
i 
 

3/31/2021 

 

 
  

UNet-based Fully-automatic 

Segmentation of the Capitate from 

CT Images 
 

 

 

 

 

 

Wenli Xue (Master student BME program, 1284584) 
DELFT UNIVERSITY OF TECHNOLOGY 



ii 
 

 

  

UNet-based Fully-automatic Segmentation 

of the Capitate from CT Images 

Master Thesis (BM51032#32ECTs) 
 

Wenli Xue  

(Master student BME program, 1284584) 

 

 

 

DATE: 11-02-2021 

Period: Jan 2020 – March 2021 

Supervisors: Dr. ir. Geert. J. Streekstra (Department of Biomedical Engineering and Physics 

Academic Medical Center) 

   Dr. Iwan.Dobbe (Department of Biomedical Engineering and Physics 

Academic Medical Center)  

Ir. Jorg. Sander (Department of Biomedical Engineering and Physics 

Academic Medical Center) 

Prof. Dr. ir. Jaap Harlaar (Department of Biomechanical Engineering 

Delft University of Technology) 

 



iii 
 

Table of Contents 
 

1. Introduction ................................................................................................................................... 2 

2. Terminology ................................................................................................................................... 4 

3. Methods .......................................................................................................................................... 5 

3.1 Data collection ........................................................................................................................ 5 

3.2 Data preparation ................................................................................................................... 5 

3.3 UNet ........................................................................................................................................ 6 

3.4 Loss function and optimizer ................................................................................................. 9 

3.5 Training and Validation ....................................................................................................... 9 

3.6 Evaluation ............................................................................................................................ 10 

4. Results........................................................................................................................................... 10 

4.1 Preliminary results .............................................................................................................. 10 

4.2 Optimal result ...................................................................................................................... 11 

4.3 Evaluation ............................................................................................................................ 12 

5. Discussion ..................................................................................................................................... 14 

6. Conclusions .................................................................................................................................. 18 

7. Acknowledgement ....................................................................................................................... 18 

8. References .................................................................................................................................... 19 

9. Appendix ...................................................................................................................................... 21 

9.1 Segmentation ........................................................................................................................ 21 

9.2 Theory................................................................................................................................... 23 

9.2.1 What is CNN? .............................................................................................................. 23 

9.2.1.1 Convolutional layer ................................................................................................. 23 

9.2.1.2 Nonlinear activation layer ...................................................................................... 25 

9.2.1.3 Pooling layer ............................................................................................................ 26 

9.2.1.4 Fully connected layer .............................................................................................. 27 

9.2.1.5 Last activation layer ................................................................................................ 27 

9.2.2 CNN-based image segmentation ................................................................................ 28 

9.2.2.1 Input data and labels ............................................................................................... 28 

9.2.2.2 Training a CNN ....................................................................................................... 29 

9.2.2.2.1 Loss function ...................................................................................................... 30 

9.2.2.2.2 Optimizer............................................................................................................ 31 

9.2.2.2.3 Backpropagation ................................................................................................ 32 

9.2.2.3 Overfitting ................................................................................................................ 33



1 
 

 

 

Abstract 

Osteoarthritis (OA) is a degenerative joint disease and imposes an increasing 

burden on individuals and public health systems. Most prevalent joints are the 

knee, hip and hands, including the wrist. In order to enable early treatment of wrist 

OA, an early-detection method of cartilage loss, a characteristic symptom of OA, 

is needed. , CT images of the wrist bones. cannot visualize the cartilage itself, but 

instead use the distance between adjacent bones, to estimate the cartilage 

thickness. To enable such estimations, bones need to be segmented, which is a 

laborious task, that would impede any early diagnosis implementation. So 

automated segmentation of the wrist bones is desired for cost effective and 

objective assessments. However fully automatic segmentation of CT images is 

still a technical challenge. Deep learning techniques are considered a potentially 

successful approach to automate image processing. 

The aim of this study is therefore to design and validate an automatic 

segmentation method of the capitate from CT-images based on a deep learning 

approach .  

For the automated  segmentation method of CT images we selected UNet, a type 

of Convolutional Neural Network. A total of 10 CT images of the capitate, were 

divided into 3 groups to train (6), validate (2) and test (2) the network, while their 

corresponding segmented images were used as ground truth. Training and 

validation set were used during training to build the model, while test set was used 

after training to evaluate the performance of the model.    

Quantitative evaluation of similarity between automatic segmentation by the 

network and the ground truth was expressed by the Dice coefficient (test data 1: 

0.94, test data 2: 0.91) and the Hausdorff distance (test data1: 2.06mm, test data2: 

2.55mm). Automatic segmentation took 6.7s for test data 1 and 8.1s for test data 

2.  

The proposed approach holds promise for applications in fully automatic 

segmentation of wrist bones, as its performance, characterized by Dice coefficient 

and Hausdorff distance, is in par with those from other techniques of the same 

application. The next step in successful clinical implementation of the method is 

to improve the accuracy, for instance, by using a larger data size, after which the 

model can be further applied as an automatic quantitative metric in diagnosis of 

wrist OA.  
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1. Introduction 

 

Osteoarthritis (OA), a most common degenerative cartilage disease, imposes 

enormous burden on individuals and healthcare systems1. In the year 2020, it was 

estimated that 25% of the population over the age 18 is affected by OA2. Early-

detection of cartilage loss could reduce burden of OA as well as enable the 

development of effective early treatment and prevention. Radiographic joint space 

width (JSW), an indirect cartilage thickness measurement, is the current gold 

standard for establishing the diagnosis of OA in clinical practice. Radiographs can 

clearly depict bony structures; however, it is not capable of direct visualization of 

cartilage. Therefore, radiographic cartilage thickness is estimated indirectly by the 

assessment of JSW of adjacent bones. While radiographic JSW is used in clinical 

routine for OA diagnosis, it is severely limited by its inability of 3D visualization, 

due to over-projection3. With the existence of advanced 3D imaging techniques, 

over-projection, which is caused by projecting 3D structures onto a 2D plane in 

regular radiography, can be overcome.  

Prior to the present study, a literature review was conducted to investigate state-

of-the-art 3D imaging techniques that claim to measure cartilage thickness. The 

main conclusions are twofold. Firstly, it is becoming increasingly difficult to 

ignore the significant performance of Convolutional neural network (CNN) on 

medical image analysis4. Secondly, the absence of studies on fully-automatic 

wrist cartilage from CT images need to be addressed. A brief discussion of the 

literature review is given below.  

Figure 1 is an overview of the degree of automation of the  methods found in the 

literature study. Despite the fact that fully-automatic methods are more favorable, 

since they minimize the human input and thus reduce the human error, the 

majority of reported methods require a certain degree of human effort. The degree 

of automation of the methods is determined by the degree of automation of 

segmentation, which is a process of extracting objects of interest from an image5. 

Segmentation is a fundamental step for cartilage thickness measurement. CNN is 

a research hotspot at present for fully automatic medical image segmentation. The 

reason is that it has achieved astonishing performance on medical image 

segmentation tasks since 20126. Some studies indicate that CNN-based 

segmentation methods can achieve better performance on medical images, when 

compared with human experts4. An overview of different segmentation methods 

can be found in the Appendix. 

The number of papers on fully automatic methods are presented in  Figure 2, 

which indicates that most of those methods studied MRI images of the knee and 
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hip. Although OA most often occurs in knee and hip, the wrist joint is also often 

affected by OA. While MRI permits direct visualization of cartilage, it has 

difficulties to depict cartilage layers thinner than 1 mm7. Wrist joints contain 

cartilage layers thinner than 1mm, therefore it would be challenging to measure 

wrist cartilage the thickness using MRI images. Instead, CT provides clear 

visualization of wrist bones, which would allow an indirect estimation of cartilage 

thickness via assessing JWS between adjacent bones.  

 

 

 

 

 

 

 

 

 

Figure 1. Degree of automation: semi-automatic (31), fully-automatic (13) and 

manual (11). 

Figure 2. Image sources and subjects in reported studies of fully automatic 

methods. 
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In recent years, CNNs have been widely used for segmentation of medical images, 

and excellent results have been reported4, 6, 8-11. Therefore, the objective of the 

present study is to investigate the feasibility of a CNN-based approach to segment 

capitate bone of the wrist using CT images, in order to narrow the research gap in 

the fully automatic segmentation of wrist bones. The assessment hypothesis is that 

CNN-assisted segmentation results have the visual quality, Dice coefficient and 

Hausdorff distance comparable to those reported in other studies, which are about 

segmentation of wrist bones with various imaging analysis technologies.  

 

2. Terminology 

In this section, the terms that are consistently used throughout this report are 

explained.  

Learnable parameter in the present study refers to the parameter that is learned 

automatically through the training process.  

Weight is used as an alternative for learnable parameter, however, it is 

specifically employed to describe the learnable parameter outside the 

convolutional layers, for instance in the fully connected layers.  

Hyperparameter is the parameter that is not able to be learned during the training 

process and need to be pre-set before the training process starts.  

Kernel/filter refer to the sets of learnable parameters. 

Label stands for the pre-segmented image which is used as the gold standard in 

this study. 

Ground truth is an interchangeable word for label.  

Batch is a portion of the complete data. The complete data is divided into smaller 

groups before processing and each group is called a batch. 

Batch size refers to the number of samples in a batch. 

Patch is an area or region of an image. 

Patch size defines the size of a patch.  

Epochs refer to the number of times that the network goes through the complete 

data. One epoch is completed once the network has processed the entire data.   

Iterations is the number of batches that have been processed. During one 

iteration, one batch is processed.  
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3. Methods 

 

In this study, a fully-automatic segmentation model which is able to segment CT 

images of the capitate bone, was generated using a CNN image classifier to assign 

every voxel of the CT images to a certain class. There are 2 classes: class 

background and class capitate bone. The data used in this study is from the work 

of De Roo et al12. A specific CNN known as UNet was deployed in this study. 

Instead of developing a 3D segmentation model, this study focused on the 

development of a 2D slice-wise segmentation model. 3D CT images were sliced 

in the Axial plane. The optimizer and loss function used here are Adam and cross 

entropy loss function as empirically they have achieved better performance in 

image classification. Detailed descriptions of CNN and CNN-based image 

segmentation can be found in the Appendix (9.2 Theory).   

3.1 Data collection 

CT images of right wrist joints and their corresponding label images of the 

capitate bone of 10 individuals were selected from the data of De Roo et al25. The 

height (x-axis) and width (y-axis) of the images range from 194 to 406 voxels and 

384 to 425 voxels respectively. All images share a depth (z-axis) of 363 voxels. 

The images have a spatial resolution of 0.326mm along the x and y-axes, and 

0.330mm along the z-axis. The CT images were segmentated using an in-house 

software of the Academic Medical Center (AMC), known as Articulus. The 

segmented images, referred to as label images, served as the ground truth in this 

study. Articulus is a multi-purpose software that is able to perform image 

segmentation as well as visualization and evaluation of the segmentation results. 

The segmentation of Articulus is a semi-automatic algorithm based on level set 

and region growing. 

3.2 Data preparation 

The collected raw data was pre-processed. There were three types of data 

preparation used in the present study: data split, patch selection and data 

augmentation. 

Data split Image data and label images of 10 individuals were randomly split into 

3 groups: training (6), validation (2) and test (2). The training group was used for 

training the model, the validation group was used to optimize the model by 

adapting hyperparameters and the test group was used to evaluate the performance 

of the final model (see Appendix 9.2.2.1 and 9.2.2.3).  

Patch selection In a wrist joint CT image, the capitate bone occupies less than 1 

percent of the voxels. Otherwise speaking, the number of voxels in class 
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“background” significantly outnumbers the voxels in class “capitate”. Therefore, 

the data is highly imbalanced. Highly imbalanced data affects the performance of 

the network adversely. To combat this issue, only cropped regions of the CT 

images which contain the capitate bone were used for training. Different patch 

sizes were tested including 32×32, 64×64, 128×128 and 256×256 voxel to find 

the patch size that optimizes the trade- off between computational time and 

performance of the network.  

Data augmentation is a technique used in deep learning to increase data 

diversity, by applying transformation to data. The transformations used in this 

study were random crop, random rotation and random flip. 

3.3 UNet 

UNet, developed from traditional CNN, has achieved great results for segmenting 

medical images in recent publications13-15. UNet is characterized by its symmetric 

shape composed of a contracting path and expanding path (see Figure 3)16. The 

blocks of contracting and expanding path follow the architecture of traditional 

CNN layers: repeated convolutional layers each followed by a Relu and max 

pooling (see Figure 3—5). In the expanding path, the max pooling is replaced by 

up sampling. There are no fully connected layers in UNet, which allows the 

network to accept inputs of any size. In fully connected layers, the size of weight 

matrix, a hyperparameter, determines both input and output size. This is because 

in fully connected layers, every input is connected with every output by a weight 

that needs to be trained. However, in convolutional layers, the number of learnable 

parameters is independent of input and output size. Therefore a fully connected 

layer requires a fixed input size, while a convolutional layer accepts inputs of any 

size. Aforementioned, the pooling operation makes the network more robust to 

the changes in location of the feature in the input (see Appendix 9.2.1.3 pooling 

layer). Nevertheless, this could result in coarse segmentation due to the location 

information loss. To achieve fine segmentation, a connection is added between 

the corresponding contracting and expanding path. This connection bypasses 

pooling operations and concatenates the feature map of the contracting path with 

the feature map of the expanding path at the same level, which allows the localized 

context to be retained from contracting path of the network16. A detailed 

explanation of the contracting and expanding path is given in Figure 15 and 16, 

where an exemplary input image is used.  

In the present study, the contracting path was composed of 4 times repeated 

application of two 3×3 convolutional layers, each followed by a Relu and a 2×2 

max pooling with stride 2 (see Figure 4). Batch normalization was deployed 

before each Relu. Batch normalization, a technique used to stabilize the training 
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process, uses the mean and standard deviation of each batch.16 At each step of the 

contracting path, the number of filters was doubled, starting with 32 filters at the 

first convolution (see Figure 4). In the expanding path, each step consisted of a 

2×2 up sampling with stride 2, concatenate connection, and a 3×3 convolutional 

layer followed by a Relu (see Figure 5). At the last layer, a 1×1 convolution was 

used to reduce the number of output to the number of classes.  

 

Figure 3. A diagram of UNet17.  
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Figure 4. Detailed explanation of the contracting path. The input image has a 

size of 128,128,1 in height (H), width (W) and color channel (C) respectively.  

There are 4 blocks in the contracting path. Each block has 2 convolutional 

layers with each convolutional layer followed by a Relu. @ means times and 

thus 32 @ 3×3 filters means 32 filters and each filter has a size of 3×3. The 

number of filter doubles at each step, starting with 32 filters. Padding = ‘same’ 

is used to preserve the height and width of the input image during convolution. 

Max pooling has the size of 2×2 with strides 2. On the contracting path, the 

heigh and width of image gradually decreases, while the depth gradually 

increases. Starting from 128×128×1 to 16×16×256.  
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Figure 5. Detailed explanation of the expanding path. In the expanding path, 

each block consisted of a 2×2 up sampling with stride 2, concatenate 

connection, and a 3×3 convolutional layer followed by a Relu. In the expanding 

path, the height and width of the image gradually increases, while the depth 

gradually decreases. Starting from 16×16×256 to 128×128×1.  

3.4 Loss function and optimizer 

In the present study, cross entropy loss function combined with Adam optimizer 

was used, as the combination is typically used in medical image segmentation 

tasks. Learning rate is an important hyperparameter as it determines how much 

the learnable parameters are adjusted at each update. A higher learning rate allows 

a faster converge, at the cost of missing the global minima. Therefore various 

combinations of learning rate and weight decay were examined, in order to find 

the suitable pair. The values of learning rate used were 0.1, 0.01, 0.001 and 

0.0001. Weight decay of value 0, 0.1 and 0.001 were tested.  

3.5 Training and Validation 

During the training process, both training set and validation set were used. The 

training set was used to train the network by adjusting the learnable parameters to 

minimize the loss. The validation set was used for frequent evaluation of the 

trained network to help fine tune the hyperparameters and select the best model. 

The best model is a combination of a set of learnable parameters and 

hyperparameters that has the best performance on the validation set. 
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The code of the present study was implemented in Python 3.7.6 and pytorch was 

used as seep learning framework. The training was run on a NVIDIA GPU, 

namely NVIDIA GeForce RTX 2080 SUPER, which has a total memory of 

8192MB. CUDA version 11.0 was used in this study. The training process was 

monitored via Tensorboard, a visualization toolkit that is able to visualize metrics 

as well as images during training and therefore gives an insight into the training 

process. By doing so, the inputs and outputs of the network were constantly 

monitored, which helped to adjust the hyperparameters of the network. The 

network was training with 1000 iterations per epoch.  

 

3.6 Evaluation 

After training, the performance of the selected best model was evaluated using the 

test set. The evaluation in the present study was divided into two categories: 

visualization and metrics evaluation. The visualization evaluation was carried out 

by comparing the overlay images of the ground truth and segmentation produced 

by the model visually, using Articulus. Furthermore, evaluation metrics were 

introduced to quantitatively assess the difference between the segmentation 

generated by the model and its corresponding ground truth. The metrics included 

in this study were Dice coefficient, Hausdorff distance as well as a distance map 

produced by Articulus, and the computational time. 

 

4. Results 

The initial values of the hyperparameters are an educated guess, for instance the 

initial patch size is set to 32×32 as it provides a balance between sufficient context 

and reasonable computational time. The segmentation outputs generated by the 

initial values of hyperparameters are send to Tensorboard to be visually evaluated 

and then optimized until the optimal set of hyperparameters are found, which is 

able to balance the performance of the network and the computational time. 

 

4.1 Preliminary results 

The network had difficulties detecting the capitate when the patch size was set to 

32×32 or 64×64, or the learning rate was set to 0.1, 0.01 or 0.001 with a weight 

decay of 0 or 0.1, or batch size with a value of 16 or 32 (see Figure 6). The training 

process is slow with 256 as patch size or 0.0001 as learning rate or 128 as batch 
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size. In comparison with patch size 256×256, patch size 128×128 allows a faster 

converge and similar segmentation output. 

Figure 6. An example of unsuccessful segmentation produced by the model. The 

desired result would be the segmentation produced by the model (right) is 

similar to the ground truth (middle). 

4.2 Optimal result 

Through the experiments, the optimal set of hyperparameters was determined as: 

the value of patch size is 128×128, learning rate is 0.001 with weight decay of 

0.001 and batch size was 64. This optimal set of hyperparameters is used to train 

the network in the present study. Figure 7 shows the loss evolution in both training 

and validation processes, as functions of iterations. Overfitting starts at epoch 7 

(around 7000th iteration), as there was 1000 iterations per epoch. and therefore 

the model saved at this epoch is the selected model, which will be evaluated using 

the test data.  
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Figure 7. Training loss and validation loss versus iterations. This loss plot was 

obtained with patch size is 128×128, learning rate is 0.001 with weight decay of 

0.001 and batch size was 64. The training was completed with 10 epochs and 

each epoch has 1000 iterations.  

4.3 Evaluation 

The evaluation is carried out by using the selected model to segment the test data. 

The segmentation produced by the model is compared with the ground truth 

visually and quantitatively. The 3D overlay image of segmentation produced by 

the model and its corresponding ground truth is generated by Articulus (see Figure 

8). The overlay image is visually assessed slice by slice through 3 orthogonal 

planes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Overlay image of the segmentation produced by the model (blue) and 

its corresponding ground truth (gold ). Image a is the 3D overlay image. Image 
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b, c and d shows a slice of the 3D overlay image viewed from coronal, sagittal 

and axial plane respectively.   

The 3D distance map, which visualizes the distance between corresponding points 

of segmentation produced by the network and the ground truth, is created by 

Articulus to help evaluating the result. Figure 9 is a screenshot of the 3D distance 

map of test dataset number 1 and 2, and the scalars including the maximum, 

minimal and mean distance as well as the standard deviation are given together 

with the Dice coefficient, the Hausdorff distance and the computational time, in 

table 1. Figure 10 shows boxplots representing point-to-point distances between 

segmentation performed by the network (datasets 1 and 2) and the ground truth.  

Figure 9. 3D distance map of test data 1(left) and 2 (right). Color map legend is 

defined as: green (0 mm), yellow (0.5mm), red (> 1mm). 

 

Table 1. Quantitative evaluation of the segmentation results of test data 1 and 2.  

  
Dice 

coefficient  

Hausdorff 

distance 

(mm) 

Distance map (mm) 
Computational 

time (s) 

      Max Min Mean 
Standard 

deviation 
  

test data 1 0.9388 2.0616 4.2939 0 0.4221 0.7017 6.7151 

test data 2 0.9089 2.5475 5.0279 0 0.3539 0.7297 8.0743 
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Figure 10. Boxplots of the distance distribution for distance maps from test data 

1 and 2. The summary statistics used to develop the boxplot are the median of 

the data (line), the lower (25%) and the upper quartiles (75%) (box limits). 

 

5. Discussion 

The aim of the present study was to develop a UNet implementation for 

segmentation of the capitate bone and to evaluate its performance. The 

performance of the UNet is compared visually and quantitatively to the semi-

automatic segmentation results obtained using Articulus, which served as the 

ground truth.  

Visual evaluation was carried out by going through the 3D overlay image of 

UNet-assisted segmentation and its corresponding ground truth of test data 1 and 

2 slice by slice respectively. For both test data, a substantial agreement, between 

the UNet-assisted segmentation and its corresponding ground truth, has been 

observed visually. It was noticed that most regions of UNet-assisted segmentation 

overlap its corresponding ground truth (e.g., figure 8). This is supported by the 

3D distance maps from the test data. The 3D distance map computes and colors 

the distance between the point of segmentation produced by the model and its 

corresponding point from the ground truth. Figure 9 shows most regions of the 

distance map are green, which means that the distance between the corresponding 

points of the model segmentation and ground truth is close to 0. Therefore, the 

model segmentation highly agrees with the ground truth visually.  
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Quantitative evaluation was conducted by quantifying how much the UNet-

assisted segmentation differs from its corresponding ground truth. Instead of 

manual segmentation, segmentation produced by Articulus, a semi-automatic in-

house segmentation software, was used as ground truth in the present study. 

Although its accuracy level still has room for improvement, Articulus has been 

reported as a reliable segmentation tool in several studies18-20. There are three 

metrics used for quantitative evaluation: distance distribution, Dice coefficient 

and Hausdorff distance. The distribution of distances between UNet-assisted 

segmentation and its corresponding ground truth is visualized by a boxplot. Dice 

Coefficient and Hausdorff distance are commonly used in evaluating the 

performance of medical image segmentation methods21-22. Dice coefficient 

evaluates the performance of the segmentation over the entire image by measuring 

the similarity of UNet-assisted segmentation and its ground truth. Hausdorff 

distance indicates the largest segmentation error. Additionally, the computational 

time needed for segmentation is used as a secondary metric to evaluate the 

efficiency of the model. Detailed discussion of these metrics are presented as 

below: 

1) Quantitative evaluation using boxplot: The distance maps of both test data have 

been further analyzed quantitatively by creating boxplots. The boxplot shows the 

distance distribution. For test data 1, the boxplot indicates that 75% of the 

differences between UNet-assist segmentation and the ground truth is smaller than 

0.364mm (see figure 21 (left)). For test data 2, 75% of the distance lies below 

0.242mm (see Figure 21 (right)). It would be desirable to keep the distance error 

below 0.1mm, since the maximum thickness of capitate cartilage is approximately 

1mm23. This could be achieved by using a bigger data set and/or adding more data 

augmentation techniques. The model could also be improved by combining it with 

other segmentation techniques, for instance a UNet initialized level-set 

segmentation.  

2) Quantitative evaluation using Dice Coefficient: The relatively low Dice 

coefficient that we found in this study was to be expected, since both the training 

and generalization of the model was based on a limited number of datasets: 6 and 

2 individuals respectively. In contrast, other studies, in which larger dataset were 

included, reported much lower Dice coefficients.24-25. The obtained Dice 

coefficient value of test data 1 is 0.9388, while it is 0.9089 for test data 2 (see 

Table 1). The highest Dice coefficient that was reported in a study by Brui. et.al. 

was 0.81 for their CNN-assist wrist cartilage segmentation24. Meng. et.al., have 

developed a CNN-assist segmentation model for wrist joints and the obtained 

Dice coefficient value of this model is 0.78 ±0.0625. The low Dice coefficient 

values of those 2 studies might be caused by the type of images used for training. 
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One of those studies used MR images for CNN-assist wrist cartilage 

segmentation. MR has difficulties capturing cartilage thinner than 1mm, while 

wrist cartilage can be thinner7. Therefore, it could be challenging for the network 

to segment the cartilage layers from MR images, let alone measuring its thickness.  

In the study of Meng. Et.al., radiographic images of wrist bones have been used 

for training. Radiography is not sufficient to capture accurate 3D structures, which 

would lead to feeding the network with inaccurate information and thus have an 

adverse effect on the trained model. Overall, CT images might be considered as 

an optimal choice for CNN-assisted wrist bone segmentation.  

3) Quantitative evaluation using Hausdorff Distance: The value of the Hausdorff 

distance for test data 1 and 2 is 2.0616mm and 2.5475mm accordingly (see Table 

1). Those values are higher than the reported value of CNN-assist segmentation 

for wrist joints (1.56±0.30mm) by Meng et al.25 and lower than the values 

(2.8±2.7mm) provided by Forster et al., using a level-set based semi-automatic 

carpal bone segmentation toolkit26. Hausdorff distance is determined exclusively 

by the largest segmentation error. A segmentation method can achieve accurate 

segmentation over most of the image, while having large error at one or a few 

locations. Therefore, lower Hausdorff distance values do not necessarily correlate 

with higher segmentation quality. However, a lower value of Hausdorff distance 

is preferred in this study, as it would lead to a more accurate estimation of the 

JSW at every location and thus more accurate diagnosis of OA. In clinical 

practice, the diagnosis of wrist OA is based more on the symptoms and physical 

examination than JSW due to the its complex nature. There is no exact threshold 

for JSW to diagnose wrist OA, since it may differ from individual to individual. 

For the same individual, it may change with age and JSW is location dependent, 

which varies over the entire contact region of a joint. Therefore, the change of 

JSW over time, instead of its absolute value, is of clinical interest in OA diagnosis. 

In order to provide a JSW-guided OA diagnosis, more researches are required to 

investigate the difference between OA and age related JSW change, as well as 

location precise JSW distribution over the entire contact area of a joint, for 

instance measuring the JSW during motion. An accurate segmentation technique 

with lower Hausdorff distance would be a first step towards those researches.  

The low Hausdorff distance value of the study of Meng et al., could be explained 

by the remarkable size of training data24, data of 290 individuals, whereas in the 

present study data of 6 individuals was used. Comparing to the present study, the 

study of Forster et al., has a relatively large set of training data of 80 individuals. 

However, the reported Hausdorff distance of their study is higher than the present 

study. The could occur because of weak or missing edges since MRI images were 

used in their study, which may not able to capture thin cartilage layers as wrist 
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cartilage. The Hausdorff distance of the present study could be improved by using 

a larger dataset. Moreover, a study of Karimi et al., has proposed a novel loss 

function for CNN-based segmentation that is able to reduce the Hausdorff 

distance by approximately 18-45%, comparing with commonly used loss 

functions e.g. cross entropy loss function, without comprising the Dice 

coefficient22.  

4) Quantitative evaluation using computational time: The computational time 

required for segmentation assisted by UNet has been improved by an order of 

magnitude, as comparing to manual segmentation, which typically requires 

minutes24. Semi-automatic segmentation methods can complete the task within 

several seconds, for instance Articulus is able to segment a Capitate around 10 

seconds, however human input is needed. UNet-assisted segmentation completes 

segmentation in a few seconds without the need of human input. In the present 

study, the computational time for the test data 1 and 2 is 6.7151s and 8.0743s. 

Owing to the requirement of human input, semi-automatic methods are less 

efficient than fully automatic methods such as UNet-assisted segmentation. 

It is noticeable that the loss curves have a few spikes (see Figure 7). The reason 

could be that the data used for training is unrepresentative and/or the learning rate 

is too high, which makes the network unstable27. Therefore, the solution would be 

adding more data and/or fine tune the learning rate.  

The present study has several limitations. A small size training data with a single 

label of capitate bone has been used to develop the model. The performance of 

the model can be further improved by using more training data and/or more data 

augmentation techniques. However, acquiring medical images can be difficult, 

due to privacy and cost concerns. Therefore, the critical question is how much 

data is sufficient for achieving a specific target performance e.g. segmentation 

error is within 0.1 mm. It is difficult to give a particular number to this question, 

as the size of the data required is dependent on the nature of the problem such as 

the number of classes need to be classified, how different are the classes etc. It 

would be interesting for future study to investigate the impact of the size of data 

on the classification accuracy. Hypothetically, the classification accuracy rises 

with the increasing data size and eventually reaches a stable phase, where more 

data will not significantly improve the performance of the model.  

Another limitation is that the model basically segments 2D images, which 

together makes up a 3D image. A 3D approach or an approach that segments in 

more planes and combines these results, may give a better 3D results. 

Additionally, more labels can be added to the training data to further develop the 

model to be able to segment not only the capitate bone but other carpel bones as 
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well. Theoretically, adding more labels could improve the accuracy of 

segmentation, since there is more context for the model to learn16. 

 

6. Conclusions 

In the present study, a fully automatic segmentation method for the capitate bone 

from CT images based on UNet has been developed. The proposed method has 

achieved a high degree of agreement with the ground truth both visually and 

quantitatively. Moreover, it significantly lessens the computational time, 

comparing to manual and semi-automatic methods. This study demonstrates the 

feasibility of a UNet-based fully automatic segmentation method for carpel bones 

from CT images and it is the first step towards a UNet-based fully automatic 

method that is able to measure the thickness of wrist cartilage. 
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9. Appendix 

9.1 Segmentation 

Segmentation is a process of extracting objects of interest from an image5. It is a 

fundamental step for cartilage thickness measurement. In the literature review, 

https://ui.adsabs.harvard.edu/abs/2017arXiv171005941R
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most commonly used segmentation methods were divided into three groups: 

manual, semi-automatic and fully-automatic and evaluated. Manual segmentation 

by an expert is commonly accepted as the ground truth. While this segmentation 

technique utilizes expert knowledge, it is very time consuming and it is not highly 

precise due to inter-observer and intra-observer varibility28-29.  

There is a variety of approaches available for semi-automatic segmentation. In the 

next paragraphs, a brief discussion of the most used semi-automatic segmentation 

techniques including: thresholding, region growing and edge are presented. More 

semi-automatic segmentation techniques and detailed description of those 

techniques can be found in the study of Neeraj Sharma30.  

Thresholding, the most popular segmentation technique for image segmentation, 

uses an optimal threshold to separate the pixels in foreground and background. 

An advantage of this segmentation method is that it is simple and easy to 

implement, however its main drawback is that the performance of this method is 

influenced by the presence of artifacts.  

Region growing is widely used in medical image segmentation and it is based on 

the assumption that pixels within a region have similar properties. The process is 

initialized with a seed point, which is selected according to the criteria for 

homogeneity (mostly its intensity similarity). The neighboring pixels with similar 

properties are clustering together to form a region. The region is growing 

continuously until all pixels with similar properties are assigned to this region. 

The main limitation of this method is that the segmentation result is largely 

dependent on the choice of seed point.  

Edge detection method relies on the detection of edges, the boundaries that 

separate distinct segments. Image gradient is on the basis of edge detection 

methods e.g. Hessian matrix, Canny and Laplacian. The boundaries are generated 

by combining the detected edges and then different regions are separated. While 

this technique has been frequently deployed, it is highly noise sensitive which 

means image noise can be misclassified as edge pixels.  

Fully-automatic segmentation is another approach for image segmentation. There 

are mainly three types of techniques used in this approach: statistical model-based 

segmentation, Atlas-based segmentation and CNN based segmentation.  

In case of statistical model-based segmentation, a statistical feature 

representative model of the population is used. The presence of noise and artifacts 

cannot affect the performance of this method and thus it is better suited for 

medical image segmentation, while comparing with the segmentation techniques 

mentioned above30-31. However, this method may fail to provide accurate 
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segmentation result when an individual is not represented by the statistical 

model31.  

Atlas refers to pre-labeled reference images, which can be chosen randomly from 

the population. Although there is evidence that Atlas guided segmentation is able 

to compete with manual segmentation30, its performance significantly depends on 

the selection of Atlas. The idea Atlas should be able to reflect the feature varieties 

of the entire population. 

In recent years, CNN has been rapidly recognized as a segmentation technique 

in medical image process, since excellent segmentation results from medical 

images produced by CNN have been reported4, 6, 8-11. The main advantages of 

CNN-based segmentation are: 1). It is capable of automatically and adaptively 

learning the features solely from data by itself, instead of requiring hand-craft 

features provided by experts. 2). It is computationally efficient once the model 

has been trained; 3). It is possible to work with a small dataset. 4). It is possible 

to provide radiologist level results. The main drawback of CNN-based 

segmentation is that the process is considered as a black box, as the decision 

making is not visualized. This makes the implementation of CNN in clinical 

practice challenging.   

9.2 Theory 

In this section, the background knowledge and techniques required for better 

understanding of this study are discussed including the basics of a CNN and its 

architecture, image segmentation techniques and semantic segmentation.  

9.2.1  What is CNN? 

CNN is a special type of deep learning model that is inspired by the human visual 

cortex and it is designed to automatically and adaptively learn patterns such as 

lines and curves from low to high level. There are 3 types of layers/building blocks 

mostly used to build a CNN including convolutional layer, a pooling layer and a 

fully connected layer. Stacking a repetitive sequence of the former two layers i.e., 

several convolutional layers and a pooling layer, followed by one or more fully 

connected layers yields a CNN. The repetitive sequence of convolutional layers 

and a pooling layer perform feature extraction, while the fully connected layers 

transfer the extracted features into output such as classification.  

9.2.1.1 Convolutional layer 

A convolution layer, a core building block of the CNN, is a combination of a set 

of learnable parameters called kernels or filters and an activation function. 

Kernels/filters perform a linear operation i.e., convolution on the input, whereas 
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the activation function adds nonlinearity that represents the biological neuron 

behavior to a CNN32. 

Convolution 

Convolution is a mathematical operation that convolves the input with 

kernels/filters. In a CNN, the input is an array of numbers and therefore, a CNN 

takes an input image as an array of pixel values. A kernel is defined by two 

hyperparameters. Hyperparameters are parameters that can’t be learned through 

training and need to be pre-set by the operator including kernel size and number 

of kernels. Kernel size should be smaller than the size of its input. Increasing the 

number of kernels could increase the capacity of a CNN to learn more complex 

features.  

During the convolution, each kernel moves along the height and width of the input 

image, as it multiplies the values in the kernel with the pixel values of the input 

array at every position, till all positions are crossed. The multiplications of every 

position are summed up to produce a single output value associated with the 

position (see Figure 1). The matrix that contains the output values of all positions 

is called a feature map. This procedure is repeated for all kernels to create feature 

maps that represent different features of the input. 

Figure 1. An illustration of the convolution operation (modified from Fig.3 from 

Yamashita et al.(2018)33). A kernel with size 3×3, stride 1and no padding slides 

across the input till all positions are covered. The values in the kernel are 
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multiplied by the values in the input array at every position and the 

multiplications of a position are summed up to obtain a single output value. The 

matrix that contains the output values associated with all positions of the input 

is called a feature map. 

The size of a feature map is controlled by 3 hyperparameters: stride, padding, 

filter size and depth (see Equation 1). Stride is the distance between two 

consecutive kernel positions. Padding the image boarder with zeros would allow 

the boarder pixels to play a bigger role in determining the output, since the 

convolution operation is not able to place the center of a kernel on the outmost 

components of the input. Depth is the number of kernels used. 

𝑊 =  
𝑤−𝐹+2𝑃

𝑆
+ 1,   𝐻 =  

ℎ−𝐹+2𝑃

𝑆
+ 1      Equation 1 

Where W, H are the width and height of feature map, w, h are width and height of 

the input image, F is the size of the filter, P is amount of zero padding and S is the 

stride. Therefore, the size of feature map is H ×W × Depth.  

 

 

9.2.1.2 Nonlinear activation layer  

The outputs of each convolution layer are then passed through a nonlinear 

activation function such as Relu, sigmoid or hyperbolic tangent (tanh) function 

(see Figure 2). The main objectives of nonlinear activations are to add nonlinearity 

and differentiability to the network. A convolution is a linear operation which is 

inadequate to be used to model complex datasets such as images and videos, since 

those datasets contain multiple dimensions and can’t be simply represented by 

linear transformations. Differentiability is important because it is mandatory for 

performing backpropagation. Backpropagation is an algorithm used to optimize 

learnable weights during training (See section 9.2.2.2.3). The mostly used 

nonlinear activation function is Relu33-38, which gives an output x if x is positive, 

otherwise it gives 0 (𝑓(𝑥) = max (0, 𝑥)). The reason that Relu is the most 

commonly used activation function in CNN is that the model uses Relu requires 

less training time and achieves better performance16. A detailed discussion about 

different activation functions can be discovered in the book Deep learning by 

Goodfellow.  There is no learnable parameters or weights in any activation layer.  
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Figure 2.Activation functions frequently used in the CNN: Relu (a), sigmoid (b) 

and tanh (c)33. 

9.2.1.3 Pooling layer 

A pooling layer, placed in-between consecutive convolutional layers in CNN, is 

a form of down-sampling, which adds location translation invariance to the 

network as well as reduces the computational time by reducing the learnable 

parameters16. The output feature map of the convolutional layer is sensitive to the 

location of the features in the input, which means small changes in the location of 

a feature in the input e.g. cropping and rotation of the input can result in different 

feature maps. A pooling layer down-samples the output feature map of the 

convolutional layer and creates an approximate version of the feature map that is 

more robust to the changes in the position of the feature in the input16. There is no 

learnable parameter in any pooling layer, whereas there are hyperparameters i.e., 

kernel size, stride and padding in a pooling layer which are similar to 

convolutional layers. There are two types of pooling: max pooling and average 

pooling. Max pooling extracts salient features such as edges, whereas average 

pooling picks smooth features. Max pooling has become the default pooling 

operation because empirically it achieves better performance33, 39-40.  

Max pooling 

Max pooling returns the maximum value of the area of the input covered by the 

kernel and dismisses all the other values (see Figure 3).  
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Figure 3.An example of max pooling (modified from Fig.6 from Yamashita et 

al.(2018)33)). A kernel with size 2×2, strid 2 and no padding slides cross the 

input and outputs the maximum value in each position it covers, while dismisses 

all the other values. The size of output is smaller than the initial input after max 

pooling. 

Average pooling  

Another pooling operation is average pooling. Average pooling returns the 

average value, rather than the maximum value, of all the values from the area 

covered by the kernel (see Figure 4). 

Figure 4.An example of average pooling (modified from Fig.6 from Yamashita 

et al.(2018)33)). A kernel with size 2×2, strid 2 and no padding slides cross the 

input and outputs the average value in each position it covers, resulting in 

down-sampling of the input. 

9.2.1.4 Fully connected layer 

The output of the final pooling layer is flattened into a 1D vector and passes 

through one or more fully connected layers, otherwise known as dense layers. In 

fully connected layers, every output of the previous layer is connected to every 

input of the successive layer by a weight, which needs to be learned through the 

training process. The number of outputs of the final fully connected layer is the 

same as the number of classes. Each fully connected layer is followed by a 

nonlinear layer.  

9.2.1.5 Last activation layer  
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The last fully connected layer is usually connected to an activation function, 

which converts the output values of the last fully connected layer to probabilities 

of all classes. For a multi-class classification task, softmax is the common 

choice33. Softmax function is a generalized sigmoid function (see Equation 2-3). 

It often follows the last fully connected layer to yield probabilities of an input 

belonging to different classes. The sum of softmax probabilities always is 1. A 

higher value of softmax suggest a higher probability. Softmax has a number of 

outputs, representing the predicted probability of different classes. The output 

with the highest value represents the predict class (see Figure 5). 

𝑓(𝑥)𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =  
exp (𝑥)

exp(𝑥)+1
        Equation 2 

𝑓(𝑥𝑖)𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =  
exp (𝑥𝑖)

∑ exp (𝑥𝑘)𝑘−1
𝑘=0

 𝑓𝑜𝑟 𝑖 = 1, 2 … , 𝑘    Equation 3 

Figure 5. An example of softmax operation. There are three classes here: class 

dog, class cat and class horse. For the input image of a dog, , the probability of 

it belongs to class cat is 0.7, dog class is 0.2 and horse class is 0.1 The 

predicted class is class dog41. 

9.2.2 CNN-based image segmentation 

Image segmentation is a process of partitioning an image into multiple segments 

of pixels5. Image segmentation can be otherwise considered as a process of 

classification of every pixel in an image, which can be achieved by using CNN.  

9.2.2.1 Input data and labels 
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Input data and labels are the most critical elements in deep learning projects that 

are tailored to image segmentation. As a well-known proverb originating from 

computer science states: “Garbage in, garbage out.” The quality of the input data 

and labels affect the chance of success of a deep learning project. Therefore, The 

quality control of the input data and labels is mandatory. The collected input data 

and labels are normally split into 3 sets: a training set, a validation set and a test 

set (see Figure 6). A training set is used to train a model via forward propagation 

and back propagation, as described in the overfitting section. A validation set is 

used to monitor the training process, adjust the hyperparameters and make model 

selection decision (See section 9.2.2.3). A test set is used to evaluate the 

performance of the selected model at the very end of the project. Each set has its 

own function in the training process, which is explained in the overfitting section. 

Figure 6. Collected data and labels are split into three sets: a : a training set, a 

validation set and a test set33. Each set has its own purpose in the training 

process, which is discussed in the folowing sections.  

 

9.2.2.2 Training a CNN 

Training a CNN is a process of finding specific sets of learnable parameters for 

kernels in the convolutional layers and weights in the fully connected layers that 

minimize the differences between the ground truth and the output prediction. The 

training process is a repetitive process of forward propagation and 

backpropagation (see Figure 7). Forward propagation is an algorithm of 

calculating output from input. Backpropagation is an algorithm that computes the 

gradient of the loss in the reverse order: from output to input. Forward propagation 
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and backpropagation are executed with the assistance of the loss function and an 

optimizer.   

Figure 7. Scheme of the training process.  

 

9.2.2.2.1 Loss function 

The loss function, also referred to as cost function, is used to calculate the 

difference between output predictions of the model and the given ground truth 

labels. Cross entropy is a commonly used loss function for multiclass image 

segmentation33, 42-43. Cross entropy measures the difference between the predicted 

and true probability distributions for all classes. The predicted probability 

distribution, a vector, represents the predicted probabilities of all classes, 

summing up to 1. It is the output of the softmax layer. The true probability 

distribution is a vector with 1 for the actual class and 0 for all other classes (see 

Figure 8—9). Cross entropy decreases as the predicted probability converges to 

the ground truth and the ideal cross entropy value is 0 (see Equation 4).  

𝐿𝑜𝑠𝑠 =  −
1

𝑁
 (∑ 𝑦𝑖 ∗ log (𝑦̂𝑖)𝑁

𝑖=1 )      Equation 4 

Where N is number of classes, 𝑦𝑖  is the true probability of class i (0 or 1) and 𝑦̂𝑖 

is the predicted probability of class i (a value between 0 and 1). 
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Figure 8.Image classification of 3 classes: dog, cat and panda44. The model 

gives predicted probability for each class. The probability of the image belongs 

to class dog, class cat and class pands is 0.5, 0.3 and 0.2. The sum of the 

probabilities of all classes is 0.5 + 0.3 + 0.2 =1. 

 

Figure 9.True probability vector (left) and predicted probability vector (right)of 

a dog image. True probability vector has value 1 for the class dog and 0 for 

other 2 classes. The prediction, produced by the model, gives class dog a 

probability of 0.5 and the other 2 classes a probability of 0.3 and 0.2 

respectively. 

9.2.2.2.2 Optimizer 

An optimizer is an algorithm or method that iteratively updates the learnable 

parameters  of the network in order to minimize the loss function (i.e., learnable 

parameters of kernels and weights between each connection of fully connected 

layers,).  

Gradient descent, the commonly used optimization algorithm, calculates the 

gradient of loss function and iteratively moves in the direction of the steepest 

descent to minimize the loss function. Figure 10 illustrates this concept with a 

simplified example where a loss function has only one learnable parameter w. 

With multiple learnable parameters, the gradient is a vector of partial derivatives 

of the loss function with respect to all learnable parameters. The gradient descent 

algorithm has been studied extensively, resulting in many modified versions of 

the algorithm, which improve its performance. Among those modified gradient 
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descent algorithms, Adam is the most recommended one in medical image 

segmentation45-46, which gives different learning rate for different learnable 

parameters. 

 

Figure 10. An illustration of how gradient descent minimizes loss 

function(modified from Fig.7 from Yamashita et al.(2018))33. Considering a 

simplified example as showing in the polt: a loss function with a single 

learnable parameter 𝑤 In order to find the minimal loss, gradient descent starts 

with choosing a starting point 𝑤𝑖 and then calculates the gradient of the loss 

function at this point. The gradient is a partial derivative of the loss with respect 

to w, which gives the direction of steepest increase of the loss function. The 

gradient descent algorithm takes a step in the negative direction of the gradient 

(
𝜕𝑙𝑜𝑠𝑠

𝜕𝑤
< 0). The step size is determined by a hyperparameter known as learning 

rate (𝛼). 

9.2.2.2.3 Backpropagation 

The backpropagation algorithm, which propagates the error from the loss function 

backwards through the network, calculates the partial derivatives of the loss 

function w.r.t each learnable parameter. The derivative associated with each 

learnable parameter determines how to change each learnable parameter in order 

to minimize the loss function (see Section 9.2.2.2.1). Figure 7 explains the 

backpropagation process training. The training starts with initialization of weights 

and propagates forward through the network. The outputs of the network are used 

to calculate the loss / error for the given set of weights. If the error is minimum, 

the model is ready to be tested on new input data. Otherwise, the weights will be 

updated using error backpropagation to minimize the loss function.  
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9.2.2.3 Overfitting 

Overfitting is a condition when the model fits too well to the training data to the 

extent that it is difficult for the model to generalize well from the training data to 

a new set of unseen data, therefore, the performance of the model on a new data 

is poor. For instance, if the model memorizes irrelevant information or noise, 

instead of learning the general underlying pattern of the training data, it will make 

predictions based on noise rather than underlying patterns of the training data. In 

this case, the performance of the model on the training data can be very well, 

while very poor performance on an unseen, new data. A routine check for 

detecting overfitting to the training data is to monitor the training and validation 

loss33. If the model performs much better on the training data than on the 

validation data, then the model is likely overfitting to the training data (see Figure 

11). There are several solutions to avoid overfitting including: training with more 

data, data argumentation, weight decay and early stop. Among those solutions, 

training with more data is the best solution33, as a larger dataset provides more 

diversities, however, it is often hard to create a large dataset with medical images 

due to data privacy concerns4, 33. Data augmentation, modifies data via random 

transformation such as cropping, rotating and flipping to provide more 

information for the network to learn, is an effective method to limit overfitting47. 

Weight decay can limit overfitting by adding a regulation term to the loss function 

(see Equation 5). The regulation term encourages small weights and keeps the 

model simpler to avoid overfitting (see Equation 6)16.  

𝐿𝑜𝑠𝑠𝑛𝑒𝑤 =  𝐿𝑜𝑠𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 +
1

2
𝜆‖𝑤‖2      Equation 5 

𝑤𝑖+1 =  𝑤𝑖 −  𝛼
𝜕𝐿𝑜𝑠𝑠𝑛𝑒𝑤

𝜕𝑤𝑖
− 𝛼𝜆𝑤𝑖      Equation 6 

Equation 5 and 6 demonstrate how the regulation term helps to avoid overfitting. 

The regulation term works based on the assumption that less learnable parameters 

generate a simpler model, which is less prone to overfitting. Equation 5 is the new 

loss function with a L2 regulation, where 𝜆 is a coefficient and 𝑤 is a set of 

learnable parameters. Equation 6 is the updated learnable parameters using the 

new loss function. Where 𝑤𝑖+1 is the updated learnable parameter, 𝑤𝑖 is the 

original learnable parameter and 𝛼 is learning rate. The term −𝛼𝜆𝑤𝑖  introduced 

by the regulation term leads decays all learnable parameters proportionally and 

thus keep them small.  

Early stop refers to stopping the training at the point where overfitting occurs and 

the model saved at this point is the model selected for further evaluation. The 

performance of the selected model is evaluated by testing it on new unseen data, 
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known as the test set. The results from the test set confirm how well the model 

performs on new (unseen) data.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. An illustration of monitoring training and validation loss to detect 

overfitting. Overfitting occurs when the validation loss starts to increase, 

whereas the training loss keeps decresing.  

 


