results. The top plot shows the
road curvature, the second the lateral position error with regards to the center line (ylat), the
third the steering angle (δ), the fourth the steering torque (Tdriver), and finally the longitudinal
speed (vlong)

3-5 Identification of parameters

In order to determine if the parameters of the driver model can be identified, a run with
the default parameters was performed, noise was added to the results and a non-linear least-
squares method with parameter limit values obtained from the above discussion. The original
and identified values of the parameters are shown in table 3-2, and the resulting driver torque
plot in figure 3-14. While there is a considerable difference between the parameter values, the
resulting torque plot is practically identical. This tells us that the model is over-parametrized.
(Xin, 2016) performed identification experiments and reached the same conclusion, identifying
the parameters with Variance Accounted For (VAF) values of over 99% for the steering angle
and torque but noticing over-parametrization. To mitigate this, Xin simplified the NMS by
assuming driving at constant speed. This approach will not work in this case, since the goal
is identify variation with speed, and therefore a new approach must be found before further
work can be done.
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Table 3-2: Identified parameter values for driver model

Parameter Ka Kc TI TL τp Kr Kt

Original value 3.4 15 1 3 0.04 1 3
Identified value 2.8838 13.4088 0.8638 2.5452 0.0524 1.2903 2.2855
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Figure 3-14: Original, noisy, and identified driver steering torques.

3-6 Conclusions

Literature on speed adaptation of steering behavior is scarce, but most agree that as speed
increases, anticipation times remain constant, steering rate increases, and preview becomes
more dominant than compensatory behavior.

The speed-dependent driver model developed by Saleh et al. (2011) was implemented in a
MATLAB simulation environment, and the results generally agree with the conclusions from
the limited amount of literature available. The model was coupled with a speed controller
based on a safety margin to the ETP without significant issues, and the model is now capable
of generating variable speed results. The range of the parameters from the original work was
tested at variable speeds, and the found values agree in all cases except the gain of the stretch
reflex, which cannot reach as high values without the model becoming unstable. In general,
the model performs as expected, and the next step is to apply it to available experimental
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data to determine its realism. To be able to compare it to real data, identification must
be performed to find the values of the driver-dependent parameters. However, the model is
over-parametrized, and this must be resolved before any further work on this model can be
done.
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Chapter 4

Conclusions and future work

While the topic of driver modeling for driving assistance systems has received considerable
attention over the past decades, most of the research has focused on constant speed driving.
In order to provide better support in the driving task, this research must be extended to take
into account the way that drivers actually drive, that is, varying their speed depending on
factors such as road geometry and traffic. The central goals of the research of this master’s
thesis are twofold: to find out whether adapting the haptic shared control reference trajectory
based on the vehicle speed improves user acceptance of steering shared control systems, and
to gain insight into what factors human drivers take into account when adapting their speed
to upcoming turns in the road.

In previous literature, the study of steering has mostly been performed during constant speed
driving, and can be subdivided into two different tasks: the perception of the road ahead
to generate a steering intention, and the control action that translates this intention to an
actual steering movement. Even though discussion remains on where exactly driver look,
it is generally accepted that perception follows a two-level model, using visual angles to
obtain both preview and compensatory information from the far and near regions of the road,
respectively. Less consensus exists on how to model the neuromuscular behavior of the human
driver. The most common approach consists of modeling each desired component of the NMS
as a transfer function. This has the advantage that the parameters to be identified can be
easily explained. In recent years, studies of driver behavior have shifted their attention to
the work done on human motion control and more specifically to the task of reaching, which
was found to contain many similarities to steering. Benderius (2014) developed a simple
open-loop steering correction model based on steering rate patterns, only containing one
driver-dependent parameters. While this model is attractive in its simplicity and the fact
that is captures the tendency of humans to satisfice instead of optimize, it does not model
the application of steering torques, as required for model that can be used as references for
HSC. Kolekar (2016) based his model on the framework of Optimal Preview Control, often
seen in the field of neurophysiology. In addition to the fact that it links the steering task
to the larger field of human behavior studies, this model has the advantages of being able
to capture both routine and emergency behavior in one model, and includes the natural

Virǵılio Gruppelaar



48 Conclusions and future work

variability of steering. As of yet, the model cannot reproduce satisficing behavior, and as the
author notes, this should be the object of future work. Modeling steering as reaching is a
recent development, and while they can accurately reproduce steering behavior, these models
still require further study.

Humans generally do not drive at constant speed, and tend to adapt their speed to the road
situation ahead. The speed choice of drivers has been extensively studied in the context of
road safety, and over the past ten years also for driving assistance systems. The vast majority
of these models use the curvature of the road a measure of lateral acceleration, and adapt the
speed based on safety margins. This usually requires a judgment of road curvature, which is
not a task that humans perform well. In the study of car following tasks, the TTP is used a
measure of when to brake. Adapting this for the purposes of curve driving, models based on
keeping a safety margin in the time to the tangent point or the extended tangent point show
promise.

Interestingly, the combination of the two behaviors has not been the subject of much study.
The NMS model developed by Saleh et al. (2011) is one of the few that explicitly includes the
effect of speed on the steering behavior of the driver, but it is not coupled to a speed controller.
In simulation, this model was cascaded with a TETP based speed regulator, and the results
agree with the conclusions of previous literature: as speed increases, the anticipation time
remains constant, the rate of steering corrections increases, and preview becomes dominant
over compensatory behavior, resulting in more corner-cutting. Attempts at identification of
the parameters of this model were able to capture the steering behavior, but showed that the
model is over-parametrized.

To investigate speed control, identify the changes with speed and the differences between
the different neuromuscular models, and implement an assistance system based on this new
reference, would go beyond the scope of a Master’s thesis project. Therefore further work
on this project will focus only on the classical model, leaving the discussion on steering as
reaching aside. The initially posed question of How do drivers combine speed choice and
steering behavior during curve negotiation, and how can knowledge of this interaction be
applied in the design of haptic assistance? will be answered by developing, identifying and
validating a speed control model based on time to extended tangent point, and combining
this with a steering model based on the work of Saleh et al. (2011). The analysis of speed
effects on the model developed by Kolekar (2016) will be left to further research.

The first step of the future work will be to test the hypothesis that drivers regulate their
speed based on a time margin to the ETP. In order to do this, a speed model with two
different modes of reducing speed will be developed. These two modes correspond to the
actions of releasing the accelerator pedal and applying the brakes, with drivers using different
time margins for each of these modes. Currently available experimental data do not contain
sufficient variations in speed due to the large curvatures used, and therefore a new experiment
will be set up to enable the identification of the time margins to the ETP.

Once the parameters of this speed model have been identified, it can be connected to a
steering control model. The hypothesis of this part of the project is that drivers’ performance
and/or acceptance of HSC systems will be improved using a HCR driver model that varies
with speed, when compared to constant speed models. To test this, an experiment will be
designed in which the speed choice is left to the driver and two distinct steering HSC systems
are provided. These references differ only in whether the reference depends on the vehicle
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speed. Using a high level of haptic authority, the question of whether the inclusion of speed
dependency in the used HCR provides significant benefits can be answered.
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Virǵılio Gruppelaar


