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1. General introduction

In this thesis we will consider backward stochastic differential equations (BSDEs) and present a method to
numerically solve these equations. BSDEs have found important applications in the areas of mathematical
finance and stochastic control problems.

A BSDE is stochastic differential equation, but different from the more classical forward stochastic dif-
ferential equations (SDEs) in the sense that now a terminal condition is specified instead of an initial
condition. Furthermore, the solution to a BSDE consists of two different processes, instead of one process.
To illustrate, a BSDE is an equation of the following form

Yt = YT +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs,

YT = ξ,

where Yt and Zt are stochastic processes, Wt is a Brownian motion, ξ is a random variable called the
terminal condition and f is a given function satisfying some properties.

1.1. Financial mathematics. This thesis is mainly considered with applications of BSDEs in the field
of financial mathematics. One of the classical problems in the field is the problem of pricing financial
options, sometimes called contingent claims. In such problems, we are working in a specific financial
market model that consists of several assets in which an investor can invest his money.

One of those assets is a riskless asset, as such an asset has a deterministic return rate. An investor knows
how much money he is going to end up with when investing in the riskless asset. Furthermore, the market
consists of several other financial assets called stocks. The return on such investments is not known in
advance and therefore these assets are referred to as risky assets.

To model the behaviour of these risky assets, one models the price of the stock as a solution to a forward
SDE. Commonly, it is assumed that the stock price follows a geometric Brownian motion. This process
is specified by two characteristics of the stock, the drift and the volatility of the stock. The drift captures
the change in the expected stock price over time and the volatility is a measure of the variation of the
stock level over time.

An option on a stock (called the underlying of the option) is a contract that pays out a predefined function
of the underlying stock price level. For example, a European call option gives the holder of the option
the right, but not the obligation, to buy the underlying asset for a predetermined price, called the strike,
on a predetermined future date, called the maturity or exercise date of the option.

It is clear that the holder will only exercise this right if the price of the underlying is higher than the
strike. In this case the holder can buy the underlying asset for the strike and then sell the stock in the
market at the current spot price, which is higher than the strike, to obtain a profit. In more mathematical
terms, the payoff of the option is equal to

max(S̃T − K̃, 0),

where S̃T is the stock price at the maturity T and K̃ is the strike of the call option.

A call option is just one of many examples of option contracts. Beside European options, where the
option payoff only depends on the stock price level at maturity, this thesis will also look at applications
with American options. Such options allow the owners of the option to choose the exercise date, untill
time T , themselves. The main goal in these kinds of option pricing problems in financial mathematics is
to assign a price to such an option.

1.2. Advantages and disadvantages of BSDEs. In the field of financial mathematics, the approach
with BSDEs has a couple of advantages compared to the more usual approach with forward SDEs. One
advantage of BSDEs is that very many market models can be represented in a system of a forward SDE
and a BSDE.

The standard Black-Scholes model can be formulated in terms of BSDEs pretty easily and more advanced
models like local volatility models (where the volatility function is a deterministic function of the spot
price and time, see [LL11]), stochastic volatility models (where the volatility is assumed to be stochastic
itself, see [FTW11]) and jump-diffusion models (where the stock price is allowed to ’jump’ up or down,
see [Eyr05]) can also be incorporated in the BSDE framework.

Certain market imperfections can also be incorporated using BSDEs. Examples like a different interest
rate for borrowing and lending money on the market [Gob10], the presence of transaction costs see [SS08])
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and constraints on the amount of stocks an investor can short sell (see [EKPQ97]) can all be fitted in the
BSDE framework. Thus, BSDEs provide a very flexible framework in which we can work.

Another advantage of BSDEs is that they can also be used in incomplete markets (see [EKPQ97]). When
pricing a financial option, we try to find a portfolio of stocks that has the same value as the option and set
the price of the option equal to the price of this portfolio, called the replicating portfolio. When dealing
with incomplete markets however, not every financial option can be replicated by such a portfolio of
stocks. One approach is to work with so-called super-strategies, which are portfolios with a value always
greater or equal than the option value. Another approach is to assign a utility function to an investor,
which represents the attitude toward risk of the investor, and maximize the utility of the replication error,
the difference between the value of the super-replicating portfolio and the option value. The maximization
problem then encountered can be solved by using BSDEs.

Another advantage of BSDEs is that we do not have to switch to the so-called risk-neutral measure when
pricing financial options. When pricing financial assets, their expected values have to be adjusted for
an investor’s risk preferences. However, these discount rates will vary between investors because not all
investors have the same risk preference. In complete markets there is an alternative way to do these
calculations. One can adjust the probabilities of future outcome such that they incorporate all investors’
risk preferences (which is characterized by a number called the Sharpe ratio) and then compute expected
values in the new probability measure, which is the risk-neutral measure. A lot of mathematics is involved
in this technique, and the advantage of BSDEs is that we do not need to switch to this equivalent world
anymore and that we can work in one world. This makes the option pricing problem more intuitive and
easier to grasp, another advantage of using BSDEs.

Finally, solutions of BSDEs are also linked to solutions of a certain class of partial differential equations
(PDEs). This result is provided by an analogue of the well-known Feynman-Kac theorem for forward
SDEs. If we are unable to find or approximate a solution to a PDE, we can still obtain some BSDE
characterization of the solution without too many problems, and vice versa.

In some ways using BSDEs makes problems in financial mathematics easier to solve, but there are also
more difficulties in using BSDEs compared to forward SDEs. A difficulty is that we are now working
backwards in time. For a solution of a BSDE to make sense in any real-world application, we do not want
the solution to provide us any information of the future, since we do not know the future in any real-
world application. In technical terms, we want the solution of the BSDE to be adapted to the underlying
filtration we are working on. The solution of a BSDE thus consists of two parts: the solution Yt and the
control process Zt such that Zt ‘steers’ Yt towards the terminal condition and such that adaptedness is
ensured.

Another disadvantage of BSDEs is that there are not so many existence and uniqueness results for BSDEs
as for forward SDEs. The most regular assumption is that the function f in the BSDE should be Lipschitz
continuous, in which case existence and uniqueness is guaranteed. Many researchers tried to relax these
assumptions, to obtain results for a more general class of BSDEs, but these results are highly technical
in nature. The backward nature of BSDEs also requires more involved numerical procedures, which is
the reason why BSDEs are not used by practitioners yet.

1.3. Structure of the thesis. At the moment efficient, practical, numerical methods for BSDEs yet
have to be developed. This thesis is an attempt towards that direction, combining the higher order
theta-discretization of the BSDE (used, for example, in [ZWP09] and [RO13]) with a binomial tree
approximation of the conditional expectations in that discretization (also treated in [MPSMT02] for a
different discretization).

This thesis will start with a general introduction of the most fundamental model in mathematical finance:
the Black-Scholes model. We develop the basic financial market model and derive the Black-Scholes partial
differential equation for general European options and the Black-Scholes option pricing formula for call
options.

In section 3 we provide a general introduction to BSDEs and discuss uniqueness and existence results
and a Feynman-Kac theorem for BSDEs, which provides a link between PDEs and BSDEs. Furthermore,
we show examples of problems in option pricing where a BSDE naturally arises. We then arrive at so-
called forward-backward stochastic differential equations (FBSDEs). Such problems also consist of an
extra stochastic process whose behaviour is governed by a forward stochastic differential equation and
the driver and terminal condition of the BSDE are now allowed to be dependent on the value of this
forward process.
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To obtain a numerical solution to a FBSDE we first discretize the forward and backward equations.
In section 4 we introduce the Euler-Maruyama method to approximate the forward SDE and derive a
discretization scheme for the BSDE. This scheme is different from the schemes usually encountered in
the literature since we will use a theta-method to approximate certain integrals. It can be proven that
this leads to higher order convergence of the solution.

In this backward scheme we arrive at the problem of computing conditional expectations. We solve
this problem by assuming a binomial tree structure for the Brownian motion underlying the BSDE. This
assumption allows us to derive a numerical scheme for the solution to a FBSDE. In section 5 the behaviour
of the numerical method is discussed by considering different problems, mostly problems involving the
pricing of a financial option.

As an extra restriction, we can enforce that the value of the solution Yt of a BSDE should always be
greater than some pre-defined barrier. The type of equation that we then obtain is called a reflected
backward stochastic differential equation (RBSDE) and is encountered when pricing American options,
for example. In section 6 we discuss some properties of these equations and extend the numerical method
to deal with RBSDEs. We discuss some examples of RBSDEs in section 7 and analyze the behaviour of
our new numerical scheme.

As a final extension, we will look at a combination of two forward SDEs and one BSDE in section 8. The
terminal condition is now allowed to be dependent on the values of both solutions of the forward SDEs.
These type of equations arise when pricing financial options on two, correlated, assets. We discuss the
pricing of a spread option on two correlated assets in chapter 9.

Finally, we present conclusions of the research conducted on this numerical method and provide some
topics for further research.
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2. The Black-Scholes model

In this section we will discuss some of the basic aspects of mathematical finance, risk-neutral option

pricing and the Black-Scholes formula. We will work on a filtered probability space
(

Ω,F , (Ft)0≤t≤T ,P
)

where Ft denotes the right-continuous version of the filtration generated by a Brownian motion and
augmented with the P-nullsets so that the probability space is complete. Most of the theory described
here is adapted from [Sch12].

We assume the existence of two basic assets: a bank account with constant interest rate r ∈ R which is
continuously compounded, and a risky asset with two parameters:a return µ ∈ R and a volatility σ ∈ R>0.
Let T ∈ R be fixed and representing a time horizon. For simplicity, we will only work with one risky
asset but the results can be generalized to more risky assets. The (undiscounted) behaviour of the bank
account is modelled by the following ordinary differential equation:

(2.1) dS̃0
t = S̃0

t rdt.

The behaviour of the risky asset in undiscounted terms is modelled by the forward SDE

(2.2)
dS̃1

t

S̃1
t

= µdt+ σdWt.

Note that the solutions of these equations are

S̃0
t = ert,(2.3)

S̃1
t = S̃1

0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
.(2.4)

We will now switch to discounted quantities and use the bank account as a numeraire in our market

model. We thus define S0 := S̃0

S̃0
= 1 and S1 := S̃1

S̃0
. From equations (2.3) and (2.4) we then obtain:

S0
t = 1,(2.5)

S1
t = S1

0 exp

((
µ− r − 1

2
σ2

)
t+ σWt

)
.(2.6)

In the rest of this thesis X̃t will denote undiscounted units and Xt will denote discounted units for any
arbitrary variable Xt at time t. One can switch between units by using the relation

X̃te
−rt = Xt.

By Itô’s formula, the behaviour of the risky asset S1 is now modelled by the SDE

(2.7)
dS1

t

S1
t

= (µ− r) dt+ σdWt.

A certain class of stochastic processes plays a fundamental role in mathematical finance. These processes
are called martingales and we have the following definition.

Definition 2.1 (Martingale). A stochastic processXt on a filtered probability space
(

Ω,F , (Ft)0≤t≤T ,P
)

is called a P-martingale (or simply a martingale, if the probability space is clear from the context) if Xt

satisfies the following properties:

• Xt is Ft-measurable for all t ∈ [0, T ], i.e. Xt is adapted to the filtration F .
• Xt is integrable:

EP [|Xt|] <∞ ∀t ∈ [0, T ].

• Xt satisfies
EP [Xt | Fs] = Xs ∀t ≥ s.

If a process Xt is a martingale, the expected value of the future given the past is thus equal to the
present observed value of the martingale. A martingale is thus a mathematical model for the concept of
a ‘fair game’. Knowledge of the past events, represented by Fs, does not help to predict future profits or
winnings.

A trading strategy φ = (V0, ηt, πt) is specified by an initial capital V0, an adapted process ηt representing
the holdings in the bank account and a predictable process πt representing the holdings in the risky asset
at time t. We will only consider self-financing strategies, i.e. strategies that satisfy

(2.8) Vt(φ) := πtS
1
t + ηtS

0
t = V0 +

∫ t

0

πudS
1
u,
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where Vt(φ) represents the value of the trading strategy φ. We drop the dependency on φ in Vt(φ) when
it is clear with which strategy we are working.

An equivalent definition of self-financing strategies is that the value of the trading strategy Vt(φ) should
satisfy

(2.9) dVt = ηtdS
0
t + πtdS

1
t .

Self-financing strategies are uniquely determined by their initial wealth V0 and the process πt, since it can
be seen from (2.9) that ηt = Vt − πtS1

t . The more rigorous proof of this statement and the equivalence
between equations (2.8) and (2.9) can be found in [Sch12].

In any real-world application, trading strategies are bound by some credit line. This credit line can be
interpreted as the lower bound on the value process Vt(φ) of the corresponding strategy φ. One can
be a certain amount of money in debt, but only within predefined limits. Therefore, we introduce the
following definition:

Definition 2.2 (Admissible strategies). Let a ∈ R. A trading strategy φ is called a-admissible if its
value process Vt(φ) is uniformly bounded from below by −a, i.e. the following should hold:

P [Vt(φ) ≥ −a] = 1 ∀t ∈ [0, T ].

A trading strategy is called admissible if it is a-admissible for some a ≥ 0.

In any practical financial market model, trading strategies that are riskless but still profitable should
not exist. If they would exist, such strategies would be exploited by investors and hence vanish almost
immediately. Such a strategy is called an arbitrage opportunity. In mathematical terms, an arbitrage
opportunity is defined as follows

Definition 2.3 (Arbitrage opportunity). An arbitrage opportunity is an admissible self-financing strategy
φ with initial wealth V0(φ) = 0 with VT (φ) ≥ 0 P-a.s. and P [VT (φ) > 0] > 0.

An arbitrage opportunity is thus a strategy that starts with zero value and produces money with a positive
probability without risk, because the strategy is self-financing. Any reasonable market model should not
allow such strategies and we call a financial market model arbitrage-free if arbitrage opportunities in the
marke do not existt.

Are there any characteristics for a financial market model to be arbitrage-free? It turns out that there
is a theorem that gives us a sufficient condition for a market model to be arbitrage-free, called the
fundamental theorem of asset pricing. Before we can introduce this theorem however, we introduce the
following definition:

Definition 2.4 (Equivalent martingale measure). An equivalent martingale measure (EMM) Q is a
probability measure Q equivalent to the probability measure P such that the process S1

t is a Q-martingale.

The following theorem now provides a sufficient condition for a market model to be arbitrage-free:

Theorem 2.1 (Fundamental theorem of asset pricing (FTAP)). A financial market model is arbitrage-
free if and only if there exists at least one equivalent martingale measure Q for S1

t .

Proof. For the proof, we refer to [Sch12]. �

We are now interested in the following problem: if we introduce a new financial option to the financial
market model and claim that the new financial market should not allow any arbitrage opportunities,
what is then the price of this option? For our purposes, we only will consider European options. These
are options on the asset S1 where the payoff of the option is only dependent on the terminal value S1

T .
In mathematical terms, we have the following definition.

Definition 2.5 (European option). An European option or payoff or contingent claim is a random
variable H ∈ L0

+(FT ), where L0
+(FT ) denotes the space of all positive FT -measurable random variables.

The random variable H describes the net payoff the owner of the option gets at time T . H should be
greater or equal to zero is then a natural condition. Definition 2.5 can be extended to also support
American options. Such options allow a certain degree of freedom to the owner of the option in choosing
the time of the payoff.

To price a financial option H we try to construct a trading strategy in the market such that it has the
same value as the option at all times t ∈ [0, T ]. By arbitrage-free arguments the value of this strategy
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should then coincide with the value of the option. The price of the option is then equal to the intial value
of the trading strategy.

We provide some mathematical definitions for this concept. A payoff H (discounted) is called attainable
if there exists a self-financing replicating strategy for it, i.e. a trading strategy φ such that VT (φ) = H
P-a.s. A financial market model is called complete if every payoff H is attainable. A sufficient condition
for a financial market model to be complete is given by the following theorem.

Theorem 2.2 (Complete markets). An arbitrage-free financial market model is complete if and only if
the equivalent martingale measure is unique. For every payoff H ∈ L0

+(FT ), there exists a unique price

process denoted by V Ht which admits no arbitrage. This price process is given by:

V Ht = EQ [H | Ft] ∀t ∈ [0, T ].

In particular, the option price is equal to

V H0 = EQ [H] .

We have obtained a strong characterization for financial market models. If there exists a unique equivalent
martingale measure Q for the process S1

t , the market is arbitrage-free and complete, and the price of any
payoff H can be found using theorem 2.2.

We will now prove that our current market model is arbitrage-free, by showing that there exists an
equivalent martingale measure. If we define

W ∗t = Wt +
µ− r
σ

t = Wt +

∫ t

0

λds,

where λ := µ−r
σ denotes the instantaneous risk premium (also called the instantaneous Sharpe ratio, we

can rewrite equation (2.7) to

(2.10)
dS1

t

S1
t

= σdW ∗t .

We now define the probability measure Q as

dQ
dP

∣∣∣∣
FT

= E

(
−
∫ T

0

λdW

)
= exp

(
−λWT −

1

2
λ2T

)
,

where E(·) denotes the stochastic exponential function (see [Pro04]). By definition, the probability
measure Q is equivalent to P (that is, P[A] = 0 if and only if Q[A] = 0 ∀A ∈ FT ). We then get that W ∗ is
a Q-Brownian motion by Girsanov’s theorem. Looking at equation (2.10), we can represent the solution
S1
t as a stochastic exponential:

S1
t = E

(∫ t

0

σdW ∗t

)
= exp

(
σW ∗t −

1

2
σ2t

)
.

So S1
t is actually a geometric Brownian motion under the measure Q, hence a Q-martingale. Thus, Q is

an equivalent martingale measure for S1 and our market model is arbitrage-free.

It can be proven that our model is complete as well. This result heavily depends on the assumption that
the filtration is generated by a Brownian motion, so the choice of the filtration is actually very important.
The proof for this statement will not be discussed here, but can be found in [Sch12]. We use theorem
2.2, which provides us the link to option pricing.

Let H be a payoff and Vt := EQ [H | Ft] its value process for t ∈ [0, T ]. The process Vt thus represents
the value of the payoff at time t. By Itô’s representation theorem we get

(2.11) Vt = EQ [H] +

∫ t

0

ψHs dW
∗
s ,

where ψH is a predictable process with the property that
∫ t
0

(
ψHs
)2
ds < ∞ Q−.a.s for each t ≥ 0 such

that
∫
ψHdW ∗ is a Q-martingale. From equation (2.10) and the self-financing condition (2.8) we see that

if we define

πHt =
ψHt
S1
t σ
,

ηHt = Vt − πHt S1
t ,

V0 = EQ [H] ,

(2.12)
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the strategy φH = (V0, π
H
t , η

H
t ) can be interpreted a trading strategy that is self-financing and replicates

the payoff H.

How do we obtain this replicating strategy? We will look at the case when H = h(S1
T ). Notice we can

rewrite

(2.13) S1
T = S1

t

S1
T

S1
t

= S1
t exp

(
σ(W ∗T −W ∗t )− 1

2
σ2(T − t)

)
,

The price of the payoff H is given by its value process Vt (we drop the dependency on H for notational
convenience). This process is given by the equation

Vt = EQ
[
h(S1

T ) | Ft
]
.

Notice that in equation (2.13), the factor S1
t obviously is Ft-measurable and that W ∗T−W ∗t is independent

of Ft and N (0, T − t)-distributed under Q since W ∗ is a Q-Brownian motion. Therefore it follows from
(2.13) that

(2.14) Vt = EQ
[
h(S1

T ) | Ft
]

= v(t, S1
t ).

The value of the option H at time t is thus a function of the time t and the value of S1
t . This function

v(t, x) is given by:

v(t, x) = EQ

[
h

(
x exp

(
σ(W ∗T −W ∗t )− 1

2
σ2(T − t)

)
)

)]
= EQ

[
h

(
x exp

(
σ
√

(T − t)Y − 1

2
σ2(T − t)

))]
=

∫ ∞
−∞

h

(
xe

(
σ
√

(T−t)y− 1
2σ

2(T−t)
))

1√
2π
e−

1
2y

2

dy,

where Y follows a N (0, 1) distribution under Q. If we assume this function is sufficiently smooth to apply
Itô’s lemma, we obtain:

dVt = dv(t, S1
t )

= vt(t, S
1
t )dt+ vx(t, S1

t )dS1
t +

1

2
vxx(t, S1

t )d〈S1〉t

= vx(t, S1
t )σS1

t dW
∗
t +

(
vt(t, S

1
t ) +

1

2
vxx(t, S1

t )σ2(S1
t )2
)
dt,

since for sharp bracket process of S1
t it holds that 〈S1

t 〉t =
∫ t
0

(
S1
s

)2
σ2dW ∗s . However, by definition

Vt is a local Q-martingale, so the two terms in the right hand side of the previous equation also must
be continuous local martingales. The dt-integral is of finite variation and since any continuous local
martingale of finite variation must vanish, we get that:

dVt = vx(t, S1
t )σS1

t dW
∗
t = vx(t, S1

t )dS1
t = vx(t, S1

t )S1
t σdW

∗
t .

Comparing this result with equation (2.11) and equation (2.12) we obtain the hedging strategy explicitly
as:

πHt =
∂v

∂x
(t, S1

t ),

which is commonly referred to as the delta of the option. Furthermore, from the above local martingale
argument we can obtain that the function v should satisfy the following PDE:

0 =
∂v

∂t
+

1

2
σ2x2

∂2v

∂x2
, on (0, T )× (0,∞),

with boundary condition v(T, x) = h(x) on (0,∞). Switching back to undiscounted units by using the
relation:

v(t, x) = e−rtṽ(t, xert),

we obtain

0 =
∂ṽ

∂t
+ rx̃

∂ṽ

∂x̃
+

1

2
σ2x̃2

∂2ṽ

∂x̃2
− rṽ,

with the boundary condition ṽ(T, x̃) = h̃(x̃). This is the famous Black-Scholes option pricing PDE.

In the case of a call option one can obtain an analytical solution for the price of this opion. Remember
that the payout of this option can be represented as the function h(S1

T ) = max(S1
T −K, 0) where K ∈ R

denotes the discounted strike and S1
T the discounted spot price at maturity. By substitution of h in (2.14)
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and by following the same reasoning as above we get that the value at time t of this option is given by
its value process Vt:

Vt = EQ

[(
x exp

(
σ
√

(T − t)Y − 1

2
σ2(T − t)

)
−K

)+
]∣∣∣∣∣
x=S1

t

,

where Y follows a N (0, 1) distribution. We will use the following lemma:

Lemma 2.1 (From [Sch12]). If x > 0, a > 0, b ≥ 0 and Y follows a N (0, 1) distribution under Q, then:

EQ

[(
xeaY−

1
2a

2

− b
)+]

= xΦ

(
log x

b + 1
2a

2

a

)
− bΦ

(
log x

b −
1
2a

2

a

)
Proof. Notice that the expectation is equal to

(2.15) EQ

[
xeaY−

1
2a

2

1{
xeaY−

1
2
a2>b

}]− bQ [xeaY− 1
2a

2

> b
]
.

Where 1A is the indicator function of the event A. We compute both parts separately. Starting with the

expectation term and noting that A :=
{
xeaY−

1
2a

2

> b
}

=
{
Y >

log b
x+

1
2a

2

a

}
, one obtains

EQ

[
xeaY−

1
2a

2

1A

]
=

∫
A

xeay−
1
2a

2 1√
2π
e−

y2

2 dy

=

∫ ∞
log b

x
+1

2
a2

a

x√
2π
e−

(y−a)2
2 dy

=
x√
2π

∫ log x
b
+1

2
a2

a

−∞
e
u2

2 du

= xΦ

(
log x

b + 1
2a

2

a

)
,

where we used the substitution u = a − y and flipped the integration boundaries in the third equation.
Computing the second term we get:

bQ [A] = b

(
1−Q

[
Y ≤

log b
x + 1

2a
2

a

])

= bΦ

(
−

log b
x + 1

2a
2

a

)

= bΦ

(
log x

b −
1
2a

2

a

)
,

and this concludes the proof. �

Applying the above lemma with x = S1
t , a = σ

√
T − t and b = K and passing to undiscounted units we

get the Black-Scholes formula for a call option:

Ṽt = S̃1
t Φ(d1)− K̃e−r(T−t)Φ(d2),

where

d1,2 =
log

S̃1
t

K̃
+
(
r ± 1

2σ
2
)

(T − t)
σ
√
T − t

.
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3. Introduction to BSDEs

In this section we will discuss some usual assumptions and important theorems on BSDEs. Furthermore,
we will study the specific case of linear BSDEs and relevant theorems. We will consider an example in
the beforementioned market model and explain the link between BSDEs and the Black-Scholes formula.
We will also consider an extended market model with a bid-ask spread for interest rates.

3.1. Definitions and theorems. Throughout this section we will work on the usual probability space(
Ω,F , (Ft)0≤t≤T ,P

)
, where F denotes the right-continuous version of the filtration generated by a

Brownian motion and augmented with the P-nullsets so that the probability space is complete. This is
the same probability space as in section 2. We define the following sets:

(1) S2 (0, T ) denotes the set of R-valued progressively measurable processes Y such that:

E
[

sup
0≤t≤T

|Yt|2
]
<∞.

(2) H2 (0, T )
d

denotes the set of Rd-valued progressively measurable processes Z such that:

E

[∫ T

0

|Zt|2dt

]
<∞.

We will consider the following BSDE:

(3.1) −dYt = f(t, Yt, Zt)dt− ZtdWt,

with terminal condition Yt = ξ, where ξ : Ω → Rd is an FT -measurable random variable that serves as
a terminal condition and f : Ω × [0, T ] × R × Rd → R is the the driver of the process. Furthermore, we
assume that:

(1) ξ ∈ L2 (Ω,FT ,P,R)
(2) f is progressively measurable and Lipschitz-continuous in y and z

(3) f (·, 0, 0) ∈ H2 (0, T )
d

We call f and ξ the standard parameters for the BSDE. A solution to (3.1) is a pair (Yt, Zt) ∈ S2 (0, T )
d×

H2 (0, T ) satisfying (3.1). Under the above mentioned assumptions one can prove the following theorem:

Theorem 3.1 ([Pha09]). Given a pair of standard parameters (f, ξ), the BSDE (3.1) has a unique
solution (Yt, Zt).

A proof of this theorem can be found, for example, in [Pha09].

Example 3.1 (BSDE for Black-Scholes market model). We will show an example of a model for a
financial market where a BSDE naturally arises. We will look at the following market model, which is
the d-dimensional generalization of the Black-Scholes model discussed in section 2:

(1) There is a riskless asset which behaviour is modelled by:

S̃0
t = S̃0

t rtdt,

where rt denotes the interest rate on the market at time t.
(2) We model d risky assets whose dynamics are modelled by the following (forward) SDEs:

dS̃it = S̃it

µitdt+

d∑
j=1

σi,jt dW j
t

 ,

where µit is the so called drift term, σi,jt is the covariance between stock i and j and

√∑d
j=1

(
σi,jt

)2
is the volatility of stock i.

(3) We assume the existence of a predictable and bounded process λt (called the risk premium) such
that

µt − rt1 = σtλt,

where µt is the vector µt = (µ1
t , . . . , µ

d
t ) and σt is the volatility matrix with entries [σt]i,j = σi,jt .



15

Let πt denote the row vector of the holdings in each asset. We will only consider self-financing strategies.
The wealth process Yt then satisfies:

dYt =

d∑
i=1

πit
dS̃it
S̃it︸ ︷︷ ︸

value from risky assets

+

(
Yt −

d∑
i=1

πit

)
dS̃0

t

S̃0
t︸ ︷︷ ︸

value from riskless asset

= πt (σtdWt + btdt) + (Yt − πt1) rtdt

= (rtYt + πtσtλt) dt+ πtσtdWt.

Let Zt := πtσt, then this equation is equal to

(3.2) −dYt = −rtYtdt− Ztλtdt− ZtdWt,

which is a linear BSDE. When we face the problem of contingent claim valuation, we define the terminal
condition for the wealth process to be equal to the option payoff at maturity. The process Yt then
represents the value of the claim at time t and the process πt represents the hedging portfolio.

To obtain our hedging process πt we need to invert the volatility matrix σt, so another assumption we
will make is that we assume that σt is invertible. In this case our market is actually complete in the
sense that any option payoff H ∈ L0

+(FT ) is attainable. Because the BSDE (3.2) has a unique solution
(Yt, Zt) and since we assume that σt is invertible, we can obtain the corresponding hedging portfolio πt
for arbitrary H. The financial market model in this example is actually the same model discussed in
section 2, the Black-Scholes model.

An extension of the usual Feynman-Kac formula gives a relation between BSDE and semilinear PDEs,
which is highly relevant for the purposes of this theses. We will look at semilinear PDEs of the form:

(3.3) −∂v
∂t
− Lv − f

(
t, x, v, σ̄TDxv

)
= 0,

with terminal condition v(T, x) = g(x) and where L stands for the differential operator:

Lv = µ̄(x)Dxv(t, x) +
1

2
Tr(σ̄(x)σ̄T (x)D2

xv(t, x)),

with σ̄T denoting the transpose of σ̄. This PDE has a probabilistic representation by means of the BSDE
(3.1) with driver f(t,Xt, Yt, Zt) and terminal condition YT = g(XT ) and the forward SDE (taking values
in Rd)

(3.4) dXt = µ̄(Xt)dt+ σ̄(Xt)dWt,

where X0 is given.

Theorem 3.2 (Feynman-Kac analogue, [Pha09]). Let v be a classical solution to (3.3), satisfying some
growth conditions. Let Yt := v(t,Xt) and Zt := σ̄T (Xt)Dxv(t,Xt) for 0 ≤ t ≤ T . Then the pair (Yt, Zt)
is a solution to the BSDE

(3.5) −Yt = f(t,Xt, Yt, Zt)dt− ZtdWt,

with the usual assumptions.

Proof. We apply Itô’s lemma to v(t,Xt):

dv(t,Xt) = vt(t,Xt)dt+ σ̄(Xt)
TDxv(t,Xt)dWt + Lv(t,Xt)dt

= (vt(t,Xt) + Lv(t,Xt)) dt+ σ̄(Xt)
TDxv(t,Xt)dWt

= −f(t,Xt, v(t,Xt), σ̄(Xt)
TDxv(t,Xt))dt+ σ̄(Xt)

TDxv(t,Xt)dWt

= −f(t,Xt, Yt, Zt)dt+ ZtdWt.

�

A similar theorem in the other direction also exists, but will not be discussed here. The combination of
equations (3.4) and (3.5) and an initial condition for the forward SDE and a terminal condition for the
BSDE is called a forward-backward stochastic differential equation (FBSDE).
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3.2. Linear BSDEs. In this section we will consider the case where the driver of a BSDE is a linear
function in y and z. We assume the driver function is of the form

f(t, Yt, Zt) = AtYt +BtZt + Ct,

where At, Bt and Ct are assumed to be progressively measurable processes which are R and Rd-valued
respectively, and Ct is a process in H2 (0, T ). It turns out that we can actually solve this type of BSDE
explicitly.

Proposition 3.3. Consider the linear BSDE

−dYt = (AtYt +BtZt + Ct) dt− ZtdWt, Yt = ξ,

with the usual assumptions. The unique solution (Yt, Zt) is then given by

ΓtYt = E

[
ΓT ξ +

∫ T

t

ΓsCsds | Ft

]
,

where Γt is the solution to the linear SDE:

dΓt = Γt (Atdt+BtdWt) , Γ0 = 1,

and Zt is given by Itô’s representation theorem of the martingale

Mt := E

[
ΓT ξ +

∫ T

0

ΓsCsds | Ft

]
.

The proof of this proposition can also be found in [Pha09]. Note that we can write down an explicit
formula for the process Γt in the above proposition by using the stochastic exponential. We get

Γt = E (Atdt+BtdWt)

= exp

{(
At −

1

2
B2
t

)
dt+BtdWt

}
,

where we used that E (Xt) = exp
{
Xt − 1

2 〈Xt〉
}

if Xt is a continuous semimartingale. Since Bt is
predictable and continuous and Wt is a martingale, we get by properties of the stochastic integral that
the process

∫
BtdWt is a continuous local martingale. Furthermore, the process

∫
Atdt is of finite variation

which gives us that the process
∫
Atdt+

∫
BtdWt is a continuous semimartingale.

Example 3.2 (Contingent claim valuation). The setting is the same as in example 3.1. The problem of
contingent claim valuation boils down to solving the BSDE

(3.6) −dYt = −rtYtdt− Ztλtdt− ZtdWt,

with terminal condition YT = H̃, where H̃ is the undiscounted contingent claim payoff. Yt will represent
our portfolio value and Zt = πtσt will give us our hedging portfolio (by inversion of σt).

To simplify this example and to show the analogy with the Black-Scholes model we will assume from now
on that rt = r, λt = λ and σt = σ, i.e. we assume a constant interest rate, risk premium and volatility.
Furthermore we assume that d = 1. This corresponds to a market where there is only a bank account,
respectively one asset (S̃1

t = S̃t) and an option on that asset with undiscounted payoff H̃.

Notice that the driver of BSDE (3.2) is linear so that we can apply proposition 3.3. We then obtain for
Γt the expression:

Γt = exp

{(
−r − 1

2
λ2
)
dt− λdWt

}
.

Applying proposition 3.3 now gives us:

Yt =
1

Γt
EP [ΓTH | Ft]

= EP

[
ΓT
Γt
H | Ft

]
= EP

[
exp

{(
−r − 1

2
λ2
)

(T − t)− λ (WT −Wt)

}
H | Ft

]
,
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where we used the fact that Γt is adapted to Ft. If we now define

dQ
dP

∣∣∣∣
FT

:= E

(
−
∫ T

0

λdWs

)

= exp

{
−1

2

∫ T

0

λ2ds−
∫ T

0

λdWs

}
,

which is the usual risk-neutral measure, we see that its density process Dt is equal to

Dt = EP

[
dQ
dP
| Ft
]

= E
(
−
∫ t

0

λdW

)
= exp

{
−λWt −

1

2
λ2t

}
,

where we used the fact that E
(
−
∫ t
0
λdWs

)
is a geometric Brownian motion, hence it is a martingale.

By Bayes’ rule, we now get that the conditional expectation under the measure P is equal to:

Yt = EQ

[
exp {−r (T − t)} H̃ | Ft

]
.

The value of the contingent claim is thus the discounted payoff under the usual risk-neutral measure,
which is exactly the result from the Black-Scholes model.

The BSDE approach to the valuation of a contingent claim thus produces the exact same result in our
market model as the Black-Scholes formula. However, unlike the Black-Scholes model, we do not need a
change of measure and do all of our calculations under the real world P-measure. We can use theorem
3.2 to obtain the Black-Scholes PDE:

Example 3.3 (Black-Scholes PDE). If we consider the BSDE in equation (3.2) we get by theorem 3.2
that the pair {

Yt := v(t, S̃t)

Zt := S̃tσ
∂v
∂s

(
t, S̃t

) ,

is a solution to the BSDE. The function v(t, x) is a solution to the PDE (after simplifications):

0 =
∂v

∂t
+

1

2
σ2S̃2 ∂

2v

∂S̃2
+ rS̃

∂v

∂S̃
− rv,

with terminal condition v(T, S̃T ) = H(S̃T ). This is exactly the Black-Scholes PDE!

Example 3.4 (Market with bid-ask spread for interest rates). In this example we will extend our initial
market model. In this model, an investor borrows at an interest rate Rt and lends at a rate rt ≤ Rt for

all t ∈ [0, T ]. This means that if Yt >
∑d
i=1 π

i
t we invest in the bond at an interest rate rt, and we borrow

at an interest rate Rt if Yt <
∑d
i=1 π

i
t. The dynamics of the self-financing portfolio are now given by

dYt =

d∑
i=1

πit
dS̃it
Sit

+

(
Yt −

d∑
i=1

πit

)+

rtdt−

(
Yt −

d∑
i=1

πit

)−
Rtdt

= πt (σtdWt + µtdt) + (Yt − πt1) rtdt− (Rt − rt) (Yt − πt1)
−
dt

= rtYtdt+ πtσtλ
r
tdt+ πtσtdWt − (Rt − rt) (Yt − πt1)

−
dt︸ ︷︷ ︸

extra cost when borrowing

.

The driver of this BSDE is still Lipschitz-continuous, but not linear. We will, in general, not be able to
find an explicit solution to this BSDE. Clearly, we need a numerical method to approximate solutions to
these BSDEs and we will develop such a method in the next section.
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4. Numerical method for BSDEs

In this section we will develop a numerical method which approximates the solution of a BSDE. We
will look at the discretization of the BSDE and at the approximation of conditional expectations by
discretizing the Brownian motion.

Throughout this section we will work with the following two equations:

(4.1)

{
Yt = g(XT ) +

∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdWs,

Xt = X0 +
∫ t
0
µ̄(Xs)ds+

∫ t
0
σ̄(Xs)dWs,

where we represented the BSDE in integral form, instead of differential form. Equation (4.1) is a combi-
nation of a forward SDE and a BSDE, where the terminal condition of the BSDE is now allowed to be
dependent on the process Xt. As mentioned earlier, such type of equations is called a forward-backward
stochastic differential equation (FBSDE). Notice that all of the examples discussed in section 2 were in
fact such systems of a forward SDE and BSDE, where the forward SDE modelled the stock behaviour
and the backward SDE modelled the portfolio dynamics.

In equation (4.1), we also left out the dependence of the driver f on the forward process Xt, since in all
examples we will discuss the driver function will not depend on the process Xt. However, the numerical
method developed in this section can easily be extended to support the dependency of the function f on
the process Xt.

For the rest of this section, let Π be a partition of time points 0 = t0 < t1 < . . . < tM = T of [0, T ],
with a fixed time step ∆t := ti+1 − ti. We will use the notation Xm = Xtm , Ym = Ytm , Zm = Ztm and
Wm = Wtm and set ∆Wm = Wm+1 −Wm.

4.1. Discretization of forward SDE. In this section we will look at a method that approximates the
numerical solution of the forward SDE in equation (4.1). To analyze the behaviour of the numerical
methods we will develop throughout this thesis, we introduce the following definitions:

Definition 4.1 (Strong convergence of order α). A time-discretized approximation Xπ
m converges to the

stochastic process X in the strong sense with order α if there exists a constant C ∈ R such that:

E [|Xπ
m −Xm|] ≤ C∆tα.

Definition 4.2 (Weak convergence of order α). A time-discretized approximation Xπ
m converges to the

stochastic process X in the weak sense with order α if there exists a constant C ∈ R such that for every
infinitely often differentiable function φ : Rd → R with at most polynomially growing derivatives it holds
that:

|E [φ (Xπ
m)]− E [φ (Xm)]| ≤ C∆tα.

We will now look at a numerical scheme for the forward SDE. Just as in the deterministic case, we can
derive numerical schemes by looking at the Taylor expansions of certain functions. We will now do the
same, but in a stochastic setting. The following derivation can also be found in [KPS94].

We consider a function k : R→ R that is twice differentiable and an Itô process Xt with drift µ̄(Xt) and
diffusion σ̄(Xt) also twice differentiable. Consider the integral form of the forward SDE in (4.1):

(4.2) Xt = Xt0 +

∫ t

t0

µ̄(Xs)ds+

∫ t

t0

σ̄(Xs)dWs,

for t ∈ [t0, T ]. We further assume some suitable integrability conditions on µ̄ and σ̄. By Itô’s lemma we
get:

k(Xt) = k(Xt0) +

∫ t

t0

µ̄(Xs)k
′(Xs) +

1

2
σ̄(Xs)

2k′′(Xs)ds

+

∫ t

t0

σ̄(Xs)k
′(Xs)dWs.

By defining:

L0k := µ̄k′ +
1

2
σ̄2k′′,(4.3)

L1k := σ̄k′,(4.4)
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we can rewrite (4.3) to:

(4.5) k(Xt) = k(Xt0) +

∫ t

t0

L0k(Xs)ds+

∫ t

t0

L1k(Xs)dWs.

Consider now the integral form of Xt in (4.2). If we now substitute the functions µ̄ and σ̄ for k in (4.5)
and then substitute these expressions in equation (4.2), we get the so-called Itô-Taylor expansion of first
order of Xt:

Xt = Xt0 +

∫ t

t0

(
µ̄(Xt0) +

∫ s

t0

L0µ̄(Xp)dp+

∫ s

t0

L1µ̄(Xp)dWp

)
ds

+

∫ t

t0

(
σ̄(Xt0) +

∫ s

t0

L0σ̄(Xp)dp+

∫ s

t0

L1σ̄(Xp)dWp

)
dWs

= Xt0 + µ̄(Xt0)

∫ t

t0

ds+ σ̄(Xt0)

∫ t

t0

dWs +R

= Xt0 + µ̄(Xt0) (t− t0) + σ̄(Xt0) (Wt −Wt0) +R,

where R is some remainder term consisting of double integrals. This Itô-Taylor expansion gives us the
following Euler-Maruyama scheme as an approximation for the SDE in (4.2)

Xπ
m+1 = Xπ

m + µ̄(Xπ
m)∆t+ σ̄(Xπ

m)∆Wm,

for m = 0, . . . ,M − 1 with Xπ
0 = X0. One can prove the following theorem, concerning the Euler-

Maruyama scheme:

Theorem 4.1 ([KPS94]). In the above setting, the Euler-Maruyama method converges in the strong sense
with order α = 1

2 and in the weak sense with order α = 1.

Example 4.1 (Approximation of GBM). To illustrate the meanings of both types of convergence, and to
verify the above theorem, we discuss the simple example of approximating geometric Brownian motion.
This process satisfies the following SDE:

dXt

Xt
= µdt+ σdWt, X0 = x,

where Wt is a standard one-dimensional Brownian motion, x, µ ∈ R and σ ∈ R>0. We can obtain a
solution of this SDE by either using Itô’s lemma or the stochastic exponential. Either way, we obtain the
following expression for the solution:

Xt = X0 exp
{(
µ− σ

2

)
t+ σWt

}
.

We approximate the geometric Brownian motion by the following Euler-Maruyama scheme:

Xm+1 = Xm + µXm∆t+ σXm∆Wm.

The Brownian increments are simulated by using the randn (which produces normally distributed random
variables) command in Matlab. The parameters used in this experiment are

µ = 1, σ = 1, T = 1 and X0 = 1.5.

To illustrate weak convergence of the Euler-Maruyama method, we approximate the expectation of a
geometric Brownian motion. One can derive from the lognormal properties of Xt that this expectation
should be equal to X0e

µt. Figure 4.1 shows both the weak and strong error of this Euler-Maruyama
approximation for different values of the time step ∆t: We clearly see that the strong order of convergence
is 1

2 and the weak order of convergence is 1.

4.2. Discretization of the BSDE. In this section we will develop a discretization scheme for the
backward SDE in (4.1). Firstly, we will approximate our terminal condition by substituting for Xt its
approximation by the Euler scheme:

YM = g (Xπ
M) .

From theorem 3.2 we also obtain a terminal condition for the process Zt. This theorem states that
(Yt, Zt) = (v(t,Xt), σ̄(Xt)vx(T,XT )) is the solution of equation (4.1). However, at time T we know that
v(t,XT ) = g(XT ) and hence we also know that ZT = σ̄(Xt)gx(XT ). The terminal condition for Zt is
obtained by substituting for XT its Euler scheme:

ZM = σ̄(Xπ
M)gx(Xπ

M).
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Figure 4.1. Log-log plot of the strong and weak error of the Euler-Maruyama approximation.

To develop a numerical scheme for the BSDE, we start with the following discrete version of the BSDE
on the interval [tm, tm+1]:

(4.6) Ym = Ym+1 +

∫ tm+1

tm

f(s, Ys, Zs)ds−
∫ tm+1

tm

ZsdWs.

To obtain a numerical discretization for the process Yt, we will take conditional expectations with respect
to the filtration Ftm . For notational convenience we will define:

Em [· ] = E [· | Ftm ] .

Since Ym and Zm are adapted to Ftm , we get Em [Zm ] = Zm and Em [Ym ] = Ym. Taking conditional
expectations at both sides of equation (4.6) gives us:

Ym = Em [Ym+1 ] + Em
[∫ tm+1

tm

f(s, Ys, Zs)ds

]
− Em

[∫ tm+1

tm

ZsdWs

]
= Em [Ym+1 ] +

∫ tm+1

tm

Em [f(s, Ys, Zs) ] ds− Em
[∫ tm+1

tm

ZsdWs

]
,

where we used Fubini’s theorem to switch the order of integration in the first integral. Since we assumed

that Zt ∈ H2
T (0, T ), we get that the integral

∫ t
tm
ZsdWs (with t ∈ [tm, T ]) is a martingale and thus that

the last integral in the above equation has conditional expectation zero with respect to Ftm . We thus
arrive at:

(4.7) Ym = Em [Ym+1 ] +

∫ tm+1

tm

Em [f(s, Ys, Zs) ] ds.

We will approximate the integral in equation (4.7) with a theta approximation: a convex combination
of an explicit (term at time tm+1) and implicit (term at time tm) term (also see [Ise09]). The resulting
equation is:

Ym ≈ Em [Ym+1 ] + ∆tθ1f(tm, Ym, Zm)

+∆t (1− θ1)Em [f(tm+1, Ym+1, Zm+1) ] , θ1 ∈ [0, 1] .

Here we used the fact that the processes Yt and Zt are Ftm -measurable. Such theta-methods are known
to have order of convergence two when θ1 = 1

2 and order of convergence equal to one otherwise. To obtain
a numerical scheme for the process Zt, we multiply both sides of equation (4.6) by ∆Wm and then take
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conditional expectations:

0 = Em [∆WmYm+1 ] + Em
[
∆Wm

∫ tm+1

tm

f(s, Ys, Zs)ds

]
−Em

[
∆Wm

∫ tm+1

tm

ZsdWs

]
= Em [∆WmYm+1 ] + Em

[∫ tm+1

tm

f(s, Ys, Zs) (Wm+1 −Ws +Ws −Wm) ds

]
−Em

[∫ tm+1

tm

dWs ·
∫ tm+1

tm

ZsdWs

]
= Em [∆WmYm+1 ] +

∫ tm+1

tm

Em [f(s, Ys, Zs) (Wm+1 +Ws −Ws −Wm) ] ds

−
∫ tm+1

tm

Em [Zs ] ds

= Em [∆WmYm+1 ] +

∫ tm+1

tm

Em [f(s, Ys, Zs) ]Em [(Wm+1 −Ws) ] ds

+

∫ tm+1

tm

Em [f(s, Ys, Zs) (Ws −Wm) ] ds−
∫ tm+1

tm

Em [Zs ] ds

= Em [∆WmYm+1 ] +

∫ tm+1

tm

Em [f(s, Ys, Zs) (Ws −Wm) ] ds

−
∫ tm+1

tm

Em [Zs ] ds,

where we again used Fubini’s theorem to rewrite the first integral and we used the Itô isometry to rewrite
the last integral. We approximate both integrals by a theta-method:

0 = Em [∆WmYm+1 ] + ∆t (1− θ2)Em [f(tm+1, Ym+1, Zm+1)∆Wm ]

−∆tθ2Zm −∆t (1− θ2)Em [Zm+1 ] , θ2 ∈ [0, 1] ,

where we used some adaptedness properties of Ym and Zm and the fact that ∆Wm|Ftm ∼ N (0,∆t). We
can rewrite both equations for Ym and Zm to obtain the following numerical scheme:

Y πM = g(Xπ
M), ZπM = σ̄(Xπ

M)gx(Xπ
M)

Zπm = −θ−12 (1− θ2)Em
[
Zπm+1

]
+

1

∆t
θ−12 Em

[
Y πm+1∆Wm

]
+θ−12 (1− θ2)Em

[
f(tm+1, Y

π
m+1, Z

π
m+1)∆Wm

]
,

Y πm = Em
[
Y πm+1

]
+ ∆tθ1f(tm, Y

π
m, Z

π
m) + ∆t (1− θ1)Em

[
f(tm+1, Y

π
m+1, Z

π
m+1)

]
,

for m =M− 1, . . . , 0. Notice that when θ1 = 0 we obtain an explicit scheme for Y πm and that θ1 ∈ (0, 1]
results in an implicit scheme. The implicit scheme is solved by using Picard iterations, which will be
discussed in the next section. To solve for Zπm we clearly need θ2 6= 0 and we then obtain an explicit
scheme for Zπm.

It can be shown that, since Xπ
t is a Markov process and since the terminal condition is a function of Xπ

M,
there are deterministic functions y(tm, x) and z(tm, x), such that

(4.8) Y πm = y(tm, X
π
m), Zπm = z(tm, X

π
m)

We can thus obtain these functions by using the following scheme:

y(tM, x) = g(x), z(tM, x) = σ̄(x)gx(x)

z(tm, x) = −θ−12 (1− θ2)Exm
[
z(tm+1, X

π
m+1)

]
+

1

∆t
θ−12 Exm

[
y(tm+1, X

π
m+1)∆Wm

]
+θ−12 (1− θ2)Exm

[
f(tm+1, y(tm1

, Xπ
m+1), z(tm1

, Xπ
m+1))∆Wm

]
,

y(tm, x) = Exm
[
y(tm1 , X

π
m+1)

]
+ ∆tθ1f(tm, y(tm, X

π
m), z(tm, X

π
m))

+∆t (1− θ1)Exm
[
f(tm+1, y(tm, X

π
m+1), z(tm, X

π
m+1))

]
,

for m =M− 1, . . . , 0. Here we used the notation Exm [· ] = E [· |Xπ
m = x].
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It is proven in [ZWP09] that this scheme converges with order of convergence equal to two in the case
θ1 = θ2 = 1

2 and with order of convergence equal to one all other cases. For the case θ1 = θ2 = 1 we
obtain a scheme encountered often in the literature (for example in [Zha04] and [BT04]) and which is
referred to as the Euler scheme for the BSDE. In the case θ1 6= 0 we are trying to find the fixed-point y
of the equation

y = Exm
[
y(tm1

, Xπ
m+1)

]
+ ∆tθ1f(tm, y, z(tm, X

π
m))

+ ∆t (1− θ1)Exm
[
f(tm+1, y(tm, X

π
m+1), z(tm, X

π
m+1))

]
= ∆tθ1f(tm, y, z(tm, X

π
m)) + h(tm, X

π
m+1)

(4.9)

Assuming the driver function is bounded and Lipschitz continuous in the variable y with Lipschitz constant
equal to L, we get that for time steps ∆t, such that ∆tθ1L < 1, a unique fixed-point of equation (4.9)
exists by the Banach fixed-point theorem. It also follows that in this case the iteration converges to this
fixed-point for any initial guess y0. The rate of convergence is equal to ∆tθ1L, so it is dependent on the
size of the Lipschitz constant of the function f .

To use this theta-discretization, we need to approximate the conditional expectations Exm [· ]. These
conditional expectations will be approximated by using a binomial tree approximation.

4.3. Binomial tree approximation. Binomial trees have been used for decades in option pricing prob-
lems. They are an attractive tool because they are easy to understand and still provide accurate numerical
approximations, at least to most vanillia option pricing problems. In the binomial option pricing model
we are also approximating conditional expectations of the form

EQ [H | Ft] ,

where H represents the discounted option payoff, Q the risk-neutral martingale measure and Ft the
filtration on the market. This suggests we could use some sort of binomial method to approximate the
conditional expectations in our time-discrization of the FBSDE. Our final algorithm will simulate the
driving Brownian motion and the FSDE in a forward manner and then approximate the BSDE in a
backwards fashion.

Firstly, we will aproximate the Brownian motion that drives the FBSDE by a scaled random walk:

(4.10) Wm ≈
√

∆t

m∑
j=1

εj = Wm−1 +
√

∆tεm

where we still use the notation from the previous section and where the εj are independent and such that:

P(εj = 1) = P(εj = −1) =
1

2
.

As an initial value, set W0 = 0. If we define the process Wπ
t as the process equal to Wm on the time

points tm and interpolate in a linear manner on the time intervals [tk, tk+1) for k ∈ {0, 1, . . . ,M− 1},
the central limit theorem guarantees the convergence of this process Wπ

t to a N (0, t)-distributed random
variable.

Since, furthermore Wπ
0 = 0, Wπ

t −Wπ
s is N (0, t − s) distributed, Wπ

t has independent increments and
Wπ
t is continuous, we get that Wπ

t converges in distribution to a standard Brownian motion. This implies
that this approximation is of weak order of convergence equal to one.

Because after every time step the approximation in (4.10) can only attain two different values, it can be
represented in a binomial tree as follows:
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0

−
√

∆t

+
√

∆t

−2
√

∆t

0

+2
√

∆t

down

up

up

down

up

down

t = 0 t =
√

∆t t = 2
√

∆t

An attractive property of this binomial tree is that it is recombining, a downward move followed by an
upward move is the same as an upward move followed by a downward move. Such trees are computation-
ally less expensive, because the number of nodes in a recombining tree at time point k is equal to k + 1
and for a non-recombining tree the number of nodes at time k is equal to 2k. In practice, non-recombing
trees are not used frequently because of the exploding number of nodes in the tree.

For easier description, we will use an upper-triangular form for the binomial tree and denote a node in
the tree by a pair (i, j), where i denotes the space movement of Wm and j denotes the current time point.
This notation is borrowed from [Pen10]. The following figure illustrates our notation:

(0,0) (0,1)

(1,1)

(0,2)

(1,2)

(2,2)

(0,3)

(1,3)

(2,3)

(3,3)

t = 0 t =
√

∆t t = 2
√

∆t t = 3
√

∆t

For example, node (0,1) denotes a downwards move of the Brownian motion after the first time step and
node (1,1) denotes an upward move of the Brownian motion. As a second example: node (1,2) denotes
either a downward move in the first time step and a upward move in the second time step, or a upward
move in the first step and a downward move in the second step.

The forward SDE is approximated by the Euler-Maruyama approximation

(4.11) Xπ
m+1 = Xπ

m + µ̄(Xπ
m)∆t+ σ̄(Xπ

m)∆Wm,

as mentioned in sections 4.1 and 4.2. Since the Brownian motion is approximated by the random walk
in (4.10), the approximation Xπ

m also inherits the binomial tree structure of Wm. From (4.10) it also

follows that ∆Wm =
√

∆tεj , so the binomial tree for equation (4.11) now becomes:

Xπ
i,j+1 = Xi,j + µ̄(Xπ

i,j)∆t− σ̄(Xπ
i,j)
√

∆t

Xπ
i+1,j+1 = Xi,j + µ̄(Xπ

i,j)∆t+ σ̄(Xπ
i,j)
√

∆t,
(4.12)

for all j = 1, . . . ,M and i = 1, . . . , j and where Xπ
i,j represents the value of the approximation Xπ at

node (i, j). We will call approximation (4.12) the binomial approximation of the forward SDE.

This binomial tree approximation does not have to be recombining by definition, as this property is
dependent on the functions µ̄ and σ̄. Since forM = 15 the amount of nodes in a non-recombining tree is
already equal to 215 = 32768, such trees are not feasible from a computational point of view. A practical
algorithm for BSDEs can not be constructed with such trees, therefore we will only consider a recombing
binomial tree structure for approximation (4.12) in our algorithm.

Example 4.2 (Binomial tree approximation of GBM). In this example we will illustrate the approxima-
tion given in equation (4.12) and discuss the convergence of this approximation. The SDE which we will
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approximate will be the following

dXt

Xt
= µdt+ σdWt,

with µ ∈ R, σ ∈ R>0 and X0 ∈ R. This is the same SDE considered in example 4.1 and from that we
know that the solution of the above SDE is a geometric Brownian motion. The binomial approximation
to this SDE is

Xπ
i,j+1 = Xi,j

(
1 + µ∆t− σ

√
∆t
)

Xπ
i+1,j+1 = Xi,j

(
1 + µ∆t+ σ

√
∆t
)
,

(4.13)

where we use the same notation defined earlier. The values used for µ, σ and X0 are

µ = 1, σ = 1, T = 1 and X0 = 1.5,

and we set the time step equal to dt = T
h where h = 10 · k with k = 1, . . . , 1000. In each time step we use

M = 200 simulations. Figure 4.2 shows the value of the weak error for each time step: The convergence

Figure 4.2. Plot of the weak error of the binomial tree approximation.

matches with what we already know: this binomial approximation of the Brownian motion results only
in weak convergence, and the order of weak convergence is equal to one. Since we are only interested in
computing conditional expectations, we see from the definition of the weak error that weak convergence
is sufficient for our goals.

Since we are now able to compute the terminal values of the process Xt at each terminal node of the
binomial tree, we can compute the terminal conditions for the processes Yt and Zt of our BSDE according
to the numerical discretization in (4.9). This enables us to compute the values of Yt and Zt at earlier
nodes in the tree.

Suppose we want to approximate the value of Zt at node (i, j) by scheme (4.9). One of the quantities we
then have to compute is the conditional expectation

Em
[
Y πj+1∆Wj

]
= Exm

[
y(tj+1, X

π
j+1)∆Wj

]
=
√

∆tExm
[
y(tj+1, X

π
j+1)εj

]
.

The conditional expectation with respect to the process Xt tells us in which node we currently are, say
this is node (i, j). Since we are working within a binomial tree, the discretized Brownian motion can only

move up (+
√

∆t) or down (-
√

∆t) with probability equal to 1
2 each in the next time step. There are thus

only two possible values for the random variable Yj+1 = y(tj+1, X
π
j+1) in this model, given the current

value of Xj and they each occur with probability equal to 1
2 . Using the definition of the conditional

expectation, we can thus approximate:

Exm
[
Y πj+1∆Wj

]
≈
√

∆t

2

(
Y πi+1,j+1 − Y πi,j+1

)
.
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Approximating the other conditional expectations in our discretization, we finally arrive at the following
backward scheme:

Y πi,M = g(Xπ
i,M), Zπi,M = σ̄(Xπ

i,M)gx(Xπ
i,M) ∀i = 1, . . . ,M

Zπi,j =
θ2 − 1

2θ2

[
Zπi,j+1 + Zπi+1,j+1

]
+

1

2θ2
√

∆t

[
Y πi,j+1 − Y πi+1,j+1

]
+

1− θ2
2θ2

√
∆t
[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1)− f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
Y πi,j =

1

2

[
Y πi,j+1 + Y πi+1,j+1

]
+ ∆tθ1f(tj , Y

π
i,j , Z

π
i,j) +

∆t (1− θ1)
1

2

[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1) + f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
,

for i = 1, . . . , j and j = 1, . . . ,M and where Zi,j and Yi,j denote the value of the processes Yt and Zt
at node (i, j) in the tree, θ1 ∈ [0, 1] and θ2 ∈ (0, 1]. Notice that we have an implicit expression for Y πi,j .
Picard iterations are used to approximate the solution to this implicit equation. Starting with an initial
estimate

(Y πi,j)0 = Em [Yj+1 ] =
1

2

(
Y πi,j+1 + Y πi+1,j+1

)
,

we then calculate P Picard iterations as follows,

(Y πi,j)1 =
1

2

[
Y πi,j+1 + Y πi+1,j+1

]
+ ∆tθ1f(tj , (Y

π
i,j)0, Z

π
i,j) +

∆t (1− θ1)
1

2

[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1) + f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
...

(Y πi,j)P =
1

2

[
Y πi,j+1 + Y πi+1,j+1

]
+ ∆tθ1f(tj , (Y

π
i,j)P−1, Z

π
i,j) +

∆t (1− θ1)
1

2

[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1) + f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
,

and finally set Y πi,j := (Y πi,j)P . With the scheme developed in this section, we are now ably to numerically
approximate solutions of FBSDEs. In the next section we will test the numerical method on a variety of
FBSDEs, most problems from the field of mathematical finance, to analyze the convergence behaviour of
the method.



26

5. Numerical results and convergence analysis

In this section we will apply the numerical method developed in section 4 to several examples and
analyze their convergence behaviour. The examples discussed in this section are mainly problems from
mathematical finance (in particular we will look at contingent claim valuation problems) and some were
already introduced in section 3. MATLAB R2010b is used for the implementation of the method. To
analyze the behaviour of the theta-scheme we discuss the following schemes:

Scheme A: θ1 = 0, θ2 = 1 Scheme C: θ1 = 1, θ2 = 1
Scheme B: θ1 = 1

2 , θ2 = 1 Scheme D: θ1 = 1
2 , θ2 = 1

2

Furthermore, we set the number of Picard iterations in the implicit schemes equal to P = 5.

5.1. Stochastic FitzHugh-Nagumo equation. Consider, first of all, the following nonlinear backward
stochastic differential equation:

(5.1) −dYt = −Yt (1− Yt) (γ − Yt)− ZtdWt, t ∈ [0, 1] ,

with parameter γ ∈ (0, 1). In this equation the process Yt represents the potential of a membrane. This
equation is called the stochastic FitzHugh-Nagumo equation (see [RGG00]) and is used in genetics and
biology, among other fields. We take

Y1 =
1

1 + exp
{
−W1 − 1

4

} ,
as the terminal condition and set γ = 3

4 . It is known that the exact solution of this BSDE is

(5.2) (Yt, Zt) =

(
1

1 + exp
{
−Wt − t

4

} , exp
{
−Wt − t

4

}(
1 + exp

{
−Wt − t

4

})2
)
,

and specifically one has:

(Y0, Z0) =

(
1

2
,

1

4

)
.

From (5.2) one can see that the relationship Yt (1− Yt) = Zt holds and that BSDE (5.1) is equal to the
BSDE

−dYt = −Zt (γ − Yt)− ZtdWt, t ∈ [0, 1] .

We can use this fact to test the sensitivity of our numerical method to dependencies of the driver f of
the BSDE on the process Zt. Notice that the driving forward process of this BSDE is just the Brownian
motion Wt. The results of the binomial tree theta-scheme for different values of M can be found in figure
5.1.

We see that for all schemes the approximated values Y0 and Z0 converge with order O(∆t). The higher
order convergence properties of the discretization of scheme D does not seem to result in higher order
convergence of the method in general. We notice however that the absolute error of schemes B and D is
lower than the errors of the other schemes for both the Y and Z component of the BSDE.

Why doesn’t scheme D result in higher order of convergence than the other three schemes? This is due to
the fact that the order of convergence for the binomial tree approximation of the conditional expectations
in our scheme is equal to one. This error dominates the error originating from the theta-discretization,
resulting in a scheme that only has order of convergence equal to one.

The results of the numerical method for BSDE (5.1) with the driver depending on both the processes
Yt and Zt can be found in figure 5.2. We observe a clear difference from figure 5.1. The dependency of
the driver on the process Zt still results in the same order of convergence O(∆t) for all schemes, but this
time scheme D underperforms relative to the other schemes for the Y component and scheme B and D
both underperform for the Z component.

5.2. European call option in Black-Scholes market. In this next example we will compute the price
of a European call option in a Black-Scholes market. The forward process in this case is a geometric
Brownian motion

dS̃t = µS̃tdt+ σS̃tdWt.

The solution of this problem is the Black-Scholes price which can be computed from the Black-Scholes
formula, see section 2. The BSDE for this problem was already derived in example 3.1 and is given by

(5.3) −dYt =

(
−rYt −

µ− r
σ

Zt

)
dt− ZtdWt, t ∈ [0, T ] ,
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Figure 5.1. Results of example 5.1 with driver f(y) = −y(1 − y)( 3
4 − y). Left: error

Y0. Right: error Z0.

Figure 5.2. Results of example 5.1 with driver f(y, z) = −z( 3
4 − y). Left: error Y0.

Right: error Z0.

with terminal condition YT = max
(
S̃T − K̃, 0

)
. Here r is the interest rate in the market, K is the strike

of the call option and T the maturity of the option. It was shown earlier that Yt represents the value of
the call option and that Zt is related to the hedging strategy due to the relation Zt = πtσS̃t, where πt
represents the hedging portfolio at time t. For our tests, we use the following parameters:

S̃0 = 100, r = 0.1, µ = 0.2, σ = 0.25, K̃ = 100, T = 0.1.

The exact solution of this problem is given by (Y0, Z0) = (3.65997, 14.14823). Results of the numerical
method can be found in figure 5.3. We see that for all schemes there is approximately O(∆t) convergence
in the Yt component. However, scheme D behaves badly for the approximation of Z0.

A possible explanation for this phenomenon lies in our approximation of the forward process by a binomial
tree. In the current problem the terminal condition for Y is not differentiable at the point S̃ = K̃, which
gives a discontinuous terminal condition (there is a jump at S̃ = K̃) for the Z component. However, for
our binomial approximation a certain smoothness of the solution is necessary. When θ2 6= 1, the jump
in the solution for the Z component is approximated by just two points and this causes problems in our
numerical scheme. When θ2 = 1 we do not deal with this discontinuity.



28

Figure 5.3. Results of example 5.2. Left: error Y0. Right: error Z0.

As an attempt to fix this problem, we set θ2 = 1 in time step M− 1 and θ2 = 1
2 for all other time steps

in scheme D. In this case the jump in the solution for Zt should not influence our approximation. The
results of this adapted scheme can be found in figure 5.4. We see that the problem is only partially fixed:
scheme D now exhibits much smoother convergence for the Z component, but still underperforms relative
to the other schemes. Since in all other examples we observe the same ‘wild’ behaviour of the solution
Z0 when using scheme D, we will only use the adjusted version of scheme D (but still denote this scheme
by ‘scheme D’).

Figure 5.4. Results of example 5.2 with adapted scheme D. Left: error Y0. Right: error Z0.

5.3. European call spread in a market with an bid-ask spread for interest rates. The following
model introduces a market with an bid-ask spread for interest rates and was discussed earlier in example
3.4. Let r denote the interest rate at which an investor can invest in a bank account and let R > r denote
the rate at which an investor borrows money. We furthermore assume these are constant and work with
the same variables as in example 2. The BSDE that describes the value of an European option g(S̃T ) in
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this market is given by

(5.4) −dYt = −rYt −
µ− r
σ

Zt − (R− r) min

(
Yt −

Zt
σ
, 0

)
dt− ZtdWt, t ∈ [0, T ],

with terminal condition YT = g(S̃T ). In this market model the driver of the BSDE is nonlinear, but still
Lipschitz, and no analytical solution exists. By theorem 3.2 there exists a corresponding PDE for the
value function, from which the value of an option also can be computed.

We adapt an example from [BS12], which prices a position of one long call option with strike K̃1 = 95

and two short call options with strike K̃2 = 105. The payoff function is given by

g(S̃) =
(
S̃ − K̃1

)+
− 2

(
S̃ − K̃2

)+
,

and they use parameters

S̃0 = 100, r = 0.01, µ = 0.05, σ = 0.2, T = 0.25.

We will perform tests with the interest rates R = 0.06 and R = 3.01. For the case R = 0.06 the
solution is given by (Y0, Z0) = (2.9584544, 0.55319) and for the case R = 3.01 the solution is given by
(Y0, Z0) = (6.3748,−4.690) (also see [RO13]). Of course, an interest rate of 301% is not realistic, but these
parameters allow us to analyze the behaviour of the numerical method in more extreme circumstances.
The results of our numerical scheme for R = 0.06 are shown in figure 5.5.

Figure 5.5. Results of example 5.3 with R = 0.06. Left: error Y0. Right: error Z0.

All schemes show O(∆t) convergence, but none of the schemes is significantly better than the other
schemes. Compared to the results in figure 5.4 the absolute error seems a bit higher, so the nonlinearity
in the driver function f of the BSDE does seem to influence the numerical approximation.

In figure 5.6 the results of the scheme can be found for the case where R = 3.01. In this case the absolute
error is clearly higher than the case where R = 0.06. This is caused due to the fact that the Lipschitz
constant of the driver is equal to L = R−r

σ and the fact that the error of the θ-discretization of the BSDE
is dependent on this Lipschitz constant. In the case when R = 3.01 the Lipschitz constant is relatively
big, causing a larger error.

5.4. Binary option in Black-Scholes model. As a final example, we consider the pricing of a binary
option in the Black Scholes model. This option pays out a predefined notional if the price of the underlying
is above a certain level K̃ (the strike) at maturity T . The BSDE considered in this example is the same
as the one from example 2, but with a different terminal condition. The BSDE is given by

(5.5) −dYt =

(
−rYt −

µ− r
σ

Zt

)
dt− ZtdWt, t ∈ [0, T ] ,

with terminal condition YT = N1{S̃T>K̃}, where N is some fixed amount of money called the notional

of the option. We assume the notional is equal to one unit of money, the payoff for the option is thus
equal to 1 unit of money when S̃T > K̃ and zero otherwise. Since the terminal condition is still an
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Figure 5.6. Results of example 5.3 with R = 3.01. Left: error Y0. Right: error Z0.

FT -measurable random variable, its value can be determined by standard Black-Scholes analysis. We
know from section 2 that the option price is equal to

Yt = e−r(T−t)EQ

[
1{S̃T>K̃}|Ft

]
= e−r(T−t)Q

[
S̃T > K̃|Ft

]
= e−r(T−t)Φ(d2),

where Q is the usual risk-neutral measure and d2 =
log

S̃0
K̃

+
(
r−σ22

)
(T−t)

σ
√
T−t . The option delta is the derivative

of the value function with respect to the stock price S̃ and equal to

πt = e−r(T−t)
N
′
(d2)

σS̃t
√
T − t

.

From the relation Z0 = σS̃0π0 we obtain the solution

(Y0, Z0) =

(
e−rTN(d2), e−rT

N
′
(d2)√
T

)
.

The binary option poses an interesting problem for our numerical method taking in consideration example
2. In this example we encountered a problem when the terminal condition for Z was discontinuous.

In the case of a binary option both terminal conditions for Y and Z are discontinuous. For Z the terminal
condition is rather worse: it is equal to zero everywhere except for a spike to infinity at S̃ = K̃. We
will analyze how the numerical method will cope with these problems. The terminal condition for Z is
approximated by the following function:

(5.6) g(S̃) = c× 1C1<S̃<C2}

where C1 < C2 and c ∈ R. In our scheme we then set Zπi,M = σS̃Mg(SM) for all i = 1, . . . ,M.

For our tests we use the following configuration:

S̃0 = 100, C1 = 97, C2 = 103, K̃ = 100, r = 0.1, µ = 0.2, σ = 0.25, T = 0.1

and we distinguish between the cases c = 10 and c = 50. For the former case, the results are given by
figure 5.7 and for the latter case by figure 5.8.

The convergence pattern looks the same for both cases. However, we see that in the case when c = 50
the absolute error in the Z component is a larger than the case c = 10. The magnitude of the spike does
seem to influence the numerical error.
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Figure 5.7. Results of example 5.4 with c = 10. Left: error Y0. Right: error Z0.

Figure 5.8. Results of example 5.4 with c = 50. Left: error Y0. Right: error Z0.
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6. Reflected BSDEs

In this section we will introduce another type of BSDE, called a reflected backward stochastic differential
equation (RBSDE). We discuss the usual assumptions underlying these types of BSDEs and present
existence and uniqueness results and a link to a certain class of PDEs. An example of this type of BSDE
is discussed and we extend our original numerical method to a method that solves RBSDEs.

6.1. Theorems and examples. We consider the following type of equation:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdWs(6.1)

Yt ≥ Ut(6.2)

0 =

∫ T

0

(Yt − Ut) dKt,(6.3)

where ξ is the terminal condition and f is the driver of this reflected BSDE. We assume the pair (ξ, f)
satisfies the usual assumptions from section 3. In addition we assume that

• ξ ≥ Ut.
• Ut ∈ S2 (0, T ).
• K is a continuous increasing process with K0 = 0 and adapted to the filtration Ft.

The process Ut is called the obstacle of the RBSDE and the process Kt serves to push the solution Yt
above the obstacle Ut. Condition (6.3) means that this is done in a minimal way: the process Kt is
increased only when Yt = Ut.

A solution to (6.1) is a triple (Yt, Zt,Kt) ∈ S2(0, T )×H2(0, T )d × S2(0, T ). One can proof the following
theorem:

Theorem 6.1. Under the above mentioned assumptions, the RBSDE (6.1) - (6.3) has a unique solution.

The proof for this statement can be found in [Pha09].

Just as with regular BSDEs there is a link between the solution of a RBSDE and a certain type of PDE.
Let L denote the operator:

Lv = µ̄(x)Dxv(t, x) +
1

2
Tr(σ̄(x)σ̄(x)T (x)D2

xv(t, x)).

Furthermore, assume we are given a diffusion:

dXt = µ̄(Xt)dt+ σ̄(Xt)dWt,

with µ̄ and σ̄ Lipschitz continuous functions. Let Ut = h(Xt) and ξ = g(XT ) and assume the driver of
the RBSDE may also be dependent on the value of the diffusion Xt. The solution to this problem is
related to the PDE:

min

[
−∂v
∂t
− Lv − f(·, v, σ̄TDxv), v − h

]
= 0, on [0, T )× Rd

v(T, ·) = g, on Rd,
(6.4)

by the following theorem:

Theorem 6.2. Let v be a classical solution to (6.4) satisfying some growth conditions. Then the triple
(Y,Z,K) defined by

Yt = v(t,Xt)

Zt = σ̄T (Xt)Dxv(t,Xt)

Kt =

∫ t

0

(
−∂v
∂t

(s,Xs)− Lv(s,Xs)− f(t,Xs, Ys, Zs)

)
ds,

is the solution to the RBSDE (6.1).

Proof. Applying Itô’s lemma as in the proof of theorem 3.2 we obtain that

dv(t,Xt) = vt(t,Xt)dt+ Lv(t,Xt)dt+ vxx(t,Xt)σ̄(Xt)dWt

= dKt + f(t,Xt, Yt, Zt)dt+ vxx(t,Xt)σ̄(Xt)dWt

= f(t,Xt, Yt, Zt)dt+ ZtdWt + dKt,



33

the triple (Y,Z,K) thus satisfies the RBSDE. Because the function v satisfies equation (6.4) the integrand
in the definition for Kt is nonnegative, hence Kt is nondecreasing. The minimality condition for Kt is
satisfied in a straightforward way due to equality (6.4). From (6.4) it can also be seen that either v−h = 0,
and thus Yt = h, or that v − h > 0, in which case Yt > h. So Yt ≥ h and the proof is done. �

Notice that this theorem is an exact analogue of theorem 3.2 for RBSDEs. PDEs of the form (6.4) are
also called variational inequalities.

Example 6.1 (American call option). The value of an American call option at a time t ∈ [0, T ] satisfies
a RBSDE. Assume d = 1 and we work in the general Black-Scholes market model. In this case the driver
is given by:

f(t, x, y, z) = −ry − λz,
where r is the interest rate and λ the risk premium on the market. If we set

h(S̃t) = g(S̃t) = max
(
S̃t − K̃, 0

)
,

as the payoff of an American call option, the RBSDE obtained then describes the value of the option at
an arbitrary time t ∈ [0, T ]. The additional process Kt is needed for this problem because there exists
no replicating strategy for the option. We have to use a super-replicating strategy with a consumption
process Kt. The minimality condition on Kt just states that we only invest money in the portfolio when
Vt < h(S̃t).

Using theorem 6.2 we also obtain the corresponding pricing PDE:

(6.5) min

[
∂v

∂t
+

1

2
σ2S̃2 ∂

2v

∂S̃2
+ rS̃

∂v

∂S̃
− rv, v − h

]
= 0,

with v(T, ·) = max(S̃T − K, 0). This is exactly what one obtains by risk-neutral considerations in the
Black-Scholes model.

Example 6.2 (Bermudan options). Note that we can easily extend the framework to the pricing
of Bermudan options. Assume we are given a set of exercise dates for the Bermudan option T =
{t1, t2, . . . , tN = T}. If we set the obstacle Ut in the RBSDE as

h̃(S̃t) = h(S̃t)1t∈T,

the resulting equation then describes the price process of a Bermudan call option.

6.2. Numerical method for RBSDEs. In this section we will extend the original numerical method
to a method that can approximate RBSDEs. Let [0, T ] be the interval of interest and let Π be a partition
of time points 0 = t0 < t1 < . . . < tM with fixed time step ∆t = ti+1 − ti. The notation from section 4
will be used here.

Suppose we have the following RBSDE and FSDE:

Xt = X0 +

∫ t

0

µ̄(Xs)ds+

∫ t

0

σ̄(Xs)dWs(6.6)

Yt = g(XT ) +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs+KT −Kt(6.7)

Yt ≥ h(Xt), 0 ≤ t ≤ T.(6.8)

with the usual definitions. Again we leave out the dependence of the function f on the forward process
Xt, since in all of the examples we will discuss the driver function f does not depend on the forward
process Xt. The forward SDE will be approximated by the usual Euler-Maruyama scheme introduced in
section 4.

For the approximation of Yt and Zt we use the following technique: in each time step we first solve the
unreflected BSDE

Ym−1 = Ym +

∫ tm

tm−1

f(s, Ys, Zs)ds−
∫ tm

tm−1

ZsdWs,

and subsequently we check whether the solution does not go below the barrier. If it does, we set the value
of the numerical approximation equal to the barrier and increase the value of the process Kt. Intuitively,
the process Kt pushes the solution Yt above the barrier. A similar idea is also used in [MZ05], where
convergence of this approximation is proved.
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To solve the unreflected BSDE on the interval [tm, tm+1], we use the θ-discretization developed in section
4:

Y πM = g(Xπ
M), ZπM = σ̄(Xπ

M)gx(Xπ
M)

Zπm = −θ−12 (1− θ2)Em
[
Zπm+1

]
+

1

∆t
θ−12 Em

[
Y πm+1∆Wm

]
+θ−12 (1− θ2)Em

[
f(tm+1, Y

π
m+1, Z

π
m+1)∆Wm

]
,

Ỹ πm = Em
[
Y πm+1

]
+ ∆tθ1f(tm, Ỹ

π
m, Z

π
m) + ∆t (1− θ1)Em

[
f(tm+1, Y

π
m+1, Z

π
m+1)

]
,

for m = 1, . . . ,M and with the same definitions as before. The value for Y πm is computed by using Picard
iterations, as before. We compare the numerical approximation with the barrier:

Y πm = max
{
h(Xπ

m), Ỹ πm

}
.

Note that in the above θ-scheme we use the known solution Y πm+1 for all computations including an
explicit term (the computed values for time tm+1 ) when computing the numerical solution (Y πm, Z

π
m).

The process Kt is approximated by

Kπ
m =

m∑
i=1

(
Y πi−1 − Ỹ πi−1

)
One can see from this approximation that:

Kπ
m −Kπ

m−1 =

m∑
i=1

(
Y πi−1 − Ỹ πi−1

)
−
m−1∑
i=1

(
Y πi−1 − Ỹ πi−1

)
,

= Y πm−1 − Ỹ πm−1

= Y πm−1 − Y πm −
∫ tm

tm−1

f(s, Y πs , Z
π
s )ds+

∫ tm

tm−1

Zπs dWs,

because Ỹ πm−1 is assumed to solve the unreflected BSDE on [tm−1, tm]. From this it directly follows that:

(6.9) Y πm−1 = Y πm +

∫ tm

tm−1

f(s, Y πs , Z
π
s )ds−

∫ tm

tm−1

Zπs dWs +Kπ
m −Kπ

m−1.

Since furthermore Y πm > g(Xπ
m) for all m = 1, . . . ,M this motivates our numerical approximation of the

RBSDE (6.6), because equation (6.9) is the discrete version of the RSBDE.

For the approximation of the conditional expectations in this discretization we use the binomial tree
approximation from section 4.3, since we first solve the unreflected BSDE on each time interval. Finally,
we get the following numerical scheme:

Y πi,M = g(Xπ
i,M), Zπi,M = σ̄(Xπ

i,M)gx(Xπ
i,M), ∀i = 1, . . . ,M,

Zπi,j =
θ2 − 1

2θ2

[
Zπi,j+1 + Zπi+1,j+1

]
+

1

2θ2
√

∆t

[
Y πi,j+1 − Y πi+1,j+1

]
+

1− θ2
2θ2

√
∆t
[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1)− f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
,

Ỹ πi,j =
1

2

[
Y πi,j+1 + Y πi+1,j+1

]
+ ∆tθ1f(tj , Ỹ

π
i,j , Z

π
i,j) +

∆t (1− θ1)
1

2

[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1) + f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
,

Y πi,j = max
{
h(Xπ

i,j), Ỹ
π
i,j

}
,

Kπ
i,j+1 = Kπ

i,j +
(
Y πi,j − Ỹ πi,j

)
,

for i = 1, . . . , j and j = 1, . . . ,M, where Zπi,j , Y
π
i,j and Kπ

i,j denote the values of the processes Yt, Zt
and Kt at node (i, j) in the tree and where θ1 ∈ [0, 1] and θ2 ∈ (0, 1]. Notice that, as before, we have

an implicit expression for Ỹ πi,j . Picard iterations are used to approximate the solution to this implicit
equation. Starting with an initial estimate

(Ỹ πi,j)0 = Em [Yj+1 ] =
1

2

(
Y πi,j+1 + Y πi+1,j+1

)
,
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we then calculate P Picard iterations:

(Ỹ πi,j)1 =
1

2

[
Y πi,j+1 + Y πi+1,j+1

]
+ ∆tθ1f(tj , (Ỹ

π
i,j)0, Z

π
i,j) +

∆t (1− θ1)
1

2

[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1) + f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
...

(Ỹ πi,j)P =
1

2

[
Y πi,j+1 + Y πi+1,j+1

]
+ ∆tθ1f(tj , (Ỹ

π
i,j)P−1, Z

π
i,j) +

∆t (1− θ1)
1

2

[
f(tj+1, Y

π
i,j+1, Z

π
i,j+1) + f(tj+1, Y

π
i+1,j+1, Z

π
i+1,j+1)

]
,

and finally set Ỹ πi,j := (Ỹ πi,j)P .
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7. Convergence analysis of RBSDE scheme

In this section we will apply the numerical method developed in the section 6 and analyze its convergence
behaviour. Here we are mainly considered with the pricing of American options in different market
models.

The θ-schemes used to test our method are

Scheme A: θ1 = 0, θ2 = 1 Scheme C: θ1 = 1, θ2 = 1
Scheme B: θ1 = 1

2 , θ2 = 1 Scheme D: θ1 = 1
2 , θ2 = 1

2

and the number of Picard iterations we use is again set to P = 5.

7.1. American put option in Black-Scholes market. In this example we work in the standard Black-
Scholes setting. We consider the problem of pricing an American put option, whose value satisfies the
RBSDE

−dYt =

(
−r · Yt −

µ− r
σ

Zt

)
dt− ZtdWt + dKt,(7.1)

YT = h(S̃T ),

Yt ≥ g(S̃t), 0 ≤ t ≤ T,

where g(S̃t) = h(S̃t) = max
(
K̃ − S̃t, 0

)
, K̃ denotes the strike of the option, r the interest rate, µ the

drift of the stock, σ the volatility and T denotes the maturity. As mentioned earlier, there is no analytical
solution for the price of an American put option available. The parameters used are the following:

S̃ = 40, K̃ = 40, r = 0.0488, σ = 0.3, T = 0.5833.

In this case the the value of the option is equal to 3.1696 and the delta of the option is equal to -0.4256,
as reported by [HSY96]. Using the relationship between Zt and the delta of the option we get that
Z0 = −5.1072. The results of our method can be found in figure 7.1. All schemes seem to have O(∆t)
convergence in the Y component, but again scheme D behaves very poorly in the Z component.

Figure 7.1. Results of example 7.1. Left: error Y0. Right: error Z0.

The explanation for this can again be found in the nature of our approximation. The binomial method
does not seem to be able to cope well with discontinuities in the Z component. As an attempt to solve
this problem, we apply the same fix as in section 5.2. The results of our adjusted method are then given
by figure 7.2. In this case the behaviour of the error of Z0 for scheme D is much smoother, but still larger
than the error of the other schemes.



37

Figure 7.2. Results of example 7.1 with scheme D adjusted. Left: error Y0. Right: error Z0.

7.2. American call option in a market with a bid-ask spread for interest rates. We consider
the valuation of an American call option in the presence of a bid-ask spread for interest rates. Combining
the theory of examples 3.4 and 6.1 we get that the value of this option satisfies the following RBSDE

−dYt = −rYt −
µ− r
σ

Zt − (R− r) min

(
Yt −

Zt
σ
, 0

)
dt− ZtdWt,(7.2)

YT = h(S̃T ),

Yt ≥ g(S̃t), 0 ≤ t ≤ T,

with the usual definitions for all symbols and where g(S̃t) = h(S̃t) = max
(
S̃t − K̃, 0

)
. To the knowledge

of the author of this thesis, there is no known benchmark solution for this problem. The following settings
are used:

S̃0 = 100, K̃ = 100, r = 0.01, R = 0.06, µ = 0.05, σ = 0.2, T = 0.25.

Figure 7.3 shows the numerical solution against different time steps M . We observe convergence for both
the components of the BSDE for all schemes, although the convergence for the Y component is a bit
slow.

Figure 7.3. Results of example 7.2. Left: value of Y0. Right: value of Z0.
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Taking M = 5000 we obtain a numerical solution of

(Y0, Z0) = (4.747036599903693, 11.585125024175634),

with scheme C. We use this approximation as a reference value, we can construct error plots as in all
previous examples. Figure 7.4 shows the results.

Figure 7.4. Error plot of example 7.2. Left: error of Y0. Right: error of Z0.

For all schemes we observeO(∆t) convergence. Compared to the case of a European option, the magnitude
of the numerical error seems smaller. However, this may be a consequence of using our own approximated
solution obtained with M = 5000 as a benchmark value to compare all other results against.



39

8. FBSDEs with a R2-valued forward SDE

In this section we extend the numerical method to cope with backward stochastic differential equations
where the terminal condition of the BSDE is allowed to dependent on the value of two forward SDEs.
We are interested in these equations because they arise naturally when pricing options on two correlated
assets. By extending the numerical method to solve these equations we can price a large set of European
correlation products, for example max call options, basket options and spread options.

We discuss the extension of the method to the case where two forward SDEs are two correlated geometric
Brownian motions. In more mathematical terms, we will look at the following equations(

X1
t

X2
t

)
=

(
X1

0

X2
0

)
+

∫ t

0

(
µ1X

1
s

µ2X
2
s

)
ds+

∫ t

0

(
σ1X

1
s 0

ρσ2X
2
s σ2

√
1− ρ2X2

s

)
d

(
W 1
s

W 2
s

)
(8.1)

Yt = g(XT ) +

∫ T

t

f(s, Ys,Zs)ds−
∫ T

t

ZsdWs(8.2)

In these equations, g : R2 → R is the terminal condition and Wt =
(
W 1
t ,W

2
t

)
, Xt =

(
X1
t , X

2
t

)
and

Zt =
(
Z1
t , Z

2
t

)
are two-dimensional vectors. Furthermore, µ1, µ2 ∈ R describe the drift of the processes

X1
t and X2

t , σ1, σ2 ∈ R>0 describe the volatility of X1
t and X2

t and ρ is the correlation between the
processes X1

t and X2
t . The two Brownian motions W 1

t and W 2
t are assumed to be independent. The

interpretation of these equations is that (8.1) describes the behaviour of two correlated stocks in a Black-
Scholes market and equation (8.2) is the BSDE whose solution describes the price of a financial option
on both assets.

Theorems 3.1 and 3.2 also apply for equations (8.1) - (8.2). Theorem 3.1 provides us existence of solutions
to these equations. Furthermore, we also get terminal conditions for the processes Zt and Yt by theorem
3.2.

8.1. Extension of the numerical method. In this section we extend the numerical method to solve
equations (8.1) - (8.2). As before, let [0, T ] be the interval of interest and let Π be a partition of time
points 0 = t0 < t1 < . . . < tM with fixed time step ∆t = ti+1 − ti. The notation from sections 4 and 6 is
also used throughout this section. We start by discussing the approximation of the forward SDE (8.1).

We want to approximate the two-dimensional forward SDE by a binomial approximation. Since the
forward SDE is now a two-dimensional SDE we will end up with a two-dimensional binomial tree, which
is called a binomial pyramid (see [Rub94], although we will use a slightly different approach). It is
essential from a computational point of view that this tree is recombining, since the amount of nodes in
a non-recombining two-dimensional tree grows like 4n.

The following methodology can easily be extended to a situation where the matrix in the Itô-integral in
equation (8.1) is of the following form: (

σ̄11(x) σ̄12(x)
σ̄21(x) σ̄22(x)

)
,

where σ̄ij : R → R are linear functions for i, j = 1, 2. Otherwise it is not trivial to obtain a recombing
tree.

To obtain a recombining tree for (8.1) we look at the discretized version of (8.1) and rewrite it as

∆Xm+1 =

(
µ1X

1
m

µ2X
2
m

)
∆t+

(
σ1X

1
m 0

ρσ2X
2
m σ2

√
1− ρ2X2

m

)(
∆W 1

m

∆W 2
m

)
(8.3)

=

(
µ1X

1
m

µ2X
2
m

)
∆t+

(
σ1X

1
m∆Ŵ 1

m

σ2X
2
m∆Ŵ 2

m

)
,

where ∆Ŵ 1
m and ∆Ŵ 2 are two Brownian motions connected to ∆W 1

m and ∆W 2
m by the relation

(8.4)

(
∆W 1

m

∆W 2
m

)
=

(
σ1 0

ρσ2 σ2
√

1− ρ2

)−1(
σ1∆Ŵ 1

m

σ2∆Ŵ 2
m

)
.

Equation (8.1) is now rewritten as a two-dimensional SDE, but such that the two Brownian motions Ŵ 1
t

and Ŵ 2
t appearing in (8.3) are correlated with correlation parameter ρ. The Brownian motions Ŵ 1

m and
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Ŵ 2
m are approximated by the scaled random walks

Ŵ 1
m =

√
∆t

m∑
j=1

εj = Ŵ 1
m−1 +

√
∆tεm

Ŵ 2
m =

√
∆t

m∑
j=1

ηj = Ŵ 2
m−1 +

√
∆tηm,

where ηj and εj are random variables with values in {+1,−1}. From this it follows that the pair

(∆Ŵ 1
m,∆Ŵ

2
m) can attain four different values:

(8.5) (∆Ŵ 1
m,∆Ŵ

2
m) =


(
√

∆t,
√

∆t) with probability puu,

(
√

∆t,−
√

∆t) with probability pud,

(−
√

∆t,
√

∆t) with probability pdu,

(−
√

∆t,−
√

∆t) with probability pdd.

The increments of both approximations should have expected value equal to zero, since a Brownian
motion also satisfies this property. Furthermore, the Brownian motions Ŵ 1

t and Ŵ 2
m should be correlated

with correlation parameter ρ. This means that the following equalities should be satisfied:

(8.6)

0 = E
[
∆Ŵ 1

m

]
= puu

√
∆t+ pud

√
∆t− pdu

√
∆t− pdd

√
∆t

0 = E
[
∆Ŵ 2

m

]
= puu

√
∆t− pud

√
∆t+ pdu

√
∆t− pdd

√
∆t

ρ = E
[
∆Ŵ 1

m∆Ŵ 2
m

]
= puu∆t− pud∆t− pdu∆t+ pdd∆t.

A solution to these equations is

(8.7) puu = pdd =
1

4
(1 + ρ) , pud = pdu =

1

4
(1− ρ) .

This provides us a scheme to approximate the two-dimensional forward SDE. We can approximate ∆Ŵ 1
t

and ∆Ŵ 2
t by equations (8.5) and (8.7). Equation (8.3) then gives the approximation for X1

t and X2
t .

This equation is equivalent to the two seperate equations

∆X1
m+1 = µ1X

1
m∆t+ σ1X

1
m∆Ŵ 1

m(8.8)

∆X2
m+1 = µ2X

2
m∆t+ σ2X

2
m∆Ŵ 2

m.(8.9)

These are exactly the same type of equations we already encountered in section 4 and since the two
Brownian motions are approximated by a random walk the numerical approximation of the components
X1 and X2 has the structure of a recombining binomial tree. Relation (8.4) will be used later on, when
we compute the conditional expectations in the theta-scheme for the BSDE.

The distribution of the pair (∆Ŵ 1
m,∆Ŵ

2
m) is given by equation (8.5). The evolution of this pair over time

has the structure of a two-dimensional binomial tree, a binomial pyramid. The following figure shows the
time evolution of the binomial pyramid for one arbitrary node in the pyramid:

(i,j,k) (i,j,k+1)

(i,j+1,k+1)

(i+1,j,k+1)

(i+1,j+1,k+1)

where we use the convention that k denotes the time step, i the movement in Ŵ 1
m and j the movement

in Ŵ 2
m as follows:
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• node (i,j,k+1) represents the pair (∆Ŵ 1,∆Ŵ 2) =
√

∆t(1, 1).

• node (i,j+1,k+1) represents the pair (∆Ŵ 1,∆Ŵ 2) =
√

∆t(1,−1).

• node (i+1,j,k+1) represents the pair (∆Ŵ 1,∆Ŵ 2) =
√

∆t(−1, 1).

• node (i+1,j+1,k+1) represents the pair (∆Ŵ 1,∆Ŵ 2) =
√

∆t(−1,−1).

This approximation enables the computation of g(XT ) and we now only have to approximate Yt and Zt.

The numerical scheme developed in section 4 is still applicable, the derivation is not much different from
the one-dimensional case. The terminal condition for Yt is approximated by

Yi,j,M = g(X1
i,j,M, X

2
i,j,M),

and the terminal condition for the process Zt is again obtained by the Feynman-Kac analogue for BSDEs:

Zi,j,M =

(
σ1X

1
i,j,M 0

ρσ2X
2
i,j,M σ2

√
1− ρ2X2

i,j,M

)T (
gx1(X1

i,j,M, X
2
i,j,M)

gx2
(X1

i,j,M, X
2
i,j,M)

)
.

The only problem left is the computation of the conditional expectations in the schemes. However, since
we have approximated the processes X1

t and X2
t by a binomial process, these expectations can be easily

computed as done before. The increments ∆W 1
m and ∆W 2

m are computed from the increments ∆Ŵ 1 and

∆Ŵ 2 by using relation (8.4). The resulting numerical scheme is the following:

Y πi,j,M = g(X1
i,j,M, X

2
i,j,M), ∀i, j = 1, . . . ,M,

Zπi,j,M = =

(
σ1X

1
i,j,M 0

ρσ2X
2
i,j,M σ2

√
1− ρ2X2

i,j,M

)T (
gx1

(X1
i,j,M, X

2
i,j,M)

gx2
(X1

i,j,M, X
2
i,j,M)

)
, ∀i, j = 1, . . . ,M,

Zπi,j,k =
θ1 − 1

θ2

[
puuZ

π
i,j,k+1 + pudZ

π
i,j+1,k+1 + pduZ

π
i+1,j,k+1 + pddZ

π
i+1,j+1,k+1

]
+

1

∆tθ2

[
puuZ

π
i,j,k+1∆Wi,j,k+1 + pudZ

π
i,j+1,k+1∆Wi,j+1,k+1 +

pduZ
π
i+1,j,k+1∆Wi+1,j,k+1 + pddZ

π
i+1,j+1,k+1∆Wi+1,j+1,k+1

]
+

1− θ2
θ2

√
∆t
[
puuf(tk+1, Y

π
i,j,k+1Z

π
i,j,k+1)∆Wi,j,k+1 + pudf(tk+1, Y

π
i,j+1,k+1Z

π
i,j+1,k+1)∆Wi,j+1,k+1 +

pduf(tk+1, Y
π
i+1,j,k+1Z

π
i+1,j,k+1)∆Wi+1,j,k+1 + pddf(tk+1, Y

π
i+1,j+1,k+1Z

π
i+1,j+1,k+1)∆Wi+1,j+1,k+1

]
,

Y πi,j,k =
[
puuY

π
i,j,k+1 + pudY

π
i,j+1,k+1 + pduY

π
i+1,j,k+1 + pddY

π
i+1,j+1,k+1

]
+ ∆tθ1f

(
tk, Y

π
i,j,k,Z

π
i,j,k

)
+

∆t (1− θ1)
[
puuf(tk+1, Y

π
i,j,k+1Z

π
i,j,k+1) + pudf(tk+1, Y

π
i,j+1,k+1Z

π
i,j+1,k+1) +

pduf(tk+1, Y
π
i+1,j,k+1Z

π
i+1,j,k+1) + pddf(tk+1, Y

π
i+1,j+1,k+1Z

π
i+1,j+1,k+1)

]
,

for i, j = 1, . . . , k and k = 1, . . . ,M, where X1
i,j,k, X2

i,j,k, Y πi,j,k and Zπi,j,k denote the values of the

approximations of the processes X1
t , X2

t , Yt and Zt at node (i, j, k) in the pyramid. The value Y πi,j,k in
the last equation is computed by Picard iterations in the same way as in sections 4 and 6, so convergence
of these iterations is guaranteed.

The above scheme can easily be extended to the case where equation (8.2) is not a regular BSDE, but
a reflected BSDE. In this case an additional equation has to be added to equations (8.1)-(8.2), which is
the barrier equation for the RBSDE. The scheme developed in this section can then easily be extended
to support these equations as well, by the same procedure discussed in section 6.
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9. Convergence analysis of the two-dimensional scheme

In this section we will apply the numerical method developed in section 8 and analyze its convergence
behaviour. Due to time constraints we were able to test the numerical method on only one example.
We will only consider the pricing of a European spread option on two correlated assets. However, the
method is capable of solving a more general class of European correlation products as well by adjusting
the terminal conditions for the BSDE. The θ-schemes used to test the method are

Scheme A: θ1 = 0, θ2 = 1 Scheme C: θ1 = 1, θ2 = 1
Scheme B: θ1 = 1

2 , θ2 = 1 Scheme D: θ1 = 1
2 , θ2 = 1

2

and the number of Picard iterations we use is set to P = 5. In sections 5 and 7 we observed that scheme
D behaved very poorly for the Zt-component. Therefore, we already apply the fix proposed for scheme
D in this section: at time tM−1 we let θ1 = θ2 = 1 and choose θ1 = θ2 = 1

2 otherwise, where M denotes
the number of time steps.

9.1. European spread option in a Black-Scholes market. In this example we work in the setting
already introduced in section 8. We consider two assets that are correlated with correlation parameter
ρ. Their behaviour is modelled by the forward SDE(

S̃1
t

S̃2
t

)
=

(
S̃1
0

S̃2
0

)
+

∫ t

0

(
µ1S̃

1
s

µ2S̃
2
s

)
ds

+

∫ t

0

(
σ1S̃

1
s 0

ρσ2S̃
2
s σ2

√
1− ρ2S̃2

s

)
d

(
W 1
t

W 2
t

)
,

where S̃1
t and S̃2

t describe the stock prices of both stocks, µ1, µ2 ∈ R are the drifts of both stocks,
σ1, σ2 ∈ R>0 denote the volatilities of both stocks, W 1

t and W 2
t are two independent Brownian motions

and ρ is the correlation between both stocks. The BSDE corresponding to this valuation problem is

Yt = g(ST ) +

∫ T

t

f(s, Ys,Zs)ds−
∫ T

t

ZsdWs.

with driver function f(t, Yt,Zt) = −rYt−
(

σ1 0

ρσ2 σ2
√

1− ρ2

)−1
(µ− r) Zt, where r is the interest rate

and µ = (µ1, µ2) the drift vector. The terminal condition of this BSDE is the option payoff of a spread

option. A spread option on two stocks S̃1 and S̃2 pays out S̃1 − S̃2 if S̃1 > S̃2 at maturity, and zero
otherwise. In mathematical terms, the terminal condition is equal to

g

((
S̃1
T

S̃2
T

))
= max

(
S̃1
T − S̃2

T , 0
)
.

The analytical solution to this problem is given by Margrabe’s formula [Mar78]. For our tests, we use
the parameters:

S̃1
0 = S̃2

0 = 100, r = 0.05, µ1 = µ2 = 0.1, σ1 = 0.25, σ2 = 0.3, ρ = 0.3, T = 0.1.

The solution to this problem is then equal to(
Y0, Z

1
0 , Z

2
0

)
= (4.1345, 8.7029,−13.715).

The results of the numerical method for different values of M are given in figure 9.1. For all components
we observe order O(∆t) convergence. There is no scheme that is particularly better than other schemes.
For the component Z1 scheme D performs worse than the other schemes but for the component Z2 it is
the other way around. To obtain a better analysis of the behaviour of our method, one could investigate
what happens for different values of ρ. One could also vary the drifts of both stocks, to see how this
algorithm performs when the Lipschitz constant of the driver function f is varied.
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Figure 9.1. Results of of the numerical method. Left: Error Y0. Middle: Error Z1
0 .

Right: Error Z2
0 .
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10. Conclusions and further research

In this section we will discuss the main conclusions of the research conducted on the numerical methods
developed in thesis. We will also provide some topics for further research.

10.1. Conclusions. In this section we will provide conclusions for the numerical method for FBSDEs as
well as for the method of reflected FBSDEs and the numerical method for FBSDEs with a two-dimensional
forward SDE, since the conclusions for both methods are quite similar. From the examples discussed in
sections 5 and 6.2 we can form the following conclusions:

• For all schemes and examples we observed O(∆t) convergence. However, the numerical scheme
with θ1 = θ2 = 1

2 does not result in order of convergence equal to two. Although theoretically the
numerical discretization of the (R)BSDE should be of order two of this scheme, the error of the
binomial approximation of the underlying Brownian motion (which is of order one) dominates
the final numerical error.

• The magnitude of the error for different choices of θ1 and θ2 is dependent on the dependency of
the driver function f on the process Zt. Especially in the case where θ1 = θ2 = 1

2 , the numerical
error grows when the driver f is dependent of the process Zt. However, this dependency does
not influence the order of convergence.

• Also the nonlinearity of the driver f also influences the numerical error. In the linear case, we
get a much smoother error curve, but also a much smaller error than in the nonlinear case. In
the nonlinear case the numerical error is bigger and the error curve oscilates more as well. This
last point is not a problem however, the order of convergence is still the same for both cases.

• The magnitude of the Lipschitz constant of the driver function f is also important. In [ZWP09]
it is shown, among others, that the θ-discretization discussed in this thesis converges and the
bound for the error one obtains includes the Lipschitz constant. The larger this constant, the
larger the magnitude of the numerical error.

• Finally, the behaviour of the terminal condition is also of great importance. A discontinuous
terminal condition amplifies the numerical error, we also saw that the error gets even bigger
when the terminal condition is non-differentiable as well.

The numerical method works well when the driver function f is linear and when the terminal conditions
are differentiable. When trying to numerically approximate the solution of such a problem, our method
would work well. The binomial tree method is intuitive and easy to grasp and the implementation of
this numerical method is fairly easy. Even when the problem we are facing is nonlinear in nature, or has
discontinuous terminal conditions, the numerical method exhibits O(∆t) convergence and works well.

However, when dealing with problems that do not have these features another numerical method may
be more favorable. In all the discussed examples with such features the error of our method was larger
and if one wants to have a accuracy in the order of 10−6 at least 106 time steps are needed, which asks
a significant amount of computation time and computational memory.

Another important topic is the fact that our numerical method is only ‘nice’ in computational terms if the
underlying binomial tree is recombining, which it is in our examples. In this case an upward movement
following a downward movement in the tree is the same as a downward movement followed by an upward
movement. If the underlying tree is not recombining, the amount of nodes at time M is equal to 2M .
For large M , we get computational problems pretty easily, for M = 30 for example, there are already
1.0737 · 109 nodes in the tree.

There are methods in the literature with higher order of convergence ([RO13], for example) which may
be suited better for this task. The problems encountered in practice are more nonlinear or wilder in
nature than the problems discussed in this thesis, so further research to find a better numerical method
for (R)BSDEs is still needed. However, our method converges and is still reliable, even when facing
nonlinear problems. As noted before, the binomial tree approximation is intuitive, easy to grasp and
easily implemented. For practitioners, this is an advantage of this method.

10.2. Further research. There are a few topics that could be researched to improve the current binomial
tree algorithm. For example, the following topics could be subjects for further research:

• Instead of a binomial approximation to the underlying Brownian motion, one could investigate
the trinomial tree approximation to Brownian motion. This approximation has higher order
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of convergence than the regular binomial approximation and this may increase the order of
convergence of the numerical method in general as well.
• Another research topic could be the extension of the numerical methode to be able to cope with

jump processes. Since the underlying binomial tree approximation of a jump process does not
necessarily have to be recombining, this is not trivial.
• One could try to extend the numerical method to (reflected) FBSDEs where the coefficients of

the forward SDE are nonlinear. In this case the underlying binomial tree also is not recombining
anymore. Such a numerical method would allow us to look at problems from local volatility
models in mathematical finance, for instance.
• Finally, one could extend the numerical method to cope with more general systems of a multi-

dimensional forward stochastic differential equation and a one-dimensional backward stochastic
equation. Such a method would be capable of pricing, for example, a variety of American corre-
lation products on more than one financial asset.
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Appendix

• Euler-Maruyama scheme and computation of strong error.

randn('state',100)

sigma = 1;

mu = 1;

Xzero = 1.5;

T = 1;

N = 2ˆ9;

dt = T/N;

M = 1000;

Xerr = zeros(M,9);

for s = 1:M

dW = sqrt(dt)*randn(1,N);

W = cumsum(dW);

Xtrue = Xzero*exp((sigma−0.5*muˆ2)+mu*W(end));

for p = 1:9

R = 2ˆ(p−1);
Dt = R*dt;

L = N/R; %

Xtemp = Xzero;

for j = 1:L

Winc = sum(dW(R*(j−1)+1:R*j));
Xtemp = Xtemp + Dt*sigma*Xtemp + mu*Xtemp*Winc;

end

Xerr(s,p) = abs(Xtemp − Xtrue);

end

end

Dtvals = dt*(2.ˆ([0:8]));

loglog(Dtvals,mean(Xerr),'r*−'); hold on

• Euler-Maruyama scheme and computation of weak error.

%randn('state',100);

sigma = 1; mu = 1; Xzero = 1.5;T=1;

M = 100000; % number of paths sampled

Xem = zeros(9,1);

for p = 1:9

Dt = 2ˆ(p−10);
L = T/Dt;

Xtemp = Xzero*ones(M,1);

for j = 1:L

Winc = sqrt(Dt)*randn(M,1);

Xtemp = Xtemp + Dt*sigma*Xtemp + mu*Xtemp.*Winc;

end

Xem(p) = mean(Xtemp);

end

Xerr2 = abs(Xem − 1.5*exp(sigma));

Dtvals2 = 2.ˆ([1:5]−10);
loglog(Dtvals,Xerr2,'b*−'); hold on;
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• Binomial approximation of GBM and computation of weak error.

function [Xweak] = binomEM(T,n)

dt = T/n;

mu = 0.4;

sigma = 0.1;

X0 = 1;

X = zeros(n+1,n+1);

X(1,1) = X0;

% Compute binomial tree approximation of GBM

for j = 2:n+1

X(1:j−1,j) = X(1:j−1,j−1) + mu*X(1:j−1,j−1)*dt − sigma*X(1:j−1,j−1)*sqrt(dt);
X(j,j) = X(j−1,j−1) + mu*X(j−1,j−1)*dt + sigma*X(j−1,j−1)*sqrt(dt);

end

% Compute expected value of X T

val=pascal triangle(n);

Xweak = sum(val(end,:)'*(0.5ˆn).*X(:,end));

end

clear all;

hold off;

% Euler−Maruyama approximations of geometric brownian motion

T = 1; % time interval length [0,T]

h = 10:10:200;

end vals1 = zeros(length(h),1);

c = 1;

for j = h

[X] = binomEM(T,j);

end vals1(c,1) = X;

c = c+1;

end

weak error = abs(end vals1 − exp(0.4));

loglog(h,weak error,'−b');
legend('Weak error');

xlabel('M');

ylabel('Weak error');

• θ-algorithm for FBSDEs.

function [X,Y,Z] = binomBSDE(T,n,P,X0,mu,sigma,theta1,theta2,f,g,g x)

% Initialize variables

dt = T/n;

X = zeros(n+1,n+1);

X(1,1) = X0;

Y = zeros(n+1,n+1);

Z = zeros(n+1,n+1);

% Compute the binomial tree approximation of the forward SDE

for j = 2:n+1

X(1:j−1,j) = X(1:j−1,j−1) + mu(X(1:j−1,j−1))*dt − sigma(X(1:j−1,j−1))*sqrt(dt);
X(j,j) = X(j−1,j−1) + mu(X(j−1,j−1))*dt + sigma(X(j−1,j−1))*sqrt(dt);

end

% Terminal conditions for the BSDE
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Y(:,end) = g(X(:,end));

Z(:,end) = sigma(X(:,end)).*g x(X(:,end));

% Compute numerical solution (Y t,Z t)

p = 0.5;

t2 = theta2; % this is for the 'fix'

for j = n:−1:1;
if theta2 == 1/2 && j==n

theta2 = 1;

end

Z(1:j,j) = (theta2 − 1)/(theta2)*((1−p)*Z(1:j,j+1) + p*Z(2:(j+1),j+1)) ...

+ 1/(theta2*sqrt(dt)) * (p*Y(2:(j+1),j+1) − (1−p)*Y(1:j,j+1)) + ...

(1−theta2)/(theta2) *sqrt(dt)* ...

(p*f(j+1,Y(2:(j+1),j+1),Z(2:(j+1),j+1)) − ...

(1−p)*f(j+1,Y(1:j,j+1),Z(1:j,j+1)));
picard = zeros(j,P);

picard(:,1) = (1−p)*Y(1:j,j+1) + p*Y(2:(j+1),j+1);

for k = 2:P

picard(:,k) = (1−p)*Y(1:j,j+1) + p*Y(2:(j+1),j+1) + dt*theta1*f(j, ...

picard(:,k−1), Z(1:j,j)) + ...

dt*(1−theta1)*((1−p)*f(j+1,Y(1:j,j+1),Z(1:j,j+1)) + ...

p*f(j+1,Y(2:(j+1),j+1), Z(2:(j+1),j+1)));

end

Y(1:j,j) = picard(:,P);

theta2 = t2;

end

end

• Main file that calls the binomBSDE-function and computes the error.

clear all;

close all;

% Initialize variables

steps = 10:10:200;

theta = [0, 1;

1/2, 1;

1, 1;

1/2, 1/2];

n schemes = size(theta,1);

amount steps = length(steps);

% Initialize variables that will hold Y 0 and Z 0 for each scheme

Y = zeros(amount steps,n schemes);

Z = zeros(amount steps,n schemes);

% Counter for the loop;

c = 1;

% Configuration of the problem

drift = 0.2;

diffusion = 0.25;

T = 0.1; % time interval [0,T]

X0 = 100;

% Define mu and sigma for the forward SDE (functions of X t)

mu = @(x) drift*x;

sigma = @(x) diffusion*x;

% Compute the numerical solution for each scheme

for j = 1:n schemes

c = 1;

for i = steps;
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[X,A,B] = binomBSDE(T,i,10,X0,mu,sigma,theta(j,1),theta(j,2),@f,@g,@g x);

Y(c,j) = A(1,1);

Z(c,j) = B(1,1);

c = c+1;

end

end

% Compute the absolute error for each scheme

eY = abs(Y − 3.65997);

eZ = abs(Z − 14.14823);

% FitzHugh−Nagamo equation

% eY = abs(Y − 0.5);

% eZ = abs(Z − 0.25);

%error for bid−ask spread (small)

% eY = abs(Y − 2.9584544);

% eZ = abs(Z − 0.55319);

%error for bid−ask spread (big)

% eY = abs(Y − 6.3748);

% eZ = abs(Z + 4.690);

% error for digital option

% eY = abs(Y − exp(−0.1*T)*normcdf(d2));
% eZ = abs(Z − exp(−0.1*T)*(1/sqrt(2*pi*T))*exp(−0.5*d2ˆ2));

%error plot

subplot(1,2,1);

loglog(steps,eY);

ylabel('Log error Y 0');

xlabel('Steps');

subplot(1,2,2);

loglog(steps,eZ);

ylabel('Log error Z 0');

xlabel('Steps');

legend('Scheme A', 'Scheme B', 'Scheme C', 'Scheme D');

• θ-algorithm for RBSDEs.

function [X,Y,Z,K] = binomRBSDE(T,n,P,X0,mu,sigma,theta1,theta2,f,g,g x,h)

% Initialize some variables

dt = T/n;

X = zeros(n+1,n+1);

X(1,1) = X0;

Y = zeros(n+1,n+1);

Z = zeros(n+1,n+1);

K = zeros(n+1,n+1);

% Compute tree values for the brownian motion and solve the forward SDE

% dX t = mu(X t) dt + sigma(X t) dW t

for j = 2:n+1

X(1:j−1,j) = X(1:j−1,j−1) + mu(X(1:j−1,j−1))*dt − sigma(X(1:j−1,j−1))*sqrt(dt);
X(j,j) = X(j−1,j−1) + mu(X(j−1,j−1))*dt + sigma(X(j−1,j−1))*sqrt(dt);

end

% Terminal conditions

Y(:,end) = g(X(:,end));

Z(:,end) = sigma(X(:,end)).*g x(X(:,end));

% Compute numerical solution (Y t,Z t)

p = 0.5; %prob of up move
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t2 = theta2;

for j = n:−1:1;
if theta2 == 1/2 && j==n

theta2 = 1;

end

Z(1:j,j) = (theta2 − 1)/(theta2)*((1−p)*Z(1:j,j+1) + p*Z(2:(j+1),j+1)) ...

+ 1/(theta2*sqrt(dt)) * (p*Y(2:(j+1),j+1) − (1−p)*Y(1:j,j+1)) + ...

(1−theta2)/(theta2) *sqrt(dt)* ...

(p*f(j+1,Y(2:(j+1),j+1),Z(2:(j+1),j+1)) − ...

(1−p)*f(j+1,Y(1:j,j+1),Z(1:j,j+1)));
picard = zeros(j,P);

picard(:,1) = (1−p)*Y(1:j,j+1) + p*Y(2:(j+1),j+1);

for k = 2:P

picard(:,k) = (1−p)*Y(1:j,j+1) + p*Y(2:(j+1),j+1) + dt*theta1*f(j, ...

picard(:,k−1), Z(1:j,j)) + ...

dt*(1−theta1)*((1−p)*f(j+1,Y(1:j,j+1),Z(1:j,j+1)) + ...

p*f(j+1,Y(2:(j+1),j+1), Z(2:(j+1),j+1)));

end

Y(1:j,j) = max(h(X(1:j,j)),picard(:,P));

K(1:j,j) = Y(1:j,j) − picard(:,P);

theta2 = t2;

end

end

• Main file that calls the binomRBSDE-function and computes the error.

clear all;

close all;

% Initialize variables

steps = 10:10:200;

theta = [0, 1;

1/2, 1;

1, 1;

1/2, 1/2];

n schemes = size(theta,1);

amount steps = length(steps);

% initialize variables that will hold Y 0 and Z 0 for each scheme

Y = zeros(amount steps,n schemes);

Z = zeros(amount steps,n schemes);

% counter for the loop;

c = 1;

% configuration of the problem

drift = 0.05;

diffusion = 0.2;

X0 = 100;

T = 0.25;

% define mu and sigma for the forward SDE (functions of X t)

mu = @(x) drift.*x;

sigma = @(x) diffusion.*x;

% compute the numerical solution for each scheme

for j = 1:n schemes

c = 1;

for i = steps;

[X,A,B,K] = ...

binomRBSDE(T,i,5,X0,mu,sigma,theta(j,1),theta(j,2),@f spread,@g,@g x,@g);

Y(c,j) = A(1,1);
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Z(c,j) = B(1,1);

c = c+1;

end

end

%compute the absolute error for each scheme

% eY = abs(Y − 3.1696);

% eZ = abs(Z + 0.4256*X0*diffusion);

eY = abs(Y − 4.747036599903693);

eZ = abs(Z − 11.585125024175634);

% error plot

subplot(1,2,1);

loglog(steps,eY);

xlabel('M');

ylabel('Y 0');

subplot(1,2,2);

loglog(steps,eZ);

legend('Scheme A','Scheme B','Scheme C','Scheme D')

xlabel('M');

ylabel('Z 0');

• θ-algorithm for a FBSDE with a two-dimensional forward SDE.

function [X1,X2,Y,Z1,Z2] = ...

binom2dBSDE(T,n,P,X0,mu,sigma,rho,theta1,theta2,f,g,g x1,g x2)

% Initialize variables

dt = T/n;

Y = zeros(n+1,n+1,n+1);

Z1 = zeros(n+1,n+1,n+1);

Z2 = zeros(n+1,n+1,n+1);

sigma1 = sigma(1,1);

sigma2 = sigma(2,2)/sqrt(1−rhoˆ2);

u1 = 1 + mu(1)*dt + sigma1*sqrt(dt);

d1 = 1 + mu(1)*dt − sigma1*sqrt(dt);

u2 = 1 + mu(2)*dt + sigma2*sqrt(dt);

d2 = 1 + mu(2)*dt − sigma2*sqrt(dt);

% Terminal values of the binomial pyramids for both stocks

X1 = X0(1)*d1.ˆ([n:−1:0]).*u1.ˆ([0:n]')';
X1 = repmat(flipud(X1'),1,n+1);

X2 = X0(2)*d2.ˆ([n:−1:0]).*u2.ˆ([0:n]')';
X2 = repmat(fliplr(X2),n+1,1);

% Terminal conditions for the BSDE

tsigma = sigma';

Y(:,:,end) = g(X1,X2);

Z1(:,:,end) = tsigma(1,1)*X1.*g x1(X1,X2) + tsigma(1,2)*X2.*g x2(X1,X2);

Z2(:,:,end) = tsigma(2,1)*X1.*g x1(X1,X2) + tsigma(2,2)*X2.*g x2(X1,X2);

% Compute numerical solution (Y t,Z t)

t2 = theta2; % this is for the 'fix'

p uu = 0.25*(1+rho);

p dd = p uu;
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p ud = 0.25*(1−rho);
p du = p ud;

inv sigma = inv(sigma);

dW 1 = @(dz1,dz2) (dz1*sigma1*inv sigma(1,1) + sigma2*dz2*inv sigma(1,2));

dW 2 = @(dz1,dz2) (sigma1*dz1*inv sigma(2,1) + sigma2*dz2*inv sigma(2,2));

for k = n:−1:1;
for i = 1:k

if theta2 == 1/2 && k == n

theta2 = 1;

end

Z1(1:k,i,k) = (theta2 − ...

1)/(theta2)*(p uu*Z1(1:k,i,k+1)+p ud*Z1(1:k,i+1,k+1) + ...

p du*Z1(2:(k+1),i,k+1) + p dd*Z1(2:(k+1),i+1,k+1))...

+ ...

1/(theta2*sqrt(dt))*(p uu*Y(1:k,i,k+1)*dW 1(1,1)+p ud*Y(1:k,i+1,k+1)*dW 1(1,−1) ...

+ p du*Y(2:(k+1),i,k+1)*dW 1(−1,1) + ...

p dd*Y(2:(k+1),i+1,k+1)*dW 1(−1,−1))...
+ (1−theta2)/theta2 * sqrt(dt) * ...

(p uu*f(k+1,Y(1:k,i,k+1),[Z1(1:k,i,k+1),Z2(1:k,i,k+1)])*dW 1(1,1) ...

+ ...

p ud*f(k+1,Y(1:k,i+1,k+1),[Z1(1:k,i+1,k+1),Z2(1:k,i+1,k+1)])*dW 1(1,−1) ...

+ ...

p du*f(k+1,Y(2:(k+1),i,k+1),[Z1(2:(k+1),i,k+1),Z2(2:(k+1),i,k+1)])*dW 1(−1,1) ...

+ ...

p dd*f(k+1,Y(2:(k+1),i+1,k+1),[Z1(2:(k+1),i+1,k+1),Z2(2:(k+1),i+1,k+1)])*dW 1(−1,−1));
Z2(1:k,i,k) = (theta2 − ...

1)/(theta2)*(p uu*Z2(1:k,i,k+1)+p ud*Z2(1:k,i+1,k+1) + ...

p du*Z2(2:(k+1),i,k+1) + p dd*Z2(2:(k+1),i+1,k+1))...

+ 1/(theta2*sqrt(dt))*(p uu*Y(1:k,i,k+1)*dW 2(1,1) + ...

p ud*Y(1:k,i+1,k+1)*dW 2(1,−1) + ...

p du*Y(2:(k+1),i,k+1)*dW 2(−1,1) + ...

p dd*Y(2:(k+1),i+1,k+1)*dW 2(−1,−1))...
+ (1−theta2)/theta2 * sqrt(dt) * ...

(p uu*f(k+1,Y(1:k,i,k+1),[Z1(1:k,i,k+1),Z2(1:k,i,k+1)])*dW 2(1,1) ...

+ ...

p ud*f(k+1,Y(1:k,i+1,k+1),[Z1(1:k,i+1,k+1),Z2(1:k,i+1,k+1)])*dW 2(1,−1) ...

+ ...

p du*f(k+1,Y(2:(k+1),i,k+1),[Z1(2:(k+1),i,k+1),Z2(2:(k+1),i,k+1)])*dW 2(−1,1) ...

+ ...

p dd*f(k+1,Y(2:(k+1),i+1,k+1),[Z1(2:(k+1),i+1,k+1),Z2(2:(k+1),i+1,k+1)])*dW 2(−1,−1));

picard = zeros(k,P);

picard(:,1) = (p uu*Y(1:k,i,k+1) + p ud*Y(1:k,i+1,k+1) + ...

p du*Y(2:(k+1),i,k+1) + p dd*Y(2:(k+1),i+1,k+1));

for l = 2:P

picard(:,l) = (p uu*Y(1:k,i,k+1) + p ud*Y(1:k,i+1,k+1) + ...

p du*Y(2:(k+1),i,k+1) + p dd*Y(2:(k+1),i+1,k+1))...

+ dt*theta1*f(k, picard(:,l−1), [Z1(1:k,i,k),Z2(1:k,i,k)]) + ...

dt*(1−theta1)*(p uu*f(k+1,Y(1:k,i,k+1),[Z1(1:k,i,k+1),Z2(1:k,i,k+1)]) ...

+ ...

p ud*f(k+1,Y(1:k,i+1,k+1),[Z1(1:k,i+1,k+1),Z2(1:k,i+1,k+1)]) ...

+ ...

p du*f(k+1,Y(2:(k+1),i,k+1),[Z1(2:(k+1),i,k+1),Z2(2:(k+1),i,k+1)]) ...

+ ...

p dd*f(k+1,Y(2:(k+1),i+1,k+1),[Z1(2:(k+1),i+1,k+1),Z2(2:(k+1),i+1,k+1)]));

end

Y(1:k,i,k) = picard(:,P);

theta2 = t2;



54

end

end

end

• Main file that calls the binom2dBSDE-function and computes the error.

clear all;

close all;

% Initialize variables

steps = [10:10:100, 100:20:400];

theta = [0, 1;

1/2, 1;

1, 1;

1/2, 1/2];

n schemes = size(theta,1);

amount steps = length(steps);

% Initialize variables that will hold Y 0 and Z 0 for each scheme

Y = zeros(amount steps,n schemes);

Z1 = zeros(amount steps,n schemes);

Z2 = zeros(amount steps,n schemes);

% Counter for the loop;

c = 1;

% Configuration of the problem

sigma1 = 0.25;

sigma2 = 0.3;

rho = 0.3;

sigma= [sigma1, 0;

rho*sigma2, sqrt(1−rhoˆ2)*sigma2];
mu = [0.1,0.1];

r=0.05;

X0 = [100,100];

T = 0.1;

% Compute numerical solution Y 0, Zˆ1 0 and Zˆ2 0

for j = 1:n schemes

c = 1;

for i = steps;

[X1,X2,A,B1,B2] = ...

binom2dBSDE(T,i,5,X0,mu,sigma,rho,theta(j,1),theta(j,2),@f spread,@g spread,@g x1 spread,@g x2 spread);

Y(c,j) = A(1,1);

Z1(c,j) = B1(1,1);

Z2(c,j) = B2(1,1);

c = c+1;

end

end

% Compute exact solution

[price,greeks]=spreadOption(X0,sigma1,sigma2,rho,T,r);

tsigma = sigma';

Z1sol = tsigma(1,1)*X0(1)*greeks.delta1 + tsigma(1,2)*X0(2)*greeks.delta2;

Z2sol = tsigma(2,1)*X0(1)*greeks.delta1 + tsigma(2,2)*X0(2)*greeks.delta2;

% Compute errors

eY = abs(Y − price);

eZ1 = abs(Z1 − Z1sol);

eZ2 = abs(Z2 − Z2sol);

% Error plot

subplot(1,3,1);

loglog(steps,eY,'−');
hold on;

subplot(1,3,2);
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loglog(steps,eZ1,'−');
hold on;

subplot(1,3,3);

loglog(steps,eZ2,'−');
hold on;


