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MULTISPECTRAL IMAGERY

MULTISPECTRAL IMAGERY MONOCROP CANOPY
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INTERCROP FARMS

MULTISPECTRAL IMAGERY
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SYNTHETIC APERTURE RADAR
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SYNTHETIC APERTURE RADAR
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RELATED WORK
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RELATED WORK 9
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DEEP LEARNING

CONVOLUTIONAL NEURAL NETWORK SEMANTIC SEGMENTATION
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SEMANTIC SEGMENTATION
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RGB Ground Truth Predicted
Background Background
Il Cocoa i Cocoa
Uncertain

Adapted from Bonet Filella, 2018

/9

accuracy

Reference image

Probability map

Adapted from Kalischek et al., 2022

accuracy

XCEPTION

Binary cocoa map

11




SEMANTIC SEGMENTATION
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RESEARCH QUESTIONS

To what extent can a Convolutional Neural Network (CNN) trained with
multispectral imagery (MSI) and Synthetic Aperture Radar (SAR) datasets
enable the automated detection of cocoa crops in Ghana?

How does the combination of MSI and SAR data affect the results of cocoa parcel
segmentation trained with data from a single day?

How does the combination of MSI and SAR data affect the results of cocoa parcel
segmentation trained with temporal datasets?

Why does the use of different polarizations (i.e. Vertical-Vertical (VV) or
Vertical-Horizontal (VH)) affect the influence of SAR datasets on the cocoa
segmentation results?

What is the impact of SAR and MSI training data on the detection of intercrop cocoa?
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IMPLEMENTATION

GROUND TRUTH POLYGONS SATELLITE DATA
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IMPLEMENTATION

GROUND TRUTH POLYGONS SATELLITE DATA
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TEMPORAL DATA
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TEMPORAL DATA
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SEASONS OF SOUTHERN GHANA

MSI temporal stack
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IMPLEMENTATION
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IMPLEMENTATION
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IMPLEMENTATION
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IMPLEMENTATION
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Reference

IMPLEMENTATION

EXPERIMENTS

Set #_ _MSI Data SAR Data Season .

1 |1 | December N/A Dry
2 | March N/A Dry
3 | Jan, March, December, Jan | N/A Dry
4 | N/A May - VV Wet
5 | N/A May - VH Wet
6 | N/A May - VV VH Wet
7 | N/A Jan-VV Dry
8 | N/A Jan - VH Dry
9 | N/A Jan-VV VH Dry
10 | N/A Jan, March, December, Jan - VV Dry
11 | N/A Jan, March, December, Jan - VH Dry
12 | N/A Jan, March, December, Jan - VV VH Dry
13 | N/A May, August, November, Jan - VV Mult
14 | N/A May, August, November, Jan - VH Mult
15 | N/A May, August, November, Jan - VV VH | Multi

10 | Lecemper IERERAY 1973 a—

17 | December Jan- VH Dry
18 | December Jan- VV VH Dry
19 | December May - VV Multi
20 | December May - VH Multi
21 | December May - VV VH Multi
22 | December May, August, November, Jan - VV Mult
23 | December May, August, November, Jan - VH Mult
24 | December May, August, November, Jan - VV VH | Multi
25 | Jan, March, December, Jan | May - VV Mult
26 | Jan, March, December, Jan | May - VH Mult
27 | Jan, March, December, Jan | May - VV VH Multi
28 | Jan, March, December, Jan | May, August, November, Jan - VV Mult

2 | 29 | December (label change) N/A Dry
30 | December May Multi
31 | December May, August, November, Jan Mult

3 | 32 | December (cloudless) N/A Dry
33 | December May Multi
34 | December May, August, November, Jan Multi
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IMPLEMENTATION

EXPERIMENTS
Set | # | MSI Data SAR Data Season
1 |1 | December N/A Dry
2 | March N/A Dry
3 | Jan, March, December, Jan | N/A Dry
4 | N/A May - VV Wet
5 | N/A May - VH Wet
6 | N/A May - VV VH Wet
7 | N/A Jan-VV Dry
8 | N/A Jan - VH Dry
9 | N/A Jan- VV VH Dry
10 | N/A Jan, March, December, Jan - VV Dry
11 | N/A Jan, March, December, Jan - VH Dry
12 | N/A Jan, March, December, Jan - VV VH Dry
13 | N/A May, August, November, Jan - VV Multi
14 | N/A May, August, November, Jan - VH Multi
L1s L NIZA Mo AugustNovomborlane AL LML
16 | December Jan-VV Dry
17 | December Jan- VH Dry
18 | December Jan-VV VH Dry
. 19 | December May - VV Multi
Sing le-d ay MSI 20 | December May - VH Multi
21 | December May - VV VH Multi
22 | December May, August, November, Jan - VV Mult
23 | December May, August, November, Jan - VH Mult
24 | December May, August, November, Jan - VV VH | Multi
25 | Jan, Viareh, December jan | May - vy L e
26 | Jan, March, December, Jan | May - VH Mult
27 | Jan, March, December, Jan | May - VV VH Multi
28 | Jan, March, December, Jan | May, August, November, Jan - VV Mult
2 | 29 | December (label change) N/A Dry
30 | December May Multi
31 | December May, August, November, Jan Mult
3 | 32 | December (cloudless) N/A Dry
33 | December May Multi
34 | December May, August, November, Jan Multi

29

Single-day MSI and
single-day SAR stack

Single-day MSI and
multi-day SAR stack



Multi-day MSI

IMPLEMENTATION

EXPERIMENTS

Set [ # | MSI Data SAR Data Season
1 |1 | December N/A Dry
2 | March N/A Dry
3 | Jan, March, December, Jan | N/A Dry
4 | N/A May - VV Wet
5 | N/A May - VH Wet
6 | N/A May - VV VH Wet
7 | N/A Jan-VV Dry
8 | N/A Jan - VH Dry
9 | N/A Jan- VV VH Dry
10 | N/A Jan, March, December, Jan - VV Dry
11 | N/A Jan, March, December, Jan - VH Dry
12 | N/A Jan, March, December, Jan - VV VH Dry
13 | N/A May, August, November, Jan - VV Multi
14 | N/A May, August, November, Jan - VH Multi
15 | N/A May, August, November, Jan - VV VH | Multi
16 | December Jan-VV Dry
17 | December Jan- VH Dry
18 | December Jan-VV VH Dry
19 | December May - VV Multi
20 | December May - VH Multi
21 | December May - VV VH Multi
22 | December May, August, November, Jan - VV Mult
23 | December May, August, November, Jan - VH Mult
| 24 | December May, August, November, Jan - VV VH | Mult
25 |an, March, Becember, Jan | May - Mult
26 | Jan, March, December, Jan | May - VH Mult
Jan, March, December, Jan | May - VV VH Mult
Jan, March, December, Jan | May, August, November, Jan - VV Mult
30 | December May Multi
31 | December May, August, November, Jan Mult
3 | 32 | December (cloudless) N/A Dry
33 | December May Multi
34 | December May, August, November, Jan Multi

30

Multi-day MSI and
single-day SAR stack

Multi-day MSI and
multi-day SAR stack



Expanded “Not
Cocoa” class

IMPLEMENTATION

EXPERIMENTS

Set [ # | MSI Data SAR Data Season

1 |1 | December N/A Dry
2 | March N/A Dry
3 | Jan, March, December, Jan | N/A Dry
4 | N/A May - VV Wet
5 | N/A May - VH Wet
6 | N/A May - VV VH Wet
7 | N/A Jan-VV Dry
8 | N/A Jan - VH Dry
9 | N/A Jan- VV VH Dry
10 | N/A Jan, March, December, Jan - VV Dry
11 | N/A Jan, March, December, Jan - VH Dry
12 | N/A Jan, March, December, Jan - VV VH Dry
13 | N/A May, August, November, Jan - VV Multi
14 | N/A May, August, November, Jan - VH Multi
15 | N/A May, August, November, Jan - VV VH | Multi
16 | December Jan-VV Dry
17 | December Jan- VH Dry
18 | December Jan-VV VH Dry
19 | December May - VV Multi
20 | December May - VH Multi
21 | December May - VV VH Multi
22 | December May, August, November, Jan - VV Mult
23 | December May, August, November, Jan - VH Mult
24 | December May, August, November, Jan - VV VH | Multi
25 | Jan, March, December, Jan | May - VV Mult
26 | Jan, March, December, Jan | May - VH Mult
27 | Jan, March, December, Jan | May - VV V Multi
28 | Jan, March, December, Jan | Mav, August, November, Jan - VV Multi

2 | 29 | December (label change) N/A Dry
30 | December May Multi
31 | December May, August, November, Jan Mult

S a2 | December (Cloudless) N/A Dry
33 | December May Multi
34 | December May, August, November, Jan Multi

31

Single-day MSI and
single-day SAR stack

Single-day MSI and
multi-day SAR stack



IMPLEMENTATION -

EXPERIMENTS

Set | # | MSI Data SAR Data Season
1 |1 | December N/A Dry )
2 March N/A Dry ?lngle-day Msl and
3 | Jan, March, December, Jan | N/A Dry singie day SAR Sck
4 | N/A May - VV Wet
5 | N/A May - VH Wet
6 | N/A May - VV VH Wet
7 | N/A Jan-VV Dry
8 | N/A Jan- VH Dry
9 | N/A Jan-VV VH Dry
10 | N/A Jan, March, December, Jan - VV Dry Single-day Msl and
11 | N/A Jan, March, December, Jan - VH Dry multi-day SAR stack
12 | N/A Jan, March, December, Jan - VV VH Dry
13 | N/A May, August, November, Jan - VV Multi
14 | N/A May, August, November, Jan - VH Multi
15 | N/A May, August, November, Jan - VV VH | Multi
16 | December Jan-VV Dry
17 | December Jan- VH Dry
18 | December Jan-VV VH Dry
19 | December May - VV Multi
20 | December May - VH Multi
21 | December May - VV VH Multi
22 | December May, August, November, Jan - VV Mult
23 | December May, August, November, Jan - VH Mult
24 | December May, August, November, Jan - VV VH | Multi
25 | Jan, March, December, Jan | May - VV Mult
26 | Jan, March, December, Jan | May - VH Mult
27 | Jan, March, December, Jan | May - VV VH Multi
28 | Jan, March, December, Jan | May, August, November, Jan - VV Mult
2 | 29 | December (label change) N/A Dry
30 | December May Multi
), 1) D 3 g e =
December (cloudless)
Clouds removed December s
December May, August, November, Jan
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SINGLE DAY MSI + SINGLE DAY SAR

Single-day MSI and Single-day MSI and
single-day SAR stack single-day SAR stack




SINGLE DAY MSI + SINGLE DAY SAR
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SINGLE DAY MSI + SINGLE DAY SAR
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SINGLE DAY MSI + MULTI DAY SAR

' Single-day MsI and

multi-day SAR stack




RESULTS - SINGLE DAY MSI
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RESULTS - INTERCROP

Satellite image Cocoa probability map Prediction map

Ground truth:
Intercrop cocoa

Unlabelled

Multi-day MSI Cocoa probability

Predictions:

B Cocoa
[ ] Forest

0 100 m
I I

Multi-day MSI +
May SAR (VH)

Multi-day MSI +
Multi-season
SAR (VV)

44




RESULTS - OTHER CROPS

EOS Data Analytics

Google Earth Satellite
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RESULTS - OTHER CROPS -

Satellite image Cocoa probability map Prediction map
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RESULTS - OTHER CROPS -

Satellite image Cocoa probability map Prediction map

Ground truth:
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SET 2 RESULTS

Forest +
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Cocoa

Single-day MSI

Single-day MSI and
single-day SAR stack

Single-day MSI and
multi-day SAR stack
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RESULTS - SET 2
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SET 3 RESULTS

Cloudy regions removed
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RESULTS - SET 3
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RESULTS -SET 3
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(1) Original experiments
(2) Clouds removed




RESULTS - SUMMARY
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RESULTS - SUMMARY
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RESULTS - SUMMARY
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RESULTS - SUMMARY
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LIMITATIONS

MISSING / UNCERTAIN GROUND TRUTH LOW SPATIAL RESOLUTION

59
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CONCLUSION

How does the combination of MSI and SAR data affect the results of cocoa parcel
segmentation trained with data from a single day?

+ Single-day SAR
++ Multi-day SAR

How does the combination of MSI and SAR data affect the results of cocoa parcel
segmentation trained with temporal datasets?

Not statistically significant

Possible improvement for non-vegetation land cover
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CONCLUSION

Why does the use of different polarizations (i.e. Vertical-Vertical (VV) or
Vertical-Horizontal (VH)) affect the influence of SAR datasets on the cocoa
segmentation results?

+ Complementary data (relevant season and polarization)

- Noisy data or similar backscatter

What is the impact of SAR and MSI training data on the detection of intercrop cocoa?

Cannot draw quantitative conclusions

Possible increased sensitivity to vegetation types
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CONCLUSION

To what extent can a Convolutional Neural Network (CNN) trained with
multispectral imagery (MSI) and Synthetic Aperture Radar (SAR) datasets
enable the automated detection of cocoa crops in Ghana?

- SAR data can be combined with MSI in order to train a U-NET

for cocoa detection.

- The influence of SAR data is highly sensitive to seasonality,

polarization and ground truth label classes.

- Satellite datasets must be chosen carefully based on the

application and available ground truth data.
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FUTURE WORK

EXTEND CURRENT MODEL

- Tuning U-NET hyperparameters

- Additional background land cover labels

- Higher temporal resolution satellite datasets
- Addition of height data

- Spectral / backscatter analysis

MODEL MODIFICATIONS

- Loss function (e.g. Lovasz, Dice)

- Architecture (e.g. Xception)

FEATURE EXTRACTION

Vegetation indices (e.g. NDVI)
Texture metrics (e.g. GLCM)
Cross Ratio (VH/VV)

HIGHER PRECISION

Longer SAR wavelengths (e.g. L, P-band)
Higher resolution MSI

Hyperspectral imagery
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Thank you!

]
TUDelft

MeERIDIA
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