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Integrated Flight Scheduling and Routing of Hybrid
and Electric Aircraft: Enhancing Network Performance
through Partial Recharging

Wessel L. Kruidenier*,

Delft University of Technology, Delft, The Netherlands

The aviation industry continues to grow at a steady annual rate of approximately 4.4%,
intensifying global environmental concerns in light of international climate goals. In
response, airlines are under increasing pressure to adopt sustainable innovations, with
electrified aviation emerging as a promising pathway. One of the main challenges in elec-
trified aviation is planning profitable flight schedules despite long turnaround times for
battery recharging. To address this, a Flight Scheduling and Electrified Aircraft Rout-
ing (FSEAR) model was developed, advancing beyond models assuming full recharging
or battery swaps. It integrates partial recharging through a recursive three-dimensional
time-space-energy dynamic programming framework, combining multi-label dominance
on profit and energy with a CO, tax penalty for climate optimization. Based on the
KLM Cityhopper network, three case studies with varying demand and distance pro-
files were developed. Results show that partial recharging increases profit by 22.5% to
27.8% compared to limiting operations to full recharging constraints. Emission reduc-
tions of 45.1% and 48.9% were achieved in close-range cases, while the long-range case
showed a modest increase of 4.66%, reflecting a trade-off for enabling more profitable
operations with higher flight frequency and greater demand coverage. A consistent
reduction in fleet size and a shift to fully all-electric compositions were also observed.
This study demonstrates that partial recharging significantly enhances both the op-
erational efficiency and environmental performance of electrified aviation, supporting
lower-emission fleet compositions and enabling a more sustainable, cost-effective alter-
native to regional air transport.

Nomenclature
Latin Symbols T = Time window (~)
a = Scaling constant (~) t = Time (s)
b = Elasticity constant (~) v = Cruise velocity (m/s)
c = Cost (€)
c = Fixed base fare constant (~) Superscripts & Subscripts
d = Day (~) arc = Individual arc
d = Distance (km) battery = Battery component
E = Energy balance (~) bow = Begin of week
e = Carbon di-oxide emission (ton) cons = Consumption
f = Speed fraction (~) cumul = Cumulative
f = Variation factor (~) elec = Electricity component
G = Set of ground arcs (~) eow = End of week
J = Objective value (~) fixed = Fixed component
K = Set of aircraft types (~) FL = Flight
N = Set of airports (~) fuel = Fuel component
R = Set of routes (~) g = Ground arc
R = Range (km) i = Departure airport index
r = Normalized recharging rate (~) i = Arrival airport index
s = Number of seats (~) k = Aircraft type
T = Set of time steps (~) l = Flight arc

*MSc. Student, Faculty of Aerospace Engineering, Delft University of Technology



leg = Flight leg DP = Dynamic Programming

max = Maximum EATS = European Airport Traffic Statistics

new = New state EI = Emission Index

old = Old state FL = Flight Action

own = Ownership FSEAR = Flight Scheduling & Electrified Aircraft

P = Preferred Routing

r = Route GRD = Ground Action

rec = Recharging HEA = Hybrid-electric Aircraft

recharge = Recha'rg,:ing component IATA = International Air Transport Association

rem = Rema.lnlng ICAO = International Civil Aviation Organization

req = Required LF = Load Factor

res = Reso.u.rc.e LTO = Landing and Take-Off

i i ggf‘zﬁva MCC = Multi-stage Constant-Current

tot — Total MILP = Mixed-Integer Linear Programming
MTOM = Maximum Take-Off Mass

Abbreviations OD = Origin Destination

2D — Two-dimensional PR = Partial Recharging

3D = Three-dimensional RE = Requirement

AC — Number of Aircraft RPK = Revenue Passenger Kilometer

AD = Aircraft Design SOC = State of Charge

AEA = All-electric Aircraft TAT = Turnaround Time

AS = Assumption TATF = Turnaround Time Factor

BM = Basic Airline Planning Model TZ = Time Zone

CA = Conventional Aircraft UTC = Universal Time Coordinated

CC-CV = Constant-Current Constant-Voltage

CcO = Climate Optimization Chemical Symbols

CS = Case Study COo = Carbon di-oxide

I. Introduction and Literature Review

HE aviation industry has steadily grown over the past decades, with projected annual growth rates of

4.4% [1-3]. Despite a temporary drop in CO2 emissions during the COVID-19 pandemic, emissions have
since returned to pre-pandemic levels [2, 4]. As traffic is expected to continue growing [2, 3], the sectors
environmental impact remains a critical concern. In response, global initiatives like the Paris Agreement [5]
and sector-specific goals such as NASA N+i and Fly The Green Deal [6, 7] underscore the need for emissions
reduction. Electrified aircraft, both all-electric (AEA) and hybrid-electric (HEA), have emerged as promising
solutions for decarbonization [8-10], with battery and energy strategies playing a central role [4, 11, 12].

Key enablers of electrified aviation include aircraft design, performance optimization, and battery technol-
ogy [4, 8, 13-16]. Electrified aircraft design, defined by the degree of hybridization, strongly influences network
performance [17]. Optimization of mission profiles and in-flight energy use improves climate impact [18, 19],
while battery design directly affects operational range and recharging strategies. More efficient recharging
strategies, such as boost charging and Multi-stage Constant-Current (MCC) charging, have been proposed as
alternatives to conventional Constant-Current Constant-Voltage (CC-CV) charging [4, 20, 21].

In parallel, operational aspects of electrified aviation are crucial to airline network performance [10, 22].
Airline planning, primarily flight scheduling and aircraft routing, is essential for achieving operational effi-
ciency [23]. Over the past decades, optimization techniques such as mixed-integer linear programming (MILP)
and dynamic programming (DP) have enhanced conventional aircraft (CA) performance. Models have incor-
porated features like passenger choice [24], spill cost and recapture [25], time flexibility [26, 27], and variable
cruise velocity [13, 28]. Many studies also demonstrate the benefits of integrating flight scheduling and aircraft
routing to improve overall network performance [29].

Integrating aircraft design and performance with operations offers major opportunities to enhance network
performance [30-35]. Studies have shown promising results when airline planning is combined with either
climate optimization or aircraft design [10, 14, 22]. While some research has integrated all three disciplines,
incorporating partial recharging is now emerging as a key step toward making electrified aviation a viable
alternative to conventional aviation [8]. This advancement enables a fully integrated system combining airline
planning, partial recharging, climate optimization, and aircraft design. A visual overview of the interrelation-



ships among these disciplines is shown in Figure 1.

In pursuit of climate-optimized airline operations, Justin et al. [10] proposed a hybrid half-itinerary half-leg
MILP model using a hierarchical multi-objective trade-off between airline profitability and aircraft emissions.
This approach expanded upon the earlier attempts of Safak et al. [28] and Ma et al. [36], which had failed to
fully integrate new climate optimized airline operations.

The integration of airline planning and aircraft design has been widely studied, particularly for conventional
aircraft. Taylor & De Weck [30] introduced a framework for jointly optimizing aircraft design and network
flow, demonstrating a possible 10% cost reduction. Jansen & Perez extended this by developing a series
of frameworks that coupled fleet network allocation with conventional aircraft design [31-35]. Their work
addressed objectives such as fuel-burn minimization, demand uncertainty, and multi-market planning, and
highlighted the cost benefits of integrated design and planning.

More recently, attention has shifted toward all-electric and hybrid-electric aircraft. Weit et al. [37] opti-
mized network operations and hybrid-electric aircraft design using the hybridization ratio as a key parameter,
showing profit gains through payload and battery adjustments. A series of studies at Delft University of
Technology further advanced these ideas. Zuijderwijk [15] developed a framework linking airline planning with
electrified aircraft design, while Scheers[14] introduced a climate-optimized hybrid-electric design integrated
into planning. Most recently, Antunes [13] extended this framework by accounting for the off-design perfor-
mance of hybrid-electric aircraft, reinforcing the benefits of synchronized planning and design in future electric
aviation.

While integrated electrified operations and aircraft design have progressed, battery recharging remains a
critical next step for operational viability. Despite its importance, research on integrating recharging into flight
scheduling and fleet assignment remains relatively scarce. Three notable studies have explicitly modeled the
battery state of charge (SOC). In 2022, Mitici & Pereira [38] introduced a two-phase optimization framework
for scheduling flights and recharging (or swapping), using a bilinear charging profile. In 2023, Vehlhaber &
Salazar [39] embedded SOC progression into an all-electric fleet assignment and routing model, treating time
intervals as charging or discharging. In 2024, Kinene & Birolini [40] proposed a bi-objective MILP within a
three-dimensional (3D) time-space-energy network, distinguishing flight, ground, and recharging arcs to model
battery dynamics.

Building on the idea that airline planning, aircraft design, and climate optimization can be unified, Hoogreef
et al. [22] demonstrated that this integration achieves substantial emission reductions with only minor profit
decreases. Their iterative methodology coupled fleet and network allocation with aircraft design, evaluated
off-design conditions, and applied a climate optimization module, reinforcing the benefits of fully integrated
aviation planning.

The reviewed literature reveals a research gap in integrating airline planning with partial recharging,
climate optimization, and electrified aircraft design (highlighted in orange in Figure 1). This study addresses
a substantial part of this gap by analyzing the impact of partial recharging strategies on airline network
performance through optimized integration of flight scheduling and aircraft routing, while simultaneously
maximizing profitability, reducing carbon emissions, and meeting operational constraints. Although electrified
aircraft design is identified as part of the broader research gap, it is beyond the scope of this study. Accordingly,
the following research question is posed:

What is the effect of incorporating partial recharging strategies into flight scheduling and aircraft
routing on airline network profitability and carbon emission reduction?

This paper introduces an iterative decision-making approach to generate suboptimal flight schedules and
aircraft routes that maximize overall network performance. The approach uses a three-dimensional time-
space-energy recursive dynamic programming model to compute suboptimal flight routes for all-electric and
hybrid-electric aircraft under partial recharging. Financial profit is maximized while carbon emissions are
penalized, The proposed methodology is applied to a case study to demonstrate its practical applicability
and to capture the operational nuances of electrified airline networks, quantitatively evaluating the impact of
partial recharging on network profitability and carbon emission.

This paper first presents the theoretical methodology in Section II, detailing the models structure and
functionality. Section IIT then demonstrates the models applicability through a case study and performance
verification. The results and corresponding sensitivity analysis are presented in Section IV, followed by key
findings and future research recommendations in Section V.
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Figure 1 Schematic overview of the research disciplines, their interrelations, and the
identified research gap

I1. Methodology

The Flight Scheduling and Electrified Aircraft Routing (FSEAR) model is developed to enhance electrified
airline network performance by explicitly integrating partial recharging strategies into the scheduling and
routing process. This integration enables the model to capture key operational constraints more realistically,
such as limited turnaround time (TAT), and to differentiate between the performance characteristics of hybrid-
electric and fully electric aircraft, including their unique charging profiles. A core element of the model is the
recursive three-dimensional dynamic programming algorithm, across time, space, and energy state, which
allows for the detailed modeling of energy usage and partial recharging throughout the network. Dynamic
programming is chosen over traditional MILP-based formulations due to its flexibility in accommodating
nonlinear charging profiles, its inherently decision-based structure, and its ability to prune the solution space
recursively, eliminating the need for exhaustive search. A multi-label dominance approach is implemented to
manage complexity, allowing efficient exploration of promising paths with consistent decision logic. Unlike
MILP solutions that typically approach global optimality, the DP-based FSEAR model yields suboptimal
but feasible solutions within a tractable computational framework. In addition to operational performance,
the model incorporates climate objectives by penalizing carbon emissions, thereby supporting sustainable and
economically viable electrified operations.

The FSEAR model operates through an iterative decision-making process, illustrated in Figure 2. The
process begins with data initialization and preprocessing, after which the Aircraft Selection Module is activated.
This module identifies the aircraft type whose corresponding route yields the highest profit. It includes a
series of sub-modules executed for each aircraft type in the fleet: Demand Processor, Network Creation, and
Path Explorer. These sub-modules generate the most profitable suboptimal route for each aircraft type. A
profitability check follows to confirm that assigning the aircraft yields a positive return. If valid, the served
portion of demand is removed from the overall demand pool. A second check determines whether all demand
has been satisfied. If not, the Aircraft Selection Module is re-invoked to allocate further aircraft and routes.
If all demand is served or no further profitable assignments remain, the algorithm terminates, producing the
final solution.

This sequential, priority-based aircraft assignment introduces a structural source of suboptimality. Aircraft
are selected one at a time based on the highest individual profit, without jointly evaluating the broader fleet
configuration. As a result, early decisions are made without considering their impact on the feasibility and
efficiency of subsequent assignments. Although this reduces computational burden, it limits exploration of a
more balanced fleet deployment across the network.

This methodology section begins by introducing the model environment in Section II.A. The following
subsections describe the individual modules of the FSEAR model. The modeling of demand within the
FSEAR framework is presented in Section II.B, followed by a description of the Network Creation module
and the formulation of the objective function in Sections II.C and II.D, respectively. Finally, based on the
information provided by these modules, the three-dimensional dynamic programming Path Explorer is detailed
in Section IL.E.
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Figure 2 Schematic flowchart of the FSEAR model structure and process flow

A. Model Environment

The FSEAR model adheres to a set of predefined requirements and operates under a set of assumptions.
These elements define the model’s design space and operational constraints. The model requirements and
assumptions are provided in Sections II.A.1 and I1.A.2, respectively.

1. Requirements

The theoretical methodology is guided by key requirements that ensure the FSEAR model addresses opera-
tional, economic, and environmental objectives. Each requirement is assigned a unique identifier, prefixed by
RE-, followed by a two-letter code indicating its category: BM (Basic Airline Planning Model), PR (Partial
Recharging), CO (Climate Optimization), and AD (Aircraft Design). A comprehensive overview of the key
model requirements is presented in Table 1.

Table 1 Key FSEAR model requirements

Code Description

RE-BM-01  The model shall maximize airline financial profit as its main objective.

RE-BM-02  All aircraft shall adhere to a minimum ground time equal to the minimum turnaround time
(TAT), allowing for off-boarding, on-boarding, and other ground operations.

RE-BM-03  All aircraft assigned to a flight leg shall belong to the fleet of available aircraft types.

RE-BM-04  The model shall only consider profitable routes consisting of a set of flight legs to be operated
(an individual flight leg does not need to be profitable).

RE-BM-05 The model shall account for the hourly distribution of passenger demand for each origin-
destination (OD) pair.

RE-PR-01 Electrified aircraft batteries do not have to be fully recharged before departure.

RE-PR-02 All aircraft shall recharge during parking at an airport, unless the state of charge (SOC) is already
at 100 %.

RE-PR-03 All hybrid-electric aircraft shall refuel the required amount, in addition to battery recharging, to
satisfy range requirements for the next flight.

RE-CO-01  The model shall financially penalize CO2 emissions from flight operations by means of emission
tax.

2. Assumptions
The model relies on assumptions that ensure feasibility, applicability, and computational efficiency. These
assumptions define the operational conditions and constraints under which the model performs. Each assump-



tion is assigned a unique identifier using the same structure as the model requirements. A comprehensive
overview of the key model assumptions is presented in Table 2.

Table 2 Key FSEAR model assumptions

Code Description

AS-BM-01 A single day of operations is discretized into time intervals of 10 minutes from 06:00 to 22:00.
AS-BM-02  Passenger demand for itineraries is discretized in constant one-hour intervals.

AS-BM-03  Aircraft overnight parking is possible at each airport with corresponding overnight parking fee.
AS-BM-04  The electricity price is 0.1545 €/kWh.?

AS-BM-05  The fuel price is 0.538 €/kg.P

AS-BM-06  The COgz emission index (EI) of fuel is 3.16 kg COz2 /kg fuel.[41]

AS-BM-07 The CO2 emission index of electricity is 0.03 kg CO2/kWh.©

AS-PR-01 All airports have battery recharging and conventional refueling facilities suitable for every aircraft
in the airline fleet.

AS-PR-02 The energy price for recharging at airports is considered equal across all airports.
AS-PR-03 Airports have sufficient energy power supply to recharge any number of aircraft simultaneously.

AS-CO-01 The financial cost penalty for CO2 emission is equal for all European Union countries and is set
at 75 €/ton CO2.4

2 https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205/default/table?lang=en [Accessed: 2025-02-
26)

b https://jet-al-fuel.com/price/netherlands-the [Accessed: 2025-02-26]

¢ https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emission-intensity-of-17utm_
source=chatgpt.com [Accessed: 2025-04-24]

dnttps://ember-energy.org/data/european-electricity-prices-and-costs [Accessed: 2025-02-26]

B. Demand Processing

Following data initialization, the demand is further processed to align with FSEAR model requirements. This
processing involves three key steps. First, the total daily demand is disaggregated into a time-dependent format
to reflect temporal variations in passenger preferences, as described in Section II.B.1. Second, during network
creation, time-resolved demand is mapped to feasible flight legs, accounting for departure time flexibility and
avoiding duplicate assignments, as detailed in Section II.B.2. Finally, after flight selection, served demand is
removed using a greedy algorithm, and remaining demand is updated. This introduces trade-offs in demand
tracking and assignment order, further discussed in Section II.B.2.

1. Demand Distribution

Passenger demand is defined as origin-destination (OD) pairs, each associated with a total daily volume. To
reflect temporal variation in travel preferences, this daily demand is distributed over the operational day using
a predefined hourly profile. Each profile is normalized such that hourly proportions sum to one, preserving
total demand. A bimodal Gaussian mixture with a constant baseline, capturing typical morning and evening
peaks, is used to define these profiles, as illustrated in Figure 3. The resulting time-dependent directional
demand function enables the model to account for hourly variations during flight leg evaluation.

2. Demand Assignment and Removal
The disaggregated demand distribution is combined with a generalized assumption regarding passenger flex-
ibility in departure time. Passengers with a preferred departure hour Tp are assumed to also accept flights
departing at Tp_o, Tp_1, and Tp41. This assumption creates a modeling challenge because overlapping time
windows can lead to the same passengers being assigned multiple times. To prevent this, a dynamic track-
ing mechanism is used that records which flight legs have already drawn demand from each hour and OD
pair. This ensures that only the actual remaining demand is available in later assignments. The time-window
assignment logic is illustrated in Figure 4.

However, even with this tracking mechanism, the use of time windows introduces a structural source of
suboptimality. The dynamic programming algorithm builds flight paths recursively through locally optimal
decisions at each state, but drawing demand from various time windows can reduce its availability for subse-



quent paths. As a result, early assignments may restrict later flexibility, leading to suboptimal overall outcomes
despite individually justified decisions.

A second source of suboptimality stems from the greedy algorithm used for demand removal. After a flight
leg is selected, the algorithm first assigns demand from the preferred hour Tp, then from the adjacent hours
Tp_1 and Tpy1, and finally from Tp_o if needed. While this simplifies implementation, it does not optimize
which portion of the time window demand is used. A more advanced approach would require additional decision
variables to explicitly manage demand allocation, which would increase model complexity and computational
burden. Therefore, the greedy strategy is adopted as a practical balance between fidelity and tractability.
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C. Network Creator

Before executing the Path Ezxplorer, a directed time-space network is constructed for each aircraft type under
consideration, as illustrated in Figure 5. This framework enables generation of all feasible flight routes across a
defined time horizon by integrating both spatial and temporal dimensions. The network consists of nodes and
arcs. Nodes represent discrete states defined by a specific airport and time step, while arcs denote transitions
between these states. Ground arcs connect nodes at the same airport over time, representing parking or other
ground operations. Flight arcs capture movement between airports and typically span several time steps. This
structure supports detailed modeling of operational constraints across both space and time. To account for
time zone differences, all local time steps are standardized using the Universal Time Coordinated (UTC) offset
of each airport.

The operational day is defined by a fixed start and end time and is discretized into fixed time intervals. A
time-space network is then generated for each aircraft type k € K, containing all nodes for each airport n € N
and time step t € T, along with feasible arcs connecting them. Arcs are created based on the sum of flight
time and TAT for type k, linking to the nearest feasible future node while accounting for spare time. Only
arcs that satisfy the operational constraints are included. A flight arc is feasible if it adheres to the range and
temporal feasibility constraints defined in Equations (1) and (2). The range constraint ensures the aircraft’s
range (R¥) the covers the leg distance (d;;), while the temporal constraint ensures that the arrival time does
not exceed the final time step 7. Flight time consists of a fixed landing and take-off (LTO) duration and a
cruise phase, with the latter based on the cruise velocity v* of aircraft type k. As shown in Equation (2),
part of the total distance is allocated to the LTO phase ¢ty 1o, estimated using a speed fraction fyro, and the
remaining distance is operated at cruise speed. Based on these calculations, flight arcs are assigned relevant
parameters and matched with time-dependent demand as modeled in Section II.B.

dij <RF, Vi, jEN, i#j, Vk e K (1)
d;; — k. .t
t4 o + 2970 f,fTO LTO L TAT*| < T, Vi,jeN, i#£j VteT, Vke K (2)
v

Cruise time
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Figure 5 Schematic time-space network for three airports (AMS, BRE, BRU) using a
two-hour interval, illustrating ground arcs (gray) and flight arcs (orange)

D. Objective Function

The model aims to maximize total profit by efficiently scheduling and assigning aircraft to meet passenger
demand. The objective function combines a system-level and a flight leg-level component by summing the
objective values of all selected routes r € R, each comprising a set of flight arcs [ € L, and ground arcs
g € G, while subtracting the ownership costs of the assigned fleet. The total objective value (), defined
in Equation (3), includes profits from all flight legs (\-7lleg) and ground operations (72 ), including parking

ground
and overnight charges. Ownership costs are based on the number of aircraft per type (ACk) and their annual
lease-based unit cost (c¥, ), as detailed in Section II.D.4. The flight leg objective function in Equation (4)
consists of revenue, operating cost, and emission tax terms, further detailed in Sections II.D.1 to I1.D.3.

max J = Z Z *7l€eg + Z gground - Z clgwn ! ACk (3)

reR [leL, 9eG,. keK
1 ! k l k L ! l
*7leg - fareii st - LF — (Cﬁxed + Ctyel + Cbattery) — Cemission * € (4)
—_——
Revenue Operational Costs Emission Tax

1. Revenue

Revenue is based on a fare that depends on the great-circle distance (d;;) between the origin and destination
airports ¢ and j, and the number of transported passengers, given by the load factor (LF) multiplied by the
seat capacity (s¥) of aircraft type k. A distance-based yield model is used to reflect realistic airline pricing
behavior. The fare (fare;;) is computed using Equation (5), which includes a scaling coefficient (@), an elasticity
exponent (b), and a fixed base fare (¢). This formulation captures the typical decline in per-kilometer yield on
longer flights, while ensuring cost recovery via the base fare. The effect of varying each parameter (a, b, and
c¢) on the fare-distance relationship is illustrated in the three subfigures in Figure 6.

b
fare;; = (a - dj; + ¢) - dy; (5)
150 - 150 0.65 150
15
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Figure 6 Sensitivity of the fare function in Equation (5) to parameters a (a), b (b), and ¢ (c¢), with all
others held constant and each curve labeled by its parameter value while the baseline is shown in black



2. Operational Cost

Each flight leg incurs three operational cost components: the fixed operating cost cﬁxed for aircraft type k,
the fuel cost (ck,.,) and the battery cost (c{aattcry), based on the fuel and electric energy consumed on leg .
When on the ground, the aircraft incurs a fixed parking fee, with an additional charge if the stop includes an
overnight period.

The fixed operating cost includes crew and airport-related charges. Crew costs are determined by the
required number of crew members, annual wage rates, and the sum of flight and turnaround times, following
Antunes [13] and Proesmans [42]. Airport costs comprise fixed fees for landing, parking, navigation, and
handling, which remain constant across flight legs and do not depend on load or fuel use. Parking charges,
including overnight fees, are indexed to aircraft’s Maximum Take-Off Mass (MTOM) and airport size based
on annual passenger volumes. A full overview of the cost input parameters is provided in Appendix B.

Fuel and battery costs are computed by multiplying consumption, measured in liters (fuel) and kilowatt-
hours (kWh) (electricity), by their respective unit prices. Hybrid-electric aircraft incur both fuel and battery
costs, while conventional aircraft rely solely on fuel, and all-electric aircraft incur only battery costs.

3. Emission Tax

Following Antunes [13], flight emissions are penalized via a COs emission tax, which reduces the objective
value of each flight leg. The emission tax is computed as the product of total COs emissions and a fixed unit
cost per ton. Total emissions are derived from both fuel and electricity consumption, each weighted by the
respective emission factor for each energy source.

4. Cost of Aircraft Ownership

Due to the lack of standardized leasing data, particularly for all-electric and hybrid-electric aircraft types, this
study adopts an established approximation method. The annual lease cost (CAQU; ) for aircraft type k in
year y is estimated as a fixed fraction of the acquisition price (APP;), following the approach of Jansen &
Perez [34], as represented by Equation (6). An acquisition price uplift of 17 % for hybrid-electric and 20 % for
fully electric aircraft is applied, based on Finger et al. [43] and Antunes [13]. An uniform annualization factor
is applied across all aircraft types to ensure consistency.

CAQU,,, = 0.0835 - APP;, (6)

E. Path Explorer
The Path FExplorer module determines a suboptimal routing solution for a given aircraft type within the time-
space network of feasible flight legs. It applies a three-dimensional recursive dynamic programming algorithm,
by extending the conventional time-space structure with an additional energy balance dimension to form a
time-space-energy network, as visualized in Figure 7. This added dimension captures the aircraft’s available
energy and ensures operational feasibility of each flight. Ground arcs represent either standard operations or
recharging, depending on whether the aircraft is already fully recharged. Paths are constructed recursively,
beginning at the end of the day and progressing backward. A multi-label objective framework tracks both
cumulative objective value and energy balance, retaining only non-dominated solutions across these metrics.
The three-dimensional time-space-energy network is detailed in Section II.E.1, which explains the rationale
for incorporating energy balance as a third dimension. Energy dynamics over arcs are detailed in Section I1.E.2.
The multi-label objective approach, including dominance criteria over profit and energy balance, is described in
Section II.E.3. The boundary conditions guiding the optimization process are outlined in Section II.E.4. The
complete algorithm is presented in Section II.E.5, integrating all preceding components. Lastly, Section II.E.6
describes the extension from daily suboptimal paths into a continuous weekly schedule.

1. Time-Space-Energy Network

The conventional two-dimensional time-space network is extended to a three-dimensional time-space-energy
framework to represent the evolving energy state of electrified aircraft. Although prior studies such as Kinene
& Biroling [40] incorporated battery SOC as a third dimension in a MILP framework, the recursive dynamic
programming approach used in this study cannot directly model SOC, since its value is unknown during
backward propagation.



Instead, this dimension is represented by an energy balance variable (E), denoting the fraction of battery
capacity available to operate future flights. Energy depletion and recharging are applied dynamically through
transitions along arcs, as further detailed in Section II.E.2. The normalized energy balance is defined as the
complement of the normalized battery SOC, as shown in Equation (7).

E=1-80C, E,SOCce][0,1] (7)

The rationale for adopting the energy balance variable stems from the backward nature of the dynamic
programming algorithm. At each state, sufficient energy must be available not only for the immediate flight arc
but also for subsequent arcs selected earlier in the optimization process. This requires recharging to be planned
in advance, as insufficient energy at any state may restrict feasible paths and exclude more profitable routes. By
structuring the optimization around the energy balance variable, the model dynamically allocates recharging
opportunities, balance available turnaround time and airport energy infrastructure to maximize profitability
while ensuring operational feasibility. Incorporating this third dimension thus provides the flexibility required
for dynamic recharging strategies and enables the selection of profitable routes that satisfy energy constraints.

Time — Space (2D) Time — Space — Energy (3D)
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Figure 7 Conceptual transition from a time-space (2D) to a time-space-energy (3D) model by adding
energy variable E, with flight arcs (orange), ground arcs (gray), and recharging arcs (green)

2. Energy Balance Change of Arcs

The energy balance evolves through two arc types that incorporate partial recharging: ground arcs and flight
arcs. Ground arcs represent on-ground charging events, while flight arcs model both energy depletion from
flight and potential partial recharging during turnaround and spare time.

Ground arcs result solely in recharging. During backward recursion of the dynamic programming process,
they increase the energy balance. Recharging is computed based on a predefined charging strategy (linear,
bilinear, or MCC) specific to the aircraft-airport combination and current energy state. The objective value
for ground arcs is set to zero, as charging costs are already embedded in the flight arc costs.

Flight arcs lead to energy balance depletion while also allowing partial recharging. Their feasibility is
evaluated by checking whether the current energy balance, combined with recharging during TAT and spare
time, is sufficient to meet the energy requirement of the flight. Although TAT and spare time follow the flight
in real-world operations, the backward structure of the dynamic programming formulation appear before the
flight leg in the optimization process. As a result, recharging during these intervals does not contribute to
the just-completed flight but ensures that sufficient energy is available for subsequent flights. A flight is
considered feasible if the sum of the current energy balance and the energy recharged during TAT and spare
time is sufficient for the flights energy requirement, without exceeding the batterys maximum capacity (Emax)-
The total recharging time during the ground phase of a flight arc is determined by a turnaround time factor
(TATF), which specifies the portion of TAT allocated to charging, along with the available spare time (fspare)-
The recharging constraint ensures that the recharged energy (Erecharge) does not exceed Emax, as defined in
Equation (8). The recharging rate r(SOC) depends on the current state of charge and the selected charging
profile, which together govern the battery’s charging speed over the available time. Since charging behavior is
defined as a function of SOC, the normalized energy balance is internally converted to its corresponding SOC
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level to accurately evaluate the recharging rate r(SOC).
Erecharge = min [Emax - E7 T(E) : (TAT - TATF + tspare)] (8)

The dynamics of the recharging constraint are illustrated in Figure 8 and highlight reduced recharging
during a flight arc’s ground phase. Although a forward time propagation would allow a recharging increase of
0.5 in SOC, the backward recursive structure of the dynamic programming model limits the feasible recharged
amount. Figures 8a and 8b present two scenarios. In the first, the full energy consumption results in no
recharging (0.0), while in the second, an initial energy level of 0.8 allows only 0.2 to be recharged. In both
cases, a total of 0.5 could have been recharged if the full available ground time were used in a forward-time
formulation.

E E
SOC SOC
1OR----m e 1.0 LOR----mmmmm e omg -
0.8
Ereq = 1.0 0.5 Freq = 1.0 0.5
: T : T
Flight leg TAT + Flight leg TAT +
Spare Time Spare Time
(a) Scenario of E = 1.0 (b) Scenario of E = 0.8

Figure 8 Energy variable £ and SOC evolution during a flight leg followed by partial
recharging under two different scenarios

The energy dynamics of flight arcs and their feasibility conditions are illustrated in Figures 9a and 9b,
which depict two example scenarios using a fictitious intermediary node M. Although M does not physically
exist in the network, it is introduced to conceptually separate the flight leg and the subsequent ground time
(TAT and spare time), which together form a single flight arc. In this setup, the arc (4, M) models the flight
operation, while (M, B) captures the on-ground recharging phase. Figure 9a illustrates a feasible scenario
in which recharging during TAT and spare time allows the flight leg to be executed, even though the energy
balance at node B (Ep) is initially below the required threshold. This results in valid values for both the
energy balance and the corresponding SOC, indicated in green. In contrast, Figure 9b illustrates an infeasible
scenario where the battery SOC exceeds its maximum capacity and the energy balance becomes negative, both
violations indicated in red. While SOC evolves forward in time, the energy balance is propagated backward.

E4=0.0 Ep =0.8 Es=-04 Ep =04
SOC4s =1.0 SOCg =0.2 SOCs =14 SOCg =0.6
Ereq = —0.9 Ereq = —0.9

>( B

Y

Ereq =-09 Et'ochargo =+0.1 Ereq =-09 EY'(‘,Charg(: =+0.1

Ev =09 Ev =05
SOCy =0.1 SOCy =0.5
L +—+—> Time L —+—> Time
A M B A M B
(a) Feasible flight arc (b) Infeasible flight arc

Figure 9 Time-space visualization of a feasible (a) and an infeasible (b) flight arc,
illustrating SOC (forward) and energy balance E (backward) propagation
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3. Multi-Label Objective

The time-space-energy DP method employs a multi-label objective to track both the cumulative objective value
and energy balance. Although the primary objective is to maximize profit, the algorithm must also preserve
routes with higher remaining energy, which may enable more profitable decisions later in the schedule. To
ensure efficient path selection and reduce computational complexity, a label dominance strategy is applied: a
label (J4, E4) dominates another label (Jg, Ep) if and only if it satisfies the condition defined in Equation (9).
This criterion discards suboptimal labels early while preserving promising paths that balance profitability and
energy feasibility.

Ja>Js N Ea>Ep 9)

4. Boundary Conditions

Two key boundary conditions are required in the DP model: one at the final time step (initial state of the
backward recursion) and one at the start of the operational day (final state of the recursion). At the final
time step 7', all states are initialized, represented by Equation (10), with a cumulative profit of zero and an
energy balance of E.x, reflecting that no flights will be operated beyond this point and allowing full battery
depletion. This setup enables the model to allocate all remaining energy without constraint. In contrast, no
fixed conditions are imposed at the initial time step. The DP algorithm evaluates all possible final states by
computing the resulting cumulative objective value and remaining energy balance.

(Jr, Er) = (0.0, 1.0) (10)

5. Path Ezxplorer Algorithm

The DP algorithm iterates through a structured sequence of steps, as visualized in Figure 10, and is organized
around two decision stages. The final state is first initialized based on the boundary conditions in Section II.E.4.
The algorithm then explores all nodes in the time-space-energy network. For each node, it evaluates all feasible
arcs (flight and ground), applying the following steps:

1. Arc Feasibility Check: Assesses whether a flight arc is feasible for operation by the aircraft based on
the current energy balance, as explained in Section I1.E.2.

2. Energy Balance Update: Updates the energy balance by incorporating energy consumption and recharg-
ing, as detailed in Section II.E.2.

3. Objective Determination: Evaluates the arcs objective value based on relevant cost and revenue compo-
nents, as outlined in Section II.D.

Once all arcs for a selected node have been evaluated, dominated labels are removed using the approach in
Section I1.E.3. This process is repeated until all nodes in the network have been explored. The optimal path is
then reconstructed by tracing the stored arcs in each label, yielding the sequence of decisions that maximizes
the cumulative objective value.

6. Weekly Path Construction

The weekly schedule is constructed by executing the daily Path Ezxplorer recursively across seven consecutive
days. Each day d builds upon the outcome of the previous evaluated day, as mathematically represented in
Figure 11 and additionally described in the stepwise approach below:

1. Initialization: Day 7 is initialized at the base state with zero profit and full energy balance. For each
subsequent day d < 7, the initial labels for the final time step at each airport are set to the end-of-day
state (location, cumulative profit, and residual energy) computed by the previously evaluated day d + 1.

2. Daily Exploration: The Path Fxplorer is executed using backward dynamic programming to identify all
non-dominated paths, characterized by cumulative objective value and energy balance, that terminate
at each airport by the start of day d.

3. Overnight Recharge and Cost: For every candidate path at the begin-of-day state, the recharge module
computes the overnight energy replenishment (applied until the previous days end-of-day state) and
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the corresponding parking fee. Both values are incorporated into the cumulative objective, where the
parking cost is subtracted, and the energy benefit is added.

4. Selection: At each airport, the dominance rule is reapplied to determine the set of non-dominated labels
based on objective value and energy balance. These labels serve as the starting state for day d — 1. In
most cases, only a single label remains, as overnight recharging typically restores the energy balance to
Ehax, making energy non-limiting and leaving profit as the sole dominance factor.

5. Recursion: The above steps are applied sequentially for d = 7,...,1, producing a sequence of daily
solutions that, once concatenated, form a suboptimal weekly schedule.

Initialization
Set initial DP conditions:
(k, Ir, Er) = (k, 0.0, Emax)

Explore Node
Determine all arc actions

|

Explore Arc
Check Feasibility : E + Erec < Freg
Update Energy: E +— E — Econs + Erec
Determine Objective: Jarc

|

All Arcs
Explored?

¢ Yes

Apply dominance rule:

Remove Dominated Labels
Ja > Js N Ea > Ep

All Nodes
Explored?

[ Reconstruct Path J

Figure 10 Flowchart of the Path Fxplorer algorithm,
illustrating the recursive evaluation of flight paths in the

time-space-energy network
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III. Case Study & Verification
The FSEAR model is applied to a case study (CS) to evaluate its performance on realistic input data and to
support model verification. The selected airline network is the KLM Cityhopper network, the regional sub-
sidiary of KLM Royal Dutch Airlines, which primarily operates short-haul European routes from Amsterdam
Schiphol Airport (AMS) using a fleet of Embraer aircraft. The current KLM Cityhopper fleet includes the
conventional Embraer models: E195-E2, ERJ-175, and ERJ-190 [44].

Network operations are reconstructed from a seven-day forecast obtained via FlightRadar24', including
all departures from and arrivals to Amsterdam Schiphol (AMS). The Cityhopper sub-network is isolated by
filtering the raw dataset based on aircraft type, using a conversion table compiled from multiple sources, such
as the International Civil Aviation Organization (ICAQ) Aircraft Type Designators registry? and KLM fleet

Thttps://www.flightradar24.com/data/airlines/kl-klm/routes [Accessed: 2025-04-08]
2https://www.icao.int/publications/D0OC8643/Pages/Search.aspx [Accessed: 2025-04-15]
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information?®.

The procedure for deriving the three case study sub-networks from the filtered Cityhopper network is
described in Section III.A. Required airport-level data for the selected sub-networks are presented in Sec-
tion III.B. This is followed by an overview of the conventional Embraer fleet and the conceptual all-electric
and hybrid-electric aircraft considered in Section III.C. Finally, model verification based on the case study is
provided in Section III.D.

A. Case Study Networks

Three distinct sub-networks, each limited to a maximum of ten airports, are constructed from the KLM
Cityhopper network to explore varied operational scenarios. These are visualized as geographic maps of Europe
in Appendix A.2, with corresponding weekly demand data detailed in Appendix A.3. Demand per origin-
destination pair is estimated by multiplying the aircraft’s seat capacity by an average load factor of 0.83 [44].
The three case studies are defined as follows:

1. Case Study I: Closest Distance (CS-I) Airports are selected based on their great-circle distance from
AMS, emphasizing short-haul routes. This structure is particularly suitable for assessing electric or
hybrid-electric aircraft performance under short-range, high-frequency operations.

2. Case Study II: Highest Demand (CS-II) Airports with the highest total weekly passenger totals are
selected, focusing on commercially attractive routes. This variant aims at network optimization focused
on revenue generation and seat utilization.

3. Case Study I1I: Distance Demand (CS-III) Airports are grouped into short-, medium-, and long-distance
categories using quantile segmentation of their distance to AMS. Within each group, a fixed number of
airports with the highest weekly demand (inbound and outbound) are selected, with the total number
split evenly across categories. This case study enables performance comparison across varying ranges
within a high-demand sub-network.

B. Airport Data

All airports in the KLM Cityhopper network are assessed based on the required input parameters. Geograph-
ical coordinates (longitude and latitude), IATA codes, and UTC offsets are retrieved from the open-source
Openflights database?*, with the corresponding data provided in Appendix A.1 for reference. Each airport is
categorized as a Major Hub, Medium Regional, or Small Regional based on 2024 annual passenger volumes
from the Furopean Airport Traffic Statistics (EATS) dataset by Air Service One [45]. This size classification
determines airport-specific parking fees and recharging power levels, as detailed in Sections II11.B.1 and II1.B.2,
respectively.

1. Day and Overnight Parking Cost

Parking fees, reflecting typical ground handling costs, are modeled as two components: an hourly rate during
active operational hours (06:00-22:00) and a flat overnight fee for aircraft parked between 22:00 and 06:00.
Airport classifications and aircraft MTOM categories are used to estimate both types of parking costs, as
summarized in Table 3. The cost ranges are based on available pricing documents from European airports
including AMS [46], CDG [47], BRU [48], LHR [49], HAM [50], ABZ [51], CPH [52], and NWI [53]. For
implementation in this case study, the median value of each specified range is adopted as the representative
day and parking overnight fee.

2. Airport Charging Power

Each airport is assigned a representative maximum charging power, determined by its size classification. The
corresponding values are provided in Table 3. These estimates are based on an assumed 1.35 C-rate for the
Elysian E9X [54, 55], combined with insights from recent advancements in charging technology reported by
Liang et al. [4]. Due to limited publicly available data on charging infrastructure in the aviation sector, the
assigned charging power values should be interpreted as approximate estimates.

Shttps://www.klm.it/en/information/travel-class-extra-options/aircraft-types [Accessed: 2025-04-15]
4https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat
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Table 3 Overview of aircraft parking cost and charging power by airport category

Airport MTOM Parking Overnight Charging Power
Category Category (€/h) (€) (MW)
Up to 10,000 kg 30 — 50 100 — 200
1 1-— k - 200 — 4
Major Hub 0,00 50,000 kg 50 — 90 00 00 3
50,001 — 100,000 kg 90 — 130 300 — 500
Above 100,000 kg 130 — 180 400 — 600
Up to 10,000 kg 20 — 30 80 — 120
Medium Regional 10,001 — 50,000 kg 30 — 60 120 — 200 9
50,001 — 100, 000 kg 60 — 90 200 — 350
Above 100,000 kg 90 — 120 300 — 450
Up to 10,000 kg 10 — 20 50 — 100
1 1-— k 20 — 4 100 — 2i
Small Regional 0,00 50,000 kg 0 0 00 00 1
50,001 — 100, 000 kg 40 — 60 150 — 250
Above 100,000 kg 60 — 80 200 — 300

C. Aircraft Database
The case study evaluates a mixed fleet comprising conventional, all-electric, and hybrid-electric aircraft to
examine the influence of propulsion type on fleet composition within the KLM Cityhopper network.

The conventional reference fleet includes the in-service Embraer F195-E2, ERJ-175, and ERJ-190 models,
as introduced earlier in this section. For the all-electric category, the conceptual 90-seat FElysian E9X is
considered, considered under three battery energy densities, 240, 360, and 440 Wh/kg, based on the design
studies of Wolleswinkel et al. [54, 55]. These configurations provide a reference for zero-emission, medium-range
electric performance. The hybrid-electric subset consists of four configurations: three 5%-hybridized aircraft
(ATR 72-600, Bombardier CRJ 200, and Bombardier CRJ 1000) based on Antunes [13], and a 20%-hybridized
conceptual parallel hybrid aircraft obtained from Bonnin & Hoogreef [56].

The full database includes three conventional aircraft, three all-electric E9X configurations (varying in
battery energy density), and four hybrid-electric concepts. A technical summary of all aircraft used is presented
in Table A.5, limited to parameters required by the FSEAR model. Fuel and electric ranges are linearized
according to each aircraft’s design range and degree of hybridization. Values or rows marked with an asterisk
(*) denote computed or assumed entries. Details of the calculation methods used to compute these assumed
values are provided in Appendix A.4.

Table 4 Detailed overview of available aircraft used in the case study, including key parameters

Parameter Unit ERJ ERJ E195 E9X E9X E9X ATR CRJ CRJ Parallel
175 190 E2 (240)  (360)  (440) 72-600 200 1000  (20%)
Aircraft Type! [~] CA CA CA AEA AEA AEA HEA HEA HEA HEA
Seats [~] 78 100 132 90 90 90 72 50 100 70
Speed [km/h] 850 850 876 720 720 720 142 140 140 128
Design Range [km] 3,334 3,800 4,315 500 800 1,000 1,370 3,148 3,056 926
Fuel Range [km] 3,334 3,800 4,315 - - - 1,300 3,000 2,900 740
Electricity Range  [km] - - - 500 800 1,000 70 148 156 186
MTOM [ke] 40,370 51,800 62,500 76,000 76,000 76,000 28,690 28,098 51,985 46,900
Payload Mass [ke] 10,094 13,047 16,150 9,120 9,120 9,120 7,920 5,500 11,000 7,500
Battery Energy”  [kWh] - - - 8,400 13,000 15,000 390 840 1,500 6,700
Fuel Capacity L 11,625 16,153 17,060 - - - 6,764 8,296 20,653 11,831
Recharging Power™ [KW] - - - 11,000 18,000 20,000 1,100 1,100 2,000 9,000
Climb Time [min] 18 16 16 16" 16" 16" 16" 16" 16" 17.5
Average TAT" [min] 45 45 45 45 45 45 45 45 45 45
Acquisition Price  [M€] 24.0 29.0 34.0 34.8" 348" 348" 288" 268" 2777 300"
Source [57, 58] [59, 60] [61, 62] [54, 55] [54, 55] [54, 55]  [13] [13] [13] [56]

1 Aircraft type options: Conventional (CA), All-electric (AEA) and Hybrid-electric (HEA)
* Assumed or calculated value
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D. Verification

This section outlines the verification of the FSEAR model using the case study introduced earlier. Verification
ensures correct input processing, intermediate calculations, and expected outputs. In addition to unit tests
on individual components, such as input parsing, output generation, and class behavior, the complete system
is tested using representative case study data to validate key functionalities.

Verification is performed for both daily and weekly configurations. The daily setup serves to validate the
core functionality of the Path Fxplorer, while the weekly setup ensures the correct behavior of the multi-day
iterative scheduling process. Results from the daily and weekly verifications are presented in Section II1.D.1
and Section I11.D.2, respectively.

1. Daily Verification

The Path Ezxplorer is verified using a single iteration in a daily configuration. This step ensures that the
computed suboptimal path adheres to the theoretical methodology and internal logic of the model. Four
key aspects are assessed to validate internal consistency and correctness: time-space alignment, energy flow
integrity, emission attribution accuracy, and consistency of the objective function and demand. The verification
is performed on the CS-I network using a daily configuration with ten hybrid-electric Bombardier CRJ1000
aircraft and a 10-minute time interval. This configuration also incorporates a standard emission tax to penalize
CO5 emissions and account for environmental impact within the optimization. Results of this verification are
shown inTable 5 and discussed below.

1. Time-Space Alignment: Confirms that each path maintains logical continuity in both time and space.
As shown in Table 5, all ground arcs (GRD) preserve identical departure (INV;) and arrival (IV;) airports,
ensuring spatial coherence. Flight arcs (FL) respect temporal feasibility such that the elapsed time
between T; and T does not exceed the sum of flight duration (Twr,) and the turnaround time (TAT) of
45 minutes. Any additional time is recorded as spare time.

2. Energy Flow Integrity: Ensures consistent application of energy consumption (Eeons) and recharging
(Frec) across both ground and flight arcs. As shown in Table 5, ground arcs contribute solely to battery
recharging, while flight arcs involve energy depletion based on distance and aircraft type. The backward
recursion confirms this behavior by checking that recharged energy is added to, and consumed energy
subtracted from, the energy balance (Epew), aligning with the energy level at the preceding node (Egq).
All flight segments comply with the recharging constraint in Equation (8), as described in Section II.E.2.

3. Emission Attribution Accuracy: Verifies that the reported electricity- and fuel-based emission values
(Eclec, €fuel) align with the energy consumption characteristics of the Bombardier CRJ1000. Emissions
are attributed linearly based on the fractional use of battery and fuel energy, ensuring that any remaining
flight distance beyond the battery range is covered by fuel, consistent with the hybrid-electric operation
framework adopted in this study. The electricity and fuel emission values are validated using emission
factors of 0.03kg CO2/kWh and 3.15kg CO4/kg, fuel, respectively, as defined in Section II.A.1. The
total emission (eiot) is confirmed to equal the sum of electricity- and fuel-based emissions.

4. Objective and Demand Consistency: Validates that the objective values of individual arcs (Jarc) and the
cumulative objective (Jeumul) scale linearly, with offsets reflecting fixed operational costs. These values
reflect the distance-based fare structure and the served demand (Ds) per flight. Ground arc objective
values accurately represent the parking fee of €120 per hour, applied uniformly across airport categories.
Lastly, the total transported demand on the AMS-DUS OD pair has been verified not to exceed the
405-passenger limit in either direction.

In addition to the above verification aspects, the results highlight a key feature of the model that aligns with
the underlying methodology. As illustrated in Table 5, the optimized daily schedule strategically conserves
battery energy during flights corresponding to steps 4 and 9, where only a small fraction of battery energy
is used alongside a greater share of fuel energy. These flights exhibit notably higher emissions compared
to others. This behavior is explained by the preceding flight segments, which involve short ground times
and limited recharging opportunities following energy-intensive flights. The model thus prioritizes battery
conservation in anticipation of future operations, reflecting the model’s logic to optimize overall long-term
profitability.
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Table 5 Suboptimal path of the Bombardier CRJ1000 across ten
airports in the CS-I network using a 10-minute time interval

# Ti Ni d TFL TZ Tj Nj Action qumul Tare Ds Eold Econs FErec Fnew €elec  €Efuel €tot
(km) (~) € © () (» () () (») (ke) (kg) (kg)

1 06:00 AMS - - - 07:00 AMS GRD 27,200 -120 - 1.00 - 0.70 0.30 - - -
2 07:00 AMS 178 01:31 0 09:20 DUS FL 27,300 5,840 100 0.30 0.70 0.21 0.79 31.5 1,250 1,280
3 09:20 DUS - - - 09:30 DUS GRD 21,500 -20.0 - 0.79 - 0.19 0.60 - - -
4 09:30 DUS 178 01:31 0 11:50 AMS FL 21,500 5,670 100 0.60 0.40 0.60 0.40 18.0 2,100 2,110
5 11:50 AMS 178 01:31 0 14:10 DUS FL 15,800 3,740 74 0.40 0.60 0.36 0.64 27.0 1,530 1,560
6 14:10 DUS - - - 14:30 DUS GRD 12,100 -40.0 - 0.64 - 0.34 030 - - -
7 14:30 DUS 178 01:31 0 16:50 AMS FL 12,100 2,930 63 0.30 0.70 0.21 0.79 31.5 1,250 1,280
8 16:50 AMS - - - 1700 AMS GRD 9,220 -20.0 - 0.79 - 0.19 0.60 - - -
9 17:.00 AMS 178 01:31 0 19:20 DUS FL 9,240 3,380 71 0.60 0.40 0.54 0.46 18.0 2,100 2,110
10 19:20 DUS - - - 19140 DUS GRD 5,860 -40.0 - 0.46 - 0.26 0.20 - - -
11 19:40 DUS 178 01:31 0 22:00 AMS FL 5,900 5,900 100 0.20 0.80 0.00 1.00 36.0 968 1,000

2. Weekly Verification

Following the verification of the Path Explorer, the model is further validated under a weekly configuration
using the same network and settings, differing only in that a full weekly schedule is constructed and an uncon-
strained number of iterations is allowed. The simulation incorporates two comparable hybrid-electric aircraft
types, the Bombardier CRJ200 and Bombardier CRJ1000, to confirm that the model captures performance
differences between aircraft across iterations.

In addition to verifying daily path construction within the weekly schedule, this verification focuses on
iteration behavior. It assesses three critical properties: monotonic profit decrease, demand-removal consistency,
and aircraft-type prioritization. These checks confirm that key mechanisms, such as profit prioritization and
demand tracking, operate as intended over multiple iterations. A summary of results at the iteration level is
presented in Table 6, with the corresponding analyses discussed below.

1. Monotonic Profit Decrease: Ensures that the model adheres to the expected declining profit across
successive iterations. As demand is removed once served, subsequent iterations operate on a reduced
network with lower remaining revenue potential, making higher profits unattainable. Consequently,
the objective value should decrease monotonically. Table 6 confirms this behavior, demonstrating a
consistent profit decline across iterations. A corresponding decline in total served demand per flight
and flight frequency (# FL) is also observed, reinforcing the expected downward trend. Although these
patterns are not strictly monotonic, they align with the model’s methodology, which does not require
strict monotonicity but supports an overall decreasing behavior across iterations.

2. Demand-Removal Consistency: Verifies that demand is correctly removed between iterations following
the selection of the weekly path for the best-performing aircraft. As shown in Table 6, demand is
removed cleanly with no residual reallocation in subsequent iterations. The table also confirms that
once no profitable paths remain for the residual demand (Diem), the model ends further iterations,
thereby satisfying the FSEAR model’s termination condition.

3. Aircraft-Type Prioritization: Verifies that the model appropriately selects different aircraft types across
iterations based on changing network conditions and remaining demand. In Table 6, iteration 14 shows
a shift to the Bombardier CRJ200, whereas previous iterations used the Bombardier CRJ1000. This
transition aligns with model expectations as the smaller CRJ200 offers lower per-passenger operating
costs, making it more suitable as demand diminishes. This demonstrates that the aircraft assignment
logic adapts appropriately to evolving operational conditions.
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Table 6 Overview of the weekly routing schedule for Bombardier CRJ1000 and CRJ200
across ten airports in the CS-I network using a 10-minute time interval

Tter. Status Aircraft Noow! Neow? JTeumut # FL  Tergot  Ds Drem  €cloc efuel etot
(€ (~) (~)  (~)  (kg)  (kg) (ke)
1 OK B CRJ1000 AMS LCY 173,000 38 72:09 3,617 46,508 1,060 92,800 93,800
2 OK B CRJ10000 AMS FRA 139,000 31 78:48 2,866 43,642 837 128,000 129,000
3 OK B CRJ1000 DUS AMS 126,000 33 76:13 2,805 40,837 909 116,000 117,000
4 OK B CRJ1000 LCY DUS 109,000 29 72:26 2,475 38,362 891 110,000 111,000
5 OK B CRJ10000 FRA AMS 91,900 27 71:36 2,209 36,153 904 108,000 109,000
6 OK B CRJ1000 AMS AMS 58,400 22 66:24 1,683 34,470 770 106,000 107,000
7 OK B CRJ1000 AMS AMS 43,100 18 71:57 1,398 33,072 702 127,000 128,000
8 OK B CRJ1000 BLQ AAL 37,400 15 70:52 1,232 31,840 594 133,000 134,000
9 OK B CRJ1000 SVG AMS 35,000 15 60:51 1,225 30,615 594 108,000 108,000
10 OK B CRJ1000 AMS GDN 25,900 12 63:48 1,028 29,587 468 125,000 125,000
11 OK B CRJ1000 AMS AMS 22,600 11 54:21 967 28,620 396 106,000 106,000
12 OK B CRJ1000 AAL BLQ 22,200 11 61:51 972 27,648 450 122,000 122,000
13 OK B CRJ1000 AMS SVG 6,850 9 45:42 750 26,898 405 84,700 85,100
14 OK B CRJ2000 GDN GDN 4,430 16 81:41 730 26,168 285 64,700 65,000
15 Jemm <0 N/A  N/A N/A N/A N/A N/A N/A N/A N/A N/A  N/A

1 Begin of week departure airport
2 End of week arrival airport

IV. Results & Discussion

This section presents the results of applying the FSEAR model to the KLM Cityhopper case study introduced
in Section III, with the primary objective of evaluating the effect of partial versus full recharging strategies for
electrified aircraft. The model is applied to three sub-networks, to enable consistent comparison across varying
network structures. FSEAR generates weekly schedules under two energy configurations: Full Recharging,
which permits flights only when the battery is fully charged, and Partial Recharging, which allows flights as
long as sufficient energy is available. Each case study is simulated under both configurations, producing a
structured set of comparative outputs. All model input parameters are detailed in Appendix B.

Section IV.A presents results for two mixed fleet configurations: one including conventional, all-electric,
and hybrid-electric aircraft, and one limited to all-electric and hybrid-electric types. The configuration with
conventional aircraft serves as a baseline to evaluate whether partial recharging encourages a shift away
from conventional operations. However, the primary focus lies on the interaction between all-electric and
hybrid-electric aircraft, allowing a clearer interpretation of partial recharging effects on electrified fleets. In
contrast, Section IV.B examines the performance of homogeneous fleets composed exclusively of either all-
electric or hybrid-electric aircraft. This section compares full and partial recharging configurations across
both categories to assess performance differences. Additionally, a set of sensitivity analyses is conducted to
evaluate how varying model parameters influence key outcomes such as financial profit, CO5 emissions, and
fleet composition, as described in Section IV.C.

A. Comparative Analysis Using a Mixed Fleet Configuration

The impact of partial recharging on weekly financial profit and total CO2 emissions (in tonnes) is evaluated
across both mixed fleet configurations. Figure 12 presents the absolute fleet size and composition, as well as
the resulting profit and COy emissions under both the Full Recharging and Partial Recharging configurations
for each of the three case studies. Relative changes resulting from partial recharging are summarized in Table 7,
while Table 8 presents the relative differences between configurations that include conventional aircraft and
those limited to all-electric and hybrid-electric fleets.

In the configuration including all aircraft types, Figure 12a shows that conventional aircraft dominate
the fleet selection. This outcome indicates that, even with partial recharging, electrified aircraft do not yet
offer a more financially attractive alternative under the current operational assumptions. The associated
increase in COy emissions is disproportionately large, highlighting the environmental trade-off of this config-
uration. A detailed comparison between configurations with and without conventional aircraft is provided in
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Section IV.A.1.

Each case study is evaluated based on the configuration that excludes conventional aircraft, allowing clearer
isolation and interpretation of the impact of partial recharging on electrified operations. Partial recharging
results in substantial profit gains across all case studies, with improvements of approximately 25%. In CS-I
and CS-II, CO5 emissions also decline due to a shift in fleet composition, where all-electric aircraft are favored
over hybrid-electric types. As shown in Table 7, partial recharging consistently pushes operational results
toward the upper-left quadrant indicating higher profits and lower emissions. In CS-III, while profit increases,
emissions and fleet composition remain largely unchanged due to the specific operational constraints of the
network. Detailed analyses per case study are provided in Sections IV.A.2 to IV.A.4.

22
32 cs-nl O Full Recharging cs O Full Recharging
Partial Rechargin
&1 aing 2.0 . Partial Recharging
3.0 [ All-Electric cs-1 All-Electri
8 I All-Electric
3 Conventional 1.8 . . .
W . N @ B Hybrid-Electric
s @ Hybrid-Electric < .
= =
528 cs- 516 cs-1l
a X o O 13 aircraft
® O 11 aircraft K
3 cs- 8 cs-l
= =14 ‘ .
cs-l
2.6 . O 18 aircraft
O 12 aircraft /
cs-1 12
. 23 aircraft
24 cs- O 14 aircraft 1.0 cs-mn O
1,500 2,000 2,500 3,000 3,500 [ 100 200 300 400 500 600 700

Total Emission (tonnes CO;) Total Emission (tonnes CO)

(a) Conventional, all-electric, and hybrid-electric fleet (b) All-electric and hybrid-electric fleet
Figure 12 Comparison of network profit and CO2 emissions between partial
and full recharging constraints under two mixed fleet configurations

Table 7 Relative differences in profit and CO4
emissions due to partial recharging, based on the
all-electric and hybrid-electric mixed fleet configuration
(Figure 12b), evaluated across all case studies

Table 8 Relative differences in profit and CO4
emissions when conventional aircraft are included in the
mixed fleet configuration (Figure 12a) compared to
excluded (Figure 12b), evaluated across all case studies

Case Study Profit (A%) Emissions (A%) Case Study Profit (A%) Emissions (A%)
CS-I: Closest Distance +27.8 —45.1 CS-I: Closest Distance +35.2 +2070
CS-I1I: Highest Demand +22.5 —48.9 CS-II: Highest Demand +53.2 +2270
CS-III: Distance Demand +22.8 +4.66 CS-III: Distance Demand +103 +432

1. Impact of Including Conventional Aircraft in Fleet

The inclusion of conventional aircraft exerts a dominant influence on fleet composition. Even under partial
recharging configurations, electrified aircraft are not selected in place of conventional types. Across all three
case studies, regardless of distance or operational characteristics, the inclusion of conventional aircraft yields
higher profit, but at the cost of substantially increased emissions, as shown in Table 8. The total fleet size is
also considerably smaller than when using an all-electric and hybrid-electric fleet.

Conventional aircraft are favored over all-electric and hybrid-electric alternatives due to their cost structure
and operational advantages. Although per-kilometer operating costs are comparable after applying emission
tax, the lease cost for all-electric and hybrid-electric aircraft is 20 % higher. Since lease costs represent the
dominant share of total costs, including all-electric and hybrid-electric types results in a more expensive fleet.
Additionally, conventional aircraft achieve higher flight frequencies across all case studies, enabling greater
demand to be served. The increase in transported passengers boosts total revenue, while lease costs remain
fixed. As a result, cost efficiency per passenger improves, leading to higher profit margins for conventional
aircraft and making them the preferred option.

These findings underscore a persistent challenge for the aviation industry, as conventional aircraft remain
more financially attractive than electrified alternatives under current economic conditions and operational con-
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straints. However, this financial advantage comes at a substantial environmental cost, with conventional fleets
producing significantly higher CO5 emissions. While partial recharging enhances electrified operations through
greater flexibility and utilization, it remains insufficient in evaluated scenarios to overcome the profitability
advantage of conventional aircraft.

2. Case Study I: Closest Distance

This case study focuses on short-range operations, where adopting partial recharging results in a complete shift
in fleet composition. Under the Full Recharging configuration, the fleet includes sixteen all-electric Flysian
E9X aircraft and three hybrid-electric aircraft, two Bombardier CRJ200 and one Bombardier CRJ1000. In
contrast, the Partial Recharging configuration operates with a smaller fleet of thirteen aircraft, all of which
are all-electric Elysian E9X models.

This shift leads to a substantial reduction in total COs emissions. Although electricity-related emissions
increase by 21.9 %, this is more than offset by the complete elimination of fuel-based emissions, which were
the dominant contributor under the full recharging setup. Additionally, flight frequency increases by 9.68 %,
and transported demand rises by 7.97 %, resulting in a total profit gain of 27.8 %. Despite variation in flight
frequency across the network, the set of served destinations remains unchanged due to the short-haul nature
of this case study.

The results suggest that partial recharging can support fully electric, high-frequency operations on short-
haul routes, offering a credible route toward low-emission regional aviation. This strengthens the case for
sustainability-focused carriers like KLM Cityhopper, which aim to lead the transition to cleaner air trans-
port [44].

3. Case Study II: Highest Demand

This case study targets high-demand routes and exhibits similar behavior to CS-I in terms of fleet recompo-
sition, profit increase, and emission reduction. The fleet is downsized by removing three all-electric Flysian
E9X and three hybrid-electric Bombardier CRJ200 aircraft, resulting in a total of 17 aircraft. A profit in-
crease of 22.5 % is achieved, slightly lower than in CS-I, while the total absolute CO2 emissions decrease more
substantially. This is partly attributed to CS-II’s higher baseline profit and emissions levels.

Increases in flight frequency and transported demand are slightly smaller compared to CS-I, which can be
attributed to longer average OD pairs distances. Route-level analysis indicates enhanced operational efficiency.
For instance, on the AMS-BRE route, the number of flights decreases while transported demand is only halved,
indicating better aircraft utilization. Most gains in flight frequency and transported demand occur on short- to
mid-range routes, highlighting the stronger performance of partial recharging on these segments. Specifically,
routes between 283km and 367 km exhibit weighted average increases of 12.9% in frequency and 11.3% in
demand. In contrast, longer routes exceeding 511 km exhibit slight declines, with weighted average reductions
of 1.42 % in flight frequency and 0.890 % in transported demand. Similar trends of efficiency-driven reallocation
are observed across other connections.

Overall, the results illustrate that partial recharging enhances profitability and lowers emissions on high-
demand networks, particularly by improving efficiency on short- to mid-range routes.

4. Case Study III: Distance Demand

The final case study evaluates a network comprising short-, medium- and long-haul regional routes, with
OD pairs selected based on high demand, as introduced in Section III. While this configuration yields higher
profits, it comes at the cost of increased total COy emissions. Although the fleet size is reduced under the
Partial Recharging configuration, the all-electric to hybrid-electric ratio remains unchanged at 2:1. Unlike
CS-T1 and CS-1II, where emissions declined due to the removal of fuel-intensive hybrid-electric aircraft, only
one Bombardier CRJ200 is excluded in this case. The remaining fleet still includes five Bombardier CRJ1000
aircraft, which continue to contribute substantially to fuel-based emissions. Total emissions increase by 4.66 %,
driven by a 12.5% rise in electricity-based emissions and a 3.87 % increase in fuel-based emissions. Despite
the higher relative growth in electricity-related emissions, fuel remains the dominant contributor to total
CO; output. In the Full Recharging configuration, fuel accounts for 90.9 % and electricity for 9.10 % of total
emissions. Under Partial Recharging, these shares shift slightly to 90.2 % and 9.80 %, indicating a modest rise
in the relative contribution of electricity, though fuel continues to dominate in absolute terms.
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The increase in emissions is accompanied by a 6.01 % rise in total flight frequency and a 6.65 % increase
in total distance flown, indicating a more active network with broader coverage under the Partial Recharging
configuration. Crucially, the total emission increase of only 4.66 % remains well below the growth in dis-
tance traveled, indicating a relative improvement in emission efficiency. When normalized per kilometer, this
translates to approximately 1.87 % fewer CO4 emissions per kilometer flown compared to the Full Recharging
configuration. For instance, routes like AMS-SVG and AMS-FRA show substantial increases in frequency up
to 24 % with modest emission contributions relative to distance covered and demand served. This highlights
that the increase in absolute emissions is partly a trade-off for greater network productivity and accessibility,
rather than a sign of inefficiency.

These results underline that while partial recharging may not always reduce total emissions, it enables a
more flexible and productive network operation with improved emissions per unit of output, aligning with the
broader goals of sustainable regional aviation. This shows that partial recharging could help airlines improve
efficiency and network reach while maintaining progress toward sustainability, even when full electrification is
not yet feasible.

B. Comparative Analysis using Homogeneous Fleet Configurations

The three case studies are evaluated under unconstrained homogeneous fleet configurations to isolate the
performance of individual aircraft types. Restricting operations to either all-electric or hybrid-electric aircraft
removes the influence of mixed-fleet interactions. The corresponding profit and emission outcomes are shown
in Figures 13a and 13b. Detailed analyses for both fleet types are presented in Sections IV.B.1 and IV.B.2.

2.2
cs-1l cs-l

. 1.3 .
Full Recharging . . O  Full Recharging

Partial Recharging / Partial Recharging

Bl Hybrid-Electric

N
S
o
(¢}

H
5
a
@
-
5

All-Electric
cs-i

-
N

Total Profit (M€)
-
o
I}
@

Total Profit (M€)

O 10 aircraft O 14 aircraft
14 . 10
cs-m
o O 16 aircraft &0 O 17 aircraft
12 / 0.9 O
/
22 aircraft . Q 21 aircraft
1.0 . O 0.8
cs- cs-
50 60 70 80 90 100 110 120 1,000 1,200 1,400 1,600 1,800 2,000
Total Emission (tonnes CO;) Total Emission (tonnes CO2)
(a) All-electric fleet (b) Hybrid-electric fleet

Figure 13 Comparison of network profit and CO2 emissions across case
studies for unconstrained, homogeneous fleet configurations

1. All-Electric Fleet

The homogeneous all-electric fleet achieves substantial profit gains across all three case studies, ranging from
23.0% to 27.9%, alongside moderate emission increases of up to 13.8 %. These outcomes are consistent with
the FSEAR model’s assumption that electricity-based emissions scale linearly with distance flown. The profit
increase corresponds with an average rise in flight frequency of approximately 10 %.

In CS-I, route-level analysis shows strong increases in flight frequency and transported demand, particularly
at Humberside Airport (HUY) and Norwich International Airport (NWI), with frequency increases ranging
from 33 % to 92 %, and transported demand increases from 29 % to 50 %. CS-II and CS-IIT show more stable
patterns, with most route-level changes remaining within 20 %. Notably, CS-II reveals a redistribution of
network activity under partial recharging, with fewer flights from Stuttgart Airport (STR) and more operations
from Frankfurt Airport (FRA), despite unchanged transported demand at both locations.

Fleet-level analysis indicates that fewer aircraft are required under the Partial Recharging configuration.
Those deployed also achieve higher utilization, particularly in early iterations. Profit per aircraft during the
first five iterations is roughly twice that of the Full Recharging configuration, with similar gains in served
demand.
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The enhanced utilization and smaller fleet enabled by partial recharging significantly strengthen the oper-
ational feasibility of all-electric aircraft, which would otherwise remain constrained under full recharging.

2. Hybrid-Electric Fleet

The homogeneous hybrid-electric fleet exhibits a similar pattern to the all-electric configuration, with increases
in both profit and total CO5 emissions. However, unlike the all-electric case, where profit gains exceed emissions
growth, the opposite holds true here. Partial recharging leads to modest profit increases ranging from 9.82 %
to 12.9 %, while emissions rise more significantly, between 6.85 % and 43.0 %.

This pronounced increase in emissions is driven by a shift in the relative contributions of fuel and electricity.
Across all case studies, fuel-based emissions increase while electricity-based emissions decline. This effect is
most evident in CS-I, where fuel-related emissions rise by 44.3 % alongside a 30.3 % reduction in electricity
emissions. Similarly, CO2 per kilometer and CO5 per Revenue Passenger Kilometer (RPK) also rise under
partial recharging, ranging from 4.60 % to 36.3 %. These results highlight a key limitation of hybrid-electric
configurations as partial recharging reduces total energy use through optimized consumption but simultane-
ously increases dependence on fuel. While it enables higher flight frequencies and profits, this benefit comes
at the cost of increased fuel use and higher absolute CO45 emissions.

Similar to the all-electric configuration, partial recharging improves operational efficiency in the hybrid-
electric fleet, allowing a smaller fleet to perform more flights and serve greater demand. However, this comes
at the cost of increased fuel dependence, raising concerns about long-term sustainability.

C. Sensitivity Analysis

The FSEAR model is subjected to a set of sensitivity analyses to assess how simulation outcomes respond to
changes in key parameters and configurations. These analyses provide deeper insight into model behavior and
help identify which factors most influence performance. All sensitivity tests are conducted across the full set
of case studies to capture variability arising from differences in demand distribution and route lengths. Some
case studies respond more strongly to certain parameter changes than others, ensuring a more representative
and robust understanding of the model’s overall behavior.

All sensitivity analyses are performed using a daily scheduling framework to improve computational effi-
ciency, rather than the weekly schedule used in the main partial recharging configuration. Since the weekly
schedule is constructed from daily simulations, this simplification has negligible impact on outcomes while
reducing runtime by at least factor of seven. In some analyses, conventional aircraft are selectively included
or excluded to better isolate the influence of specific variables.

A preliminary study is first conducted to determine an appropriate number of airports and the time dis-
cretization interval before analyzing core parameters. The results of this initial configuration study, which
defines the fixed settings for the partial recharging analysis and all subsequent sensitivity analyses, are pre-
sented in Section IV.C.1. Subsequent sections explore the influence of charging profiles in Section IV.C.2, fuel
and electricity prices in Section IV.C.3, and selected isolated single-parameter variations in Section IV.C.4.

1. Time Resolution and Network Size Analysis

Two key input parameters directly influence both the financial profit and computational runtime of the FSEAR,
model: the time resolution (defined by the interval between decision nodes) and the network size (determined
by the number of included airports). Efficient execution of the partial recharging simulations and broader
sensitivity studies depends on selecting suitable values for these parameters. The overall objective is to achieve
a balance between computational tractability and minimal profit loss due to reduced model granularity.

The analysis uses a range of input values for the decision time interval (in minutes) and the number
of airports in the network (including AMS), defined respectively as Ts = [10, 15, 20, 30, 60] and N, =
[6, 7, 8,9, 10]. The resulting average performance across all case studies is shown in Figure 14, illustrating
the relationship between these settings, model profitability, and computational runtime3.

Figure 14 shows that increasing the number of airports has a significantly greater impact on financial profit
than reducing the time interval between decision nodes. This is evident from the relative change compared to
a selected baseline configuration (T = 60, N, = 6), where expanding network size yields notably higher profit
gains than improving time resolution. In terms of computational runtime, a diagonal trend emerges in which

5Simulations were executed on an Apple Macbook M1 Pro (10-core CPU and 16-core GPU) with 16 GB RAM.
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runtime increases significantly, following an approximate 45° slope or steeper, toward the upper-left corner
of the parameter space. This indicates that increased model granularity imposes steep computational costs.
Particularly, shifts from 15 to 10 minutes or from 9 to 10 airports result in disproportionately high increases
in runtime, signaling non-linear growth near the upper bounds.

Lastly, it is important to note that this analysis is based on a case study where demand exists only to
and from AMS. This substantially reduces computational time, as the three-dimensional DP algorithm can
exclude a large portion of the state space due to early dominance by zero-profit paths. Consequently, the
curse of dimensionality is substantially mitigated in this scenario, though it may become more pronounced
when modeling networks with OD demand between all airport pairs. Additionally, the included airport set is
randomly selected. As different airport combinations can influence both computational speed and profit, this
source of variability is not accounted for in the current analysis.
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2. Charging Profile Analysis

The battery charging profile is a critical configuration parameter, especially under partial recharging, given
its non-linear behavior and influence on profitability and emissions. This sensitivity analysis compares the
baseline linear profile with two alternatives: a bilinear and a MCC profile [4] (see Appendix C for visualizations
of the charging profiles). In the bilinear strategy, the first 80 % of the battery charges quickly, followed by a
slower final 20 %, with total charging time equal to the linear profile. The MCC profile consists of five high-
speed constant-current stages, leading to a 22.5% increase in total charging speed. The analysis examines
how these profiles affect profit and CO5 emissions.

Figure 15 shows that both bilinear and MCC profiles improve profit in CS-I and CS-II. CS-I sees minor
emission increases, while CS-II shows a substantial emission reduction. In CS-III, however, the bilinear profile
leads to a slight profit decline despite improved charging efficiency, indicating more complex interactions
between fleet composition and network constraints.

In CS-I, the fleet remains composed entirely of 9 Elysian E9X aircraft. Both bilinear and MCC profiles
increase profit and emissions due to higher flight frequency, with MCC outperforming bilinear as a result of its
faster recharge rate. In CS-II, emissions drop due to fleet shifts where the bilinear profile replaces a Bombardier
CRJ200 with an FElysian E9X and the MCC profile removes the CRJ200 entirely. This highlights MCC’s
advantage in reducing CO5 emissions, primarily achieved through the removal of the fuel-based Bombardier
CRJ200. CS-III shows limited sensitivity, as hybrid-electric aircraft remain necessary for long-range operations.
The fleet composition does not change across profiles. Although the bilinear profile improves early iteration
profits, total profit slightly declines due to suboptimal downstream route allocation, where early high-profit
paths reduce residual demand for later iterations.
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3. Energy Resource Price Analysis

Energy resource prices have a direct impact on both profitability and emissions, especially in all-electric and
hybrid-electric fleet configurations, where the cost trade-off between electricity and fuel affects propulsion
system selection. A two-dimensional sensitivity analysis is performed by scaling electricity and fuel prices
using factor fres = [—0.2, —0.1, 0.0, 0.1, 0.2], relative to the baseline values of €0.1545 per kWh and €0.538
per liter, respectively. The results for CS-II and CS-III are shown as paired heatmaps of relative profit and
COs emissions in Figures 16a and 16b.

CS-1 remains relatively stable in both profit and emissions due to the dominance of all-electric aircraft.
Notable deviations arise primarily under reduced fuel price conditions. When fuel is scaled by f,es = —0.2, or
by fres = —0.1 in combination with a lower electricity price, one hybrid-electric Bombardier CRJ200 is added
to the fleet. This modification leads to a substantial rise in fuel-based CO, emissions, highlighting the fleet’s
sensitivity to relative energy price changes.

CS-II and CS-III exhibit contrasting sensitivities to energy price changes, as illustrated in Figures 16a
and 16b. In CS-II, profit is primarily affected by electricity prices, following an approximately linear pattern,
whereas changes in fuel prices have minimal impact. CS-III exhibits stronger and more symmetric sensitivity
to both fuel and electricity prices. Its profit heatmap shows a diagonal gradient, where simultaneous increases
in both prices reduce profitability, and joint decreases enhance it. This reflects CS-IIT's heightened sensitivity
to the combined effects of electricity and fuel prices.

The differing sensitivities are primarily driven by variations in fleet composition across the two case studies.
CS-1II is predominantly operated by all-electric Elysian E9X aircraft, with no more than two hybrid-electric
Bombardier CRJ200 aircraft. In contrast, CS-III features a mixed fleet, typically consisting of five all-electric
and three hybrid-electric aircraft in 80% of the evaluated configurations, making it more responsive to fuel
price changes. This also affects emission outcomes. In CS-II, emissions increase when two hybrid-electric
aircraft are added under scenarios with stable electricity and lowered fuel prices, reintroducing fuel-intensive
operations. In CS-III, emissions decrease when a single Bombardier CRJ1000 is removed from the fleet as a
result of a fuel price increase to fres = 0.2.

Overall, this analysis demonstrates how energy price variation influences profitability and emissions through
fleet composition, with CS-IIT exhibiting the highest sensitivity, stemming from its dependence on both fuel-
and electricity-based propulsion.
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4. Single Input Parameter Sensitivity Analyses

Following the preceding multi-dimensional and charging profile analyses, this part of the sensitivity study

examines the model’s response to isolated variations in individual parameters. Varying one parameter at a

time enables direct attribution of model responses to specific factors, facilitating clearer verification of expected

behavior. Three key parameters are examined: the emission tax, battery performance, and charging speed.
The emission tax is varied to assess its impact on fleet composition (including conventional aircraft) and

total emissions, simulating the effect of stricter CO, taxation and promoting a shift toward lower-emission
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routes and increased electric propulsion use. Battery performance is assessed by increasing the energy density.
This results in proportional gains in both electric and total range, representing an optimistic scenario aligned
with projected technological advancements. Charging speed is varied in the same manner to represent the
impact of improved infrastructure. Each parameter is scaled using the same relative adjustment factor, defined
as fs = [=0.1, 0.0, 0.1, 0.2, 0.3], relative to baseline values and applied across all case studies.

Figure 17 presents outputs from each analysis based on case study III, selected due to its most pronounced
deviations from expected trends. Figure 17a shows the expected trends for all emission tax variations, except
for the transition from a 20 % to 30 % increase, which unexpectedly yields a profit increase. A similar deviation
occurs in Figures 15 and 17b for a 10 % increase in battery energy density and charging speed, respectively. In
all three cases, these deviations stem from increased model sensitivity in later iterations, where early routing
decisions constrain later flexibility. This pattern reflects the model’s structural limitations, namely the greedy
demand removal and the sequential, priority-based aircraft assignment discussed in Section IT. Although profit
deviations are limited, emission changes are more significant. These shifts are primarily driven by changes
in fleet composition, specifically the addition or removal of conventional or hybrid-electric aircraft, which
disproportionately affect total emissions
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Figure 17 Impact of single-parameter variations on network profit
and CO2 emissions for CS-III: Distance Demand

V. Conclusion

This paper addresses the current research gap in integrating airline planning with partial recharging, climate
optimization, and electrified aircraft design. By concentrating on airline planning, this study contributes to
the multidisciplinary gap without delving into aircraft-level design. The primary objective was to gain deeper
insights into the operational effects of partial recharging strategies for electrified aviation within regional net-
works. The study focused on evaluating their implications for airline network profitability and carbon emission
reduction. The central aim was to answer the following research question: What is the effect of incorporat-
ing partial recharging strategies into flight scheduling and aircraft routing on airline network profitability and
carbon emission reduction?

To answer this question, the Flight Scheduling and Electrified Aircraft Routing (FSEAR) model was de-
veloped with partial recharging as a core feature. The model uses a sequential, iterative decision-making
process in which, at each iteration, the best-performing aircraft is selected based on suboptimal routes com-
puted for all available types in an unconstrained fleet. This process continues until all demand is served
or no further profitable assignments remain. Route construction incorporates partial recharging via a three-
dimensional time-space-energy recursive dynamic programming algorithm, where energy balance is explicitly
modeled as the third state variable to optimize energy usage across the network. A multi-label dominance
strategy simultaneously tracks objective value and energy balance, supported by a sub-optimal but consistent
demand allocation mechanism. The resulting output is a weekly, near-optimal flight schedule along with the
corresponding fleet composition.

The model was applied to three case studies derived from the KLM Cityhopper network, based on a seven-
day schedule forecast. These case studies focused on sub-networks characterized by short-range connectivity,
high-demand routes, and varying distances with high demand. The model was first verified using these
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scenarios, after which a comprehensive partial recharging and sensitivity analysis was conducted across all
three networks to evaluate performance under diverse operational conditions. The available fleet included both
conventional aircraft currently operated by KLM Cityhopper and conceptual all-electric and hybrid-electric
aircraft obtained from various academic and industry studies.

Integrating partial recharging into the FSEAR model significantly improved network performance for a
mixed all-electric and hybrid-electric fleet, in line with expectations from the developed methodology. Across all
case studies, profit increased substantially, ranging from 22.47 % to 27.75 %. In two cases, fleet recomposition
fully replaced hybrid-electric aircraft with all-electric alternatives, resulting in CO2 emission reductions of
45.10% and 48.89 %. The third case study, involving longer flight distances, showed a moderate emission
increase driven by higher hybrid-electric flight frequency, accompanied by a reduction in fleet size and a
gain in profit. These results demonstrate the strong operational benefits of partial recharging, confirming its
potential to boost profitability while reducing emissions in most scenarios. This confirms that the research
question concerning the impact of partial recharging on network profitability and carbon emission reduction
has been effectively addressed.

While conventional aircraft remain more profitable under current conditions, this comes with significantly
higher emissions. The improvements enabled by partial recharging show that electrified operations can already
deliver meaningful environmental and operational gains, offering a promising direction for more sustainable
regional aviation. By incorporating partial recharging into the analysis, this study presents a more realistic and
nuanced view of electrified aircraft performance. Earlier studies may have underestimated this performance
due to more restrictive assumptions. This broader perspective can influence how electrified aviation is assessed
in both academic research and industry planning.

There is considerable potential to improve the research by integrating a more advanced aircraft dynamics
formulation. The current framework simplifies energy consumption and omits payload-range interactions,
limiting realistic aircraft behavior. A refined version of the Breguet range equation that accounts for variable
hybridization ratios as a function of battery state-of-charge would more accurately capture performance under
partial recharging. This would enable realistic payload-range trade-offs and account for fuel weight effects on
energy use. Incorporating these dynamics would offer deeper insight into energy consumption, operational
flexibility, and the feasibility of electrified aviation.

Building on this, future work should bridge the current gap between aircraft design and operational per-
formance. While design aspects were beyond this studys scope, integrating them with the enhanced dynamics
module would enable co-optimization of design and planning. A promising redesign direction is to vary battery
size and payload within fixed mass and volume limits, adapting range and capacity to route demands. This ap-
proach supports more realistic modeling of the payload-range trade-off and enables more accurate assessments
of how electrified aircraft should be designed for profitable and sustainable operations.

In parallel, the optimization framework itself can be improved by addressing two key structural limitations:
the greedy removal of unserved demand and the sequential assignment of aircraft without regard for future
interactions. A dedicated strategy for selecting and removing demand within the dynamic programming model
could reduce suboptimal outcomes. Likewise, replacing the current priority-based aircraft assignment with
a method that considers interdependencies across iterations would improve the quality of resulting schedules
and fleet compositions.
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A. Case Study Information

1. Airport Data

(a) CS-I: Closest Distance

Appendices

Table A.1 Airport selection and corresponding details for the three case studies, derived
from the KLM Cityhopper regional route network

(b) CS-II: Highest Demand

(¢) CS-III: Distance Demand

Code Lat Lon Cat Code Lat Lon Cat
AMS 52.3086  4.7639 L AAL 57.0928  9.8492 M
BRE 53.0475  8.7867 M AMS 52.3086  4.7639 L
BRU 50.9014  4.4844 L BLQ 44.5354 11.2887 M
DUS 51.2895  6.7668 L DUS 51.2895  6.7668 L
FRA 50.0333  8.5706 L FLR 43.8100  11.2051 M
HAJ 52.4611  9.6851 M FRA 50.0333  8.5706 L
HUY 53.5744  -0.3508 S GDN 54.3776  18.4662 M
LCY 51.5053  0.0553 M KRK 50.0777  19.7848 M
LUX 49.6233  6.2044 M LCY 51.5053  0.0553 M
NWI 52.6758  1.2828 S SVG 58.8767  5.6378 M

Code Lat Lon Cat
AAL 57.0928  9.8492 M
AMS 52.3086  4.7639 L
BRE 53.0475  8.7867 M
DUS 51.2895  6.7668 L
FRA 50.0333  8.5706 L
LCY 51.5053  0.0553 M
LUX 49.6233  6.2044 M
NUE 49.4987  11.0781 M
STR 48.6899  9.2220 M
SVG 58.8767  5.6378 M
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2. Case Study Network Visualization

(a) CS-I: Closest Distance (b) CS-II: Highest Demand

(c) CS-III: Distance Demand

Figure A.1 Geographic layout of the three case studies derived from the KLM Cityhopper
regional route network



3. Network Demand & Distance Data

Table A.2 Weekday passenger demand to and from AMS with flight distances for selected

airports in CS-I: Closest Distance

Airport Dist. Arrivals to AMS Departures from AMS
(km) Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
BRE 283 322 644 322 322 322 239 322 322 644 322 322 322 239 322
BRU 158 229 677 239 229 229 239 322 239 657 239 229 219 239 322
DUS 178 385 926 395 385 385 405 405 385 926 395 385 385 405 405
FRA 367 478 956 478 478 478 405 478 478 956 478 478 478 405 478
HAJ 334 302 604 302 302 302 229 312 302 604 302 302 302 229 312
HUY 370 249 498 0 249 249 249 249 249 415 0 249 249 249 249
LCY 335 664 1328 664 664 664 249 664 664 1328 664 664 581 249 498
LUX 315 395 780 395 395 405 239 302 395 780 395 405 405 239 302
NWI 239 302 604 219 302 156 229 146 302 604 219 302 156 229 146

Table A.3 Weekday passenger demand to and from AMS with flight distances for selected

airports in CS-II: Highest Demand

Airport Dist. Arrivals to AMS Departures from AMS
(km) Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
AAL 624 312 644 322 312 312 312 322 312 644 322 312 312 312 322
BRE 455 322 644 322 322 322 239 322 322 644 322 322 322 239 322
DUS 676 385 926 395 385 385 405 405 385 926 395 385 385 405 405
FRA 789 478 956 478 478 478 405 478 478 956 478 478 478 405 478
LCY 887 664 1328 664 664 664 249 664 664 1328 664 664 581 249 498
LUX 865 395 780 395 395 405 239 302 395 780 395 405 405 239 302
NUE 848 322 644 322 322 322 322 322 322 644 322 322 322 322 322
STR 935 332 820 405 405 405 405 415 332 820 405 405 405 405 415
SVG 318 395 800 395 322 312 229 322 395 800 395 322 312 229 322

Table A.4 Weekday passenger demand to and from AMS with flight distances for selected

airports in CS-III: Distance Demand

Airport Dist. Arrivals to AMS Departures from AMS
(km) Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
AAL 624 312 644 322 312 312 312 322 312 644 322 312 312 312 322
BLQ 1400 249 498 249 249 249 249 239 249 498 249 249 249 249 239
DUS 676 385 926 395 385 385 405 405 385 926 395 385 385 405 405
FLR 1480 166 770 166 166 166 166 166 166 770 166 166 166 166 166
FRA 789 478 956 478 478 478 405 478 478 956 478 478 478 405 478
GDN 618 312 624 302 312 312 249 312 312 624 302 312 312 249 312
KRK 1017 239 717 166 239 239 83 156 239 717 166 239 239 83 156
LCY 887 664 1328 664 664 664 249 664 664 1328 664 664 581 249 498
SVG 318 395 800 395 322 312 229 322 395 800 395 322 312 229 322
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4. Aircraft Data with corresponding calculations

Table A.5 Overview of available aircraft in the case study with corresponding parameters

Parameter Unit ERJ ; ERJ  E195 E9X E9X E9X ATR CRJ CRJ Parallel
175 1902 E23  (240)* (360)5 (440)6 72-6007 200%  1000° (20%)!°

Aircraft Type' [~] CA CA CA AEA AEA AEA HEA HEA HEA HEA
Seats [~] 78 100 132 90 90 90 72 50 100 70
Speed [km/h] 850 850 876 720 720 720 142 140 140 128
Design Range [km] 3,334 3,800 4,315 500 800 1,000 1,370 3,148 3,056 926
Fuel Range [km] 3,334 3,800 4,315 - - - 1,300 3,000 2,900 740
Electricity Range  [km] - - - 500 800 1,000 70 148 156 186
MTOM kg 40,370 51,800 62,500 76,000 76,000 76,000 28,690 28,098 51,985 46,900
Payload Mass kg 10,094 13,047 16,150 9,120 9,120 9,120 7,920 5,500 11,000 7,500
Battery Energy”  [kWh] - - - 8,400 13,000 15,000 390 840 1,500 6,700
Fuel Capacity L] 11,625 16,153 17,060 - - - 6,764 8,296 20,653 11,831
Recharging Power™ [kW] - - - 11,000 18,000 20,000 1,100 1,100 2,000 9,000
Climb Time [min] 18 16 16 16" 16" 16" 16" 16" 16" 17.5
Average TAT" [min] 45 45 45 45 45 45 45 45 45 45
Acquisition Price  [M€] 24.0 29.0 34.0 34.8" 348" 348" 288" 268" 2777 30.0"
Source [57, 58] [59, 60] [61, 62] [54, 55] [54, 55] [54, 55]  [13] (13] [13] [56]

T Aircraft type options: Conventional (CA), All-electric (AEA) and Hybrid-electric (HEA)
* Assumed or calculated value

L Embraer ERJ-175

2 Embraer ERJ-190

3 Embraer E195-E2

4-6 Elysian E9X with 240, 360, 440 Wh kg ~! (pack) batteries

T ATR 72-600

8 Bombardier CRJ-200

9 Bombardier CRJ-1000

10 Conceptual Parallel hybrid

Battery Energy
Battery energy (Ebastery) is derived from reported mass fractions where available. If not, it is calculated from
battery mass (Mpastery) and pack-level energy density (epack), as shown in Equation (A.1).

Ebattery = Mbattery/epack (Al)

Recharging Power
Maximum recharging power (Precharging) is based on a C-rate of 1.35, following assumptions in the conceptual
Elysian E9X study by Wolleswinkel et al. [54, 55]. This value is applied across all-electric aircraft, as shown
in Equation (A.2).

Precharging = C-rate - Ebattery (AZ)

Average TAT and Climb Time

Turnaround time (TAT) is assumed equal for all aircraft, consistent with the methodology where TAT is decou-
pled from recharging behavior. Climb time is similarly standardized based on comparable climb performance
among considered aircraft.
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B. Model Input Parameters

Table B.6 Model input parameters used in the simulation framework

Category Parameter Value
Operational settings

Start of day start_of_day 06:00
End of day end_of_day 22:00
LTO speed fraction lto_speed_fraction 0.5
Pricing and cost factors

Fuel price (€/1) fuel_price 0.538
Electricity price (€/kWh) electricity_price 0.1545
Carbon tax (€/ton CO2) carbon_emission_tax_per_ton 75
Lease cost factor lease_cost_factor 0.0835
US$ to € conversion conversion_USD_to_EU 0.91
Fare calculation

Scaling coefficient a scaling_coefficient_a 15
Elasticity exponent b elasticity_exponent_b -0.70
Fixed base fare ¢ fixed_base_fare_c 0.043
Crew cost and constraints

Seats per cabin attendant seats_per_cabin_attendant 50
Flight hours per captain hours_per_captain 10
Crew overhead factor crew_overhead_factor 0.26
Captain salary (USD) crew_salary_captain_USD 97900
Copilot salary (USD) crew_salary_copilot_USD 38000
Cabin crew salary (USD) crew_salary_cabin_attendant_USD 21700
Annual flight hours crew_annual_flight_hours 1000
Travel expense factor crew_travel_expense_factor 7.0
Battery and energy parameters

Recharging during TAT (TATF) recharging_during_TAT 0.7
Energy consumption increment energy_increment 0.1
Major hub charging power (kW) large_airport_recharging_power 3000
Medium regional airport charging power (kW) medium_airport_recharging_power 2000
Small regional airport charging power (kW) small_airport_recharging_power 1000
Environmental constants

Fuel density (kg/L) density_fuel 0.803
CO2 emission index fuel (kg/L) carbon_emission_index_fuel 3.16

COz emission index electricity (kg/kWh) carbon_emission_index_electricity 0.03

Passenger and aircraft assumptions

Passenger mass (kg) single_passenger_weight 100
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C. Charging Profile Visualization

SOC

SOC

SOCmax

(a) Linear

Figure C.2

SOCmax

(b) Bilinear

SOC

(c) MCC (22.5% faster speed)

Charging profiles for three charging strategies (normalized) with dashed lines
showing phase transitions
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Summary

The aviation sector is experiencing a rapid annual growth, with air traffic expected to continue growing at
a similar rate. This growing industry brings significant environmental concerns regarding greenhouse gases
and other considerations. In response, international institutes have set worldwide climate targets to limit the
temperature rise, as established by the Paris Agreement in 2015. In addition to these international climate
goals, several aviation institutes have set their own targets, including the NASA N-+i and Fly The Green
Deal initiatives, to ensure that the aviation industry is able to meet the required climate impact reductions.
As a result of these measures, the pressure on airlines and aircraft manufacturers has increased to adopt
more innovative solutions. Electrified aviation, consisting of all-electric and hybrid-electric aircraft, provides a
promising opportunity to achieve these targets. A key factor in realizing electrified aviation, as a replacement
for conventional aviation, is the advanced integration of aircraft design and operational research.

The development of electrically driven aircraft has highlighted critical areas for its innovation: electrified air-
craft design, aircraft performance and battery technology. The architectures of electrified aircraft, categorized
by the degree of hybridization, directly impacts the performance within an airline network. Besides aircraft
design considerations, performance optimization such as mission profile optimization and optimal in-flight en-
ergy distribution contributes to more efficient energy usage, directly effecting overall climate impact. Battery
technology, as a vital driver for electrified aviation, directly influences fundamental aircraft design aspects and
operational efficiency through recharging strategies. Alternative, more-efficient recharging strategies have been
proposed to replace conventional CC-CV charging: boost charging and multi-stage charging.

In parallel, operational aspects of electrified aviation play a crucial role in driving an airline network’s perfor-
mance. The airline planning process, primarily flight scheduling and aircraft assignment, is a critical part of
achieving improved operational efficiency. Over the past decades, multiple studies have enhanced the perfor-
mance of conventional aircraft by applying optimization techniques such as mixed-integer linear programming
and dynamic programming models to approach these problems. Various model variations have been devel-
oped, incorporating complex features such as passenger demand, spill cost and recapture, and time flexibility.
In addition to this, many researchers have explored the benefits of integrating flight scheduling and aircraft
routing, demonstrating improved operational efficiency and network performance.

Integrating these two key elements, aircraft design and performance with operational considerations, presents
opportunities for enhanced overall performance. Earlier research has demonstrated promising effects when
airline planning was coupled with either climate optimization or aircraft design. While some research has
successfully integrated these three disciplines, adding partial recharging into the framework becomes a vital
consideration for electrified aviation. This development leads to a fully integrated system that merges airline
planning with partial recharging, climate optimization, and electrified aircraft design.

The reviewed literature highlights a research gap in the integration of airline planning with partial recharg-
ing, climate optimization and electrified aircraft design. Addressing this research gap, a research question
and objective have been formulated to explore the impact of partial recharging strategies on airline network
performance. The final research objective is defined as follows:

This research aims to analyze the impact of partial recharging strategies on airline network perfor-
mance by optimizing the integration of flight scheduling and aircraft assignment with recharging
strategies and electrified aircraft design, while mazximizing profitability, reducing carbon emissions
and adhering to electrified aircraft constraints.

The approach to achieving this objective has been structured into five main phases. It begins with the
development of a comprehensive methodology and computational model. Following this, a model verification
process will ensure reliability and accuracy. Once verified, the model will be applied to a case study for both
validation and comparative purposes. Finally, the last phase comprises the development of the article and the
corresponding preparation of the research defense.
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Introduction

The aviation industry has experienced a steady upward trend over the past few decades, with persisting
expected annual growth rates of 4.4 % continuing in the coming years [2—4]. Despite a temporary drop in CO,
emissions during the COVID-19 pandemic, current emissions have returned to pre-pandemic levels [3, 5]. As
both Boeing and Airbus predict annual traffic growth in the next two decades, the aviation sector’s contribution
to global greenhouse gas emissions remains a concern [3, 4]. In response to global warming, various entities
have established ambitious climate reduction goals. In 2015, the Paris Agreement was established to address
the rising global temperature [6]. Similar to these international initiatives, aviation institutes have introduced
sector-specific initiatives for emission reduction such as NASA N+i and Fly The Green Deal [7, 8].

The aviation industry must adopt innovative solutions to align with these targets [9]. Among these solutions,
electric and hybrid-electric aircraft have emerged as an effective approach for mitigating these emissions [10-12].
In addition, aircraft electrification can provide significant advancements in the decarbonization of the aviation
industry, as it is widely recognized that the required overall climate performance can only be achieved through
alternative fuels and energy resources [5, 13, 14]. The integration of airline planning with other disciplines
such as climate optimization and aircraft design can further enhance performance and reduce climate impact
[15, 16]. Lastly, the integration of battery charging considerations in airline planning is considered a crucial step
in making electrified aviation a viable alternative to conventional aviation [10]. Altogether, these considerations
illustrate the need to explore the integration of electrified aircraft with aforementioned disciplines.

This literature study aims to provide an overview of current literature that contributes to the understanding of
integrating multiple disciplines into airline planning. Additionally, this literature offers essential background
information regarding aircraft electrification and operational research aspects of conventional airline planning.
The research focuses on the integration of airline planning with climate optimization, recharging strategies,
and aircraft design, as schematically represented in Figure 1.1. This proposal seeks to identify the research
gap in the integration of disciplines from current literature. The identification of the research gap will serve as
a basis for the formulation of the research questions and sub-questions, and the research objective. Altogether,
these elements will form the foundation of the research proposal.

Recharging
Optimization

Integrated Recharging
and Climate Optimization

Recharging Optimized
Aircraft Design

Airline
Planning

Climate Aircraft

Optimization Design

Climate Optimized
Aircraft Design

Figure 1.1: Schematic overview representing the integration of airline planning with related disciplines



This research proposal is structured to provide a comprehensive overview of the integration of electrified
aviation with airline planning. General background information on recent developments in the aviation industry,
focusing on growth and climate impact, is presented in chapter 2. Additionally, this chapter includes a brief
overview of current climate goals established by major entities and highlights the challenge airline companies
face in achieving these targets. Following this, chapter 3 outlines key aspects of aircraft electrification, focusing
on aircraft design and performance, and battery and recharging technology. Consequently, chapter 4 dives into
the operational research of the current airline planning process, outlining conventional planning processes,
mathematical solving techniques and past studies on complex models. The integration of airline planning
with disciplines, including climate optimization, recharging strategies, and aircraft design, are in more detail
discussed in chapter 5. Furthermore, this chapter illustrates the integration of these disciplines through
supported studies and provides an overview of the current state of research in this area. Chapter 6 summarizes
the conclusion drawn from the reviewed literature, identifies the research gap, formulates the research question,
sub-questions, and objective. This research proposal closes of with a research approach and preliminary
planning schedule in chapter 7 and chapter 8, respectively.



Aviation Trends and Climate Goals

Over the past decades, the aviation industry has experienced an average annual growth of 4.4 % and is expected
to continue to grow further in the future [2]. Although the recent COVID-19 pandemic temporarily reduced
the global emission of COs from 915 million metric ton in 2019 to 495 million metric ton in 2020, the current
levels are back to pre-COVID levels, according to Boeing [3, 5|. The two largest aircraft producing companies,
Boeing and Airbus, both expect in their forecast until 2043 a positive annual traffic growth of 4.7 % and 3.6 %'
[3, 4]. Tt is expected that this still growing industry will result in an increasing negative impact on greenhouse
gasses (GHG). For this reason, there is a critical need for the decarbonization of the aviation industry in order
to contribute to worldwide advances of sustainability goals.

In 2015, the global treaty known as the The Paris Agreement was established, which aimed at reducing GHG
emissions across all sectors [6]. This first major worldwide initiative strives to ensure that global temperatures
do not exceed 2°C above pre-industrial levels. According to the European Commission (EC), the aviation
sector contributes approximately 2% to the total global COy emissions in 2022 and is growing faster than
other modes of transportation [17]. The contribution of the aviation industry in Europe is even higher, namely
in the range of 3.8% - 4% (2022) [17]. Furthermore, the International Civil Aviation Organization (ICAO)
have predicted that the international aviation GHG emissions could increase up to three times the emissions
values of those in 2015 [18]. It is evident from this that the aviation sector is one of the most crucial sectors
that need to strive for GHG emission reduction in order to meet the targets set by the Paris Agreement.

Several institutions within the aviation industry have set their own climate targets, which has been earlier
touched upon by Scheers [15]. Scheers presented an overview of the current climate goals from the National
Aeronautics and Space Administration (NASA) and Advisory Council for Aeronautics Research in Europe
(ACARE), supported by the earlier work of Sahoo et al. [19]. In 2022, ACARE updated their targets by the
new initiative Fly The Green Deal, which builds upon several earlier initiatives including Flightpath 2050 [8].
These climate targets are presented in Table 2.1, focusing on NOy and CO4 emission reductions goals.

Altogether, the fast growing aviation industry and the ambitious climate targets result in major challenges for
aircraft manufacturing companies and large commercial airlines. The industry is required to adopt to cleaner
propulsion technologies, increased usage of alternative sustainable fuels and more efficient airline operations
and infrastructure in order to meet these challenges [9].

Table 2.1: Climate targets for aviation

Target metric NASA N+1 NASA N+2 NASA N+3 Fly The Green Deal
Year 2015-2025 2025-2035 Beyond 2035 2050

LTO NO, emissions —75%2 —80%2 —80%2 -

Cruise NOy emissions —70%3 —80%3 —80%3 —90%1
Aircraft Fuel/Energy consumption —50%3 —60%3 —80%3 -

CO3 emissions Net-zero!

* LTO = Landing and Take-Off cycle
I Relative to 2000

2 Below CAEP 6

3 Relative to 2005 best in class

LAirbus expects a compounded annual growth rate (CAGR) of 8.4 % until the year 2027 and expects a CAGR. of 3.6 % from 2027
until 2043 (similar to the growth pace of pre-COVID) [4].



Background on Aircraft Electrification

In the recent years, the aviation industry is in an accelerating transition towards more sustainable modes of air
transportation. This shift towards sustainable flight is driven by the pressing demands to reduce emissions in
order to meet the climate targets, as previously discussed in chapter 2. The required reduction in total aircraft
emissions can be only achieved by the use of alternative fuels and energy resources [5]. In particular, electric
and hybrid-electric aircraft have emerged to be an effective solution for reducing these emissions [10-12].

This chapter dives briefly into the current technology of electrified aircraft. First, an overview of the founda-
tion of the growing interest in aircraft electrification is presented in section 3.1. Next, the different aircraft
architectures are touched upon in section 3.2, which dives deeper into electrified aircraft configurations and
types. Following this, the basics of aircraft battery and recharging technology are discussed in section 3.3. Con-
sequently, two important performance aspects are discussed: section 3.4 and section 3.5 present the mission
profile and onboard energy management optimization, respectively. The chapter then provides a brief presen-
tation of previous research into the modeling of the climate impact of electrified aircraft (section 3.6). Lastly,
it closes of with a short overview of currently existing and future conceptual electric aircraft in section 3.7.
These sections together will provide a concise overview of the electrification of the aviation industry.

3.1 Foundation of Interest in Aircraft Electrification

The interest in the development and use of electrified aircraft is based on six main factors, as outlined by
Schwab et al. [20] and Rossow [21]. This work is supported by a market analysis conducted by Howell Hanano
[22], a feasibility study of WSDOT" [23] and the work of Antcliff [24]. The analysis resulted in the six main
aspects as briefly summarized below:

e Reduced cost: The biggest motivator for electrification of aircraft is the projected reduction in cost,
resulting in opportunities for currently unprofitable routes. Additional savings in costs come from reduced
maintenance, noise, LTO and emissions. An example case, provided by Schwab et al. [20], shows that
Ampaire projects a reduction in fuel and maintenance costs of 90 % and 50 %, respectively.

¢ Regional travel market: Regional air traffic for ranges up to 500 km is a good driver for the increased
usage of hybrid-electric aircraft as it provides economical opportunities for regional airports that are
currently not being used to their full potential. Consequently, flight accessibility improvements and
passenger travel time to airports reductions can be achieved.

e Emission reduction: Electrified flight is particularly suitable for lowering the in-flight emissions of
short-haul flights.

e Noise reduction: Airports are able to achieve substantial noise reductions by the use of electric aircraft
due to motor characteristics and flight performance. Collins Aerospace predicts a decrease in aircraft
noise up to 85 % for all-electric aircraft.

e Increased accessibility: Electrified aircraft present the opportunity to alleviate aircraft congestion at
busy hubs and major airports. This can be achieved by reducing air traffic in these areas, by allowing
short, regional flights to depart, arrive and park at regional airports.

e Economic development: The research of WSDOT showed that airports and public institutions are
mostly interested in investing in the development of underused areas and airports. Additionally, there

Washington State Department of Transportation
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is the incentive from aforementioned to stimulate the development of technology and innovation in this
area.

In addition to the above mentioned main drivers, there are multiple other beneficial aspects of electrified flight
including reduced pilot-training costs, cargo delivery purposes and critical medical services [20)].

3.2 Electrified Aircraft Architectures

Over the past few years, there have been technological developments on different types and configurations of
electric and hybrid-electric aircraft. There are two important parameters defining electrified architectures: the
propulsion configuration and the energy resource type. Based on these two parameters, three main types of
electrified aircraft exist: all-electric aircraft, hybrid-electric propulsion (HEP) aircraft and turboelectric. The
main difference between conventional and all-electric aircraft is that all aircraft systems are solely supported
by an electrical energy source. On the other hand, HEP and turboelectric aircraft use (partly) fossil fuels
as the base of their energy source for their propulsion systems. HEP aircraft uses both battery and fossil
fuels, while turboelectric aircraft convert fossil fuels into electricity as the energy source for the electrical
propulsion systems. The last important aspect of HEP aircraft is their design of the propulsion energy source
configuration, where the most dominant distinction is made between two types: series or parallel hybrid. In
the former, the batteries provide additional energy to the propulsion system (similar to the turboelectric
configuration), while in the latter the propulsion uses of a mix of both battery energy and fossil fuel energy
simultaneously. [5, 15, 25, 26]

All-electric and hybrid-electric can be categorized using a concept called the degree of hybridization, which
was introduced by Isikveren [27]. The degree of hybridization is expressed in terms of the aircraft’s power (H),)
and energy resource (Hg) in Equation 3.1 and Equation 3.2, respectively. In both equations, the contribution
of the motor power (P,,) and battery energy (E}) is taken as a fraction of the total power (Pi,) and energy
resource (FEyot), respectively.

_ Pm _ Eb
Ptot Etot
The different architectures of electrified aircraft are presented with their corresponding degree of hybridization

in Table 3.1, which is modified from a similar overview presented by Brelje & Martins [25]. 1t illustrates the
level of electrification and hence the impact of hybridization on the propulsion design of electrified aircraft.

Hp

(3.1) Hp

(3.2)

Table 3.1: Classification of electric propulsion architectures, modified from [25]

Aircraft Architecture Hp Hg

Conventional 0 0
All-Electric 1 1
Turboelectric >0 0
Series Hybrid 1 <1
Parallel Hybrid <l <1

3.3 Battery and Recharging Technology

The adoption of electrified aircraft introduces major challenges related to onboard battery availability and
charging technology. According to Adu-Gyamfi & Good [28], advancements in battery technology is one of
the three critical drivers for the development of the electric aviation industry. Furthermore, Liang et al.
[5] emphasizes that the recharging infrastructure at airports are under-invested compared to other aspects,
such as certification, and that achieving fast recharging remains a significant challenge. This section briefly
summarizes the state-of-the-art battery technology, recharging characteristics and a battery swapping strategy
in subsection 3.3.1 — 3.3.3, respectively.

3.3.1 Battery Design

In the aviation industry, battery-based electrical energy storage systems (BESS) play a crucial role in achieving
the desired aircraft performance. Enhancing battery performance is one of the key drivers of aircraft electrifica-
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tion development. This subsection discusses the key aspects of battery performance and various used battery
types in the industry.

Battery Performance Parameters

Several factors influence the battery design and performance, resulting in being one of the critical components
of electrified aircraft. The most significant performance parameters? for electric aircraft, as outlined by Liang et
al. [5] and Zamboni [29], are the following: gravimetric energy density, power density and volumetric density.
These performance parameters have been summarized in Table 3.2 along their corresponding relevance to
aircraft performance. An additional key parameter is the State of Charge (SoC), which expresses the current
state of the remaining capacity as a percentage of the nominal capacity. A State of Charge of 0% and 100 %
represent a fully discharged and fully charged battery, respectively [29]. Besides these energy performance
parameters, there are other considerations for the integration of batteries in electric-flight. These considerations
include the development of thermal management system, battery lifetime optimization, safety measures and
certification [5].

The understanding of these key parameters is crucial and forms the foundation for appropriately selecting the
battery design and type for electrified aircraft.

Table 3.2: Battery design performance parameters

Parameter Definition and Application Units

Gravimetric  energy  The quantity of energy stored per unit of mass (often referred to as specific = Wh/kg
density energy) and gravimetric energy density determines the range and payload
of a flight [5, 30]

Power density The amount of energy flow per unit mass per unit time (often referred W /kg
to as specific power) and the power density is the determinant of take-off
and climb performance as well as high charging power rates [5, 30|

Volumetric energy The quantity of energy stored per unit of volume and the volumetric ~Wh/L
density energy density is of high importance for design aspects for the wing and
fuselage due to volume limitations [5]

Battery Types

The current market offers a range of battery types with distinct characteristics and performance based on
the previously provided parameters. The battery type that is most dominantly used across various industries,
particularly in the automotive industry, is the lithium-ion battery (LIB). LIB’s are widely used due to their
preferred high power and energy density in combination with their long lifespan. These batteries can consist of a
combination of various anode and cathode materials, which are presented in tabular form in Table 3.3. Besides
NMC-type LIB’s, which are expected to have the highest share in the air transportation industry in the coming
years, other battery chemistries also show great potential to serve as an energy source in the electrification of
aircraft. Post-lithium-ion batteries (PLIB) including solid-state-batteries (SSB), lithium-sulfur-batteries (LSB)
and lithium-air-batteries (LAB) are promising due to their high energy density characteristics. The choice of the
battery configuration for electrified aircraft design is a trade-off, requiring to balance performance parameters
and the latest battery developments in the industry. [5, 31]

3.3.2 Battery Recharging

The recharging of batteries in electrified aircraft is one of the key limitations in the current development as
it heavily limits the turn-around-time (TAT) [32]. The optimization and implementation of different charging
strategies can help mitigate this limitation, thereby significantly contribute to advancements in the electric
aviation industry. However, increasing charging speeds and efficiency comes at the cost of accelerated battery
degradation, resulting in a trade-off that must be carefully evaluated. Recently, Liang et al. [5] provided an
overview of several charging strategies suitable for the electric aviation industry, which are summarized in this
subsection.

2Note: There are other relevant performance parameters that are not mentioned, but have been touched upon by Zamboni [29] and
Antunes [26].
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Table 3.3: Lithium-ion battery anode and cathode configurations

Lithium-ion Batteries

Anode Cathode
Iron—phosphate (LFP) LiFePO, Lithium—titanate (LTO) LiTi5012
Nickel-manganese-cobalt (NMC)  LiNixCoyMn,O> Graphite C
Nickel-cobalt-aluminum (NCA) LiNi,Coy AL Oq Silicon Si
Manganese oxide (LMO) LiMn,O4

Conventional

The conventional charging strategy is the constant-current constant-voltage (CC-CV) strategy, which is the
most widely adopted charging method across various industries due to its simplicity and cost-effectiveness.
The charging profile can be distinctly divided into two phaes: a linear constant-current (CC) charging phase
that charges up to approximately 80 % of the battery’s SoC, followed by a non-linear constant voltage (CV)
charging phase from 80 % to 100 %. This charging profile is illustrated by Figure 3.1a. However, this charging
strategy has its limitations for applications in electric aircraft, particularly due to its inability to achieve high
charging rates in the final 20 % of the charge. [5]

Boost-Charging and Multistage-Charging

Two alternative charging strategies to address the limitations of the CC-CV strategy have been reviewed by
Liang et al. [5]: the boost-charging CV-CCCV and the multistage CC charging strategies. The former, as
proposed by Notten et al. [33], uses a three phase charging concept in which high charging speeds are obtained
without the negative side effect of high degradation values. As illustrated by the voltage and current curves in
Figure 3.1b, this charging initiates a boost after which it is followed by the conventional CC-CV phase. The
latter charging strategy, the multistage CC strategy from Vo et al. [34], splits the entire charging cycle into
multiple CC charging phases as depicted in Figure 3.1c. This results in an improved charging efficiency and a
reduced charging time up to 22.5 % compared to the conventional CC-CV strategy.

These two strategies highlight the importance of innovative charging methods for the electric aviation industry,
as they can significantly reduces charging times and thus achieve shorter TAT requirements.
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Figure 3.1: Schematic representation of three charging strategies [5]



3.4. Mission Profile of Electrified Aircraft 8

3.3.3 Battery Swapping Strategy

An alternative solution to address the challenges of the charging speed limitations for the TAT is battery
swapping, as proposed, among other researchers, by Justin et al. [32]. In his work, the additional benefits of
a battery swapping strategy are emphasized, including cost minimization through adequate timing and low
power levels, increased energy availability during high demand periods, and enhanced cooling capabilities. The
optimization of both recharging and battery swapping resulted in reductions of peak-power draw and electricity
cost of 61 % and 25 %, respectively. This paper demonstrates the potential of alternative solutions to address
these electrified aviation challenges, emphasizing the importance of integrating advanced technologies to further
support the development of the electrified aviation industry.

3.4 Mission Profile of Electrified Aircraft

The mission profile of hybrid-electric aircraft is a crucial factor of influence to both aircraft performance and
design considerations. Generally, the aircraft mission profile comprises five main phases: taxi, climb, cruise,
descent and potential diversion [5, 35-37]. A detailed visual representation of these flight phases is provided
in Figure 3.2. There are several key aspect related to the mission profile of electrified aircraft: mission profile
optimization, fuel requirement considerations and range estimation techniques.

This section briefly touched upon these three mission profile aspects. First, a mission profile optimization with
respect to the propulsion energy source is presented in subsection 3.4.1. This is followed by an overview of the
current fuel requirements for flight in subsection 3.4.2. Lastly, subsection 3.4.3 dives into two range estimation
methods for electrified aircraft. These subsections together present a brief yet comprehensive overview of the
basic mission profile aspects of electrified flight.

required mission diversion

3

. FCA

o
>

altitude

climbtoICA stepped cruise enroute descent

LTO < 3,000 ft

Airfield

Figure 3.2: Standard mission profile of passenger aircraft [36]

3.4.1 Mission Profile Optimization

Several research has been conducted into the mission performance of hybrid-electric aircraft. For instance, the
study from Palaia & Salem [37] analyzed the mission performance analysis of regional hybrid-electric aircraft
by integrating the pre-determined distribution of propulsive energy resource across the entire mission profile.
A detailed mission profile for hybrid-electric aircraft® with corresponding propulsion selection, developed by
Palaia & Salem [37], is visually represented in Figure 3.3. In this figure, the use of battery energy and a
thermal energy source is indicated by the colored line green and red, respectively.

The study by Palaia € Salem optimizes for a general flight scenario without diversion requirements and
therefore distributes all battery energy across the normal mission phases. This approach focuses on maximizing
aircraft sustainability by minimizing flight emissions, according to the rationale presented by Perullo & Mauvris
[38]. Consequently, the thermal energy source is reserved for the diversion phase as sole source of energy,
adhering to predetermined fuel requirements.

Furthermore, this study assumes that during take-off, climb and cruise phases, always a combination of power

3The hybrid-electric aircraft has an parallel-hybrid configuration.
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sources is necessary to achieve required thrust levels. During taxiing, the sole energy source of battery energy
is assumed to minimize local emissions at airports. In conclusion, this research emphasizes the importance of
the optimal allocation of energy resources across the flight phases to enhance performance and climate impact.

& /8 Mission
Cruise
s § Diversion
£ A Loiter
:_.’
Tax_i-:ul- - Take-off Landi:g- - ';axi-in

Figure 3.3: Mission profile with a scheme of selected power supply strategy [37]

3.4.2 Fuel and Battery Requirements

Electrified aircraft, similarly to conventional aircraft, need to adhere to fuel requirements for various phases of
their mission profile, as previously discussed in subsection 3.4.1. These fuel requirements influences dominantly
the development of mission profiles and design of newly electrified aircraft. Currently, the regulations for
electrified aircraft do not specify other fuel requirements for electrified aircraft and therefore the requirements
for conventional aircraft provide a good foundation [39]. The ICAO has specified the fuel requirements for
conventional aircraft in Annex 6 — Operation of Aircraft of the International Standards and Recommended
Practices [40]. An earlier overview of the fuel requirements for design and regulations purposes, corresponding
to Annex 6 — Operation of Aircraft of the ICAO, was presented by Mukhopadhaya & Graver [39]. These most
important fuel requirements are listed below:

1. Tt needs to account for an contingency fuel of 5 % of the total planned trip fuel (Annex 6 section 4.5.6.2¢).

2. There must be sufficient fuel to reach an alternate destination airport within 100 kilometers (comparable
to Annex 6 section 4.3.6.2d).

3. It needs to have sufficient reserve fuel to loiter for a period of 30 minutes (Annex 6 section 4.3.6.2¢).

Based on these three main fuel requirements, Mukhopadhaya € Graver formulated the aircraft’s operational
cruise range (Roc) by Equation 3.3.

Roc = (1 - SOCcont) (Rmax — Ry —vr - tl) (33)

3.4.3 Range Estimation Techniques

There are several methods for estimating the range for electrified aircraft, as recently touched upon by Antunes
[26]. This work outlined the two most used methods for electrified aircraft are the energy-based method and
the modified Breguet range equation developed by Finger et al. [41] and De Vries [42], respectively. This
subsection provides a brief summary of both methods, which form the foundation for range estimations and
addresses reverse hybridization factor considerations.

Energy-Based Method

The energy-based method evaluates the required energy over a planned flight trajectory by dividing it into
multiple discrete time steps. For each of time step, the energy demand is calculated on various energy com-
ponents. Finger et al. focuses on the following three energy components: aerodynamic drag, kinetic energy
and potential energy. Equation 3.4 formulates the relation for the total required energy based on these three
factors. This equation can be extended by adding factors that influence the energy consumption of specific
flight phases or operational aspects. For example, the required energy for taxi movements at the airport
pre- and post-flightcan be approximated by the energy demand for rolling resistance. Finger et al. used the
energy-based equation to compute the total power required for each time step of the flight, and the fuel and
battery mass (taking burned fuel into account). The required fuel and battery mass functions are provided
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in Equation 3.5 and 3.6, respectively. The total mass of the fuel of the internal combustion engine and the
battery can then be determined by the summation of all time step. [41]
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Modified Breguet Range Equation

The Breguet range equation, typically used for conventional aircraft, was modified for hybrid-electric and
all-electric aircraft by De Vries [42, 43]. De Vries developed an adjustment of the Breguet Range equation
that is applicable for conventional, hybrid-electric and all-electric aircraft by incorporating a constant supplied
power ratio (®). This formulation focuses on the flight cruise phase and hence can be only applied on mission
profiles with dominant cruise phases. The complete modified range equation from De Vries is provided in
Equation 3.7%. This equation is slightly reduced for the limit cases of conventional (® = 0) and all-electric
(P — 0) [42, 43]. Consequently, it can be derived back to the original range equation for conventional and
all-electric aircraft provided by Equation 3.8 and 3.9, respectively.
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3.5 Hybrid-Electric In-Flight Energy Management

The use of hybrid-electric aircraft introduces an additional challenge due to the degree of freedom as an
additional variable during flight. Leite & Voskuijl [44] emphasizes that HEP aircraft need to manage and
optimize the consumption rate of two energy sources, compared to a single thermal energy in conventional
aircraft. Most HEP aircraft are equipped with an available automatic controller onboard that is designed to
manage real-time energy usage from both resources. Generally, there is a priori information available for the
flight and Leite & Voskuijl uses this information for optimal control of energy management over the flight.

An additional feature that Leite & Voskuijl highlight in their optimal energy management is the potential to
recharge the battery State of Charge during specific flight phase, such as the descent. The availability of an
electric motor in combination with a propeller can serve both battery recharging and speed braking purposes.
The maximum power available for battery recharging can be calculated by using of the wind power equation
proposed by Kalmikov [45] (Equation 3.10). The maximum power that can be harvested for a given speed
(Pw,maz) in this equation depend on the air density (p), rotor area (A, ), the wind speed (V,,) and power
coefficient (C'p). The Cp value is assumed to have a value < 0.3, as its propellir design has not been optimized
for recharging purposes.

1
Py max = 9" p-Ar- Vj -Cp (3.10)

Leite € Voskuijl utilized the concept of in-flight recharging to develop two optimal energy control strategies

4The supplied power ratio (®), as defined in De Vries's original work [42, 43], is substituted with the degree of hybridization (Hg).
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for HEP aircraft. The first aims at constraining the final battery SoC (up to 100 %), while the second strategy
considers the SoC to be unconstrained (free) at the end of the flight. The optimal battery usage over cruising
follows the principle proposed by Perullo and Marvis [38], which prioritizes depletion of fossil fuel as energy
source and delaying battery usage until later in the flight. This approach follows the rationale that depletion
of fossil fuel, unlike the battery, results in a a reduced aircraft weight, becoming more efficient as the flight
progresses. The unconstrained and constrained optimal energy control solutions developed by Leite € Voskuijl
are visualized in Figure 3.4a and 3.4b, respectively. Each figure consists of four time-series diagrams with fuel
mass, battery SoC, generator throttle setting (I'4¢;) and electric power. A significant drop in the battery SoC
is observed at the start of the flight in both figures, which is a result of the high energy demand of the climb
phase.

The work described above emphasizes the challenges that are introduced by the additional degree of freedom
in hybrid-electric aircraft brings. Furthermore, it presents the opportunity and flexibility for optimal energy
management in battery-constrained scenarios.
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Figure 3.4: Visualization of the two optimal in-flight energy control solutions for hybrid-electric aircraft
developed by Leite and Voskuijl [44]

3.6 Climate Impact of Electrified Aircraft

The electrification of aircraft, along with synthetic fuel and hydrogen-powered aircraft alternatives, can sig-
nificantly reduce emission, thereby contributing to the earlier discussed climate targets and advancing the
decarbonization of the aviation sector [13, 14]. All-electric aircraft eliminate direct flight emissions, while
hybrid-electric aircraft allow for substantial reductions compared to conventional aircraft. However, actual
emissions from hybrid-electric aircraft depend on degree of hybridization, design features and operational
aspects.

A number of studies have been conducted focused on the modeling of aircraft emissions and the ability of
quantifying their environmental impact. These analysis are often based on emission indices of pollutants to
support effective radiative forcing (ERF) and radiative forcing (RF) calculations for the climate impact of
aviation. For instance, Lee et al. [46] incorporated the emission indices of COy, NOy, Water Vapor, Soot and
SO, into ERF and RF. Additionally, Scheers [15] provided an overview of hybrid-electric aircraft emissions
for both flight and ground operations. The carbon emission indices for hybrid-electric aircraft are split up in
three categories: kerosene flight and ground emissions, and electricity ground emissions.

The overview of the emission indices obtained from Lee et al. and Scheers are presented in Table 3.4a and 3.4b,
respectively. This data provides the basis for the assessment of electrified aircraft’s environmental impact.
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Table 3.4: Emission Indices for Fuels and Pollutants

(a) Emission indices for various pollutants (b) CO2 emission indices for kerosene and electricity
Pollutant Emission Index! Emission CO3 Emission Index
CO, 3.16 Kerosene (flight conditions) 3.155!

NOy 0.01514 Kerosene (ground conditions) — 0.47822!

Water Vapor 1.231 Electricity (ground conditions) 0.030012

Soot 0.0003

I Emission expressed in kg CO2 /kg fuel
Sulfur (SOQ) 0.0012 2 Emission expressed in kg CO2/kWh

I Emission expressed in kg/kg fuel

3.7 Current and Future Electrified Aircraft

The development of electrified aircraft is growing over the past few years and different concept are designed
for various purposes. Schwab et al. [20] categorized the different use cases of future electrified aircraft into
three time segments: near-term (2020-2025), mid-term (2025-2040) and long-term (2040-2050). The near-term
development is focused on pilot training and personal and business aviation for small amount of passengers.
The focus in the mid-term developments lies with regional air transportation and light air cargo. The long-term
aviation is focusing on larger commercial aircraft with a capacity over 150 passengers. An adjusted overview
of the different use cases of each time segment with corresponding conceptual aircraft models are presented in
Table 3.5.

An overview of the characteristics of selected electrified aircraft, along with their corresponding expected
year of entry into service (EIS), is provided by Liang et al. [5]. This overview presents the key statistics of
electrification programs®, the details are summarized in Table 3.6.

Table 3.5: Timeline for electric and hybrid-electric aircraft development, modified from (5]

Timing Use Case Description Model
2020-2025 General ~aviation: 4 ¢ passengers — Pipistrel Taurus Electro
Near-term personal or — Average flight time: <1 h — Rhyxeon General Aircraft RX4E
business
— Eviation Alice
— Typical up to 19 passengers - Tecnam P-Volt
2025-2040 Regional aircraft ~ — Range typically around 250 Aura Aero ERA
Mid-term miles ‘ — Heart Aerospace ES30
— Ampaire Electric EEL!
— Maeve 01
— Narrow-body: typically 100- — Wright Spirit
200 passengers, range more — Wright 1
2040-2050 Large commercial than 500 miles — Boeing Sugar Volt!
Long-term aircraft — Wide-body: typically 200-400 — NASA N3-X*
passengers, range more than — Airbus/Siemens/Rolls-Royce/E-Fan
2000 miles X!

I Hybrid-electric
2 Turboelectric

5Note: The presented information is based on projections and may be subject to change.
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Table 3.6: Key specifications of electric aircraft, modified from [5]

Battery

Maximum Range Charging
Model Propulsion Capacity ! Power Endurance power Seats EIS
Pipistrel Velis Electro  All-electric 24.8 kWh 57.6 kW 50 min® 80 min 2 2020
Archer Maker All-electric 75 kWh 672 kW 60 miles 1332 kW? 2 2024
Joby S4 All-electric 200 kWh N.A. 150 miles N.A. 4 2024
Airbus CityAirbus All-electric 110 kWh N.A. 50 miles N.A. 4 2025
Beta ALIA-250c All-electric N.A. N.A. 288 miles 50 min 6 2024
Lilium Jet All-electric 305 kWh N.A. 162 miles 30 min 7 2024
Eviation Alice All-electric 820 kWh 260 kW 288 miles 30 min 11 2027
Maeve 01 All-electric 2950 kWh 1.6 MW 288 miles? 4.5 MW 44 2029
Wright 1 All-electric N.A. N.A. 800 miles N.A. 186 2030
Boeing Sugar Volt Hybrid-electric  N.A. 1 MW 4028 miles N.A. 154 2035
NASA N3-X Turboelectric N.A. 50 MW 8630 miles N.A. 300 2045

I Nominal capacity
2 Plus VFR (Visual Flight Rules) reserve

3 Estimated based on: 30% of the battery capacity is designed to be recharged in 10 min



Airline Planning Operations

The aviation industry operates as a complex, large scale network where airlines have to face challenges such as
high cost and low profit margins. Airlines must efficiently execute airline operations in order to ensure overall
profit maximization. Since the 1960’s operational research has been implemented to enhance key aspects of
airline operations by using mathematical models to solve smaller sub-problems. Therefore, airlines are required
to find more innovative solutions and further integrate operational research to improve its overall performance.
[47]

This chapter provides a comprehensive introduction to the airline planning process, including various opti-
mization models and relevant past literature. It starts with a brief introduction into the key elements of the
airline planning process in section 4.1. Following this, section 4.2 provides the fundamentals of scheduling
optimization models. Consequently, a concise summary of the mathematical optimization solving methods
is presented in section 4.3. The chapter closes of with a brief review of past variations of airline scheduling
models, provided in section 4.4.

4.1 Introduction to the Airline Planning Process

Airlines face operational challenges within the airline planning process. Belobaba et al. [48] outlines the these
challenges and divides it in three main phases as formulated below:

e Fleet planning: Sizing and composition of the aircraft fleet of an airline, focusing on decisions based
on aircraft type and their quantity.

e Route planning: The construction of profitable aircraft routes that maximizes revenue and minimizes
operational costs.

e Schedule development: The development of profitable flight schedules consisting of the following
optimizing sub-objectives:

e Frequency planning: The frequency of flight operations on pre-determined routes by an airline.

e Timetable development: The development of a time schedule including all flight to be operated
by an airline.

e Fleet assignment: The assignment of specific aircraft types to the flights legs from the developed
timetable.

e Aircraft rotation planning: The overall planning of a specific aircraft type ensuring an airport
balance constraint of arriving and departing aircraft.

These phases are visually summarized in Figure 4.1, which provides an schematic overview of the entire airline
planning process. This overview makes a distinction on short versus long term time horizon and strategic and
tactical decision.

This section focuses on the primary long term, strategic planning phases, neglecting all short term phases
beyond schedule development, as defined by Belobaba et al. [48]. The general process of airline fleet planning
and aircraft routing is briefly outlined in subsection 4.1.1 and 4.1.2. Consequently, the schedule development
phase is extensively evaluated in subsection 4.1.3 as it integrates key aspects of current planning models used
by airlines.

14
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Figure 4.1: Schematic overview of the airline planning process [48|

4.1.1 Fleet Planning

The planning of an airline’s fleet is a long-term strategic challenge influencing other operational aspects and
hence is a crucial step in the operational performance of an airline. Belobaba et al. [48] defines an airline fleet
as:

The total number of aircraft that an airline operates at any given time, as well as by the specific
aircraft types that comprise the fleet.

The main consideration in an airline fleet sizing process are payload and range characteristics of aircraft types.
These characteristics are often represented by a payload-range curve (also referred to as the payload-range
diagram), which is shaped by performance and design parameters including aerodynamic properties, engine
technology and other limiting design factors. The main objective is to synchronize these aircraft characteristics
as best as possible to the expected distance and passenger demands needed to be served. In addition, other
constraining aspects need to be incorporated, which include airport limitations such as runway length, gate
accessibility, taxiways and ground equipment.

4.1.2 Route Planning

Airline route planning is a critical long-term strategic step that follows from the airline fleet planning process.
This phase involves selecting specific routes to be operated with the objective to maximize profitability. Gener-
ally, airline route planning is executed after fleet planning, but this sequence can be reversed when fleet sizing
is based on pre-determined routes. The primary objective of route planning is to identify and prioritize the
most financially profitable routes.

A key consideration in route planning is the distinction between two types of flight networks: point-to-point and
hub-and-spoke. Point-to-point networks involve direct flights between origin and destination airports, often
accompanying shorter flights involving smaller airports and airlines. In contrast, hub-and-spoke networks allow
more centralized operations through hub airports, incorporating transfer flights. Each type of network has its
unique advantages and limitations and should be carefully evaluated based on an airline’s operational goals.

4.1.3 Schedule Development

The four main sub-objectives that are part of the airline schedule development as presented in this section’s
introduction will be briefly discussed below. The order of which these tasks are executed by an airline are in
a top-down order as they have been itemized.

Frequency Planning
This step involves the determination of the frequency that the flight routes, obtained by the routing planning
step, need to be operated by the airline. Effectively performing frequency planning results in better passenger
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convenience and a better market share of the airline as a result of more frequent flights. Furthermore, frequency
planning is closely related with fleet assignment as airlines need to optimize their aircraft size and amount to
capture as much passenger demand as possible.

Timetable Development

The assignment of flight to routes at a given time is a crucial step in flight scheduling and requires a trade-off be-
tween aircraft utilization and passenger convenience. Several other factors constrain the timetable development,
which include TAT, arriving time restrictions, crew scheduling considerations, and maintenance requirements.
The complexity of the timetable development often results in significant challenges, as deviations from the
initial model can lead to sub-optimal outcomes.

Fleet Assignment and Aircraft Rotations

The fleet assignment step follows after the creation of the timetable and assigns an aircraft type to a flight leg
from the timetable. The main objective is to minimize operational cost while also minimizing the amount of
spilled demand, i.e. maximizing the revenue obtained from the served demand. Airlines generally have their
own optimizing fleet assignment models, which optimize to serve the demand as best as possible as there is no
perfect alignment between airline fleet seat capacity and the demand.

4.2 Airline Scheduling Optimization Model

Building upon the airline planning processes, as outlined in section 4.1, this section introduces airline scheduling
optimization models. These models aim to develop profit-maximizing flight schedules, while adhering to
provided operational constraints. Barnhart & Vaze [48] splits the airline schedule optimization problem up in
four sequential sub-problems that are ought to be solved in a top-down approach:

1. Schedule design problem: The design of an airline flight schedule by integration of flight legs between
departing and destination airports.

2. Fleet assignment problem: The optimal assignment of aircraft types to satisfy demand over flight
legs ensuring an profit-maximizing objective.

3. Maintenance routing problem: The assignment of specific aircraft, identified by their tail numbers,
to flight legs while satisfying availability constraints. Generally, this step builds further on the outcomes
ofthe fleet assignment problem.

4. Crew scheduling problem: The assignment of pilots and cabin crew to the determined flight schedule,
while focusing on cost-minimization objectives.

The main two problems of interest that arise form these sub-problems are the Fleet Assignment Problem (FAP)
and the Aircraft Routing Problem (ARP), which are presented and supported in subsection 4.2.1 and 4.2.2,
respectively.

4.2.1 Fleet Assignment
The fleet assignment model (FAM) has been recently defined by Birolini et al. [49] with the following objective:

Fleet assignment is about assigning appropriate fleet types to each flight leg such that seat capacity
optimally matches the expected demand, subject to resource balance constraints in the network.

The fleet assignment problem initially focused on designing a profitability function that determined the optimal
assignment of an aircraft type to a specific flight leg. Even though it was able to identify the most profitable
routes, the assignment led to infeasible solutions as it failed to incorporate aircraft balance constraints.

This aircraft imbalance problem was solved as Hane et al. [50] introduced time-space networks into the FAM,
as visualized in Figure 4.2. The time-space network is divided by two different arc types: a flight arc and
a ground arc. The former is a space-time vector representing a specific flight leg, based on four parameters:
departure time, departure location, arrival time and arrival location. Additionally, the minimum TAT is often
included in the flight arc, resulting in longer flight time than the true flight time [48, 51]. The ground arcs in the
time-space network represent the duration an aircraft spends on the ground, including ground operations. The
time-space networks approaches the FAM by evaluating the temporal and spatial dimensions simultaneously
ensuring balance constraints, while optimizing fleet assignment.
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The example time-space network in Figure 4.2 illustrates an optimal scheduling and fleet assignment. In this
figure, the set of flight arcs are indicated in green with corresponding specific flight numbers and assigned
aircraft types in bold. The network ensures aircraft balance for all flight legs and fleet types.
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Figure 4.2: A space-time network representing the optimal fleet assignment of an example fleet assignment
problem [48]

The resulting mathematical formulation of basic fleet assignment model, as developed by Hane et al. [50], is
presented below. The objective is defined as a minimization of operating cost rather than a maximization func-
tion, where the cost of a flight is calculated as the operating cost minus total revenue. The cover, balance and
aircraft availability constraints are represented in the mathematical model by the constraints in Equation 4.1b -
4.1d, respectively [52]. For clarification, this formulation follows a Mixed-Integer Linear Programming (MILP)
approach, as discussed in subsection 4.3.1. This basic fleet assignment model has served as the foundation for
the development of more complex models with additional constraints and multi-objective functions.

Basic Fleet Assignment Model

minimize Z Z ckfk (4.1a)

i€F keK
subject to Z fF=1, Vi e F, (4.1b)
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bt Y. k- > =0, Vn e N* Vke K, (4.1c)
€0 (k,n) i€l(k,n)
Yook + > ff<MF, vkek, (4.1d)
a€CG(k) i€CL(k)
fFe{0,1}, VieF Vkek, (4.1¢)
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4.2.2 Aircraft Routing

After the successful development of a flight schedule design and a fleet assignment, the next step includes
determining the specific route each aircraft will operate. The aircraft route needs to adhere to a variety of
constraints including block hours (total accumulated flight hours), number of take-off and landings, mainte-
nance requirements. A common approach to solving the aircraft routing problem is to divide the network into
smaller sub-networks based on fleet types and solve independently. The ultimate objective is to ensure that
every flight leg has assigned a single aircraft to it, while ensuring that each aircraft begins and ends it route
at the same location. [47, 48]

4.3 Optimization Solving Methods

There are several optimization techniques used for solving optimization problems in airline planning and the
following two are widely used: Mixed-Integer Linear Programming (MILP) and Dynamic Programming (DP).
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This section provides a brief overview of the functionality of both methods in subsection 4.3.1 and 4.3.2,
respectively. Additionally, a model comparison is presented in subsection 4.3.3, focusing on the applicability
to airline planning operations.

4.3.1 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (LP) builds upon the principle of linear programming, which has been
extensively discussed and outlined by Dantzig [53] in 1963. LP is an optimization technique aiming at maxi-
mizing or minimizing a linear objective function, while being subjected to a set of linear equality and inequality
constraints [54]. LP adheres to the following assumptions (axioms), as reviewed by Dantzig and Thapa [55]:
proportionality, additivity and continuity.

The formal mathematical formulation of a minimization and maximization LP in matrix form, obtained from
Dantzig and Thapa [55], is represented by Equation 4.2 and 4.3, respectively. The LP contains decision
variables, which are variables that are unknown, commonly nonnegative and require optimization [56]. The
current mathematical formulation considers only equality relations for the constraints in Equation 4.2b and
4.3b, but these can be converted in inequality constraints depending on the system.

mingnize c'x (4.2a) maxixmize clz (4.3a)
subject to Az = b, (4.2b) subject to Az =b, (4.3b)
x>0 (4.2c) x>0 (4.3¢)

The MILP is an extension of LP by allowing decision variables to be of binary, integer or continuous kind,
while LP only accomodates continuous values [56]. This advanced flexibility of MILP makes it more suitable
for solving complex optimization problems compared LP. The Simplex method, developed by Dantzig, is a
commonly used approach for solving MILP problems [53, 55]. Another method for solving MILP problems is
the Branch-and-Bound algorithm, offering a alternative strategy [57].

4.3.2 Dynamic Programming

Dynamic programming is a mathematical technique, developed by Bellman [58] in 1954, for solving large
complex sequential decision processes. The creation of the dynamic programming theory came forth from the
study into several multi-stage decision procession. The fundamental basis of dynamic programming lies in
Bellman’s Principle of Optimality [58, 59|, which has been formulated as follows:

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision

This principle leads to the following dynamic programming characteristics as described by Hillier € Lieberman
[57]. The larger problem can be separated into a set of stages, each with required policy statement. Each
of these stages include corresponding states related to the initial conditions of that stage. Then the decision
policy is required to ensure that the current state is adapted to a specified state corresponding to the beginning
of the next stage. By the application of this objective, an optimal policy for all the stages is achieved and hence
an optimal policy for the entire problem. One important aspect is that based on the current state the optimal
policy for all future stages is not dependent on made decisions in earlier stages. Generally, the problem can be
solved using two variations: forward or backward iteration. In the backward iterative approach, the final stage
is considered as the initial stage to be evaluated, whereas in the forward iterative approach the initial stage
is considered. The decision on forward and backward iterative approach is dependent on the type of problem.
Generally, backward propagation is computationally preferred over forward propagation due to its nature as
it requires to consider less outcome scenarios [58].

Contrarily to LP, dynamic programming does not include a standard mathematical formula that is applicable
to all problems. Dynamic programming is often identified as an approach structure for solving a large variety
of problems. The main approach, as extensively described by Hillier and Lieberman [57], is to divide the
problem in simpler, solvable smaller sub-problems and solve these sub-problems to optimality. It gradually
increases the size of the problem, finding optimal solutions based on the optimal results of the connected
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sub-problem. However, there is a mathematical relation that is often used for the approach and definition of
dynamic problems. The typical dynamic programming formulation, a recurrence relation, is in the form of
Equation 4.4 (forward iterative approach). In this formula, fx(S) describes the value from a N-stage process
using optimal policy, R(S, P) is the reward value of the decision S for state P, and fy_1(5) is the value of
the previous stage based on the update state S’(P). The backward iterative approach is formulated by a small
adjustment in the stage relation by changing the inclusion of the previous stage to the future stage as provided
in Equation 4.4.

fn(S) = max [R(S, P) + fn-1(S"(P)] (4.4)

N (8) = max [R(S, P) + fn+1(S"(P)] (4.5)

4.3.3 Model Comparison

The two previously discussed solving models, MILP and DP, offer distinct advantages and limitations for
specific airline planning models. These methods, focusing on their applicability to the fleet assignment and
aircraft routing problem, have been extensively reviewed by Antunes [26] in 2024. This review dived into
various earlier studies and outlined the performance of MILP and DP across several indicators. Additionally,
it emphasized the dominant use of MILP in airline planning models. This subsection provides a concise
overview of relevant key features and considerations of each model.

Mixed-Integer Linear Programming

Mixed-integer linear programming, as the name implies, is generally best suited for large, fully-linear models
and has demonstrated superior performance over dynamic programming in certain applications [60, 61]. MILP
is utilized for a wide variety of applications in airline planning problems, as outlined by Antunes [26]. Although
MILP has wide applications for solving complex models, it is inherent limitedly by its linear formulation and
solving nature.

Challenges arise when nonlinear relationships are present problems required to be solved using MILP, which
can be addressed by two approaches. First, mixed-integer nonlinear programming (MINLP) model can be
developed, which integrates the nonlinear constraints and objective function, but introduces more challenges
due to its complexity, nonlinearity, non-convexity and large number of variables. The other approach in-
volves linearizing the nonlinear relations of the problem in order to enable being reformulated as a MILP.
The linearization process often results in complex structures and requires assumptions or uncertainties to be
incorporated in the model. [61]

Furthermore, another limitation arises from the solving nature of MILP, which requires the model to evaluate
the entire system instantaneous. For scheduling problems, this means that the entire time horizon needs to
be analyzed at once, resulting in computationally exhaustive process due to the large amounts of constraints
and variables [61]. However, MILP offers the advantage of being solved by advanced, high speed commercial
solvers, including CPLEX and Gurobi. [61]

In conclusion, MILP is a powerful and widely adopted solving technique in airline planning, particularly for
solving linear problems that are not computationally manageable to evaluate within a single framework.

Dynamic Programming

Dynamic programming is well-suited method for attaining optimal solutions in optimization problems that
include state-dependent features or separable problems that can divided into smaller sub-problem. The multi-
stage structure of dynamic programming can accommodate non-linear elements, allowing it to address also
non-linear problems. Although not as widely adopted as MILP in airline planning, it remains a fundamental
solving technique of growing interest across various areas due to increased computational power in recent
decades [62].

Similarly to MILP, dynamic programming also poses certain limitations. A major limitation of dynamic
programming is that is suffers heavily from its own curse of dimensionality, a term introduced by Bellman [63].
It refers to the exponential increase in problem size as an extra dimension is added to the system. Multiple
strategies have been developed on mitigating these effects, as extensively discussed by Li et al. [63]. Despite
these mitigation, dynamic programming remains most efficient for problems with a relatively small number of
sub-problems as the overall problem size tends to expand quickly with additional sub-problems [62].
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In conclusion, DP is a strong optimization technique for solving complex, separable problems with its ability
to address non-linearity and to incorporate state-dependent decisions.

4.4 Airline Planning Models

Over the past decades, numerous airline planning models have been developed, including more complex aspects
of airline planning operations. Some of these models have been extensively reviewed by Sherali et al.[52] and
Birolini et al. [49]. Additionally, Birolini et al. emphasizes the advantages of integrating flight scheduling and
fleet assignment models to simultaneously couple the selection of flight legs and allocation of aircraft types.

A comprehensive summary of several extensions to basic model and integrated airline planning models is
presented in Table 4.1.

Table 4.1: Overview of literature on the development of airline planning models

Author Year Description Reference
Barnhart et 1998 An integrated fleet assignment and aircraft routing model incorporating cap-  [64]
al. ture costs of aircraft connections and adhering to maintenance requirement con-

straints.

Rexing et al. 2000 An integrated flight scheduling and fleet assignment model including flexibility — [65]
in flight departure times by means of using time windows.

Barnhart et 2002 An itinerary-based fleet assignment model (IFAM) that is an integration of the  [66—68|
al. FAM and passenger mix flow (PMF) model, developed by Kniker et al.. This
IFAM introduces new decision based on spill and recapture, along with their
corresponding costs. The model is built upon the work from Farkas, which does
not include recapture features.

Lohatepont 2004 An integrated flight schedule design and fleet assignment model (ISD-FAM) has  [66, 69|
& Barnhart been developed as a continuation on the work on IFAM from Barnhart et al..

In the model the flight leg selection process and aircraft type assignment is

executed simultaneously. The presented methodology includes a made distinc-

tion between mandatory and optional flight legs and optimizes by eliminating

selected optional flights legs. Similar to the earlier work of Barnhart et al., the

spill cost and recapture feature is implemented.

Sherali et 2013 An integrated schedule design and fleet assignment model (SDFAM) with [70]
al. itinerary-based demands, flight time flexibility, schedule balance consideration,
multiple fare-classes and recapture possibilities.

Safak 2017 An extension on the fleet assignment model considering fuel burn considerations — [71]
and carbon emission costs by applying flexibility in cruise velocity to ensure
improved passenger demand and connections.

Wei et al. 2020 A integrated multi-phase flight scheduling and fleet assignment MILP incorpo- [72]
rating passenger choice. The passenger choice influence is integrated by means
of an attractiveness factor based on itinerary and fare class for a passenger type

Justin et al. 2022 A hybrid half-leg half-itinerary MILP with a multi-objective approach has been  [12]
used for tackling a trade-off between maximizing profit and minimizing emis-
sion impact. In this approach the optimization of the following four aspects is
integrated: flight schedule design, flight frequency, aircraft assignment to flights
and passenger itineraries.




Integration of Disciplines

Significant research has been conducted on the development of airline flight scheduling and fleet assignment
integration models, as briefly reviewed in chapter 4. This chapter focused mainly on the extension of basic
models in the airline planning of conventional aircraft. Recently, research is conducted into the integration of
airline planning of electrified aircraft with climate optimization, aircraft design and recharging considerations.

A selection of this past literature on the integration of disciplines into airline planning is reviewed in this chapter,
which presents a clear overview of the current development in this field. The chapter starts in section 5.1
with a general introduction to the relevant disciplines that are coupled with airline planning, accompanied
by schematic visualization. Then, section 5.2 through 5.4 present an overview of performed research in the
integration of disciplines, highlighting key aspects and methods. This chapter concludes with a summarized
table that categorizes reviewed research, according to their integrated disciplines.

5.1 General Overview of Discipline Integration

Currently, the research conducted into the integration of additional disciplines in airline planning of electrified
aircraft can be split up in three main disciplines. The detailed information about the integration of the most
important disciplines is outlined below and a schematic representation is depicted in Figure 5.1.

e Climate: The incorporation of aircraft emissions into the airline planning process, focusing on reducing
environmental impact on both ground and air operations. This discipline incorporates emissions as either
a co-objective in optimization models or as penalizing functions that influence decision-making. More
detailed information with corresponding past literature can be found in section 5.2.

e Aircraft Design: The coupling between aircraft design and airline planning performs a trade-off for
the best electrified aircraft design aligning airline planning objectives. By analyzing the performance of
the current aircraft designs and airline’s fleet composition, airlines can implement re-designs to achieve
improved objectives, such as increasing profit and enhanced operational efficiency. More detailed infor-
mation with corresponding past literature can be found in section 5.3.

e Recharging: The integration of battery recharging for electrified aircraft into the airline planning
process is an critical consideration, unlike for conventional aircraft or fleet. The integration of recharging
primarily impacts two key performance indicators: TAT and aircraft flight ranges. Several strategies
have been proposed to address recharging solutions, including restricting to full charging scenarios and
battery swapping solutions. More detailed information with corresponding past literature can be found
in section 5.4.

e Aircraft Design and Climate: The integration of both aircraft design and climate optimization into
airline planning aims at re-designing aircraft and re-composition of an airline fleet, while balancing airline
key performance indicators with aircraft emission objectives. This approach combines considerations from
both the coupling of climate aspects and aircraft design into a unified model. More detailed information
with corresponding past literature can be found in section 5.5.

The visualization of disciplines in Figure 5.1 highlight additional coupling of disciplines that have not been
covered above. The three sets of coupling of disciplines' that do not include airline planning, depicted in the
outer circle of Figure 5.1, are excluded due to the operational focus of the current research. Additionally,

IThese disciplines sets are the following: integrated recharging and climate optimization, recharging optimized aircraft design, climate
optimized aircraft design.
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two discipline sets where three areas are integrated?, indicated by the purple and green triangular area in
Figure 5.1, are also not reviewed due to the limited available literature in these areas.

Recharging
Optimization

Recharging Optimized
Aircraft Design

Integrated Recharging
and Climate Optimization

Airline
Planning

Climate Aircraft

Optimization Design

Climate Optimized
Aircraft Design

Figure 5.1: Schematic overview representing the integration of airline planning with related disciplines

5.2 Climate Optimized Airline Planning

The integration of climate considerations into flight scheduling and fleet assignment has become a well-
researched topic in recent years [12]. Various approaches have been proposed, including the integration of
climate objectives as co-objectives, CO; penalties and financial tax penalties [12, 15, 26].

A recent study conducted by Justin et al. [12] investigated the integration of environmental considerations
into electrified flight scheduling and fleet assignment. The study achieved improvements in reducing climate
impact, while increasing passengers service. This research is focused on the implementation of all-electric and
hybrid-electric flight as a regional air mobility solution in the United States. The research addresses the gap
in prior studies that incorporated environmental considerations, but failed to optimize both profitability and
environmental impact in flight scheduling, fleet assignment and aircraft routing. The previous attempts of
Safak et al. [71] and Ma et al. [73] introduced integration of emissions into parts of the airline planning
process, but did not successfully develop effective strategies for new operations incorporating climate impact
reductions. In this work, Justin et al. proposed the use of a hybrid half-itinerary half-leg MILP with a
hierarchical multi-objective trade-off between financial airline profitability and aircraft emissions. The results
of the study indicate that twice the amount of passengers can be fulfilled and carbon emission reductions up
to 50 % can be obtained by using electrified aircraft.

This research emphasizes the potential of incorporating environmental impact as a key objective in the flight
scheduling and aircraft assignment. Additionally, the approach demonstrates the ability to develop new op-
erational routes in under-utilized current regional networks. Consequently, this research also highlights that
additional emission reductions can be achieved through early implementation of carbon emission integration in
the flight scheduling and aircraft assignment model. Lastly, the literature emphasizes that several attempts to
include climate optimization have been proposed, but very few actually achieve their full potential in balancing
profitability and environmental objectives.

2These disciplines sets are the following: integration of airline planning, climate optimization and recharging optimization, and the
integration of airline planning, aircraft design and recharging optimization.
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5.3 Airline Planning Optimized Aircraft Design

The simultaneously optimization for airline planning operations and aircraft design has been extensively in-
vestigated by several researchers, primarily for conventional aircraft. However, the recent developments of
electrified aircraft requires improved coupling methods for enhanced utilization and climate impact reductions
[15].

In 2007, Taylor and De Weck [74] developed an initial framework for the simultaneous optimization of aircraft
design and network flow, demonstrating it advantages in efficiency and achieving a 10 % cost reduction. This
work was continued by a series of studies from Jansen and Perez, developing advanced frameworks for integrat-
ing aircraft design with airline planning operations [75-79]. This series included integration of these disciplines
with additional research into the incorporation of fuel burn minimization [75], uncertain passenger demand
[76], and multiple market considerations [77, 78]. These studies emphasize the potential for cost reductions
when fleet network allocation is integrated with conventional aircraft design.

In 2019, Weit et al. [80] explored the integration of network optimization and hybrid-electric aircraft design.
This study incorporated the hybridization ratio as a key design aspect of hybrid-electric aircraft aiming for profit
maximization by allowing decreases in payload to extend range. Additionally, the research also investigated the
effect of accompanying additional batteries as a replacement of certain payload mass to enhance operational
flexibility.

More recently, a series of research into the coupling of aircraft design and airline planning operations have been
conducted at Delft University of Technology by Zuijderwijk, Scheers and Antunes. In 2022, Zuijderwijk [81]
presented an framework connecting strategic airline planning to electrified aircraft design, including insights
into fleet electrification strategies for airlines. In 2023, Scheers [15] built upon this by developing a framework
for climate optimized hybrid-electric aircraft design integrated with strategic airline planning. Lastly, in 2024
Antunes [26] further developed this framework by incorporating the effects of operating hybrid-electric aircraft
outside their on-design conditions.

5.4 Recharging Optimization Integrated Airline Planning

The integration of battery recharging is considered one of the most significant challenges for making electrified
aircraft a viable alternative to conventional aviation [10]. The reason stems from the impact of battery
recharging duration on the TAT, resulting in electrified flight being economically impractical. The integration
of recharging into the flight scheduling and fleet assignment is crucial in the development of electrified airline
networks. However, there is limited research into the modeling of flight scheduling and fleet assignment with
integrated recharging optimization. Many studies on electrified flight scheduling, fleet assignment and aircraft
routing assume instant recharging, battery swapping possibilities or neglect recharging completely [12, 80, 82—
84]. However, two recent studies propose alternative approaches to address these challenges.

In 2020, Mitici & Pereira [83] approached the scheduling of all-electric aircraft by allowing aircraft to either
recharge or swap their batteries. The study includes a two-phase optimization model including planning and
recharging aspects. The first phase develops a flight and battery recharging schedule, while simultaneous
determining the required fleet size of electric aircraft. Then, the second phase optimizes for charging times
aiming at a minimization of charging stations and batteries. The model integrates recharging into scheduling
by addressing the following three factors:

e Residual SoC: The SoC of the battery after depletion from the previous flights.

e Charging characteristics: The evolution of SoC over time, based on the charging profile and the
current SoC.

e Required SoC: The required SoC for completing the next flight.

In this study, the battery recharging profile is defined as a bi-linear curve, consisting of a fast charging phase
and slow charge phase from 0% - 90 % and 90 % - 100 %, respectively.

In 2023, Vehlhaber & Salazar [82] proposed a model that integrates battery recharging with all-electric aircraft
fleet assignment and routing, focusing on optimizing for sustainable energy resources. Unlike most of earlier
conducted research, this study integrates the SoC into the fleet assignment model based on passenger demand
over flight legs. Additionally, the developed method models the SoC over time as either discharging (in-flight
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state) or recharging (ground state), and includes energy calculations for electric aircraft flight performance.
The combination of these features translates into a set of equations able to optimal model the SoC over time,
adhering to charging power constraints and flight requirements.

These two studies approach the modeling of the SoC as a time-series of all-electric aircraft as part of a larger
objective. The former study includes optimization for required energy levels in order to fulfill the next mission.
The latter divides the time series by either recharging and discharging and integrates this with closely with
fleet assignment and routing decisions. These approaches emphasize the advancements in integrating battery
recharging into airline planning for all-electric aircraft.

5.5 Climate Optimized Aircraft Design and Airline Planning

The integration of airline planning with climate optimization and aircraft design has recently come to more
attention among researchers due to its potential to tackle both operational efficiency and environmental con-
siderations.

A recent study by Hoogreef et al. [16] demonstrated that the integration of these three disciplines can result in
significant emission reductions at the cost of small decreases in profitability. The methodology was applied to
a regional network case, resulting in emission reductions of 11 % at the cost of a 13 % decrease in profitability
compared to a conventional kerosene fleet. The study utilized an iterative process that coupled fleet and
network allocation with aircraft, incorporating an evaluation of the off-design conditions before applying a
climate optimization module. The model proposes new aircraft designs based a clustering of the payload-range
diagram with corresponding design categories including payload, range and runway distance.

The research illustrates the effect of integrated aircraft design on profitability and carbon emission reductions.
The findings emphasize the potential of integrating these disciplines to develop more sustainable aviation
operations.

5.6 Concluding Remarks of Integration of Disciplines

A schematic overview of reviewed literature has been developed, summarizing the dedicated integration of
disciplines by check marks. This overview is presented in Table 5.1 on the following page, providing a clear
overview of the current available research on the integration of discussed disciplines. From the previous
discussed literature and Table 5.1, it is evident that limited research has been conducted into the integration
of recharging optimization into flight scheduling and aircraft routing. Furthermore, the table highlights that
no research has been conducted into the integration airline planning with all three other discussed disciplines.
This highlights the need for further research into the integration of these disciplines.



5.6. Concluding Remarks of Integration of Disciplines

25

Table 5.1: Overview of research on the development of integrated electrified aircraft models

Airline Aircraft Climate Recharging
Authors Year Planning Design Optimization  Optimization Reference
Taylor €& 2007 v v [74]
De Weck
Weit et al. 2019 v v [80]
Roy et al. 2017 v v [85]
Mitici & 2020 v v 83, 86]
Pereira
Zuijderwigk 2020 v v [81]
Justin et 2022 v v [12]
al.
Qosterom 2023 v [84]
& Mitici
Vehlhaber 2023 v v v [82]
& Salazar
Hoogreef & 2023 v v v [15, 16]
Scheers
Chan et al. 2023 v [10]
Antunes 2024 v v v [26]




Conclusions and Research Proposal

This chapter provides the conclusions derived from the reviewed literature in section 6.1. Consequently, it
presents the research gap and research question with corresponding sub-questions in section 6.2 and 6.3,
respectively. The chapter closes of with the formulation of the research objective in section 6.4.

6.1 Conclusions

The main conclusions derived from the analysis of the previous chapters has been summarized in this section.
This section first presents the most important findings from the retrieved information on the background on
aircraft electrification. Then, it provides the most relevant aspects of airline planning operations. Lastly, the
research on the integration of disciplines is summarized.

Background on Aircraft Electrification

The electrification of aircraft is primarily driven by cost reduction and significant emission reductions, with
a particular focus on addressing solutions to the regional travel market. This electrification of aircraft have
resulted in the development of three main type of aircraft: all-electric aircraft, hybrid-electric propulsion
aircraft and turboelectric aircraft. These aircraft can be categorized using the developed relationship for
degree of hybridization, which quantifies the proportion of electrically driven power and energy relative to the
total power and energy. The degree of hybridization plays an critical role in the mission profile optimization,
allowing for optimal usage of battery energy across various flight phases. Another key consideration is the in-
flight energy management, which provides flexibility in constraining the final state of charge of the battery and
enables optimal energy usage of energy throughout the flight. A key aspect of battery recharging in electric
flight is efficient and fast recharging to overcome limitation in turn-around time. The literature presented
two alternative solutions to conventional (CC-CV) charging: boost-charging (CV-CCCV) and multi-stage CC
(MCC) charging. These alternatives provide advantages in efficiency and increases in charging speeds up to
22.5%. An overview was of CO, emissions was presented for electrified aircraft, considering both kerosene and
battery as fuel source.

Airline Planning Operations

The airline planning process consist of three main phases: fleet planning, route planning and schedule de-
velopment. Flight scheduling and aircraft assignment represent the most critical components. This phase
integrates the development of a flight schedule by selecting flight legs to be operated and the assignment of
aircraft in which specific aircraft need to be assigned to this schedule while adhering to key constraints: cover,
balance and availability. Another key consideration is the development of a space-time network, allowing for
the balance constraints of aircraft. Numerous variations to the flight scheduling and aircraft assignment model
have been developed, incorporating advanced features such as demand optimization, spill cost minimization
and recapture, and re-timing of flights. Two primary mathematical techniques for solving these optimization
problems have been proposed: mixed-integer linear programming and dynamic programming. Mixed-integer
linear programming proposes advantages over dynamic programming for large-scale linear models with binary,
integer, and continuous variables. Conversely, dynamic programming is more suitable for non-linear, state-
dependent problems that can be divided in smaller sub-problems, enabling the incorporation of state-specific
decisions at each stage of the optimization process. Both techniques are essential for advancing airline planning
operations and should be selected based on their suitability and applicability to the specific problem.
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Integration of Disciplines

Recently, much research has been conducted into the integration of airline planning with other disciplines such
as climate optimization, recharging optimization and aircraft design. The reviewed literature focuses on these
three disciplines individually, while considering also the integration of a combination of two of these disciplines
with airline planning: climate optimization and aircraft design. The integration of climate considerations is
often achieved by including climate based performance indicators in the objective function or the addition of a
penalty function. Then, aircraft design can be integrated by using an iterative approach in which aircraft design
is optimized for the limitations of the given network, derived from initial airline planning. The integration of
(partial) battery recharging is vital for the development of electrified aviation, but is currently lacking advanced
models. The integration of both climate and aircraft design have recently been researched by incorporating
key flight performance indicators. The collection of literature in the field of integration of disciplines, focused
on coupling with airline planning, brings the underdevelopment of recharging under attention. Finally, this
collection of literature also highlights that no combined integration of all aforementioned disciplines is yet
researched.

6.2 Research Gap

The research gap identified from the aforementioned conclusions is formulated as follows:

The integration of partial recharging strategies with flight scheduling and aircraft assignment, while
simultaneously considering airline profitability, climate impact, and electrified aircraft design.

6.3 Research Question

The research question derived from the described research gap, to be addressed during this thesis, is formulated
as follows:

What is the effect of incorporating partial recharging strategies into flight scheduling and aircraft
assignment on airline network profitability, carbon emission reduction, and the design of electrified
aircraft?

This research question is divided into smaller sub-questions, each designed to contribute to addressing the
main research question. These sub-questions are stated as follows:

1. Which optimization solver, Mixed-Integer Linear Programming or Dynamic Programming, is most suit-
able for integrating (partial) recharging into flight scheduling and aircraft assignment models, considering
the nonlinearity and computational complexity?

2. How can battery recharging strategies be effectively incorporated into flight scheduling and aircraft
assignment?
3. What trade-offs exist between airline profit maximization and carbon emission minimization?

4. What electrified aircraft design parameters require to be adjusted to improve network performance and
how can these be adjusted to achieve the desired operational and environmental targets?

5. How do different battery charging profiles and strategies affect airline network performance in terms of
profitability and environmental impact?

6. What is the impact of advancements in battery gravimetric energy density on airline profitability and
environmental impact?

This research aims at supporting the research question by means of a comparative case study addressing the
question as stated below:

How does the performance of airline networks with partial recharging compare to those limited
to full recharging or to conventional aircraft in terms of airline profitability and carbon emission
reduction?
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6.4 Research Objective

The research objective is constructed based on the research question and its sub-questions from section 6.3
and is stated as follows:

This research aims to analyze the impact of partial recharging strategies on airline network perfor-
mance by optimizing the integration of flight scheduling and aircraft assignment with recharging
strategies and electrified aircraft design, while mazximizing profitability, reducing carbon emissions
and adhering to electrified aircraft constraints.



Research Approach

This chapter presents a preliminary planning consisting of five main phases for the proposed research in
chapter 6, which is schematically represented by Figure 7.1. These phases are in more detail described in
section 7.1 - 7.5.

@ ©) ® @ ®

Methodology Model Model Case Study Article

Development Development Verification (Validation) Development

Figure 7.1: Schematic overview of the five main phases of the research approach

7.1 Methodology Development

The first phase after the literature study and the research proposal will consist of the methodology development.
During this phase, a methodology will be developed to provide the tools to answer the research question. The
methodology will consist of four sub-modules that are inter-connected and these will be integrated in a later
stage. These sub-modules are as follows:

e Development of the flight scheduling and aircraft assignment model.
e Integration of climate optimization.
e Integration of partial recharging strategies.

e Integration of electrified aircraft design.

Development of the Flight Scheduling and Aircraft Assignment Model

This module focuses on developing a dedicated flight scheduling and aircraft assignment model. Several critical
aspects must be considered during development, including selection of a suitable mathematical solver, formu-
lation of the objective function, and the identification of constraints. Furthermore, external data requirements
need to be considered, in which the types of input data and reliable resources are evaluated.

Integration of Climate Optimization

This module focuses on the integration of carbon emissions reduction as part of the objective function. The
challenge is in the evaluation of the trade-offs required to be performed in the development of a multi-objective
objective function. Furthermore, the modeling of used electricity and burned fuel with corresponding emissions
indices for flights must be developed and integrated.

Integration of Partial Recharging Strategies

This module focuses on the integration of partial recharging strategies as part of the flight scheduling and
aircraft assignment model. The different implementation options and modeling techniques of battery recharging
strategies as a function of time need to evaluated and the most effective method needs to be integrated.

29
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Integration of Climate Optimization

This module focuses on the integration of electrified aircraft design aspects. The primary objective is to
select the most appropriate coupling technique for optimized electrified aircraft design. A trade-off must
be performed between several factors such feasibility and ability for implementation to ensure the coupling
strategy is effective and practical.

7.2 Model Development

The model development phase focuses on the transforming the theoretical methodology into an efficient, well-
structured computational model. The following key aspects are essential to this phase:

e Python Environment: The creation of a well-structure Python project with good package management,
input and output setup, and version control for tracking changes.

e Computational Model: The translation of the theoretical methodology to structured code, including
optimization solvers, sub-module integration and additional features.

e Documentation: The appropriate documentation of the computational model using code documenta-
tion, a user guide and proper connection to the theoretical background.

7.3 Model Verification

The developed Python model must undergo a verification process to ensure it performs as intended and
produces reliable results. The verification will consist of several phases to be carried out and is outlined below:

e Model Verification Part I: This phase focuses on verifying the developed model up to the mid-term
review. The goal is to ensure that the results and findings presented during this review are of high fidelity
and accuracy. The scope of this verification will depend on the progress of the model and methodology.

e Model Verification Part II: This phase extends the verification process to the entire model as a
continuation of Part I. In case of adjustments to earlier developed components, re-verification must be
applied to ensure reliability of the entire model.

e Sensitivity Analysis: This phase evaluates the level of robustness of the model by analyzing the
influence of variations in input parameters on output results. The input variables will be varied with
realistic range values and the corresponding impact on the results will be analyzed accordingly.

The model verification for Part I and Part II include the following two components:

e Data Verification: This step is aimed at ensuring that input data is accurate, complete and consistent.
Several verification steps will include checks for confirmation of alignment of data with intended model
requirements.

e Computational Verification: This step is aimed at ensuring that the optimization model functions as
designed. Main elements such as functions, classes and modules will be tested to confirm correctness using
known inputs and expected outputs. This process ensures that the computational model corresponds to
the theoretical methodology.

7.4 Case Study

A case study will be developed to address two aspects: the validation of the model and the execution of a
comparative analysis to answer the research question.

First, the case study allows the developed methodology and corresponding computational model to be vali-
dated against real-world data and scenarios. The main objective is to assess the reliability, applicability and
performance of the model. Another important part of the validation process is the research into a suitable
real-world scenario providing representative data and allows for accurate validation.

Secondly, the case study will serve as a means to conduct a comparative study. A comparative analysis can
will be executed by changing only the electrified aircraft dependent data, while keeping the data environment
unchanged. This allows the comparative analysis to be only dependent on the the modeling and therefore no
unrelated factors will influence the outcome of the study.
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7.5 Article Development

The last phase of the research is the development of the article, in which all the performed research need to
be concisely presented. The article will consist of the elements listed below:

1.
2.

o G

Abstract: A brief summary including all aspects of the article.

Introduction: A short introduction into the relevance of the research topics and a review of past
literature vital for the remainder of the article.

Methodology: A description of the final methodology used for answering the research question.
Case Study: The validation of the model and comparative analysis by means of the case study.
Results & Discussion: The presentation of the results with corresponding discussion.

Conclusion & Future Recommendation: The conclusions that are derived from the performed
research and the recommendation for future research.



Research Planning

This chapter provides an overview of the initial made planning for the entire research duration, including the
literature review and research proposal that have already been conducted. The research phases haven been
summarized in Table 8.1 and an overview of the milestones, as discussed during the kick-off of this research,
are presented in Table 8.2.

Table 8.1: Planning of research phases

‘Week Phase Description

1-6 Literature Review & The development of a research proposal by defining the research gap based
Research Proposal on past articles, theses and other forms of literature.

712 Methodology The development of the methodology as proposed in the research proposal
Development based on literature and knowledge. The methodology can be split up over

several phases:
1. Development of the flight scheduling and aircraft assignment model.

2. Integration of climate optimization.
3. Integration of partial recharging strategies.
4. Integration of electrified aircraft design.
5. Integration of all inter-connected sub-modules.
10 - 15 Model Development The translation of the developed theoretical methodology into an efficient,

well-structured computational model.

12 - 15 Model Verification The verification of the first part of the developed model, up until the mid-
Part I term review.

12 - 15 Case Study Setup Development of the case study for validation and comparative analysis.

15 - 20 Iteration process The improvement of the model through iterations and feedback from ini-

tial results and further development of Case Study.

15 - 20 Case Study The application of the model on the developed case study, with corre-
sponding adjustments.

18 - 20 Model Verification The verification of the second part of the developed model and the poten-
Part 11 tial re-verification of the adjusted model.
20 — 25 Reporting The development of the technical article, including all relevant compo-
nents.
25 — 32 Thesis Defense The submission of all required documents and preparation for the research
Preparation defense presentation.
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Table 8.2: Research milestones with corresponding dates

Week Milestone Date

1 Starting Date 14-11-2024
2 Kick-off 22-11-2024
6 Research Proposal Deliverable — 20-12-2024
8 Research Proposal Review 07-01-2025
15 Midterm Deliverable 07-03-2025
16 Midterm Review 14-03-2025
25 Final Draft 16-05-2025
27 Green Light Review 30-05-2025
28 Request Examination 02-06-2025
30 Research Portfolio Submission  13-06-2025
32 Thesis Defense 30-06-2025
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