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Abstract

Physics-Informed Neural Networks(PINNs) have
emerged as a potent, versatile solution to solv-
ing both forward and inverse problems regarding
partial differential equations(PDEs), accomplished
through integrating laws of physics into the learn-
ing process. The applications of this new approach
are endless, as these types of equations appear
across numerous fields: fluids mechanics, quan-
tum mechanics, electrochemistry and many others.
Ever since their conception, researchers have con-
tinuously improved the flexibility and performance
of PINNs through advancements in the architec-
ture of neural networks, optimization algorithms,
creative sampling methods and many more. As
computational power and the interest of researchers
grow, the revolutionary potential of PINNs is closer
to fulfillment than ever. This paper aims to examine
a small part of this evolutionary process, specifi-
cally the performance and flexibility of different ac-
tivation functions used in the training of the PINN,
as well as potential problems this approach could
solve.

1 Introduction
Physics-Informed Neural Networks (PINNs) (Raissi, Babaee,
and Givi 2019) are a class of machine learning models that
integrate physical laws expressed as partial differential equa-
tions (PDEs) into the neural network training process. PINNs
have gained significant attention due to their ability to solve
forward (estimating the solution to a governing mathematical
model) and inverse (learning the mathematical model’s pa-
rameters from observed data) problems in scientific comput-
ing, where traditional numerical methods often struggle with
high-dimensional spaces or ill-posed problems. This new tool
has been extensively used in solving problems across the sci-
entific spectrum, ranging from fluid mechanics (Raissi, Yaz-
dani, and Karniadakis 2020, Sun and J.-X. Wang 2020), quan-
tum mechanics (Jin, Mattheakis, and Protopapas 2022) and
electromagnetism (Piao et al. 2024), to molecular dynamics
(Oca Zapiain, Venkatraman, and M. Wilson 2023) and elec-
trochemistry (X. Huang et al. 2025).

One of the challenges in training PINNs lies in achieving
high accuracy while maintaining training efficiency. Activa-
tion functions, as a fundamental component of neural net-
works, play a crucial role in shaping the network’s expressiv-
ity and optimization dynamics. Research on activation func-
tions has demonstrated their impact on convergence rates,
gradient stability, and solution accuracy, especially for non-
linear and stiff PDEs. Studies such as (Jagtap, Kawaguchi,
and Karniadakis 2020) and (Kawaguchi, Jagtap, and Karni-
adakis 2020) have introduced novel activation functions such
as adaptive and locally adaptive activation functions, provid-
ing insights into their limitations and benefits. (H. Wang,
Song, and G. Huang 2024) extended this work by introducing
adaptive sigmoidal activation functions tailored to PDE set-
tings, reporting promising results on specific problem classes.

1.1 Structure of the Paper
The paper is organized as follows:

• Section 1: Introduces the research problem, key ques-
tions, and the motivation for exploring activation func-
tions in PINNs.

• Section 2: Provides essential information about the gen-
eral problem formulation that PINNs aim to solve, as
well as insight into the inner workings and architecture
of PINNs.

• Section 3: Details the methodology for training PINNs.

• Section 4: Explains the setup of the experiments and
motivates the design choices made in order to generate
meaningful results.

• Section 5: Presents the results and discusses perfor-
mance comparisons among the tested activation func-
tions.

• Section 6: Tackles the issue of the ethical aspects of the
research conducted, as well as its reproducibility.

• Section 7: Provides an interpretation of the results with
regards to the research questions.

• Section 8: Highlights the contributions of this paper.

1.2 Contribution
This work investigates how different activation functions im-
pact the accuracy and training efficiency of PINNs when solv-
ing the 1D Burgers’ Equation. The main research question is:

Which activation function optimizes the accuracy and
training efficiency of Physics-Informed Neural Networks
for solving the 1D Burgers’ Equation?

To address this overarching question, the study explores
the following sub-questions:

1. How do common activation functions (e.g., ReLU, tanh,
sigmoid) perform in terms of accuracy and training
time?

2. Can adaptive or learnable activation functions improve
training dynamics compared to static ones?

3. How do improved activation functions compare to one
another in terms of training speed and accuracy?

Preliminary findings suggest that adaptive and learnable
activation functions outperform traditional static functions,
both in terms of error reduction and convergence speed. What
this research will focus on is the extent of the performance
improvement that these adaptive activation functions bring,
as well as whether there are any significant trade-offs.

2 Background
In this section we will take a close look at the most important
components of the task at hand: the mathematical postulation
of the general problem PINNs aim to solve, as well as the
actual, explicit problem the PINN is trained to solve and the
internal mechanisms of this type of neural networks.



2.1 Problem formulation
Consider a general PDE in some domain Ω ∈ Rd (where
d is the dimension of the problem) possibly with boundary
conditions, initial conditions and a governing equation:

N (u(x, t); θ) = 0, x ∈ Ω, t ∈ T
where N is the operator that represents the PDE, u(x, t)

is the unknown solution to the PDE, which depends on the
spatial and temporal coordinates x and t, and θ represents the
parameters of the PINN.

In case the problem exhibits boundary and initial condi-
tions, they need to be enforced through the following equa-
tions :

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ T

u(x, 0) = h(x), x ∈ Ω

where g stands for the equation representing the bound-
ary conditions (which is why x belongs to the points on the
boundary of the domain) and h represents the equation de-
picting the initial conditions (which is why t = 0 on LHS and
not taken as input on RHS).

The solution to these equations is approximated by a neural
network û(x, t; θ) with parameters θ:

u(x, t) ≈ û(x, t; θ)

Following this conceptual framework for solving a PDE
using PINNs, the next step is to apply it to our own equa-
tion. The PINN is trained to come up with a solution for the
forward problem of 1D viscous Burgers’ Equation.

The 1D Burgers’ equation is a fundamental partial differ-
ential equation in fluid dynamics, nonlinear acoustics, and
traffic flow. It describes the evolution of a scalar field, often
representing velocity or a concentration, under the influence
of both convective and diffusive processes. It is a simplifica-
tion of the Navier-Stokes equations in the case of one spatial
dimension and no external forces.

The general form of the 1D Burgers’ equation is:

∂u
∂t

+ u∂u
∂x

= ν ∂2u
∂x2

where u(x,t) is the unknown function (e.g., velocity) that
depends on both space x and time t and v represents the kine-
matic viscosity (low kinematic vicosity means the fluid flows
easily, while high kinematic viscosity means that the fluid
flows more sluggishly). The first term on the left side repre-
sents advection (convective term) and the second term on the
left side represents the nonlinearity. The right-hand side rep-
resents diffusion, more explicitly the dissipation of the field
due to viscosity: if v is small, the system exhibits more pro-
nounced non-linear effects, as opposed to when v is large,
when the effects are more diffusive, smoothing.

Therefore, we will define the operator representing the
PDE, N , as:

N (u) = ∂u
∂t

+ u∂u
∂x

− ν ∂2u
∂x2

Now that we have a clear idea of the mathematical formu-
lation of the problem at hand, it’s time to take a look at the
characteristics that allow a PINN to solve it.

2.2 PINN inner workings
We consider a neural network with D layers, out of which D-
1 hidden layers and 1 output layer. Each i-th layer contains
ni neurons, and receives from the previous layer an output
xi − 1 ∈ Rni−1 which is transformed as such:

li := wi ∗ xi−1 + bi

The wi term represents the trainable weight matrix of the
i-th layer, while the bi term represents the trainable bias of
the i-th layer. Both terms are sampled from independent and
identically distributed samplings. Before the result of the
equation is passed on to the next layer, an activation function
is applied:

Li := σ
(
li(xi−1)

)
Finally, if we were to express the output of a neural net-

work using these two equations, it would be a chain of com-
positions of alternating functions: the output of layer li serves
as input for the global activation function, whose output
serves as input for layer li + 1 and so on. The equation looks
like this:

uΘ

(
n0

)
= (lD ◦ σ ◦ lD−1 ◦ σ ◦ ... ◦ σ ◦ l1)(n0)

2.3 Activation functions
The last crucial design choice when constructing the PINN
is the activation function, the main topic of this paper. We
will first take a look at some traditional activation functions
that are widely used in related research. These will serve as
benchmarks for the next topic of this section and the most im-
portant part of our research, the adaptive activation functions.

1. tanh(x) = ex−e−x

ex+e−x

The hyperbolic tangent activation function is a smooth
and continuous function that maps the input to values
between -1 and 1. Since many PDE solutions, includ-
ing ones for the 1D Burgers’ Equation, have smooth and
symmetric characteristics, tanh is a natural choice that
helps PINNs to converge more efficiently during train-
ing. Additionally, this activation function is very stable
for both low and high inputs, providing non-zero gradi-
ents across a broad input range.

2. sigmoid(x) = 1
1+e−x

Being one of the first activation function used in neu-
ral networks, thanks to its role and relevance in the
field of computational neuroscience (H. R. Wilson and
Cowan 1972), the sigmoid activation function serves as
a foundational reference point for evaluating the perfor-
mance of PINNs. Additionally, in the context of the



1D Burgers’ Equation, the main drawback of this activa-
tion function, the vanishing gradient problem (Hochre-
iter 1998), is minimized by the limited range of the do-
main from which the data is sampled. Another charac-
teristic of our PDE that makes this AF suitable is the
low-dimensionality of the input data.

3. ReLU(x) = max(0, x)

As for the rectified linear unit activation function, its
widespread use, driven by its simplicity and efficiency,
make it a strong candidate as a benchmark activation
function. However, its characteristic dying neuron prob-
lem is especially impactful when it comes to PDEs, even
ones as simple as the 1D Burgers’ Equation. The ze-
roing of negative values is also problematic, consider-
ing the nature of the x-input, which often takes values
smaller than zero. Thanks to these well-known, well-
documented problems of the ReLU activation function,
it serves as an excellent indicator of the improvements
that the other activation functions bring.

.
Based on previous research (Kawaguchi, Jagtap, and Kar-

niadakis 2020), the AFs with the most potential to bring an
improvement to PINN performance, and the ones that will be
compared to the benchmark activation functions mentioned
earlier, are:

1. layer-wise locally adaptive AF (LAAF) :
σ
(
wi

jLi (n
i−1)

)
, i = 1, 2, . . . , D− 1, j =

1, 2, . . . , Ni.
With the addition of an adaptable parameter to each
layer, there’s an extra D-1 parameters to be optimized
during the training process. Therefore, every hidden
layer has its own slope for the activation function (wi

j).

2. neuron-wise locally adaptive AF (N-LAAF) :

σ
(
maij (Li (n

i−1))j

)
, i = 1, 2, . . . , D −

1, j = 1, 2, . . . , Ni.
With the addition of an adaptable parameter to each neu-
ron within each layer, there’s an extra

∑D−1
i=1 Nk param-

eters to be trained each iteration of the training process.
As with the layer-wise one, each neuron has its own
slope for the activation function (maij) (Kawaguchi, Jag-
tap, and Karniadakis 2020).

As you can see in the formulas for both locally adaptive
activation functions, a traditional, underlying activation func-
tion (σ) still is part of the concept, but accompanied by slope
terms present at 2 different levels of the neural network: at
layer level and at neuron level. The exact choice of this under-
lying activation function is not trivial, therefore is discussed
later in Section 5, where the choice made in this research pa-
per is accompanied by proof and explanation.

2.4 Physics-informed loss function
In a normal neural network, an error metric such as cross en-
tropy loss or mean squared error would be calculated with

regards to this output and the ground truth, which would fur-
ther be used in calibrating the model through backpropaga-
tion. When it comes to PINNs however, the loss is comprised
of 3 separate terms, whose role is to embed the governing
physical laws into the equation:

1. LBC(θ) is the boundary condition loss, ensuring the so-
lution matches the boundary data:

LBC(θ) =
1

NBC

∑NBC
i=1 |u(xi, ti)− g(xi, ti)|2

where NBC represents the number of points used to en-
force the boundary condition (they are sampled on the
boundaries of the defined domain Ω), u(xi, ti) repre-
sents the output of the neural network for the i-th point
and g(xi, ti) represents the boundary condition com-
puted for the i-th point.

2. LIC(θ) is the initial condition loss, ensuring the solution
matches the initial data:

LIC(θ) =
1

NIC

∑NIC
i=1 |u(xi, 0)− h(xi)|2

where NIC represents the number of points used to en-
force the initial condition (they are sampled at the initial
time t = 0), u(xi, 0) represents the output of the neural
network for the i-th point at time 0 and h(xi) represents
the initial condition computed for the i-th point at time
0.

3. LPDE(θ) is the residual of the PDE evaluated at points in
the domain Ω:

LPDE(θ) =
1

NPDE

∑NPDE
i=1 |N (u(xi, ti); θ)|2

where NPDE represents the number of collocation
points sampled within the domain Ω and N represents
the partial differential equation operator that is applied
to the predicted solution generated by the neural network
u(xi, ti); θ), as described in section 2.1.

These 3 loss terms are combined as such in the total loss of
the PINN:

L(θ) = λ1 · LPDE(θ) + λ2 · LBC(θ) + λ3 · LIC(θ)

where λ1, λ2 and λ3 are the weights that balance the im-
portance of each loss term. This loss function is used to per-
form backpropagation and tune the parameters of the neural 
network through the use of auto-differentiation (Baydin et al. 
2018).

3 Methodology
This chapter describes the methodology used to research the 
impact of different activation functions on the performance of 
PINNs for the 1D Burgers' Equation.



3.1 Training process
The training process of a PINN is mostly similar to that of
a normal neural network, with two small but crucial differ-
ences: the use of autodifferentiation (Baydin et al. 2018), as
an efficient and accurate way to evaluate function derivatives,
and the loss function comprised of three separate weighted
terms, as explained in section 2.2.

Therefore, the training process of the underlying PINN is
comprised of the following steps:

1. Problem formulation: As explained in section 2.1, we
are aiming to generate solutions for the forward problem
of the 1D Burgers’ PDE, using each activation function
detailed in section 2.3.

2. Designing the PINN: The next crucial step is to layout
the architecture of the PINN, as the choices made in this
step have a crucial influence over the results. Therefore,
the scheme of the PINN is detailed thoroughly in section
4.2.

3. Physics-informed loss function: The inner mechanics
of the physics loss have already been highlighted in de-
tail in section 2.4. What is however worth mentioning
is the weighting of the 3 terms in the loss function :
λ1 = 0.4, λ2 = 0.3, λ3 = 0.3. This weight distribution
was chosen with the two aspects in mind. Firstly, the
PDE to be solved has relatively simple Dirichlet initial
and boundary conditions, therefore the PINN has no is-
sues in coming up with solutions that satisfy them. Sec-
ondly, as a consequence of the first point, assigning high
importance to these conditions would dilute the results,
making them harder to interpret. Hence, a bigger weight
was assigned to the PDE loss, as this has the highest
variance.

4. Sampling the domain: Collocation points are sam-
pled, where the PDE is evaluated and the physics loss is
computed. Despite a multitude of proven performance-
enhancing sampling techniques (Wu et al. 2023), a
uniformly random sampling distribution was chosen.
The techniques mentioned earlier are particularly useful
when dealing with high-dimensional PDEs, which is not
our case. They also entail a higher computational cost to
the already limited available hardware.

5. Training the PINN: First, hidden layer weights and
biases are initialized. Then, the predicted solution
uΘ

(
x, t

)
is computed for a batch of 4096 collocation

points. Based on these solutions, automatic differentia-
tion is used to compute the derivatives found in the gov-
erning PDE, and the physics loss is computed. Finally,
the gradients of the loss with respect to the network’s pa-
rameters are calculated using automatic differentiation
and the NN is optimized using Adam, as explained in
section 4.2.

The visual representation of this process can be found in
figure 1.

4 Experimental Setup
In this section we will discuss the practical steps and mea-
sures employed in order to generate clear, meaningful re-

Figure 1: Training process of a PINN.

sults that would later allow for insightful conclusions into the
performance of the proposed activation functions. First, the
training setup will be explained, then the design choices made
during designing the Physics-Informed Neural Network will
be clarified. Finally, a thorough inspection of the evaluation
metrics used to quantify the results will be conducted.

4.1 Training experiments
In order to efficiently and effectively train the model, the
technique of Mini-Batch Gradient Descent (Ruder 2016) was
used, each batch having a size of 64 training points. This
choice came as a natural decision considering the vast amount
of research demonstrating its superior performance (Masters
and Luschi 2018) to its counterparts, Stochastic and Batch
Gradient Descent.

Additionally, the model was trained for up to 30000
epochs. This particular number was chosen with two aspects
in mind : the model needed time to get over the high initial
errors caused by random initialization of weights, as well as
giving enough time to the activation functions to differentiate
amongst themselves based on their advantages and disadvan-
tages discussed later in section 5.

In order to ensure the reproducibility and validity of the
results, data about each training session is saved locally, al-
lowing ease of access to the values of the evaluation metrics
discussed in section 4.3. Additional scripts are provided that
take as input the data generated during training and produce
clear plots and figures demonstrating the results.

4.2 PINN architecture
While designing the PINN architecture, I made the following
choices:

• Network structure: Fully connected feedforward neu-
ral network with 4 hidden layers and 256 neurons per
layer. The choice to employ a relatively small FCNN
stems from the simplicity of the Burgers’ Equation, de-
spite the drawbacks researched in the (S. Wang, Yu, and
Perdikaris 2022) paper. The main disadvantage of this
type of NN is an inherent spectral bias, more specifically
a difficulty of the model to learn high-frequency data. It
is safe to say that this characteristic of the FCNN does
not negatively influence the validity of the results dis-
cussed in section 5, but rather the opposite.



• Optimizer: Adam (Kingma and Ba 2014) optimizer,
supplemented with learning rate scheduling. The com-
putationally efficient algorithm, tailored specifically for
Stochastic Gradient Descent problems, was a sensible
choice considering its ease of use and adaptability to
both high and low-dimensional parameter spaces.

• Loss function: typical PINN loss function, made up of
3 separate terms: physics loss, initial conditions loss and
boundary conditions loss, as detailed in section 2.2.

• Hyperparameters: I performed a grid search to identify
optimal hyperparameters, including the learning rate and
the initialization parameters for the activation functions
that are adaptive.

4.3 Evaluation metrics
In this study, several evaluation metrics were employed to as-
sess the impact of adaptive activation functions on the perfor-
mance of PINNs in solving the 1D Burgers’ equation.

The total loss was plotted against the number of epochs
to monitor the network’s convergence behavior during train-
ing, providing insight into the effectiveness of different ac-
tivation functions in minimizing error over time. The num-
ber of epochs needed to reach a specific threshold error was
recorded to evaluate the efficiency of each activation func-
tion, with a shorter training time indicating faster conver-
gence. The lowest error achieved after 30,000 epochs was
considered to compare the overall performance of the models
and their ability to approximate the solution to the Burgers’
equation. Additionally, the number of trainable parameters
was tracked to assess the complexity of each network and de-
termine if adaptive activation functions lead to more compact
or efficient models. The time elapsed during training and the
memory usage were also monitored, as these factors are cru-
cial for practical implementation, especially for larger-scale
problems. These metrics provide a comprehensive under-
standing of how adaptive activation functions, such as LAAF
and N-LAAF, influence both the learning dynamics and the
computational efficiency of PINNs.

5 Results and interpretation
The purpose of this section is to present and discuss the re-
sults of the experiments that were conducted as described in
section 4, with data organized in plots and tables. In order
to aid the reader in following the research questions and in-
terpreting the results, we will first present a brief comparison
of the traditional activation functions enumerated in section
2.3, which will be concluded with a definitive answer regard-
ing the best performing of the three. Then, this activation
function will be used both as a benchmark for comparing it
to LAAF and N-LAAF, as well as the underlying activation
function, mechanism explained in section 2.3.

5.1 Traditional activation functions
As mentioned before, we will first take a look at the per-
formance of the three chosen traditional activation functions:
tanh, sigmoid and ReLU.

Their performance is measured in Figure 2, which plots
their accuracy as a function of number of epochs, more

specifically their convergence speed. A quick look at the
plot shows tanh’s superiority to its counterparts, ReLU per-
forming the worst out of the three. Compared to sigmoid, the
model trained using tanh also achieved a significant speed-
up in convergence speed, reaching sigmoid’s minimum er-
ror after 30000 epochs after only 13000 epochs, a factor of
improvement of 2.3 in speed. Additionally, this improved
speed of convergence allowed the model trained using tanh
to achieve a minimum error of over 100 times smaller com-
pared to the one trained using sigmoid, and a minimum error
of over 1600 times smaller compared to the one trained using
ReLU.

This remarkable enhancement is explained by several fac-
tors:

• Solutions to the 1D Burgers’ Equation are generally
smooth in nature, making tanh, a smooth and continu-
ous activation function, generally suited for approximat-
ing smooth functions.

• ReLU suffers from the dying neuron problem, which
leads to gradients valued at zero for certain neurons,
which is particularly problematic when solving PDEs,
which often include complex relationships across the do-
main.

• tanh acts as a natural regularizer due to its saturation
behaviour. This property contributes to the stabilization
of training and prevention of overfitting.

Due to the clear improvement that the model trained using
the hyperbolic tangent activation function brings compared to
ReLU and sigmoid, tanh will be used in the next section both
as a benchmark and as the base underlying function of LAAF
and N-LAAF.

5.2 Adaptive activation functions
Now it’s time to take a look at a detailed comparison of tanh,
LAAF and N-LAAF, both adaptive activation functions being
based on the hyperbolic tangent activation function.

Figure 2: Aggregated loss history of the 3 proposed non-adaptive
activation functions used in training the PINN for generating a solu-
tion for the 1D Burgers’ Equation.



Method lowest error after 30000 epochs
tanh 2.012e-04

sigmoid 2.531e-03
ReLU 3.3056e-01

Table 1: Epochs needed to reach a certain error threshold. Rows are
the activation function used, columns are the error threshold.

Method 1e-2 1e-3 1e-4 1e-5
no-adaptive-tanh 3880 14180 31880 42120

LAAF 10360 13280 22240 33010
N-LAAF 2910 7570 9490 15480

Table 2: Epochs needed to reach a certain error threshold. Rows are
the activation function used, columns are the error threshold.

Method lowest error after 30000 epochs
no-adaptive-tanh 2.012e-04

LAAF 5.554e-05
N-LAAF 3.397e-06

Table 3: Epochs needed to reach a certain error threshold. Rows are
the activation function used, columns are the error threshold.

Method no. of trainable parameters
no-AF-tanh 198,401

LAAF 198,405
N-LAAF 199,425

Table 4: Different performance metrics for each activation function.
The first column refers to the amount of time it took the PINN to
train for 30000 epochs. The second column represents the total
amount of computer memory used during training. The third col-
umn represents the amount of trainable parameters included in the
PINN

Method time elapsed RAM used
no-AF-tanh 1h48m02s 20,79GB

LAAF 2h2m9s 22,85GB
N-LAAF 2h11m47s 25,20GB

Table 5: Different performance metrics for each activation function.
The first column refers to the amount of time it took the PINN to
train for 30000 epochs. The second column represents the total
amount of computer memory used during training. The third col-
umn represents the amount of trainable parameters included in the
PINN

The results displayed in Figure 3 are consistent with the find-
ings in the preceding research papers on the topic of adaptive
activation functions (Kawaguchi, Jagtap, and Karniadakis
2020), showing a clear superiority in accuracy for the adap-
tive AFs compared to their non-adaptive counterparts. The

Figure 3: Aggregated loss history of the 3 candidate activation func-
tions used in training the PINN for generating a solution for the 1D 
Burgers’ Equation.

data in Table 2 provides further insight into the magnitude of 
the improvements, N-LAAF achieving an error of 1e-5 almost 
three times faster than non-adaptive tanh. This significant im-
provement is also displayed visually in the plots in Appendix 
A, where the point-wise error of the non-adaptive tanh is 
visibly higher (therefore more points that are more 
pronounced). What is most surprising however, is the 
meaningful difference in con-vergence speed between LAAF 
and N-LAAF, the latter being twice as fast as the former. 
The reason for this discrepancy is also the added specificity 
of N-LAAF, quantified in table 4, where it is clear that N-
LAAF has 1000 more trainable pa-rameters. As for exactly 
how this added specificity explains this behaviour, an in-
depth discussion is provided in section 7.

As a result of the improved convergence speed of the 
adaptible AFs, the minimum error achieved after 30000 
epochs for each AF also varies greatly. As presented in ta-
ble 3, N-LAAF is more than 100 times more accurate than 
tanh, while, compared to LAAF, it manages to be 61 times 
more accurate. On the other hand, this enhancement comes 
at a couple of trade-offs, as illustrated in table 5. In terms of 
time allocated for training, the model using N-LAAF took 23 
minutes more than the one using tanh, a 21% increase, and 
9 minutes more than the one using LAAF, a 7% increase in 
running time. Additionally, the N-LAAF model was also the 
most expensive memory-wise, using 10% more memory than 
the LAAF one and 20% more than the tanh one.

6 Responsible Research
In this section I will touch upon the ethical aspects of this 
research paper, as well as the reproducibility of the research 
methods employed.

6.1 Ethical Issues
Considering the fact that this research employs no usage of 
any kind of user data, and the target problem targets only the 
mathematical tool that PDEs are, and not the context they are 
used in, no ethical issues should arise from the work con-
ducted and presented in this paper.



6.2 Reproducibility
The reproducibility of the conducted research is made as 
simple as possible, ensuring the integrity and validity of 
the findings. A ll a lgorithms e xplained a nd u sed a re im-
plemented in the 3.8 version of Python, which is com-
patible with the most crucial frameworks and libraries 
used : Tensorflow, N umpy a nd M athplotlib. Addition-
ally, all code is made publicly available in a GitHub repos-
itory (https://github.com/raresmihail123/rp-pinn-activation-
functions), along with instructions for installation and usage.

7 Discussion
In this section we will thoroughly examine the possible un-
derlying reasons behind the results discussed in section 5. All 
discussion will be centered around the motives behind the en-
hanced performance of the neuron-wise locally adaptive acti-
vation function.

7.1 Adaptability
The most obvious motivation for the results is the fine-
grained adaptability that the neuron-wise parameters intro-
duce. Thanks to this, the network is better capable of captur-
ing localized features, such as sharp gradients or subtle vari-
ations in smooth regions, which are both present in typical 
solution to the 1D Burgers’ Equation. These areas are clear 
also in the figures in appendix A, around x = 0 and the diag-
onal stripes exhibited at the start of the simulation. Therein 
also lies the reason for layer-wise locally adaptive activation 
function’s and tanh’s reduced performance, considering the 
deficiency in trainable parameters visible in table 4.

7.2 Spectral bias
In order to aid the reader in fully appreciating the extent of 
the results, this section will be split into two parts: first, a 
background on spectral bias and its emergence in neural net-
works will be provided, after which we will take a look at the 
implications observable on our results.

Explanation of the concept
Introduced first b y R ahaman e t a l. 2 019, a nd l ater proven 
mathematically by Cao et al. 2019, spectral bias is defined as 
a learning bias towards low complexity functions, exhibited 
by neural networks. More specifically, during training, neural 
networks have a tendency to first fit the low complexity com-
ponents, placing priority on first learning the simple patterns 
that generalize across the entire data set. It is true that this 
behavior is not always present, especially in the cases when 
the original data is in a higher-dimension manifold, but it ac-
tually lies on a lower-dimensional manifold of complex shape 
embedded in the input space of the model. This, however, is 
not the case, considering the two dimensional character of our 
data.

In the context of partial differential equations, these ”low 
complexity functions” translate directly to the areas of the do-
main where the function is low frequency. This low frequency 
property is characterized by smoothness and the absence of 
strong local fluctuations. This is extremely relevant to our 
interpretation of the results, as discussed in the next section.

The impact of spectral bias on our results
In light of the discussion in the previous section, we need 
to take a closer look at the 1D Burgers’ Equation in rela-
tion to PINNs. The low-frequency areas are easily observ-
able in the figures in  Appendix A, especially the graphs de-
tailing point-wise errors. Here we can observe that there are 
no errors around the low-frequency data points, where u(x, t) 
changes gradually, or where the viscosity is high and the dif-
fusion term dominates. On the other hand, areas containing 
high-frequency data points, in the vicinity of steep gradients 
around the value x = 0, are where the majority of the error 
builds up. The additional trainable parameters are proven to 
be quite effective in overcoming this difficulty, hence the sig-
nificant improvement in performance for N-LAAF.

7.3 Drawbacks
As for the drawbacks of using N-LAAF instead of its counter-
parts, the discussion is limited to computational complexity. 
Considering the limited hardware these experiments were run 
on, the relatively insignificant difference in time and mem-
ory and the much more significant discrepancy in perfor-
mance, using N-LAAF in PINN architecture is certainly ad-
vantageous.

7.4 Further research
If we were to extrapolate the previous discussion, the en-
hanced model capacity and dynamic adjustment during train-
ing characteristic to N-LAAF would be effective in solving 
other PDEs as well, such as the Boltzmann or nonlinear 
Schrodinger equations. The extent of the improved perfor-
mance when solving these complex PDEs using adaptive ac-
tivation functions is certainly a worthwhile topic for further 
research.

8 Conclusions and Future Work
This study explores the performance of different activation 
functions used in PINNs for solving the 1D Burgers’ Equa-
tion, aiming to determine, in order: how common activation 
functions perform on the task of solving forward problems for 
PDEs, whether adaptive activation functions can improve the 
training dynamic compared to traditional ones, and trade-offs 
between adaptive activation functions.

The research conducted provided a strong basis for favor-
ing adaptive activation functions over common ones, specif-
ically the neuron-wise locally adaptive activation function, 
which performed better than it’s layer-wise adaptive activa-
tion function counterpart, with minimal computational trade-
offs. It is also notable that the usage of adaptive activation 
functions is effective to some degree in combating the in-
herent problem of spectral bias (S. Wang, Yu, and Perdikaris 
2022), thanks to the enhanced model capacity introduced by 
the additional trainable parameters.

A worthwhile subject of further research would be to ana-
lyze the extent of the superiority of N-LAAF when solving for 
other, more complex PDEs, such as the nonlinear Schrodinger 
or Boltzmann equations, as well as investigating the degree to 
which adaptive activation functions combat spectral bias.
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A Appendix
A.1 Visual representation of solutions and

errors for 1D Burgers' Equation

(a) tan-h, no adaptive (b) Point-wise error.

(a) LAAF. (b) Point-wise error.

(a) N-LAAF
(b) Point-wise error.

Figure 5: Side-by-side visualization of PINN training 
and loss for LAAF.

Figure 4: Side-by-side visualization of PINN training 
and loss for tanh.

Figure 6: Side-by-side visualization of PINN training 
and loss for N-LAAF.


