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Prof. dr. ir. I.J.B.F. Adan Technische Universiteit Eindhoven
Prof. dr. H. Vu Monash Univeristy, Australia
Prof. dr. ir. J.W.C. van Lint Technische Universiteit Delft
Prof. dr. ir. B. De Schutter Technische Universiteit Delft

This thesis is the result of a Ph.D. study carried out from 2013 to 2017 at Delft Uni-
versity of Technology, Faculty of Civil Engineering and Geosciences, Transport and
Planning Section.

TRAIL Thesis Series no. T2017/11, the Netherlands TRAIL Research School

TRAIL
P.O. Box 5017
2600 GA Delft
The Netherlands
E-mail: info@rsTRAIL.nl

ISBN 978-90-5584-229-2

Copyright c© 2017 by Goof Sterk van de Weg.

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording or by any information storage and retrieval system,
without written permission from the author.

Printed in The Netherlands



Yesterday I woke up sucking a lemon
Everything in its right place

- Radiohead (1999)





Voorwoord

Een proefschrift is meer dan alleen een bewijs van Stoı̈cijnse verdieping in een vakge-
bied, het is ook een bewijs van toewijding en persoonlijke ontwikkeling. Naast de
unieke kans om zonder beperking maanden lang diep na te denken over een onder-
werp, heeft het promotie traject me dan ook vele bijzondere ervaringen geboden op
professioneel en persoonlijk vlak. Ik zou graag mijn dankbaarheid willen uitten aan
een ieder die direct of indirect heeft bijgedragen aan deze periode en de totstandkoming
van dit proefschrift .

Ten eerste wil ik Andreas Hegyi bedanken die me als afstudeerbegeleider heeft gemo-
tiveerd om te gaan promoveren, wat me op dat moment de grootste uitdaging leek die
ik kon aangaan. Ik ben je erg dankbaar voor het vertrouwen datje altijd gehad hebt
in een goede uitkomst en voor de vele wijze lessen. Zonder je kritische vragen over
de ideeën die ik geregeld met je besprak hadden er nu niet 5 mooie algoritmes in dit
proefschrift gestaan.

Serge Hoogendoorn wil ik bedanken voor het mogelijk maken van het promotie tra-
ject en voor de altijd scherpe kritiek en nieuwe invalshoeken. Daarnaast ben ik je ook
dankbaar voor het voortdurende vertrouwen in mijn onderzoekspraktijken. Een goed
voorbeeld hiervan is een bespreking in maart 2014. Omstreeks januari 2014 was ik me
volledig gaan richten op stadsverkeersregelingen. Na 2 maanden diep nadenken vroeg
ik me in deze bespreking af of de ideeën die ik had wel ergens naartoe leiden. De feed-
back die je gaf luidde ongeveer: “je hebt best aardige ideeën en ik vertrouw erop dat
er iets goeds uitkomt, ga nog een maand zo door en als het dan niet duidelijker wordt
kijken we samen hoe we het gerichter kunnen maken.” Gedurende die maand kwam
inderdaad een ‘Eureka-moment’ en legde ik de basis voor het algoritme beschreven in
hoofdstuk 4 van dit proefschrift.

Bart De Schutter wil ik graag bedanken voor de technische hulp bij de formulering
van de optimalisatie aanpakken in de artikelen in hoofdstukken 3 en 5 en voor de
tijdige en hoge kwaliteit feedback op de tekst van deze artikelen. Daarnaast wil ik je
bedanken voor de leerzame samenwerking in de begeleiding van Dik Jansen tijdens
zijn afstuderen. Ook wil ik je bedanken voor het plaatsnemenin de commissie.

I also want to thank Hai Le Vu for hosting my visit at the Swinburne University of
Technology. Without our discussions and your help, I would not have been able to
develop and implement the algorithm presented in Chapter 6.Besides that, I want
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to thank you for the collaboration in supervising Dik Jansenduring his visit at your
group, and for taking place in the doctoral committee.

Thanks to the other doctoral committee members, namely, IvoAdan, Hans van Lint,
and Mónica Menéndez, for their valuable time invested in reading and providing feed-
back on the dissertation, and taking place in the doctoral committee.

A warm thanks to all the colleagues of the Transport & Planning department who have
made the work so much more pleasant. Especially: Mario, Giselle, Tamara, Erika,
Femke, Ramon, Alex, Pablo, Bernat, Meng, Yufei, Oded, Victor, Bart Wiegmans, and
Nikola. Henk Taale, dank voor de hulp met hoofdstuk 5. Niharika, it was great working
with you. Paul van Erp, dank voor de gezelligheid, het luisterend oor, en de vele
ingewikkelde discussies over allerlei onderwerpen. Mehdi, I am very thankful for your
help, it was lots of fun working with you! Edwin, dank voor de ondersteuning en hulp
bij technische problemen. Priscilla en Dehlaila, bedankt voor de gezelligheid en de
hulp met de verscheidene verzoeken waar jullie altijd snel mee aan de slag gingen, ik
bewonder jullie talent om zoveel verschillende dingen tegelijk te doen.

Ook dank aan de afstudeerders Robin, Mark, Emiel, Niharika,Rien, en Dik die ik heb
mogen begeleiden, voor de leerzame ervaring. In het bijzonder Dik, het was gezellig
met je samen te werken, zeker ook in Melbourne. Ik ben erg trots op het goede resultaat
dat je gehaald hebt!

Jaap, Gerard, Koen, dank voor de leuke en leerzame tijd bij Arane! Het was erg inter-
essant om de praktische kant van de verkeersregelingen te zien en ik heb ook genoten
van de goede sfeer in jullie team.

Theun, hartelijk bedankt voor het ontwerpen van de omslag ende figuren in de in-
troductie. Ik vind het fantastisch hoe je mijn interesses kunstzinnige hebt weten te
verbinden met de inhoud van dit proefschrift, dank je wel!

Het is erg gemakkelijk om elke minuut van de dag bezig te zijn met een promotie
onderzoek. Gelukkig heb ik kunnen rekenen op een heel stel vrienden, hoewel het me
niet altijd gelukt is om niet over werk te praten. Ik denk dat ik er wel steeds beter in
word, gelukkig. Job, wat hebben we veel mooie avonturen beleefd, dat zullen we vast
nog wel doorzetten! Freek, ik vind het altijd fantastisch omweer bij te praten, alsof de
tijd heeft stil gestaan. Bart-Jan en Rik, het was een mooie studententijd met jullie en
leuk om daar nog van na te genieten in Den Haag. Jan, Elise, Floris, Thijs, Koen en
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Chapter 1

Introduction

Road traffic networks are not always utilized to their maximum potential. This means
that travelers experience unnecessary delays due to, for instance, freeway congestion
or inefficient use of intersections. These delays cause economical and societal costs.
According to the European Commission congestion costs in Europe mount up to 1%
of the gross domestic product [European Commission, 2014].One important cause of
this problem is the lack of efficient network-wide traffic control measures which is the
main topic of this dissertation. More specifically, this dissertation focuses on feedback
traffic control algorithms.

Feedback traffic control aims at influencing the traffic usingactuators – for instance,
variable speed limits (VSLs), ramp metering (RM), traffic lights, and route guidance
– based on real-time traffic measurements [Papageorgiou et al., 2003]. A well-known
example is ramp metering which is commonly used to limit an on-ramp flow using a
traffic light at the on-ramp so that the freeway flow remains below the capacity of a
bottleneck [Papageorgiou et al., 1988]. This causes a congestion reduction which is
beneficial for the freeway performance because it reduces the impact of the capacity
drop – i.e., the phenomenon that the congestion outflow is less than the free flow ca-
pacity [Hall and Agyemang-Duah, 1991, Kerner and Rehborn, 1996, Leclercq et al.,
2016]. In this way, the average travel time of all the road-users is reduced because the
freeway outflow remains higher.

Network-wide traffic control can be used to reach various objectives. Examples of
these objectives are improving throughput, reducing pollution, improving safety, im-
proving reliability, and improving equity [Burger et al., 2013]. The main objective for
applying ramp metering in the example above is to improve thethroughput. Besides
that, reducing congestion may also lead to a reduction in pollution and in a safety gain.
However, the improved throughput is realized by solely delaying the on-ramp traffic
which may not always be equitable. Hence, different objectives may be conflicting.
The task of a control algorithm is to influence the traffic so that the performance –
expressed via one or a set of objectives – is improved. This dissertation focuses on the
objective of improving the network-wide throughput.

1
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The currently available traffic control algorithms are not always able to efficiently
utilize the network capacity. One of the main reasons for this is that improving the
network-wide throughput requires to coordinate numerous actuators throughout the
network. Such coordination is theoretically challenging due to, among others, the
complexity of traffic dynamics. Apart from that, coordinating a lot of actuators intro-
duces a lot of decision variables which may cost a lot of computation time to optimize.
As a consequence, most traffic control algorithms contain significant simplifications
so that they require only a limited amount of computation time which often leads to
sub-optimal performance.

Hence, there exists room for improving the currently available traffic control algo-
rithms. In fact, there are several aspects on which traffic control algorithms can be
improved. However, for the sake of simplicity, this dissertation investigates how traffic
control algorithms can be developed that lead to a better balance between the following
two requirements:

• The algorithm has to be able tocoordinatemultiple (different) actuators in order
to maximize the network performance,

• The algorithm has to bereal-time feasible. This means that it has to be able to
compute the control signal within the controller sampling time which is typically
in the range of one to several minutes.

It must be noted that these two requirements are often conflicting because the problem
complexity typically increases when the number of actuators that need to be coordi-
nated increases. As a consequence, an increase in the numberof actuators may cause
an increase in the computation time used by the control algorithm which may conflict
with the real-time feasibility requirement. Therefore, itmay be needed to realize a bet-
ter balance between the realized network performance and the required computation
time.

The aim of this dissertation is to design traffic control algorithms for network-wide traf-
fic control that lead to a better balance between network performance and computation
time. Before formalizing this aim into a research objective, first the background of the
problem is introduced. To this end, the next section discusses the main characteristics
of the network-wide traffic control problem. Section 1.2 details the main challenges
and opportunities relevant for the design of network-wide traffic control measures in
this dissertation. Section 1.3 then presents the research objective, followed by the re-
search scope Section 1.4, and the research approach Section1.5. Section 1.6 presents
the main contributions and Section 1.7 presents the dissertation outline.

1.1 Problem characteristics

A network-wide traffic control system consists of detectors, actuators, state estimation
algorithms, and control algorithms that influence the traffic as illustrated in Figure 1.1.
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All these elements have different characteristics that need to be accounted for when
developing network-wide traffic control algorithms. This section first describes the
characteristics of the traffic dynamics followed by the characteristics of the actuators
relevant for this dissertation.

Figure 1.1: Overview of a traffic control system

1.1.1 Traffic dynamics

The propagation of traffic through a network is a dynamic process with many charac-
teristics. Depending on the intended application of a traffic control algorithm it has
to be able to account for several of these characteristics. Interestingly, the relevant
characteristics of urban roads and freeways differ and as a consequence this section
discusses these characteristics separately. Hence, this section first discusses the main
characteristics of urban traffic dynamics and their implication on the design of traffic
control algorithms, followed by a discussion of the characteristics of freeway traffic
dynamics and their implication on the design of traffic control algorithms.

The traffic dynamics in anurban link can be divided into three traffic regimes. The
division of the regime inside a link used in this dissertation is based on the definition
presented by Aboudolas et al. [2010]. It must be noted thoughthat in Aboudolas
et al. [2010] a regime refers to the traffic situation inside the majority of the links in
a network while in this dissertation it refers to the traffic situation inside individual
links. The undersaturated regime represents the situationin which a queue can be
emptied during a green time implying that a coupling from upstream to downstream
intersections exists. In this regime, green waves can be created that allow vehicles
to pass several intersections without stopping. The saturated regime is defined as the
situation in which queues cannot be dissolved during a greentime implying that no
direct coupling between intersections exists. Green wavescan no longer be created in
this regime and the queue outflow equals the saturation rate if there is no downstream
storage capacity limitation. The oversaturated regime is characterized by queues that
propagate to upstream intersections causing a coupling from downstream intersections
to upstream intersections. This coupling is time delayed, since, it takes time for the
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space created by vehicles leaving the downstream intersection to reach the upstream
intersection.

An urban traffic control algorithm has to account for different characteristics depend-
ing on the intended application. For instance, a traffic control algorithm designed for
the undersaturated regime should be able to account for the downstream propagating
waves caused by free flowing traffic. If this is not included, the controller will not be
able to coordinate the off-set between intersections that is used to create green waves
Little [1966], Little et al. [1981]. Similarly, if the upstream propagating waves caused
by spillback are not accounted for by the control algorithm,the controller will tend to
overestimate the remaining storage space in a link. Due to this, the controller may try
to realize higher flows to a downstream link than physically possible while reducing
the flows to other links resulting in a performance loss.

Several characteristics offreewaytraffic dynamics are relevant for this dissertation. In
free flow conditions the density – i.e., the number of vehicles in a link (or segment) –
is positively correlated with the flow. In practice it is alsoobserved that the speed in
the link reduces when the density increases in free flow conditions. When the density
reaches the critical density, traffic becomes unstable meaning that (small) disturbances
may lead to congestion. Hence, the density and flow are negatively correlated for
densities beyond the critical density. Congestion typically causes a capacity drop [Hall
and Agyemang-Duah, 1991, Kerner and Rehborn, 1996, Leclercq et al., 2016]. Note
that the capacity drop is usually not observed in urban traffic networks. The reason
being that the maximum flows in urban traffic networks are realized by the outflows
from queues that are already limited by the queue discharge rate. The severity of
the capacity drop depends on several factors. One of these isthe type of congestion.
The two most well-known forms of congestion are jam waves – i.e., congestion with
a length of roughly a few hundred meters to 2 km that propagatein the upstream
direction – and standing queues. Typically, the capacity drop caused by a jam wave is
larger (in the range of 30% according to Kerner and Rehborn [1996]) when compared
to the capacity drop caused by a standing queue which is in therange of 10 to 13%
according to Leclercq et al. [2016].

Similarly as for urban traffic, the intended application of afreeway traffic control algo-
rithm influences the characteristics that need to be accounted for. In free flow condi-
tions it is required to account for the travel times between different network elements.
For instance, when coordinating the outflows of different on-ramps using RM to max-
imize the throughput of a downstream bottleneck, it may be beneficial to account for
the time delay between the changes in the outflow of the upstream on-ramp onto the
flow passing the downstream on-ramp and the bottleneck. Neglecting these free flow
dynamics simplifies the control algorithm but may also introduce efficiency losses or
controller instability. The capacity drop is an important property that is to be taken
into account when developing traffic control algorithms forcongested conditions. Not
accounting for the capacity drop means that there is no difference between prevent-
ing or allowing congestion on a freeway stretch without off-ramps in terms of realized
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freeway throughput. On the other hand, including the capacity drop may lead to a
more complex controller design. Finally, a freeway traffic control algorithm designed
for jam waves may not be efficient when applied to a standing queue and vice versa.
However, developing an algorithm that is capable of accounting for both congestion
types may be more complex.

1.1.2 Actuators used for network-wide traffic control

The actuators that are considered in a network-wide traffic control system have several
characteristics that have to be considered as well. This dissertation is limited to four
types of actuators, namely, traffic lights, (in-vehicle) variable speed limits, ramp me-
tering installations, and route guidance. The characteristics of these actuators and the
implication of these characteristics for the controller design are discussed below.

Traffic lights are a well-known and broadly used traffic control measure. Traffic lights
at an intersection are controlled via a signal program, i.e., an algorithm that determines
which streams can be active – i.e., is given a green light – at what time instant. A
signal plan has several properties as will be detailed first [Hoornman and Bronkhorst,
2014, Papageorgiou et al., 2003]. A stage is a set of streams that can be active simulta-
neously. When the streams in two subsequent stages are conflicting, a clearance time
has to be respected between the time when stopping one stage and activating the next
in order to avoid collisions. In practice, a signal program consists of a fixed sequence
of stages which may contain some degree of flexibility. A complete sequence of stages
is referred to as a cycle. Typically, every stream receives aminimum amount of green
time during a cycle and a maximum amount of green time in orderto limit the max-
imum cycle time. Some signal plans use an offset between intersections. This offset
enables the coordination of the signal programs of different intersections so that traffic
leaving the upstream intersection receives a green light when reaching the downstream
intersection. This is commonly known as the green wave [Little, 1966, Little et al.,
1981]

These properties may affect the controller in several ways.Due to the clearance time,
it is beneficial to increase the cycle time in the saturated and oversaturated regime.
The reason for this is that a longer cycle time reduces the number of switches between
stages which reduces the fraction of the cycle time that is not used by traffic. Despite
the advantage of choosing a longer cycle time, it cannot be chosen too long, since, this
may cause annoyance or, even worse, road users ignoring red lights. The sequence
of stages can affect the performance as well. In practice, stage sequences are fixed.
One of the main reasons for doing this is that road users get acquainted with the signal
program so that changing the stage sequence may lead to confusion, annoyance or non-
compliance. Another advantage of fixing the stage sequence is that it simplifies the
control problem. On the other hand, fixing the sequence reduces the control freedom
and as a consequence may reduce the performance. Finally, the off-set is commonly
used for coordinating the signal plans of intersections in undersaturated regimes. This
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concept may also be used in the oversaturated regime to coordinate the signal plans in
the upstream direction.

Variable speed limitsare commonly implemented using variable message signs
(VMS) placed on gantries above a freeway and may also be displayed in the vehicle.
While research has shown that VSLs can be used to improve the freeway throughput,
they are typically used in practice to enhance the safety. Anexample is the auto-
matic incident detection (AID) system used in the Netherlands. The AID system in the
Netherlands displays a speed advice of 50 km/h if a speed below 50 km/h is detected
by inductive loop detectors near the VMS gantry. Additionally, the gantry directly
upstream of the gantry displaying 50 km/h displays a speed advice of 70 km/h. In
this way, road users start limiting their speed and are awarethat they are approaching
congestion. According to Taale and Schuurman [2015] this system has led to an 18%
reduction of head-to-tail collisions.

When applying a VSL system, the following characteristics should be included. First,
a VSL controller has to be able to correctly account for the impact of the displayed
VSLs on the traffic flow dynamics. According to Hegyi et al. [2010] two main ap-
proaches exist to improve the freeway throughput using VSLs. Homogenizing is the
first approach which displays VSLs on VMS that are similar to the average speed of
the traffic. This reduces the speed differences which stabilizes the traffic flow reducing
the probability of traffic breakdown, and thus, leading to improved freeway through-
put [Smulders, 1990, Van den Hoogen and Smulders, 1994, Kühne, 1991]. However,
field-test results did not show significant throughput improvements [Van den Hoogen
and Smulders, 1994]. Flow limitation is the second approachwhich aims at reducing
the freeway flow by displaying VSLs. Field-test results using the SPECIALIST VSL
algorithm showed that the flow into a jam wave can be reduced bydisplaying VSLs
upstream of the jam wave [Hegyi et al., 2010]. Due to the flow reduction, the jam
waves could be resolved leading to improved freeway throughput. Resolving a jam
wave means that the upstream propagating high density, low speed state that character-
izes a jam wave, is removed, so that it is possible to realize traffic flows up to the free
flow capacity. Carlson et al. [2011] proposed an algorithm that applies VSLs upstream
of a bottleneck so that the bottleneck inflow can be controlled to match the bottleneck
capacity. This may prevent bottleneck congestion and maximize the throughput. An-
other property that has to be respected is compliance to the displayed speed limits. It is
well known that the actual speed of traffic that is speed limited – also called the effec-
tive speed – is not equal to the displayed speed limits. Hence, a VSL controller has to
account for the compliance of traffic to the VSLs. Finally, a VSL strategy should not
cause unsafe situations, such as a situation where only a percentage of the road-users
is speed-limited by VSLs or a situation where road-users experience sudden drops in
the VSLs.

Ramp metering installations are traffic lights placed at on-ramps that allow a limited
number of vehicles to enter the freeway when showing green. In this way, the freeway
flow downstream of the on-ramp can be changed. One of the most well-known RM al-
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gorithms is called ALINEA [Papageorgiou et al., 1988] and has been applied at several
on-ramps throughout the world.

Several characteristics of RM installations have to be accounted for when developing
a RM algorithm. The possible RM rates are bounded by a minimumand maximum
RM rate. The minimum rate prevents excessive waiting while the maximum RM rate
is a physical constraint caused by the minimum cycle time of the RM installation. The
limitation of the on-ramp flow usually causes an on-ramp queue. Typically, this on-
ramp queue has to be limited in order to avoid spillback to theupstream (urban) traffic
network. The maximum queue length may limit the time over which RM can reduce
the on-ramp flow and therewith limit its effectiveness.

Route guidanceis a traffic control measure that can be used to re-route traffic. Route
guidance can be realized using VMS by displaying routing advice at major bifurca-
tions, or by displaying in-car messages, for instance, as part of a navigation system.
One of the reasons for applying route guidance is to distribute traffic more efficiently
over the different routes in a network [Papgeorgiou and Messmer, 1991]. Another rea-
sons for implementing route guidance is to direct traffic away from incidents in the
network.

Several characteristics of route guidance need to be considered when developing route
guidance control algorithms. First, route guidance may cause an interaction effect
between the road users and other traffic control measures. Asan example, consider a
system where road users have devices that decide based on thecurrent traffic situation
and potentially on the predicted travel times, what routes lead to the smallest travel
time for the individual road user. When the control actions of other traffic control
measures are not adapting to this re-routing effect, the network may get into a sub-
optimal user optimum. Accounting for these influences requires an integrated control
action that accounts for the impact of the infrastructure control actions onto the re-
routing. However, coordinating the route choice with othercontrol measures results in
a complex problem. Second, people may not fully comply to theroute guidance advice.
Hence, a traffic control algorithm has to account for non-compliance or it should be
combined with a policy that can realize a high compliance.

1.2 Challenges and opportunities of network-
wide traffic control

Apart from the complexity introduced by the aforementionedcharacteristics that need
to be accounted for, the main complicating factor of network-wide traffic control is
(simply) the size of the network. Controlling the traffic in an urban region requires
coordination of hundreds of traffic lights and actuators along many tens of kilometers
of freeway. The number of control variables of such a system is enormous, causing
computational issues. Besides that, developing algorithms to coordinate this number



8 TRAIL Thesis series

of variables is also challenging from a theoretical point ofview due to, for instance,
the many problem characteristics that have to be considered.

A promising approach to control such networks is to divide the network into sub-
networks. Such asub-networkis defined in this dissertation as amedium-to-large scale
networkconsisting of tens of kilometers of freeway or tens of intersections. The sub-
network controllers are then used to optimize the performance in the sub-networks
while a higher level controllers optimizes the flows that areexchanged between the
sub-networks leading to network-wide performance improvement. In this way, the
sub-network controllers can consider more detail while thealgorithm that has to coor-
dinate the sub-network interaction can consider more simplified or aggregated dynam-
ics. For instance, Hajiahmadi et al. [2015b] proposed a control strategy to coordinate
the sub-network interaction based on the network fundamental diagram (NFD). Zhou
et al. [2016] integrated that strategy in a hierarchical control framework as described
above. The Rhodes algorithm is another example of a hierarchical control framework
for urban traffic networks [Head et al., 1992].

This dissertation focuses on the design of algorithms for sub-networks in the light of
a multi-level or hierarchical system as discussed above. Two types of sub-networks
are considered, namely, freeway and urban sub-networks. This division is made, since,
the characteristics of the problem of freeway and urban sub-networks are rather dif-
ferent so that different control designs are needed. Below,first the problems faced
when developing freeway or urban traffic control algorithmsare discussed. After that,
Section 1.2.2 discusses opportunities for improving the algorithms. When needed, a
distinction between freeway and urban traffic control is made.

1.2.1 Challenges

Ideally, a traffic control algorithm optimizes the control action of various actuators to
maximize the throughput. Hence, various traffic control algorithms have been pro-
posed in the scientific literature that are able to automatically select the control signals
that optimize the network performance over a time horizon. See [Hegyi et al., 2005b,
Gomes and Horowitz, 2006, Hajiahmadi et al., 2013a, Van den Berg et al., 2007] for
optimization of the VSL or RM signals in freeway networks. See [Aboudolas et al.,
2010, Le et al., 2013, Lin et al., 2012, Van den Berg et al., 2007] for optimization of the
signal timings of intersection controllers to maximize theurban network throughput.
Major advantages of these algorithms are that they can easily adjust to various traffic
situations, various traffic demand patterns, and various road lay-outs while maintaining
the ability to optimize the network performance. However, despite these advantages,
this type of algorithm has not been implemented in practice due to several reasons.
First, including all the relevant problem characteristicsrequires a complex optimiza-
tion problem that does not always satisfy the real-time feasibility requirement. Second,
optimizing the performance over a time-horizon requires a prediction of near-future
traffic demands and turn-fractions at off-ramps and bifurcations, which is not readily
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available. Third, the optimized control actions are not always insightful which affects
the acceptance of the control strategies by the authorities.

In contrast to optimization-based algorithms, in practicemainly non-optimizing con-
trol algorithms of the feed-forward or feedback type are implemented that coordinate
the control actions of a small number of actuators for a specific traffic situation. For ex-
amples of practice applied freeway traffic control algorithms see, [Papageorgiou et al.,
1988] for feedback RM to prevent bottleneck congestion, [Middelham and Taale, 2006]
for feed-forward RM, and [Hegyi et al., 2010] for a feed-forward VSL control algo-
rithm. Examples of practice applied urban traffic control algorithms are, the TUC
algorithm [Diakaki et al., 2003, Kraus Jr et al., 2010] whichis a feed-back algorithm
designed for the saturated regime, and SCOOT and SCATS whichare algorithms de-
signed for the undersaturated regime [Hunt et al., 1982, Luk, 1984]. The advantages
of these algorithms are that they require little computation time, that they typically
do not rely on demand predictions, and that they exploit simple or insightful algorith-
mic formulations. A disadvantage of these algorithms is that they may not be able to
optimize the performance in all traffic situations. For instance, most urban traffic con-
trol algorithms do not consider the upstream propagating waves caused by spill back,
while in that regime, strong relations between intersections exist, especially requiring
coordination.

1.2.2 Opportunities of traffic control algorithm design

Recent technological innovations and scientific insights provide opportunities for im-
proving both freeway and urban traffic control algorithms. Technological innovations
can be used to provide better detection and actuation possibilities that may be used
to improve the controller performance. Similarly, scientific insights may be used to
develop new algorithms that make more efficient use of existing detection and actu-
ation possibilities. In some cases, a combined approach maybe followed in which
new algorithms are developed that make efficient use of new detection and actuation
possibilities.

The most relevant technological innovation for this dissertation is the rapid increase of
in-vehicle technology, such as GPS navigation systems, enabling cooperative systems
– i.e., systems in which vehicle to vehicle (V2V) and vehicleto infrastructure (V2I)
communication is enabled. Due to this increase, the availability of floating car data,
i.e., GPS speed and position data of individual road users, is increasing. This data
is more detailed compared to the traffic data based on inductive loop detectors. For
instance, Bayen and Patire [2010] showed in a field-test thatestimates of the traffic
state can be drastically improved by combining inductive detector loop data with FCD
of just a few percent of the traffic. Hence, it has the potential to supply existing traffic
control algorithms with more accurate traffic state estimations. Moreover, it may also
be used to develop new traffic control algorithms that take the individual vehicle as
the controlled element, instead of taking road segments as the controlled elements.
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Apart from more accurate data, cooperative systems also provides new data types. A
promising data type is the planned route of individual road-users. This information
may be used to provide a better prediction of the future traffic demand.

Cooperative systems not only provide better data but can also be used to directly in-
fluence individual vehicles. This may be possible by displaying in-vehicle messages
for instance on GPS navigation devices to re-route the traffic, provide speed advice to
individual vehicles, or even by directly influencing the speed of individual vehicles.
The advantage of this innovation is that it allows more detailed traffic control, since,
the strict time-space discretization of control actions that is currently determined by
the infrastructure can be relaxed. In order to benefit from this technology, new traffic
control algorithms have to be designed that take the individual vehicle as the controlled
element.

The most relevant insight for the development offreewaytraffic control algorithms in
this dissertation is the application of shock wave theory todescribe the effect of VSLs
on the traffic flow. These insights were used by the SPECIALISTalgorithm that was
capable of resolving jam waves on the A12 freeway in the Netherlands [Hegyi et al.,
2010]. However, the SPECIALIST algorithm is a feed-forwardalgorithm designed
for a conventional VSL system consisting of inductive detector loops and roadside
VMS. Wang et al. [2014] showed that the use of cooperative systems can improve the
performance of the SPECIALIST algorithm. However, in orderto fully benefit from
cooperative systems, a new algorithmic formulation may be needed that considers the
individual vehicle as the controlled element. Apart from that, the SPECIALIST al-
gorithm is only designed to resolve a jam wave using VSLs. Schelling et al. [2011]
integrated the SPECIALIST algorithm with RM. Although it isexpected that this may
increase the effectiveness, it is also likely that further extending the algorithm to more
generic situations is theoretically challenging. This could be addressed by incorporat-
ing the VSL control principles used in SPECIALIST in an optimization framework,
for instance, using parameterization. This could reduce the computation time while
simultaneously improving transparency.

The most relevant scientific insight for the development ofurban traffic control algo-
rithms in this dissertation is the development of the link transmission model (LTM)
by Yperman [2007]. This model is capable of modeling the mostrelevant traffic dy-
namics, namely, forward and backward propagating waves, and the saturation flow of
queues. In contrast to the commonly used cell transmission model (CTM) proposed by
Daganzo [1995], it has the advantage that it does not requireto divide a link into seg-
ments so that the model is more efficient from a computationalpoint of view. However,
not many control algorithms based on the LTM exist. See, Hajiahmadi et al. [2015b]
for a model predictive control (MPC) strategy based on the LTM for integrated control
of VSLs and RM.
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1.3 Research objective

This dissertation addresses the challenge of improving thetrade-off between road traf-
fic network performance and required computation time of traffic control algorithms.
This is realized by developing algorithms for the control ofmedium-to-large scale
urban and freeway networks. These algorithms are designed in the context of the char-
acteristics, challenges, and opportunities of the network-wide traffic control problem
as discussed above.

To this end, the main aim of this dissertation isthe design of computationally efficient
traffic control algorithms for throughput improvement of me dium-to-large scale
freeway or urban traffic networks that:

• coordinate the control actions of (different types of) actuators at different loca-
tions in the network,

• take the impact of the control actions on the network-wide performance over a
time horizon into account.

1.4 Research scope

Network-wide traffic control is a challenging problem with many open issues that need
to be addressed. The algorithms proposed in this dissertation are meant as a step into
the development of the next generation network-wide trafficcontrol algorithms. The
main step taken in this dissertation is exploiting the most recent technological innova-
tions and scientific insights in order to realize a better trade-off between computation
time and realized performance of network-wide traffic control algorithms. The follow-
ing scope is considered when developing network-wide traffic control algorithms in
this dissertation.

This dissertation focuses on the design of algorithms formedium-to-large scale traf-
fic networks. This simplifies the control problems that are to be solved within the
sub-networks, since, the number of controlled actuators isreduced. Additionally, a
sub-network either consists of urban roads or freeway whichsimplifies the problem
as well. A medium-to-large scale freeway network is defined as a network consisting
of tens of kilometers of freeways, tens of VMS gantries, and several RM installations.
A medium-to-large scale urban network consists of tens of intersections. This disser-
tation does not address the problem of coordinating the flowsbetween sub-networks.
The reader is referred to [Hajiahmadi et al., 2015b, Zhou et al., 2016] for control ap-
proaches aiming at coordinating the flows exchanged betweensub-networks.

This dissertation focuses on the design of algorithms for the followingexisting traffic
control measures:(in-vehicle) VSLs, RM installations, traffic lights, and route guid-
ance. The reason being that the dissertation mainly aims at optimizing the flows in a
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network for which these control measures are specifically suited. Additionally, these
measures are also most relevant from a practical point of view.

This dissertation mainly aims atimproving the throughput . Improving the through-
put is one of the most important traffic control objectives. Apart from throughput,
safety is typically considered in the design, for instance,by constraining the optimiza-
tion problem. However, it will not be systematically assessed whether the safety will
be improved by applying the algorithms in practice. Other performance indicators,
such as, equity or pollution, are not considered in this dissertation.

The algorithms proposed in this dissertation are designed to controlnormal traffic or
more specifically, traffic flows consisting of a mix of cars andtrucks. The application
of the algorithms to networks used by more types of traffic, such as, bikes, pedestrians,
public transportation, and emergency vehicles is beyond the scope of this dissertation.
It should be noted that including more types of traffic, also called modes, may require
different optimization algorithms. For instance, the algorithms may need to be adjusted
to maximize the throughput in terms of total travel time of persons instead of vehicles.

This dissertation considers an ideal world in whichno measurement noiseandno
demand prediction uncertainties are present. In this way, no observers or filters
are needed to improve the measurements fed to the controllers so that the simulation
results are not biased by measurement errors. Currently, predictions of the demand are
obtained using historical data and real-time inductive detector loop measurements. In
the near-future, these predictions may be improved using FCD.

1.5 Research approach

The main research objective is achieved by developing several algorithms for the con-
trol of traffic in freeway and urban traffic networks. In general, the novelty of these al-
gorithms is in the use of new detection and actuation possibilities or in the use of recent
scientific insights to develop more efficient traffic controlalgorithms. This dissertation
is divided into two parts as shown in Figure 1.2. The first partpresents algorithms for
the control of freeway traffic, and the second part presents algorithms for the control
of urban traffic. An overview of the different proposed control algorithms is presented
below.

1.5.1 Freeway traffic control

The first part of this dissertation aims at developing algorithms forimproving the
throughput of freeway traffic networks. This partfirst focuses on the use of in-vehicle
technologies enabling cooperative systems to improve the freeway throughput. As
motivated in Section 1.2.1, using cooperative systems instead of infrastructure based
technologies – such as, inductive loop detectors and VSLs displayed on VMSs – can
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lead to more efficient traffic control strategies. Most control algorithms proposed in the
literature that use in-vehicle technology or cooperative systems focus on the control of
individual vehicles or platoons of vehicles using (cooperative) adaptive cruise control
((C)ACC) to stabilize the traffic flow or to allow shorter headways between vehicles.
However, much less algorithms for the coordinated control of individual vehicles on
an entire freeway stretch have been developed.

Hence, the aim ofChapter 2 is to develop a VSL control algorithm that uses indi-
vidual vehicles as detectors and actuators for coordination of the speed of individual
vehicles to improve the freeway throughput.The insights into the application of shock
wave theory to describe the effect of VSLs on the freeway flow will be applied in this
chapter. The control of individual vehicles implies that the controller has to compute
the control actions for a lot of actuators, namely, all the vehicles on the freeway. There-
fore, the controller is designed to require only little computation time. The controller
is evaluated using microscopic simulation.

While exploiting in-vehicle technology enabling cooperative systems is one way to im-
prove the performance of freeway traffic control strategies, the application of control
strategies that optimize the flows between different network elements – e.g. on-ramps,
off-ramps, bottlenecks, and segments – has the potential toimprove the freeway per-
formance as well as discussed in Section 1.2. One of the main issues of this type of
algorithms is balancing the required computation time and performance of the control
strategy. Typically, speeding up the optimization allows to (1) update the control sig-
nal more frequently which allows to correct prediction errors more rapidly or (2) to
include more complex prediction models that may lead to a better performance.

To this end, the aim ofChapter 3 is the development of a computationally efficient
model-based predictive control (MPC) strategy for coordinating VSLs and RM instal-
lations in order to improve the freeway throughput.The computational efficiency is
improved by reducing the dimension of the optimization problem. This is realized by a
spatial discretization of the network into segments, and byexploiting the insights gath-
ered into the application of shock wave theory to describe the effect of VSLs onto the
freeway flow to simplify the control problem. The controllerperformance is evaluated
using macroscopic simulation.

1.5.2 Urban traffic control

The secondpart of this dissertation aims at developing algorithms forimproving the
throughput of urban road networks. This is a complex problemdue to the discontinu-
ous nature of the intersection flows, the large number of actuators, and the characteris-
tics of the urban traffic dynamics. To the best knowledge of the author, a computation-
ally efficient optimization algorithm for the coordinationof intersection flows that can
realize good performance in all traffic regimes is currentlylacking.
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Therefore, the aim ofChapter 4 is todevelop an efficient MPC strategy for optimizing
the traffic flows that cross the intersectionsin order to improve the urban road network
throughput. The proposed MPC strategy uses the LTM as the prediction model and
aggregates the traffic flow dynamics to tens of seconds so that, instead of green-times,
the fractions of green-time used by every stream are the optimization variables, which
are continuous. The approach is tested using macroscopic simulation and compared to
other, comparable strategies.

The use of in-vehicle technology enabling cooperative systems, or more specifically
in-car navigation devices, may cause an interaction effectbetween the chosen inter-
section control strategy, and the route choice of the road-users. In order to maximize
the network performance, a control strategy has to account for the impact of the con-
trol signals onto the route choice and potentially control the route choice itself. How-
ever, jointly optimizing the signal timings and route choice is a computational complex
problem.

The aim ofChapter 5 is todevelop a computationally efficient optimization algorithm
for the control of intersection flows and route choiceto improve the urban network
throughput. This is realized by extending the MPC strategy proposed in Chapter 4.
The inclusion of the route choice leads to a non-linear optimization problem so that an
efficient optimization algorithm has to be developed. The approach is evaluated using
macroscopic simulation.

The algorithms proposed in Chapter 4 and Chapter 5 both assume that the traffic flows
at intersections are continuous. However, as explained in Section 1.1, intersection
flows are discontinuous by definition. Directly optimizing the signal timings leads to
a discontinuous optimization problem which is not real-time feasible when applied to
medium-to-large scale networks. In order to apply the control signals computed by the
algorithms proposed in Chapter 4 and Chapter 5 they need to betranslated to signal
timings that are applicable to traffic lights.

Hence, the aim ofChapter 6 is to develop a hierarchical control framework to co-
ordinate the signal timingsin order to improve the urban network throughput. The
framework consists of two layers. The top layer uses the MPC strategy proposed in
Chapter 4 to optimize the aggregated flows at intersections.Next, the bottom layer
has to control the signal timings so that the optimized flows are tracked as good as
possible. The algorithm is tested using both macroscopic and microscopic simulation.

1.6 Contributions

This dissertations contributes to the scientific literature in several ways. The contri-
butions presented here are summaries of the detailed contributions presented in the
introductions of the different chapters.
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A theory and algorithm is proposed to resolve a jam wave usingFCD and by influenc-
ing the speed of individual vehicles on the freeway in Chapter 2. Special attention is
paid to satisfy the properties and limitations imposed whenimplementing cooperative
systems, such as, privacy and safety. Additionally, an evaluation is carried out in order
to test the performance and behavior of the algorithm.

Insight is gathered into the application of in-vehicle technologies for coordinating the
speed of vehicles on an entire freeway to improve the freewaythroughput in Chap-
ter 2. The availability of in-vehicle technology enabling cooperative systems is rapidly
increasing and most practical applications focus on the application of in-vehicle tech-
nology or cooperative systems for the control of an individual vehicle, or in some cases
on the control of a platoon of vehicles. Coordinating vehicles on an entire freeway is
the next step to which this dissertation contributes.

The balance between computation time and performance of optimization-based
network-wide traffic control algorithms is improved in Chapter 3, Chapter 4, and
Chapter 5. The algorithms are designed for optimizing the flows in freeway and ur-
ban networks by controlling VSLs, RM installations, flows atintersections, and route
guidance to improve the network-wide throughput. Optimization-based algorithms can
help to make more efficient use of the network capacity. The work in these chapters
provide a step in the application of optimization-based control algorithms by reducing
the computation time of these algorithms.

An efficient approach for optimizing the VSL values and RM rates on a stretch of free-
way over a time horizon is proposed in Chapter 3.The algorithm is efficient due to
the novel parameterization of integrated VSL and RM controlstrategies. Macroscopic
simulations show the improved efficiency due to the parameterization.

A linear optimization approach based on the LTM is proposed for optimizing the ag-
gregated intersection flows in Chapter 4.The optimization approach is designed for
a MPC strategy. Compared to existing linear optimization approaches, the approach
is capable of accounting for upstream and downstream propagating shock-waves and
saturated traffic flows while having a better balance betweencomputation time and
realized performance. Macroscopic simulations show the improved balance between
computation time and performance when compared to other comparable strategies.

An efficient algorithm for optimizing the aggregated trafficflows and routing decisions
in an urban traffic network is presented in Chapter 5.A major element of the opti-
mization algorithm is the analytic approximation of the gradient that is proposed in
this chapter. The performance of the algorithm is tested using macroscopic simulation.

A real-time feasible, hierarchical control framework for the control of signal timings
is proposed in Chapter 6. The framework is designed to improve the network-wide
urban network throughput in all traffic regimes. The proposed framework is evaluated
using both macroscopic and microscopic simulation.

An efficient framework to control the signal timings, and coordinate the flows at dif-
ferent intersections in an urban network is presented in Chapter 6. The framework
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contributes to the application of optimization-based network-wide traffic control algo-
rithms by reducing the required computation time. The algorithm is tested using the
MPC strategy presented in Chapter 4 but can be extended to include other optimization-
based algorithms as well.

1.7 Dissertation outline

Figure 1.2 presents the dissertation outline and the relations between the chapters. This
dissertation is divided into two parts. Thefirst part presents algorithms for the con-
trol of freeway traffic. Chapter 2 first presents a cooperative speed control algorithm
to resolve jam waves on the freeway. Next, Chapter 3 presentsan efficient optimiza-
tion algorithm for the coordination of flows exchanged between different elements of
a freeway network. Thesecondpart of this dissertation presents algorithms for the
control of urban traffic. Chapter 4 presents a linear optimization procedure to optimize
the flows in an urban network. Chapter 5 extends the approach proposed in Chapter 4
by including the control of routing decisions in the optimization problem. Chapter 6
presents a hierarchical control framework for the coordination of signal timings which
uses the approach proposed in Chapter 4 in a top layer to optimize the flows in the
network while the bottom layer is used to translate the optimized flows into signal
timings. Chapter 7 concludes this dissertation.
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Figure 1.2: Overview of the dissertation
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Freeway traffic control





Chapter 2

COSCAL v1: A cooperative speed
control algorithm for resolving jam
waves

In this chapter an approach is developed to use in-vehicle technology to improve the
freeway throughput by coordinating the speed of individualvehicles on a freeway
stretch. This chapter is based on the following paper that iscurrently being prepared
for submission:

G.S. van de Weg, A. Hegyi, S.E. Shladover, X.-Y. Yun, D. Chen,and S.P. Hoogen-
doorn, COSCAL v1: A cooperative speed control algorithm forresolving jam waves.
To be submitted.

Abstract

In this paper, an algorithm for cooperative systems is developed and evaluated which
improves the freeway throughput by resolving a jam wave, i.e., a jam that travels in the
opposite direction of traffic. This algorithm – called COSCAL v1 – determines speed
instructions for individual vehicles based on speed and position data of individual ve-
hicles.

The speed instructions are formulated as driving tasks, or modes, which relate to the
task a vehicle has to perform in order to resolve a jam wave, such as, autonomous driv-
ing, slowing down for jam resolution, or slowing down for stabilization. These tasks
are communicated in such a way that a low communication bandwidth is required. Be-
sides that, the communication is formulated in such a way that the privacy of the users
is respected.

21
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The algorithm has been tested using the micro-simulation package Vissim. The eval-
uations showed that the algorithm can resolve a jam wave on a single lane freeway
resulting in a TTS gain of 7.3% and that the algorithm is also capable of resolving a
jam wave on a two lane freeway resulting in an average TTS gainof 17.3%. It is shown
that the behavior of the algorithm is similar to the behaviorof SPECIALIST. Finally,
it is discussed how this algorithm can be extended to deal with lower penetration rates,
a combination of in-vehicle and road-side technologies, and multiple on-ramps and
off-ramps.

2.1 Introduction

The current proliferation of in-vehicle technologies – e.g. on-board computers or GPS
navigation devices – introduces opportunities for better dynamic traffic management
(DTM) of freeway traffic when compared to the currently used infrastructure-based
systems – i.e., systems using road-side detection and actuation, such as inductive de-
tector loops and variable message sign gantries. The reasonfor this is that DTM based
on in-vehicle technologies has several advantages, such as: higher resolution traffic
data, higher control freedom, and reduced dependency on costly infrastructure-based
systems. Therefore, this paper focuses on the use of in-vehicle technology for DTM
to improve the freeway performance. More specifically, thispaper focuses on coop-
erative systems which are systems in which vehicle to vehicle (V2V) and vehicle to
infrastructure (V2I) communication is enabled.

A well-known DTM measure to improve the freeway performanceis the use of variable
speed limits (VSLs). Research has shown that VSLs can be usedto improve, among
other things, the freeway safety and throughput. One way of improving the freeway
throughput using VSLs is by reducing the impact of the capacity drop caused by con-
gestion. The capacity drop is a term that refers to the phenomenon that downstream of
congestion the flow is lower than the free-flow capacity of thefreeway. The capacity
drop is also observed with jam waves i.e., a form of congestion of which the head
propagates upstream – and can be up to 30% [Kerner and Rehborn, 1996].

Hence, the aim of this paper is the development and evaluation of a cooperative VSL
control strategy that improves the freeway throughput by reducing the impact of the
capacity drop. Several conditions have to be satisfied when applying such a strategy.
These conditions can be divided into conditions for the application of VSLs and condi-
tions for the application of cooperative systems as discussed below. These conditions
are used when studying the literature in the next subsectionand when designing the
control strategy. It must be noted that satisfying all theseconditions is rather challeng-
ing. Therefore, Section 2.2.1 presents the design considerations that are accounted for
in this paper.

The following conditions have to be satisfied when applying VSLs in practice. First
of all, authorities typically only allow the application ofa single or a small set of VSL
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values. Secondly, the VSLs that are imposed to the road usersshould not lead to unsafe
situations. One example of an unsafe situation is a situation in which only part of the
traffic receives a reduced speed limit advice. This could lead to large speed differences
between uninformed and informed road users which increasesthe possibility of unsafe
situations. Thirdly, the system should be comfortable for the user. An example of an
uncomfortable situation is when a road user is experiencingrapidly fluctuating VSL
advice. Finally, the road users may not fully comply to the displayed VSLs so that the
algorithm has to account for possible non-compliance.

Applying in-vehicle technologies for DTM is subject to several conditions as well.
First of all, in-vehicle technology enables the use of floating car data (FCD) for DTM.
This data contains privacy sensitive information, such as,the location of the users over
time. For privacy reasons it is not feasible to track the location of individual vehicles
over time. Secondly, it is expected that in the coming years only low percentages
of vehicles equipped with in-vehicle technology can be usedfor DTM. This could
negatively affect the effectiveness of such a system. Thirdly, cooperative systems may
consists of several hundreds or thousands of vehicles. Thiscould potentially require a
lot of communication bandwidth which would make the system expensive or degrade
the performance of the communication system. Therefore, a cooperative systems based
DTM algorithm should only require low communication bandwidth. Finally, various
types of in-vehicle systems are expected to co-exist, e.g. adaptive cruise control (ACC),
cooperative ACC (CACC), or in-vehicle messages. Thus, the system has to be able to
deal with various types of actuation possibilities.

2.1.1 Literature review

Two main approaches for improving the freeway throughput bymeans of infrastructure
based variable speed limits can be identified [Hegyi et al., 2009]. The first is homoge-
nization which means that a speed limit is shown in order to reduce the speed of some
of the vehicles such that speed differences between vehicles are reduced [Smulders,
1990, Kühne, 1991, Van den Hoogen and Smulders, 1994]. The idea is that this re-
moves disturbances which may cause congestion. Hence, by homogenizing the speeds
it is expected that the throughput improves [Smulders, 1990]. However, this effect was
not observed during field-tests [Van den Hoogen and Smulders, 1994].

The second approach uses speed limits to reduce the flow on thefreeway. Several
algorithms exist that exploit this effect. Carlson et al. [2011] use variable speed limits
to gate traffic that is entering a bottleneck in their approach called mainstream traffic
flow control (MTFC). The authors impose a variable speed limit at a fixed location
upstream of a bottleneck and adjust the speed limit in such a way that congestion
upstream of the bottleneck is created. By adjusting the value of the VSL the authors
can control the outflow out of the controlled congestion in such a way that it is near the
capacity of the bottleneck. In this way, congestion at the bottleneck can be prevented
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or postponed such that the impact of the capacity drop in the bottleneck is reduced.
The approach was tested using simulation studies.

Hegyi et al. [2010] proposed an algorithm called SPECIALISTin which VSLs are
used to resolve a jam wave – i.e., congestion with a length of roughly 1 to 2 km that
propagates in the upstream direction of the freeway. The SPECIALIST algorithm de-
tects a jam wave using inductive detector loops as indicatedwith task I in Figure 2.1.
When it assesses this jam wave as resolvable it first applies apre-defined VSL value
instantaneously over a freeway stretch directly upstream of the jam wave as indicated
with the line between points B and C in Figure 2.1. This is called task II; jam res-
olution. Next, VSLs are imposed upstream of the speed-limited area along the line
between points C and E in Figure 2.1 to stabilize the traffic flow - by creating a stable
combination of speed and density - that is approaching the speed-limited area. This
is called task III; stabilization. This causes a reduction of the flow into the jam wave
so that it can resolve without triggering an upstream congestion. After the jam wave
is resolved, the traffic in the speed-limited area can be released and a higher freeway
flow can be achieved since the capacity drop is no longer present as indicated with the
line between poitns D and E in Figure 2.1. It follows from shock wave theory that the
density and flow in (and downstream of) the speed-limited area can be controlled by
adjusting the speed with which the upstream (and downstream) boundary of the speed-
limited area propagates [Lighthill and Whitham, 1955]. SPECIALIST was tested on
the A12 freeway in the Netherlands and it was found that it is capable of resolving jam
waves and stabilizing traffic, resulting in improved freeway throughput. A challenge
of the SPECIALIST algorithm is that it has a feed-forward structure so that it cannot
adjust its control action to unanticipated changes in the traffic situation.

Chen et al. [2014] propose an approach to resolve congestionat a bottleneck. In their
approach VSLs are initially imposed upstream of the bottleneck in the congested area
in order to move the head of the queue away from the bottleneck. Then, the bottleneck
outflow can be increased, since, the capacity drop is no longer present. After that, the
value of the VSL is increased in order to match the outflow out of the speed limited
area to the bottleneck capacity. To the best knowledge of theauthors, the approach was
not evaluated using simulations.

Several researchers have studied the extension of infrastructure based DTM with in-
vehicle technology. Heygyi et al. [2013] investigated the use of in-vehicle systems to
enhance the infrastructure based SPECIALIST algorithm. Itwas found that even small
percentages of equipped vehicles can improve the performance of the SPECIALIST
algorithm. The reason for this was that the speed with which jam waves were detected
was increased. Grumert et al. [2013] integrated a roadside VSL system with in-vehicle
speed limits. The authors found positive effects on the acceleration and deceleration
and lower emissions. The main reason for this effect was thatvehicles received speed
limit advice faster.

Influencing the speed of vehicles using only in-vehicle systems has drawn a lot of at-
tention in recent years. Currently, a popular research topic is the application of CACC
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Figure 2.1: Left: Time-space plot with a schematic representation of the tasks needed to resolve a jam
wave. Right: Corresponding fundamental diagram. The red dashed line indicates a trajectory of a
vehicle that is speed limited for stabilization. The solid lines indicate shock waves between the states
that are indicated with numbers. The slope of the shock wavescan be derived from the fundamental
diagram on the right. The point A is the head of the jam when thealgorithm is started. Initially,
speed-limits are imposed from point A to point C resulting ina flow drop as can be observed in the
fundamental diagram. The line between point C and D is the boundary between the jam resolution and
the stabilization area. After the control has started speedlimits are gradually extended upstream along
the line C–E and when the jam has resolved the speed-limits are gradually released along the line D–E.
The flow out of the jam wave (state 1) is lower than the flow out ofthe speed-limited area (state 5).
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that enables communication of acceleration and speed information of multiple vehi-
cles driving close together. The advantage of CACC is that itenables a reduction of
the following distance between vehicles. Several studies have shown that high pene-
tration rates of CACC enabled vehicles can lead to increasedfreeway capacity when
compared to manually driven systems or adaptive cruise control systems [Shladover,
2009, Van Arem et al., 2006, Arnaout and Arnaout, 2014, van der Werf et al., 2002].
Despite these positive effects it must be emphasized that inthe coming years the pen-
etration rates of CACC vehicles will probably be low. Implying that these effects on
capacity will be limited and the focus should be on the transition and co-existing of
infrastructure based and in-vehicle systems.

Another challenge of CACC systems is that they mainly focus on the microscopic level,
i.e., they focus at the control of a few vehicles or a platoon of vehicles. However, when
controlling traffic using in-vehicle technologies, also the impact on mechanisms in the
traffic flow on a macroscopic level should be considered. Wanget al. [2015] integrated
the SPECIALIST control algorithm to give driving instructions to ACC equipped vehi-
cles in order to resolve a jam wave. The reason why this was required is that different
driving strategies are required in time and space when resolving a moving jam, hence
the need for a coordinating level. Another example is the work of Scarinci et al. [2013]
who reduced the speed of cooperative systems enabled vehicles on the freeway to cre-
ate gaps on the freeway for traffic merging from a metered on-ramp. Another notewor-
thy example is the work of Nishi et al. [2013] who showed that asingle vehicle can
resolve a jam wave. However, in their approach effects of safety and stabilization, as
used in the SPECIALIST algorithm are not included.

Concluding, a lot of research has investigated the use of VSLs to improve freeway
throughput by reducing the impact of the capacity drop. Several studies have shown
the potential benefits of using in-vehicle systems to enhance the performance of infras-
tructure based DTM measures. Also, there is a need for coordinating algorithms when
developing DTM measures based on cooperative systems.

2.1.2 Contribution and approach

In this paper a cooperative speed control algorithm is proposed that improves freeway
throughput by resolving jam waves. The algorithm uses similar concepts as the SPE-
CIALIST algorithm but the formulation is fundamentally different such that certain
limitations of the SPECIALIST algorithm are solved. The main contributions of this
paper are that 1) a theory is proposed to resolve a jam wave andstabilize traffic using a
cooperative system in Section 2.3, 2) an algorithm is proposed to apply the theory while
satisfying the constraints imposed by VSL and cooperative systems in Section 2.4, and
3) insight into the behavior and performance of the algorithm is obtained via micro-
scopic simulation Section 2.5. Compared to previous works on cooperative systems as
discussed in Section 2.1.1, an advantage of this approach isthat it allows the coordi-
nation of the macroscopic effects of cooperative systems. Compared to the previous
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works on SPECIALIST, an advantage is that the proposed algorithm has a feedback
structure, uses FCD for detection, and the individual vehicles for actuation.

The algorithm proposed in this paper is called COSCAL v1 which is an acronym for
‘cooperative speed control algorithm version 1’. The algorithm is designed for a sys-
tem in which every vehicle is equipped with in-vehicle technology which is further
motivated in Section 2.2.1. An extension of the algorithm todeal with low penetration
rates of cooperative vehicles and infrastructure based systems is described by Maha-
jan et al. [2015] and called COSCAL v2. An integration of COSCAL v1 with ramp
metering is detailed in [van de Weg et al., 2014a].

2.2 Overview of the COSCAL v1 strategy

This section provides an overview of the COSCAL v1 strategy.The strategy uses
similar concepts as the SPECIALIST algorithm to resolve a jam wave. However, as
detailed in Section 2.3, the formulation of the approach is fundamentally different,
overcoming several limitations of the SPECIALIST algorithm and allowing the use of
cooperative systems. Before giving this overview, the nextsubsection first introduces
the design considerations. Section 2.4 details the implementation of the COSCAL v1
theory within an algorithm.

2.2.1 Design considerations

This section discusses the assumptions and design choices.First the assumptions re-
lated to the use of a VSL system and next the assumptions related to the use of coop-
erative systems are discussed.

The following design choices and assumptions with respect to VSLs are made:

• The algorithm uses a single value of the VSLs to slow down vehicles. This
design choice is motivated by the application of the algorithm to mixed traffic
situations which requires that the VSL approach is similar to currently used sys-
tems. In practice only a limited set of VSL values can be imposed, also in order
to resolve a jam wave as quickly as possible the speed limits need to be reduced
to the lowest admissible speed, i.e., the lowest speed allowed by the road au-
thorities that does not result in congestion or unsafe situations. Another reason
for working with a single value for the VSLs is that it can leadto more driving
comfort;

• The algorithm contributes to a safe and comfortable drivingby homogenizing
the density of traffic that is speed-limited for stabilization. The density should
be chosen such that a stable traffic state is created;
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• It is assumed that speed-limited vehicles drive, on average, with the effective
speedveff (km/h). This effective speed includes possible non-compliance to the
VSLs;

• This paper does not consider possible extensions of the algorithm to other DTM
measures, such as, ramp metering. This extension is discussed in Section 2.6
and an approach is proposed in [van de Weg et al., 2014a].

The following design choices and assumptions with respect to cooperative systems are
made:

• The algorithm uses V2I communication. There are several reasons motivating
this design choice. First of all, it becomes easier to imposespeed-limits to multi-
ple vehicles simultaneously. Secondly, in a V2V system a communication delay
is introduced, since, every vehicle needs to communicate with all the other ve-
hicles. This delay depends on the number of vehicles that need to communicate
and the length over which this communication is required which depends in its
turn on the traffic situation. Thirdly, it is easier to integrate a V2I system with
other roadside systems;

• For privacy reasons and in order to keep the system simple, the central server
cannot track individual vehicles. Therefore, vehicles will store their own trajec-
tory data and act as the ‘memory’ of the system. Vehicles onlycommunicate
their current position and speed information to the centralserver;

• The central server does not address individual vehicles. Instead, the central
server will communicate generalized messages indicating the driving strategy
that should be followed on every freeway segment. An exampleof such a mes-
sage could be: ‘vehicles between position 1 km and 3 km, reduce speed for jam
wave resolution’;

• Several systems for influencing the speed of vehicles exist,ranging from CACC
systems to in-vehicle messages that should be manually implemented by the
driver. In order to be compatible with all systems, only speed instructions are
given. Other instructions, for instance, keeping a desiredheadway time are very
difficult to be followed up by humans and will, therefore, notbe considered in
this paper;

• A 100% penetration rate of equipped vehicles is assumed. Thereason for this
is that the aim of this paper is to design and test the theory for a cooperative
algorithm.

The following general design choices and assumptions have been made:

• It is assumed that there is at most one jam;
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• The algorithm is designed for a single lane freeway. In Section 2.5.2 the algo-
rithm is also tested when applied to a two-lane freeway and Section 2.6 discusses
further research directions for the application of the algorithm to multi-lane free-
ways.

2.2.2 COSCAL v1 overview

The goal of the COSCAL v1 strategy is to determine the desireddriving strategies on
different freeway segments so that a jam wave can resolve. This is communicated us-
ing generalized messages containing so called actuation lines that define which driving
strategy vehicles have to follow on which (time varying) freeway segments as is de-
tailed in Section 2.4. Based on these actuation lines, vehicles can compare their current
location with the segments and adopt their speed to the desired driving strategy of the
segment in which they are driving.

COSCAL v1 operates both in the vehicles and on the roadside. The algorithm inside
the vehicle keeps track based on the FCD of the vehicle whether it is inside of a jam.
The detection mode of a vehicle indicates whether it is inside of a jam or not. The
in-vehicle algorithm is also used to modify the speed of the vehicles based on the
actuation lines. The roadside algorithm computes, based onthe speeds, positions, and
detection modes of all the vehicles, the current actuation lines.

The COSCAL v1 theory consist of four steps to compute the actuation lines. These
steps correspond to the different tasks of SPECIALIST as shown in Figure 2.1. These
steps are: (1) jam wave detection, (2) initial speed limitation for jam resolution, (3)
speed limitation for stabilization, and (4) speed limit release. The jam wave detection
is done by the individual vehicles which keep track of their speed as discussed in Sec-
tion 2.3.1. Next, the algorithm finds the most upstream vehicle that has to be speed-
limited to resolve the jam as detailed in Section 2.3.2. The algorithm then decides
which vehicles, upstream of this former vehicle have to be speed-limited for stabiliza-
tion according to the theory detailed in Section 2.3.3. Thisis done in such a way that a
constant following distance between vehicles is realized on the average so that a stable
density is realized as shown in Section 2.3.5. When the jam has been resolved, the
algorithm determines which vehicles should be released from the speed-limited area
as described in Section 2.3.4.

2.3 COSCAL v1 theory

Now that the main approach has been detailed and all the design choices and assump-
tions have been introduced the theory can be described. In the description below, vehi-
cle indexi is used to refer to individual vehicles, where the more downstream vehicle
has a lower index. The discrete time indexki, refers to the time period[kiTi, (ki+1)Ti),
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whereTi (h) is the discrete time step size of the system in the vehicle. Time stepTi

typically has a value of less than a second. In addition, a roadside time stepT rs with
indexkrs refers to the roadside control system.

2.3.1 Step I: Jam detection

In COSCAL v1 the jam is detected by individual vehicles. A jamis always associated
with low speed, and thus a jam is detected if the vehicle speedvi(ki) (km/h) is below
a certain thresholdvth (km/h) for a sufficiently long time. Similarly the detected jam
state is restored to free flow if the speed is above the threshold for a sufficiently long
time. In order to determine what is sufficiently long, the time integralzi(ki) (km/h) is
taken of the differencevi(ki) − vth as long as the speedvi(ki) remains continuously
above or belowvth, and the integral is compared with thresholdszff (km) (free flow)
andzjam (km) (jam), withzjam < 0 < zff according to

z̃i(ki) =















zi(ki − 1) + Ti(vi(ki)− vth) if (zi(ki − 1) ≥ 0 ∧ vi(ki) > vth) ∨ . . .

(zi(ki − 1) ≤ 0 ∧ vi(ki) < vth)

Ti(vi(ki)− vth) otherwise

(2.1)

zi(ki) =min
(

2zff ,max
(

2zjam, z̃i(ki)
))

(2.2)

ji(ki) =















1 if zi(ki) ≤ zjam

0 if zi(ki) ≥ zff

ji(ki − 1) otherwise

(2.3)

wherez̃i(ki) is truncated in (2.2) to prevent thatzi(ki) grows to plus or minus infinity
(to prevent implementation problems), andji(ki) indicates the jam state of vehiclei,
where 1 means jam and 0 means free flow. Using the integration and thresholding
prevents the chattering of the jam states if the speed closely fluctuates aroundvth. The
approach is illustrated in Figure 2.2.
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2.3.2 Step II: Initial speed limitation for jam resolution

After the jam has been detected, the vehicles directly upstream of the jam have to re-
duce their speed toveff . In this step, it is determined which vehicle is the most upstream
vehicle that needs to be slowed down in order to resolve the jam. To determine this last
vehicle, the following reasoning is used.

Let us consider a vehicle that is slowed down and that will join the queue at some point,
before the jam is resolved. An example of a trajectory of sucha vehicle is shown by
the blue dashed line in Figure 2.3. The timetexiti (h) when vehiclei leaves the jam, can
be calculated based on the following assumptions:

• The jam head has a known, constant propagation speedvhead (km/h). For jam
waves, this is about -18 km/h, for jams at on-ramps this is zero.

• The flowq[1] (veh/h) and the densityρ[1] (veh/km) downstream of the jam over
all lanes after the traffic has reached its free-flow speed, are also known and
constant. (The superscript [1] refers to the correspondingtraffic state in SPE-
CIALIST, see Figure 2.1.) For jam waves this flow equals the queue discharge
rate, and is around 70% of the normal free-flow capacity [Kerner and Rehborn,
1996].

• The speedv[2] and densityρ[2] in the jam are also constant. These are typically
the jam speed (close to zero) and the jam density (about 100 veh/km).

These assumptions are not very limiting, since there are many empirical observations
that support them. Note that the last two entail the first assumption.

Based on these assumptions, the flow that crosses the head of the jam can be calculated
using the same reasoning as Lighthill and Whitham [1955] used for the derivation of
front speeds. A moving observer who moves together with the head of the jam will see
not only a flowq[1] (or q[2]), depending on on which side of the front the observer is
looking), but also the vehicles that the observer is passing, due to his own speed. So
the total flowqhead (veh/h) the observer sees is given by

qhead = q[1] − vheadρ[1] , (2.4)

or equivalently by

qhead = q[2] − vheadρ[2] . (2.5)

Now, the timetexiti (h) when vehiclei will exit the queue can be calculated using the
number of vehiclesNi(k

rs) (veh) between the first (most downstream) vehicle in the
queue and vehiclei. The exit time is given by

texiti (krs) =
Ni(k

rs)

qhead
. (2.6)
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Figure 2.3: Different vehicle trajectories and the correspondingtexit and tsl. The blue vehicle (blue
dashed line) has to join the queue even if it is slowed down, and therefore its average speed will be
lower than the effective speed limit. The blue dotted line isthe trajectory if the vehicle would be able
to maintain a speed equal toveff . The red vehicle (both dashed and dotted) arrives at the headof the
queue exactly while it maintains a speed equal toveff without having to slow down (i.e., without joining
the queue). The green vehicle avoids the queue if it maintains veff (dotted). In fact it could even travel
somewhat faster to cross the line of the imaginary jam head atthe time based on (2.6). The last vehicle
that should be slowed down is the red one.

This time implicitly includes a partial free-flow travel (upto the tail of the queue) and
a queuing part, as indicated by the dashed blue line in Figure2.3. This equation holds
as long as vehiclei joins the queue before it exits the queue. Note that (2.6) implies
that the exact trajectory of the vehicle is irrelevant as long as the vehicle will join the
queue at least for a moment.

Now, if vehiclei slows down due to speed limitation, and slows down sufficiently then
it may not have to join the queue. Not joining the queue is equivalent to saying that
the queue has resolved downstream of vehiclei. This is the case when the vehicle
crosses the imaginary head of the queue later than it would doso based on (2.6). This
is indicated with the green dashed line that crosses the black dotted line in Figure 2.3.

If it is assumed that vehiclei will travel at speedveff after it has been slowed down,
then the timetsli (k

rs) when its trajectory will cross the (imaginary) trajectory of the
queue front is given by:

tsli (k
rs) =

xhead(krs)− xi(k
rs)

−vhead + veff
, (2.7)

wherexhead(krs) is the location of the jam head at time stepkrs. The corresponding
trajectory for the blue vehicle is indicated by the blue dotted line.

For vehicles that will join the queue, it holds that

texiti (krs) > tsli (k
rs) , (2.8)



Chapter 2. COSCAL v1: A cooperative speed control algorithm 33

such as the blue vehicle in Figure 2.3. For the vehicle that joins the queue at the
moment that the queue is being resolved (red vehicle in Figure 2.3), it holds that

texiti (krs) = tsli (k
rs) , (2.9)

and for the vehicles that will not join the queue anymore (green vehicle), it holds that

texiti (krs) < tsli (k
rs) . (2.10)

Using this, each individual vehicle can be checked startingfrom the first vehicle di-
rectly upstream of the jam for the following condition:

texiti (krs) ≤ tsli (k
rs) . (2.11)

Then the most upstream vehiclej that should be slowed down, is the first vehicle for
which (2.11) holds. In Figure 2.3 this is the red vehicle.

The current positionxj(k
rsT rs) of the jam resolving vehicle and the effective speedveff

defines the R-tail lineLR−tail(krs):

LR−tail(krs) = {xj(k
rsT rs), krsT rs, veff} , (2.12)

which is used to communicate the upstream end of the area R in which vehicles are
speed-limited for jam resolution as detailed in Section 2.4. Additionally, if the R-tail
line exists, an R-head lineLR−head(krs) is defined by the positionxi(k

rsT rs) (km) of
the most downstream vehicle in the jam, and the speedvhead of the head of the jam:

LR−head(krs) = {xi(k
rsT rs), krsT rs, vhead} . (2.13)

2.3.3 Step III: Speed limitation for stabilization

The vehicles following the most upstream vehicle that is slowed down to resolve the
jam, or the most downstream vehicle in the stabilization area when the jam has re-
solved, should realize the target densityρ[4] (veh/km) in addition to the target speed
veff . In microscopic terms this means that the following distancedheadway should be

dheadway = 1/ρ[4] , (2.14)

on the average. The density is a tuning variable and is chosensuch that it corresponds
to stable traffic.

This density is realized by properly slowing down the vehicles that are in free flow
upstream of already speed-limited vehicles. At each timetrs = krsT rs a reference
vehiclejref is determined upstream of which the densityρ[4] should be realized. In the
case that there is a jam, this vehicle is the vehiclej that should be speed-limited to
resolve the jam according to (2.11). In the case that the jam has resolved, it is the first
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vehicle that is upstream of the S-head line – i.e., the line describing the downstream
end of the stabilization area – that will be defined in Section2.3.4.

Note that the reference vehiclejref is at locationxref
j (trs) (km) and is traveling with

speedvrefj (trs) (km/h). The vehicle is speed-limited and in the case that it has not
reached the effective speedveff yet it will do so after time∆trefj (trs) (h) and distance
∆xref

j (trs) (km) given as:

∆trefj (trs) =
max{veff , vrefj (trs)} − veff

aT
(2.15)

∆xref
j (trs) =

1

2
(max{veff , vrefj (trs)}+ veff)∆trefj (trs) . (2.16)

The reference trajectory that this vehicle determines is then defined by the speedveff

and positionxref(trs) (km) given as:

xref(trs) = xref
j (trs) + ∆xref

j (trs)− veff∆trefj (trs) , (2.17)

that together define the following reference line:

xref(t) = xref(trs) + (t− trs)veff . (2.18)

The idea is that every vehiclei upstream of vehiclejref should reach its own target
trajectory line defined by the positionxtarget

i (trs) given as:

xtarget
i (trs) = xref(trs)−Njref−id

headway , (2.19)

whereNjref−i (veh) is the number of vehicles between vehiclejref and vehiclei as is
illustrated in Figure 2.4.
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This is realized by checking whether a vehicle will need to start decelerating during
the current time step. This is done iteratively in the upstream direction starting from
the vehicle upstream of the vehicleius (-). Vehicleius is the last vehicle in the ‘platoon’
directly upstream ofjref that is traveling with a speedvius(trs) ≤ veff + ǫv

eff

, whereǫv
eff

(km/h) is a threshold. If no such vehicle exists, then it is equal to the reference vehicle
jref .

It might be the case that the vehicleius has decelerated too fast and is traveling too far
– i.e., more than a thresholdγdheadway (km) with γ (-) a tuning parameter represent-
ing a fraction of the following distance – upstream of its target trajectory line. This
may prevent the next upstream vehicle from reaching its target trajectory line (simply
because the vehicle is blocked), and so on. In the worst case,this process may con-
tinue for several vehicles, leading to a local accumulationof vehicles, and to a possible
breakdown. Therefore, the reference linexref(trs) and indexjref are reset to the vehicle
ius if this happens:

xref(trs) =

{

xius(t
rs) if xius(t

rs) ≤ xtarget
ius (trs)− γdheadway

xref(trs) otherwise,
(2.20)

jref =

{

ius if xius(t
rs) ≤ xtarget

ius (trs)− γdheadway

jref otherwise.
(2.21)

Now, for the vehicles upstream ofiusthe time∆tfreei (trs) (h) after which they will need
to start decelerating can be calculated. Note that it will take a vehicle a time∆ti(t

rs)

(h) and distance∆xi(t
rs) (km) to reach the effective speed. A vehicle that has not

reached the effective speed yet will travel first with its free speedvi(trs) (km/h) for a
time∆tfreei (trs) after which it has to start to decelerate – see Figure 2.4 for agraphical
representation of these variables. It will then reach the point xi(t

rs + ∆xfree
i (trs) +

∆ti(t
rs)) given by:

xi(t
rs +∆xfree

i (trs) + ∆ti(t
rs)) = xi(t

rs) + vi(t
rs)∆tfreei +∆xi(t

rs) . (2.22)

The target trajectory line is then located at:

xtarget
i (trs +∆tfreei (trs) + ∆ti(t

rs)) = xtarget
i (trs) + veff(∆tfreei (trs) + ∆ti(t

rs)) .

(2.23)

Solving these two equations for∆tfreei (trs) gives:

∆tfreei (trs) =
xi(t

rs) + ∆xi(t
rs)− xtarget

i (trs)− veff∆ti(t
rs)

veff − vi(trs)
. (2.24)

During this time, the vehicle has traveled∆xfree
i (trs) (km) given by:

∆xfree
i (trs) = vi(t

rs)∆tfreei (trs) . (2.25)

Vehicles for which it holds that∆tfreei (trs) ≤ T rs will have to start decelerating for
stabilization during the current sampling time step.
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In a real-world implementation it is not necessary (and may not be possible) to test all
vehicles upstream of a speed limited vehicle whether it needs to slow down during the
current time step as well. However, it is not always sufficient to find the first upstream
vehicle ilast that does not have to slow down because there may be another vehicle
upstream of it that is traveling faster and needs to slow downearlier than or within the
same time step as vehicleilast.

Consider the worst case where a vehicle is traveling directly upstream of vehiclei with
the maximum speedvmax (km/h). The maximum timetmax that this vehicle will have
to decelerate to reach the effective speed is

tmax =
veff − vmax

aT
, (2.26)

and the distance traveled during deceleration is

dmax =
tmax(veff + vmax)

2
. (2.27)

Given this, the time∆tfree,min
i (trs) (h) when this vehicle should start to decelerate is

given by:

∆tfree,min
i (trs) =

xi(t
rs) + ∆dmax − xtarget

i (trs) + dheadway − veff∆tmax

veff − vmax
. (2.28)

If it is the case that∆tfree,min
i (trs) < T rs the possibility exists that there is a vehi-

cle upstream that needs to decelerate earlier than vehiclei. However, if it holds that
∆tfreei (trs) > T rs, and∆tfree,min

i (trs) > T rs, this is the last vehicleilast that should be
speed-limited for stabilization.

The speed-limits are communicated to the vehicles using theS-tail lineLS−tail(krs).
The S-tail line is defined as the set of lines connecting the points defined by the times
tSi (t

rs) = trs +∆tfreei (trs) when and locationsxS
i (t

rs) = xi(t
rs) + ∆xfree

i (trs) where the
vehicles have to start decelerating for allius ≤ i ≤ ilast:

LS−tail(krs) = {(tSi (t
rs), xS

i (t
rs))} ∀ ius ≤ i ≤ ilast . (2.29)

2.3.4 Step IV: Speed limit release

Since the speed in the stabilization area is constant and thedensity is homogeneous,
the speed limits can be released along a straight line in the time-space plane, from
downstream to upstream, similarly to SPECIALIST. Let us call this line the S-head
lineLS−head(krs):

LS−head(krs) = xS−head,start, xS−head,start, vS−head , (2.30)

where the positionxS−head,start (km) and timexS−head,start (h) define the place where
the jam resolved, and the speedvS−head (km/h) defines the slope of the S-head line.
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After releasing the speed limit along the S-head line, the vehicles will accelerate to
a free-flow state with a lower density than in the stabilization area. The S-head line
should start when the jam is resolved and start at the location where the last vehicle
that was in the jam, leaves the jam (corresponding to point D in Figure 2.1, and should
apply for all vehicles in the stabilization area, includingthe ones that have started to
decelerate toward the stabilization area.

The slope of the S-head line is a tuning variable, and the moresteep it is (more nega-
tive) the higher the resulting flow will be.

2.3.5 The target following distance

As stated in Section 2.3, the approach to stabilization of the traffic results in an average
density ofρ[4] = 1/dheadway despite the variations in deceleration. To see this, note that
the density is defined as:

ρ[4] = lim
i→∞

N

L
, (2.31)

whereN = i − jref (veh) is the number of vehicles between vehiclei and the down-
stream vehiclejref in a stretch of the freeway with lengthL. Due to variations in the
deceleration of traffic, the realized target trajectoryxtarget

i (t) of vehiclei might deviate
some distancederrori (km) from its target trajectory:

xtarget
i (t) = xtarget

i (t) + derrori . (2.32)

When a vehiclei is N vehicles upstream of the vehiclejref that started the target
trajectory, the distanceL between these vehicles is given by:

L = Ndheadway + derrori + derrorjref . (2.33)

Thus, the realized density is given by:

ρ[4] =
N

Ndheadway + derrori + derror
jref

, (2.34)

which converges toρ[4] = 1/dheadway for largei:

ρ[4] = lim
i→inf

N

Ndheadway + derrori + derror
jref

=
1

dheadway
, (2.35)

if derrori andderrorjref are bounded.

2.4 Algorithmic formulation

The previous chapters explained how individual vehicles can detect a jam wave and
when vehicles should be speed limited in order to resolve it.This chapter presents how
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this behavior can be implemented in a cooperative system. The idea of this algorithm
is that vehicles send their current speed, position, and jamdetection information to the
roadside. The jam detection information is called the detection mode and is described
in Section 2.4.1. Based on this information, the roadside system then determines the
desired behavior of vehicles on different segments of the freeway. This is done by
instructing driving modes which are detailed in Section 2.4.2.

2.4.1 Detection modes

The detection modes are used to detect the congestion and communicate this with the
road-side system. The detection modes can be: 1) Detection mode J, jam detected,
and 2) Detection mode F, free-flow detected. The detection modes are determined in
individual the vehicles according to (2.1)–(2.3). Note that the roadside system receives
the position, speed, and detection mode of every vehicle. Using this information, the
roadside system can detect the head of the congestion.

2.4.2 Driving modes

The road-side algorithm instructs the driving modes to the vehicles. Three driving
modes exist, namely: 1) Mode A, autonomous driving, 2) Mode R, jam resolution,
and 3) Mode S, stabilization. In each mode a vehicle has a different role and is con-
trolled according to another control regime. In the following it is described what the
conditions are to be in a certain mode, what control rules determine the vehicle’s car-
following behavior. In all cases it holds that the specified car-following rules should
be applied such that the autonomous car-following rules mayalways override them if
it is necessary to ensure safety.

Mode A: autonomous driving

By default, the vehicles drive in mode A, which means that they drive according to
their own car-following rules. Autonomous in this context does not mean driverless, or
fully automated, but that there is no intervention from the system in the default driving
behavior of the vehicle or driver.

Mode R: vehicles that resolve the jam

The vehicles in mode R are the vehicles directly upstream of the jam that have to be
slowed down to resolve the jam according to (2.11). These vehicles have therefore a
target maximum speedveff . In general, these vehicles will enter the jam at some point
and will have to reduce their speed using their own their own car-following strategies.
However, before that, while driving in the upstream free-flow area, they will be able
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Figure 2.5: Overview of the algorithm.

to travel at speedveff , and their following distances will be typically too large for
the target speed (larger than necessary), since these following distances equal on the
average the following distances in free-flow. These free-flow following distances were
even large enough for a stable traffic flow in combination withthe (higher) free-flow
speed, so the string of vehicles in mode R should be stable too.

Mode S: vehicles that stabilize the traffic flow

The vehicles in the stabilization area, created upstream ofthe vehicles in mode R, are in
mode S. These vehicles have a target maximum speedveff . Which vehicles are in mode
S is determined according to the procedure described in Section 2.3.3. In this case, the
vehicles are only instructed to reduce their speed in order to ensure compatibility with
all types of in-vehicle systems.

2.4.3 Algorithm

The COSCAL v1 algorithm can be sub-divided into an in-vehicle part and a road-side
part which are described here. The functionality is illustrated in Figure 2.5.

In-vehicle algorithm

The in-vehicle algorithm has a sampling time step ofTi. At every time step the in-
vehicle algorithm receives the position and speed measurements. Next, it has two
tasks to complete.
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First of all, it determines the jam-stateji(ki) using (2.1)–(2.3). When this jam-state is
1 the detection mode is J, otherwise it is F. This detection mode, and the position, lane,
and speed of the vehicle are communicated everyT rs seconds to the road-side.

Secondly, the in-vehicle algorithm receives everyT rs seconds the boundary lines. The
in-vehicle algorithm translates these lines into the current locationsxR−head(ki) (km),
xR−tail(ki) (km), xS−head(ki) (km), andxS−tail(ki) (km) of the boundaries. Based on
the current position of the vehicle and these locations the vehicle determines its driving
mode according to the following logic:

• Mode A: a vehicle is by default in to mode A unless it is in mode R or S;

• Mode R: if a vehicle is downstream of the R-tail line and upstream of the R-head
line, i.e.,xR−head ≤ xi(ki) ≤ xR−tail, it is in mode R;

• Mode S: if a vehicle is downstream of the S-tail line and upstream of the R-tail
line or S-head line, it is in mode S. Note that the S-tail line can move backward
and forward over time. This implies that a vehicle can be downstream of several
locationsxS−tail(ki) at time stepki. A vehicle is in mode S if it is downstream
of an uneven number of locationsxS−tail(ki).

Road-side algorithm

The road-side algorithm has a sampling time step ofT rs. During a sampling time step
it receives the locationsxi(k

rs), speedsvi(krs) and detection modes of all the vehicles
on the freeway. Based on this data, the roadside system determines the boundaries
between the different driving mode areas for the coming sampling-time stepT rs. These
boundaries are:

• The R-head line, which exists when congestion is present on the freeway at time
krsT rs. This line follows the head of congestion.

• The R-tail line, which exists when congestion is present on the freeway at time
krsT rs it contains the tail of the speed limited area that is needed to resolve a jam
which follows from (2.11). Vehicles in-between the R-head and R-tail line are
in mode R.

• The S-tail lines exist when there are speed-limits active. They are the upstream
ends of the stabilization areas per lane. The S-tail lines should be determined
following the reasoning presented in Section 2.3.3. Vehicles between the S-head
or R-tail and an S-tail line are in mode S.

• The S-head line exists when there is an S-tail line, and thereis no congestion. It
is defined following the reasoning as detailed in Section 2.3.4.

Every road-side sampling timekrsT rs the roadside communicates the lines to the vehi-
cles on the freeway.



Chapter 2. COSCAL v1: A cooperative speed control algorithm 41

2.5 Simulation

The developed algorithm is evaluated using the microscopictraffic flow simulator VIS-
SIM 5.40 and Matlab R2015a. The objective of the evaluation is to assess the quali-
tative behavior – in the sense that the algorithm is able to resolve a jam wave and to
stabilize traffic – and to test whether this can result in throughput improvements. Two
case studies are carried out, namely, 1) the application of COSCAL v1 to a single lane
freeway without driving behavior differences between vehicles, and 2) the application
of COSCAL v1 to a two lane freeway where driving behavior differences between
vehicles are allowed.

2.5.1 Evaluation I: a single lane freeway

The first case study consisted of a single lane freeway network and no driving behav-
ior differences between vehicles. This simplified case study was selected in order to
obtain full control over the experiment. Also, it prevents undesirable effects, such as, a
moving bottleneck that is caused by a slow driving vehicle that cannot be overtaken. A
one lane freeway of 5 km long was implemented in Vissim. A demand was created by
generating an identical vehicle every 1.4 s while skipping occasionally a vehicle, for
testing the homogenizing effect of the stabilization mode.This resulted in an inflow
of 2323 veh/h. The vehicles had a uniform desired speed of 120km/h in mode A, and
of 80 km/h in modes R and S (assuming that 60 km/h is displayed). It is assumed that
the penetration rate is 100% and thus all vehicles receive the instructions and comply
with the instructions (in the sense that they all drive 80 km/h if 60 km/h follows from
the instructed mode).

A period of 650 seconds was simulated for a jam wave scenario.The jam wave was
created by artificially lowering the first vehicle’s desiredspeed to 20 km/h between the
80th and 115th second. The sampling time of the in-vehicle algorithm was set to the
simulation time step (0.2s), and the sampling time step of the roadside controller was
set to 5 seconds.

The Wiedemann 99 model which is implemented in VISSIM was used to model the
driving behavior. For the reproducibility of the experiments but without going in too
much detail, the parameters that were changed from the default settings are reported
here: the number of vehicles observed ahead: 3, standstill distance: 1.5 m, head-
way time: 0.9 s, ‘following’ variation: 4.0 m, threshold forentering ‘following’: -8.0
m, negative ‘following’ threshold: -0.35, positive ‘following’ threshold: 0.35, speed
dependency of oscillation: 11.44, oscillation acceleration: 0.25 m/s2, standstill accel-
eration: 1.0 m/s2, and acceleration at 80 km/h:1.50 m/s2.
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Figure 2.6: The vehicle trajectories per lane for the uncontrolled – A, B, E, and F – and controlled –
C, D, G, and H – scenario I. The trajectories are colored according to speed, density and flow in the
corresponding sub-figures. In plot F, the figures are coloredgreen when they are in detection mode F,
and red when they are in detection mode J. In plot H the trajectories are colored according the driving
mode with A: green, R: blue, and S: orange.

Uncontrolled case

The resulting jam can be seen in Figure 2.6. The figure shows the speed, density,
flow and the detection modes along each vehicle trajectory. Due to the jam wave
scenario, the jam grows when the first vehicle’s desired speed is limited to 20 km/h,
needs some time to set to a steady state, and finally it propagates upstream with a
speed of approximately -18.5 km/h. The queue discharge rateis measured as 2350
veh/h, implying a capacity drop of 23%, since, the freeway capacity was measured as
3000 veh/h. The gaps that are created due to the skipping of some vehicles during the
vehicle generation are clearly visible.

Controlled case

For the controlled case, the algorithm was roughly tuned, but even the initial tuning
led to acceptable behavior. The parameter settings of the algorithm can be found in
Table 2.1.

The control was started after 175 seconds when the jam was fully formed. The vehicle
trajectories for the controlled case are shown in Figures 2.6. Several observations
can be made from these plots. First of all, it can be observed that the jam wave is
resolved aroundt = 220 s, indicating that the algorithm is capable of resolving a
jam wave. Secondly, the structure of the algorithm is similar to the SPECIALIST
algorithm. Initially, speed-limits are imposed over a stretch of approximately 1 km
resulting in a low flow that resolves the jam wave. Upstream ofthese vehicles the
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Table 2.1: The parameter settings used in the evaluations.

Variable Value I Value II
vth 50 km/h 50 km/h
zjam, zff 0.0417, -0.0417 km 0.0417, -0.0417 km
qhead 2800 veh/h 4200 veh/h
vhead -18.5 km/h -16.5 km/h
veff 80 km/h 60 km/h
dheadway 1/25 veh/km/lane 1/27.5 veh/km/lane
γ 0.5 0.5
aT -3 m/s2 -2 m/s2

vmax 130 km/h 130 km/h
vS−head -180 km/h -100 km/h
ǫv

eff

5 km/h 5 km/h

speed-limited area is gradually increased in order to stabilize traffic. When the jam
is resolved, speed-limits are released along a straight line causing a high outflow. An
important difference is that the COSCAL v1 algorithm allowsthe speed-limited area
to be adjusted over time due to the feedback structure.

The influence of the feedback can be observed at the tail of theblue area containing
vehicles in mode R, and at the tail of the orange area containing vehicles in mode S.
Interestingly enough, it can be observed that initially – attime 175 s – the algorithm
finds the jam resolving vehicle correctly. Later on, the algorithm moves the tail of
the blue area upstream and downstream resulting in an overestimation of the required
vehicles at the time instance when the jam resolves. The reason why this happens
is that the speed with which the jam head propagates upstreamdecreases when the
jam starts to resolve. This is due to the driving behavior created by VISSIM and it is
uncertain whether it is realistic. It can also be observed that the speed with which the
orange area is moved upstream changes in such a way that the gaps are closed. In this
way the density is homogenized.

The following quantitative results were found. The total time spent (TTS) from time
165 s to 650 s of all the vehicles on the freeway in the uncontrolled situation was 14.33
veh·h and in the controlled situation this was 13.28 veh·h implying a gain of 7.3%. The
reason why the TTS is improved is that the outflow of the freeway is increased after
the jam is resolved as can be observed in Figure 2.7 A. The outflow is higher, since,
the flow downstream of the stabilization area is higher than the flow downstream of the
jam wave.

Figure 2.7 B shows the density in the stabilization area overtime. It can be observed
that from time 200 s to 240 s the density is close to the desireddensity of 25 veh/km.
However, when the stabilization area is just created or almost resolved, it is small so
the density is not close to the desired density. On average the density is 24.4 veh/km
with a standard deviation of 2.4 veh/km. The peaks that can beobserved in the density
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Figure 2.7: A: Comparison of the freeway outflow in the controlled and uncontrolled situation I. B:
Density of vehicles in mode S in situation I.

between time 200 s and 240 s are caused by the gaps that were created in the inflow.
It takes some time for the algorithm to fill these gaps but it can be observed that the
algorithm is able to restore the density to the desired density.

2.5.2 Evaluation II: a two-lane freeway

The objective of the second evaluation was to test the controller performance when
applied to a two-lane freeway with driving behavior differences between vehicles. This
case study was selected to test the performance of the algorithm in a more realistic set-
up. An important difference with the single lane case study is that vehicles can change
lanes, and that the traffic flow characteristics, e.g. the location of the jam-head can
differ per lane. In this implementation the algorithm is notadjusted to include these
effects. Thus, when applying the COSCAL v1 algorithm it assumes that all the vehicles
drive in the same lane, and that the traffic flow characteristics are identical per lane. In
Section 2.6 the extensions of the algorithm that have to be investigated when dealing
with multi-lane freeways are discussed.

A 2 lane freeway of 7.5 km long was implemented in Vissim and speed differences
between vehicles were allowed. A constant demand of 3550 veh/h was applied to
the freeway and a simulation time of 1800 seconds was considered. A jam wave was
created by slowing down vehicles between location 6.9 km and7.4 km to 0 km/h from
time 250 s to 350 s. The evaluation was repeated ten times for different random seeds,
namely random seeds 1 to 10.

The Wiedemann 99 model which is implemented in VISSIM was used to model the
driving behavior with the following settings: the number ofvehicles observed ahead:
3, standstill distance: 3.5 m, headway time: 0.7 s, ‘following’ variation: 6.0 m, thresh-
old for entering ‘following’: -8.0 m, negative ‘following’threshold: -0.10, positive
‘following’ threshold: 0.10, speed dependency of oscillation: 6.00, oscillation accel-
eration: 0.25 m/s2, standstill acceleration: 0.5 m/s2, and acceleration at 80 km/h:1.50
m/s2
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Figure 2.8: The vehicle trajectories per lane for the uncontrolled – A, B, E, and F – and controlled – C,
D, G, and H – scenario II. The trajectories are colored according to: (A, B) detection mode with green
detection mode F, and red detection mode J, (C, D) driving mode with A: green, R: blue, and S: orange,
and (E, F, G, H) speed.

Uncontrolled case

The uncontrolled situation is shown in Figure 2.8 for randomseed 2. The detection
mode (top) and speed (bottom) in the left and right lane are shown in this figure. The
queue discharge rate is measured as 3550 veh/h implying a capacity drop of approxi-
mately 5.3%, since, the freeway capacity was approximated as 3750 veh/h. The TTS
for all the different random seeds from time 400s to time 800 sis 130.7 veh·h with a
standard deviation of 9.5 veh·h.

Controlled case

The control was started after 400 seconds when the jam wave was fully formed. The
tuning variables are shown in Table 2.1. Some small changes to the tuning variables
used for the first evaluation set were made, namely, the flow over the jam head was set
to 4200 veh/h, the speed of the jam head was set to -16.5 km/h, and the target following
distance was set to 1/55 veh/km, the deceleration was set to -2m/s2, and the S-head line
speed was set to -100 km/h.

Figure 2.8 shows the trajectories plots for the controlled situation for random seed 2.
From this figure it can be observed that the jam wave is successfully resolved. Also, a
clear difference can be observed in the jam resolution (blue) area between the left and
right lane, clearly vehicles move to the right lane because of the lower flow and speed
in this area and in the jam wave the vehicles move back to the left lane. Also, in the
stabilization are (orange area) less vehicles seem to be present in the left lane.

Figure 2.9 shows the density in the stabilization area in theleft (top) and right (middle)
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Figure 2.9: The density of vehicles in mode S over time in situation II in the different lanes. The dashed
dotted line indicates the target density.
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Figure 2.10: Comparison of the freeway outflow in the controlled and uncontrolled situation II.

lane over time. From these plots it can be observed that the density in the left lane is
lower than the target density and in the right lane lower. Thebottom plot in Figure 2.9
shows that these effects compensate each other resulting ina density in the stabilization
area that is near the target density.

Figure 2.10 compares the freeway outflow for the controlled and uncontrolled situa-
tion with random seed 2. Similar as in Figure 2.10, the outflowincreases after some
time. This time – around 600 s – corresponds with the time whenthe flow out of the
stabilization area reaches the downstream end of the freeway.

The following quantitative results were found. The TTS for all the different random
seeds from time 400 s to time 800 s was 108.0 veh·h with a standard deviation of 6.1
veh· h indicating an average TTS gain of 17.3%. The average density in the stabi-
lization area on both lanes for the different random seeds was 53.5 veh/km/lane with
a standard deviation of 1.4 veh/km. The average density on the right lane was 27.8
veh/km/lane with a standard deviation of 1.3 veh/km/lane and on the left lane it was
24.3 veh/km/lane with a standard deviation of 0.4 veh/km/lane. This indicates that the
speed-limited vehicles prefer to drive on the right lane causing a density difference
on both lanes which on the average results in a density slightly lower than the target
density of 27.5 veh/km/lane.
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2.5.3 Concluding remarks on the evaluation

The cooperative speed control algorithm works according toexpectations. It is in-
teresting to see that the resulting control scheme is very similar to the SPECIALIST
scheme, and comes up as an emergent behavior due to the various mode switching
rules and the corresponding calculations, which are very different from the approach
used in SPECIALIST. A clear difference is that the edges of the areas with the different
modes are not straight, which is expected, and is due to the feedback structure of the
cooperative algorithm. The algorithm is able to improve theTTS and delay time.

2.6 Discussion

The algorithm presented in this paper has been developed assuming an ideal situation.
This ideal situation consisted of a freeway with a 100% penetration rate of cooperative
vehicles. In this section the effect of relaxing the assumptions will be discussed.

First of all, when the algorithm has to deal with lower penetration rates, adaptations
have to be made to the detection, and actuation parts of the algorithm. It is expected
that in those cases, the algorithm has to be able to deal with both infrastructure-based
systems, such as inductive loop detectors, variable message signs, and in-vehicle sys-
tems. A lower penetration rate will decrease the accuracy with which the traffic can be
observed. Moreover, it will decrease the actuation freedom, since, some of the vehicles
can only be influenced using variable message signs. It is expected that a lower pene-
tration rate will reduce the performance of the algorithm. However, the performance is
expected to be the same or higher than the performance of the SPECIALIST algorithm.
See [Mahajan et al., 2015] for the COSCAL v2 algorithm that isdesigned to deal with
low penetration rates of cooperative vehicles and infrastructure based systems.

Secondly, when on-ramps and off-ramps are included in the algorithm this implies that
extra incoming or leaving flow have to be considered when determining the vehicles
that should be speed-limited for jam resolution or stabilization. This can influence the
length of the jam resolution area. Also, upstream of an on-ramp the density in the
stabilization area might be chosen a bit lower in order to accommodate the on-ramp
flow. An approach to include a metered on-ramp in the COSCAL v1algorithm is
detailed in [van de Weg et al., 2014a].

Thirdly, the algorithm has been designed for single lane traffic. Although the eval-
uations suggest that the algorithm can also be effective on amulti-lane freeway, this
extension requires further investigation. Research directions are: 1) to study whether
the algorithm needs to take traffic flow differences – such as the jam wave character-
istics or speed differences – between lanes into account, 2)to study the impact of lane
changes on the algorithm, and 3) to determine whether the algorithm should include
lane change advice.
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Apart from these assumptions, the evaluations that were carried out here have their
limitations as well. First of all, the tuning of driving characteristics in Vissim is not
easy and the selected parameters do not represent a realistic situation. However, the
set-up is sufficient to reach the evaluation objectives. Secondly, the differences in
driving behavior and speed can result in unexpected behavior. The algorithm should
be adequately tuned. For instance, speed-limited vehiclesdrive with a range of speeds
resulting on the average in the effective speed. When a vehicle prefers to drive with a
very low speed, it should not start detecting a jam. Similarly, the algorithm should not
get distorted when a vehicle that should drive with the effective speed chooses to drive
too fast.

2.7 Conclusion

This paper presented a cooperative speed control algorithm– called COSCAL v1 –
that is able to resolve a jam wave. To this end, first the theoryto detect a jam wave
and determine which vehicles should be speed limited to resolve it was introduced.
This theory was developed for an ideal situation assuming a 100% penetration rate of
cooperative vehicles. A vehicle to infrastructure communication set-up was adopted
in order to realize fast communication. Special attention has been paid to respect the
privacy of the users. Also, the system has been developed in such a way that it can
deal with in-vehicle speed limits as well as with directly influencing the speed of vehi-
cles. The roadside system imposes the speed-limits by communicating the boundaries
between areas in which drivers have different roles to resolve the jam wave. The in-
vehicle system is used to detect whether a vehicle is in the jam, and the vehicles send
their position, speed, and detection mode to the road-side.It has been shown that by
stabilizing the traffic a certain desired density can be realized.

Simulations were carried out using the microscopic simulation software Vissim 5.40 to
test the algorithm. First the algorithm was tested for a single lane freeway without driv-
ing behavior differences between vehicles in order to test the working of the algorithm.
It was found that the algorithm is able to resolve a jam wave. Additionally, it was ob-
served that the structure of the algorithm is, qualitatively, similar to the SPECIALIST
algorithm. Although the boundaries of the COSCAL v1 scheme fluctuate more due to
the feed-back structure. It was also found that the algorithm is able to improve the TTS
with 7.3%. Secondly, the algorithm was applied to a two lane freeway and differences
in driving behavior were allowed. It was found that for ten different random seeds the
algorithm was able to resolve a jam wave and improve throughput by 17.3% on aver-
age, indicating that the algorithm can be applied to more realistic situations although
further research has to study the extension of the algorithmto multi-lane freeways.

Further research can be carried out to relax some of the assumptions which were made
in this paper. Also, the approach has the potential to be applied to different congestion
types or to prevent congestion, which will be part of furtherresearch. Finally, the
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approach can potentially be extended to deal with more complex traffic networks in
which, for instance, multiple on-ramps and off-ramps are present.
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Chapter 3

Efficient MPC for freeway throughput
improvement by parameterization of
ALINEA and a speed-limited area

In this chapter a computationally efficient approach is developed for the coordination
of flows between different freeway network elements. This chapter is based on the
following paper that is currently under review:

G.S. van de Weg, A. Hegyi, B. De Schutter, and S.P. Hoogendoorn, Efficient MPC for
freeway throughput improvement by parameterization of ALINEA and a speed-limited
area.Transactions on Intelligent Transportation Systems, submitted 2017-2-17.

Abstract

Freeway congestion can reduce the freeway throughput due tothe capacity drop or
due to blocking caused by spillback to upstream ramps. Research has shown that con-
gestion can be reduced by the application of ramp metering and variable speed limits.
Model predictive control is a promising strategy for the optimization of the ramp me-
tering rates and variable speed limits to improve the freeway throughput. However,
several challenges have to be addressed before it can be applied for the control of free-
way traffic. This paper focuses on the challenge of reducing the computation time of
MPC strategies for the integration of variable speed limitsand ramp metering. This
is realized via a parameterized control strategy that optimizes the upstream and down-
stream boundaries of a speed-limited area and the parameters of the ALINEA ramp
metering strategy. Due to the parameterization, the solution space reduces substan-
tially, leading to an improved computation time. More specifically, the number of
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optimization variables for the variable speed limit strategy becomes independent of
the number of variable message signs, and the number of optimization variables for
the ramp metering strategy becomes independent of the prediction horizon. The con-
trol strategy is evaluated with a macroscopic model of a two-lane freeway with two
on-ramps and off-ramps. It is shown that parameterization realizes improved through-
put when compared to a non-parameterized strategy when using the same amount of
computation time.

3.1 Introduction

Freeway congestion can reduce the freeway throughput causing societal, economical,
and environmental costs. Two main reasons exists why congestion reduces throughput.
First of all, congestion causes a capacity drop, i.e., the flow downstream of congestion
is lower than the capacity flow that can be achieved under free-flow conditions [Hall
and Agyemang-Duah, 1991, Kerner and Rehborn, 1996]. Secondly, congestion can
spill back in the upstream direction and cause blocking of traffic bound for off-ramps.

Congestion can be mitigated by dynamic traffic management measures. Two popular
dynamic traffic management measures on which this paper focuses are ramp metering
(RM) and variable speed limits (VSLs). RM is typically used to limit the number of
vehicles that want to enter the freeway from an on-ramp usinga traffic light. In this
way, the flow into a downstream bottleneck can be reduced so that congestion can
be prevented, postponed, or resolved. VSLs are speed limitsthat can be varied over
time and are displayed using variable message signs. VSLs can be used to reduce the
speed of freeway traffic and they are typically applied for safety reasons. However,
several approaches have been designed to reduce freeway congestion using VSLs. In
this paper we study the application of RM and VSLs to improve freeway throughput by
reducing congestion with the aim of developing an optimization-based control strategy
for the integration of VSLs and RM.

3.1.1 Review of RM and VSL strategies

The development of RM and VSL strategies – i.e., control algorithms – is an active
research area. In this brief overview we will discuss several VSL and RM strategies
that aim at freeway throughput improvement. We will focus here on discussing the
mechanisms in traffic flow exploited by the controllers, the controller properties, and
investigate challenges and opportunities for further controller development. After con-
cluding this section, we will review the literature on modelpredictive control strategies
for the integration of RM and VSLs in the next section.
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VSL

According to Hegyi et al. [2010], two main categories of VSL strategies for the im-
provement of freeway throughput exist, namely, the homogenizing types and the flow-
limiting types. The idea behind the homogenizing types is that by displaying VSLs
that are similar to the average speed of the traffic, speed differences between vehicles
will be reduced but no significant reduction of the average speed will result [Smulders,
1990, Van den Hoogen and Smulders, 1994, Kühne, 1991]. In this way, the traffic
flow is homogenized, resulting in a reduction of the probability of a traffic breakdown,
and thus, leading to an improved freeway throughput. However, while field tests did
show a reduction in speed differences, implying a more homogeneous traffic flow, no
evidence was found for improved freeway throughput [Van denHoogen and Smulders,
1994].

The main idea behind VSL strategies of the flow-limiting typeis that by imposing
VSLs the flow on the freeway can be controlled. Several approaches can be found in
the literature that are of the flow-limiting type. Carlson etal. [2011] proposed a VSL
strategy called mainstream traffic flow control (MTFC) for controlling freeway traffic
entering a bottleneck. This gating strategy adjusts the VSLvalue at a fixed location
upstream of a bottleneck in order to create a controlled congestion upstream of the
bottleneck with an outflow that is equal to the bottleneck capacity. Several simulation
studies were performed showing improved freeway throughput. Challenges of this ap-
proach are that very low VSL values may have to be displayed and that the application
of the strategy is limited to specific locations in a road network. Besides that, it is an
open question whether low VSL values can reduce the freeway flow sufficiently. For
instance, Soriguera et al. [2017] carried out an empirical study into the effect of apply-
ing speed limit values as low as 40 km/h at a fixed location thatshowed that applying
low VSL values may even result in a flow increase.

Hegyi et al. [2010] proposed a VSL strategy called SPECIALIST based on shock wave
theory against jam waves – i.e., congestion with a length of roughly 1 to 2 km that
propagates in the upstream direction of the freeway. The SPECIALIST algorithm de-
tects a jam wave and when it assesses this jam wave as resolvable it first applies a
pre-defined VSL value instantaneously over a freeway stretch directly upstream of the
jam wave. Next, VSLs are imposed upstream of the speed-limited area to stabilize
the traffic flow – by creating a stable combination of speed anddensity – that is ap-
proaching the speed-limited area. This causes a reduction of the flow into the jam wave
so that it can resolve without triggering an upstream congestion. After the jam wave
is resolved, the traffic in the speed-limited area can be released and a higher freeway
flow can be achieved since the capacity drop is no longer present. The density and
flow in (and downstream of) the speed-limited area can be controlled by adjusting the
speed with which the upstream (and downstream) boundary of the speed-limited area
propagates. SPECIALIST was tested on the A12 freeway in the Netherlands and it
was found that it is capable of resolving jam waves and stabilizing traffic, resulting
in improved freeway throughput [Hegyi et al., 2010]. Recently, Mahajan et al. [2015]
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proposed a reformulation of SPECIALIST called COSCAL v2. Incontrast to the SPE-
CIALIST algorithm which has a feed-forward structure, the COSCAL v2 algorithm
has a feedback structure so that it can better adjust its control action to disturbances.

Chen et al. [2014] proposed an alternative approach to resolve congestion at a bottle-
neck location. In their approach, VSLs are imposed upstreamof the bottleneck first
so that the congestion head moves away from the bottleneck and the impact of the ca-
pacity drop is decreased. After that, by adjusting the VSL values, the outflow of the
speed-limited area is adjusted so that it matches the bottleneck capacity. To the best
knowledge of the authors, no simulation studies have been carried out yet with this
algorithm.

Recently, Zhang and Ioannou [2016] proposed a VSL control strategy integrated with
a lane change control strategy to reduce bottleneck congestion caused by incidents. In
their approach, lane change control is used to remove the capacity drop and VSL con-
trol is used upstream of the incident location to realize target densities that maximize
the bottleneck flow.

RM

Similar to VSL strategies of the flow-limiting type, RM is primarily used to limit the
freeway flow. The most well-known RM algorithm is ALINEA [Hadj-Salem et al.,
1990]. This feedback control strategy for a single on-ramp uses measurements down-
stream of the on-ramp and regulates the on-ramp flow with the objective of keeping
the freeway flow near its critical density. In this way, congestion caused by exces-
sive on-ramp flows can be prevented or postponed and in this way, the impact of the
capacity drop is reduced, resulting in improved freeway throughput. Several other
control strategies for single on-ramps exist. Middelham and Taale [2006] discusses a
demand-capacity RM strategy that uses upstream freeway flowmeasurements in order
to maximize the freeway flow. Due to its feed-forward nature its performance may
deteriorate due to disturbances in the traffic flow. A major challenge of these local
RM strategies is that the on-ramp queue may spill back to the upstream urban network.
Queue management may help to limit the on-ramp queue but alsoreduces the time that
RM can be effective [Papamichail and Papageorgiou, 2008, Carlson et al., 2014].

Coordination of RM at multiple on-ramps can help to extend the RM time. HERO is
an algorithm that coordinates the ALINEA-based RM actions of different on-ramps
[Papamichail and Papageorgiou, 2008]. Whenever the queue caused by RM at a down-
stream on-ramp exceeds a threshold, the upstream RM installation starts an RM algo-
rithm that aims at controlling the upstream queue towards a set-point determined by
the downstream on-ramp. This prevents the queue at the downstream on-ramp from
exceeding the maximum length and allows a longer RM time. Difficulties of coordina-
tion are that there exist time delays between the interactions of on-ramps and that not
all traffic of upstream on-ramps might be headed to the bottleneck. Not including these
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effects may cause unnecessary delays for traffic that is not headed to the bottleneck,
which may not be fair [Kotsialos and Papageorgiou, 2004]. One way to include these
effects is by predicting the (near) future impact of the control signal on the system
performance. Model-based optimal control approaches are typically suited to include
such effects and will be discussed in the next section.

Integrated approaches to RM and VSL

Integrating RM and VSL strategies is expected to lead to further freeway performance
improvements. From a control engineering point of view thiscan be explained by the
fact that the control freedom is increased, from a traffic-flow-theoretical point of view
this can be explained by the possibility to distribute the flow-limiting task over freeway
traffic and on-ramp traffic. Schelling et al. [2011] proposedan extension of SPECIAL-
IST so that it can cope with a metered on-ramp. van de Weg et al.[2014a] extended the
in-car algorithm COSCAL v1 – which is similar to SPECIALIST –with RM. Maha-
jan et al. [2015] extended a macroscopic version of COSCAL v1, named COSCAL v2
with RM. In these approaches, it is computed at what time RM isswitched on in order
to assist the VSL system that resolves jam waves. These studies show that is it possible
to integrate the VSL and RM task to resolve jam wave using limited computation time
when considering only a single on-ramp. However, a challenge may be the extension
to multiple on-ramps, which may lead to a complex control problem due to the time
delays between the effects of different actuators.

Carlson et al. [2014] integrated the MTFC approach with RM. They apply ALINEA
RM in order to prevent congestion from forming at the bottleneck location. When
the on-ramp is full or when the RM rate is near its minimum allowed rate, MTFC
control is switched on in order to prolong the RM time. The authors showed that
the approach outperforms non-integrated algorithms and realizes a performance that is
near the performance realized with optimal control for a bottleneck scenario simulated
using a macroscopic traffic flow model. An advantage of this approach is that it is
based on a simple feedback control structure.

Conclusions from the literature

In conclusion, RM and VSLs can both limit the freeway flow. These flow reductions
can be used to prevent, postpone, or resolve congestion, resulting in improved free-
way throughput, since the impact of the capacity drop is reduced. Various algorithms
have been developed for RM and VSLs. These algorithms differin the traffic-flow-
theoretical mechanisms that they exploit and their control-theoretical structure. Stud-
ies have shown that integrating RM and VSLs can lead to a better performance when
compared to isolated systems. However, the control of multiple RM and VSL gantries
is a complex problem due to the time delay in the impact of elements on each other.
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3.1.2 Review of model-based optimization strategies for freeway
traffic control

A promising approach to account for the time delays of control actions on the network-
wide performance is model predictive control (MPC) [Rawlings and Mayne, 2009].
MPC uses a prediction model to predict the state of a process over a period of time –
called the prediction window – given the current state, a prediction of the disturbances
– i.e., inputs that cannot be controlled –, and a candidate control signal. Based on this
prediction the performance of the process is expressed using an objective function.
Using an optimization technique the control signal is foundthat leads to the minimum
(or maximum) of the objective function. The first step of the control signal is applied
to the process, and at the next time step, when new measurements are available, the
control signal is optimized again. This is called the receding horizon principle.

Despite the advantages of MPC there also exist several open problems when it is ap-
plied to freeway traffic control as discussed in detail in [Burger et al., 2013]. Some key
problems are that an accurate prediction of the traffic demand should be available, that
the controller should be able to deal with uncertainties, and that the computation time
used by the controller should be short enough for real-time application. In this paper
we will focus on reducing the computation time of an MPC strategy.

Several authors have applied MPC to the freeway traffic control problem. Kotsialos
et al. [2005] and Hegyi et al. [2005a] used the second-order METANET model as a
prediction model to optimize RM and integrated RM and VSL settings respectively. An
advantage of using second-order models is that they can model more complex traffic
dynamics. However, a major challenge is that the nonlinear optimization problem is
computationally hard so that real-time application to large freeway networks is not
feasible.

Roughly three main approaches exist to limit the computation time required by an
MPC strategy. The first is to use computationally efficient traffic flow models. To
this end, Gomes and Horowitz [2006] and Hajiahmadi et al. [2015b] use first-order
traffic flow models to formulate linear and mixed integer linear optimization problems
respectively. The disadvantage of using first-order trafficflow models is that some
characteristics of the traffic dynamics may be lost. This maycause a performance loss
when applied to a more complex traffic process.

The second strategy is to divide the optimization problem inmultiple, possibly overlap-
ping, sub-problems. One such strategy is distributed MPC asin [Frejo and Camacho,
2012]. In such approaches, the freeway network is divided into smaller sub-networks.
The sub-problems that need to be solved involve optimization of the sub-network per-
formance and the impact on the total network performance. Insome cases this might
lead to reduced computation times and similar performance as centralized MPC.

The third strategy is to reduce the number of control parameters that need to be opti-
mized by parameterizing existing control strategies. For instance, Zegeye et al. [2012]
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integrated the ALINEA algorithm and a feedback algorithm for VSLs so that only the
gains of the feedback strategies had to be optimized. The approach was only applied
to cases where the same strategy was used for every actuator type – i.e., VSL or RM
– in the network at every time step. Lu et al. [2011] first designed the VSL signal
after which the RM rates could be computed using a linear optimization problem. Re-
cently, van de Weg et al. [2015] proposed a parameterizationbased on SPECIALIST
to resolve jam waves using VSLs so that the size of the optimization problem becomes
independent of the number of VSL gantries. It is shown using simulations that this
approach is able to realize similar performance as the MPC proposed by Hegyi et al.
[2005a] in significantly less CPU time while outperforming the approach of Zegeye
et al. [2012]. A limitation of the approach of van de Weg et al.[2015] is that it is
not yet suited to account for RM and that the performance is only tested in a scenario
where throughput is improved by resolving a jam wave.

3.1.3 Research approach and contributions

This paper presents a parameterized MPC strategy for integrated RM and VSLs to
improve the freeway throughput. In this way, a better trade-off between the realized
throughput improvement and the utilized computation time for integrated optimization
of RM and VSL is obtained. The method generalizes the previous work of van de
Weg et al. [2015]. Compared to that work, two main contributions are made. First
of all, the parameterized VSL approach is extended with a parameterized RM control
strategy. Secondly, an extensive qualitative analysis into the controller behavior is
carried out when applying the strategy to a jam wave and a bottleneck scenario. Also,
the qualitative behavior of the different combinations of RM and VSL is studied. In
contrast to the work of Zegeye et al. [2012], per RM installation the RM gain and
set-point, and switching times are added to the optimization problem. The switching
times are used to change the feedback policy when the traffic situation changes. The
parameterization of VSLs and RM rates in METANET is formulated in such a way
that the optimization problem can be solved using gradient-based solvers, which are
generally faster compared to gradient-free solvers when the problem size is not too
large. The third contribution of this paper is to provide insight into the impact of the
available computation time budget on the controller performance.

3.2 Controller design

The parameterized MPC strategy proposed in this paper is able to optimize both RM
rates and VSL values with the aim of improving the freeway throughput. In the ap-
proach proposed in this paper the head and tail of a speed-limited area are parameter-
ized. In this way the number of optimization parameters becomes independent of the
freeway length, which would be the case when using non-parameterized optimization
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Time step
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Figure 3.1: Overview of the timing used in the paper forT is 10 s,T c is 60 s,T u is 300 s.

approaches. Additionally, we optimize the parameters of the ALINEA strategy and we
optimize the switching times when the controllers should change the parameters of the
ALINEA strategy or when they should switch RM off. In this way, the number of opti-
mization parameters for every RM installation becomes independent of the prediction
horizon.

3.2.1 Design considerations

Several design considerations are taken into account when developing the parameter-
ized MPC strategy. Special attention is payed to satisfy therequirements for applying
RM or VSLs for freeway traffic control. While the primary objective of this paper is
to design a control strategy of which the computation time required by the controller
is lower than the controller sampling time, (which is in the range of (several) minutes),
some design requirements are taken into account as well, which are also important for
the practical applicability of this method, namely:

1. Only a limited number of VSL values can be displayed. For instance, in the
Netherlands it is only possible to show 50, 60, 70, 80, 90, and100 km/h.

2. A VSL or RM system should not cause unsafe situations.

3. An RM system typically causes a queue on the on-ramp. The queue length
should be bounded by a maximum value to avoid spillback to theupstream road
network.

4. The RM rate is typically bounded by a minimum and maximum value.

Below, first the design considerations the VSLs are introduced, followed by the con-
siderations for implementing RM.

VSL control design considerations

As indicated by van de Weg et al. [2014b], a speed-limited area – as shown in Fig-
ure 3.2 A – can be created by imposing VSLs. It follows from shock-wave theory that
there is a relation between the slope of the boundaries of thespeed-limited area and the
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A. Example of a speed-limited area

B. Example of preventing congestion at a bottleneck
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Figure 3.2: A: Example of a speed-limited area that can be used to influence the traffic flow. The red-
dashed lines indicate examples of vehicle trajectories. The second vehicle trajectory illustrates a vehicle
experiencing a speed limit drop twice – as indicated with thered circle –, which should not occur. B:
Top figure: example of a speed-limited area that can be used toprevent congestion at the bottleneck
locationxb. Bottom figure: the demand entering the freeway at locationx0 [van de Weg et al., 2015].

resulting flow and density downstream of that slope [Hegyi etal., 2010, Lighthill and
Whitham, 1955]. If the slope is steeper (more negative) thenthe resulting density and
flow are higher. By adjusting the speed with which the upstream boundary – i.e., the
tail – propagates over time, a stable combination of densityand flow can be realized in
the speed-limited area. Similarly, by adjusting the speed with which the downstream
boundary – i.e., the head – propagates over time, the outflow of the speed-limited area
can be controlled so that it is just below or at the freeway capacity. SPECIALIST is an
example of an algorithm that uses a speed-limited area to resolve a jam wave [Hegyi
et al., 2010].

Figure 3.2 B presents an example of using a speed-limited area in order to prevent
congestion at a bottleneck. At timet1 (h) an excess demand – as illustrated in the
bottom figure – enters the freeway at locationx0 (km). The time-space plot in the top
figure shows that this demand reaches the bottleneck location xb (km) at timet2 (h).
At this time, congestion would appear in a no control situation. However, by imposing
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a speed-limited area as illustrated in the top figure, congestion may be prevented.

Several design considerations are taken into account when implementing a speed-
limited area. First of all, it is assumed that the value of thespeed-limits in the speed-
limited area is constant over time. This implies that a segment between two variable
message signs is either speed-limited or not. Additionally, it is assumed that only one
speed-limited area can be active at a time. Apart from that, the dynamics of the head
and tail of the speed-limited area should be such that the individual vehicles can only
enter and exit the speed-limited area once. If an individualvehicle observes multiple
fluctuations of the speed limits, this can lead to unsafe situations, annoyance, or poor
compliance. As an example, the second vehicle in Figure 3.2 Aexperiences such fluc-
tuations. In order to prevent such behavior, the positionsxH,sl (km) andxT,sl (km) of
respectively the head and the tail of the speed-limited areaare allowed to propagate in
the downstream direction with a speed that is lower or equal to the effective speedveff .
In the upstream direction they can propagate with any speed.

The speed in the speed-limited area is equal to the effectivespeedveff (km/h) corre-
sponding to the imposed VSLs. The effective speed is defined as the speed with which
vehicles drive in the speed-limited area which includes possible non-compliance. This
can be estimated e.g. from field tests as presented in [Hegyi et al., 2010].

The proposed parameterization reduces the number of optimization variables for VSLs
to two per control time step. Note that the number of optimization variables at every
control time step used in a nominal MPC strategy is equal to the number of VSL actu-
ators. Hence, the advantage of this parameterization is that the number of optimization
variables is reduced, and that the number of optimization variables is independent of
the number of VSL actuators.

RM control design considerations

A feedback RM algorithm is used in this paper to control the on-ramp flow that has to
satisfy the following properties:

• The RM ratero(k) (-) of an origino should be between the minimum allowed
RM ratermin ≥ 0 (-) and1.

• The on-ramp queue lengthwo(k) (veh) should not exceed its maximum value
wmax

o (veh).

Different RM strategies could be applied depending on the traffic situation. For in-
stance, when preventing congestion at a bottleneck location, the most sensible control
strategy would be to control the on-ramp flows in such a way that the flow into a bottle-
neck is at or just below its capacity. The ALINEA algorithm isspecifically designed to
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realize this objective. The ALINEA algorithm has the following form [Papageorgiou
et al., 1988]:

ro(k + 1) = ro(k) +Ko
ρcritm − ρm,1(k)

ρcritm

, (3.1)

whereρcritm (veh/km/lane) is the critical density of the link directly downstream of the
on-ramp, andρm,1(k) (veh/km/lane) is the current density in the most upstream seg-
ment of the downstream link.

When resolving a jam, the flow into the jam should be reduced asmuch as possible.
The standard ALINEA RM algorithm is not suited to realize this, since it tries to fit as
much traffic onto the freeway without exceeding the criticaldensity. This can be solved
by adapting the set-pointρseto (k) (veh/km/lane) of the ALINEA strategy [Smaragdis
et al., 2004, Zegeye et al., 2012]:

ro(k + 1) = ro(k) +Ko
ρseto (k)− ρm,1(k)

ρseto (k)
. (3.2)

Another advantage of including such a set-point is that coordination of on-ramps be-
comes possible. In the case of a downstream bottleneck or congestion, the set-points
of the controllers of different on-ramps can be coordinatedin order to distribute the
RM task over the RM installations.

Finally, it might be necessary to switch set-points a certain number of times. For
instance, when resolving a jam, the preferred strategy might be to reduce the on-ramp
inflow as much as possible until the moment when the jam has been resolved and
afterwards the freeway flow can be increased to capacity so that the on-ramp outflow
can also be increased. These two different tasks require different set-points. Therefore,
we propose the following feedback control algorithm:

• Initially, RM is off until switching timetswitch
o,1 (h).

• From switching timetswitch
o,1 until switching timetswitch

o,2 (h), the feedback law
(3.2) with feedback gainKs

o,1 and set-pointρseto,1 (veh/km/lane) is used.

• From switching timetswitch
o,2 until switching timetswitch

o,3 (h), the feedback law
(3.2) with feedback gainKs

o,2 and set-pointρseto,2 (veh/km/lane) is used.

• After time tswitch
o,3 the RM installation is switched off.

This parameterization requires 5 parameters per RM installation, namely, three switch-
ing times, and two set-points. If needed, the approach can beextended by adding more
switching time instants or to optimize the feedback gains, which are now manually
tuned.
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... ...

Mainstream origin
Mainstream exit

Off-ramp On-ramp
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Figure 3.3: Example of the METANET elements used in this paper. A freeway consist of mainstream
origins, links, segments, off-ramps, on-ramps, and mainstream exits.

3.2.2 Timing

Before continuing, the timing of the approach is introducedand is illustrated in Fig-
ure 3.1. The discrete-time second-order traffic model METANET is used to describe
the evolution of the traffic [Kotsialos et al., 2002a]. The time step of the model is indi-
cated withk (-) and the corresponding sampling time withT (h). The time stepk (-)
refers to the period

[

Tk, T (k + 1)
)

. The control signal sampling time isT c = CcT

(h) with Cc ∈ N
+ (-), meaning that the value of the control signal can change at time

instantskcT c (-). The control signal is updated at time instantkuT u (s) for which it
holds that the control signal update timeT u = CuT (h) with Cu ∈ N

+ (-). Note that
it holds thatt = Tk = T ckc = T uku. The controller predicts the evolution of the
traffic from control time stepkc + 1 until control time stepkc + Np whereNp (-) is
the prediction horizon. The control input from control timestepkc until control time
stepkc + N c is optimized by the controller whereN c (-) is the control horizon and
N c ≤ Np. After the control horizon the control signal is taken to be constant.

3.2.3 Traffic flow modelling

An extended version of the METANET model is adopted to predict the evolution of
the traffic in the MPC controller. The METANET model presented in [Kotsialos et al.,
2002a] along with the extensions proposed in [Hegyi et al., 2005a] is adopted since
it provides a detailed description of the traffic dynamics and it can reproduce rele-
vant traffic characteristics such as jam waves and the capacity drop. Note that in the
description below only the elements relevant for this paperare discussed. For a full
description of the model see [Kotsialos et al., 2002a] and [Hegyi et al., 2005a].

The original METANET model and existing extensions

In the METANET model, a freeway is divided into homogeneous –i.e., having a con-
stant number of lanes, no on-ramps and off-ramps, and constant characteristics – links
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m that are connected by nodes [Kotsialos et al., 2002a]. Each link m consists ofNm (-)
segments of lengthLm (km) with a number ofλm (-) lanes. The flowqm,i(k) (veh/h),
densityρm,i(k) (veh/km/lane) and speedvm,i(k) (km/h) in a link are updated according
to:

qm,i(k) = ρm,i(k)vm,i(k)λm , (3.3)

ρm,i(k + 1) = ρm,i(k) +
T

Lmλm

(

qm,i−1(k)− qm,i(k)
)

, (3.4)

vm,i(k + 1) = vm,i(k) +
T

τ

(

V
(

ρm,i(k)
)

− vm,i(k)
)

+
T

Lm
vm,i(k)

(

vm,i−1(k)− vm,i(k)
)

−
ηT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
, (3.5)

In the latter equation,τ andκ are model parameters. The parameterη (-) is set toηhigh

when the downstream density is higher than the densityρm,i+1(k) in segmenti, and it
is set toηlow when the downstream density is lower. This adjustment is adopted from
[Hegyi et al., 2005a] to reproduce the capacity drop. The speedV

(

ρm,i(k)
)

(km/h) is
given as:

V
(

ρm,i(k)
)

= min
[

vfreem exp

(

−
1

am

(

ρm,i(k)

ρcritm (k)

)am)

, vctrlm,i(k)
]

, (3.6)

wheream (-) is a model parameter, the speedvfreem (km/h) is the free-flow speed of link
m, and the densityρcritm (veh/km) is the critical density, and where the speedvctrlm,i(k)

(km/h) is the effective speed of the imposed speed limits that is corrected for the com-
pliance of the road-users.

An origin is modeled using a simple queuing model describingthe number of vehicles
wo(k) (veh) in the origin queue as a function of the demanddo(k) (veh) and the outflow
qo(k) (veh/h):

wo(k + 1) = wo(k) + T
(

do(k)− qo(k)
)

. (3.7)

When an origin acts as the mainstream origin, the outflow is given by:

qo(k) = min
[

do(k) +
wo(k)

T
, qlimµ,1(k)

]

, (3.8)

where the flowqlimµ,1(k) is determined by the traffic condition in the first link and the
speedvlimµ,1(k) = min[vctrlµ,1 (k), vµ1(k)] as follows:

qlimµ,1(k) =











λµv
lim
µ,1(k)ρ

crit
µ

[

− aµ ln

(

vlimµ,1(k)

vfreeµ (k)

)1/aµ]

if vlimµ,1(k) < V
(

ρcritµ (k)
)

qcapµ if vlimµ,1(k) ≥ V
(

ρcritµ (k)
)

(3.9)
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When an origin acts as a metered on-ramp, the outflow is given by:

qo(k) = min
[

do(k) +
wo(k)

T
,Q0ro(k), Q0

ρmax
m − ρm,1(k)

ρmax
m − ρcritm

]

, (3.10)

with Q0 (veh/h) the on-ramp capacity, andro(k) ∈ [0, 1] the RM rate.

In the case that there is an on-ramp upstream of linkm, then the term

−
δTqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
, (3.11)

is added to (3.5) for the first segment of linkm with δ (-) a model parameter.

Finally, when a linkm has no leaving link – i.e., it is the most downstream link – the
densityρm,ilastm +1 downstream of the last segmentilastm is equal to:

ρm,ilastm +1 = max
[

ρDS(k),min[ρm,ilastm
(k), ρcritm ]

]

, (3.12)

where the densityρDS(k) (veh/km/lane) is the destination density, which can be used
as a boundary condition to the model.

3.2.4 Extensions for parameterized MPC

This section details extensions that are included in order to use the model for parame-
terized MPC. These extensions do not affect the dynamic equations of the traffic states
but rather the equations that relate the parameterized control signals to the dynamic
equations to the control signals. Although the paper focuses on the use of METANET,
the extensions may also be used in combination with other macroscopic traffic flow
models.

Extension with a speed-limited area

In this paper, the VSLsvctrlm,i(k) are determined by the headxH,sl(k) (km) and tail
xT,sl(k) (km) of the speed-limited area as follows:

vctrlm,i(k) = (3.13)
{

veff if xH,sl(k) > xm,i andxT,sl(k) < xm,i + Lm andxH,sl(k) > xT,sl(k)

vfree otherwise,

wherexm,i (km) is the most upstream location of segmenti of link m.

In practice, the speed-limited area can either cover an entire segment or not cover it at
all. This implies that the gradient of the objective function is not a continuous function
of the location of the speed-limited area. In order to realize a gradient of the VSL signal
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that is differentiable everywhere, a parameterγm,i(k) (-) is introduced. The parameter
γm,i(k) denotes the fraction of the segment that is covered by speed limits given as:

γm,i(k) = max

[

Lm −max[xT,sl(k)− xm,i, 0]−max[xm,i + Lm,i − xH,sl(k), 0]

Lm

, 0

]

.

(3.14)

In the optimization, the speedvctrlm,i(k) in (3.6) is replaced bŷvctrlm,i(k) by taking the
weighted average of the effective speedveff and the equilibrium speedvFD

(

ρm,i(k)
)

:

v̂ctrlm,i(k) = γm,i(k)v
eff + (1− γm,i(k))v

FD
(

ρm,i(k)
)

. (3.15)

Extension with feedback ramp metering

The feedback RM control strategy results in a flow reduction factorr̃o(k) (-) that limits
the on-ramp flow [Kotsialos et al., 2005]. The overall RM control strategy is as follows:
until time tswitch

o,1 RM is off and the RM rate is equal to 1; this policy is indicatedwith
policy index ip = 1 (-). After that time until timetswitch

o,2 the ALINEA algorithm is
used to meter the on-ramp traffic with the gainKs

o,2 to reach the set pointρseto,2; this
corresponds to policyip = 2. After time tswitch

o,2 until time tswitch
o,3 the maximum queue

length strategy is used with gainKs
o,3 to reach the set-pointρseto,3; this corresponds to

policy ip = 3. After timetswitch
o,3 the RM rate is switched to 1; this corresponds to policy

ip = 4. In total a number ofnpol = 4 (-) policies per ramp are available.

The switching time instantstswitch
o,ip are real-valued while the actual model timing is

discrete. This leads to a discontinuous gradient. In order to prevent this, the RM rates
of the different policies̃ro,ip(k) are linearly interpolated giving the potential RM rate
r̃o(k) (-) when a switching time lies in a time interval:

r̃o(k) =

npol
∑

ip=1

fp
ip(k)r̃o,ip(k) , (3.16)

where the RM rates̃ro,ip(k) (-) of the policiesip are given as:

r̃o,ip(k) =











1 if ip = 1 or ip = npol

max

(

min

(

r̃o(k − 1) +Ks
o,ip

ρseto,ip − ρm,1(k − 1)

ρseto,ip
, 1

)

, 0

)

otherwise,

(3.17)

and the fractionfp
ip(k) represents the fraction of the time step that is covered by policy

ip and which is computed using :

fp
ip(k) =



























max[0, T +min[tswitch
o,ip − kT ]]

T
if ip = 1

max[0, T −max[tswitch
o,ip−1 − (k − 1)T, 0]

T
if ip = npol

max[0, T −max[tswitch
o,ip−1 − (k − 1)T, 0] + min[tswitch

o,ip − kT ]]

T
otherwise.

(3.18)
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The next step is translating the RM rater̃o(k) to the actual applied RM ratero(k):

ro(k) =
(1− r̃o(k))q

R,min
o (k) + r̃o(k)q

R,max
o (k)

Q0
, (3.19)

with the minimum on-ramp flowqR,min
o (k) (veh/h) defined by the minimum allowed

RM rate and the minimum required RM rate to prevent the on-ramp queue required to
prevent the on-ramp queue from exceeding its maximum:

qR,min
o (k) = max

[

rminQ0,
wo(k) + do(k)T − wmax

o

T

]

. (3.20)

The maximum on-ramp flowqR,max
o (k) (veh/h) is defined similarly as in (3.10):

qR,max
o (k) = min

[

do(k) +
wo(k)

T
,Q0, Q0

ρmax
m − ρm,1(k)

ρmax
m − ρcritm

]

(3.21)

3.2.5 Objective function and constraints

The objective of the controller is to minimize the Total TimeSpent (TTS) by all the
vehicles on the freeway by changing the VSLs and RM rates overthe time stepskc =

kuCt +1, . . . , kuCt+Np. The following objective functionJ(ku) expresses the TTS:

J(ku) = T

kuCu+NpCc
∑

k̂=kuCu+1

{

∑

(m,i)∈I links

ρm,i(k̂)Lmλm+
∑

o∈Iorig

wo(k̂)

}

. (3.22)

Here, the setI links (-) is the set of indices of all pairs of segments and links, the setIorig

(-) is the set of all origin indices, and the setIramps is the set of all on-ramp indices.

Using this objective function the MPC optimization problemcan be formulated:

min
ū(ku)

J(ku)

Subject to

Model: Eq. (3.3) – Eq. (3.21),

Initial states and disturbances:

ρm,i(k
uCu), vctrlm,i(k

uCu) , ρDS(k̂), do(k̂) ,

Constraints:

BL ≤ Aū(ku) ≤ BU . (3.23)

The matrixA and vectorsBL andBU represent the linear inequality constraints on
the VSL and RM control signal respectively as detailed in thenext subsections. The
control signalū(ku) is a vector consisting of the parameters of the head and tail of
the speed-limited area and the parameters of the feedback control laws of the different
on-ramps as will be detailed in the next subsections.
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VSL signal and constraints

The evolution of the head and tail of the speed-limited area is described by the initial
location of the headxH,sl(kuCu + Cc) (km) and tailxT,sl(kuCu + Cc) (km), and the
speedvH,sl(kc) (km/h) andvT,sl(kc) (km/h) of the head and tail over time respectively.
After the control horizonN c, until the prediction horizonNp, the speed of the head
and tail locations are assumed to remain constant:

vH,sl(kc) = vH,sl(kuCt +N c) if kc > kuCt +N c , (3.24)

vT,sl(kc) = vT,sl(kuCt +N c) if kc > kuCt +N c . (3.25)

Based on the control vector, the location of the head and the tail of the control scheme
at every time stepk can be computed:

xH,sl(k) = xH,sl(kuCu + Cc) +
kc
∑

j=kuCu+Cc+1

vH,sl(⌊(j − 1)/Cc⌋)T , (3.26)

xT,sl(k) = xT,sl(kuCu + Cc) +

kc
∑

j=kuCu+Cc+1

vT,sl(⌊(j − 1)/Cc⌋)T . (3.27)

Several constraints have to be respected when optimizing the VSLs. First of all, the
position of the head and tail have to lie within the upstream boundsxH,0 (km) andxT,0

(km) and downstream boundsxH,end (km) andxT,end (km):

xH,0 ≤ xH,sl(kuCu + Cc) ≤ xH,end , (3.28)

xT,0 ≤ xT,sl(kuCu + Cc) ≤ xT,end . (3.29)

If at time stepkuCu + Cc the speed limits are not active or cover only 1 segment, i.e.,
whenxH,sl(kuCu + Cc|ku − 1) − 1 ≤ xT,sl(kuCu + Cc|ku − 1), then these bounds
are equal to the upstreamx0 (km) and downstream end of the freewayxend (km).
The notation(. . . |ku − 1) indicates the control signal that is computed at time step
ku − 1. However, when the speed limits are active at control stepkuCu + Cc, then the
location of the headxH,sl(kuCu + Cc|ku) and tailxT,sl(kuCu + Cc|ku) at control step
kuCu+Cc should be equal to the previously computed valuesxH,sl(kuCu+Cc|ku−1)

andxT,sl(kuCu + Cc|ku − 1). In that case, the constraints are set to the following:

xH,0 = xH,sl(kuCu + Cc|ku − 1) , (3.30)

xH,end = xH,sl(kuCu + Cc|ku − 1) , (3.31)

xT,0 = xT,sl(kuCu + Cc|ku − 1) , (3.32)

xT,end = xT,sl(kuCu + Cc|ku − 1) . (3.33)

Secondly, the head and tail are allowed to propagate downstream with at mostveff

(km/h) or to propagate upstream with any speed so that they cannot ‘overtake’ a speed-
limited vehicle:

vH,sl(kc) ≤ veff , (3.34)

vT,sl(kc) ≤ veff . (3.35)
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Thirdly, the position of the head should be at or more downstream than the initial
position of the tail:

xH,sl(k) ≥ xT,sl(k) . (3.36)

RM constraints

The RM control signal of an individual on-ramp consists of the switching times
tswitch
o,1 (ku), tswitch

o,2 (ku), andtswitch
o,3 (ku), and the set-pointsρseto,1(k

u) andρseto,2(k
u).

By varying these parameters, the RM rate is affected. Several constraints on these
parameters are included. First, it has to hold that the set-points ρseto,ip(k

u) should be
between0 and the maximum set-pointρset,max

o,ip (veh/km/lane):

0 < ρseto,1(k
u) ≤ ρset,max

o,1 (3.37)

0 < ρseto,2(k
u) ≤ ρset,max

o,2 . (3.38)

Secondly, the switching time instants need to be constrained. Two cases are possible.
The first case is that no RM is active at time stepkc. Then, it should hold that:

kuT u + T c ≤ tswitch
o,1 (ku) ≤ kuT u +NpT c (3.39)

tswitch
o,1 + T c ≤ tswitch

o,2 (ku) ≤ kuT u +NpT c (3.40)

tswitch
o,2 + T c ≤ tswitch

o,3 (ku) ≤ kuT u +NpT c (3.41)

The second case is that RM is active at time stepku. This is the case whentini(ku) =

max(tswitch
o,1 (ku − 1), kuT u) < kuT u + T c andtswitch

o,3 (ku − 1) ≥ kuT u + T c. In this
case the MPC should not be able to changetswitch

o,1 (ku) because it lies within the current
time stepkuCt that cannot be affected. This is realized by the following constraints:

tini(ku) ≤ tswitch
o,1 (ku) + T c ≤ tini(ku) (3.42)

kuT u + T c ≤ tswitch
o,2 (ku) ≤ kuT u +NpT c (3.43)

tswitch
o,2 + T c ≤ tswitch

o,3 (ku) ≤ kuT u +NpT c (3.44)

3.3 Simulation experiments

Simulations are carried out in order to investigate the controller behavior and perfor-
mance in terms of CPU time used and TTS improvement of the controller. To this end,
several simulations are performed in which the traffic situation and controller set-up is
varied.

The main topic for investigation is the trade-off between the computation time and
the realized throughput improvement. To this end, the parameterized MPC (PMPC)
strategy is compared with a nominal MPC (NMPC) strategy thatdirectly optimizes
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the individual VSL values and RM rates. The NMPC strategy is expected to realize
a similar or higher TTS when given sufficient CPU time. In order to obtain a fair
comparison, both the control strategies are given the same CPU time budgets. It is
expected that the PMPC strategy is able to obtain similar throughput improvement in
less CPU time budget.

Additionally, the performance is compared when considering different controller set-
ups, namely RM-only, VSL-only, and integrated RM and VSL, and when applied to
different traffic situations, i.e., when resolving a jam wave – as done by the SPECIAL-
IST algorithm – or by preventing congestion due to a high on-ramp flow. This allows
to evaluate the added value of integrating the control measures in different scenarios. It
is expected that integrated RM and VSL can realize the best throughput improvement
because it has a larger control freedom, but that it does not necessarily lead to the best
trade-off between computation time and realized throughput.

3.3.1 Simulation set-up

Figure 3.4 provides an overview of the simulation set-up. The extended METANET
model as detailed in this paper is used as the process model – i.e., the real-world – and
the prediction model. When implemented as the process model, three small changes
are made. First of all, the parameterγm,i(k) is set to1 in the process model ifγm,i(k) >

0.1 such that the entire segment is either speed-limited or not in order to reproduce
the discrete spacing of the variable message signs. Secondly, the switching times are
rounded to the nearest multiple ofT that is less than or equal to the switching time.
Thirdly, a lead-in procedure is introduced for the VSLs preventing too large speed
drops on the freeway. To this end, the VSL value of a gantry is set to the minimum of
the desired VSL and the VSL value of the downstream gantry increased with 10 km/h
which is iteratively computed from downstream to upstream.

A 20 km long freeway with 2 on-ramps and 2 off-ramps is considered as shown in
Figure 3.5. The freeway consists of three origins and 20 identical segments with a
length of 1 km and 2 lanes. Every segment has the same parameters, adopted from
[Kotsialos et al., 2002a], namely:T = 10s, τ = 18 s,κ = 40 (veh/km/lane),ρcrit =
33.5 veh/km/lane,am = 1.867, vfree = 102 km/h,ηhigh = 65 km/h2, ηlow = 30 km/h2.
Using these parameters, a capacity of 2000 veh/h/lane is realized and a capacity drop
can be observed. The freeway traffic is simulated for scenarios of 3 hours. All the
segments can be controlled by means of VSLs. The value of the effective speed limit
veff is set to 50 km/h. The two on-ramps are controlled by means of RM. The minimum
RM rate is set to 0.05, the feedback gains of the PMPC strategyare set toKs

o,ip = 0.5,
and the maximum density set-point is set toρset,max

o,ip = 60 (veh/km/lane).

The process and prediction model sampling time stepsT are set to 10 seconds. The
control signal update time stepT u is set to 300 seconds, and the control time stepT c

is set to 60 seconds. This means that every 300 seconds the control signal is optimized
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based on the current traffic state. The values of the control signals are allowed to
change every 60 seconds.

It is assumed that no measurement noise affects the traffic state used by the MPC
strategy. Also, it is assumed that a prediction of the demandand turn-fractions is
available for the MPC strategy.

The evaluation is carried out using Matlab R2015a on a computer with a 3.6 GHz
processor, 8 cores, and 16 Gb RAM. For the optimization the Sequential Quadratic
Programming algorithm of the fmincon solver of the MATLAB optimization toolbox
is used, the function tolerance is set to5 · 10−3 and the step tolerance is set to1 · 10−7.
Parallel computing on 8 cores is used to determine the numerical derivative of the
objective function. In order to realize a fair comparison, both approaches are given
the same amount of CPU time in which they can find the optimal solution. When this
computation time is not reached, the optimization is repeated from a new, randomly
selected starting point. When the computation time is exceeded, the optimization is
stopped. The best solution out of the different starts is applied to the process. All
the simulations are repeated with three budgets, namely 300, 600, 1200, 1800, and
3600 seconds. To speed up the simulations, parallel computing is used to compute the
gradient. For a fair comparison, the CPU time budget reflectsthe total computation
time used by all the cores. Because the computations are carried out in parallel, the
actual elapsed time is smaller than the CPU time budget.

The NMPC approach is implemented as follows. Similar as in [Kotsialos et al., 2005],
the RM rater̃o(k) (-) of an on-ramp is directly optimized. It is bounded between 0

and1 and constrained in such a way that the RM can change with a maximum of 0.25
per control step. The optimized RM ratẽro(k) (-) is translated to the actual applied
RM rate ro(k) using (3.19). The VSL strategy proposed in [Hegyi et al., 2005a] is
implemented. The VSL values are bounded so that they are larger than 50 km/h and
smaller than the free flow speed. Additionally, the following constraint is included
vctrlm,i(k

c) ≤ vctrlm,i+1(k
c)+10 preventing sudden speed drops in the downstream direction.

3.3.2 Case I: jam wave

A scenario in which a jam wave is present on the freeway is evaluated. Figure 3.7 (a)–
(f) shows the no-control situation in which a jam wave entersthe freeway at the most
downstream end. This jam is created by increasing the density at the downstream
end of the freeway from time 380 s to 1080 s. The demand at the origins is equal
to 3800 veh/h, 455 veh/h, and 400 veh/h until time 5500 s for the mainstream origin,
on-ramp 1 (O1) and on-ramp 2 (O2) respectively. The percentage of traffic exiting at
the off-ramps is 10% and 12% for off-ramp 1 and 2 respectively. After time 5500 s the
demands decrease to 3500 veh/h, 240 veh/h, and 260 veh/h respectively. The capacity
drop due to this jam wave, determined using simulation experiments, is approximately
5.6%. The total time spent of the no-control scenario is 3325.1 veh·h.
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Various control set-ups are tested in the control scenario.In order to evaluate the
performance and behavior of the MPC strategy when resolvinga fully formed jam
wave, so that we can interpret the solution, which is expected to be similar to the
solution of SPECIALIST, the controller is started after 1500 seconds. Note that this
represents an artificial situation, since in practice the MPC strategy is always active so
that it will start controlling before the jam wave is fully formed. The maximum on-
ramp queue length is set to 150 vehicles for both ramps. The prediction horizon is set
to 4800 seconds and the control horizon is set to 2400 seconds. The control horizon
is not applicable to the parameterized RM strategy, becausea specific choice of the
switching times fully determines the controller behavior over any horizon. Note that
the VSL control signal is allowed to change every 60 seconds so that 40 steps are to be
optimized.

The control horizon is not relevant for the parameterized RMstrategy, since it opti-
mizes the switching time instants when the feedback RM strategy is changed instead
of explicitly optimizing the RM rates at the control sampling time steps.

Table 3.1 presents the quantitative results for the different computation time budgets.
It can be observed that a computation time budget of 1200 seconds is sufficient for all
the parameterized strategies to realize the best throughput improvement. The average
elapsed times per controller update for these budgets are all below 300 seconds. The
RM-only NMPC strategy achieves similar performance as the PMPC strategy for a
budget of 3600 seconds. However, even the budget of 3600 seconds does not seem to
be enough for VSL-only or integrated VSL and RM using the NMPCstrategy.

The qualitative results of the VSL-only case shown in Figures 3.7 (g)–(l) show that
the jam wave is resolved by imposing a speed-limited area upstream of the jam wave,
similar as done by the SPECIALIST algorithm. Figures 3.7 (m)–(r) show the results
of resolving the jam wave using the RM-only strategy. It can be seen that it takes
longer for the RM-only to resolve the jam wave explaining thelower TTS gain. Fig-
ures 3.7 (s)–(x) show that the integration of VSLs and RM reduces the application of
VSLs upstream of on-ramp 1, as well as the time over which VSLsare needed. Fig-
ure 3.6 (a) shows the total network outflows for the differentcontrol strategies. It can
be seen that it takes longer for the RM-only strategy to improve the total network out-
flow. Also, it can be seen that the integration of VSL and RM reduces the initial outflow
reduction and a quicker outflow increase after the jam has resolved when compared to
the VSL-only case, explaining the TTS improvement.

3.3.3 Case II: bottleneck

The second case consists of a traffic jam caused by a too high on-ramp flow. The no
control situation is shown in Figure 3.8 (a)–(f). The origindemands were set to 3900
veh/h, 455 veh/h, and 390 veh/h for the mainstream origin, on-ramp 1 (O1), and on-
ramp 2 (O2) respectively, and they were taken to be constant until time 4500 s except



Chapter 3. Efficient parameterized MPC for improving freeway throughput 73

0  0.5 1  1.5 2  2.5
4000

4250

4500

4750

5000

F
lo

w
 (

v
e
h
/h

)

(a) Network outflow, jam wave

Time (h)

0  0.5 1  1.5 2  
4000

4250

4500

4750

5000
F

lo
w

 (
v
e
h
/h

)
(b) Network outflow, bottleneck

Time (h)

No control

VSL

RM

VSL and RM

Figure 3.6: Network outflow in (a) the jam wave and (b) the bottleneck case using different control
strategies.

for on-ramp 1 of which the inflow from time 1500 s to 2000 s was increased to 1500
veh/h triggering a traffic jam. The percentage of traffic exiting at the off-ramps is 10%
and 12% for off-ramp 1 and 2 respectively. After time 4500 s the demands decreased
to 3500 veh/h for the mainstream origin and to 260 veh/h for on-ramp 2. The resulting
TTS is 2536.0 veh·h.

Several control set-ups are evaluated in the control situation. The maximum on-ramp
queue lengths were set to 75 and 20 vehicles for on-ramp 1 and 2respectively. Due to
this, coordination between the two on-ramps is required, since the capacity of on-ramp
2 is not sufficient to prevent congestion on its own. The prediction horizon is set to
4800 seconds and the control horizon is set to 2400 seconds.

Table 3.1 presents the quantitative results for the different computation time budgets.
It can be observed that for VSL-only and integrated VSL and RMset-ups the PMPC
realizes higher TTS gains in shorter budgets. For the RM-only case, both the NMPC
and PMPC realize similar TTS improvements, namely 9.9% and 9.7% respectively for
short CPU time budget of 300 seconds.

The qualitative results of the VSL-only strategy shown in Figures 3.8 (g)–(l) indicate
the ability to prevent bottleneck congestion by imposing a speed-limited area upstream
of on-ramp 2. Figures 3.8 (m)–(r) show that in the RM-only case on-ramp 1 starts
metering immediately so that this flow reduction arrives at on-ramp 2 when the demand
increases. The qualitative results of the integrated VSL and RM case in Figures 3.8 (s)–
(x) indicate that the integration of VSL and RM reduces the extent to which VSLs are
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Figure 3.7: Results of the jam wave case using a CPU time budget of 3600 s. Every column represent a
different control strategy. The first three rows show the contour plots of the traffic dynamics, the fourth
row shows the origin queues, and the bottom 2 rows show the control signals.

imposed upstream of on-ramp 1. When comparing the outflow plots in Figure 3.6 (b)
it can be seen that the integrated VSL and RM strategy limits the initial flow reduction
when compared to the VSL-only strategy. It also shows that integrated VSL and RM
is able to quicker restore the network outflow when compared to RM-only.
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Table 3.1: Overview of quantitative results for both cases.The no control TTS is 3325.1 veh·h for the jam wave case and 2536.0 veh·h for the bottleneck case. The percentage
gain in TTS for the closed-loop simulation compared to the nocontrol situation and the average elapsed time (ET) per iteration are presented.

CPU budget: 300 s CPU budget: 600 s CPU budget: 1200 s CPU budget: 1800 s CPU budget: 3600 s
% gain ET (s) % gain ET (s) % gain ET (s) % gain ET (s) % gain ET (s)

Ja
m

w
av

e

P
M

P
C VSL 3.9 57.7 11.1 103.3 11.1 207.8 11.1 311.7 11.2 621.5

RM 7.2 74.6 7.3 148.8 7.3 297.9 7.3 446.6 7.3 890.4
VSL RM 10.8 57.6 11.2 110.1 11.6 209.5 11.7 316.7 11.9 624.6

N
M

P
C VSL 1.0 54.4 5.5 127.7 8.7 181.0 9.5 291.9 10.1 521.1

RM 4.1 48.0 4.5 94.7 5.2 179.7 5.2 267.3 7.3 528.3
VSL RM 0.8 73.4 8.1 173.1 8.1 173.0 9.8 294.5 11.2 554.8

B
o

tt
le

n
ec

k

P
M

P
C VSL 4.7 45.9 5.0 97.3 9.3 194.7 9.2 299.4 9.2 604.8

RM 9.7 74.2 9.7 147.9 9.7 295.5 9.7 443.2 9.7 883.0
VSL RM 9.1 46.3 9.6 88.6 9.8 195.1 10.0 293.3 10.0 605.5

N
M

P
C VSL -3.1 54.3 3.8 125.7 5.4 191.9 6.8 285.9 9.2 531.5

RM 9.9 48.6 9.9 91.2 9.9 171.3 9.9 260.2 9.9 508.2
VSL RM -3.6 73.6 2.7 172.3 2.7 180.9 5.3 316.6 6.8 550.3
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Figure 3.8: Results of the bottleneck case using a CPU time budget of 3600 s. Every column represent a
different control strategy. The first three rows show the contour plots of the traffic dynamics, the fourth
row shows the origin queues, and the bottom 2 rows show the control signals.

3.4 Conclusions and recommendations

In this paper the computation time of an MPC strategy for integrated RM and VSLs was
improved considerably by parameterizing a control scheme based on ALINEA ramp
metering and a SPECIALIST-like VSL control scheme. Due to this, the dimension
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of the optimization problem has become independent of the number of VSL signs.
Additionally, the number of parameters needed per on-ramp has become independent
of the prediction horizon. Simulations have shown that the control approach proposed
in this paper can achieve a better performance than a non-parameterized MPC strategy
when using the same budget of computation time for VSL-only and integrated VSL
and RM strategies. It was found that the non-parameterized strategy realizes a slightly
better throughput improvement for the RM-only case.

In further research, the impact of noise and uncertainties on controller performance
can be studied. When needed, a robust control design may haveto be designed. Ad-
ditionally, it can be studied how the approach can be extended to include multiple
VSL areas when applying it to larger freeway networks. It is also recommended to
compare the proposed strategy to simpler, uncoordinated ornon-predictive strategies.
Also, the use of in-vehicle technologies may lead to improved detection and actuation
possibilities and potentially a reformulation of the control strategy. Future research
can also investigate approaches to further improve the computation time, for instance,
using a problem-tailored algorithm to solve the optimization problem as discussed in
[Kotsialos et al., 2002b].
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Chapter 4

Linear MPC-based Urban Traffic
Control using the Link Transmission
Model

In this chapter an optimization-based control strategy is developed for the optimization
of flows in order to improve the urban network throughput. Thedeveloped strategy is
used as a basis for the control strategies proposed in the next two chapters. This chapter
is based on the following paper that is currently under review:

G.S. van de Weg, M. Keyvan-Ekbatani, A. Hegyi, and S.P. Hoogendoorn, Linear MPC-
based Urban Traffic Control using the Link Transmission Model. Transactions on
Intelligent Transportation Systems, submitted 2017-6-12.

Abstract

In this paper we develop a computationally efficient model predictive control (MPC)
strategy for optimization of intersection flows to improve the urban traffic network
throughput. Several linear and quadratic MPC approaches have been developed in the
literature to reduce the computational complexity of the problem, but without consid-
ering the back propagating waves caused by spillback. Thus,the principal contribution
of this paper is the formulation of a linear optimization problem for an MPC strategy
that considers downstream propagating waves in free flow traffic, queuing dynamics,
and upstream propagating waves caused by spillback. The linear optimization problem
is obtained by describing link dynamics using the link transmission model, and aggre-
gating the traffic dynamics to (several) tens of seconds. Theperformance of the pro-
posed controller is compared with two other existing strategies; a store-and-forward
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model-based and a cell transmission model (CTM)-based approach. The total time
spent (TTS) by all the vehicles in the network and the computation time have been
applied as performance indexes for the appraisal of the control strategies. Simulation
results show that including upstream propagating waves results in better controller per-
formance due to inclusion of the impact of link outflow on maximum link inflow. It
is also shown that the control approach realizes a higher throughput while using less
computation time compared to a CTM-based approach. The comparison with a store-
and-forward model-based optimization approach revealed that the proposed strategy
can realize higher throughput but may require more computation time.

4.1 Introduction

The performance – e.g. throughput, pollution, safety, reliability – of urban road traf-
fic networks is in many occasions not optimal. This paper focuses on improving the
performance of urban road traffic networks using urban traffic control (UTC) for co-
ordinating the intersection interaction. A common exampleof coordination is the cre-
ation of green waves in order to reduce the delay of high-volume traffic flows which is
mainly effective in undersaturated traffic conditions [Little, 1966].

This paper proposes a control algorithm that is able to:

1. achieve good network performance in various traffic regimes, such as, undersat-
urated, saturated, and oversaturated traffic. More specifically, it should correctly
handle forward moving waves and backward moving waves, suchas queue spill-
back and gridlock

2. it should have sufficiently low computation time to be applied in real-time for
larger networks.

4.1.1 Overview of urban traffic control strategies

One of the complicating factors of UTC is that intersectionsinfluence each other differ-
ently in various traffic regimes. Similar to the definitions in [Aboudolas et al., 2010],
this paper categorizes the traffic states in the links as follows: undersaturated, satu-
rated, and oversaturated. Note that the definition used hererefers to a single link while
in [Aboudolas et al., 2010] a regime refers to the traffic condition of the majority of
the links in the network.

The undersaturatedregime represents the situation in which a queue can be emp-
tied during a green time implying that a coupling from upstream to downstream in-
tersections exists. This is exploited by strategies that create green waves, such as
MAXBAND [Little, 1966]. Other widely used strategies that are mainly effective in
undersaturated regimes and applicable to large-scale networks are SCOOT and SCATS
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[Hunt et al., 1982, Luk, 1984]. According to Papageorgiou etal. [2003] the perfor-
mance of SCOOT deteriorates in the saturated traffic regime.

Thesaturatedregime is defined as the situation in which queues cannot be dissolved
during a green time implying that no direct coupling betweenintersections exists. The
recently proposed max-pressure (or back-pressure) algorithms use this mechanism to
distribute queues in an urban network [Varaiya, 2013, Le et al., 2015]. An advantage
of that strategy is that it is distributed and requires only data gathered in the vicinity
of the intersection. Gregoire et al. [2014] extended the max-pressure algorithm to
deal with oversaturated regimes as well. The TUC strategy isa noteworthy example
of a practice implemented control strategy designed for saturated regimes that is also
capable of creating green waves [Diakaki et al., 2003]. Later, Aboudolas et al. [2010]
formulated the problem of network-wide signal control as a quadratic programming
problem that aims at minimizing and balancing the link queues so as to minimize the
risk of queue spillback.

The oversaturatedregime is characterized by queues which propagate to upstream
intersections causing a coupling from downstream intersections to upstream intersec-
tions. This coupling is time delayed due to the acceleratingbehavior of vehicles which
is typically described by upstream propagating waves. Due to this time delay, the
actual number of vehicles that can be stored in a congested link is typically smaller
when compared to the maximum storage capacity. This coupling can result in con-
gestion propagation through a larger part of the network or even gridlock [Daganzo,
2007]. Gayah et al. [2014] showed that in an extremely congested network, adap-
tive traffic signals might have little to no effect on the network performance due to
downstream congestion and queue spillback. Hence, other strategies such as gating or
perimeter control might be beneficial to alleviate instability under oversaturated traffic
regimes. Recently, Geroliminis and Daganzo [2008] found evidence for the existence
of a network fundamental diagram (NFD) for urban traffic networks which has been
exploited as a basis for the derivation of urban signal control approaches for oversatu-
rated regimes. The combination of the NFD concept with gating or perimeter control of
traffic flow lead to control strategies that deal with oversaturated regimes (see [Keyvan-
Ekbatani et al., 2012] for single region gating; [Geroliminis et al., 2013, Hajiahmadi
et al., 2015a] for multi-region, [Keyvan-Ekbatani et al., 2015b] for multiple concentric
regions, and [Keyvan-Ekbatani et al., 2015a] for remote perimeter control with large
control steps).

The aforementioned control strategies differ not only in the extent to which they have
been tested in the field and the underlying algorithmic formulations, but also in the
exploited control mechanism. A potential challenge of manyof these strategies is that
they are mainly effective in only one or two of the traffic regimes.
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4.1.2 Overview of model-based optimal control strategies

Traffic control strategies that aim at improving the urban network performance in all
traffic regimes can benefit from predicting the impact of a control strategy over a time
horizon. The reason for this is that a change in the outflow of one intersection can affect
the outflow of another upstream or downstream intersection in the future. Model-based
optimal control techniques are especially suited to take these effects into account.

Model predictive control is a popular type of model-based optimization technique
[Garcia et al., 1989, Mayne et al., 2000]. At every controller sampling time step,
the optimal control signal is obtained and this signal is applied to the process. When
new measurements become available this process is repeated, this is called the reced-
ing horizon principle. Some advantages of MPC are that it hasa feedback structure,
different types of objective functions can be specified, it explicitly predicts the process
dynamics, and it is relatively easy to include constraints.However, several challenges
exists as well, such as, the computational complexity of theoptimization problem,
the model-reality mismatch – i.e., the mismatch between predicted states and realized
states –, and the uncertainty in predicting the disturbances. See [Burger et al., 2013]
for an overview of considerations for applying MPC to trafficcontrol. The design of
MPC strategies which are able to improve the performance of processes that are sub-
ject to noise and uncertainties is commonly referred to as robust MPC (see [Bemporad
and Morari, 1999] for a survey of the robust MPC literature).

To apply MPC for urban road networks various approaches havebeen proposed in the
literature. These approaches use as an input the current traffic state and require a pre-
diction of the demand and of the turn fractions or routes of the traffic. One of the main
differences between these approaches are the models that are used for the prediction of
the traffic states and the features – such as, the macroscopictraffic flow characteristics
– that are considered in these models. In many cases it holds that adding more fea-
tures (that improve the match with the reality) leads to better controller performance,
because the model-reality mismatch is reduced. The application of a model with more
features may lead to higher computational complexity, depending on the structure of
the resulting optimization problem. Thus, finding a good balance between controller
performance and computational complexity is an important challenge when developing
MPC strategies for urban traffic control.

The MPC strategies of Lo [1999] and Van den Berg et al. [2007] consider signal tim-
ings as decision variables. Lo [1999] formulated a mixed-integer linear programming
(MILP) problem based on the Cell-Transmission Model to optimize the signal timings.
Van den Berg et al. [2007] proposed a non-linear MPC based on adetailed traffic flow
model – which is an extension of the model of Kashani and Saridis [1983] – in or-
der to optimize the network throughput in all regimes. Theseapproaches require high
computation times because of the detailed traffic model thatis used.

Lin et al. [2012], Le et al. [2013], and Aboudolas et al. [2010] addressed this prob-
lem by assuming that the turn fractions – i.e., the distribution of link outflow to direct
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downstream links – are known. Also, they aggregated the traffic flow dynamics to sev-
eral (tens of) seconds and used green-splits as control signals instead of considering
binary control signals indicating whether a link has a greenlight (1) or a red light (0).
Lin et al. [2012] proposed a non-linear MPC strategy based ona simplified version of
the model of Van den Berg et al. [2007], called the S-Model. This non-linear MPC ap-
proach was cast as a MILP problem in [Lin et al., 2011] which can be more efficiently
solved. Le et al. [2013] proposed a linear-quadratic MPC strategy for the optimization
of both signal settings and turn fractions in all traffic regimes. Aboudolas et al. [2010]
also proposed a linear-quadratic MPC strategy based on the store-and-forward model
for traffic flow optimization in saturated regimes which can be efficiently solved.

The aforementioned approaches employ different traffic models with different features
resulting in different trade-offs in controller performance and computation time. One
observation that can be made is that only the approach of Lo [1999] includes the impact
of upstream propagating waves on the maximum link inflow by exploiting the CTM.
The consequence of not including upstream propagating waves caused by spill back
is that the maximum link inflow is overestimated which can be expected to cause a
waste of green time in (over-)saturated regimes. This may affect the performance and
efficiency of the optimization-based controllers.

4.1.3 Research objective and contributions

The aim of this research is designing a computationally efficient MPC strategy to con-
trol traffic flow under all traffic regimes which considers theimpact of upstream prop-
agating waves on the maximum link inflow. The control strategy is developed for
medium to large-scale networks covering several tens of intersections. To this end,
Section 4.2 shows that taking the upstream propagating wavespeed, and the free flow
travel time into account leads to a linear optimization problem with linear inequality
constraints when assuming aggregated traffic dynamics and known turn fractions. This
is realized by describing the link dynamics using the link transmission model (LTM) of
Yperman [2007] and describing aggregated traffic dynamics.Hajiahmadi et al. [2015b]
showed that an MPC strategy based on the LTM for freeway networks can be solved
using a mixed-integer linear programming problem. The contribution of this paper is
the formulation of a linear optimization problem for the control of link outflows in
an urban road traffic network for the optimization of urban network throughput in all
traffic regimes and evaluating the controller performance in terms of throughput im-
provements and computation time used. The approach is called LML-U which is an
abbreviation for “Linear MPC using the LTM for Urban traffic control”.

In more detail, the main contributions of this paper are:

1. Design of a linear MPC strategy using the LTM for the optimization of aggre-
gated traffic dynamics that considers downstream propagating waves caused by
free flow dynamics, queuing dynamics, and upstream propagating waves caused
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by spill back, see Section 4.2. The advantage of using the LTMto describe the
traffic dynamics is that there is no need to divide a link into segments which is
more efficient from a computational point of view compared toother approaches,
e.g. based on the cell-transmission model (CTM).

2. Showing that the inclusion of upstream propagating wavescan lead to better
throughput improvements when compared to the approaches ofLe et al. [2013]
and Aboudolas et al. [2010] in Section 4.3.

3. Comparing the controller performance – in terms of computation time used and
realized throughput improvements – to the control approaches of Le et al. [2013]
and Aboudolas et al. [2010] in Section 4.3.

4. Showing that the approach can be applied to a large networkin Section 4.3.

4.2 Model predictive control strategy design and for-
mulation

The MPC strategy developed in this paper uses the LTM of Yperman [2007] as the
prediction model. The LTM is chosen since it is capable modeling queuing dynamics
and downstream and upstream propagating waves. Also, the LTM can be used to
formulate an efficient optimization problem for two reasonsas will be shown in this
section, namely; 1) it can be used to formulate a linear optimization problem, and 2) it
can describe the link dynamics using only two states.

The remainder of this section is structured as follows. First, Section 4.2.1 introduces
the main assumptions. Then, Section 4.2.2 introduces the traffic flow modeling used to
formulate the optimization problem. Section 4.2.3 formulates the linear optimization
problem based on this model and Section 4.2.4 specifies the dimension of the linear
optimization problem.

Link 1

Link 2

Link 3

Link 4
Origin 1

Origin 2

Vertical queue

Vertical queue

qout,max
2 (kc)

η1,2(k
c)

η1,4(k
c)

η3,4(k
c)

η3,2(k
c)

Figure 4.1: Example of the network elements.
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Figure 4.2: Time-space diagram (bottom) and plot of the cumulative curves (top) illustrating the most
important variables used in this article. The constraints on the cumulative inflow and outflow curves –
i.e., ‘Maximum Inflow’ and ‘Maximum Outflow’ – are also represented in this figure.

4.2.1 Assumptions

The following assumptions are made in this paper:

1. Aggregated traffic dynamics are considered by increasingthe sampling time to
several (tens of) seconds (in line with the assumptions in [Aboudolas et al., 2010,
Lin et al., 2012, Le et al., 2013]). In this way, the number of time steps for pre-
dicting the traffic dynamics is reduced and no signal timingshave to be consid-
ered which reduces the computational burden of the model. Nevertheless, the
controller is able to account for upstream and downstream propagating waves
and the distribution of queues over the networks when optimizing the intersec-
tion flows.

2. It is assumed that the turn fractions – i.e., the distribution of traffic from one link
to its downstream links – are known and static – in other words, they are not
influenced by the control signals.

3. In order to model the link dynamics, it is assumed that the saturation flow rates,
the average free flow speeds, the upstream propagating wave speeds, and maxi-
mum link densities are known.
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4. It is assumed that the demand is known and no disturbances or sources of uncer-
tainty are present.

A discrete-time model is used in this paper. To this end, the time stepk (-) refers to the
periodt ∈

[

Tk, T (k+1)
)

(h) where the timeT (h) is the process model sampling time.
The superscriptc refers to the timing of the prediction model used in the MPC strategy
giving, e.g.kc andT c. The time stepsT andT c are related by the factorǫc = T c/T ∈

I
+. The time stepT c is in the range of 1 to 10 seconds and is limited by the link

length due to the CFL conditions that have to be satisfied as explained in Section 4.2.2.
The control signal is optimized at time stepskm (-) with km = (k − 1)ǫm + 1 where
the factorǫm = Tm/T ∈ I

+ relates the controller sampling timeTm (h) to the process
model sampling timeT . It also holds that the factorǫc,m = Tm/T c ∈ I

+ (-) relating the
controller sampling time and the prediction model samplingtime is a positive integer.

4.2.2 Traffic flow dynamics

This section details the description of the traffic flow dynamics. The main elements of
the model used in this paper are links, origins, and nodes as illustrated in Figure 4.1.
The approach also includes the possibility to impose restrictions on the outflow at exits
of the network, see e.g. link 2 in Figure 4.1. The descriptionof the link dynamics fol-
lows the LTM of Yperman [2007] which is briefly introduced in Section 4.2.2. In con-
trast to that model a node model to connect the links is not explicitly included, since,
the connection between links is an outcome of the optimization problem. Section 4.2.2
details the formulation of the LTM using linear state equations and constraints.

Brief introduction to the LTM

The LTM describes the link dynamics using two traffic states,namely, the cumulative
inflow NL,in

i (kc) (veh) and outflowNL,out
i (kc) (veh) of every linki (-) in the network.

This is an advantage when compared to approaches that dividea link into segments
which require much more traffic states to describe the link dynamics. More important
may actually be that the numerical stability of these segment-based schemes requires a
small time step due to the CFL condition. Since some segmentsare small, the simula-
tion often needs to run with a small time step. Another advantage of the LTM is that it
is capable of modelling all traffic regimes and specifically considers downstream and
upstream propagating waves.

Figure 4.2 illustrates the description of the traffic dynamics in the LTM. It is assumed
that the free-flow speedvfreei (km/h) is known and constant, and that a vehicle cannot
exit the link before the timetfreei (h) that it requires to travel through the link with the
free-flow speed as illustrated by the trajectory of vehicle 6. Thus, the maximum link
outflow depends on the link inflow in the past. In saturated regimes, the link outflow
is equal to the saturation rateqsati (veh/h). Finally, in oversaturated regimes the wave



Chapter 4. Linear MPC-based Urban Traffic Control using the LTM 89

speedvshocki (km/h) is included as illustrated by the wave that starts when vehicle 8
exits the link. Note that it takes a timetshocki (h) for the upstream propagating wave
caused by spill back to travel through the link. Due to this, vehicle 14 can only enter the
link a timetshocki (h) after vehicle 8 has exited the link. The implies that the maximum
link inflow depends on the outflow of the link in the past.

Thus, in order to model the traffic dynamics using the LTM it isrequired to know
the cumulative inflow and outflow in the past. For instance, free-flow dynamics can
be modeled by assuring that the cumulative outflow at timet is not larger than the
cumulative inflow at timet − tfreei in the past as illustrated in Figure 4.2. The next
subsection will formally describe the traffic flow modelling.

Formulation of the LTM using linear state equations and constraints

The above mentioned dynamics are modelled using linear state update equations of the
cumulative curves and linear constraints. In order to realize this, the control variables
used are the effective fractions of green timebL,effi (kc) (-) used by the links, and the
effective fractions of green timebO,eff

j (kc) (-) used by the origin queues. For a link, this
is defined as the realized link outflowqrealizedi (kc) (veh/h) divided by the link saturation
flow:

bL,effi (kc) =
qrealizedi (kc)

qsati

. (4.1)

By using the effective fractions it is possible to model the link dynamics using linear
equations and include free flow travel times and upstream anddownstream propagating
waves by adding linear inequality constraints as detailed below. The optimization will
take care of matching the outflows and inflows of links that areconnected to each other
so that the optimization problem is essentially serving as the node model.

The cumulative flow out of linki is updated as follows:

NL,out
i (kc + 1) = NL,out

i (kc) + bL,effi (kc)qsati T c . (4.2)

Note that this equation assumes that the link outflow is equalto the saturation rate.
However, the effective fraction of green timebL,effi (kc) used enables to limit the outflow
when there is no queue. In this way, free-flow dynamics can be modelled using the
following constraint:

NL,out
i (kc + 1) ≤ γc,free

i NL,in
i (kc − kc,free

i + 2) + (1− γc,free
i )NL,in

i (kc − kc,free
i + 1) ,

(4.3)

where the number of time stepskc,free
i = ⌈tfreei /T c⌉ (-), and the fractionγc,free

i =

kc,free
i − tfreei /T c (-) the residual of a sampling time step that the free-flow travel time

tfreei (h) is exceeded bykc,free
i . The mathematical operator⌈·⌉ rounds the argument of

the function to the nearest integer that it higher than the argument of the function. The
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interpretation of this constraint is that the cumulative outflow curve should always lie
below the cumulative inflow curve shifted with the free-flow travel time as illustrated
by the dashed line named ‘Maximum Outflow’ in Figure 4.2. Notethat kc,free

i ≥ 2

to guarantee CFL conditions. In the case that linki is at an exit of the network, a
constraint is introduced to limit the maximum outflowqout,max

i (kc) (veh/h) out of that
link:

bL,effi (kc)qsati ≤ qout,max
i (kc) ∀i ∈ IExit , (4.4)

where the setIExit is the set of exit links. This maximum outflow is modeled as an
external disturbance to the process so that, for instance, the impact of a (temporal)
bottleneck on the traffic flow at an exit of the network can be included.

The cumulative inflow to linki is updated using:

NL,in
i (kc + 1) = NL,in

i (kc)+
∑

ius∈I ini

(

ηius,i(k
c)bL,effi (kc)qsati T c

)

+ . . . (4.5)

∑

j∈J in
i

(

ηj,i(k
c)bO,eff

j (kc)qcapj T c

)

,

where the setI ini is the set of links directly upstream of linki and the setJ in
i is the set

of origins directly upstream of linki. The fractionηius,i(kc) indicates the turn fraction
form link ius to link i, and the fractionηj,i(kc) (-) indicates the turn fraction form origin
j to link i. In order to model upstream propagating waves, the following constraint is
used:

NL,in
i (kc + 1) ≤ γc,shock

i NL,out
i (kc − kshock

i + 2) + . . . (4.6)

(1− γc,shock
i )NL,out

i (kc − kshock
i + 1) +Nmax

i

with the number of vehiclesNmax
i (veh) the maximum number of vehicles that can fit

in a link – i.e., the link length multiplied with the jam density – the number of time
stepskc,shock

i = ⌈tshocki /T c⌉ (-) , and the fractionγc,shock
i = kc,shock

i − tshocki /T c (-) the
residual of a sampling time-step that the upstream propagating wave travel timetshocki

(h) is exceeded bykc,shock
i . It should hold thatkc,shock

i ≥ 2 in order to guarantee CFL
conditions. This constraint limits the inflow as indicated with the dashed line named
‘Maximum Inflow’ in Figure 4.2.

Origins are modelled as vertical queues as illustrated in Figure 4.1. The cumulative
inflow NO,in

j (kc) to origin j is updated as follows:

NO,in
j (kc + 1) = NO,in

j (kc) + qinj (k
c)T c . (4.7)

The cumulative outflowNO,out
j (kc + 1) out of originj is updated using:

NO,out
j (kc + 1) = NO,out

j (kc) + bO,eff
j (kc)qcapj T c , (4.8)
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which should satisfy:

NO,out
j (kc + 1) ≤ NO,in

j (kc + 1) . (4.9)

Apart from these dynamical update equations and constraints, constraints on the con-
trol signals should be added:

0 ≤ bL,effi (kc) ≤ 1 , (4.10)

0 ≤ bO,eff
j (kc) ≤ 1 , (4.11)

∑

i∈Iconflicty

bL,effi (kc) ≤ 1 , (4.12)

where the setIconflicty is the sety of signals which are in conflict with each other. The
first two constraints make sure that the effective fractionsare bounded between0 and1
while the third constraint makes sure that the green time is distributed over conflicting
links. Note that clearance times between conflicts may be modeled by limiting the
sum of the green-fractions of the conflicting links to be lessthan 1. These constraints
essentially serve as the node model. To see this, note that inthe original LTM model of
Yperman [2007] the green times that are given may result in a violation of constraints
(4.3) and (4.6). Hence, a node model is required to determinethe transition flows from
one link to another so that the constraints are not violated.In the approach proposed
in this paper, the model is re-written as an optimization model where the effective
fractions of green time are optimized so that the constraints (4.3) and (4.6) cannot
be violated. Note that this can be seen as a modification of thegeneric class of first
order node models proposed by Tampère et al. [2011] where instead of maximizing the
node outflows, the total network outflows are maximized subject to supply and demand
constraints of the nodes.

The statexc,L
i (kc) ∈ R

nL,s
i

,1 of link i is given as:

xc,L
i (kc) = . . . (4.13)
[

NL,out
i (kc) . . . NL,out

i (kc − kc,shock
i ) NL,in

i (kc) . . . NL,in
i (kc − kc,free

i )
]⊤

wherenL,s
i = kc,shock

i + kc,free
i + 2 is the length of the vector. Similarly, the state

xc,O
j (kc) ∈ R

nO,s
j ,1 of an origin has the following structure:

xc,O
j (kc) =

[

NO,out
j (kc) NO,in

j (kc)
]⊤

, (4.14)

wherenO,s
j = 2 is the length of the vector.

4.2.3 Linear optimization problem formulation

The model described in the previous section consists of linear state equations and con-
straints. This sections details how these linear state equations and constraints can be
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included in an optimization problem so that the network throughput can be optimized
while considering all the traffic regimes.

The objective of the optimization is maximizing the networkthroughput. Under the
assumption that the network inflow is not affected by the control action, maximizing
throughput can be realized by minimizing the total time spent (TTS) used by all the
vehicles in the network over the prediction horizonKpT c (h). This is equivalent to
minimizing the difference between the cumulative inflow andoutflow of every link
and origin in the network as represented using:

J(km, x) =

(km−1)ǫc,m+Kp

∑

kc=(km−1)ǫc,m+2

T c

{

∑

i∈IL

(

NL,in
i (kc)−NL,out

i (kc)

)

+ . . . (4.15)

∑

j∈IO

(

NO,in
j (kc)−NO,out

j (kc)

)}

,

with IL the set of all links, andIO the set of all origins in the network.

This objective function can be formulated as a linear optimization problem of the fol-
lowing form:

min
ū(km)

ZB̃(km)ū(km) + Z
(

Ãx(km) + C̃d̄(km)
)

, (4.16)

Subject to (4.17)

M ineq(km)ū(km) ≤ V ineq , (4.18)

where the vector̄u(km) contains all the inputs that should be optimized, the vector
x(km) the state at time-stepkm, and the vector̄d(km) a prediction of the demand. The
vectorZ adds all the differences between cumulative inflows and cumulative outflows,
and the matrices̃A, B̃(km), andC̃ are used to compute the prediction of the states
x̄(km) as specified in Section 4.2.3. The matrixM ineq(km) and the vectorV ineq contain
the inequality constraints as specified in Section 4.2.3.

By applying the receding horizon principle to this optimization problem an MPC strat-
egy is obtained. The main concept of MPC is to find the optimal control signals
bL,effi (kc) for time stepskc = (km−1)ǫc,m+1, . . . , (km−1)ǫc,m+Kp−1 by minimizing
(4.15) over the prediction-horizon from(km−1)ǫc,m+2, . . . (km−1)ǫc,m+Kp) given
the traffic state at timet = kmTm and a prediction of the future disturbancesqin(km)

andqout,max(km). For the time stepsk = (km − 1)ǫc,m + 1, . . . , (km)ǫc,m the control
signal applied to the process is defined as:

bi(k) = bL,effi (⌊(k − 1)/ǫc⌋ + 1) , (4.19)

where the mathematical operator⌊·⌋ rounds the argument of the function to the nearest
integer that is lower than the argument of the function. Next, the procedure is repeated
at the next time stepkmTm + Tm when new measurements become available.
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Specification of linear objective function

The linear objective function consists of the matricesÃ, B̃(km), andC̃ and the vector
Z. To formulate these, it is required to write the model described in Section 4.2.2 in
the standard linear form:

x(kc + 1) = Ax(kc) +B(kc)u(kc) + Cd(kc) , (4.20)

with the statex(kc) ∈ R
nstates,1 given as:

xL(kc) =
[

xL
1 (k

c) . . . xL
nL(k

c) xO
1 (k

c) . . . xO
nO(k

c)
]⊤

, (4.21)

where the numbernL (-) is the number of links, and the numbernO (-) is the number
of origins. The numbernstates =

∑

i∈IL n
L,s
i +

∑

j∈IO nO,s
j denotes the length of this

vector. The matrixA ∈ R
nstates,nstates

is defined in 4.A. The input vectoru(kc) ∈

R
ninputs,1 is given by:

u(kc) =
[

bL,eff1 (kc) . . . bL,eff
nL (kc) bO,eff

1 (kc) . . . bO,eff
nO

]⊤

, (4.22)

with ninputs = nL + nO the number of inputs. Finally, the disturbance vectord(kc) ∈

R
nO,1 is given by:

d(kc) =
[

qin1 (k
c) . . . qinnO(k

c)
]⊤

. (4.23)

Note that for an arbitrary time stepkc = kc
o + n with kc

o = (km − 1)ǫc,m + 1 (-) the
statex(kc

0 + n) is given as:

x(kc + n) = Anx(kc) +

n
∑

i=1

An−i

(

B(kc + i− 1)u(kc + i− 1) + Cd(kc + i− 1)

)

.

(4.24)

By stacking the predicted states at every time stepx(kc
0 + n) from time stepkc

0 + 1 to
kc
o +Kp in vectorx̄(km) ∈ R

Kpnstates,1:

x̄(km) =
[

xkc0+1 . . . xkc0+Kp

]⊤

, (4.25)

a prediction of the evolution of the states can be computed using following linear equa-
tion:

x̄(km) = Ãx(km) + B̃(km)ū(km) + C̃d̄(km) . (4.26)

The vector̄u(km) ∈ R
nin,tot,1 – with nin,tot = Kp(nL + nO) – is defined as:

ū(km) =
[

u(kc
0) . . . u(kc

0 +Kp − 1)
]⊤

, (4.27)

and the vector̄d(km) ∈ R
nOKp,1 is defined as:

d̄(km) =
[

d(kc
0) . . . d(kc

0 +Kp − 1)
]⊤

, (4.28)
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The matrixÃ ∈ R
nstates,nstates

is defined as:

Ã =
[

A A2 . . . AKp]⊤

, (4.29)

the matrixB̃(km) ∈ R
nstatesKp,nin,tot

is defined as:

B̃(km) =











B(kc) 0 . . . 0

AB(kc) B(kc + 1) . . . 0
...

...
. . .

...
AKp−1B(kc) AKp−2B(kc + 1) . . . B(kc +Kp − 1)











, (4.30)

(4.31)

and the matrixC̃ ∈ R
nstatesKp,nOKp

is defined as:

C̃ =











C 0 . . . 0

AC C . . . 0
...

...
. . .

...
AKp−1C AKp−2C . . . C











, (4.32)

The vectorZ ∈ R
1,Kpnstates

is used to compute the value of the objective function by
multiplication withÃx(km)+ B̃(km)ū(km)+ C̃d̄(km). The vectorZ is defined in 4.A.

Specification of linear constraints

Several constraints are included in the matrixM ineq(km) and vectorsV ineq in (4.16).
The matrixM ineq(km), given as:

M ineq(km) =
[

M ineq
1 (km) M ineq

2 (km) M ineq
3 (km) M ineq

4 M ineq
5 M ineq

6 M ineq
7

]⊤

,

(4.33)

and vectorV ineq

V ineq =
[

V ineq
1 V ineq

2 V ineq
3 V ineq

4 V ineq
5 V ineq

6 V ineq
7

]⊤

. (4.34)

consist of several parts, which make sure that the traffic flowmodeling is in accordance
with the LTM:

• The first part is used to model the free-flow dynamics according to (4.3).

• The second part is used to the spillback dynamics according to (4.6).

• The third part is used to constrain the outflow out of an originaccording to (4.9).

• The fourth part is used to include the constraints (4.4) on the maximum outflow
of the numbernE of exits in the network

• The fifth and sixth part are used to limit the control signals according to (4.10)
and (4.11).

• The seventh part takes care of the conflicts (4.12).

Appendix 4.B provides a full description of these parts.
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4.2.4 Dimension of the optimization problem

The dimension of the optimization problem influences the computation time required
to solve it. This dimension is determined by the size of the input vector and of the
constraint vector. The size of the input vectorū(km) is (nL + nO)Kp. Additionally, a
total number of(4nL+3nO+nE+ncon)Kp inequality constraints are required, where
ncon is the number of conflicts between links.

4.3 Simulation

The controller is evaluated using simulation in order to assess its behavior and perfor-
mance. The indicators that are used to assess the performance of the control strategy
are the TTS and the computation time used by the controller. The simulations are
carried out in four steps:

1. Studying the qualitative behavior of the controller. Theobjective is to analyze
whether the controller adequately responds to the different traffic regimes. To
this end, a simple network and demand pattern are used so thatit can be studied
whether the computed control action is in accordance with expectations (ad-
dressed in Section 4.3.2).

2. Studying the quantitative performance of the controller. The objective is to study
the performance of the controller in terms of realized TTS and computation time
used. To this end, the controller is compared to two other, comparable strategies
and the performance of these controllers when applied to a simple network and
different demand patterns (see Section 4.3.3).

3. Studying the impact of the controller sampling time on theperformance. To this
end, simulations are carried out for different prediction horizons and controller
sampling time steps (see Section 4.3.4).

4. Analyzing the application of the controller to a larger network. The objective is
to study and compare the computation time required by the controller when the
network size is increased. To this end, the three controllers are applied to a large
network (for more details see Section 4.3.5).

4.3.1 Simulation set-up

The overall simulation set-up is detailed in Figure 4.3. Thecell-transmission model
(CTM) of Daganzo [1995] is chosen as the simulation model in combination with a
demand-proportional node model. The simulation model is used as the ‘real-world’
situation to which the control signal is applied. The controller has an exact prediction
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of the disturbances – i.e., the demand, outflow limitations,and turn fractions – avail-
able. The optimized green-fractions are directly applied to the CTM. The simulation
sampling time step of the CTM is set to 1 second while the sampling time step of the
prediction models are set to 10 seconds. The prediction horizon is set to 60 time steps
(600 s), and the control signal is recomputed every 60 seconds.

Cell-transmission model

‘Real world’ model

Sampling time step 1 s

Measurements

Traffic state

Every 60 s

Model predictive controller

Controller sampling time step      s 

Prediction horizon       steps

Control signal

Every 60 s

Disturbances:

Demand

Turn fractions

Maximum outflow

Np
T c

Figure 4.3: Overview of the simulation set-up. The default value of the prediction model sampling time
T c is 10 seconds and the default value of the prediction horizonNp is 60 steps.

The characteristics of the link dynamics are determined by the free-flow speed which
is set to 10 m/s, the upstream propagating wave speed which isset to -5 m/s, the jam
density which is set to 400 veh/km, the saturation rate whichis set to 2000 veh/h, and
the segment length used in the CTM is set to 10 meters. In the different evaluations
the length of links and the network structure are altered.

The simulations are carried out using Matlab R2015a on a computer with a 3.6 GHz
processor and 16 Gb RAM. The linear optimization is carried out using the ‘dual-
simplex’ algorithm implemented in the standard linear optimization function ‘linprog’
of Matlab. The computation time reported here consists of the computation time uti-
lized by the optimization function at every controller timestep.

4.3.2 Implementation of the control strategy: analyzing the quali-
tative behavior

The purpose of the first evaluation is to analyze the qualitative behavior. More specifi-
cally, the purpose is to study whether the controller is capable of reducing the outflow
of the correct link when spillback is occurring. To this end,a simple network – called
network 1 – as illustrated in Figure 4.4 is used for the evaluation. In this situation, the
maximum outflow of link 3 is reduced to 600 veh/h. The length ofeach link is set to
200 meters, except for link 6 which has a length of 400 meters.

The simulation horizon was set to 3600 seconds. The demand pattern – i.e., demand
pattern 1 in Figure 4.5 (A) – and turn fractions – of Table 4.1 –used for this evaluation
are chosen to represent all traffic regimes. The network and demand pattern are chosen
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Table 4.1: The turn fractions used in network I.

Turn fractions
η1,2 = 0.78 η2,3 = 0.4 η4,1 = 0.73 η6,3 = 0.6 η8,6 = 0.56

η1,5 = 0.22 η2,7 = 0.6 η4,5 = 0.27 η6,7 = 0.4 η8,9 = 0.44

in such a way that the behavior of the controller can be interpreted. The first 450
seconds of the demand pattern represents the undersaturated regime. After time 450 s
until time 1800 s the demand increases so that the flow towardsthe bottleneck exceeds
its capacity. After time 1800 s the demand decreases again.

Link 1 Link 2 Link 3
L

in
k
 4

L
in

k
 5

L
in

k
 6

L
in

k
 7

Link 8 Link 9

4
0
0
 m2
0
0

 m
2
0
0
 m

200 m 200 m 200 m

Figure 4.4: Network 1, a simple network.

Figure 4.6 and Figure 4.7 show the qualitative behavior of the controller. Figure 4.6 a
shows the outflows of links 2, 3, 6, and 9 over time, Figure 4.6 bshows the number
of vehicles in links 2, 3, and 6 – note that this is not the same as the queue length –
and Figure 4.7 shows snapshots of the number of vehicles in every link and the link
outflows at different time instances. Using these figures, the qualitative behavior of the
controller is studied below.

• During the first 450 seconds the traffic situation is undersaturated. From Fig-
ure 4.6 A it can be observed that it takes some time before the flow reaches the
links.

• After time 450 s the demand increases and the capacity of the bottleneck at link
3 is exceeded. This causes the number of vehicles in link 3 to increase. The
number of vehicles in link 6 also starts to increase, since, the combined demand
of link 2 and link 6 is approximately 2500 veh/h and the turn fraction from 2 to
7 is larger compared to the turn fraction from link 6 to 7, so the controller gives
priority to link 2. In Figure 4.7 B the number of vehicles in links 3 and 6 have
increased considerably and the arrow indicates that these are increasing.

• Around time 1350 s link 3 is full and the controller reduces the outflow of link
6 to 0 veh/h. The flow from link 2 to link 3 is then exactly 600 veh/h so that the
inflow to link 3 is equal to its outflow. The outflow of link 7 is then 900 veh/h.
This situation is illustrated in Figure 4.7 C.
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Figure 4.5: Demand patterns applied to network I, (A) pattern I, all traffic regimes, (B) pattern II, the
undersaturated regime, (C) pattern III, saturated and oversaturated regimes.
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• At time 1390 s link 6 is full as well and now the outflow of link 6 is increased to
1000 veh/h so that the queue does not spillback to link 8 and blocking of link 9 is
prevented. Simultaneously, the outflow from link 2 is reduced to 0 veh/h so that
the number of vehicles in this queue starts to increase. Thiscauses the outflow
of link 9 to be preserved at 800 veh/h while the flow out of link 7is reduced to
400 veh/h. These effects can be observed in Figure 4.7 D at time 1500 s.

• Link 2 is full around time 1520 seconds. At that time, the controller reduces the
outflow from link 6 to 0 veh/h which causes spillback to link 8 but prevents spill-
back to links 1 and 5. This spillback reduces the outflow from link 9 from 800
veh/h to 0 veh/h and increases the outflow of link 7 to 900 veh/hand preserves
the outflow of link 5 at 500 veh/h as illustrated in Figure 4.7 E.

• At time 1880 seconds the flow out of link 9 increases again, since then the de-
mand has decreased again and the flow out of link 6 is increasedas well. A
snapshot of the network at time 2300 s is shown in Figure 4.7 F.

Another observation that can be made from Figure 4.6 B is thatthe maximum number
of vehicles that fits in a link changes over time. For instance, the maximum number
of vehicles in link 2 at time 1200 s is smaller than the maximumnumber of vehicles
in link 2 at time 1530 s. The reason for this is that the smallerthe link outflow, the
less voids between vehicles have to propagate through the link so more vehicles can be
present in the link. This behavior is not included in most linear MPC approaches that
use other models.

Summarizing, this evaluation shows that the controller acts as expected. It is capable
of considering free-flow dynamics, and take the impact of spillback into account. Most
importantly, it is capable of modelling the effect that the maximum storage space in a
link is influenced by the link outflow due to upstream propagating waves.

4.3.3 Comparative evaluation: quantitative analysis of the con-
troller performance

The second evaluation is carried out to analyze the quantitative performance. To this
end, the approach is compared to two other, comparable MPC approaches, namely,
the approach of Aboudolas et al. [2010] and of Le et al. [2013]. The reason why
these approaches are chosen are that they are both of the linear MPC type, aggregate
the traffic dynamics to several (tens) of seconds, and assumethat the turn fractions
are known. The main differences are that they exploit other prediction models. The
approach of Aboudolas et al. [2010] is especially designed for (over) saturated regimes,
hence, it does not consider free-flow travel times. The approach of Le et al. [2013] does
consider free-flow travel times. Both the approaches of Aboudolas et al. [2010] and
Le et al. [2013] do not include the upstream propagating waves caused by spill back.
Thus, it is expected that in undersaturated regimes the method of Le et al. [2013] and
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Figure 4.6: (a) The outflows out of links 2, 3, 6, and 9 over time. (b) The number of vehicles in links 2,
3, and 6 over time.
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Figure 4.7: Snapshots of the network state at different timeinstances. The red bars indicate the number
of vehicles in the link, not the queue length. (a) the undersaturated regime at time 400 s. (b) around
time 1250 s the number of vehicles in links 3 and 6 grow. (c) around time 1370 s link 3 is full and the
flow out of link 6 is reduced to 0 veh/h. (d) around time 1500 s link 6 is full and the flow out of link 2 is
reduced to 0 veh/h. (e) around time 1700 s link 2 is full and theflow out of link 6 is reduced to 0 veh/h.
(f) the demand decreases after time 1800 s.
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the approach proposed in this paper achieve similar performance in terms of TTS.
In oversaturated regimes it is expected that the approach proposed in this paper can
realize a lower TTS compared to the approaches of Aboudolas et al. [2010] and Le
et al. [2013] because of the inclusion of the upstream propagating waves.

It must be noted that the objective functions exploited in [Aboudolas et al., 2010] and
[Le et al., 2013] are different from the one presented in thispaper. Therefore, the
approaches of Aboudolas et al. [2010] and Le et al. [2013] areadopted to the objective
function used in this paper. In this way, the main differencebetween the approaches is
the prediction models used to formulate the optimization problem.

In order to test these expectations, network 1 is used with three different demand pat-
terns as detailed in Figure 4.5. The first demand pattern contains all traffic regimes.
The second demand pattern only contains undersaturated traffic regimes. To realize
this, the bottleneck at the exit of link 3 is removed. The third demand pattern consists
of saturated and oversaturated regimes. To obtain a fair comparison the network is
saturated first by applying the control strategy proposed inthis paper for this first 120
seconds and these first 120 seconds are removed from the TTS computations.

The quantitative results of the evaluation are presented inTable 4.2. It can be observed
that in undersaturated regimes – i.e., demand pattern 2 – themethod proposed in this
paper realizes the same TTS as the approach of Le et al. [2013]. In that situation, the
approach of Aboudolas et al. [2010] has a worse performance,since, it does not con-
sider free-flow travel times. It can also be observed that in the saturated regime – i.e.,
demand pattern 3 –, the approach proposed in this paper has improved performance.
The reason for this is that the controller considers the upstream propagating waves
when determining the maximum link inflow. The method proposed in this paper can
realize a lower TTS for the first demand pattern as well.

From Table 4.2 it can also be observed that the average computation times used by
the approach proposed in this paper are below 0.25 seconds. The approach ofet
al. Aboudolas et al. [2010] has the lowest computation time eventhough the dimen-
sion of the optimization problem – i.e., 720 variables and 3060 inequality constraints –
is the same as the dimension of the optimization problem proposed in this paper. The
maximum computation time of the approach proposed by Le et al. [2013] is the largest.
The reason for this is that a link is divided into segments – orclasses – and for every
class a dummy variable is added which has to be optimized resulting in 1380 variables
and 6900 inequality constraints.

4.3.4 Impact of controller timing on performance

The next set of evaluations is conducted to analyze the controller performance when
changing the prediction horizon, and controller sampling time step. It is expected that
increasing the prediction horizon and decreasing the controller sampling time step will
lead to a lower TTS but a higher computation time.
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Table 4.2: Overview of the results comparing the average CPUtime (ACPU) in seconds used by the
optimization and the TTS in veh·h used by all the vehicles in the network for the different demand
patterns.

Method LML-U [Aboudolas et al., 2010] [Le et al., 2013]
Demand Pattern

1 ACPU 0.20 0.14 0.66
All regimes TTS 184.59 186.87(+1.2%) 186.48(+1.0%)

2 ACPU 0.19 0.16 0.76
Undersaturated TTS 15.48 17.68(+14.2%) 15.48(+0.0%)

3 ACPU 0.25 0.18 0.70
(Over)saturated TTS 725.01 735.80(+1.5%) 736.87(+1.6%)

To this end, the LML-U control strategy is applied to network1 and demand pattern
1 with different combinations of prediction horizon and prediction model sampling
time step. The results are presented in Table 4.3. The table shows that increasing the
prediction horizon to 300 seconds results in a lower TTS. A further increase does not
lead to a lower TTS. The reason for this is that the predictionhorizon should be long
enough to include all relevant dynamics, such as, forward and backward propagating
waves. A horizon of 300 seconds is thus long enough to anticipate the impact of the
control actions on the network outflow.

It can also be observed that increasing the prediction modelsampling time step or
decreasing the prediction horizon reduces the required computation time. It can be
observed that a time step of 10 seconds leads to a lower TTS when compared to a time
step of 20 seconds. A time step of 2 of 5 seconds does not lead toa lower TTS when
compared to a TTS of 10 seconds. This is probably caused by thedemand pattern
which is rather constant so that there is no need to consider dynamics with a resolution
that is higher than 10 seconds.

4.3.5 Application of the controller to a large network

The fourth evaluation is conducted to test the controller when applied to large net-
works. To this end, network 2 as illustrated in Figure 4.8 is used for the simulation
network. This network consist of 80 links with varying link lengths. Bottlenecks with
a capacity of 300 veh/h are placed at the exits of links 5, 30, 50, and 70. The turn
fractions out of every link are set to 1/3 and the demand pattern is chosen identical for
every link, namely, 250 veh/h for the first 250 seconds, 800 veh/h from time 450 s to
time 1800 s and 250 veh/h after time 1800 s.
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Figure 4.8: Network 2, a large grid network with varying linklengths
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Table 4.3: Overview of the results comparing the average CPUtime (ACPU) in seconds used by the optimization and the TTS inveh·h used by all the vehicles in the network
for the different combinations of the prediction horizon and controller sampling time stepT c.

T c (s)
2 s 5 s 10 s 20 s

Prediction horizon (s) ACPU TTS ACPU TTS ACPU TTS ACPU TTS
20 0.036 1161.07 0.024 1161.07 0.020 1161.07 0.022 1074.32
40 0.032 661.14 0.024 662.11 0.024 662.17 0.023 577.81
60 0.042 244.69 0.029 288.59 0.028 288.52 0.024 290.04
80 0.11 187.66 0.029 187.66 0.028 187.66 0.023 190.15
100 0.099 187.66 0.033 187.66 0.026 187.66 0.024 190.14
200 0.45 186.88 0.069 186.85 0.033 186.80 0.029 189.23
300 1.56 184.60 0.14 184.60 0.044 184.59 0.030 187.05
400 4.32 184.60 0.28 184.60 0.069 184.59 0.034 187.05
500 10.01 184.60 0.56 184.60 0.10 184.59 0.040 187.05
600 17.12 184.60 0.96 184.60 0.14 184.59 0.048 187.05
700 26.03 184.60 1.52 184.60 0.21 184.59 0.055 187.05
800 40.3 184.60 2.33 184.60 0.28 184.59 0.071 187.05
900 61.2 184.60 3.30 184.60 0.39 184.59 0.081 187.05
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Table 4.4: Overview of the results comparing the average CPUtime (ACPU), maximum CPU time
(MCPU), and standard deviation (SD) of the CPU time in seconds used by the optimization and the TTS
in veh·h used by all the vehicles in network 2.

Method ACPU MCPU SD of CPU time TTS
LML-U 45.4 58.9 6.1 1266.5

[Aboudolas et al., 2010] 17.8 25.5 3.1 1342.4(+6.0%)
[Le et al., 2013] 225.4 271.4 16.5 1278.6(+0.9%)

Two observations can be made from Table 4.4 which provides anoverview of the re-
sults. First of all, compared to the approach of Aboudolas etal. [2010], a TTS gain
of 6.1% is realized while requiring more CPU time. The reasonfor this is that both
approaches model links as a single element. However, the dimension of the optimiza-
tion problem proposed in this paper is higher, since, the initial traffic state is larger due
to the fact that it includes the history to model downstream and upstream propagating
waves. Thus, in saturated only regimes, the approach of Aboudolas et al. [2010] gives
the best trade-off between computation time and controllerperformance. However,
when applying a controller to all traffic regimes, the choicebetween both approaches
depends on the network size, i.e., the LML-U approach can achieve a better throughput
improvement but for real-time operation, the computation time should remain smaller
than the controller sampling time. For instance, for this network of 80 links and 16 ori-
gins, the average CPU time of 45.9 seconds is still below the controller sampling time
of 60 seconds thus the LML-U approach gives a better throughput improvement with
reasonable CPU time. Secondly, compared to the approach of Le et al. [2013] a TTS
gain of 1.0% is realized in considerably less CPU time. This shows that it is beneficial
to consider a link as a single element instead of dividing a link into segments.

4.4 Conclusions and recommendations

A linear MPC strategy for the optimization of urban road network throughput in all
traffic regimes was developed and evaluated in this paper. The main contribution of
this paper is the formulation of a linear optimization problem which can be efficiently
solved that considers queuing dynamics and downstream and upstream propagating
waves. This was realized by describing the link dynamics using the link transmission
model, and aggregating the traffic dynamics to (several) tens of seconds. Simulations
were carried out to test the approach. A qualitative analysis of the controller perfor-
mance indicated that the approach is capable of dealing withthe impact of upstream
propagating waves on queue spillback. More specifically, ithas been shown that the
controller can take the impact of the link outflow on the maximum link inflow into ac-
count. A quantitative comparison has been done by employingtwo comparable, linear
MPC strategies. It has been found that the approach proposedin this paper can realize
a better throughput in oversaturated regimes, due to the inclusion of upstream prop-



106 TRAIL Thesis series

agating waves caused by spill back, when compared to the other approaches. The
evaluations showed that in terms of controller performanceand computation time,
an optimization approach that considers a link as a single element, instead of divid-
ing a link into segments, results in a better trade-off between computation time and
controller performance. When compared to a store-and-forward-based approach, it
was found that the proposed approach realizes a higher throughput but also requires a
higher computation time.

Further research should be carried out to extend the approach to include detailed sig-
nal plans and to relax the assumption of known turn fractions. Also, more simulation-
based studies should be carried out, utilizing more realistic traffic models. Addition-
ally, the impact of measurement noise and uncertainties should be studied. Further
mathematical analyses can be carried out to study certain controller properties, such
as, scalability and stability. Finally, the impact of heterogeneous traffic on the con-
troller performance and the inclusion of other objective functions in the optimization
problem may be investigated in the future.
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4.A Specification of objective function matrices

This appendix details the matrices used in Section 4.2.3. First, the matrixA is speci-
fied. The matrixA ∈ R

nstates,nstates

is a matrix consisting of the matricesAL
i ∈ R

nL,s
i ,nL,s

i

andAO
j ∈ R

nO,s
j ,nO,s

j of the links and origins respectively on its diagonal:
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with the matrixAL
i of a link i given by:

AL
i =
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, (4.36)

and the matrixAO
j of origin j given by:

AO
j =

[

1 0

0 1

]

. (4.37)

Next, the matrixB(kc) ∈ R
nstates,nL+nO

is defined as:

B(kc) =
[

BL
1 (k

c) . . . BL
nL(k

c) BO
1 (k

c) . . . BO
nO(k

c)
]⊤

, (4.38)

where the matrixBL
i (k

c) ∈ R
nL,s
i ,nL+nO+nO

of link i is given as:

BL
i (k

c) =
[

BL
i,1(k

c) BL
i,2(k

c)
]

, (4.39)

with the matrixBL
i,1(k

c) ∈ R
nL,s
i ,nL

given as:

BL
i,1(k

c) =



























0 . . . 0 qsati T c 0 . . . 0

0 . . . 0 0 0 . . . 0
... . . .

...
...

...
. . .

...
NT

1,i . . . NT
i−1,i 0 NT

i+1,i . . . NT
nL,i

0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0



























. (4.40)

with NT
j,i = ηj,i(k

c)qsatj T c and the matrixBL
i,2(k

c) ∈ R
nL,s
i ,nO

defined as follows:

BL
i,2(k

c) =





















0 . . . 0
...

. . .
...

η1,i(k
c)qcapw,1T

c . . . ηnO,i(k
c)qcap

nO T c

0 . . . 0
...

. . .
...

0 . . . 0





















. (4.41)
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The matrixBO
j (k

c) ∈ R
nO,s
j ,nL+nO

of origin j is given as:

BO
j (k

c) =
[

BO
j,1(k

c) BO
j,2(k

c)
]

, (4.42)

with

BO
j,1(k

c) = 0, ∈ R
nO,s
j ,nL

, (4.43)

and the matrixBO
j,2(k

c) ∈ R
nO,s
j ,nO

defined as follows:

BO
j,2(k

c) =

[

0 . . . 0 qcapw,j (k
c)T c 0 . . . 0

0 . . . 0 0 0 . . . 0

]

. (4.44)

The matrixC ∈ R
nstates,nO

is defined as follows:

C =
[

CL
1 . . . CL

nL CO
1 . . . CO

nO

]⊤

. (4.45)

The matrixCL
i = 0 ∈ R

nL,s
i ,nO

, since, there is no demand directly going into a link.

The matrixCO
j = 0 ∈ R

nO,s
j ,nO

is given as:

CO
j =

[

0 . . . 0 0 0 . . . 0

0 . . . 0 T c 0 . . . 0

]

. (4.46)

Finally, the vectorZ ∈ R
1,nin,tot

is used to compute the value of the objective function
as specified in (4.16). The vectorZ is defined as follows:

Z = T c
[

Zk ... Zk

]

, (4.47)

Zk = T c
[

ZL
1 . . . ZL

nL ZO
i . . . ZO

nO

]

, (4.48)

with the vectorZL
i ∈ R

1,nL,s
i of link i defined as:

ZL
i =

[

−1 0 . . . 0 1 − . . . 0
]

, (4.49)

and the vectorZO
j ∈ R

1,2 of origin j defined as:

ZO
j =

[

−1 1
]

. (4.50)

4.B Specification of inequality constraints

The first matrixM ineq
1 (km) ∈ R

nLKp,nin,tot

and vectorV ineq
1 ∈ R

nLKp,1 are used to
model the free-flow dynamics according to (4.3). This constraint is applied to the
predicted state:

M̄ ineq
1 x̄(km) ≤ 0 , (4.51)

M̄ ineq
1 (Ãx(km) + B̃(km)ū(km) + C̃d̄(km)) ≤ 0 , (4.52)

M̄ ineq
1 B̃(km)ū(km) ≤ −M̄ ineq

1 (Ãx(km) + C̃d̄(km)) . (4.53)
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So that:

M ineq
1 (km) = M̄ ineq

1 B̃(km) , (4.54)

V ineq
1 = −M̄ ineq

1 (Ãx(km) + C̃d̄(km)) , (4.55)

here, the matrixM̄ ineq
1 ∈ R

nLKp,nstatesKp

is given as:

M̄ ineq
1 =









. . . 0
[

M1 0
]

0
. . .









, (4.56)

with the matrixM1 ∈ R
nL,nstates

given as:

M1 = (4.57)








. . . 0
[

1 0 . . . 0 −γc,free
i −(1− γc,free

i )
]

0
. . .









.

The matrixM ineq
2 (km) ∈ R

nLKp,nin,tot

and matrixV ineq
2 ∈ R

nLKp,1 are used to model
the spillback conditions according to (4.6). In a similar way as in (4.53) these are given
as:

M ineq
2 (km) = M̄ ineq

2 B̃(km) , (4.58)

V ineq
2 = V̄ ineq

2 − M̄ ineq
2 (Ãx(km) + C̃d̄(km)) , (4.59)

here, the matrixM̄ ineq
2 ∈ R

nLKp,nstatesKp

is given as:

M̄ ineq
2 =









. . . 0
[

M2 0
]

0
. . .









, (4.60)

with the matrixM2 ∈ R
nL,nstates

given as:

M2 =









. . . 0
[

0 . . . 0 −γc,shock
i −(1− γc,shock

i ) 1 0 . . . 0)
]

0
. . .









.

(4.61)

(4.62)

The vectorV̄ ineq
2 ∈ R

nLKp,1 is given as:

V̄ ineq
2 =

[

Ṽ ineq
2 . . . Ṽ ineq

2

]⊤

, (4.63)
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with Ṽ ineq
2 ∈ R

nL,1

Ṽ ineq
2 =

[

Nmax
1 . . . Nmax

nL ,
]⊤

. (4.64)

The third matrixM ineq
3 (km) ∈ R

nOKp,nin,tot

and vectorV ineq
3 ∈ R

nOKp,1 are used to
constrain the outflow out of an origin according to (4.9) and are given as:

M ineq
3 (km) = M̄ ineq

3 B̃(km) , (4.65)

V ineq
3 = −M̄ ineq

3 (Ãx(km) + C̃d̄(km)) , (4.66)

here, the matrixM̄ ineq
3 ∈ R

nOKp,nstatesKp

is given as:

M̄ ineq
3 =



















.. . 0



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. . . 0

1 −1
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. . .
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



0
. . .




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









. (4.67)

The matrixM ineq
4 ∈ R

nEKp,nin,tot

and vectorV ineq
4 ∈ R

nEKp,1 are used to include the
constraint (4.4) on the maximum outflow of the numbernE of exits in the network:

M ineq
4 =









. . . 0
[

M I,4 0
]

0
. . .









, (4.68)

and the vectorV ineq
4 is given as:

V ineq
4 =












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, (4.69)

where the matrixM4 ∈ R
nE,nin,tot−nstates

is given as:

M4 =









. . . 0
[

M I,4 0
]

0
. . .









, (4.70)
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with the matrixM I,4 a zero matrix except for the diagonal elements that are related to
exits which are set to 1.

The fifth and sixth matricesM ineq
5 ∈ R

nL+nO,nin,tot

andM ineq
6 ∈ R

nL+nO,nin,tot

and
vectorsV ineq

5 ∈ R
nL+nO,1 andV ineq

6 ∈ R
nL+nO,1 are used to limit the control signals

according to (4.10) and (4.11) and are given as:

M ineq
5 =









. . . 0
[

I 0
]

0
. . .









, (4.71)

V ineq
5 = 1 , (4.72)

M ineq
6 = −M ineq

5 , (4.73)

V ineq
6 = 0 . (4.74)

The matrixM ineq
7 ∈ R

nconKp,nin,tot

and vectorV ineq
7 ∈ R

nconKp,1 take care of the con-
flicts (4.12) and are given as:

M ineq
7 =









. .. 0
[

M̄ conflict 0
]

0
. . .









, (4.75)

V ineq
7 = 1 , (4.76)

with M̄ conflict a matrix in which every row represents a conflict so that element
M̄ conflict

i,j = 1 for every linkj in the setIconflicti of conflict i and all the other entries are
set to0.





Chapter 5

Efficient Joint Optimization of
Routing and Intersection Flows using
the Link Transmission Model

This chapter extends the MPC strategy proposed in the previous chapter to jointly
optimize the flows and the routing decisions in order to improve the urban network
throughput. This chapter is based on the following paper that is currently under review:

G.S. van de Weg, E.-S. Smits, H. Taale, A. Hegyi, B. De Schutter, and S.P. Hoogen-
doorn, Efficient Joint Optimization of Routing and Intersection Flows using the Link
Transmission Model.Transportation Research Part C, submitted 2017-03-25.

Abstract

One of the challenging problems of urban traffic control is the interaction between the
chosen traffic light settings and the route choice of road users. This interaction causes
that urban traffic control strategies optimized based on thereal-time traffic states and
historical data may get out of date and become less efficient over time. The reason
for this is that people get acquainted with the travel times over their possible routes
caused by the signal controllers and select new routes over time. One of the solutions
to this problem is to explicitly control the routing decisions – e.g. using in-car naviga-
tion devices or route information signs – and jointly optimizing the traffic light signal
controllers and the routing decisions. The design of such a control strategy is difficult
because it consists of a large number of decision variables and requires a predictive
control action that is computationally hard. In this paper,an efficient optimization
algorithm is proposed for the joint optimization of traffic flows at intersections and en-
route routing decisions assuming a 100% compliance rate in amodel predictive control

113
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framework. The algorithm is of the sequential linear programming type and uses an
analytic procedure to approximate a linearization of the model around an operation
point instead of a numerical linearization approach. Simulations using several opti-
mization algorithms show that the proposed approach yieldsa better trade-off between
computation time used and throughput improvements. Also, the simulations indicate
the added value of the analytic linearization approach, andthe use of the sequential
linear programming algorithm.

5.1 Introduction

Urban road traffic network control using traffic lights influences the route-choice of
individual road users [Taale and van Zuylen, 2001]. The reason for this is that traffic
lights influence the travel times on road sections and therewith the total travel times of
different routes between an origin and a destination. The implication of this effect is
that an urban traffic control strategy, that is designed based on knowledge of current
and historical flows, may get out of date and become less efficient over time due to the
changed route choice of road users when they get acquainted with the traffic dynamics.
The resulting equilibrium in route choice that appears in this way is commonly referred
to as the user equilibrium [Wardrop and Whitehead, 1952]. The travel time on every
used route from an origin to a destination is identical in theuser equilibrium, and it is
smaller than the travel time of the unused routes.

The efficiency loss of the signal controllers due to route choice may even occur quicker
in the near future due to the proliferation of in-car technologies, such as, GPS naviga-
tion devices with which more and more vehicles are equipped.An even stronger effect
may be expected when automated vehicles that automaticallynavigate from origin to
destination become widely available. Such systems may choose and adopt the best
route for the individual road user based on knowledge of the current traffic situation,
possibly combined with a prediction of the evolution of the traffic state over time. This
may cause an even faster degradation of the overall network performance. Hence, an
urban traffic control strategy has to take into account the impact of its control action
onto the route choice, potentially leading to a more efficient user equilibrium or it
has to explicitly control the route choice behavior so that asystem optimum can be
achieved.

In general, system optimality may imply that alternative (used) routes between a given
origin-destination pair have different travel times. Thisimplies that some vehicles may
have shorter travel times compared to others so that the average travel time experienced
by all the road users is optimal. Currently most drivers minimize their individual cost
by choosing the route with the lowest travel time (if known),but in the future incentives
may be given by monetary tolls or rewards for drivers for choosing the route that leads
to the system optimum [Pigou, 2013]. In such systems the drivers will still minimize
their individual costs, but now for the generalized (combined) monetary and travel time
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costs. In a dynamic setting, pricing is discussed in the bottleneck model by Vickrey
[1969]. A more operational incentive can be tradable driving rights [Xiao et al., 2013].

A common approach to optimize the network performance is predictive control. An
advantage of a predictive control action is that it allows toaccount for the future impact
of control actions. This is useful in a traffic network, since, changing the flows or route
choices at one intersection affects other intersections ata later time instant. One of the
major challenges of predictive control is that it may lead toa computationally complex
optimization problem. This is a challenge because the computation time required to
solve the optimization problem must be smaller than the real-time controller sampling
time.

Considering the desired aspects of traffic control, the aim of this paper is the design of
a control strategy that:

• optimizes the throughput of an urban road traffic network over a time horizon

• controls the average traffic flows at intersections which maybe realized by traffic
lights and the route choice of the traffic

• requires limited computation time, more specifically, the computation time has
to be less than the real-time controller sampling time whichis in the range of
(several) minutes

Before detailing the research approach and contributions,first Section 5.1.1 discusses
approaches to the combined dynamic traffic assignment and signal control problem.
After that, Section 5.1.2 details a specific sub-set of approaches, namely model-based
optimization approaches.

5.1.1 Approaches to the combined dynamic traffic assignmentand
signal control problem

The problem of accounting for the impact of traffic signal control on route choice has
drawn research attention for several decades. Already in 1974, Allsop [1974] dis-
cussed the interaction effect of signal control and route choice. Taale and van Zuylen
[2001] presented an overview of the literature on the combined traffic assignment and
control problem. The approaches to solve the combined traffic assignment and con-
trol problem can be divided into three categories, namely, 1) iterative procedures, 2)
global optimization approaches, and 3) game-theoretic approaches that intend to solve
the global optimization problem [Smith, 1985, Taale and vanZuylen, 2001].

In iterative approaches, the traffic signals settings are optimized for a given demand
pattern. Next, the route choice of drivers is updated for theoptimized signal settings,
leading to a new demand pattern, and the process is repeated until convergence [Allsop
and Charlesworth, 1977, Akçelik and Maher, 1977]. A comparison of several studies
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that focused on the convergence properties of the iterativeapproach by Taale and van
Zuylen [2001] indicated that a challenge of iterative approaches may be that they are
not guaranteed to converge to a stable optimum despite the potential computation time
gain.

Global optimization approaches address this issue by jointly optimizing the route choice
and traffic signal settings [Taale and van Zuylen, 2001, Chenand Hsueh, 1997]. Due
to the necessity to predict the impact of the traffic signals on the link travel times, a
traffic assignment model is used. Hence, most of the combinedtraffic assignment and
control approaches are of the model predictive control type. Recent developments in
the area of model-based optimization approaches are discussed in the next section.

The first game-theoretic approaches to solve the optimization problem were presented
in the 1980’s [Fisk, 1984]. The idea is that road users and traffic managers can be mod-
eled as different decision makers that have different objectives [Gartner et al., 1980,
Taale and van Zuylen, 2001]. Chen [1998] proposed a dynamic modeling framework
where control strategies and assignment can be combined. The advantage of using
game theory is that it does not require the explicit use of theevaluation of computation-
ally expensive prediction models while still being able to realize similar performance
according to Taale and van Zuylen [2001].

5.1.2 Model-based optimization approaches

A common approach to predict and optimize the (future) impact of the control action
onto the overall network performance is model-based optimization, commonly known
as model predictive control (MPC). Several researchers have proposed model-based
optimization strategies for the combined dynamic traffic assignment and control prob-
lem.

Taale and Hoogendoorn [2013] proposed a framework for real-time integrated and
anticipatory traffic management that is somewhere in between iterative and global op-
timization approaches. The framework is similar to iterative approaches, but when
optimizing the signal settings, the impact of the control settings on the route choice
behavior is explicitly considered using a traffic flow model.In this way, better con-
vergence is expected. The computation time of the iterativeprocedure may still be
high. Abdul Aziz and Ukkusuri [2012] used the cell transmission model (CTM) as a
prediction model in an MPC framework for optimization of thesignal settings assum-
ing system-optimal route choice behavior. The authors optimize the phase selection
using a mixed-integer linear programming problem (MILP) but they do not optimize
the route choice. Challenges of this approach are that the computation time is high due
to the use of the MILP and that the linear formulation leads toviolation of the first-in-
first-out (FIFO) principle for the different destination-oriented flows in the cells.

Le et al. [2013] proposed an optimization approach based on amulti-class variant of
the CTM. This means that it is similar to the CTM, except that the shock wave speed
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of spillback is not modeled. The authors aggregate the traffic dynamics to (several)
tens of seconds so that the discontinuous nature of the signal settings does not have
to be considered. In this way, the authors are able to formulate a quadratic program-
ming problem to optimize the flows at the intersections and the destination-oriented
turn rates. Due to the use of (a variant of) the CTM in combination with a quadratic
optimization problem, the approach may – similarly as in Abdul Aziz and Ukkusuri
[2012] – violate the FIFO principle. Hence, the approach will only provide correct
results when applied to networks with a single destination.Another weakness of the
model used is that it does not reproduce the shock wave speed of spillback, leading to a
performance degradation in oversaturated traffic conditions [van de Weg et al., 2016].

Li et al. [2015] optimize the route guidance and traffic signal settings using a space-
phase-time hyper network. The authors decompose the problem into two sub-problems
with different properties. Hence, the traffic signal optimization problem is optimized
based on a phase-time network considering aggregated dynamics. The route guidance
for individual vehicles is solved based on the link travel times. This procedure is re-
peated until convergence. An advantage of this work is the level of detail considered
– i.e., the explicit inclusion of signal timings, and control of route decisions of indi-
vidual road users. However, this also leads to a very complexmodel that runs with a
resolution of 1 second.

This brief overview shows that there exist different model-based optimization ap-
proaches, each having its own advantages and challenges. However, to the best knowl-
edge of the authors, an approach that can optimize the throughput in all traffic regimes
– i.e. the undersaturated, saturated, and oversaturated regimes – using a computation-
ally efficient optimization procedure does not exist yet. Inthis paper, a link is in the
undersaturated regime when the queue can fully clear when given green, it is in the
saturated regime when the queue does not clear when given green and neither spills
back to upstream intersections, and it is in the oversaturated regime when the queue
that spills back and cause blocking of upstream intersections.

5.1.3 Research approach and contributions

The aim of this paper is to develop an algorithm for the joint optimization of intersec-
tion flows and route decisions that is computationally efficient and is able to improve
the network throughput in all traffic regimes. In order to reach this goal, the following
simplifications are made. First of all, a 100% compliance rate to the optimized route
choice is assumed. In practice, this may be realized using, for instance, (monetary)
incentives as discussed above. Second, the traffic dynamicsare aggregated to several
(tens of) seconds. Due to this, the intersection flows are continuous and signal timings
are not explicitly considered so that the objective function of the optimization problem
is differentiable everywhere with respect to the control variables. Hence, gradient-
based solvers can be used, which are generally faster when compared to gradient-free
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solvers when the problem size is not too large. Third, it is assumed that the origin-
destination demands are known and that no noise or uncertainties affect the system.
Hence, in practice a module may be needed to predict the demand. It must be noted
that both the quality of the optimization and the demand predictions may influence
the controller performance. Because this paper aims at studying the quality of the op-
timization, simulations are carried out in a controlled environment that are primarily
focused on investigating the impact of the controller on thethroughput and computa-
tion time.

In the light of these design considerations, this paper proposes an efficient model pre-
dictive control strategy based on the link transmission model (LTM) for the combined
optimization of intersection flows and route choice. The LTMis used because it is a
more computationally efficient model when compared to segment-based models, such
as the CTM, as shown in van de Weg et al. [2016]. Due to the non-linear nature of
the optimization problem, an efficient optimization algorithm of the sequential linear
programming type is proposed [Marcotte and Dussault, 1989]. The idea behind the
algorithm is that first the non-linear model is used to predict the traffic state trajec-
tories for a candidate control signal. Based on that prediction, an analytic approxi-
mation of the model linearization is determined which is used to formulate a linear
optimization problem which is solved, giving a new control signal. Next, the candi-
date control signal and the optimized control signal are used as a search direction in
a line-search optimization algorithm giving a new candidate control signal. Finally,
it is tested whether the control signal found satisfies the stopping criteria. If not, the
process is repeated. Compared to the research discussed above, advantages are the use
of the LTM, the improved, analytic approximation of the model linearization, and the
use of the line-search algorithm.

The contributions of this paper are:

• Design of an MPC strategy using the LTM for optimization of both intersection
flows and routing decisions (Section 5.3)

• Design of an efficient optimization algorithm based on analytic approximation
of the model linearization (Section 5.3)

• Formulation of an analytic approximation of the model linearization around an
operating point (Section 5.3.3)

• Evaluation of the approach in terms of the trade-off betweenrealized throughput
and CPU time used by comparing with different variants of theSLP algorithm
and a numerical linearization based optimization algorithm within a simulation
environment (Section 5.4)

The paper is structured as follows. First, Section 5.2 details the traffic flow prediction
model that is used. Second, Section 5.3 introduces the optimization algorithm and the
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analytic linearization of the model. Section 5.4 evaluatesthe approach using simula-
tions. Section 5.5 concludes the paper. 5.B provides an overview of the variables used
in the paper.

5.2 Description of traffic flow dynamics

This section details the macroscopic traffic flow model used to describe the evolution
of the traffic in an urban road network. The link dynamics are modeled using the
link transmission model of Yperman [2007], the node dynamics are modeled using
the directed capacity proportional node model presented inSmits et al. [2015], origins
are modeled as vertical queues, and destinations are modeled as sinks. An overview
of the network elements used in the paper is shown in Figure 5.1, an overview of
the variables used is given in 5.B. The LTM is chosen for two reasons. First of all, the
LTM is a computationally efficient traffic flow model that is capable of reproducing the
most important link dynamics – it describes both forward moving free-flow waves, and
backward propagating queue tails and heads. The latter is animportant advantage when
compared to other approaches that model the link dynamics using segments, causing
an increase in computational overhead. Secondly, as will beshown in Section 5.3.3,
an analytic procedure to linearize the LTM and node model around an operating point
can be derived so that no numerical schemes have to be used to determine the gradient,
which results in a computation time gain. The LTM is a first-order traffic flow model.
This model type ignores higher-order dynamics, such as acceleration behavior, so that
it is more computationally efficient. Nevertheless, despite ignoring these higher-order
effects, it is capable of reproducing the most important characteristics of the traffic
dynamics required for control as discussed above.

The main traffic states that are to be updated by the LTM are thecumulative inflows
N in

l (k) (veh) and outflowsNout
l (k) (veh) of all the linksl ∈ IL (-) with IL the set of

all the links, and the cumulative inflowsN in
o (k) (veh) and outflowsNout

o (k) (veh) of
all the originso ∈ IO (-) with IO the set of all the origins according to the following
equations:

N in
l (k + 1) = N in

l (k) + qinl (k)T , (5.1)

Nout
l (k + 1) = Nout

l (k) + qoutl (k)T , (5.2)

N in
o (k + 1) = N in

o (k) + qino (k)T , (5.3)

Nout
o (k + 1) = Nout

o (k) + qouto (k)T , (5.4)

With the flowsqinl (k) (veh/h) andqoutl (k) (veh/h) the link inflows and outflows at time
stepk, and the flowsqino (k) (veh/h) andqouto (k) (veh/h) the origin inflows and outflows
at time stepk. The timeT (h) is the model sampling time. In order to update the traffic
states, several parameters have to be known. These are, the time tfreel (h) it takes to
travel through the link in free-flow, the timetshockl (h) it takes a backward propagating
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shock wave to travel through the link, the saturation rateqsatl (veh/h), and the maximum
number of vehiclesNmax

l (veh) that fits in the link.
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Figure 5.1: Overview of network elements and indexes used inthe paper.

Additionally, every link and origin in the network can be connected to several destina-
tionsd ∈ ID (-) with ID the set of all destinations in the network. On every link the
destination-oriented cumulative inflowsN in

l,d(k) (veh) and outflowsNout
l,d (k) (veh), and

on every origin the destination-oriented cumulative inflowsN in
o,d(k) (veh) and outflows

Nout
o,d (k) (veh) are updated according to the following equations:

N in
l,d(k + 1) = N in

l,d(k) + qinl,d(k)T , (5.5)

Nout
l,d (k + 1) = Nout

l,d (k) + qoutl,d (k)T , (5.6)

N in
o,d(k + 1) = N in

o,d(k) + qino,d(k)T , (5.7)

Nout
o,d (k + 1) = Nout

o,d (k) + qouto,d (k)T , (5.8)

where the flowsqinl,d(k) (veh/h) andqoutl,d (k) (veh/h) are the inflows and outflows of
traffic with destinationd on link l, and the flowsqinl,d(k) (veh/h) andqoutl,d (k) (veh/h) are
the inflows and outflows of traffic with destinationd on origino

Hence, the main task of the model is computing at every time step the inflows and out-
flows. The model can be described in several steps, which are executed when updating
the traffic flow dynamics from one time step to another. In thisbrief overview we will
detail the different steps first without using any equations:

1. The first step is to update the maximum cumulative link outflow. This is done
by taking the minimum of the cumulative free-flow outflow, theoutflow under
saturated conditions, and the capacity of a downstream bottleneck as will be
detailed in Section 5.2.1.

2. Next, the travel time that corresponds to the computed cumulative link outflow
is determined as will be detailed in Section 5.2.2.

3. Using the travel time in the link, the maximum cumulative destination-oriented
outflows on the link can be determined as will be detailed in Section 5.2.3.
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4. For every link, the maximum inflow is computed as will be detailed in Sec-
tion 5.2.4.

5. Based on the maximum (destination-oriented) outflow and the maximum in-
flows, the turn fractions at the nodes are computed. Next, a node model is applied
to compute reduction factors with which the maximum link outflows are multi-
plied in order to reduce the link outflows in the event of capacity conflicts due to
spill back as will be detailed in Section 5.2.6.

6. Finally, using the reduction factors the cumulative inflows and outflows can be
determined as will be detailed in Section 5.2.7.

5.2.1 Updating the maximum cumulative link outflow

The first step is to determine the maximum sending flowqout,max
l (k) (veh/h) of a link.

The sending flow is determined by various factors that dependon the traffic condition
in the link. When there is no queue in the link, the maximum sending flow is equal to
the free-flow outflow. When there is a queue, the maximum sending flow is equal to the
saturation rateqsatl (veh/h), multiplied with the effective green fractionbl(k) (-). The
fractionbl(k) is defined as the realized link outflow divided by the saturation rate. In
the case that a link is at the exit of the network, the outflow may be limited by a gating
policy or by spillback from a downstream road that is not modeled, resulting in a max-
imum outflowqbnl (k) (veh/h). Thus, the cumulative maximum outflowNout,max

l (k+1)

(veh) can be updated as follows

Nout,max
l (k + 1) = min

[

Nout
l (k) + qsatl bl(k)T , . . . (5.9)

γfree
l N in

l (k + 2− kfree
l ) + (1− γfree

l )N in
l (k + 1− kfree

l ), . . .

Nout
l (k) + qbnl (k)T

]

.

Here,kfree
l (-) is the number of time steps required to travel through thelink in free flow,

which can be computed from the free-flow travel timetfreel (h) askfree
l = ⌈tfreel /T ⌉, and

the fractionγfree
l (-) is the fraction of time stepT thatkfree

l exceeds the free-flow travel
time: γfree

l = kfree
l − tfreel /T . The mathematical operator⌈·⌉ means rounding to the

nearest integer that is equal to or larger than the argument of the function. It must hold
thatkfree

l ≥ 2 in order to satisfy CFL conditions.

The maximum sending flowqout,max
l (k) (veh/h) from a link is then given as the maxi-

mum number of vehiclesNout,max
l (k+1)−Nout

l (k) (veh) that can exit the link divided
by the time step:

qout,max
l (k) =

Nout,max
l (k + 1)−Nout

l (k)

T
. (5.10)
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5.2.2 Link travel time

The travel timettrl (t) on a link at timet is given as the horizontal distance in the
time-cumulative outflow diagram between the cumulative inflow and outflow curve as
illustrated in Figure 5.2. The travel time is used to update the destination-oriented flows
as will be explained in the next subsection. According to Yperman [2007], the travel
time can be derived from the cumulative curves using the inverse of the cumulative
curve as illustrated in Figure 5.2:

ttrl (t) = t−N in
l

−1
(Nout

l (t)) . (5.11)
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Figure 5.2: The relation between the cumulative inflow, the cumulative outflow, and the travel time at
time t.

Opposed to the above equations which are in continuous time,the traffic dynamics in
this paper are described in discrete time. Denote with the time ttrl (k) (h), the travel
time that vehicles exiting the link at time stepk have experienced. In such a case, the
cumulative outflow and inflow are related via the following equation:

Nout
l (k) = γtr

l (k)N
in
l (k + 1− ktr(k)) + (1− γtr

l (k))N
in(k − ktr

l (k)) , (5.12)

with ktr
l (k) (-) the number of time steps it takes to travel through the link: ktr

l (k) =

⌈ttrl (k)/T ⌉ andγtr
l (k) = ktr

l (k) − ttrl (k)/T the fraction of the sampling timeT that
this travel time exceeds the travel timettrl (k) (h). Figure 5.3 provides a graphical
representation of the approach. In this hypothetical example where the travel time
ttrl (k) is 47 seconds and the sampling time is 10 seconds, it can be observed that the
cumulative outflow at time stepk is a linear combination of the cumulative outflows
at time stepsk − 4 andk − 5. Equation (5.12) provides a procedure to compute the
cumulative outflow when the link travel time is known. When the cumulative outflow
is known at time stepk, the equation can be used to determine the travel time as well.
The interested reader is referred to Long et al. [2011] for a detailed analysis of the link
travel time based on cumulative flows.
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Figure 5.3: The relation between the cumulative inflow, the cumulative outflow, and the travel time at
time stepk for a hypothetical example where the current travel time isttr

l
(k) is 47 seconds and the

sampling time is 10 seconds. It can be observed that the cumulative outflow at time stepk is a linear
combination of the inflow at time stepsk − 4 andk − 5.

5.2.3 Updating destination-oriented outflows

Based on the travel timettri (k) in a link, the destination-oriented outflows of a link can
be updated. Denote withN in

l,d(k) (veh) andNout,max
l,d (k) (veh) the cumulative inflow

and maximum outflow of traffic to destinationd on link l. Now, the outflow is related
to the inflow according to the following equation:

Nout,max
l,d (k + 1) = . . . (5.13)

γtr
l (k + 1)N in

l,d(k + 1− ktr
l (k + 1)) + (1− γtr

l (k + 1))N in
l,d(k − ktr

l (k + 1)) .

The maximum destination-oriented outflowqout,max
l,d (k) (veh/h) is then given as:

qout,max
l,d (k) =

Nout,max
l,d (k + 1)−Nout

l,d (k)

T
. (5.14)

Applying this equation ensures that the FIFO principle withrespect to the different
destination-oriented flows on a link is satisfied.

5.2.4 Updating the maximum cumulative link inflow

The maximum receiving flowqin,spl (k) (veh/h) explicitly considers the impact of the
shock wave dynamics in the LTM. The cumulative inflow is restricted by the maximum
number of vehiclesN in,max

i (k) (veh) that can enter the link when the link is full:

N in,max
l (k + 1) = . . . (5.15)

γshock
l Nout

l (k + 2− kshock
l ) + (1− γshock

l )Nout
l (k + 1− kshock

l ) +Nmax
l ,

where the numberNmax
l (veh) represents the maximum number of vehicles that fits

in link l, and the number of time stepskshock
l (-) represents the number of time steps



124 TRAIL Thesis series

it takes a shock wave to travel through the link. The fractionγshock
l (-) is given by:

γshock
l = tshockl /T − kshock

l with tshockl (h) being the shock wave travel time. Note that
it must hold thatkshock

l ≥ 2 to satisfy the CFL conditions.

Now, the maximum receiving flowqin,spl (k) (veh/h) is given as the minimum of the
saturation rate and the maximum link inflow:

qin,spl (k) = min

[

N in,max
l (k + 1)−N in

l (k)

T
, qsatl

]

. (5.16)

5.2.5 Updating the origin inflows and outflows

Origins are modeled as vertical queues and are described in this section. Recall that it is
assumed that the destination-oriented demandsqdemand

o,d (k) (veh/h) are given. The first
step in updating origins is computing the destination-oriented inflowsqino,d(k) (veh/h):

qino,d(k) = qdemand
o,d (k) . (5.17)

The total origin inflowqino (k) (veh/h) is then given as:

qino (k) =
∑

d∈ID
o

qino,d(k) . (5.18)

The origin outflowqouto (k) is given as the minimum of the cumulative origin inflow
N in

o (k + 1) (veh) at time stepk, the maximum link inflowN in,max
l (k + 1 (veh/) of the

downstream linkl, and the origin capacityqcapo (veh/h):

qouto (k) =

min

(

N in
o (k + 1), N in,max

l (k + 1), Nout
o (k) + qcapo

)

−Nout
o (k)

T
. (5.19)

Using the origin outflow, the origin travel timettro (k+1) (h) of the vehicles exiting the
origin at time stepk+ 1 can be derived, similarly as in Section 5.2.2. Using this travel
time, the destination-oriented outflowsqouto,d (k) (veh/h) can be computed as follows:

qouto,d (k) =
γtr
o (k + 1)N in

o,d(k + 1− ktr
o (k + 1))

T
+ . . . (5.20)

(1− γtr
o (k + 1))N in

o,d(k − ktr
o (k + 1))−Nout

o,d (k)

T
.

5.2.6 The node model

Node models determine the flow over nodes given boundary conditions provided by
the adjacent incoming and outgoing links. Tampère et al. [2011] provide a basic set of
requirements for node models. These requirements assure that the node model results
are consistent with basic behavior of drivers. Currently, four models are known that
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satisfy these requirements according to Smits et al. [2015]. This study adopts the
solution method for the directed capacity proportional node model presented in Smits
et al. [2015]. This node model was first introduced by Flötteröd and Rohde [2011] and
Tampère et al. [2011].

The node model is used to connect links and to distribute the flow from the incoming
links l ∈ IL,us

m to the outgoing linksl′ ∈ IL,ds
m of the nodem (-). It is also used to

distribute spillback from the outgoing links to the incoming links over the node. The
main task of the node model is to determine the reduction factorsβl(k) (-) of the links
l ∈ IL,us

m upstream of the nodem, such that it holds thatqinl′ (k) ≤ qin,spl′ (k). Node
models require as input the turn fractionsηl,l′(k) (-) of traffic from upstream links to
downstream links, the maximum link outflowsqout,max

l (k) (veh/h) – i.e. the demand –
of the incoming links, the maximum link inflowsqin,spl′ (k) (veh/h) – i.e. the supply –
of outgoing links, and the saturation rateqsatl (veh/h) of all the links connected to the
nodem.

The turn fractionηl,l′(k) of traffic on link l towards linkl′ is defined as the total sum of
demand on linkl towards linkl′ divided by the total demand of linkl:

ηl,l′(k) =

∑

d∈(ID
l
∩ID

l′
) ū

D
l,l′,d(k)q

out,max
l,d (k)

qout,max
l (k)

. (5.21)

Here, the fraction̄uD
l,l′,d(k) (-) is a control variable that controls the fraction of traffic

oriented to destinationd on link l that will travel via downstream linkl′. It is assumed
that the turn fractionsηl,l′(k) of traffic from upstream links to downstream links remain
constant during the current time step.

In the model, the directed capacity – i.e., the capacity of the corresponding incoming
link multiplied with the turn fraction –, determines if traffic will spill back towards
an incoming link. The model ensures for example that in the case of spillback at a
merge of a two-lane and one-lane road, the outflow of the two-lane is twice the outflow
of the one-lane road. We refer to [Tampère et al., 2011, Flötteröd and Rohde, 2011,
Smits et al., 2015] for details on the characteristics and underlying behaviour of this
node model. The directed capacity node model can be summarized using the following
function:

βl(k) = fnode
(

qout,max
l (k), qsatl , qin,spl′ (k), ηl,l′(k)

)

, ∀ l ∈ IL,us
m & l′ ∈ IL,ds

m . (5.22)

For the details of the mathematical formulation of this function the reader is referred
to Algorithm 1 in [Smits et al., 2015].

5.2.7 Updating the link inflows and outflows

Now that the reduction factorsβl(k) are known, the cumulative (destination-oriented)
link inflows and outflows can be computed. First of all, the link outflows qoutl (k)
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and destination-oriented outflowsqoutl,d (k) are computed by multiplying the maximum
outflowqout,max

l (k) andqout,max
l,d (k) with the reduction factor:

qoutl (k) = βl(k)q
out,max
l (k) , (5.23)

qoutl,d (k) = βl(k)q
out,max
l,d (k) . (5.24)

After that, the destination-oriented link inflowsqinl′,d(k) (veh/h) are computed by sum-
ming up the destination-oriented outflows of upstream linksmultiplied with the en-
route decision variablēuD

l,l′,d(k) – i.e., the fraction of the flow oriented to destinationd

on link l that travels via linkl′ – and adding the destination specific inflow of origins:

qinl′,d(k) =
∑

l∈IL,us

l′

ūD
l,l′,d(k)q

out
l,d (k) +

∑

o∈IO,us

l′

qouto,d (k) . (5.25)

Then, the total link inflowqinl′ (k) is given as:

qinl′ (k) =
∑

d∈ID
l′

qinl′,d(k) . (5.26)

5.3 The optimization algorithm

The objective of the optimization algorithm is minimizing the total time spent (TTS)
ZTTS (veh·h) by all the vehicles in the network including origins over aprediction
horizon ofKp (-) steps subject to inequality constraints:

min
U

ZTTS(U,D,X0) ,

s.t.M ineqU ≤ V ineq , (5.27)

Here,X0 is the initial traffic state, the matrixD contains the disturbances, and the
vectorU contains the control signal. The vectorU is defined as:

U =
[

U(k) U(k + 1) · · · U(k +Kp − 1)
]⊤

, (5.28)

with

U(k) =
[

b1(k) · · · bncon(k) uD
1 (k) · · · uD

ndecisions(k)
]⊤

, (5.29)

with ncon (-) the number of controlled links, andndecisions (-) the number of en-route
decisions.

The routing decisionsuD
r (k) are mapped to the routing decisionsūD

l,l′,d(k) in the traffic
flow model in the following way. First, denote withIL,RD

l,d (-) the ordered set of link
indexes over which flows oriented to destinationd on link l can be send. The number
of links in this set equalsnRD+1. Next, denote withIRD

l,d (-) the ordered set of indexes
of the routing decision variablesr on link l related to destinationd. This set contains
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nRD variables. The sets are ordered so that the routing decisionr = IRD
l,d (i) relates

to link l′ = IL,RD
l,d (i). Hence, the routing decision variablesuD

r (k) are mapped to the
decision variables̄uD

l,l′,d(k) in the following way:

ūD
l,l′,d = uD

r (k) ,with l′ = IL,RD
l,d (i) , r = IRD

l,d (i) , ∀i ≤ nRD , (5.30)

ūD
l,l′,d = 1−

∑

r∈IRD
l,d

uD
r (k) ,with l′ = IL,RD

l,d (nRD + 1) . (5.31)

In the case that there are only two downstream linksl′ and l′′ in the setIL,RD
l,d this

simplifies to:

ūD
l,l′,d = uD

r (k) , (5.32)

ūD
l,l′′,d = 1− uD

r (k) . (5.33)

The matrixM ineq and vectorV ineq are used to include the linear inequality constraints.
The constraints are used to limit the green-fractionsbl(k) between0 and1:

0 ≤ bl(k) ≤ 1 . (5.34)

Additionally, it is ensured that the sum of the green-fractions of conflicting links is less
than or equal to1:

∑

l∈Iconflict
c

bl(k) ≤ 1 . (5.35)

with the setIconflict
c (-) containing the links that are in the conflict with indexc (-).

Third, the routing decisionsuD
r (k) are constrained between a minimumuD,min (-) and

a maximumuD,max:

uD,min ≤ uD
r (k) ≤ uD,max . (5.36)

Fourth, it has to hold that the sum of routing decisionsuD
r (k) in a setIRD

l,d is smaller
than or equal to 1:

0 ≤
∑

r∈IRD
l,d

uD
r (k) ≤ 1 . (5.37)

This optimization problem is non-linear due to the non-linear traffic flow model that is
used to predict the traffic state. The non-linearity is caused by updating the destination-
oriented link outflows using the travel time, as detailed in Section 5.2.2 and Sec-
tion 5.2.3, and by the node model. Due to these non-linearities, the computation time
will grow very fast with increasing network size.

In order to reduce the computation time required by this algorithm, this section pro-
poses an efficient optimization algorithm. The algorithm isof the Sequential Linear
Programming (SLP) type [Marcotte and Dussault, 1989]. The computation time is
mainly improved due the analytic procedure that is developed in this paper to approxi-
mate a linearization of the model around an operating point.
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5.3.1 Overview of the SLP algorithm

Figure 5.1 provides an overview of the SLP algorithm. First,the algorithm is initialized
by selecting an initial candidate control signalU1 for which the model detailed in the
previous section is run to get a prediction of the traffic state X(U1). After that, an
iterative procedure is started at iterationi = 1 in which the following steps are carried
out:

1. An effective control signal vector̃Ui based on the predicted stateX(X0, Ui, D)

is determined.

2. Next, a linearization of the model around the pointŨi is approximated using an
analytic procedure so that a linear optimization problem can be formulated. By
solving the linear optimization problem (LP), the optimal control signal vector
Ū∗
i is obtained.

3. After that, a line-search is carried out from the initial point Ũi in the direction of
the optimized signal̄Ui which is a one-dimensional optimization problem. This
line-search provides a new candidate control signal vectorUi+1.

4. The model is run again for this signal providing a new prediction of the traffic
stateX(X0, Ui+1, D) and a new valueZTTS(Ui+1) of the objective function.

5. The last step of every iteration is to check whether a stopping criterion is satis-
fied. If so, the signalUi+1 is the optimal signalU∗ and is applied to the process.
If the stopping criteria are not satisfied, the process is repeated fori = i+ 1.

Initialization
SetU1

GetX(U1)

Seti=1

Ui, X(Ui)

Get new direction
1) Linearize around̃Ui

2) Solve LP

Ũi, Ū∗

i

Line-searchUi+1

Ui+1Stopping
criterion Run model
satisfied?

X(Ui+1)

Z
TTS(Ui+1)

No

Yes

i=i+1

U
∗=Ui+1

Get
effective
signal

Ũi, X(Ũi)

Figure 5.1: Overview of the SLP algorithm.

This section is structured as follows. First, Section 5.3.2explains how the effective
control signal is obtained. Next, Section 5.3.3 details theanalytic procedure to ap-
proximate the linearization of the model, and Section 5.3.4introduces the linear op-
timization problem that has to be solved. Section 5.3.5 details the line-search, and
Section 5.3.6 presents the stopping criteria of the algorithm. Section 5.3.7 discusses
the properties and limitations of the proposed algorithm.
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5.3.2 The effective control signal

At every iteration of the SLP algorithm, the first step is to translate the control signalUi

into the effective control signal̃Ui. The effective control signal is defined as the fraction
of green time that is used by the traffic. For instance, when setting the saturation rate
to 2000 veh/h and applying a green fraction of1.0 it may be the case that only a flow
of 400 veh/h is realized. In that case, the effective green fraction would be0.2 (-).

The effective control signal is obtained by replacingUi(k) with Ũi(k) in (5.28). The
control signalŨi(k) is defined as:

Ũ(k) =
[

beff1 (k) · · · beffncon(k) uD
1 (k) · · · uD

ndecisions(k)
]⊤

, (5.38)

where the fractionbeffl (k) (-) is the effective fraction of green time used by the link.
The fractionbeffl (k) is obtained from the model outputX(X0, Ui, D) by dividing the
realized outflow of a link with the link saturation rate:

beffl (k) =
qoutl (k)

qsatl

. (5.39)

5.3.3 Model linearization

The second step of the SLP algorithm is to approximate a linearization of the model
around the signal̃Ui(k). Note that the non-linearity in the model originates from dif-
ferent sources:

1. At every time step, the cumulative link inflowN in
l (k) is a function of the green

fraction bl′(k) of upstream links, and of the en-route routing decisionsūD
l′,d(k).

This is a multiplicative effect, hence, it contains a non-linearity.

2. Updating the destination-oriented flows on the links and origins introduces a
non-linearity because it requires to compute the travel time on the link and to
allocate the link outflow to the different destinations proportional to the compo-
sition of the destination-oriented inflows at the time instant when they entered
the link.

3. Finally, the solution procedure of the node model introduces non-linearities as
well.

The most common way to linearize the model in the pointŨi(k) is numerical lin-
earization, i.e., evaluating the objective function for changes in every element of the
vector Ũi(k) so that the derivative w.r.t. every element can be computed.However,
this requires a large number of function evaluations, resulting in a high computational
complexity of the algorithm.
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In order to reduce the computational complexity, an analytic approximation of the
model linearization is proposed based on the linear MPC strategy proposed by van de
Weg et al. [2016]. In that approach, a linear optimization problem can be formulated
given that the turn fractionsηl′,l(k) are known so that the cumulative link inflow equa-
tion (5.25) can be simplified to:

N in
l (k + 1) = N in

l (k) +
∑

l′∈IL,us

l

ηl′,l(k)q
sat
l′ T cbeffl′ (k) . (5.40)

Because the green fractionsbl(k) are replaced with the effective green fractionsbeffl (k),
the model can be written as a linear optimization problem, where the node model is
replaced using linear inequality constraints [van de Weg etal., 2016].

However, using solely the turn fractions to model the trafficdynamics neglects impor-
tant non-linear effects. First of all, the impact:

δηl′,l(k)

δuD
r (k)

(5.41)

of the routing decisionsr ∈ IRD
l′ of link l′ onto the turn fractions is neglected with

IRDl′ the set of routing decisions of linkl′. Secondly, in a network where traffic is
traveling towards certain destinations, changing the control signal of one intersection
at time stepkp < k may influence the turn fractions at downstream intersections at
later time instantsk leading to the following impacts:

δηl′,l(k)

δuD
r (k

p)
(5.42)

δηl′,l(k)

δbeffy (kp)
. (5.43)

wherer ∈ IRD
l′′ with IRD

l′′ the set of routing decision on linkl′′. Neglecting these effects
results in a myopic approximation of the linearization thatis less accurate so that it
may reduce the performance of the controller. However, including more information
requires more computations and hence may increase the required computation time.
Therefore, we propose the following procedure to include these effects that may lead
to a better trade-off between throughput improvements and computation times. The
trade-off will be studied by means of simulations in Section5.4.

Including these effects into (5.40) gives the following equation for the cumulative link
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inflow:

N in
l (k + 1) = N in

l (k) +
∑

l′∈IL,us
l

qsatl′ T cbeffl′ (k)

[

ηl′,l(k) + . . . (5.44)

∑

r∈IRD
l′

δηl′,l(k)

δuD
r (k)

(

uD
r − ũD

r (k)
)

+ . . .

∑

l′′∈IL,us

l′

∑

kp<k

[

δηl′,l(k)

δbeffy (kp)

(

beffl′′ (k
p)− b̃effl′′ (k

p)
)

+ . . .

∑

r∈IRD
yl

δηl′,l(k)

δuD
r (k

p)

(

uD
r (k

p)− uD
r (k

p)
)

]

]

.

which is non-linear due to multiplications of the input variables. The variables̃uD
r (k)

andb̃effl′′ (k
p) are the initial signals of the routing decisions and effective green-fractions

as included in the signal̃Ui(k).

First, this equation is simplified by including the error term el(k):

N in
l (k + 1) = N in

l (k) +
∑

l′∈IL,us

l

(

qsatl′ T cbeffl′ (k)ηl′,l(k)

)

+ el(k) . (5.45)

The vector̄el containing all the errorsel(k) is given as follows:

ēl =
∑

l′∈IL,us
l

qsatl′ T cb̄eff,0

[

∑

r∈IRD
l′

JRD
l′,l′,l,r

(

η̄Dr − η̄D,0
r

)

+ . . . (5.46)

∑

l′′∈IL,us

l′

(

Jb
l′′,jl,l,d

(

b̄effl′′ − b̄eff,0l′′

)

+
∑

r∈IRD
yl

JRD
l′′,l′,l,r

(

η̄Dr − η̄D,0
r

)

)

]

,

and can be written as a matrix vector multiplication. In (5.46), the JacobianJRD
l′′,l′,l,r

is a matrix that contains at rowi and columnj the derivative of the turn-rateηl′,l(i)
with respect to the routing decisionuD

r (j) as given in (5.42). Similarly, the Jacobian
Jb
l′′,jl,l,d is a matrix that describes the derivative of the turn-rateηl′,l(i) with respect

to the effective green fractionbeffl′′ (j) as given in (5.43). The method to derive these
Jacobian matrices is detailed in 5.A. The vectorsη̄Dr and b̄effl′′ contain at every row the
routing decision of router and green fraction of linkl′′ respectively. The vectors̄ηD,0

r

andb̄eff,0l′′ are the initial control signals.

The termel(k) is added to the control input vectorŪi of the linear optimization problem
defined as follows:

Ūi =
[

Ūi(k)
⊤ · · · Ūi(k +Kp − 1)⊤ ,

]

(5.47)
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with at every time step the control signalŪi(k) defined as:

Ūi(k) =
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. (5.48)

For a given vector̄Ui, a linear prediction of the traffic statēX over the prediction
horizon is given as follows:

X̄ = MAX̄0 +MBŪi +MCD̄ . (5.49)

by multiplying the initial stateX̄0, the control signal̄Ui, and the disturbance vector
D̄ with the matricesMA, MB, andMC respectively. The matricesMA andMC are
detailed in van de Weg et al. [2016]. The matrixMB is a straightforward extension of
theMB matrix detailed in that paper as well. This matrix has to be extended because
the matrix used in van de Weg et al. [2016] does not consider the error termel(k) that
is used in the state prediction of this paper. The error term can be computed via linear
equality constraints. The vector̄X has the property that for an appropriately chosen
row vectorV̄ TTS, the product̄V TTSX̄ gives the total time spent of all the vehicles in
the network.

5.3.4 Linear optimization problem

The next step of the SLP algorithm is finding a search direction vectorδŨi in which the
objective function will decrease. The direction vectorδŨi is derived from the solution
Ū∗
i of the following linear optimization problem:

Ū∗

i = arg min
Ūi

V̄ TTS

(

MAX̄0 +MBŪi +MCD̄

)

,

s.t. M̄ eqŪi = V̄ eq , (5.50)

M̄ ineqŪi ≤ V̄ ineq

The matrixM eq and vectorV eq are used to compute the error terms detailed in (5.46).
The matrixM̄ ineq and vectorV̄ ineq correspond to the linear inequality constraints that
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contain the constraints of (5.34) to (5.36), and constraints to reproduce the dynamics
of the LTM. The reader is referred to van de Weg et al. [2016] for a detailed description
of these matrices.

Note that the linear model only provides an accurate description of the non-linear
model in the vicinity ofUi. Therefore, we limit the search space of the linear opti-
mization problem:

Ui − δUmax ≤ Ūi ≤ Ui + δUmax, (5.51)

where the vectorδUmax contains tuning parameters that bound the maximum step-
size. The values in the vectorδUmax have values between 0 and 1, since, they limit
the fractionsbeffi (k) anduD

i (k), which take values between0 and1. A small value
for δUmax means that the linear model provides a more accurate description of the
non-linear model. However, the search space is also limited, so the algorithm might
require more iterations, or it might get stuck in a local minimum. On the other hand,
by choosing a high value forδUmax, the solutionŪi

∗ might be so far fromUi that
the linearized model is no longer representative for the non-linear model. This could
cause convergence issues of the algorithm. Thus, the parameter vectorδUmax should
be adequately tuned. For the sake of simplicity, all the values in the vectorδUmax can
be chosen the same.

The outcome of the linear optimization problem is the optimal control signalŪi
∗. The

search directionδŨi is given as the difference betweenŨi andŨ∗
i :

δŨi = Ũ∗

i − Ũi . (5.52)

The signalŨ∗
i is derived from the outcome of the linear optimizationŪ∗

i by keep-
ing only the effective green fractions of the controlled links and the en-route routing
decisions.

5.3.5 Line-search: Computation of the next step

Instead of using the control signalŪi
∗ as the control signalUi+1 for the next iteration,

the control signal is obtained by carrying out a line-searchoptimization in the direction
δŨi:

Ui+1 = Ũi + s∗δŨi , (5.53)

wheres∗ is the solution to the following optimization problem:

s∗ = arg min
s

ZTTS(U,D,X0) , (5.54)

s.t. 0 ≤ s ≤ 1 ,

U = Ũi + sδŨi ,

M ineqU ≤ V ineq ,
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The constraints used here are identical to the constraints in (5.27). Instead of solving
this constrained problem, we eliminate the inequality constraints related to the vector
U using penalty functions resulting in the following optimization problem:

s∗ = arg min
s

Z̄TTS,ls(U,D,X0) , (5.55)

s.t.0 ≤ s ≤ 1 ,

U = Ui + s(Ūi
∗
− Ui) ,

This is a one-dimensional optimization problem that can be solved using a line-search
algorithm. In our simulations in Section 5.4 we will use the Fibonacci method as the
line-search method. The line-search is stopped when the difference in the objective
function from one iteration to another is smaller thanǫls (-):

|Z̄TTS,ls
i (X)− Z̄TTS,ls

i+1 (X)| ≤ ǫls . (5.56)

The parameterǫls is a tuning parameter as well. A larger value means that the algorithm
might not have reached the optimum. On the other hand, when the value ofǫls is
decreased, the time to convergence increases. Also, a maximum number of iterations
Imax,ls (-) might be included to prevent the line-search algorithm from keeping on
iterating when it cannot converge.

5.3.6 Stopping criteria

By solving the above mentioned optimization problem, we findan estimate for the
control inputUi+1 at the next iteration. Before proceeding to the next iteration, it
should be checked whether the stopping criterionǫstop (-) is satisfied. The stopping
criterion is based on the change in the objective function value ZTTS(Ui) from one
iteration to another:

|ZTTS(Ui)− ZTTS(Ui+1)| ≤ ǫstop . (5.57)

Since there is no guarantee for convergence, a maximum number of iterationsImax (-)
is defined, after which the optimization is stopped.

5.3.7 Controller properties and limitations

Due to the analytic approximation of the linearization it isexpected that it will take
much less time to solve the linear optimization problem whencompared to a numerical
linearization. Also, it is expected that the inclusion of the error terms leads to a better
linearization compared to a linearization solely based on the predicted turn fractions.
Nevertheless, the linearization procedure also has several challenges that may need to
be addressed in future research.
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First of all, it is assumed that the influence of upstream links onto the turn fractions
of downstream links propagates with the predicted link travel times. This neglects
the fact that there may also be influences that propagate through the network with the
queuing dynamics. Hence, the controller may not always be able to find the global
optimum. The queuing dynamics may be included by adding matrices that reflect the
impact of the future destination link outflow of a link based on the past link outflows.
This requires a significant theoretical extension of the framework. Also it may lead to
a higher computational complexity of the algorithm.

Secondly, the linearization procedure may become time-consuming because the re-
lations between a lot of paths have to be computed. In the simulation section we
will study the impact of the linearization procedure on the computation time and per-
formance by comparing different optimization approaches for two different network
sizes.

5.4 Simulation

Simulations are carried out to study the qualitative and quantitative properties of the
controller in terms of realized TTS of all the vehicles in thenetwork – including ve-
hicles waiting in the origins – and utilized CPU time. The following steps are carried
out to realize this objective:

1. The qualitative behavior of the controller is studied in Section 5.4.2 by analyz-
ing the propagation of traffic in a simple network for a simpledemand pattern.
It is studied whether the controller is able to distribute the traffic over the net-
work in both free-flow and spill back conditions in such a way that the network
throughput is maximized.

2. The quantitative performance of the controller is studied in Section 5.4.3 by com-
paring the performance of the proposed algorithm with four other optimization
approaches for two different networks.

5.4.1 Set-up

Two simple networks, as illustrated in Figure 5.1, are implemented in Matlab R2015a
on a computer with a 3.6 GHz processor, 16 Gb RAM, and 8 cores. These grid-
shaped network structures are chosen, since they have a similar shape that can easily
be extended to a larger network. Every link has the same length of 200 meters – except
for link 8 in network 1, which has a length of 800 meters, links14, 19, and 22 in
network 2, which have lengths of 800 meters, and links 2, 7, and 11 in network 2,
which have lengths of 400 meters – a free-flow speed of 10 m/s, ashock wave speed of
-5 m/s, a jam density of 200 veh/km, and a saturation rate of 2000 veh/h. In network 1,
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12 decision variables – 8 green fractions and 4 en-route routing decisions – have to be
determined at every time step and in network 2 this mounts up to 42 decision variables
– 18 green fractions and 24 en-route routing decisions. The en-route routing decisions
are only allowed to vary between 0.1 and 0.9 to ensure that alllinks are utilized. The
simulation period is set to 1800 seconds. The demand patterns used for the different
evaluations are shown in Table 5.1 and Table 5.2.
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Figure 5.1: The two networks that are used for the evaluations. Note that not all links have the same
lengths although the figure suggest otherwise.

The LTM as detailed in Section 5.2 is used as the prediction model in the MPC strategy
and the process model that represents the ‘real’ world. The main difference between
the two models is the sampling time which is 10 seconds for theprediction model, and
1 second for the process model. Due to this, the prediction model is more efficient
but also less accurate. The controller sampling time step isset to 60 seconds, meaning
that every 60 seconds a new optimization is performed and that the control signal is
constant during these 60 seconds. The prediction horizon was set to 60 steps.

The algorithm as described in Section 5.3 and referred to asSLP-I was implemented
in Matlab using the following algorithms and settings. The linear optimization prob-
lem detailed in Section 5.3.4 was solved using the ‘dual Simplex’ algorithm of the
‘linprog’ function of Matlab. The stopping criteria of the SLP algorithm as detailed in
Section 5.3.5 and Section 5.3.6 were chosen as follows:ǫls = 1 · 10−4, Imax,ls = 100,
ǫstop = 5 · 10−3, andImax = 15, which were found by trial-and-error. The maximum
step size of the LP optimization detailed in Section 5.3.4 was set toδUmax = 0.2.
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5.4.2 Qualitative analysis: the behavior of the controller

The qualitative analysis is carried out in order to study thebehavior of the algorithm.
The main idea is that it is studied to what extent the control action is in accordance
with expectations. To this end, network 1 is used together with the demand pattern
displayed in Table 5.1. The bottleneck capacity of link 9 is set to 2000 veh/h during
the entire simulation and the bottleneck capacity of link 12is set to 2000 veh/h for the
first 900 seconds and after that it is reduced to 50 veh/h. In this way, the traffic will
be in free flow during the first 900 seconds. After that, a queuewill start to build up
in link 6, which can spill-back over time causing delays in links 5 and 10 so that both
free-flow and spill-back conditions can be reproduced in onesimulation.

Note that link 8 is much longer compared to the other links. Hence, in free-flow condi-
tions the controller will try to send as much traffic towards destinations 3 and 12 over
link 5 instead of link 8. However, when the queue in link 6 starts to spill-back towards
link 5, it will cause delays in link 5 so that it becomes more efficient to send traffic via
link 8. Figure 5.2 A shows the evolution of the en-route routing decisions over time
and Figure 5.2 B shows the evolution of the number of vehiclesin links 5 and 6 over
time. It can be observed that around time 1350 s a queue startsto build up in link 5,
in line with expectations, around time 1320 s the controllerstarts to send traffic from
origin 4 via link 8 and around time 1370 s it starts to send traffic from origin 7 via link
8 as well.
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A) Evolution of en-route routing decisions over time
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Figure 5.2: A) evolution of the en-route routing decisions over time. B) number of vehicles in links 5
and 6 over time. Around the time when a queue starts to build upin link 5, the controller starts to send
traffic to destinations 3 and 12 via link 8.
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Table 5.1: O-D demand in veh/h for testing the qualitative behavior

❍
❍
❍
❍
❍
❍❍

O
D

9 12 3 6

1 100 100 500
4 100 100 100 100
7 500 100 100 100
10 500 100 100

5.4.3 Quantitative analysis: comparative analysis

The quantitative analysis is carried out using five different MPC strategies. They all
use the same prediction model with a sampling time step of 10 seconds and a prediction
horizon of 60 steps. Every controller is given a set of computation time budgets per
network type. A simulation is run for every computation timebudget. The optimization
algorithms are allowed to start from various starting points until the CPU time budget
is exceeded. The initial starting point is equal to the control signal obtained at the
previous controller time step, if available. In the case that the CPU budget is not
exceeded, the optimization is repeated from a new, randomlyselected starting point.

The SLP-I algorithm was compared to the following optimization algorithms

SLP-II: The second optimization algorithm is similar to the SLP-I algorithm. How-
ever, this algorithm does not consider the impact of past, upstream control sig-
nals on the current turn fraction by removing the impact of upstream links in
(5.46). In this way it can be studied whether the linearization procedure de-
scribed in this paper leads to a better trade-off between computation time used
and realized throughput.

SLP-I-FP: The third algorithm is similar to the first. However, the line-search step
detailed in Section 5.3.5 is skipped by settings∗ = 1 in (5.53). In this way, the
added value of the line-search step can be studied.

SLP-II-FP: The fourth algorithm is similar to the second. However, the line-search
step detailed in Section 5.3.5 is skipped by settings∗ = 1. Compared to the SLP-
I-FP algorithm, this algorithm does not consider the impactof past, upstream
control signals on the current turn fraction.

SQP: The final algorithm tested is the optimization approach called SQP of the ‘fmin-
con’ solver that is available in Matlab. This is a commonly used solver for
non-linear optimization problems. This algorithm uses a numerical procedure
to determine the gradient. A comparison with this algorithmcan give insight
into the computation time gain when using an analytic linearization. Also, when
given sufficient computation time it can give an idea of the maximum achievable
performance.
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The comparison between the different algorithms enables tostudy the relative perfor-
mance. By comparing between the SLP-I and SLP-II algorithm,the added value of
taking into account more information when solving the linear optimization problem.
It is expected that the SLP-I algorithm may require more timebut that it will lead to a
better performance. By settings∗ = 1 in the SLP-I-FP and SLP-II-FP algorithms, the
added value of the line search in the optimization algorithmcan be studied. The idea
is that the line-search will increase the computation time,but on the other hand may
also provide better convergence of the optimization algorithm. The reason for this is
that settings∗ = 1 may prevent these algorithms from reaching the optimum. Finally,
the comparison with the SQP algorithm provides insight intothe trade-off between
computation time and performance.

0 200 400 600

Average CPU time (s)

165

170

175

180

185

T
T

S
 (

v
eh

-h
)

Network 1: CPU time vs TTS

0 200 400 600

Average CPU time (s)

210

220

230

240

250

260

T
T

S
 (

v
eh

-h
)

Network 2: CPU time vs TTS

SLP-I

SLP-II

SLP-I-FP

SLP-II-FP

SQP

Min SQP

Figure 5.3: Impact of increasing the CPU time budget on the TTS for network 1 (left) and network 2
(right). The blue dashed horizontal line indicates the lowest TTS realized using the SQP algorithm.

The quantitative results are summarized in Figure 5.3 and Table 5.3 for the demand
patterns reported in Table 5.2. The table and figure show the realized TTS for different
CPU time budgets per iteration. It must be noted that both theCPU time budget and the
average CPU time used over the iterations are reported here.The reason for this is that
the algorithms cannot be stopped at an exact CPU time budget but only after the budget
has been exceeded. The average CPU times are also used in Figure 5.3. It must also be
pointed out that for network 2 with the SQP algorithm, only results with a very large
CPU time budget are available. The reason for this is that thenumerical linearization
of the model takes a considerable amount of time so that it wasonly feasible to run the
algorithm from a single starting point per iteration.
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Table 5.2: O-D demands in veh/h from time 100 s to 1200 s for testing the quantitative behavior. The left table shows the demand pattern of network 1, and the right table
shows the demand pattern of network 2.

Network 1 Network 2
❍
❍
❍
❍
❍
❍❍

O
D

9 12 3 6
❍
❍
❍
❍
❍
❍❍

O
D

16 20 24 4 8 12

1 476 357 360 1 347 313 266 270
4 359 240 243 369 5 304 243 195 200 247
7 354 234 238 363 9 252 191 144 148 195 256
10 349 352 478 13 251 191 143 147 194 255

17 240 193 197 244 305
21 258 262 309 370
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Table 5.3: Comparative results of realized TTS and CPU time used. *This result is not in line with the trend of the other realized TTS values of the SLP-I-FP algorithm. It is
caused by the convergence issue of the SLP-I-FP algorithm. **The SQP algorithm as run from 1 starting point without a CPU time budget, hence, this shows the best possible
result.

Network 1
SLP-I SLP-II SLP-I-FP SLP-II-FP SQP

CPU
budget

TTS CPU TTS CPU TTS CPU TTS CPU TTS CPU

30 166.23 31.66 177.50 31.45 168.98 30.94 182.70 30.90 391.54 244.10
60 167.08 61.58 176.59 61.16 167.30 61.12 182.72 60.88 391.54 234.72
90 166.26 91.45 177.23 91.19 168.45 91.07 182.76 90.89 177.53 161.66
120 166.26 121.63 175.52 121.71 171.88* 121.17 182.60 120.62 177.53 160.37
180 165.91 181.64 176.34 181.25 168.63 181.13 182.54 181.06 174.46 234.14
300 166.71 301.51 175.24 301.36 168.03 301.05 182.62 300.98 170.69 367.71
600 165.89 601.50 175.32 601.19 167.24 601.15 182.73 596.85 166.19 702.15
** - - - - - - - - 164.54 3276.29

Network 2
SLP-I SLP-II SLP-I-FP SLP-II-FP SQP

30 222.00 36.17 256.03 34.35 221.93 34.53 255.42 33.11 - -
60 221.74 64.12 257.82 63.26 223.21 66.98 255.30 61.57 - -
90 220.62 94.58 254.74 95.34 223.56 94.15 255.29 92.21 - -
120 220.73 126.76 245.89 124.99 222.84 123.85 255.30 122.07 - -
180 221.04 186.34 250.03 183.90 223.88 184.91 255.31 182.10 - -
300 221.53 304.20 248.30 305.04 223.95 304.62 255.32 302.45 - -
600 219.03 605.04 247.55 606.37 223.86 604.68 255.31 602.35 - -
** - - - - - - - - 207.87 32585.85
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The following observations can be made from the results:

• Both the SLP-I and SLP-I-FP algorithm show a lower TTS for different CPU
time budgets compared to the SLP-II and SLP-II-FP algorithms. This indicates
the added value of including the impact of the control signalon the turn fractions
at downstream links in the future.

• The SLP-I algorithm outperforms the SLP-I-FP algorithm as does the SLP-II
algorithm outperform the SLP-II-FP algorithm. This indicates that the inclusion
of the line-search step when selecting a new point in the optimization algorithm
does lead to better performance. An inspection of the algorithm indeed showed
that the FP algorithms do not always converge.

• Extending the CPU time budget of the SLP-I algorithm does notlead to large
TTS gains. This indicates that for the selected networks, the controller does not
require many starting points to find the optimum, since, the increased CPU time
budget mainly results in an increase of the number of starting points explored by
the algorithm.

• The TTS of the SLP-I-FP algorithm increases when increasingthe CPU time
budget. This is probably related to the fact that it does not always converge so
that adding more starting point leads to unexpected controller behavior.

• A clear decrease in TTS is visible when extending the CPU timebudget of the
SQP algorithm. When allowing the SQP algorithm as much time as needed
to satisfy the stopping criteria from a single starting point, it is able to realize
a better TTS compared to the SLP-I algorithm. This indicatesthat the SLP-I
algorithm does not find the best possible solution. However,it does realize sub-
optimal performance in much less CPU time, for instance, theSLP-I algorithm
realizes a TTS of 166.23 veh·h in 31.7 seconds while the SQP algorithms re-
quires 702.2 seconds to realize a comparable TTS of 166.19 veh·h for network
1. In the case of network 2, the SQP algorithm requires over 9 hours per iteration
to find the optimum of 207.9 veh·h while the SLP-I algorithm is able to achieve
a TTS of 220.6 veh·h in 90 seconds which is 6% higher but realized in much less
time.

In conclusion, the quantitative results show the added value of the linearization proce-
dure and the line-search step in the SLP optimization algorithm.

5.5 Conclusion and recommendations

This paper proposed an efficient MPC algorithm of the SLP-type for real-time control
of en-route decisions and traffic signals. The algorithm is able to realize a better trade-
off between computation time and realized throughput when compared to standard
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numerical optimization algorithms. This was realized by adopting an efficient traffic
flow model, namely the LTM, as the prediction model, and by exploiting an analytic
procedure to approximate the linearization of the model in the optimization algorithm.

Evaluations were carried out to assess the quality of the solution found by the algo-
rithm. Qualitative analyses revealed that the control strategy is able to re-route traffic to
the shortest paths in free-flow conditions, and that it is able account for the destination-
specific flows when distributing the queues over the network in oversaturated traffic
regimes. Quantitative analyses that compared the realizedTTS for different CPU time
budgets showed the added value of the linearization procedure and the use of the line-
search step in the optimization algorithm. Although the controller realizes sub-optimal
performance, it does realize a better trade-off between CPUtime and realized through-
put.

Further research can focus on the extension of the algorithmin several ways. This
work assumed a 100% compliance to the en-route routing decisions. This assumption
may be relaxed by taking the compliance into account in the framework, or the com-
pliance may be realized by providing an (monetary) incentive to the road user. Also,
the current algorithm considers all the possible paths between origins and destinations.
The algorithm may be extended to only include the relevant paths so that fewer paths
have to be studied when linearizing the model. Additionally, a more complex Jaco-
bian may be derived by including not only the actual travel time but also including the
propagation of information via the queuing dynamics. It must be noted that the current
algorithm already realizes near-optimal performance so that it is not clear whether such
an extension will lead to much better performance. Additionally, this is a significant
theoretical extension of the framework. Further research can investigate the application
in a more practical set-up where, among other things, delaysbetween measurements
and actuators are included. Finally, the current algorithmfocused on the optimization
of aggregated dynamics and a specific network topology. Further research has to be
carried out to relax these assumptions.
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5.A Linearization details

The JacobianJRD
l′,l,r of the turn-rateηl′,l(k) with respect to the routing decisionuD

r (k)

that corresponds to destinationd is a diagonal matrix with thekth diagonal element
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andk = 1 : Kp given as:

δηl′,l(k)

δuD
r (k)

=
qoutl′,d(k)

qoutl′ (k)
. (5.58)

The JacobianJRD
l′′,l′,l,r of the turn-rateηl′,l(k) with respect to the routing decisionuD

r (k)

on link l′′ corresponding to destinationd is more complex to derive. The reason is
that there can be multiple pathsp ∈ IPaths

l′′,l′ that lead from linkl′′ to link l′ where
the setIPaths

l′′,l′ contains all the paths between linkl′′ and link l′. A Jacobian has to be
determined for every path because the travel times on the different path can vary.

Denote withIL,P
p the ordered set of links on the pathp. The first link in the setIL,P

p

is link l′′. The JacobianJRD,IN

l′′,IL,P
p (2),r

of the inflow of linkIL,P
p (2) – i.e., the link directly

downstream of linkl′′ – oriented to destinationd with respect to the routing decision
uD
r (k) is a diagonal matrix of which thekth diagonal element defined as:

δqin
I
L,P
p (2),d

δuD
r

= qoutl′′,d . (5.59)

Next, define the following relation between the inflow of linkIL,P
p (2) and the outflow

of link l′ = IL,P
p (nL,P

p ) with nL,P
p the number of links on pathp:

q̄outl′ = M tr
l′

nL,P
p −1
∏

l′′=2

(

MD
I
L,P
p (l′′),IL,P

p (l′′+1),d
M tr

I
L,P
p (l′′)

)

q̄inl′ . (5.60)

Here, the matrixM tr
l maps the inflow vector̄qinl (veh/h) of linkl to the outflow vector

q̄outl (veh/h)of linkl so that:

q̄outl = M tr
l q̄

in
l , (5.61)

and the matrixMD
l′,l,d maps the outflow vector̄qoutl′,d oriented to destinationd on link l to

the inflow vector̄qinl,d oriented to destinationd on link l:

q̄inl,d = MD
l′,l,dq̄

out
l′,d . (5.62)

Now, we can find the JacobianJRD,OUT
yl,l′,r of which the element on rowi and columnj

is defined as:

δqoutl′ (i)

δuD
r (j)

, (5.63)

i.e., the derivative of the outflow from linkl′ with respect to the derivative of the en-
route decisiond on link l′′. This Jacobian is found by adding the derivatives between
the two links over the different paths:

JRD,OUT
yl,l′,r =

∑

p∈IPaths
l′′,l′

(

M tr
l′

nL,P
p
∏

l′′=2

(

MD
I
L,P
p (l′′),IL,P

p (l′′+1),d
M tr

I
L,P
p (l′′)

)

JRD,IN
yl,IL,P(2),r

)

. (5.64)
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Using this Jacobian, it becomes possible to compute the Jacobian JRD
l′′,l′,l,r, which is

given as:

JRD
l′′,l′,l,r = J turn,OUT

l′,l,d JRD,OUT
l′′,l′,l,r , (5.65)

with the JacobianJ turn,OUT
l′,l,d a matrix where thekth diagonal element is given as:

δηl′,l(k)

δqoutl′,d(k)
. (5.66)

Similarly, the JacobianJb
l′′,l′,l of the derivative of turn-fraction form linkl′ to link l to

the effective green fraction on linkl′′ is given as:

Jb
l′′,l′,l =

∑

d∈ID
l′′

J turn,OUT
l′,l,d . . . (5.67)

∑

p∈IPaths
l′′,l′

(

M tr
l′

nL,P
p
∏

l′′=2

(

MD
I
L,P
p (l′′),IL,P

p (l′′+1),d
M tr

I
L,P
p (l′′)

)

MD
l′′,IL,P(2),dJ

b,OUT
yl,d

)

.

The JacobianJb,OUT
yl,d is a diagonal matrix of which thekth diagonal element is given

as:

δqoutl′′,d(k)

δbeffl′′ (k)
=

qoutl′′,d(k)

qoutl′′ (k)
qsatl′′ . (5.68)

5.B Overview of variables

In order to provide the reader with a quick overview of the different variables used in
the following sections we provide an overview of the mathematical notation:

• Timing

– The model that is used in this paper is a discrete-time model.To this end,
the time stepk (-) refers to the period

[

T k, T (k + 1)
)

(h) whereT (h) is
the model sampling time.

– The indexkfree (-) represents the number of time steps needed to travel
through the link in free-flow conditions. The fractionγfree (-) is the fraction
of a time step thatkfree exceeds the free-flow travel timetfree (h) so that
tfree = (kfree + γfree)T .

– The indexkshock (-) represents the number of time steps needed for a shock
wave to travel through the link. The fractionγshock (-) is the fraction of a
time step thatkshock exceeds the shock wave travel timetshock (h) so that
tshock = (kshock + γshock)T .
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– The indexktr(k) (-) represents the number of time steps that a vehicle that
exits the link at time stepk needed to travel through the link. The fraction
γtr(k) (-) is the fraction of a time step thatktr(k) exceeds the travel time
ttr(k) (h) so thatttr(k) = (ktr(k) = γtr(k))T .

– The number of time steps of the prediction horizon is denotedby Kp (-)

• The sets and indexes used are listed below. Note that sets arereferred to with the
symbolI:

– Links are referred to asl ∈ IL (-) whereIL is the set of all links in the
network

– Origins are referred to aso ∈ IO (-) whereIO is the set of all origins in the
network

– Destinations are referred to asd ∈ ID (-) whereID is the set of all desti-
nations in the network.

– Routing decisions are referred to asr ∈ IRD (-) whereIRD is the set of all
the routing decisions

– Nodes are referred to asm ∈ IN (-) whereIN is the set of all nodes in the
network

– Conflicts between links on a node are referred to with indexc (-)

– Paths between linksl andl′ are referred to asp ∈ IPaths
l,l′ (-) whereIPaths

l,l′ is
the set of all paths between linksl andl′

– The setIL,P
p contains all the link indexes on pathp

• In the case that a distinction has to be made between indexes of the same type,
an accent is used, for instance, for instance, linkl and linkl′.

• Variables

– The variablesN in(k) (veh) andNout(k) (veh) denote the cumulative inflow
and outflow of origins and links

– The numberNmax
l (veh) is the maximum number of vehicles that fits in a

link

– The factorβl(k) (-) is the reduction factor of the demand to account for an
outflow reduction due to spill-back

– The fractionbl(k) (-) is the fraction of green time given to a linkl

– The fractionbeffl (k) is the fraction of the time that green is effectively used
by the link

– The flowqsatl (veh/h) is the saturation rate, i.e. the link outflow capacity

– The flowqinl (veh/h) is the inflow of linkl
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– The flow qin,spl (k) (veh/h) is the maximum receiving flow of linkl due to
spillback

– The flowqoutl (veh/h) is the outflow of linkl

– The flowqout,max
l (k) (veh/h) is the maximum allowed outflow of a link

– The flowqino (veh/h) is the demand at origino. The flowqino,d is the demand
bound to destinationd at origino.

– The flowqoutl,d (k) (veh) indicates the outflow of linkl bound to destination
d.

– The variableūD
l,l′,d(k) (-) indicates the fraction of the flowqoutl,d (k) (veh)

moving to downstream linkl′.

– The variableuD
r (k) (-) is the en-route decision variable.

– The symbole is used for errors between the states predicted by the non-
linear model and the linear model.

– The variableZTTS (veh·h) expresses the total time spent (TTS) by all the
vehicles in the network

– The vectorX contains a prediction of the traffic state

– The vectorX0 contains the initial traffic state

– The vectorD contains the prediced disturbances

– The vectorU contains a candidate control signal

– The vectorŨ contains the effective value of a candidate control signal

– The symbolM is used to indicate matrices

– The symbolV is used to indicate vectors

– The symbolJ is used to indicate a Jacobian matrix

– The fractions (-) is the step-size taken in the line-search step of the algo-
rithm

– The thresholdsǫstop (-) andǫls (-) are used as stopping criteria for the opti-
mization algorithms

– The parametersImax (-) andImax,ls (-) are used as maximum numbers of
iterations of the optimization algorithms

• In some cases a bar·̄ is placed over a variable to indicate that the variable is used
in the linear optimization problem.





Chapter 6

Hierarchical Control Framework for
Coordination of Intersection Signal
Timings in all Traffic Regimes

This chapter proposes a hierarchical control framework forthe improvement of urban
network throughput. The hierarchical control framework realizes a translation of the
optimized control signal of the MPC strategy proposed in Chapter 4 to actual signal
timings. This chapter is based on the following paper that iscurrently under review:

G.S. van de Weg, H.L. Vu, A. Hegyi, and S.P. Hoogendoorn, A Hierarchical Control
Framework for Coordination of Intersection Signal Timingsin all Traffic Regimes.
Transactions on Intelligent Transportation Systems, submitted 2017-4-13.

Abstract

In this paper we develop a hierarchical approach to optimizethe signal timings in an
urban traffic network taking into account the different dynamics in all traffic regimes.
The hierarchical control framework consists of two layers.The network coordination
layer uses a model predictive control strategy based on a simplified traffic flow model
to provide reference outflow trajectories. The reference outflow trajectories represent
average link outflows over a time horizon which could be simultaneously nonzero for
conflicting directions and which require to be mapped to a green-red switching sig-
nal that can be applied to traffic lights. To this end, the individual intersection control
layer then selects at every individual intersection the signal timing stage that realizes an
outflow which has the smallest error with respect to the reference outflow trajectory.
The proposed framework is tested using both macroscopic andmicroscopic simula-
tion. It is shown that the control framework can outperform agreedy control policy
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that maximizes the individual intersection outflows, and that the control framework
can distribute the queues over the network in a way that the network outflow is im-
proved. Simulations using a macroscopic model allow the direct application of the
reference outflows computed by the network coordination layer, the results indicate
that the mapping of the reference outflows to the detailed signal timings by the indi-
vidual intersection control layer only introduces a small performance loss.

6.1 Introduction

Coordination of the signal timings of intersections to improve the performance of ur-
ban traffic networks is a complex problem. One of the main reasons for this is that
coordination requires accounting for the impact of the signal timings on the propaga-
tion of traffic over the network. This introduces several issues as discussed below.

One of the main issues of controlling signal timings plans isthat they have a switching
structure, meaning that a stage – i.e., a set of streams that can be active simultaneously
– can either be green or red. This introduces interruptions (or discontinuities) in the
traffic flows at intersections. Due to these discontinuities, optimizing the signal timing
plans results in a mixed integer optimization problem that is difficult to solve. This
is problematic, since only a limited amount of computation time is available for the
real-time application of traffic control strategies. Additionally, other properties of the
signal timing plan such as clearance times, offsets, (predetermined) stage sequences,
and cycle times, add to the complexity.

Apart from that, the direction of the interaction between intersections changes when the
traffic regime changes as discussed in [van de Weg et al., 2016]. More specifically, in
the undersaturated regime – i.e., when queues are completely emptied during a green
time period – an increase in the outflow of an upstream intersection can lead to a
change in the outflow at a downstream intersection. This relation is typically used
in green-wave approaches that allow vehicles to pass multiple intersections without
stopping. In the saturated regime – i.e., when queues neither become empty, nor will
spill back to upstream intersections – there is no such strong coupling. Finally, in
the oversaturated regime – i.e., when queues spill back to upstream intersections – a
change in the outflow at a downstream intersection leads to a change in the outflow of
an upstream intersection at a later time instant. All these effects have to be taken into
account when optimizing the timing of a signal controller.

The aim of this paper is to design a control strategy for the coordination of signal
timings of multiple intersections. The control strategy has to account for all the traffic
regimes. It also has to be real-time feasible, meaning that it can compute the control
actions within the controller sampling time. The controller sampling time is the time
period between updates of the control signal, which is typically in the range of one to
several minutes.



Chapter 6. Hierarchical Control Framework for Coordinating Signal Timings 151

6.1.1 Literature

This section discusses approaches to the urban traffic network control problem. We
examine for what traffic regimes the different strategies are designed, whether they
are real-time feasible, and in what way signal timings are considered. First, various
well-known or recent control strategies are discussed. After that, the review focuses
on model-based predictive control strategies.

Approaches to the urban traffic network control problem

The first approaches to the coordination of intersections focused on performance im-
provement in the undersaturated traffic regime. A well-known example is the
MAXBAND approach proposed by Little [1966] for the creationof green-waves be-
tween intersections. MAXBAND computes the signal timings off-line in such a way
that traffic can pass multiple intersection without stopping. A disadvantage of off-
line control is that it cannot adapt to changes in the traffic demand. SCOOT [Hunt
et al., 1982] and SCATS [Luk et al., 1982] are examples of widely used control strate-
gies for undersaturated traffic regimes that can dynamically adjust to changes in the
traffic situation. The performance of SCOOT may deterioratein saturated and oversat-
urated regimes according to Papageorgiou et al. [2003]. Recently, Lämmer and Hel-
bing [2008] proposed a decentralized algorithm that decides at each time instant which
stage to actuate in order to reduce the delay at every intersection in the undersaturated
regime.

Diakaki et al. [2003] proposed the TUC algorithm, which is specifically designed to
improve the urban traffic network throughput in the saturated regime. TUC has a feed-
back structure, and adjusts the green times at an intersection based on the queue lengths
in the network. Various extensions to TUC have been proposed, such as the inclusion
of green-waves [Kraus Jr et al., 2010]. Recently, the max-pressure (or back-pressure)
algorithm was proposed to address the coordination problemin the saturated regime
[Varaiya, 2013, Le et al., 2015]. The max-pressure algorithm decides at every time
instant which stage to actuate. This decision is made using information on the queues
located directly upstream and downstream of the intersection, so that no centralized
communication structure is required.

The performance of the aforementioned control strategies may deteriorate in the over-
saturated regime, since the impact of spill back and the corresponding shock wave
dynamics are not considered in the controller design. In that regime, congestion may
propagate through the network causing a loss of efficiency atintersections and poten-
tially leading to gridlock [Daganzo, 2007]. One way to address this issue is by perime-
ter control based on the network fundamental diagram (NFD) [Keyvan-Ekbatani et al.,
2012]. The aim of this strategy is to keep the number of vehicles in the network below
or at the critical density of the network fundamental diagram so that congestion is pre-
vented. An issue with this approach is that the shape of the NFD may be affected by
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the intersection control strategies.

In conclusion, all these approaches are designed to improvethe performance in only
one or two of the three traffic regimes. A promising approach to include all the traffic
regimes is the application of a predictive control strategy. However, this is a challeng-
ing task, as discussed in the next section.

Model-based predictive control approaches

Model predictive control (MPC) is a popular method to determine a control action that
accounts for the long-term impact of a control signal on the system’s performance. It
is typically used to determine a control signal over a periodof time called the control
horizon, that optimizes the performance over a period of time called the prediction
horizon [Garcia et al., 1989, Mayne et al., 2000]. MPC is a procedure in which the
impact – expressed using an objective function – of a candidate control signal on the
propagation of traffic over the network is predicted using a prediction model. At every
controller sampling time instant, the control signal that optimizes the objective function
is recomputed using the most recent traffic state measurements. This is commonly
referred to as the receding horizon principle.

Lo [1999] and Van den Berg et al. [2007] have proposed MPC approaches for the
optimization of signal timings. Lo [1999] used the Cell-Transmission Model (CTM)
to predict the traffic dynamics, and modelled the signal timings using binary variables
– i.e., a stream can receive either green (1) or red (0). This resulted in a mixed-integer
linear programming problem (MILP). Van den Berg et al. [2007] used the horizontal
queuing model of Kashani and Saridis [1983] to model all the traffic regimes, resulting
in a non-linear optimization problem. Lin et al. [2011] usedthe S-model, which is a
simplification of the model of Van den Berg et al. [2007], to formulate another MILP
optimization problem. Despite the ability to explicitly consider signal timings and
all traffic regimes, all of the resulting non-linear and MILPoptimization problems
are cumbersome to solve. Due to this, these methods are not real-time feasible when
applied to medium to large-scale networks of several (tens of) intersections.

The scalability problem can be mitigated by aggregating thetraffic dynamics to (sev-
eral) tens of seconds and replacing the binary signal timings with average outflows so
that continuous or linear optimization problems can be formulated [van de Weg et al.,
2016, Aboudolas et al., 2010, Le et al., 2013]. Aboudolas et al. [2010] proposed a
linear MPC approach based on the store-and-forward model for the saturated regime
which resulted in a drastic reduction of the computation time. Le et al. [2013] pro-
posed an MPC approach based on a modified version of the CTM forundersaturated
and saturated regimes. Recently, van de Weg et al. [2016] proposed the use of the Link
Transmission Model (LTM) in a linear MPC framework. This approach is capable
of reproducing all traffic regimes and is real-time feasible. However, none of these
methods consider signal timings, so they are not directly applicable to a real traffic
network.
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6.1.2 Research approach and contributions

This paper develops a real-time feasible, hierarchical control framework for the con-
trol of signal timings in order to improve the urban network throughput in all traffic
regimes. The main contribution of the research is the designof a real-time feasible
framework for the control of signal timings that can optimize the distribution of traffic
over a network while taking into account the upstream propagating waves caused by
spillback.

The hierarchical control framework consists of two layers.The top layer – called
the network coordination layer – consists of the linear MPC strategy for urban traffic
networks (LML-U) of van de Weg et al. [2016] that optimizes the aggregated traf-
fic dynamics. The LML-U strategy distributes the traffic overthe network so that the
average throughput is maximized over a time horizon. In thispaper, the optimized con-
trol signal is translated to near-future reference outflowsfor the entire time horizon of
the links in the network. The reference outflow trajectoriescannot be directly applied
to the network since they represent average traffic flows while traffic lights require a
green-red switching signal. The bottom layer – called the individual intersection layer
– consists of the local intersection controllers. The goal of these controllers is to select
the stage at every time step that minimizes the error with thereference outflows. The
framework is designed in such a way that control strategies other than the one imple-
mented in this paper may be used in both the top and bottom layers. The proposed
framework is evaluated using simulation experiments.

The second contribution of the paper is to show that comparedto locally optimizing the
intersection outflows, the resulting control strategy can improve the throughput by dis-
tributing traffic over the network in spillback conditions.This is shown quantitatively
by comparing the proposed strategy to a strategy that optimizes the local intersection
outflows, and qualitatively by studying the realized trafficstates.

The third contribution of the paper is to provide insight into the controller performance
when varying the controller sampling times and when appliedto different process mod-
els. The reason why this is studied is that an important issueof MPC strategies is that
the mismatch between the prediction and process model may negatively affect the con-
troller performance. One way to limit the impact of this mismatch is by reducing the
sampling time of the controller, so that the possible prediction errors can be corrected
more frequently by using new measurements. In the proposed framework, the sampling
times of the two layers can be varied, both of which may affectthe controller perfor-
mance. Reducing the sampling time of the individual intersection layer allows more
frequent switching, leading to a better tracking of the reference outflow trajectories;
reducing the sampling time of the network coordination layer allows for a more fre-
quent correction of prediction errors. Qualitative analyses are carried out in which the
sampling times of the different layers are varied. In addition, simulations are carried
out with two different process models, namely, the LTM and the microscopic model
Vissim that has a larger mismatch with the prediction model.
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6.1.3 Design considerations

Several factors were considered when designing the controlstrategy in order to sim-
plify the problem or to emphasize the most important controlfeatures.

As stated before, an intersection control program is rathercomplex. To simplify this,
we assume that there is no fixed stage sequence. Also, no minimum green times, and no
fixed cycle times are used. Clearance times – i.e., the time used to clear the intersection
between two conflicting stages – are included in the approach.

The control strategy has to be real-time feasible. This means that the time it takes
to compute the control signal is shorter than the controllersampling time, which is
typically in the range of one to several minutes. A longer controller sampling time
is beneficial, since it allows more time to optimize the control signal. However, the
controller sampling time should be kept short so that the controller can quickly respond
to traffic changes and unexpected events.

The aim of the controller is to improve the throughput. In practice, other performance
indicators might also be included, such as equity, pollution, and reliability. Their in-
clusion, however, is beyond the scope of this paper.

Finally, the paper focuses on networks used solely by motorized traffic. The extension
to networks used by heterogeneous traffic – e.g. cars, trucks, public transport, and
bicycles – is left for further research.

6.2 Controller design

In order to bridge the gap between the high computation time required by optimiza-
tion based control strategies and the low computation time,but lower expected per-
formance, of feedback-based control strategies, a hierarchical control framework is
proposed in this paper. The framework is presented in Figure6.1 and consists of two
layers:

1. The top layer uses an aggregated prediction model to optimize the network
throughput everyT ref seconds, whereT ref is in the range of one to several min-
utes. The control signal consists of the fractions of green time that every stream
in the network has to realize, but which are not directly applicable by the traffic
signal controllers. Nevertheless, the desired behavior ofthe traffic system – for
instance, a prediction of link outflows – can be derived from this signal. Hence,
reference outflow trajectories can be derived from the optimized signal, such as
the reference cumulative outflow of a link, or a reference number of vehicles that
has to be present in the link.

2. The bottom layer consists of the local intersection controllers. The task of the
local intersection controllers is to track the reference outflows. This is realized
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by selecting everyT local seconds – in the range of 5 to 10 seconds – the stage
that is expected to lead to the smallest reference tracking error in the nextT local

seconds. The local intersection controllers may not be ableto track the reference
outflows exactly, because they were determined using a simplified traffic flow
model. However, it is expected that the average behavior of the local intersection
controllers will lead to improved network performance whenthe tracking error
remains small.

Measurements

Process

Propagation of traffic

Individual intersection controllers

- Reference tracking 

- Actuation of stages

Reference trajectory

Control signal

Traffic demand

Network coordination layer

- Optimize throughput

- Output: outflow reference 

                trajectory

               

Bottom layer

Top layer

T local

T ref

Figure 6.1: Schematic overview of the control strategy

The advantage of this framework is that the signal timings are determined in a decen-
tralized way; i.e., every intersection requires only measurements of the direct upstream
and downstream links. However, due to the tracking of the reference outflows, the in-
dividual intersection controllers are capable of realizing network-wide performance
improvements.

The idea behind the proposed framework is that different control algorithms can be
applied to the different layers. In this way, the framework can be adapted to different
traffic networks, situations, and desired controller properties. As a proof-of-concept,
Section 6.2.2 details the implementation of a linear MPC strategy – called LML-U
– based on the link transmission model in the coordination layer, and Section 6.2.3
presents a greedy reference tracking (GRT) strategy for theindividual intersection con-
troller layer. Hence, the proposed strategy is called LML-U+ GRT. In Section 6.3,
simulation results of this implementation are presented.

6.2.1 Timing

Discrete timing is considered in this paper. The time stepk (-) and sampling timeT
(s) refer to the periodt ∈

[

Tk, T (k + 1)
)

(s). It is assumed that the sampling time of
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Figure 6.2: Schematic overview of the timing used. In this example, the sampling timeT is 1 second,
the intersection controller sampling timeT local is 5 seconds, the prediction model sampling timeT c is
10 seconds, the coordination layer sampling timeT ref is 60 seconds, and the prediction horizonNp is
30 steps.

the measurements is equal toT . The prediction model has a sampling time stepkc (-)
and sampling timeT c (s). It holds thatT c = ǫcT with the factorǫc ∈ Z+ – i.e., it is a
strictly positive integer. The intersection controllers select a new stage to actuate every
controller sampling time stepklocal (-) with controller sampling time stepT local (s) for
which it holds thatT local = ǫlocalT , with the factorǫlocal ∈ Z+. The reference outflow
trajectory is updated every time stepkref (-) with the sampling time stepT ref = ǫrefT

seconds, withǫref ∈ Z+. It also holds thatT ref = ǫc,refT c, with ǫc,ref ∈ Z+. It
follows thatk = (klocal − 1)ǫlocal + 1 = (kc − 1)ǫc + 1 = (kref − 1)ǫref + 1, and that
kc = (kref − 1)ǫc,ref + 1. Figure 6.2 provides an overview of the timing used in this
paper.

It must be noted that a measurement that is available at time stepk reflects the traffic
state at the beginning of the time periodk. It is thus not possible to change the control
action at time stepk. Hence, at time stepk the control signal for the next time step
k + 1 will be determined. So, in this paper the control action at time stepklocal is
determined based on the data available at time step(klocal − 1)ǫlocal = k.

6.2.2 Network coordination layer: LML-U approach

The task of the network coordination layer – i.e., the top layer of the proposed frame-
work – is to determine the reference outflows that optimize the network throughput.
Recall that the coordination layer sampling timeT ref (s) is in the range of one to sev-
eral minutes. Hence, in order to satisfy real-time feasibility, the coordination layer has
to be able to compute the reference outflow trajectories within one to several minutes.

To this end, the recently developed linear model predictivecontrol strategy using the
link transmission model for urban traffic networks (LML-U) is chosen in the coordina-
tion layer [van de Weg et al., 2016]. This approach has the advantage that it considers
all relevant first-order traffic dynamics – i.e., upstream and downstream propagating
waves – using only two traffic states. Compared to segment-based models, such as the
CTM, this is more efficient from a computational point of view. The approach requires
a prediction of the traffic demand, turn-fractions, and maximum network outflows. Its
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output consists of the optimized fractions of green time used by the traffic streams in
the network. The remainder of this section first discusses the prediction model used in
more detail, next the optimization problem is introduced, and finally the approach to
compute the reference outflow trajectories from the optimization output is presented.

The prediction model

The prediction model used in the LML-U control strategy is the LTM. The main ele-
ments used here are links – indicated with indexiL (-) – and origins – indicated with
index iO (-). The traffic dynamics of origins and links are updated using two traffic
states; the cumulative link inflowN in

iL (k
c) (veh) and outflowNout

iL (kc) (veh), and the
cumulative origin inflowNO,in

iO
(kc) (veh) origin outflowNO,in

iO
(kc) (veh). Every out-

flow is controlled using a control parameterbeffiL (k
c) for links andbeff,O

iO
(kc) for origins

that expresses the effective fraction of green time used during the time stepkc. Note
that this optimization approach is presented in more detailin van de Weg et al. [2016].
The interested reader is referred to [Yperman, 2007] for a more detailed description of
the LTM.

The cumulative link outflow is updated using the following equation:

Nout
iL (kc + 1) = Nout

iL (kc) + qsatiL T cbeffiL (k
c) , (6.1)

whereqsatiL (veh/h) is the saturation rate. The cumulative link inflow ismodeled as the
sum of the outflows of upstream linksjL ∈ IL,us

iL
and originsiO ∈ IO,us

iL
multiplied

with the turn-fractionsηjL,iL(k) given as:

N in
iL (k

c + 1) = N in
iL (k

c)+
∑

jL∈IL,us

iL

(

ηjL,iL(k
c)beffiL (k

c)qsatiL T c

)

+ . . . (6.2)

∑

iO∈I
O,us

iL

(

ηiO,iL(k
c)beff,O

iO
(kc)qcap

iO
T c

)

,

where the setIL,us
iL

is the set of links directly upstream of linkiL and the setIO,us
iL

is
the set of origins directly upstream of linkiL. The fractionηjL,iL(kc) indicates the turn
fraction form linkjL to link iL, and the fractionηiO,iL(k

c) (-) indicates the turn fraction
form origin iO to link iL.

In order to model free-flow dynamics, the cumulative link outflow is bound from above,
so that vehicles cannot travel through the link faster than the free flow travel timetfreeiL

(s). This can be written as a constraint on the cumulative outflow given as:

Nout
iL (kc + 1) ≤ γc,free

iL
N in

iL (k
c − kc,free

iL
+ 2) + (1− γc,free

iL
)N in

iL (k
c − kc,free

iL
+ 1) .

(6.3)

In (6.3) the number of time stepskc,free
iL

= ⌈tfreeiL /T c⌉ (-), and the fractionγc,free
iL

=

kc,free
iL

− tfreeiL /T c (-) are used to linearly interpolate the cumulative curve asdetailed in
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[van de Weg et al., 2016]. The mathematical operator⌈·⌉ rounds the argument of the
function to the nearest integer that it higher than the argument of the function. In order
to satisfy CFL conditions it should hold thatkc,free

iL
≥ 2.

Similarly, upstream propagating waves caused by spillbackare included by bounding
the cumulative link inflow from above so that a vehicle can only enter a linktshockiL (s)
seconds after the vehiclenmax

iL (veh) has exited the link given as:

N in
iL (k

c + 1) ≤ γc,shock
iL

Nout
iL (kc − kc,shock

iL
+ 2) + . . . (6.4)

(1− γc,shock
iL

)Nout
iL (kc − kc,shock

iL
+ 1) + nmax

iL ,

with the number of time stepskc,shock
iL

= ⌈tshockiL /T c⌉ (-), and the fractionγc,shock
iL

=

kc,shock
iL

− tshockiL /T c (-). It should hold thatkc,shock
iL

≥ 2 in order to guarantee CFL
conditions.

Outflow limitations at the network are modeled as external disturbances – i.e., inputs
that cannot be affected by the control signal. So, when a linkis at an exit of the
network, an extra constraint is added:

Nout
iL (kc + 1) ≤ Nout

iL (kc) + qout,max
iL

(kc)T c , (6.5)

whereqout,max
iL

(kc) (veh/h) is the maximum outflow that can exit the link at time step
kc.

Origins are modeled as vertical queues via the following state update equations and
constraints:

NO,in
iO

(kc + 1) = NO,in
iO

(kc) + diniO(k
c)T c , (6.6)

NO,out
iO

(kc + 1) = NO,out
iO

(kc) + qcap
iO

T cbeff,O
iO

(kc) , (6.7)

NO,out
iO

(kc + 1) ≤ NO,in
iO

(kc + 1) . (6.8)

with qcap
iO

(veh/h) the origin capacity.

The final constraints concern the effective fractionsbeffiL (k
c) andbeff,O

iO
(kc) of green-time

which should be between0 and1. Additionally, if there is a conflict between links at
an intersection – i.e.,{jL, iL} ∈ Iconflict

icon – the sum of the effective green fractions
beffiL (k

c) + beffjL (k
c) should be less than1 − θicon . The tuning parameterθicon (-) is used

to prevent infeasible reference outflows which can occur when a clearance time has to
be respected when switching linkiL to jL. This results in the following constraints:

0 ≤ beffiL (k
c) ≤ 1 , (6.9)

0 ≤ beff,O
iO

(kc) ≤ 1 , (6.10)

0 ≤ beffiL (k
c) + beffjL (k

c) ≤ 1− θicon . (6.11)

The optimization problem

The objective of the linear optimization problem is to minimize the total time spent
(TTS) JTTS (veh·h) used by all the vehicles in the network over a prediction horizon
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Np (-) subject to the linear model and constraints presented inthe previous section.
The TTS can be expressed as the total number of vehicles in thenetwork at every
time stepkc multiplied with the sampling timeT c and summed over the time steps
kc = (kref − 1)ǫc,ref + 1, . . . , (kref − 1)ǫc,ref +Np + 1 given as:

JTTS =

(kref−1)ǫc,ref+Np+1
∑

kc=(kref−1)ǫc,ref+1

T c

{

∑

iL∈IL

(

N in
iL (k

c)−Nout
iL (kc)

)

+ . . . (6.12)

∑

iO∈IO

(

NO,in
iO

(kc)−NO,out
iO

(kc)

)}

,

Here,IL (-) represents the set of all links andIO (-) represents the set of all origins.

As in [van de Weg et al., 2016], minimizing the TTS can be written as the following
linear optimization problem:

min
ū(kref )

ZB̃ū(kref) + Z(Ãx(kref) + C̃d̄(kref)) , (6.13)

Subject toM ineqū(kref) ≤ V ineq ,

Here, the matrices̃A, B̃, andC̃ as detailed in [van de Weg et al., 2016] describe the
traffic dynamics, so that a prediction of the traffic statex̄(kref), as defined by equations
6.1, 6.2, 6.6, and 6.7, can be computed by multiplication of the control vector̄u(kref)

by B̃, the initial traffic statex(kref) by Ã, and a prediction of the disturbancesd̄(kref)

– i.e., inputs that cannot be controlled – byC̃. The matrixM ineq and vectorV ineq as
detailed in [van de Weg et al., 2016] contain the inequality constraints of equations 6.3,
6.4, 6.5, 6.8, 6.9, 6.10, and 6.11. Multiplication of the vector Z by the predicted state
gives the TTS.

The vectorū(kref) contains the effective fractions of green timebeffiL (k
c) andbeffiO (k

c)

used by the links and origins in the network at the time stepskc = (kref − 1)ǫc,ref +

1, . . . , (kref − 1)ǫc,ref +Np:

ū(kref) =







u((kref − 1)ǫc,ref + 1)
...

u((kref − 1)ǫc,ref +Np)






. (6.14)

The disturbance vector̄d(kref) contains the traffic demandsd(kc) at time stepskc =

(kref − 1)ǫc,ref + 1, . . . , (kref − 1)ǫc,ref +Np:

d̄(kref) =







d((kref − 1)ǫc,ref + 1)
...

d((kref − 1)ǫc,ref +Np)






. (6.15)

The control vectoru(kc) and disturbance vectord(kc) at a time stepkc are defined as
follows:

u(kc) =
[

beff1 (kc) . . . beffnL(k
c) beff,O1 (kc) . . . beff,O

nO (kc)
]⊤

, (6.16)

d(kc) =
[

din1 (k
c) . . . dinnO(k

c)
]⊤

, (6.17)

wherenL (-) indicates the number of links andnO (-) the number of origins.
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The reference trajectory

The outcome of the optimization problem (6.13) is the vectorū∗(kref) (-). As noted
before, this signal cannot be directly applied to the local intersection controllers due
to the aggregated nature of the traffic flow model that is used to formulate the linear
optimization problem. Instead, a reference trajectory is derived from the optimized
signalū∗(kref).

A prediction of the traffic states̄x(kref) can be obtained as follows:

x̄(kref) = Ãx(kref) + B̃ū∗(kref) + C̃d̄(kref) . (6.18)

The prediction of the statēx(kref) consists of the traffic statesx(kc) at time steps
kc = (kref − 1)ǫc,ref + 2, . . . , (kref − 1)ǫc,ref +Np is given as:

x̄ =
[

x((kref − 1)ǫc,ref + 2) . . . x((kref − 1)ǫc,ref +Np + 1)
]⊤

. (6.19)

In its turn, the statex(kc) consists of the states of the linksxL
iL(k

c) and originsxL
iO(k

c)

at time stepkc:

x(kc) =
[

xL
1 (k

c) . . . xL
nL(k

c) xO
1 (k

c) . . . xO
nO(k

c)
]⊤

. (6.20)

The state of linkxL
iL(k

c) and originxO
iO(k

c) a time stepkc are defined as follows:

xL
iL(k

c) =
[

Nout
iL (kc) . . . Nout

iL (kc − kc,shock
iL

) N in
iL (k

c) . . . N in
iL (k

c − kc,free
iL

)
]⊤

.

(6.21)

xO
iO(k

c) =
[

NO,out
iO

(kc) NO,in
iO

(kc)
]⊤

. (6.22)

Now, a reference cumulative outflow trajectoryNout,ref
iL

(kc), defined as:

Nout,ref
iL

(kref) =











Nout
iL ((kref − 1)ǫc,ref + 1

Nout
iL ((kref − 1)ǫc,ref + 2

...
Nout

iL ((kref − 1)ǫc,ref +Np + 1)











, (6.23)

can be derived from̄x(kc) for every link iL ∈ Icontrolled for all the time steps where
kc = (kref − 1)ǫc,ref + 1, . . . , (kref − 1)ǫc,ref +Np.

Since the sampling time of the prediction model is a multipleof the measurements
sampling time – i.eT c = ǫcT –, the signalNout,ref

iL
(kref) has to be resampled. The

reference outfloŵNout,ref
iL

(k̂) at an arbitrary time step̂k ∈ (kref−1)ǫref+1, . . . , (kref+

Npǫc,ref)ǫref + 1 is given as follows:

N̂out,ref
iL

(k̂) = (1− γref(k̂))Nout,ref
iL

(k̂c(k̂)) + γref(k̂Nout,ref
iL

(k̂c(k̂) + 1) . (6.24)

Here, the time step̂kc(k̂) is given as:

k̂c(k̂) = ⌊k̂/T c⌋ , (6.25)

and the fractionγref(k̂) is the residual of a time step thatk̂ exceedŝkc(k̂):

γref(k̂) =
k̂ − k̂c(k̂)

T c
. (6.26)
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6.2.3 Local intersection layer: greedy reference tracking

The task of the local intersection layer is to actuate at every time stepklocal and at
every intersection the stage that leads to the smallest reference tracking error. The
reference tracking error of a stage is defined as a measure of the error between the
reference outflow trajectories and the potential outflows ofthe different streams at an
intersection when actuating that stage.

The stage selection is done in a decentralized way, which is possible because the time
stepT local is chosen to be short – i.e., in the range of several seconds –,and no fixed
stage sequence is assumed. The tracking strategy is called greedy, since it selects the
stage that minimizes the reference tracking error for a short time horizonT local. An
alternative would be to implement a strategy that minimizesthe tracking error over
a longer time horizon. However, this would require predicting the outflow of many
different stage sequences, and it would require taking intoaccount the impact of the
selected stage sequences of upstream and downstream intersections as well, leading to
a complex optimization problem.

The greedy policy is computed for every intersection separately by carrying out the
following steps:

1. predict for every stage the potential cumulative outflow of every link in the in-
tersection when actuating the stage (see Section 6.2.3);

2. compute for every stage the resulting reference trackingerror (see Section 6.2.3);

3. actuate the stage that is expected to realize the smallestreference tracking error
(see Section 6.2.3).

Potential cumulative outflow prediction

The first step is to predict, for every intersectioniinter and stagepiinter(klocal) ∈ Pstages
iinter

,
with Pstages

iinter
the set of stages at the intersection, the potential cumulative outflows

Nout,p
iL

(k̂|k, piinter(k
local)) (veh) of the linksiL ∈ IUS

iinter directly upstream of the in-
tersection using:

Nout,p
iL

(k̂ + 1|k, piinter(k
local)) = min

{

Nout,p
iL

(k̂|k, piinter(k
local)) + qsatiL TbiL(k̂), . . .

Nout,free
iL

(k̂ + 1), . . . (6.27)

Nout,sp
iL

(k̂ + 1)

}

∀iL ∈ IUS
iinter ,

for the time stepŝk = k + 1, . . . , k + ǫlocal + 1. In this equation, the maximum link
outflowNout,free

iL
(k + 1) (veh) in freeflow conditions is computed using

Nout,free
iL

(k + 1) = γfree
iL N in

iL (k − kfree
iL + 2) + (1− γfree

iL )N in
iL (k − kfree

iL + 1) . (6.28)
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It is assumed thatT local < tfreeiL ∀iL ∈ IUS
iinter, so that the outflowNout,free

iL
(k) depends on

historical control decisions at the upstream intersections only. The maximum possible
cumulative outflow under spillback from a downstream linkjL ∈ IDS

iL is computed
using

Nout,sp
iL

(k + 1) = Nout,p
iL

(k) + γshock
jL Nout

jL (k − kshock
jL + 2) + . . . (6.29)

(1− γshock
jL )Nout

jL (k − kshock
jL + 1) + nmax

jL −N in,p
jL

(k) .

It is assumed thatT local < tshockiL ∀iL ∈ IDS
iinter, so that the maximum outflowNout,sp

iL
(k)

depends on historical control decisions at the downstream intersections only.

The cumulative link inflowsN in,p
iL

(k̂|k, piinter(k
local)) (veh) of the linksIDS

iinter directly
downstream of the intersection when actuating the stagepiinter(k

local) for the time steps
k̂ = k + 1, . . . , k + ǫlocal + 1 are updated using:

N in,p
iL

(k̂ + 1|k, piinter(k
local)) =

∑

jL∈IUS

iinter

ηjL,iL(k̂)
(

Nout,p
iL

(k̂ + 1|k, piinter(k
local)) . . .

−Nout,p
iL

(k̂|k, piinter(k
local))

)

∀iL ∈ IDS
iinter . (6.30)

When clearance times have to be respected when switching from stagepiinter(klocal−1)

to stagepiinter(klocal), the corresponding values ofbiL(k̂) in (6.27) are set to0 for the
first T clear

iL seconds.

Reference tracking error

Now that the predictions of the link outflows are available when actuating the differ-
ent stages, the expected reference tracking errorēiinter(piinter(k

local)) can be computed
using:

ēiinter(piinter(k
local)) = γeêaiinter(piinter(k

local)) + (1− γe)êbiinter(piinter(k
local)) . (6.31)

It is defined as the weighted average of the errorêaiinter(piinter(k
local)) – which is the

square of the area between the reference outflow and the predicted outflow – computed
using:

êaiinter(piinter(k
local)) =

k+ǫlocal+1
∑

k̂=k+2

∑

iL∈IUS

iinter

(

N̂out,ref
iL

(k̂)−Nout,p
iL

(k̂)

)2

. (6.32)

and of the error̂ebiinter(piinter(k
local)) – which is the error between the total intersection

reference outflow and total predicted intersection outflowêbiinter(piinter(k
local)) – com-

puted using:

êbiinter(piinter(k
local)) =

k+ǫlocal+1
∑

k̂=k+2

∣

∣

∣

∣

(

∑

iL∈IUS

iinter

N̂out,ref
iL

(k̂)−
∑

iL∈IUS

iinter

Nout,p
iL

(k̂)

)
∣

∣

∣

∣

.

(6.33)

The parameterγe is introduced to balance the current reference tracking costs and the
final reference tracking costs.
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Stage actuation

The final step is the actuation of the stagep∗iinter(k
local) that leads to the smallest ex-

pected reference tracking error using:

p∗iinter(k
local) = arg min

p
iinter

∈P
stages

iinter

ēiinter(piinter(k
local)) . (6.34)

Numerical example

To clarify the reference tracking approach we have includedthe following simple nu-
merical example. Assume that we have a network consisting oftwo conflicting links
that can realize a flow equal to the saturation rate of 1000 veh/h when given green. It
is also assumed thatT local = 5 s, and that the reference outflows for time step 1 to 12
are computed by the network coordination layer as 600 and 300veh/h respectively, as
shown in Figure 6.3. The inter-stage clearance time when switching from stage 1 to
2 and vice versa is assumed to be 2 seconds. Assume that at every time step we can
choose between actuating stage 1 – i.e., giving green to link1 and red to link 2 – or
actuating stage 2 – i.e., giving red to link 1 and green to link2.

1 2 3 4 5 6 7 8 9 10 11 12

Time step (-)

0

1

2

N
 (

v
eh

)

Link 1

N
ref

N
out

1 2 3 4 5 6 7 8 9 10 11 12

Time step (-)

0

1

2

N
 (

v
eh

)

Link 2

N
ref

N
out

Figure 6.3: Small example of reference outflows and realizedoutflows.

At time stepk = 1 the error is determined over time stepsk = 3 to k = 7. For stage
1, the total error computed using (6.31) is 0.85 while the error for stage 2 is 1.82 given
that γe = 0.3. Because the error of stage 1 is smaller it will be activated. Next, at
time stepk = 6, the error when actuating stage 1 is 2.28 while the error for actuating
stage 2 is 1.82. Hence, stage 2 will be activated. Note that inthe error calculation the
inter-stage clearance time between stage 1 and stage 2 is accounted for.
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6.3 Simulation experiments

Simulation experiments are carried out to show that the use of the individual intersec-
tion layer does not lead to significant performance degradation, and that the proposed
framework is able to efficiently distribute the queues over the network in the presence
of spillback. Additionally, the impact of the mismatch between the prediction and the
process model is studied which is influenced by the selected process model and the
chosen controller sampling times.

First simulations are carried out with the LTM as the processmodel, so that the mis-
match between the process and prediction model is small. A comparison is made –
in terms of TTS reduction and realized traffic states – with a controller that directly
applies the reference outflows of the coordination layer to the model – which is only
possible when using a macroscopic process model – giving thelowest possible TTS.
This shows the TTS increase caused by the individual intersection layer. Next, the
performance is compared with a greedy feedback policy that optimizes the signal tim-
ings of the local intersections. This provides insight intothe ability of the proposed
framework to distribute queues more efficiently over the network in the presence of
spillback. Next, the microscopic model Vissim 5.30 is used as the process model,
which introduces a larger mismatch.

In both simulations, the controller sampling timesT local andT ref are varied and the
impact on the TTS and reference tracking error is analyzed. It is expected that a smaller
sampling timeT local leads to a lower TTS and a lower reference tracking error, because
it allows more frequent switching of the stages. Similarly,it is expected that choosing a
smaller sampling timeT ref reduces the reference tracking error but does not necessarily
reduce the TTS.

6.3.1 Simulation set-up

The simulation set-up is shown in Figure 6.1. Every second, measurements are ob-
tained from the process model – i.e., the LTM in Section 6.3.2, and Vissim in Sec-
tion 6.3.3. The local control layer is updated everyT local seconds and the network
coordination layer updates the reference trajectories every T ref seconds. Figure 6.2
shows the network used in the simulations. It consists of three intersections; (1) top
left, (2) top right, and (3) bottom right. The link lengths are indicated in the figure,
where it must be noted that link 16 is 800 meters. It can also beseen that a bottleneck
is located at the downstream end of link 7. This bottleneck isused to mimic a situation
where downstream of the controlled network congestion is spilling back towards the
controlled network. Alternatively, the bottleneck can represent a situation where the
controlled network outflow is limited by a perimeter controlstrategy. A simulation
period of 2500 seconds is considered. The demand pattern that is applied to the net-
work consists of a high demand for the first 1800 seconds of respectively 900, 1100,
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Process model

Measurements:

Traffic state

Every second

Intersection controller

Control signal

Disturbances:

Demand

Turn fractions

Maximum outflow

Reference

MPC

EveryT
local (s)

Sampling timeT local (s)

EveryT
ref (s)

Sampling time 10 (s)
Prediction horizon 600 (s)
Updated everyT ref (s)

Figure 6.1: Schematic overview of the simulation set-up.
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Figure 6.2: Schematic overview of the network used for the simulations, including the link lengths,
location of the bottlenecks, and the turn-fractions.

and 1800 veh/h at links 1, 8, and 12. From time 1800 to 2500 seconds the demand is
decreased to respectively 300, 250, and 200 veh/h at links 1,8, and 12. This implies
that in the high demand situation 600 veh/h want to go from links 5 to 7 and links 17
to 18, 500 veh/h from link 6 to link 19, and 600 veh/h from link 18 to link 19. The
bottleneck at link 7 is activated from time 100 seconds with acapacity of 600 veh/h.

It is assumed that no measurement noise is present and that there is no uncertainty in
the disturbance predictions. In this way, controlled experiments can be carried out that
allow studying the controller behavior in detail. It must benoted that there is a mis-
match between the process model and the prediction model caused by the difference
in the local control signals and the MPC output.
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Figure 6.3: Simulation results for different set-ups. The two left columns represent the results obtained with the LTM,the two right columns represent results obtained with
Vissim. The first row shows the impact of the controller sampling timesT ref andT local on the TTS. The second row shows the impact of the sampling times on the mean
reference tracking error. Plot (l) shows the impact of the sampling timeT local on the mean local prediction error. This result is not shown for the LTM because the prediction
error is negligible, since the process and prediction models are identical. The max, mean, and min lines indicate the maximum, mean, and minimum realized TTS of the
non-shown parameter (e.g.T local in plot (a)).



Chapter 6. Hierarchical Control Framework for Coordinating Signal Timings 167

6.3.2 Simulation set 1: macroscopic simulation using the LTM

The first set of evaluations is carried out using the LTM as theprocess model. These
evaluations are carried out in order to gain insight into thequantitative controller per-
formance. The LTM is used, because it enables a direct implementation of the refer-
ence outflows obtained from the network coordination layer and thus allows studying
the reference tracking error incurred in the individual intersection control layer. The
mean reference tracking error is defined as the average of theabsolute difference be-
tween the reference outflows computed with the network coordination layer and the
realized outflows.

Simulation set 1: set-up

The LTM is implemented as the process model with a sampling time step of 1 second.
Clearance times are not considered in this simulation set, and the tuning parameters
θicon are set to0. This implies that the control strategies can actuate any stage at any
time stepT local.

Three different control strategies are compared:

1. LML-U + GRT : this is the control strategy proposed in this paper.

2. LML-U : this is the LML-U strategy of the top layer with the optimized green-
fractions directly applied to the network. Note that this implementation is not
deployable, since these green-fractions can be simultaneously nonzero for con-
flicting directions in a time interval. Comparing with this control policy gives an
idea of the best possible TTS that can be obtained.

3. GCP: this is a greedy control policy (GCP) that tries to actuate the stage at every
time stepT local that will maximize the throughput of every individual intersec-
tion. This is realized by predicting for every stage the potential intersection
outflow using the approach detailed in Section 6.2.3 and actuating the stage that
will lead to the highest outflow. A comparison with this algorithm provides in-
sight into the added value of the network coordination layerof the LML-U +
GRT policy.

In the various simulations, the local control strategy sampling time T local is varied
from 1 to 15 seconds. The coordination layer sampling timeT ref is varied from 10
to 590 seconds. In this way the impact of the controller parameters on the controller
performance can be studied. The prediction model used in thecoordination layer uses
a sampling time step of 10 seconds and a prediction horizon of600 seconds. The factor
γe is set to 0.3.
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Simulation set 1: results

Several simulations were carried out with the different control strategies. The quanti-
tative results are presented in the left two columns of Figure 6.3. First, the impact of
changing the controller timingsT ref andT local on the different controllers is discussed.
After that, the performance of the different controllers iscompared.

Figure 6.3 (a) and (e) show the impact ofT ref on the TTS and on the mean reference
tracking error. For every sampling timeT ref there are multiple results, since the simu-
lations were repeated for different values ofT local. Figure 6.3 (a) shows the impact of
the coordination layer sampling time on the TTS. It can be observed from this figure
that for low sampling times the TTS fluctuates considerably.WhenT ref increases the
fluctuations decrease, and for higher values ofT ref the TTS starts increasing again,
which is mainly caused by the timeT ref being close to the prediction horizon of 600
seconds. Figure 6.3 (e) shows the impact of the sampling timeT ref on the mean ref-
erence tracking error. This plot shows a slight increase in the reference tracking error
when increasing the timeT ref , although this result does not seem to be significant.

Figure 6.3 (b) and (f) show the impact ofT local on the TTS and on the mean reference
tracking error. Figure 6.3 (b) shows that an increase inT local results in an increase in
the TTS. Similarly, Figure 6.3 (f) shows that an increase inT local results in an increase
in the reference tracking error. These results are best explained by the fact that a
smaller sampling timeT local results in the possibility of more rapid stage switching,
which allows for better tracking of the reference outflow trajectories.

Figure 6.3 (a) and (b) also show the realized TTS of the LML-U and GCP strategies.
Figure 6.3 (a) shows that the LML-U strategy can realize the lowest TTS. It also shows
that it is not sensitive to changes in the timeT ref until approximately 400 seconds. Af-
ter that, the TTS increases due to the timeT ref getting close to the prediction horizon.
The lowest TTS realized with the LML-U strategy is 234.33 veh·h . Figure 6.3 (b)
shows that the TTS increases when increasing the sampling timeT local. The best per-
formance realized by the LML-U + GRT strategy is 234.56 veh·h for T local being 1
second. When settingT local to a more realistic value of 5 seconds, the lowest TTS is
235.45 veh·h . In the case of the GCP, the lowest TTS realized is 238.16 veh·h .

These evaluations show that a sampling timeT ref in the range of 300 to 400 seconds is
preferred for the performance. However, ideallyT ref is chosen small, so that the con-
trol strategy can quickly respond to disturbances. In orderto reduce the sampling time
T ref , it is suggested to study the use of an observer in future research. The evaluations
also show that the performance loss incurred by the switching of the stages is limited
when the mismatch between the process and prediction model is small. Additionally,
it is shown that a smaller local sampling timeT local results in better performance due
to the ability to track the reference outflows more accurately.
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6.3.3 Simulation set 2: microscopic simulation using Vissim

The second set of simulations is carried out with a microscopic simulation model. This
allows us to study the performance when applied to a more complex process model.
The quantitative performance is studied by comparing the control strategy to two other
control strategies and studying the impact of changes in thecontroller parameters.
Additionally, the qualitative performance is studied.

Simulation set 2: set-up

In this simulation set, Vissim 5.30 is used as the traffic flow model, with a sampling
time step of 0.2 seconds. Measurements are gathered and sentto Matlab R2016a every
second. The rest of the set-up is similar to that discussed inSection 6.3.2.

The same network model as in Figure 6.2 is used. However, the parameters used
in the prediction model are different when compared to the parameters discussed in
Section 6.3.2. The link parameters are shown in Table 6.1. The origin capacities are
estimated asqcap1 =2000 veh/h,qcap8 =2000 veh/h,qcap12 =2000 veh/h.

In the various simulations, the local control strategy sampling time T local was varied
from 5 to 12 seconds. The coordination layer sampling timeT ref was given values of
30, 60, 90, 120, 180, 240, 300, 360, 420, 480, 540, and 590 seconds. In this way,
the impact of the controller parameters on the controller performance can be studied.
The prediction model used in the coordination layer uses a sampling time step of 10
seconds and a prediction horizon of 600 seconds. The factorγe was set to0.3. The
clearance time between two conflicting links was set to 2 seconds, and the parameters
θicon were set to4.4 · 10−2.

Simulation set 2: quantitative results

The quantitative results are presented in the right two columns of Figure 6.3. First,
the impact of the controller sampling timesT ref andT local is discussed. After that the
performance is compared to the GCP.

Figure 6.3 (c) shows the impact ofT ref on the TTS. It can be observed that the TTS
is lowest for sampling timesT ref in the range of 200 to 300 seconds. This is in accor-
dance with the results obtained with the LTM. The reason is that the reference outflows
are determined for average dynamics. When using small values of T ref , the frequent
updates of the MPC signal do not allow a good representation of the average dynam-
ics. For high sampling timesT ref , the impact of the mismatch between the process and
prediction model becomes larger, as is also shown in Figure 6.3 (g).
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Table 6.1: Link parameters used in the prediction model.

Link tfree(s) tshock(s) nmax(veh) qsat(veh/h) Link tfree(s) tshock(s) nmax(veh) qsat(veh/h)
1 21.0 60.0 45 1961.9 11 21.0 58.0 46 2048.3
2 14.0 60.0 30 1916.1 12 21.0 56.4 44 1994.4
3 14.0 46.6 30 2000.0 13 14.0 61.0 31 1979.2
4 21.0 68.0 45 2369.8 14 14.0 70.0 30 1998.3
5 14.0 70.0 30 2369.8 15 21.0 58.0 46 1935.3
6 14.0 39.0 30 1848.5 16 57.0 205.0 119 1914.9
7 21.0 92.0 46 2023.0 17 14.0 60.0 30 2262.5
8 21.0 63.2 45 2150.9 18 14.0 48.3 31 2195.1
9 14.0 60.0 30 2000.0 19 21.0 53.4 47 1937.3
10 14.0 55.0 30 2000.0
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Figure 6.3 (d) shows the impact ofT local on the TTS. It can be observed that there
is no clear connection between the sampling timeT local and the TTS. When studying
Figure 6.3 (h), it is also clear that there is no strong connection between the sampling
time T local and the reference tracking error. This is best explained by the mismatch
between the LTM and Vissim when predicting the intersectionoutflows with a time
horizon in the range of 10 seconds. Figure 6.3 (l) shows the impact ofT local on the
prediction error of the bottom layer.

When examining the realized TTS in Figure 6.3 (d), it can be seen that the LML-U
+ GRT strategy can realize a TTS of 270.17 veh·h while the GCP can realize a TTS
of 279.35 veh·h . The reason for this, as discussed in the next subsection, is that the
approach proposed in this paper distributes the queues overthe network better. Also,
when studying Figure 6.3 (l) it can be observed that the mean local prediction error
of the GCP is consistently higher. The reason for this is thatthe predictions in the
intersection layer are especially off when queues spill back to upstream intersections.
This affects the GCP more, because that strategy causes muchmore spillback.

Simulation set 2: qualitative results

Figure 6.4 shows the number of vehicles over time in several links for the two different
control strategies – i.e., the LML-U + GRT in the left column,and the GCP in the right
column. Figure 6.5 shows the outflows of the network exits over time. The simulation
results withT local = 9 seconds andT ref = 300 are used for the comparison. The
vertical lines are used to indicate the time instants 300, 460, 650, and 1800 seconds
respectively. Below, the behavior is discussed using thesefigures.

• Figure 6.4 (a) and (b) show that from time 80 to 300 the flow intothe bottleneck
exceeds the bottleneck capacity and a queue starts buildingup in link 7. This
occurs when using either of the two policies.

• Figure 6.4 (c) and (d) show that at time 300 (indicated with the first vertical line)
the spillback reaches links 5 and 17 and both controllers tryto store as much
traffic in these links in order to prevent blocking links 6 and18.

• Around time 460 (indicated with the second vertical line) spillback cannot be
avoided any more. The LML-U + GRT controller reduces the outflow of link
5 so that queues built up in links 5, 4, 2, and 9. In contrast to that, the GCP
controller gives green to both links 5 and 17. This causes spillback towards links
4 and 16, which causes blocking of links 6 and 18.

• Next, around time 650 (indicated with the third vertical line) the LML-U + GRT
blocks the outflow from link 17 in order to prevent spillback to links 8 and 1.
As shown in Figure 6.4 (c), the number of vehicles in link 5 decreases while
the number of vehicles in link 17 increases. It is interesting to see that links
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Figure 6.4: Number of vehicles in the links 7, 5, 17, 9, and 2 over time for the LML-U + GRT strategy
in the left column and the GCP strategy in the right column. The vertical lines indicate the time instants
300, 460, 650, and 1800 seconds.

2 and 9 do not seem that full around time 650. This is due to the shock wave
dynamics that cause a delay in the time when an outflow increase at link 5 leads
to increased outflows at upstream links 2 and 9. Hence, only around time 800
seconds do the queues in links 2 and 9 become more or less stationary. The GCP
controller does not have such a global view of the network, sothe queue on link
2 grows, resulting in spillback to link 1 and an outflow reduction at link 11, as
can be observed in Figure 6.5 (c).

• At time 1800 (indicated with the righter most vertical line)the demands de-
crease. Due to this, the outflow of link 5 can be reduced without triggering
spillback to links 1 and 8 so that the queues on link 12, 14, 16,and 17 can be
reduced.
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Figure 6.5: Outflow of links 7, 11, 15, and 19 over time for the LML-U + GRT strategy and the GCP
strategy. The vertical lines indicate the time instants 300, 460, 650, and 1800 seconds.

6.4 Discussion

Several assumptions were made to simplify the problem addressed in this paper. This
allowed us to combine optimization of the traffic flows at the network level with local
signal controllers. This section discusses the implication of these assumptions and
suggestions for relaxing them. It also discusses the scalability of the framework.

It was assumed that no minimum and maximum green times, no maximum or fixed
cycle time, no off-set, and no fixed stage sequences had to be considered. Including
these properties may affect the control performance, since, it reduces the control free-
dom. In order to correctly take these properties into account, the network coordination
layer may need to be adjusted to reflect the impact of the different signal controller
properties on the link outflows. Also, the logic of the local intersection control layer
may need to be adopted to ensure that maximum green times, cycle times, and fixed
stage sequences are realized. Depending on the problem type, this may be achieved
by using heuristic approaches or optimization-based strategies. Hence, relaxing these
assumptions may require some theoretical extensions and additional numerical evalu-
ations.

Apart from that, an idealized set-up was assumed in which no noise and no uncer-
tainties were considered, and in which normal vehicular traffic uses the network. The
impact of uncertainties on the controller performance requires further investigation
and, when needed, robust control strategies should be developed (e.g., see Tettamanti
et al. [2014], Ukkusuri et al. [2010]). Different traffic types may be included by using a
multi-modal LTM, and public transport priority may be included as constraints within
the optimization problem.
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The approach was designed for sub-networks consisting of (several) tens of intersec-
tions at maximum, and was tested on a small network consisting of three intersections.
When applying the framework to larger networks, the computation time required by
the network coordination layer increases. The size of the optimization vector is given
as(nL+nO)Np (-) and the number of constraints is given as(4nL+3nO+nE+ncon)Np

(-), with nE (-) the number of exits, andncon (-) the number of conflicts between links.

6.5 Conclusions and recommendations

This paper proposes a hierarchical control framework for coordinated intersection con-
trol. The top layer – the network coordination layer – uses anefficient, linear MPC
strategy for the optimization of network throughput. The output of the network co-
ordination layer consists of reference outflow trajectories for the controlled links at
intersections. The bottom layer consists of the individualintersection controllers that
actuate the stage that minimizes the current reference tracking error. Simulations were
carried out to test the impact of the controller timings and to compare the performance
for the different timings. Simulations using the LTM as the process model indicated
that the best performance can be obtained when using a moderate (around 200 to 300
seconds) sampling time for the network coordination layer.It was also shown that
a smaller sampling time of the bottom layer leads to improvedperformance. It was
found that the policy proposed in this paper can realize a TTSthat is only 0.5% worse
than the best possible performance when directly applying the signal of the network
coordination layer. It was also shown that the controller can outperform a greedy con-
trol policy that tries to maximize the individual intersection throughput. Simulations
using microscopic simulation revealed that the control strategy is capable of efficiently
distributing the traffic over the network in spillback conditions, even when a large mis-
match between the prediction and process model is present.

Further research can investigate the application of the framework to an intersection
signal program where fixed stage sequences and minimum greentimes are included.
Additionally, the application to a network that consists ofheterogeneous vehicle types
– e.g. vehicles, public transport, and bicycles – may be studied. Finally, further re-
search can be carried out into the design of an observer so that the sampling time of
the network coordination layer can be reduced.
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Chapter 7

Conclusion and recommendations

This dissertation addressed the challenge of developing efficient network-wide traffic
control algorithms. The proposed algorithms are inspired by recent technological in-
novations and scientific insights as discussed in detail in Section 7.1. Because of the
complexity of the traffic control problem for entire urban regions, this dissertation fo-
cused on developing control algorithms for medium-to-large scale networks consisting
of tens of intersections or tens of kilometers of freeway. Section 7.2 presents, among
others, recommendations for generalizing the results to entire urban regions and rec-
ommendations for further improving the proposed algorithms. Section 7.3 presents
recommendations for applying the concepts in practice.

7.1 Summary and conclusions

This dissertation proposedseveral computationally efficient network-wide traffic con-
trol algorithms for throughput improvement of medium-to-large scale freeway or urban
traffic networksthat:

• coordinate the control actions of (different types of) actuators at different loca-
tions in the network,

• take the impact of the control actions on the network-wide performance over a
time horizon into account.

Improving the network-wide throughput by coordinating thecontrol actions of the ac-
tuators in a network is a complex problem. This complexity iscaused by the large
number of decision variables which is challenging from a computational point of view
but it is also challenging from a theoretical point of view due to the many problem
characteristics that need to be accounted for.

177
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The proposed algorithms are designed to exploit recent technological innovations and
scientific insights. The most relevant technological innovations for the algorithms pro-
posed in this dissertation is the proliferation of in-vehicle technology enabling cooper-
ative systems. This may provide more accurate traffic estimations by using floating car
data (FCD), new data types, such as the planned route of individual vehicles, and more
accurate actuation possibilities by considering the individual vehicle as the controlled
element. The most relevant insight for the design of freewaytraffic control algorithms
in this dissertation is the application of shock wave theoryto describe the effect of
variable speed limits (VSLs) on the traffic flow. The most relevant insight for the de-
sign of urban traffic control algorithms in this dissertation is the application of the link
transmission model (LTM) to describe the urban traffic dynamics.

This dissertation consists of two parts in which new algorithms are proposed based
on these innovations and insights. The first part of this dissertation proposed two al-
gorithms for the control of the speed of freeway traffic and tocontrol on-ramp flows.
The second part of this dissertation proposed three algorithms for the control of urban
traffic networks using intersection control and route guidance.

Evaluations using simulation were carried out to study the ability of the algorithms
to improve the balance between computation time and performance, and to study the
qualitative behavior of the different controllers. In the remainder, we take a closer look
at the specific conclusions per thesis chapter.

Chapter 2 proposed acooperative speed control algorithm to resolve jam wavesin
order to improve the freeway throughput. The algorithm usesthe individual vehicles
as detectors and actuators assuming a 100% penetration rateand work as follows. The
individual vehicles detect based on their (historical) speed data whether they are driv-
ing in a jam or not, this is called the detection mode. The vehicles send their detection
mode, speed and position data to the roadside. The roadside system then uses this data
to determine the location of the jam head and the required driving strategies – called
driving modes – of the vehicles on different segments of the freeway. The roadside
system then sends a generalized message to the vehicles indicating between which lo-
cation which driving mode is active. Finally, vehicles adjust their speed accordingly
either by following in-vehicle instructions, or by directly influencing the speed of the
vehicle. This set-up was chosen, since, it does not require to store privacy sensitive
GPS position and speed data at the roadside, nor is it required to address individual
vehicles using a unique ID. Evaluations using simulation showed that the algorithm
can improve the freeway throughput by resolving a jam wave, and can stabilize traffic.
In the idealized case of a one-lane freeway this led to a totaltime spent (TTS) reduc-
tion of 7.3% and in a more realistic case consisting of a two-lane freeway this lead
to an average TTS reduction of 17.3% compared to the no-control case. It was also
shown that the algorithm can realize a similar qualitative behavior when compared to
the SPECIALIST algorithm. This is an important observation, since the SPECIALIST
algorithm has been proven in the field.

This chapter shows that an efficient algorithm for the control of traffic flows using co-
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operative systems can be developed. An advantage of the algorithm is that it requires a
negligible amount of computation time which is important, given the large amount of
decision variables involved when controlling the speed of all the vehicles on a freeway.
This chapter did not indicate whether the use of these technologies will also lead to a
performance gain in practice when compared to existing infrastructure-based technolo-
gies. In order to conclude this, it is required to adapt the algorithm to be applicable
to more realistic situations with lower penetration rates,and noisy measurement data,
and to assess the performance using extensive simulation studies accordingly. The al-
gorithm is designed to resolve a jam wave on a homogeneous stretch of freeway and is
not specifically designed to account for overtaking. Hence,additional research is re-
quired to study the application of the algorithm to more general situations that include
not only jam waves but also other congestion types, to study the impact of overtaking
on the algorithm, and to study the application of the algorithm to more general road
lay-outs that include, among others, merges, diverges, on-ramps, and off-ramps.

Chapter 3 proposed anefficient optimization approach for integrated control of VSLs
and ramp metering (RM)to improve the freeway throughput. The balance between
computation time and performance was improved by reducing the number of optimiza-
tion variables through parameterization of the VSL and RM signal. The parameterized
VSL signal consists of the speed with which the downstream and upstream boundaries
of a speed-limited area propagate. It is assumed that the average speed inside the speed-
limited area is equal to the effective speed of the imposed speed-limits. By changing
the speeds of the downstream and upstream boundaries of the speed-limited area, the
density and flow inside and downstream of it can be influenced.This parameterization
reduces the number of variables from the number of variable message signs to just 2
per time-step. The number of RM control variables per RM installation is reduced
from the number of controlled time-steps within the controlhorizon to 5. The first RM
decision variable is the time when a feedback RM strategy based on the well-known
ALINEA algorithm is switched on. The density set-point of this strategy is the second
decision variable. The third variable is the time when the set-point is adjusted to a new
set-point which is the fourth decision variable. The final decision variable is the time
when RM is switched off. This parameterization reduces the number of decision vari-
ables while still being able to switch between various RM policies. Evaluations using
macroscopic simulation indicated that a better balance between computation time and
performance was realized for a VSL-only and an integrated VSL and RM set-up when
compared to a nominal model predictive control (MPC) algorithm. It was also shown
that the algorithm is capable of improving the throughput intwo different traffic situa-
tions, namely, when resolving a jam wave, and when preventing bottleneck congestion.
The algorithm was also analyzed qualitatively, showing thedifferences between using
VSL-only, RM-only and integrated VSL and RM.

This chapter showed that an efficient optimization approachfor integrated control of
VSLs and RM can be developed. The proposed parameterizationhas several advan-
tages. First, due to the reduction of the computation time itenables the use of more
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complex prediction models or to control larger networks. Second, the imposed speed-
limited area is more insightful when compared to a nominal MPC strategy which may
help to obtain trust of the authorities in the proposed strategy. Two approaches to re-
duce the computation time even further may be to; 1) provide good starting points for
the optimization problems – for instance, based on the SPECIALIST control scheme
– or 2) by including an end-cost function that allows to reduce the prediction horizon.
Additional research is required to apply the proposed strategy in practice. One im-
portant area of investigation is the quality of traffic stateestimations and disturbance
predictions and the influence of that data on the performanceof the control algorithm.
Another relevant direction for further research is the integration with cooperative sys-
tems. For instance, this may require to translate the optimized signals to a control sig-
nal for individual vehicles, but it may also be needed to accurately describe the impact
of in-vehicle measures – such as, in-vehicle VSLs – in the (macroscopic) prediction
model.

Chapter 4 proposed anefficient MPC strategy for optimizing the traffic flows that cross
intersectionsin order to improve the urban road network throughput. The proposed
MPC strategy uses the LTM as the prediction model and aggregates the traffic flow
dynamics to tens of seconds so that, instead of green-times,the fractions of green-time
used by every stream are the optimization variables, which are continuous. The use
of the LTM as the prediction model has several advantages. First, the LTM describes
the link dynamics using just two traffic states, namely, the cumulative inflow and out-
flow. This reduces the dimension of the corresponding optimization problem when
compared to approaches that divide a link into segments. Second, the LTM is capable
of describing downstream propagating waves caused by free flowing traffic, queuing
dynamics, and upstream propagating waves caused by spillback. The downstream
propagating waves allow to coordinate the flows exchanged between intersections in
free flow conditions. The queuing dynamics and upstream propagating waves allow
to distribute the queues over the network in congested conditions. It is shown using
macroscopic simulation that the use of the LTM leads to a better balance between com-
putation time and realized throughput when compared to a linear MPC strategy based
on the cell transmission model. It is also shown that the inclusion of upstream propa-
gating waves leads to better throughput when compared to a linear MPC strategy based
on the store-and-forward model but also that this requires more computation time. The
strategy was able to optimize the flows in a large network consisting of 96 controlled
elements in a maximum CPU time just under 1 minute.

This chapter showed that it is possible to optimize the flows in an urban network using a
computationally efficient algorithm that can consider downstream and upstream propa-
gating waves and queuing dynamics. A major advantage when compared to other com-
parable approaches is that it can distribute queues more efficiently over the network in
the oversaturated regime when considering aggregated traffic dynamics. However, it
is not straightforward to conclude whether this approach will also help in practice.
The reason for this is that this would require to translate the optimized flows to signal
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timing plans. This is not a trivial problem because several degrees of freedom exist
when designing a signal plan; e.g. 1) the cycle length of the intersections; 2) the offset
between intersections; 3) the set of stages that are included in the signal plan; and 4)
the order of the stages within each cycle. All these elementsof the signal plan may
influence the controller performance, and thus need to be chosen properly.

Chapter 5 proposed anefficient optimization strategy for the control of flows thatcross
intersections and routing decisionsin order to improve the network throughput. The
inclusion of routing decisions results in the optimizationproblem of Chapter 4 in a non-
linear prediction model and optimization problem. Therefore, an efficient optimization
algorithm of the sequential linear programming (SLP) type is used. Such an algorithm
uses the gradient of the objective function in an operating point. Conventional solvers
use a numerical approximation of the gradient which is very time consuming for large
optimization problems. Therefore, an analytic approximation of the gradient is derived
in this chapter. This gradient is obtained by predicting thetraffic state using the non-
linear model for a given control signal. Next, the turn-fractions are estimated from the
predicted traffic states and a similar linear prediction model as used in Chapter 4 is
obtained. After that, the impact of changing the flows and routing decisions onto the
turn-fractions is estimated analytically and included in the linear model. Evaluations
using macroscopic simulation revealed that the algorithm can realize a better balance
between computation time and throughput when compared to applying a conventional
numerical optimization algorithm.

This chapter showed that the intersection flows and routing decisions can be optimized
using an efficient algorithm. The realized computation timegain is indeed promising,
but additional research is required before applying the strategy in practice. Similarly as
in the previous chapter, a translation of the optimized flowsto signal timings is needed.
Additionally, it has to be determined what the compliance tothe routing decisions
is and either the optimization approach has to consider compliance, or the actuation
has to be adapted to ensure full compliance using for instance (monetary) incentives.
Another direction for further research is to further extendthe procedure to approximate
the gradient.

Chapter 6 proposed ahierarchical control framework for coordinating the signal tim-
ings of intersectionsin order to improve the network throughput. The framework con-
sists of two layers. The top layer uses the MPC strategy proposed in Chapter 4 to
optimize the aggregated flows at intersections. These flows are send to the bottom
layer as outflow references that consist of the individual intersection controllers. The
task of the individual intersection controllers is to actuate at every controller time step
of the bottom layer the stage – i.e., set of streams that can beactive simultaneously
– that is expected to minimize the reference tracking error during the next time-step.
In this way, the top layer can use an efficient MPC strategy to distribute the average
traffic flows over the network and the individual intersection control problem is sim-
plified to a local problem that still leads to network-wide performance improvements.
Evaluations using macroscopic simulation are carried out to study the added value of
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the network coordination layer, and the impact of the timingonto the controller per-
formance. Evaluations using microscopic simulation revealed the controllers ability to
improve the throughput by distributing the queues over the network in a more realis-
tic set-up when compared to independently maximizing the outflow of the individual
intersections.

This chapter showed that coordinating the flows exchanged between intersections us-
ing the MPC approach proposed in Chapter 4 can improve the network performance,
even when considering signal timings. It cannot be concluded whether this will also
work well in practice for several reasons. First, the signaltiming plan was simplified
when compared to a realistic signal timing plan. The approach may need to be ex-
tended or modified in order to apply it to more realistic signal timing plans. Second,
more extensive evaluations are required that include, among others, noise and uncer-
tainties, more realistic networks, and more stochastics.

7.2 Recommendations for further research

The algorithms proposed in this dissertation mainly addressed the challenge of real-
izing a better trade-off between computation time and performance of network-wide
traffic control algorithms. This section details several recommendations for further
research. First, Section 7.2.1 presents additional research to integrate the proposed
sub-network controllers in an approach for an entire urban region. Next, Section 7.2.2
presents recommendations to further improve the proposed algorithms.

7.2.1 Coordinated control of urban regions

The algorithms proposed in this dissertation were designedfor medium-to-large scale
urban or freewaynetworks. This simplified the sub-network control problem so that
a good trade-off between computation time and performance could be realized. Ad-
ditional research is required to study how the flows exchanged between different sub-
networks have to be managed in order to improve the performance of an entire urban
region which may span several hundreds of kilometers and houses several millions of
people.

More research is needed into the development and application of efficient control al-
gorithms that coordinate the flows exchanged between different sub-networks. Simi-
larly as with the control algorithms proposed in this dissertation, a balance has to be
found between computation time and performance. Such an algorithm would have
two functions, namely, optimizing the flows exchanged between regions, and provid-
ing predictions of the inflows and desired outflows of the different sub-networks. The
controller sampling time can be chosen relatively large, i.e., in the range of tens of
minutes. Below two promising research directions are discussed.
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One promising approach is the use of the NFD within an MPC framework as done by
Hajiahmadi et al. [2013b], Haddad et al. [2012]. The advantage of this approach is that
the complexity of the optimization problem can be reduced drastically. However, also
several issues have to be investigated to analyze the feasibility of applying the frame-
work. First, both the control strategies used in the sub-networks, and by the regional
MPC strategy itself may affect the shape of the NFD. It may be investigated whether
this affects the controller performance, and when needed itthis may be included in
the controller design. See Zhou et al. [2016] for an example of a hierarchical control
framework using an MPC based on the NFD for the higher level and an MPC based
on the S-model to control the sub-networks. Second, the NFD is designed for urban
networks. However, also an efficient model for freeway networks is required that is
capable of predicting the flows in a large freeway network using very little computa-
tion time. Third, an approach is needed to choose the sub-network boundaries so that
optimal network performance can be achieved, see e.g. [Ji and Geroliminis, 2012, Ma
et al., 2009, Etemadnia et al., 2014, Hisai and Usami, 2006].

Another promising approach is the use of a decentralized control framework based on
distributed MPC. Frejo and Camacho [2012] have extensivelystudied the application
of distributed MPC to a freeway network, Tettamanti and Varga [2010] proposed a
distributed optimization algorithm for urban traffic control. In distributed MPC, every
sub-network is optimizing an objective function that expresses the local performance
and the impact of the realized outflows onto the rest of the network. One of the chal-
lenges of this framework is to find an expression for the impact of the sub-network
control actions onto the entire network performance.

7.2.2 Further improvements of proposed algorithms

The proposed algorithms may be improved in various ways. Below, various directions
are detailed that discuss additional research to further speed up the algorithms, to make
even more use of in-vehicle technology enabling cooperative systems, to study the
impact of noise and uncertainties, or to further generalizethe proposed algorithms.

Further improvement of the balance between computation time and performance

There is room for further improving the balance between computation time and per-
formance of the proposed algorithms. In fact, it is likely that there will always be new
innovations and scientific insights to improve this balance. The directions discussed
here are limited to extensions of the proposed algorithms.

The prediction horizon may be shortened byincluding end-cost functions.A reduction
of the prediction horizon reduces the dimension of the optimization problem, and as
a consequence reduces the computation time. However, this also increases the likeli-
hood that the optimized signal is myopic, i.e., it minimizesthe short term but not the
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long term costs. Including end-cost functions is a promising direction to reduce the
prediction horizon while being able to take the long-term costs into account. See e.g.
Jamshidnejad et al. [2016] who proposed an MPC strategy for urban traffic network
control that uses end-point penalties.

Another approach to reduce the computation time is todevelop a procedure to choose
good starting pointsfor the optimization. This may especially help when multiple local
minima exist. An example of such a starting point for the parameterized MPC strategy
proposed in Chapter 3 may be the use of the SPECIALIST controlscheme. The MPC
can then further improve the shape of the imposed VSL area so that it optimizes for
the details in the traffic flows, such as, on-ramp and off-ramptraffic. A risk of such a
strategy is that the local optima found in this way are not close to the global optimum
due to the selected control strategy.

Using in-vehicle technology enabling cooperative systems

In-vehicle technology enabling cooperative systems has the potential to improve de-
tection and actuation possibilities which may lead to more efficient traffic control al-
gorithms. This dissertation presented an algorithm in Chapter 2 that is specifically de-
signed for an in-vehicle system. One of the issues of using this technology to control
the traffic is that the number of actuators is very large. Hence, optimizing the desired
behavior of every vehicle in order to improve the network throughput results in a very
large optimization problem. An extension of the COSCAL v1 algorithm to account for
on-ramp flows is presented in van de Weg et al. [2014a]. It is expected that extending
the theory to more complex road lay-outs consisting of multiple on-ramps, off-ramps,
and lane-drops may be difficult to realize using an analytic approach as proposed in
van de Weg et al. [2014a].

A promising research direction is to develop amulti-layer or hierarchical control strat-
egy for cooperative systems. The top layer optimizes the network performance based
on flows while the lower level controls the individual vehicles to optimize the differ-
ent segments. This would require to develop traffic flow models that provide a good
balance between computational complexity and accuracy of modeling the in-vehicle
system.

In-vehicle technology and road-side technology will co-exist in the coming decades.
One of the reasons for this is that not all vehicles will be equipped with in-vehicle
technology enabling cooperative systems. Therefore, a system that uses cooperative
systems should be able to work with a mix of infrastructure-based systems and in-
vehicle technology. Hence, it is recommended to develop algorithms that are able of
utilizing both in-vehicle and infrastructure-based technology. Note that Mahajan et al.
[2015] proposed an infrastructure-based variant of the COSCAL v1 algorithm called
COSCAL v2.



Chapter 7. Conclusion and recommendations 185

Impact of noise and uncertainties

An ideal world was considered in this dissertation in which no measurement noise or
disturbance prediction uncertainties were considered. Also, case studies were designed
to study the balance between computation time and controller performance by using
simulation models that provided a small mismatch between the process and prediction
models. Additional research is required when relaxing these assumptions as explained
below.

The controller performance when subject to noise and uncertaintieshas to be investi-
gated. The first step would be to study the impact of measurement noise or uncertain-
ties in the disturbance predictions or in the prediction models on the controller perfor-
mance. It is well-known that the performance of control algorithms that anticipate the
impact of local control action on the rest of the network may be affected by prediction
uncertainties. Additional simulation studies are recommended in which the impact of
these uncertainties is systematically investigated. Depending on the outcome of these
evaluations, the following additional research may be required to limit the impact of
noise and uncertainties.

Observers and filters may need to be designedto filter the measurement noise and
estimate the traffic state that is used by the control algorithms. Since traffic state esti-
mation is an intensively studied research area, off-the-shelve algorithms may be used.
It is recommended to include observers and filters and evaluate the impact of noise
and uncertainties on the controller performance using morerealistic simulation exper-
iments. Additionally, new data types, such as, FCD, radar, Bluetooth, or video data,
may be used to acquire better estimates of the traffic state.

Disturbance prediction algorithms may have to be developedthat provide the sub-
network control algorithms with an estimate of the near-future disturbances, such as,
the traffic demand, the turn-fractions or the route choice. Currently, such algorithms
base their predictions on historical and real-time inductive detector loop data. How-
ever, the (planned) routes of road-users may drastically improve this estimation, al-
though it may also cause some interesting control problems as discussed in Chapter 5.
Additionally, the inclusion of a sub-network coordinationalgorithm may be used to
control the flows which may also influence the available prediction of the disturbances.

Robust control algorithms may need to be appliedthat guarantee a certain performance
in uncertain traffic situations. These algorithms may be designed to recover quickly
when an incident occurs – such as a crash or a bridge opening – or to prevent perfor-
mance degradation under uncertain conditions. A promisingresearch direction is the
use of robust MPC, see e.g. [Tettamanti et al., 2014]. However, a challenge is that
accounting for uncertainty can be computationally complex. Jansen [2016] took a step
in this direction by extending the linear MPC strategy proposed in Chapter 4 so that it
keeps additional storage space in the links in the over-saturated traffic regime using a
computationally efficient optimization algorithm.
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Heterogeneous traffic

This dissertation focused on networks used by vehicular traffic. In practice, traffic
networks are used by heterogeneous traffic consisting of, among others, ‘standard’ ve-
hicles, trucks, bicycles, pedestrians, emergency vehicles, and public transport. Further
research is recommended to study the application of the control algorithms proposed
in this dissertation to a wider variety of traffic. One research direction is the use of
robust control algorithms as discussed above. Another is the use of multi-mode traffic
flow models.

Various objective functions

This dissertation focused on the improvement of throughput. In practice, other perfor-
mance indicators have to be considered as well. Additional research is recommended
to extend the proposed algorithms to include other objective functions. It may also
be the case that the objective function may vary between the different sub-networks,
since, the (different) authorities may have different objectives. This requires additional
research as well.

Other types of actuators

This dissertation proposed algorithms forvariable speed limits, ramp metering, traffic
lights, and route guidance.Other types of actuators may also be included, especially
considering the fact that the proliferation of in-vehiclestechnologies enabling cooper-
ative systems allow more alternative types of traffic control measures. This requires
first to study how these actuators affect the network flows, and subsequently to include
them in an efficient control or optimization algorithm.

Integration with demand management measures

This dissertation focused on maximizing the use of the existing infrastructure. How-
ever, when there is simply too much traffic, inefficiencies will be inevitable. Hence, it
is recommended to study the integration of traffic control measures with demand man-
agement. Especially the interaction between demand management and traffic control
measures is an interesting research topic.

7.3 Towards application of concepts in practice

Several open questions need to be addressed before the proposed algorithms can be
applied in practice. Some of these questions are related to studying practical issues,
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such as the impact of noise and uncertainties on the performance of the algorithms.
Other questions are related to preparing the algorithms forapplications in practice.
These questions are discussed below.

The impact of noise and uncertainties on the performance

As discussed above, noise and uncertainties affect the performance of the algorithms. It
is recommended to first systematically assess the quality ofthe data available for traffic
state estimation and demand predictions. This may provide insight into the certainty
with which the demand can be predicted. Next, it can be assessed to what extend this
realistic data affects the controller performance. Based on these assessments it may
be recommended to develop better state estimation or demandprediction algorithms,
install better detectors, or to adjust the algorithms by making them robust or tune more
conservatively as also discussed in Section 7.2.2.

Assessment of the expected impact of control measures

Assessment of the expected impact of control measures is required to determine whether
it is beneficial to implement a measure at a site. This requires to develop a framework
to quantify the potential gain at a specific site. This is not atrivial task, since, it re-
quires a good data set, but also requires theoretical developments. An example of such
an analysis is presented in van de Weg et al. [2014b]. There, an ex-ante data analysis
technique is proposed to assess the potential gain of applying a VSL measure to resolve
jam waves on the A13 freeway in the Netherlands.

Satisfying practical requirements

The algorithms may need to be adapted to satisfy all the requirements that are needed
for practical application. These requirements may be hardware related. For instance,
the algorithms need to be able to deal with communication delays between detectors,
the control system, and the actuators. Apart from that, the algorithms may need to be
tailored to work on a specific site. For instance, the algorithm may need to be adopted
to include a specific road lay-out, to account for priority vehicles, such as emergency
vehicles or public transportation, and to account for various types of road-users, such
as vehicles, pedestrians, and cyclist. Also, the compliance with the measures may
need to be included in the algorithms, or new actuation approaches may need to be
developed to guarantee a certain compliance rate.

Extensive evaluations

It is recommended to carry out extensive simulations of the proposed algorithms before
implementation at a specific test site. These simulations can provide, among others,
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insight into the potential performance gains of the proposed algorithms in practice,
insight into the algorithmic behavior, and insight into theimpact of changing the pa-
rameter values from which tuning guidelines for practical application can be derived.
This requires to evaluate using simulations which are as close to the real set-up as
possible, i.e., the road lay-out and traffic situations should be similar.



References

H. M. Abdul Aziz and S. Ukkusuri. Unified framework for dynamic traffic assignment
and signal control with cell transmission model.Transportation Research Record:
Journal of the Transportation Research Board, 2311(1):73–84, 2012.

K. Aboudolas, M. Papageorgiou, A. Kouvelas, and E. Kosmatopoulos. A rolling-
horizon quadratic-programming approach to the signal control problem in large-
scale congested urban road networks.Transportation Research Part C: Emerging
Technologies, 18(5):680–694, 2010.
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Summary

Traffic control algorithms are not always able to efficientlyutilize the network capacity
causing economical and societal costs. The main complicating factor of network-wide
traffic control is (simply) the size of the network, especially when controlling the traffic
in an entire urban region – i.e. a densely populated area housing several millions of
people. Controlling the traffic in such a region requires thecoordination of several
hundreds of actuators, such as variable speed limits (VSLs), ramp metering (RM),
traffic lights, and route guidance. This is a challenging problem from a computational
point of view due to the large amount of decision variables, but also from a theoretical
point of view due to the many problem characteristics that need to be accounted for.

A promising approach to control the traffic in very large networks is to divide the net-
work into sub-networks. Asub-networkis defined in this dissertation as amedium-to-
large scale networkconsisting of tens of kilometers of freeway or tens of intersections.
The sub-network controllers are used to optimize the performance in the sub-networks
while a higher level controller optimizes the flows that are exchanged between the
sub-networks leading to network-wide performance improvement. In this way, the
sub-network controllers can consider more detail while thehigher level controller can
consider more simplified or aggregated dynamics. This dissertation focuses on the de-
sign of algorithms for sub-networks in the light of a multi-level or hierarchical system
as discussed above. Two types of sub-networks are considered, namely, freeway and
urban sub-networks.

Ideally, a freeway or urban traffic control algorithm is ableto automatically select the
control signals that maximize the sub-network throughput in different (traffic) situa-
tions. Although various optimization-based algorithms have been proposed to achieve
that goal, this type of algorithm has not been implemented inpractice due to several
reasons, namely; 1) the computational complexity of the optimization problem, 2) the
noise and uncertainties involved when estimating traffic states and predicting distur-
bances, and 3) the not very insightful optimized control actions. In contrast to that,
mainly non-optimizing control algorithms of the feedback or the feed-forward type are
implemented in practice. Advantages of these algorithms are that they require little
computation time, that they do not rely on demand predictions, and that they exploit
simple or insightful algorithmic formulations. However, they may not be able to opti-
mize the performance in all traffic situations.

Recent technological innovations and scientific insights provide opportunities for im-
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proving both freeway and urban traffic control algorithms. Technological innovations,
such as the proliferation of in-vehicle technology enabling cooperative systems, can be
used to provide better detection and actuation possibilities that may be used to improve
the controller performance. Similarly, scientific insights may be used to develop new
algorithms that make more efficient use of existing detection and actuation possibili-
ties. In some cases, a combined approach may be followed in which new algorithms
are developed that make efficient use of new detection and actuation possibilities.

Given the network-wide traffic control problem and the opportunities to improve traffic
control algorithms as discussed above, the main aim of this dissertation isthe design of
computationally efficient traffic control algorithms for th roughput improvement
of medium-to-large scale freeway or urban traffic networks that:

• coordinate the control actions of (different types of) actuators at different loca-
tions in the network,

• take the impact of the control actions on the network-wide performance over a
time horizon into account.

The main research objective is achieved by developing several algorithms for the con-
trol of traffic in freeway networks (part I) and urban traffic networks (part II) as dis-
cussed below.

Part I – Freeway traffic control
Cooperative systems can be used to develop more efficient freeway traffic control algo-
rithms when compared to existing, purely infrastructure-based systems. The reason for
this is that using in-vehicle technology may provide more accurate and faster detection
and actuation possibilities. However, not many approachesfor the coordinated control
of individual vehicles to control the traffic flows on an entire freeway stretch exist.

To this end,Chapter 2 proposes acooperative speed control algorithm to resolve jam
wavesin order to improve the freeway throughput. The algorithm – called COSCAL v1
– uses the individual vehicles as detectors and actuators assuming a 100% penetration
rate. The road-side system computes based on floating car data (FCD) which driv-
ing strategy vehicles on the freeway have to follow between which locations on the
freeway to resolve the jam wave and stabilize the traffic. Simulations using micro-
scopic simulation show that the algorithm is able to improvethe freeway throughput
by resolving a jam wave using a negligible amount of computation time. Hence, this
chapter shows that the it is possible to develop efficient algorithms for the control of
traffic flows using cooperative systems.

The application of control strategies that optimize the flows between different network
elements – e.g. on-ramps, off-ramps, bottlenecks, and segments – has the potential
to improve the freeway performance as well. One of the main issues of this type of
algorithms is balancing the required computation time and performance of the control
strategy.
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Hence,Chapter 3 proposes acomputationally efficient model-based predictive con-
trol (MPC) strategy for coordinating VSLs and RM installations in order to improve
the freeway throughput.The balance between computation time and performance is
improved by reducing the number of optimization variables through parameterization
of the VSL and RM signal. The parameterized VSL signal consists of the speed with
which the downstream and upstream boundaries of a speed-limited area propagate. The
parameterized RM signal consists of the density set-pointsof a feedback RM strategy
based on the ALINEA algorithm and the time when the settings of the feedback strat-
egy are changed. The approach is evaluated using macroscopic simulation for two
different cases, namely, when resolving a jam wave, and whenpreventing congestion
caused by a high on-ramp demand. It is shown that the proposedMPC approach can
realize throughput improvements of 12% and 10% respectively while realizing a better
balance between computation time and throughput compared to a non-parameterized
MPC strategy.

Part II – Urban traffic control
Improving the throughput of urban traffic networks is a complex problem due to,
among others, the discontinuous nature of the intersectionflows, the large number of
actuators, and the characteristics of the urban traffic dynamics. To the best knowledge
of the author, a computationally efficient optimization algorithm for the coordination
of intersection flows that can realize good performance in all traffic regimes is currently
lacking.

Therefore,Chapter 4 proposes anefficient linear MPC strategy for optimizing the
traffic flows in order to improve the urban road network throughput. The proposed
MPC strategy uses the link transmission model (LTM) as the prediction model and
aggregates the traffic flow dynamics to tens of seconds. So, instead of green-times, the
fractions of green-time used by every stream are the optimization variables, which are
real-valued. It is shown using macroscopic simulation thatthe use of the LTM leads to
a better balance between computation time and realized throughput when compared to
a linear MPC strategy based on the cell transmission model. It is also shown that the
inclusion of upstream propagating waves leads to better throughput when compared
to a linear MPC strategy based on the store-and-forward model but also that the MPC
strategy requires more computation time.

The application of cooperative systems may lead to improvedperformance of urban
traffic control algorithms. However, it may also cause an interaction effect between
the chosen intersection control strategy, and the route choice of the road-users. Hence,
in order to maximize the network performance, a control strategy has to account for
the impact of the control signals onto the route choice and potentially control the route
choice itself. However, jointly optimizing the signal timings and route choice is a
computational complex problem.

Chapter 5 proposes anefficient optimization strategy for the control of flows and rout-
ing decisions in order to improve the network throughput. The inclusion of routing
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decisions results in a non-linear prediction model and optimization problem. There-
fore, an efficient optimization algorithm of the sequentiallinear programming (SLP)
type is used and an analytic procedure to approximate the gradient in an operating
point is proposed. It is shown using macroscopic simulations that the algorithm can
realize a better balance between computation time and throughput when compared to
applying a conventional numerical optimization algorithm.

The algorithms proposed in Chapter 4 and Chapter 5 both assume that the traffic flows
at intersections are continuous. However, intersection flows are discontinuous so that
directly optimizing the signal timings leads to a discontinuous optimization problem.
Solving such a problem is not feasible in real-time when applied to medium-to-large
scale networks. Hence, an alternative approach may be needed that can coordinate the
signal timings in a network without directly optimizing thesignal timings.

To this end,Chapter 6 proposes ahierarchical control framework to coordinate the
signal timingsin order to improve the urban network throughput. The framework con-
sists of two layers. The top layer uses the MPC strategy proposed in Chapter 4 to
optimize the aggregated flows at intersections. The bottom layer consists of the indi-
vidual intersection controllers which actuate at every time-step the stage that leads to
the best tracking of the optimized outflows. Evaluations using macroscopic simulation
are carried out to study the added value of the network coordination layer, and the
impact of the timing onto the controller performance. Evaluations using microscopic
simulation demonstrate the controllers ability to improvethe throughput by distribut-
ing the queues over the network when compared to maximizing the outflow of the
individual intersections without coordination even when subject to a larger mismatch
between prediction and process model.

In conclusion this dissertation proposed several computationally efficient network-
wide traffic control algorithms for throughput improvementof medium-to-large scale
freeway or urban traffic networks. These algorithms are designed to coordinate the
control actions of (different types of) actuators at different locations in the network
and to take the impact of the control actions on the network-wide performance over
a time-horizon into account. This is realized by exploitingnew features of in-vehicle
technology enabling cooperative systems to provide betterdetection and actuation pos-
sibilities and by using recent scientific insights to develop more efficient algorithms.

Various directions forfurther research are proposed.First, additional research is
required to integrate the proposed algorithms into a hierarchical of multi-layer frame-
work for the coordinated control of entire urban regions.Second,the algorithms pro-
posed in this dissertation may be further improved, for instance, by further improving
the balance between computation time and performance, by further exploiting the po-
tential of in-vehicle technologies, or by studying the impact of relaxing the assump-
tions used in this dissertation.Third, recommendations for the application of concepts
in practice are presented.



Samenvatting

Verkeersregelalgoritmes zijn niet altijd in staat om de capaciteit van een verkeersnet-
werk volledig te benutten, wat economische en maatschappelijke kosten tot gevolg
heeft. Een van de belangrijkste oorzaken hiervan is (simpelweg) de netwerk grootte. In
het bijzonder als het verkeer in een gehele stedelijke regio– d.w.z. een dichtbevolkt ge-
bied waarin miljoenen mensen wonen – geregeld dient te worden. Dit vereist namelijk
de coördinatie van honderden actuatoren, zoals variabelesnelheidslimieten (VSLs),
toeritdoseringsinstallaties (TDIs), verkeerslichten endynamische route informatie pa-
nelen. Dit is een uitdagend probleem vanuit een rekenkundigoogpunt vanwege het
grote aantal beslisvariabelen, maar ook vanuit een theoretisch oogpunt vanwege de
vele probleem-karakteristieken waarmee rekening gehouden dient te worden.

Een veelbelovende aanpak om verkeer in zeer grote netwerkente regelen is het opdelen
van het netwerk in deel-netwerken. In dit proefschrift is een deel-netwerkgedefinieerd
als eenmiddel- tot grootschalig netwerkbestaande uit tientallen kilometers snelweg of
tientallen kruispunten. De deel-netwerk-regelingen optimaliseren de prestatie van de
deel-netwerken, terwijl een regeling op een netwerk-breedniveau de verkeersstromen
optimaliseert die tussen deel-netwerken worden uitgewisseld zodat de netwerk-brede
prestatie verbetert. Deze opzet zorgt ervoor dat de deel-netwerk-regelingen meer de-
tails van het verkeersproces kunnen beschouwen terwijl de netwerk-brede regeling
versimpelde of geaggregeerde verkeersdynamiek kan beschouwen. Dit proefschrift
richt zich op het ontwerpen van algoritmes voor deel-netwerken in het licht van een
multi-level of hiërarchische regeling zoals hierboven beschreven. Twee typen deel-
netwerken worden beschouwd, namelijk snelweg en stad deel-netwerken.

De ideale snelweg- of stadsregeling kiest automatisch die regelsignalen die de prestatie
van het deel-netwerk optimaliseren in verschillende (verkeers-)toestanden. Alhoewel
er in de literatuur verscheidene optimalisatie-gebaseerde algoritmes zijn beschreven
die dit als doel hebben, is dit type algoritme nog niet in de praktijk toegepast. Dit heeft
verschillende redenen, namelijk; 1) de complexiteit van het optimalisatieprobleem,
2) de meetruis en onzekerheden die de kwaliteit van schattingen van de verkeers-
toestand en voorspellingen van verstoringen beı̈nvloedenen 3) het niet erg inzichte-
lijk gedrag van de geoptimaliseerde regelacties. In tegenstelling tot deze algoritmes
zijn dan ook voornamelijk niet optimaliserende feedback offeed-forward algoritmes
geı̈mplementeerd in de praktijk. De voordelen van deze algoritmes zijn dat ze maar
een beperkte rekentijd nodig hebben, dat ze niet vertrouwenop een voorspelling van
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de verkeersvraag en dat ze een ‘simpel’ of inzichtelijk algoritme benutten. Ze zijn
echter niet altijd in staat om de prestatie in alle verkeerstoestanden te optimaliseren.

Recente technologische innovaties en wetenschappelijke inzichten bieden kansen om
snelweg- en stadsverkeersregelingen te verbeteren. Technologische innovaties zoals
in-voertuig technologie die coöperatieve systemen mogelijk maken, kunnen worden
benut om betere detectie en actuatie mogelijkheden te creëren die de prestatie van
verkeersregelalgoritmes kunnen verbeteren. Wetenschappelijke inzichten kunnen wor-
den gebruikt om nieuw algoritmes te ontwikkelen die efficiënter gebruik maken van
bestaande detectie en actuatie mogelijkheden. Daarnaast is in sommige gevallen een
gecombineerde aanpak mogelijk waarin nieuwe algoritmes worden ontwikkeld die ef-
ficiënt gebruik maken van nieuwe detectie en actuatie mogelijkheden.

Gegeven het netwerk-brede verkeersregelprobleem en de kansen om verkeersregel-
algoritmes te verbeteren zoals hierboven besproken is het doel van dit proefschrift
om rekenkundig efficiënte regelalgoritmes te ontwerpen die de doorstroming van
middel- tot grootschalige snelweg- of stadsverkeersnetwerken bevorderen welke:

• de regelacties van (verschillende types) actuatoren op verschillende plekken in
het netwerk coördineren,

• de invloed van de regelacties op de netwerk-brede prestatieover een tijdshorizon
in acht nemen.

Hiertoe worden verschillende algoritmes om het verkeer in snelwegnetwerken (deel I)
en stadsnetwerken (deel II) te regelen ontwikkeld, zoals hieronder besproken.

Deel I – Snelwegverkeersregelingen
Coöperatieve systemen kunnen benut worden om snelwegverkeersregelingen te ont-
wikkelen die efficiënter zijn dan systemen die volledig gebaseerd zijn op wegkant-
technologie. De reden hiervoor is dat het gebruik van coöperatieve systemen nauw-
keurigere en snellere detectie en actuatie mogelijk maakt.Er bestaan echter nog niet
veel algoritmes die verkeersstroom op een stuk snelweg regelen door middel van het
coördineren van het gedrag van individuele voertuigen.

Hoofdstuk 2 presenteert daarom eencoöperatief snelheidsregel-algoritme om filegol-
ven op te lossenzodat de doorstroming van de snelweg als geheel verbetert. Dit algo-
ritme – genaamd COSCAL v1 – gebruikt de individuele voertuigen als detectoren en
actuatoren uitgaande van een penetratie graad van 100%. Hetwegkantsysteem bere-
kent aan de hand van floating car data (FCD) welke rij-strategieën voertuigen moeten
volgen tussen welke locaties om de file op te lossen en de verkeersstroom te stabilise-
ren. Evaluaties uitgevoerd met microscopische simulatie laten zien dat het algoritme
in staat is om de doorstroming te verbeteren door een filegolfop te lossen gebruikma-
kend van een minieme hoeveelheid rekentijd. Dit hoofdstuk toont dan ook aan de het
mogelijk is om efficiënte algoritmes voor coöperatieve systemen te ontwikkelen om de
verkeersafwikkeling op de snelweg te verbeteren.
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Het optimaliseren van de verkeersstromen tussen verschillende netwerk elementen –
zoals op- en afritten, knelpunten, en stukken snelweg – heeft daarnaast ook potentie
om de doorstroming te verbeteren. Een van de belangrijkste problemen van dit type
algoritmes is het vinden van een goede balans tussen benodigde rekentijd en prestatie.

Derhalve steltHoofdstuk 3 een rekenkundig efficiënte, model-gebaseerd voorspel-
lende regeling (MPC) voor die de doorstroming verbetert door de regelsignalen van
VSLs en TDIs te cöordineren.De balans tussen rekentijd en doorstroming is verbeterd
door het aantal beslisvariabelen te verminderen met behulpvan parameterisatie van
het VSL en TDI signaal. De aanpak is geëvalueerd met behulp van macroscopische
simulatie voor twee verschillende casussen, namelijk het oplossen van een filegolf en
het voorkomen van file veroorzaakt door een te hoge verkeersvraag op de toerit. De
aanpak is in staat doorstromingsverbeteringen van respectievelijk 12% en 10% te be-
halen en realiseert een betere balans tussen rekentijd en doorstroming vergeleken met
een niet-geparameteriseerde MPC strategie.

Deel II – Stadsverkeersregelingen
Het verbeteren van de doorstroming van een stadsverkeersnetwerk is een complex pro-
bleem vanwege, onder andere de grote hoeveelheid actuatoren en de complexe karak-
teristieken van de verkeersafwikkeling. Voor zover bekendbij de auteur van dit proef-
schrift bestaan er bijna geen aanpakken die met behulp van een rekenkundig efficiënt
optimalisatie algoritme de verkeersstromen in een stadsverkeersnetwerk coördineren
zodat er een goede doorstroming in alle verkeerstoestandenkan worden gerealiseerd.

Hoofdstuk 4 presenteert daaromeen efficïente lineaire MPC strategie om de verkeers-
stromen te optimaliseren zodanig dat de doorstroming van een stadsverkeersnetwerk
verbetert.De voorgestelde aanpak gebruikt het link transmissie model(LTM) als voor-
spellingsmodel en aggregeert de verkeersdynamiek naar tientallen seconden. De be-
slisvariabelen zijn hierdoor de percentages groentijd benut door elke stroom welke
reëele waarden hebben. Evaluaties met behulp van macroscopische simulaties laten
zien dat het gebruik van het LTM tot een betere balans tussen rekentijd en prestatie
leidt vergeleken met een lineaire MPC aanpak gebaseerd op het cell transmissie mo-
del. Daarnaast blijkt dat het meenemen van stroomopwaarts propagerende golven in
het voorspel model tot een betere doorstroming maar een hogere rekentijd, vergeleken
met een aanpak gebaseerd op het store-and-forward model.

Het gebruik van coöperatieve systemen kan mogelijk de prestatie van stadsverkeers-
regelingen verbeteren. Het kan echter ook een interactie effect veroorzaken tussen de
gekozen verkeersregeling en de routekeuze van de weggebruiker. Een verkeersregeling
die als doel heeft de doorstroming te maximaliseren dient dan ook rekening te houden
met de invloed van de verkeersregeling op de routekeuze of moet mogelijk zelfs de
routekeuze direct beı̈nvloeden. Het gezamenlijk optimaliseren van de routekeuze en
de verkeersstromen leidt echter tot een rekenkundig complex optimalisatie probleem.

Hoofdstuk 5 presenteert daarom eenefficïent optimalisatie algoritme om de verkeers-
stromen en routekeuzes zodanig te regelen dat de doorstroming van een stadsverkeer-
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netwerk verbetert.Het toevoegen van routekeuze leidt tot een niet-lineair optimalisatie
probleem. Er wordt daarom gebruik gemaakt van een efficiëntoptimalisatie algoritme
van het sequentieel lineair programmeer (SLP) type in combinatie met een analytische
procedure om de gradiënt van het optimalisatie probleem tebepalen. Evaluaties met
behulp van macroscopische simulatie laten zien dat het algoritme in staat is een betere
balans tussen rekentijd en doorstroming te realiseren in vergelijking tot een conventio-
neel numeriek optimalisatie algoritme.

De algoritmes gepresenteerd in Hoofdstuk 4 en Hoofdstuk 5 nemen beiden aan dat
de verkeersstromen over kruispunten continu zijn. In de praktijk zijn deze echter dis-
continu zodat het direct optimaliseren van de groentijden een discontinu optimalisatie-
probleem oplevert. Het oplossen van een dergelijk optimalisatieprobleem kost teveel
rekentijd voor praktische toepassing. Er is dan mogelijk ook een alternatieve aanpak
nodig om de kruispuntregelingen in een verkeersnetwerk te coördineren zonder expli-
ciet de groentijden te optimaliseren.

Hoofdstuk 6 presenteert daaromeen hïerarchische regelaanpak om de groentijden te
coördinerenbestaande uit twee lagen. De bovenste laag gebruikt de MPC aanpak uit
Hoofdstuk 4 om de geaggregeerde verkeersstromen in het netwerk te optimaliseren. De
onderste laag bestaat uit de individuele kruispuntregelingen welke op elke regel tijdstap
die richtingen groen geven die ervoor zorgen dat de geoptimaliseerde verkeersstromen
berekend door de bovenste laag zo goed mogelijk benaderd worden. Evaluaties met
behulp van macroscopische simulatie geven inzicht in de toegevoegde waarde van de
bovenste laag die zorgt voor coördinatie tussen de kruispunten en inzicht in de invloed
van de sample tijd keuze op de prestatie van de regeling. Evaluaties met behulp van
microscopische simulatie laten zien dat de regeling een betere doorstroming kan reali-
seren door de wachtrijen over het netwerk te verdelen in vergelijking tot een regeling
die de uitstroom van de individuele kruispunten optimaliseert zonder coördinatie, zelfs
als er een grotere fout tussen het voorspel- en procesmodel zit.

Verscheidene rekenkundig efficiënte algoritmes voor het verbeteren van de doorstro-
ming van middel- tot grootschalige verkeersnetwerken zijnontwikkeld in dit proef-
schrift. Deze algoritmes zijn ontworpen om de regelacties van (verschillende types)
actuatoren op verschillende plekken in het netwerk te coördineren en de invloed van
de regelacties op de netwerk-brede prestatie over een tijdshorizon in acht nemen. Dit
is gerealiseerd door gebruik te maken van recente wetenschappelijke inzichten en de
nieuwe detectie- en actuatie-mogelijkheden die coöperatieve systemen bieden.

Dit proefschrift presenteert verschillende richtingen voor vervolg onderzoek. Ten eer-
steis aanvullend onderzoek nodig om de gepresenteerde algoritmes te integreren in een
hiërarchisch of multi-level raamwerk voor het gecoördineerd regelen van stedelijke re-
gio’s. Ten tweedeworden er aanbevelingen gedaan om de balans tussen rekentijd en
prestatie van de gepresenteerde algoritmes nog verder te verbeteren.Tot slotworden
er aanbevelingen gedaan voor aanvullend onderzoek dat nodig is om de concepten in
de praktijk toe te passen.
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                                                Summary

Controlling road traffic networks is a complex problem. One of the 
difficulties is the coordination of actuators, such as traffic lights, 
variables speed limits, ramp metering and route guidance, with the 
aim to improve the network performance over a near-future time 
horizon. This dissertation develops algorithms that specifically balance 
fast computation time and improved traffic network performance; 
both for freeway traffic in part I, and for urban traffic in part II.
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