# Integrating radar and multi-spectral data to detect cocoa crops: a deep learning approach

Adele Therias

FIRST SUPERVISOR Dr. Azarakhsh Rafiee

SECOND SUPERVISOR
Dr. Stef I hermitte





COMPANY SUPERVISOR Philip van der Lugt

CO-READER
Dr. Roderik Lindenbergh



# **MOTIVATION**

### **DEFORESTATION**



Adapted from Ashiagbor et al., 2022

# 7.54% of EU-driven deforestation

### **COCOA PRODUCTION**



Meridia, 2020

### **EU DEFORESTATION REGULATION**



### **DETECTION CHALLENGES**



Satellite data: Google Earth accessed via QGIS XYZ tiles layer connection | Polygon data: Meridia B.V.

# MULTISPECTRAL IMAGERY

### MULTISPECTRAL IMAGERY



NASA 2015

WEkEO, 2020

### MONOCROP CANOPY



Adapted from Orozco-Aguilar et al., 2021

### SPECTRAL SIMILARITY



Batista et al., 2022

### **VEGETATION SIMILARITY**





Google Earth accessed via QGIS XYZ tiles layer connection

# MULTISPECTRAL IMAGERY

### INTERCROP FARMS



Google Earth accessed via QGIS XYZ tiles layer connection

### **AGROFORESTRY**



### MONOCROP CANOPY



Adapted from Orozco-Aguilar et al., 2021

### SPECTRAL SIMILARITY







**VEGETATION SIMILARITY** 

Google Earth accessed via QGIS XYZ tiles layer connection

Batista et al., 2022

# MULTISPECTRAL IMAGERY

### **CLOUD COVER**







WEkEO, 2020



### **BACKSCATTER MAP**



# RELATED WORK

MSI





Batista et al., 2022

SAR



MSI + SAR



Numbisi & Van Coillie, 2020

Kanmegne Tamga et al., 2022

# RELATED WORK



# **DEEP LEARNING**

### CONVOLUTIONAL NEURAL NETWORK

# Image Maps Input Output Convolutions Subsampling

Fei-Kei et al., 2023

### SEMANTIC SEGMENTATION



Bhatia, 2021

### **CONVOLUTIONAL LAYER**



Dumoulin & Visin, 2016

### **ACTIVATION FUNCTION**



Fei-Kei et al., 2023

### **POOLING LAYER**



Dumoulin & Visin, 2016

# SEMANTIC SEGMENTATION

### **U-NET**

# RGB Ground Truth Predicted Background Background Cocoa Cocoa Uncertain

Adapted from Bonet Filella, 2018



### **XCEPTION**



Adapted from Kalischek et al., 2022



# SEMANTIC SEGMENTATION

### **U-NET**

# RGB Ground Truth Predicted Background Background Cocoa Cocoa Uncertain

Adapted from Bonet Filella, 2018



### **XCEPTION**



Adapted from Kalischek et al., 2022



# RESEARCH QUESTIONS

To what extent can a Convolutional Neural Network (CNN) trained with multispectral imagery (MSI) **and** Synthetic Aperture Radar (SAR) datasets enable the automated detection of cocoa crops in Ghana?

- How does the combination of MSI and SAR data affect the results of cocoa parcel segmentation trained with data from a *single day*?
- How does the combination of MSI and SAR data affect the results of cocoa parcel segmentation trained with *temporal* datasets?
- Why does the use of different *polarizations* (i.e. Vertical-Vertical (VV) or Vertical-Horizontal (VH)) affect the influence of SAR datasets on the cocoa segmentation results?

4

What is the impact of SAR and MSI training data on the detection of *intercrop* cocoa?

### **GROUND TRUTH POLYGONS**

Monocrop cocoa

Intercrop cocoa

Forest reserves





### SATELLITE DATA

MSI

SAR



### **GROUND TRUTH POLYGONS**

Monocrop cocoa

Intercrop cocoa Forest reserves





### SATELLITE DATA

MSI

SAR



# STACKING SATELLITE DATA



# TEMPORAL DATA

### SEASONS OF SOUTHERN GHANA



WET SEASON

# TEMPORAL DATA

### SEASONS OF SOUTHERN GHANA

DRY SEASON



## TEMPORAL DATA

### SEASONS OF SOUTHERN GHANA









### **U-NET**



(Source: Ronneberger, 2015)

### **U-NET**



### **U-NET**



### WEIGHTED LOSS

$$w_c = \frac{1}{\frac{n_c}{N}}$$

$$w_c = \frac{1}{\frac{n_c}{N}}$$

$$L_{cross-entropy}(\hat{y}, y) = -\frac{1}{N} \sum_{j}^{N} \sum_{c}^{M} w_c y_{c,j} \ln(\hat{y}_{c,j})$$

### **U-NET**



### WEIGHTED LOSS

$$w_c = \frac{1}{\frac{n_c}{N}}$$

$$w_c = \frac{1}{\frac{n_c}{N}}$$

$$L_{cross-entropy}(\hat{y}, y) = -\frac{1}{N} \sum_{j}^{N} \sum_{c}^{M} w_c y_{c,j} \ln(\hat{y}_{c,j})$$





**Unknown** weight



### **U-NET**



### WEIGHTED LOSS

$$w_c = \frac{1}{\frac{n_c}{N}}$$

$$w_c = \frac{1}{\frac{n_c}{N}}$$

$$L_{cross-entropy}(\hat{y}, y) = -\frac{1}{N} \sum_{j}^{N} \sum_{c}^{M} w_c y_{c,j} \ln(\hat{y}_{c,j})$$

### **Prediction map**



Cocoa

Forest

### OUTPUT

### Cocoa probability map



Cocoa probability



### **METRICS**

Intersection over Union (Cocoa class)



Loss value (All classes)



### **EXPERIMENTS**

Reference

| Set      | #  | MSI Data                  | SAR Data                           | Season |
|----------|----|---------------------------|------------------------------------|--------|
| 1        | 1  | December                  | N/A                                | Dry    |
|          | 2  | March                     | N/A                                | Dry    |
|          | 3  | Jan, March, December, Jan | N/A                                | Dry    |
|          | 4  | N/A                       | May - VV                           | Wet    |
|          | 5  | N/A                       | May - VH                           | Wet    |
|          | 6  | N/A                       | May - VV VH                        | Wet    |
|          | 7  | N/A                       | Jan - VV                           | Dry    |
|          | 8  | N/A                       | Jan - VH                           | Dry    |
|          | 9  | N/A                       | Jan - VV VH                        | Dry    |
|          | 10 | N/A                       | Jan, March, December, Jan - VV     | Dry    |
|          | 11 | N/A                       | Jan, March, December, Jan - VH     | Dry    |
|          | 12 | N/A                       | Jan, March, December, Jan - VV VH  | Dry    |
|          | 13 | N/A                       | May, August, November, Jan - VV    | Multi  |
|          | 14 | N/A                       | May, August, November, Jan - VH    | Multi  |
|          | 15 | N/A                       | May, August, November, Jan - VV VH | Multi  |
|          | 16 | December                  | Jan - V V                          | Dry    |
|          | 17 | December                  | Jan - VH                           | Dry    |
|          | 18 | December                  | Jan - VV VH                        | Dry    |
|          | 19 | December                  | May - VV                           | Multi  |
|          | 20 | December                  | May - VH                           | Multi  |
|          | 21 | December                  | May - VV VH                        | Multi  |
|          | 22 | December                  | May, August, November, Jan - VV    | Multi  |
|          | 23 | December                  | May, August, November, Jan - VH    | Multi  |
|          | 24 | December                  | May, August, November, Jan - VV VH | Multi  |
|          | 25 | Jan, March, December, Jan | May - VV                           | Multi  |
|          | 26 | Jan, March, December, Jan | May - VH                           | Multi  |
|          | 27 | Jan, March, December, Jan | May - VV VH                        | Multi  |
|          | 28 | Jan, March, December, Jan | May, August, November, Jan - VV    | Multi  |
| 2        | 29 | December (label change)   | N/A                                | Dry    |
|          | 30 | December                  | May                                | Multi  |
| <u> </u> | 31 | December                  | May, August, November, Jan         | Multi  |
| 3        | 32 | December (cloudless)      | N/A                                | Dry    |
|          | 33 | December                  | May                                | Multi  |
|          | 34 | December                  | May, August, November, Jan         | Multi  |

### **EXPERIMENTS**

| Set | #  | MSI Data                  | SAR Data                           | Season |
|-----|----|---------------------------|------------------------------------|--------|
| 1   | 1  | December                  | N/A                                | Dry    |
|     | 2  | March                     | N/A                                | Dry    |
|     | 3  | Jan, March, December, Jan | N/A                                | Dry    |
|     | 4  | N/A                       | May - VV                           | Wet    |
|     | 5  | N/A                       | May - VH                           | Wet    |
|     | 6  | N/A                       | May - VV VH                        | Wet    |
|     | 7  | N/A                       | Jan - VV                           | Dry    |
|     | 8  | N/A                       | Jan - VH                           | Dry    |
|     | 9  | N/A                       | Jan - VV VH                        | Dry    |
|     | 10 | N/A                       | Jan, March, December, Jan - VV     | Dry    |
|     | 11 | N/A                       | Jan, March, December, Jan - VH     | Dry    |
|     | 12 | N/A                       | Jan, March, December, Jan - VV VH  | Dry    |
|     | 13 | N/A                       | May, August, November, Jan - VV    | Multi  |
|     | 14 | N/A                       | May, August, November, Jan - VH    | Multi  |
|     | 15 | N/A                       | May August November Jan - VV VH    | Multi  |
|     | 16 | December                  | Jan - VV                           | Dry    |
|     | 17 | December                  | Jan - VH                           | Dry    |
|     | 18 | December                  | Jan - VV VH                        | Dry    |
|     | 19 | December                  | May - VV                           | Multi  |
|     | 20 | December                  | May - VH                           | Multi  |
|     | 21 | December                  | May - VV VH                        | Multi  |
|     | 22 | December                  | May, August, November, Jan - VV    | Multi  |
|     | 23 | December                  | May, August, November, Jan - VH    | Multi  |
|     | 24 | December                  | May, August, November, Jan - VV VH | Multi  |
|     | 23 | Jan, Marcn, December, Jan | Iviay - v v                        | Multi  |
|     | 26 | Jan, March, December, Jan | May - VH                           | Multi  |
|     | 27 | Jan, March, December, Jan | May - VV VH                        | Multi  |
|     | 28 | Jan, March, December, Jan | May, August, November, Jan - VV    | Multi  |
| 2   | 29 | December (label change)   | N/A                                | Dry    |
|     | 30 | December                  | May                                | Multi  |
|     | 31 | December                  | May, August, November, Jan         | Multi  |
| 3   | 32 | December (cloudless)      | N/A                                | Dry    |
|     | 33 | December                  | May                                | Multi  |
|     | 34 | December                  | May, August, November, Jan         | Multi  |



Single-day MSI

### **EXPERIMENTS**

| Set | #  | MSI Data                  | SAR Data                           | Season |
|-----|----|---------------------------|------------------------------------|--------|
| 1   | 1  | December                  | N/A                                | Dry    |
|     | 2  | March                     | N/A                                | Dry    |
|     | 3  | Jan, March, December, Jan | N/A                                | Dry    |
|     | 4  | N/A                       | May - VV                           | Wet    |
|     | 5  | N/A                       | May - VH                           | Wet    |
|     | 6  | N/A                       | May - VV VH                        | Wet    |
|     | 7  | N/A                       | Jan - VV                           | Dry    |
|     | 8  | N/A                       | Jan - VH                           | Dry    |
|     | 9  | N/A                       | Jan - VV VH                        | Dry    |
|     | 10 | N/A                       | Jan, March, December, Jan - VV     | Dry    |
|     | 11 | N/A                       | Jan, March, December, Jan - VH     | Dry    |
|     | 12 | N/A                       | Jan, March, December, Jan - VV VH  | Dry    |
|     | 13 | N/A                       | May, August, November, Jan - VV    | Multi  |
|     | 14 | N/A                       | May, August, November, Jan - VH    | Multi  |
|     | 15 | N/A                       | May, August, November, Jan - VV VH | Multi  |
|     | 16 | December                  | Jan - VV                           | Dry    |
|     | 17 | December                  | Jan - VH                           | Dry    |
|     | 18 | December                  | Jan - VV VH                        | Dry    |
|     | 19 | December                  | May - VV                           | Multi  |
|     | 20 | December                  | May - VH                           | Multi  |
|     | 21 | December                  | May - VV VH                        | Multi  |
|     | 22 | December                  | May, August, November, Jan - VV    | Multi  |
|     | 23 | December                  | May, August, November, Jan - VH    | Multi  |
|     | 24 | December                  | May, August, November, Jan - VV VH | Multi  |
|     | 25 | Jan, March, December, Jan | May - VV                           | Multi  |
|     | 26 | Jan, March, December, Jan | May - VH                           | Multi  |
|     | 27 | Jan, March, December, Jan | May - VV VH                        | Multi  |
|     | 28 | Jan, March, December, Jan | May, August, November, Jan - VV    | Multi  |
|     | 29 | December (label change)   | N/A                                | Dry    |
|     | 30 | December                  | May                                | Multi  |
|     | 31 | December                  | May, August, November, Jan         | Multi  |
| 3   | 32 | December (cloudless)      | N/A                                | Dry    |
|     | 33 | December                  | May                                | Multi  |
|     | 34 | December                  | May, August, November, Jan         | Multi  |



Multi-day MSI

### **EXPERIMENTS**

| Set | #  | MSI Data                  | SAR Data                           | Seasor |
|-----|----|---------------------------|------------------------------------|--------|
| 1   | 1  | December                  | N/A                                | Dry    |
|     | 2  | March                     | N/A                                | Dry    |
|     | 3  | Jan, March, December, Jan | N/A                                | Dry    |
|     | 4  | N/A                       | May - VV                           | Wet    |
|     | 5  | N/A                       | May - VH                           | Wet    |
|     | 6  | N/A                       | May - VV VH                        | Wet    |
|     | 7  | N/A                       | Jan - VV                           | Dry    |
|     | 8  | N/A                       | Jan - VH                           | Dry    |
|     | 9  | N/A                       | Jan - VV VH                        | Dry    |
|     | 10 | N/A                       | Jan, March, December, Jan - VV     | Dry    |
|     | 11 | N/A                       | Jan, March, December, Jan - VH     | Dry    |
|     | 12 | N/A                       | Jan, March, December, Jan - VV VH  | Dry    |
|     | 13 | N/A                       | May, August, November, Jan - VV    | Multi  |
|     | 14 | N/A                       | May, August, November, Jan - VH    | Multi  |
|     | 15 | N/A                       | May, August, November, Jan - VV VH | Multi  |
|     | 16 | December                  | Jan - VV                           | Dry    |
|     | 17 | December                  | Jan - VH                           | Dry    |
|     | 18 | December                  | Jan - VV VH                        | Dry    |
|     | 19 | December                  | May - VV                           | Multi  |
|     | 20 | December                  | May - VH                           | Multi  |
|     | 21 | December                  | May - VV VH                        | Multi  |
|     | 22 | December                  | May, August, November, Jan - VV    | Multi  |
|     | 23 | December                  | May, August, November, Jan - VH    | Multi  |
|     | 24 | December                  | May, August, November, Jan - VV VH | Multi  |
|     | 25 | Jan, March, December, Jan | May - VV                           | Multi  |
|     | 26 | Jan, March, December, Jan | May - VH                           | Multi  |
|     | 27 | Jan, March, December, Jan | May - VV VH                        | Multi  |
|     | 28 | Jan, March, December, Jan | May, August, November, Jan - VV    | Multi  |
| 2   | 29 | December (label change)   | N/A                                | Dry    |
|     | 30 | December                  | May                                | Multi  |
|     | 31 | December                  | May, August, November, Jan         | Multi  |
| 3   | 32 | December (cloudless)      | N/A                                | Dry    |
|     | 33 | December                  | May                                | Multi  |
|     | 34 | December                  | May, August, November, Jan         | Multi  |

Expanded "Not Cocoa" class



### **EXPERIMENTS**

| 1 |    | MSI Data                  | SAR Data                           | Season |
|---|----|---------------------------|------------------------------------|--------|
| 1 | 1  | December                  | N/A                                | Dry    |
|   | 2  | March                     | N/A                                | Dry    |
|   | 3  | Jan, March, December, Jan | N/A                                | Dry    |
|   | 4  | N/A                       | May - VV                           | Wet    |
|   | 5  | N/A                       | May - VH                           | Wet    |
|   | 6  | N/A                       | May - VV VH                        | Wet    |
|   | 7  | N/A                       | Jan - VV                           | Dry    |
|   | 8  | N/A                       | Jan - VH                           | Dry    |
|   | 9  | N/A                       | Jan - VV VH                        | Dry    |
|   | 10 | N/A                       | Jan, March, December, Jan - VV     | Dry    |
|   | 11 | N/A                       | Jan, March, December, Jan - VH     | Dry    |
|   | 12 | N/A                       | Jan, March, December, Jan - VV VH  | Dry    |
|   | 13 | N/A                       | May, August, November, Jan - VV    | Multi  |
|   | 14 | N/A                       | May, August, November, Jan - VH    | Multi  |
|   | 15 | N/A                       | May, August, November, Jan - VV VH | Multi  |
|   | 16 | December                  | Jan - VV                           | Dry    |
|   | 17 | December                  | Jan - VH                           | Dry    |
|   | 18 | December                  | Jan - VV VH                        | Dry    |
|   | 19 | December                  | May - VV                           | Multi  |
|   | 20 | December                  | May - VH                           | Multi  |
|   | 21 | December                  | May - VV VH                        | Multi  |
|   | 22 | December                  | May, August, November, Jan - VV    | Multi  |
|   | 23 | December                  | May, August, November, Jan - VH    | Multi  |
|   | 24 | December                  | May, August, November, Jan - VV VH | Multi  |
|   | 25 | Jan, March, December, Jan | May - VV                           | Multi  |
|   | 26 | Jan, March, December, Jan | May - VH                           | Multi  |
|   | 27 | Jan, March, December, Jan | May - VV VH                        | Multi  |
|   | 28 | Jan, March, December, Jan | May, August, November, Jan - VV    | Multi  |
| 2 | 29 | December (label change)   | N/A                                | Dry    |
|   | 30 | December                  | May                                | Multi  |
|   | 31 | December                  | May, August, November, Jan         | Multi  |
| 3 | 32 | December (cloudless)      | N/A                                | Dry    |
|   | 33 | December                  | May                                | Multi  |
|   | 34 | December                  | May, August, November, Jan         | Multi  |



### **BACKSCATTER VARIATION**



### **BACKSCATTER VARIATION**



### **BACKSCATTER VARIATION**



# SET 1 RESULTS



## **RESULTS - REFERENCE**



Intersection over Union

MSI only



Loss MSI only

## **RESULTS - REFERENCE**



#### SINGLE DAY MSI + SINGLE DAY SAR





#### SINGLE DAY MSI + SINGLE DAY SAR



Intersection over Union

Single-day MSI + Single-day SAR



Loss
Single-day MSI + Single-day SAR

#### SINGLE DAY MSI + SINGLE DAY SAR



Intersection over Union

Single-day MSI + Single-day SAR



Loss
Single-day MSI + Single-day SAR

#### SINGLE DAY MSI + MULTI DAY SAR



### **RESULTS - SINGLE DAY MSI**



# **RESULTS - INTERCROP**



# **RESULTS - OTHER CROPS**



EOS Data Analytics



Google Earth Satellite

## **RESULTS - OTHER CROPS**



## **RESULTS - OTHER CROPS**





Loss

**MSI + SAR experiments** 



Loss

**MSI + SAR experiments** 

# SET 2 RESULTS









### RESULTS - SET 2



(1) Original experiments

(2) Modified Labels

### SET 3 RESULTS

#### Cloudy regions removed









### **RESULTS - SET 3**



Loss
(1) Original experiments
(2) Clouds removed

### **RESULTS - SET 3**



Loss
(1) Original experiments
(2) Clouds removed

#### **Loss values**



#### **Loss values**



#### **Loss values**





#### LIMITATIONS

#### MISSING / UNCERTAIN GROUND TRUTH



#### **METRICS**



#### LOW SPATIAL RESOLUTION



#### LOW TEMPORAL RESOLUTION



#### CONCLUSION

How does the combination of MSI and SAR data affect the results of cocoa parcel segmentation trained with data from a *single day*?

- + Single-day SAR
- ++ Multi-day SAR

How does the combination of MSI and SAR data affect the results of cocoa parcel segmentation trained with *temporal* datasets?

Not statistically significant

Possible improvement for non-vegetation land cover



#### CONCLUSION

- 3
- Why does the use of different *polarizations* (i.e. Vertical-Vertical (VV) or Vertical-Horizontal (VH)) affect the influence of SAR datasets on the cocoa segmentation results?
- + Complementary data (relevant season and polarization)
- Noisy data or similar backscatter

4

What is the impact of SAR and MSI training data on the detection of *intercrop* cocoa?

**Cannot draw quantitative conclusions** 

Possible increased sensitivity to vegetation types



#### CONCLUSION

To what extent can a Convolutional Neural Network (CNN) trained with multispectral imagery (MSI) **and** Synthetic Aperture Radar (SAR) datasets enable the automated detection of cocoa crops in Ghana?

- SAR data can be combined with MSI in order to train a U-NET for cocoa detection.

- The influence of SAR data is highly sensitive to seasonality, polarization and ground truth label classes.
- Satellite datasets must be chosen carefully based on the application and available ground truth data.



#### **FUTURE WORK**

#### **EXTEND CURRENT MODEL**

- Tuning U-NET hyperparameters
- Additional background land cover labels
- Higher temporal resolution satellite datasets
- Addition of height data
- Spectral / backscatter analysis

#### MODEL MODIFICATIONS

- Loss function (e.g. Lovasz, Dice)
- Architecture (e.g. Xception)



#### FEATURE EXTRACTION

- Vegetation indices (e.g. NDVI)
- Texture metrics (e.g. GLCM)
- Cross Ratio (VH/VV)

#### HIGHER PRECISION

- Longer SAR wavelengths (e.g. L, P-band)
- Higher resolution MSI
- Hyperspectral imagery

# Thank you!



TUDelft MERIDIA