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Abstract

Osteoarthritis (OA) is a degenerative joint disease and imposes an increasing
burden on individuals and public health systems. Most prevalent joints are the
knee, hip and hands, including the wrist. In order to enable early treatment of wrist
OA, an early-detection method of cartilage loss, a characteristic symptom of OA,
Is needed. , CT images of the wrist bones. cannot visualize the cartilage itself, but
instead use the distance between adjacent bones, to estimate the cartilage
thickness. To enable such estimations, bones need to be segmented, which is a
laborious task, that would impede any early diagnosis implementation. So
automated segmentation of the wrist bones is desired for cost effective and
objective assessments. However fully automatic segmentation of CT images is
still a technical challenge. Deep learning techniques are considered a potentially
successful approach to automate image processing.

The aim of this study is therefore to design and validate an automatic
segmentation method of the capitate from CT-images based on a deep learning
approach .

For the automated segmentation method of CT images we selected UNet, a type
of Convolutional Neural Network. A total of 10 CT images of the capitate, were
divided into 3 groups to train (6), validate (2) and test (2) the network, while their
corresponding segmented images were used as ground truth. Training and
validation set were used during training to build the model, while test set was used
after training to evaluate the performance of the model.

Quantitative evaluation of similarity between automatic segmentation by the
network and the ground truth was expressed by the Dice coefficient (test data 1:
0.94, test data 2: 0.91) and the Hausdorff distance (test datal: 2.06mm, test data2:
2.55mm). Automatic segmentation took 6.7s for test data 1 and 8.1s for test data
2.

The proposed approach holds promise for applications in fully automatic
segmentation of wrist bones, as its performance, characterized by Dice coefficient
and Hausdorff distance, is in par with those from other techniques of the same
application. The next step in successful clinical implementation of the method is
to improve the accuracy, for instance, by using a larger data size, after which the
model can be further applied as an automatic quantitative metric in diagnosis of
wrist OA.



1. Introduction

Osteoarthritis (OA), a most common degenerative cartilage disease, imposes
enormous burden on individuals and healthcare systems!. In the year 2020, it was
estimated that 25% of the population over the age 18 is affected by OAZ?. Early-
detection of cartilage loss could reduce burden of OA as well as enable the
development of effective early treatment and prevention. Radiographic joint space
width (JSW), an indirect cartilage thickness measurement, is the current gold
standard for establishing the diagnosis of OA in clinical practice. Radiographs can
clearly depict bony structures; however, it is not capable of direct visualization of
cartilage. Therefore, radiographic cartilage thickness is estimated indirectly by the
assessment of JSW of adjacent bones. While radiographic JSW is used in clinical
routine for OA diagnosis, it is severely limited by its inability of 3D visualization,
due to over-projection®. With the existence of advanced 3D imaging techniques,
over-projection, which is caused by projecting 3D structures onto a 2D plane in
regular radiography, can be overcome.

Prior to the present study, a literature review was conducted to investigate state-
of-the-art 3D imaging techniques that claim to measure cartilage thickness. The
main conclusions are twofold. Firstly, it is becoming increasingly difficult to
ignore the significant performance of Convolutional neural network (CNN) on
medical image analysis*. Secondly, the absence of studies on fully-automatic
wrist cartilage from CT images need to be addressed. A brief discussion of the
literature review is given below.

Figure 1 is an overview of the degree of automation of the methods found in the
literature study. Despite the fact that fully-automatic methods are more favorable,
since they minimize the human input and thus reduce the human error, the
majority of reported methods require a certain degree of human effort. The degree
of automation of the methods is determined by the degree of automation of
segmentation, which is a process of extracting objects of interest from an image®.
Segmentation is a fundamental step for cartilage thickness measurement. CNN is
a research hotspot at present for fully automatic medical image segmentation. The
reason is that it has achieved astonishing performance on medical image
segmentation tasks since 2012°. Some studies indicate that CNN-based
segmentation methods can achieve better performance on medical images, when
compared with human experts*. An overview of different segmentation methods
can be found in the Appendix.

The number of papers on fully automatic methods are presented in Figure 2,
which indicates that most of those methods studied MRI images of the knee and
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hip. Although OA most often occurs in knee and hip, the wrist joint is also often
affected by OA. While MRI permits direct visualization of cartilage, it has
difficulties to depict cartilage layers thinner than 1 mm’. Wrist joints contain
cartilage layers thinner than 1mm, therefore it would be challenging to measure
wrist cartilage the thickness using MRI images. Instead, CT provides clear
visualization of wrist bones, which would allow an indirect estimation of cartilage
thickness via assessing JWS between adjacent bones.
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Figure 1. Degree of automation: semi-automatic (31), fully-automatic (13) and
manual (11).
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Figure 2. Image sources and subjects in reported studies of fully automatic
methods.



In recent years, CNNs have been widely used for segmentation of medical images,
and excellent results have been reported* ® 811, Therefore, the objective of the
present study is to investigate the feasibility of a CNN-based approach to segment
capitate bone of the wrist using CT images, in order to narrow the research gap in
the fully automatic segmentation of wrist bones. The assessment hypothesis is that
CNN-assisted segmentation results have the visual quality, Dice coefficient and
Hausdorff distance comparable to those reported in other studies, which are about
segmentation of wrist bones with various imaging analysis technologies.

2. Terminology

In this section, the terms that are consistently used throughout this report are
explained.

Learnable parameter in the present study refers to the parameter that is learned
automatically through the training process.

Weight is used as an alternative for learnable parameter, however, it is
specifically employed to describe the learnable parameter outside the
convolutional layers, for instance in the fully connected layers.

Hyperparameter is the parameter that is not able to be learned during the training
process and need to be pre-set before the training process starts.

Kernel/filter refer to the sets of learnable parameters.

Label stands for the pre-segmented image which is used as the gold standard in
this study.

Ground truth is an interchangeable word for label.

Batch is a portion of the complete data. The complete data is divided into smaller
groups before processing and each group is called a batch.

Batch size refers to the number of samples in a batch.
Patch is an area or region of an image.
Patch size defines the size of a patch.

Epochs refer to the number of times that the network goes through the complete
data. One epoch is completed once the network has processed the entire data.

Iterations is the number of batches that have been processed. During one
iteration, one batch is processed.



3. Methods

In this study, a fully-automatic segmentation model which is able to segment CT
images of the capitate bone, was generated using a CNN image classifier to assign
every voxel of the CT images to a certain class. There are 2 classes: class
background and class capitate bone. The data used in this study is from the work
of De Roo et al*2. A specific CNN known as UNet was deployed in this study.
Instead of developing a 3D segmentation model, this study focused on the
development of a 2D slice-wise segmentation model. 3D CT images were sliced
in the Axial plane. The optimizer and loss function used here are Adam and cross
entropy loss function as empirically they have achieved better performance in
image classification. Detailed descriptions of CNN and CNN-based image
segmentation can be found in the Appendix (9.2 Theory).

3.1 Data collection

CT images of right wrist joints and their corresponding label images of the
capitate bone of 10 individuals were selected from the data of De Roo et al?®. The
height (x-axis) and width (y-axis) of the images range from 194 to 406 voxels and
384 to 425 voxels respectively. All images share a depth (z-axis) of 363 voxels.
The images have a spatial resolution of 0.326mm along the x and y-axes, and
0.330mm along the z-axis. The CT images were segmentated using an in-house
software of the Academic Medical Center (AMC), known as Articulus. The
segmented images, referred to as label images, served as the ground truth in this
study. Articulus is a multi-purpose software that is able to perform image
segmentation as well as visualization and evaluation of the segmentation results.
The segmentation of Articulus is a semi-automatic algorithm based on level set
and region growing.

3.2 Data preparation

The collected raw data was pre-processed. There were three types of data
preparation used in the present study: data split, patch selection and data
augmentation.

Data split Image data and label images of 10 individuals were randomly split into
3 groups: training (6), validation (2) and test (2). The training group was used for
training the model, the validation group was used to optimize the model by
adapting hyperparameters and the test group was used to evaluate the performance
of the final model (see Appendix 9.2.2.1 and 9.2.2.3).

Patch selection In a wrist joint CT image, the capitate bone occupies less than 1
percent of the voxels. Otherwise speaking, the number of voxels in class
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“background” significantly outnumbers the voxels in class “capitate”. Therefore,
the data is highly imbalanced. Highly imbalanced data affects the performance of
the network adversely. To combat this issue, only cropped regions of the CT
Images which contain the capitate bone were used for training. Different patch
sizes were tested including 32x32, 64x64, 128x128 and 256x256 voxel to find
the patch size that optimizes the trade- off between computational time and
performance of the network.

Data augmentation is a technique used in deep learning to increase data
diversity, by applying transformation to data. The transformations used in this
study were random crop, random rotation and random flip.

3.3 UNet

UNet, developed from traditional CNN, has achieved great results for segmenting
medical images in recent publications!®1°, UNet is characterized by its symmetric
shape composed of a contracting path and expanding path (see Figure 3)%. The
blocks of contracting and expanding path follow the architecture of traditional
CNN layers: repeated convolutional layers each followed by a Relu and max
pooling (see Figure 3—75). In the expanding path, the max pooling is replaced by
up sampling. There are no fully connected layers in UNet, which allows the
network to accept inputs of any size. In fully connected layers, the size of weight
matrix, a hyperparameter, determines both input and output size. This is because
in fully connected layers, every input is connected with every output by a weight
that needs to be trained. However, in convolutional layers, the number of learnable
parameters is independent of input and output size. Therefore a fully connected
layer requires a fixed input size, while a convolutional layer accepts inputs of any
size. Aforementioned, the pooling operation makes the network more robust to
the changes in location of the feature in the input (see Appendix 9.2.1.3 pooling
layer). Nevertheless, this could result in coarse segmentation due to the location
information loss. To achieve fine segmentation, a connection is added between
the corresponding contracting and expanding path. This connection bypasses
pooling operations and concatenates the feature map of the contracting path with
the feature map of the expanding path at the same level, which allows the localized
context to be retained from contracting path of the network®. A detailed
explanation of the contracting and expanding path is given in Figure 15 and 16,
where an exemplary input image is used.

In the present study, the contracting path was composed of 4 times repeated
application of two 3x3 convolutional layers, each followed by a Relu and a 2x2
max pooling with stride 2 (see Figure 4). Batch normalization was deployed
before each Relu. Batch normalization, a technique used to stabilize the training



process, uses the mean and standard deviation of each batch.'® At each step of the
contracting path, the number of filters was doubled, starting with 32 filters at the
first convolution (see Figure 4). In the expanding path, each step consisted of a
2x2 up sampling with stride 2, concatenate connection, and a 3x3 convolutional
layer followed by a Relu (see Figure 5). At the last layer, a 1x1 convolution was
used to reduce the number of output to the number of classes.

Block 1 Block 7
\ /
— Max pooling
Block 2 Block 6 — Up sampling
4
\A :> Copy and
concatenate
Block 3 , Block 5
\ A
Block 4 '
L e J
7 T

Contracting path Expanding path

Figure 3. A diagram of UNet'’,
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Figure 4. Detailed explanation of the contracting path. The input image has a
size of 128,128,1 in height (H), width (W) and color channel (C) respectively.
There are 4 blocks in the contracting path. Each block has 2 convolutional
layers with each convolutional layer followed by a Relu. @ means times and
thus 32 @ 3x3 filters means 32 filters and each filter has a size of 3x3. The
number of filter doubles at each step, starting with 32 filters. Padding = ‘same’
Is used to preserve the height and width of the input image during convolution.
Max pooling has the size of 2x2 with strides 2. On the contracting path, the
heigh and width of image gradually decreases, while the depth gradually
increases. Starting from 128x128x1 to 16x16x256.
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Figure 5. Detailed explanation of the expanding path. In the expanding path,
each block consisted of a 2x2 up sampling with stride 2, concatenate
connection, and a 3x3 convolutional layer followed by a Relu. In the expanding
path, the height and width of the image gradually increases, while the depth
gradually decreases. Starting from 16x16x256 to 128x128x1.

3.4 Loss function and optimizer

In the present study, cross entropy loss function combined with Adam optimizer
was used, as the combination is typically used in medical image segmentation
tasks. Learning rate is an important hyperparameter as it determines how much
the learnable parameters are adjusted at each update. A higher learning rate allows
a faster converge, at the cost of missing the global minima. Therefore various
combinations of learning rate and weight decay were examined, in order to find
the suitable pair. The values of learning rate used were 0.1, 0.01, 0.001 and
0.0001. Weight decay of value 0, 0.1 and 0.001 were tested.

3.5 Training and Validation

During the training process, both training set and validation set were used. The
training set was used to train the network by adjusting the learnable parameters to
minimize the loss. The validation set was used for frequent evaluation of the
trained network to help fine tune the hyperparameters and select the best model.
The best model is a combination of a set of learnable parameters and
hyperparameters that has the best performance on the validation set.



The code of the present study was implemented in Python 3.7.6 and pytorch was
used as seep learning framework. The training was run on a NVIDIA GPU,
namely NVIDIA GeForce RTX 2080 SUPER, which has a total memory of
8192MB. CUDA version 11.0 was used in this study. The training process was
monitored via Tensorboard, a visualization toolkit that is able to visualize metrics
as well as images during training and therefore gives an insight into the training
process. By doing so, the inputs and outputs of the network were constantly
monitored, which helped to adjust the hyperparameters of the network. The
network was training with 1000 iterations per epoch.

3.6 Evaluation

After training, the performance of the selected best model was evaluated using the
test set. The evaluation in the present study was divided into two categories:
visualization and metrics evaluation. The visualization evaluation was carried out
by comparing the overlay images of the ground truth and segmentation produced
by the model visually, using Articulus. Furthermore, evaluation metrics were
introduced to quantitatively assess the difference between the segmentation
generated by the model and its corresponding ground truth. The metrics included
in this study were Dice coefficient, Hausdorff distance as well as a distance map
produced by Articulus, and the computational time.

4. Results

The initial values of the hyperparameters are an educated guess, for instance the
initial patch size is set to 32x32 as it provides a balance between sufficient context
and reasonable computational time. The segmentation outputs generated by the
initial values of hyperparameters are send to Tensorboard to be visually evaluated
and then optimized until the optimal set of hyperparameters are found, which is
able to balance the performance of the network and the computational time.

4.1 Preliminary results

The network had difficulties detecting the capitate when the patch size was set to
32x32 or 64%64, or the learning rate was set to 0.1, 0.01 or 0.001 with a weight
decay of 0 or 0.1, or batch size with a value of 16 or 32 (see Figure 6). The training
process is slow with 256 as patch size or 0.0001 as learning rate or 128 as batch
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size. In comparison with patch size 256x256, patch size 128x128 allows a faster
converge and similar segmentation output.

[J Show actual image size Q_ Filter tags (regular expressions supported)

Brightness adjustment image__label__prediction
image__label__prediction [train loss45 |
step 1 | Fri Oct 02 2020 87:20:12 GMT+0200 (Midden-Europese zomertiid)

Contrast adjustment

wrist_model/logs
! Segmentation produced
by the network

|
Original CT image I Ground truth

Figure 6. An example of unsuccessful segmentation produced by the model. The
desired result would be the segmentation produced by the model (right) is
similar to the ground truth (middle).

4.2 Optimal result

Through the experiments, the optimal set of hyperparameters was determined as:
the value of patch size is 128x128, learning rate is 0.001 with weight decay of
0.001 and batch size was 64. This optimal set of hyperparameters is used to train
the network in the present study. Figure 7 shows the loss evolution in both training
and validation processes, as functions of iterations. Overfitting starts at epoch 7
(around 7000th iteration), as there was 1000 iterations per epoch. and therefore
the model saved at this epoch is the selected model, which will be evaluated using
the test data.
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Figure 7. Training loss and validation loss versus iterations. This loss plot was
obtained with patch size is 128x128, learning rate is 0.001 with weight decay of
0.001 and batch size was 64. The training was completed with 10 epochs and
each epoch has 1000 iterations.

4.3 Evaluation

The evaluation is carried out by using the selected model to segment the test data.
The segmentation produced by the model is compared with the ground truth
visually and quantitatively. The 3D overlay image of segmentation produced by
the model and its corresponding ground truth is generated by Articulus (see Figure
8). The overlay image is visually assessed slice by slice through 3 orthogonal
planes.

Figure 8. Overlay image of the segmentation produced by the model (blue) and
its corresponding ground truth (gold ). Image a is the 3D overlay image. Image
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b, ¢ and d shows a slice of the 3D overlay image viewed from coronal, sagittal
and axial plane respectively.

The 3D distance map, which visualizes the distance between corresponding points
of segmentation produced by the network and the ground truth, is created by
Articulus to help evaluating the result. Figure 9 is a screenshot of the 3D distance
map of test dataset number 1 and 2, and the scalars including the maximum,
minimal and mean distance as well as the standard deviation are given together
with the Dice coefficient, the Hausdorff distance and the computational time, in
table 1. Figure 10 shows boxplots representing point-to-point distances between
segmentation performed by the network (datasets 1 and 2) and the ground truth.

Figure 9. 3D distance map of test data 1(left) and 2 (right). Color map legend is
defined as: green (0 mm), yellow (0.5mm), red (> 1mm).

Table 1. Quantitative evaluation of the segmentation results of test data 1 and 2.

. Hausdorff .
D'.CG.’ distance Distance map (mm) Com_putatlonal
coefficient time (s)
(mm)

Max Min Mean Star_1d§1rd

deviation
test data 1 0.9388 2.0616 4.2939 0 0.4221 0.7017 6.7151
test data 2 0.9089 2.5475 5.0279 0 0.3539 0.7297 8.0743

13



0,9 0,9

0,8 0,8
0,7 0,7
0,6 0,6
=
E 05 0,5
()
[
S 04 0,4
- Q3 =0364
ok
e 0,3 0,3
Q3 = 07243
0,2 Median = 0,197 0,2
Median = 0,174
0,1 0.1
| Q1 =0045 R 01 - 0028
0,0 0,0
Test data 1 Test data 2

Figure 10. Boxplots of the distance distribution for distance maps from test data
1 and 2. The summary statistics used to develop the boxplot are the median of
the data (line), the lower (25%) and the upper quartiles (75%) (box limits).

5. Discussion

The aim of the present study was to develop a UNet implementation for
segmentation of the capitate bone and to evaluate its performance. The
performance of the UNet is compared visually and quantitatively to the semi-
automatic segmentation results obtained using Articulus, which served as the
ground truth.

Visual evaluation was carried out by going through the 3D overlay image of
UNet-assisted segmentation and its corresponding ground truth of test data 1 and
2 slice by slice respectively. For both test data, a substantial agreement, between
the UNet-assisted segmentation and its corresponding ground truth, has been
observed visually. It was noticed that most regions of UNet-assisted segmentation
overlap its corresponding ground truth (e.g., figure 8). This is supported by the
3D distance maps from the test data. The 3D distance map computes and colors
the distance between the point of segmentation produced by the model and its
corresponding point from the ground truth. Figure 9 shows most regions of the
distance map are green, which means that the distance between the corresponding
points of the model segmentation and ground truth is close to 0. Therefore, the
model segmentation highly agrees with the ground truth visually.
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Quantitative evaluation was conducted by quantifying how much the UNet-
assisted segmentation differs from its corresponding ground truth. Instead of
manual segmentation, segmentation produced by Articulus, a semi-automatic in-
house segmentation software, was used as ground truth in the present study.
Although its accuracy level still has room for improvement, Articulus has been
reported as a reliable segmentation tool in several studies®®?°, There are three
metrics used for quantitative evaluation: distance distribution, Dice coefficient
and Hausdorff distance. The distribution of distances between UNet-assisted
segmentation and its corresponding ground truth is visualized by a boxplot. Dice
Coefficient and Hausdorff distance are commonly used in evaluating the
performance of medical image segmentation methods?-?2, Dice coefficient
evaluates the performance of the segmentation over the entire image by measuring
the similarity of UNet-assisted segmentation and its ground truth. Hausdorff
distance indicates the largest segmentation error. Additionally, the computational
time needed for segmentation is used as a secondary metric to evaluate the
efficiency of the model. Detailed discussion of these metrics are presented as
below:

1) Quantitative evaluation using boxplot: The distance maps of both test data have
been further analyzed quantitatively by creating boxplots. The boxplot shows the
distance distribution. For test data 1, the boxplot indicates that 75% of the
differences between UNet-assist segmentation and the ground truth is smaller than
0.364mm (see figure 21 (left)). For test data 2, 75% of the distance lies below
0.242mm (see Figure 21 (right)). It would be desirable to keep the distance error
below 0.1mm, since the maximum thickness of capitate cartilage is approximately
1mm?. This could be achieved by using a bigger data set and/or adding more data
augmentation techniques. The model could also be improved by combining it with
other segmentation techniques, for instance a UNet initialized level-set
segmentation.

2) Quantitative evaluation using Dice Coefficient: The relatively low Dice
coefficient that we found in this study was to be expected, since both the training
and generalization of the model was based on a limited number of datasets: 6 and
2 individuals respectively. In contrast, other studies, in which larger dataset were
included, reported much lower Dice coefficients.?*?. The obtained Dice
coefficient value of test data 1 is 0.9388, while it is 0.9089 for test data 2 (see
Table 1). The highest Dice coefficient that was reported in a study by Brui. et.al.
was 0.81 for their CNN-assist wrist cartilage segmentation?*. Meng. et.al., have
developed a CNN-assist segmentation model for wrist joints and the obtained
Dice coefficient value of this model is 0.78 +0.06%. The low Dice coefficient
values of those 2 studies might be caused by the type of images used for training.
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One of those studies used MR images for CNN-assist wrist cartilage
segmentation. MR has difficulties capturing cartilage thinner than 1mm, while
wrist cartilage can be thinner’. Therefore, it could be challenging for the network
to segment the cartilage layers from MR images, let alone measuring its thickness.
In the study of Meng. Et.al., radiographic images of wrist bones have been used
for training. Radiography is not sufficient to capture accurate 3D structures, which
would lead to feeding the network with inaccurate information and thus have an
adverse effect on the trained model. Overall, CT images might be considered as
an optimal choice for CNN-assisted wrist bone segmentation.

3) Quantitative evaluation using Hausdorff Distance: The value of the Hausdorff
distance for test data 1 and 2 is 2.0616mm and 2.5475mm accordingly (see Table
1). Those values are higher than the reported value of CNN-assist segmentation
for wrist joints (1.56+0.30mm) by Meng et al.?® and lower than the values
(2.8+2.7mm) provided by Forster et al., using a level-set based semi-automatic
carpal bone segmentation toolkit?®. Hausdorff distance is determined exclusively
by the largest segmentation error. A segmentation method can achieve accurate
segmentation over most of the image, while having large error at one or a few
locations. Therefore, lower Hausdorff distance values do not necessarily correlate
with higher segmentation quality. However, a lower value of Hausdorff distance
is preferred in this study, as it would lead to a more accurate estimation of the
JSW at every location and thus more accurate diagnosis of OA. In clinical
practice, the diagnosis of wrist OA is based more on the symptoms and physical
examination than JSW due to the its complex nature. There is no exact threshold
for JSW to diagnose wrist OA, since it may differ from individual to individual.
For the same individual, it may change with age and JSW is location dependent,
which varies over the entire contact region of a joint. Therefore, the change of
JSW over time, instead of its absolute value, is of clinical interest in OA diagnosis.
In order to provide a JSW-guided OA diagnosis, more researches are required to
investigate the difference between OA and age related JSW change, as well as
location precise JSW distribution over the entire contact area of a joint, for
instance measuring the JSW during motion. An accurate segmentation technique
with lower Hausdorff distance would be a first step towards those researches.

The low Hausdorff distance value of the study of Meng et al., could be explained
by the remarkable size of training data?*, data of 290 individuals, whereas in the
present study data of 6 individuals was used. Comparing to the present study, the
study of Forster et al., has a relatively large set of training data of 80 individuals.
However, the reported Hausdorff distance of their study is higher than the present
study. The could occur because of weak or missing edges since MRI images were
used in their study, which may not able to capture thin cartilage layers as wrist
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cartilage. The Hausdorff distance of the present study could be improved by using
a larger dataset. Moreover, a study of Karimi et al., has proposed a novel loss
function for CNN-based segmentation that is able to reduce the Hausdorff
distance by approximately 18-45%, comparing with commonly used loss
functions e.g. cross entropy loss function, without comprising the Dice
coefficient?,

4) Quantitative evaluation using computational time: The computational time
required for segmentation assisted by UNet has been improved by an order of
magnitude, as comparing to manual segmentation, which typically requires
minutes?*. Semi-automatic segmentation methods can complete the task within
several seconds, for instance Articulus is able to segment a Capitate around 10
seconds, however human input is needed. UNet-assisted segmentation completes
segmentation in a few seconds without the need of human input. In the present
study, the computational time for the test data 1 and 2 is 6.7151s and 8.0743s.
Owing to the requirement of human input, semi-automatic methods are less
efficient than fully automatic methods such as UNet-assisted segmentation.

It is noticeable that the loss curves have a few spikes (see Figure 7). The reason
could be that the data used for training is unrepresentative and/or the learning rate
is too high, which makes the network unstable?’. Therefore, the solution would be
adding more data and/or fine tune the learning rate.

The present study has several limitations. A small size training data with a single
label of capitate bone has been used to develop the model. The performance of
the model can be further improved by using more training data and/or more data
augmentation techniques. However, acquiring medical images can be difficult,
due to privacy and cost concerns. Therefore, the critical question is how much
data is sufficient for achieving a specific target performance e.g. segmentation
error is within 0.1 mm. It is difficult to give a particular number to this question,
as the size of the data required is dependent on the nature of the problem such as
the number of classes need to be classified, how different are the classes etc. It
would be interesting for future study to investigate the impact of the size of data
on the classification accuracy. Hypothetically, the classification accuracy rises
with the increasing data size and eventually reaches a stable phase, where more
data will not significantly improve the performance of the model.

Another limitation is that the model basically segments 2D images, which
together makes up a 3D image. A 3D approach or an approach that segments in
more planes and combines these results, may give a better 3D results.

Additionally, more labels can be added to the training data to further develop the
model to be able to segment not only the capitate bone but other carpel bones as
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well. Theoretically, adding more labels could improve the accuracy of
segmentation, since there is more context for the model to learn?®,

6. Conclusions

In the present study, a fully automatic segmentation method for the capitate bone
from CT images based on UNet has been developed. The proposed method has
achieved a high degree of agreement with the ground truth both visually and
quantitatively. Moreover, it significantly lessens the computational time,
comparing to manual and semi-automatic methods. This study demonstrates the
feasibility of a UNet-based fully automatic segmentation method for carpel bones
from CT images and it is the first step towards a UNet-based fully automatic
method that is able to measure the thickness of wrist cartilage.
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9. Appendix
9.1Segmentation

Segmentation is a process of extracting objects of interest from an image®. It is a
fundamental step for cartilage thickness measurement. In the literature review,
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most commonly used segmentation methods were divided into three groups:
manual, semi-automatic and fully-automatic and evaluated. Manual segmentation
by an expert is commonly accepted as the ground truth. While this segmentation
technique utilizes expert knowledge, it is very time consuming and it is not highly
precise due to inter-observer and intra-observer varibility?-2°,

There is a variety of approaches available for semi-automatic segmentation. In the
next paragraphs, a brief discussion of the most used semi-automatic segmentation
techniques including: thresholding, region growing and edge are presented. More
semi-automatic segmentation techniques and detailed description of those
techniques can be found in the study of Neeraj Sharma®.

Thresholding, the most popular segmentation technique for image segmentation,
uses an optimal threshold to separate the pixels in foreground and background.
An advantage of this segmentation method is that it is simple and easy to
implement, however its main drawback is that the performance of this method is
influenced by the presence of artifacts.

Region growing is widely used in medical image segmentation and it is based on
the assumption that pixels within a region have similar properties. The process is
initialized with a seed point, which is selected according to the criteria for
homogeneity (mostly its intensity similarity). The neighboring pixels with similar
properties are clustering together to form a region. The region is growing
continuously until all pixels with similar properties are assigned to this region.
The main limitation of this method is that the segmentation result is largely
dependent on the choice of seed point.

Edge detection method relies on the detection of edges, the boundaries that
separate distinct segments. Image gradient is on the basis of edge detection
methods e.g. Hessian matrix, Canny and Laplacian. The boundaries are generated
by combining the detected edges and then different regions are separated. While
this technique has been frequently deployed, it is highly noise sensitive which
means image noise can be misclassified as edge pixels.

Fully-automatic segmentation is another approach for image segmentation. There
are mainly three types of techniques used in this approach: statistical model-based
segmentation, Atlas-based segmentation and CNN based segmentation.

In case of statistical model-based segmentation, a statistical feature
representative model of the population is used. The presence of noise and artifacts
cannot affect the performance of this method and thus it is better suited for
medical image segmentation, while comparing with the segmentation techniques
mentioned above®*-3, However, this method may fail to provide accurate
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segmentation result when an individual is not represented by the statistical
model®L,

Atlas refers to pre-labeled reference images, which can be chosen randomly from
the population. Although there is evidence that Atlas guided segmentation is able
to compete with manual segmentation®, its performance significantly depends on
the selection of Atlas. The idea Atlas should be able to reflect the feature varieties
of the entire population.

In recent years, CNN has been rapidly recognized as a segmentation technique
in medical image process, since excellent segmentation results from medical
images produced by CNN have been reported* © &11, The main advantages of
CNN-based segmentation are: 1). It is capable of automatically and adaptively
learning the features solely from data by itself, instead of requiring hand-craft
features provided by experts. 2). It is computationally efficient once the model
has been trained; 3). It is possible to work with a small dataset. 4). It is possible
to provide radiologist level results. The main drawback of CNN-based
segmentation is that the process is considered as a black box, as the decision
making is not visualized. This makes the implementation of CNN in clinical
practice challenging.

9.2Theory

In this section, the background knowledge and techniques required for better
understanding of this study are discussed including the basics of a CNN and its
architecture, image segmentation techniques and semantic segmentation.

9.2.1 What is CNN?

CNN is a special type of deep learning model that is inspired by the human visual
cortex and it is designed to automatically and adaptively learn patterns such as
lines and curves from low to high level. There are 3 types of layers/building blocks
mostly used to build a CNN including convolutional layer, a pooling layer and a
fully connected layer. Stacking a repetitive sequence of the former two layers i.e.,
several convolutional layers and a pooling layer, followed by one or more fully
connected layers yields a CNN. The repetitive sequence of convolutional layers
and a pooling layer perform feature extraction, while the fully connected layers
transfer the extracted features into output such as classification.

9.2.1.1 Convolutional layer

A convolution layer, a core building block of the CNN, is a combination of a set
of learnable parameters called kernels or filters and an activation function.
Kernels/filters perform a linear operation i.e., convolution on the input, whereas
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the activation function adds nonlinearity that represents the biological neuron
behavior to a CNN%2,

Convolution

Convolution is a mathematical operation that convolves the input with
kernels/filters. In a CNN, the input is an array of numbers and therefore, a CNN
takes an input image as an array of pixel values. A kernel is defined by two
hyperparameters. Hyperparameters are parameters that can’t be learned through
training and need to be pre-set by the operator including kernel size and number
of kernels. Kernel size should be smaller than the size of its input. Increasing the
number of kernels could increase the capacity of a CNN to learn more complex
features.

During the convolution, each kernel moves along the height and width of the input
image, as it multiplies the values in the kernel with the pixel values of the input
array at every position, till all positions are crossed. The multiplications of every
position are summed up to produce a single output value associated with the
position (see Figure 1). The matrix that contains the output values of all positions
Is called a feature map. This procedure is repeated for all kernels to create feature
maps that represent different features of the input.

Input

2 { ! 3 [
o = o nr 1 < ‘. [ 1 8
| 2 0 | ~ |
1 1| B { B, | 5 .2
0 [} ~ ‘ 1} Kernel - 3 2
2 ™~ 2 |~ e | 7
o ‘ - Feature map

Input %

Figure 1. An illustration of the convolution operation (modified from Fig.3 from
Yamashita et al.(2018)®). A kernel with size 3x3, stride 1and no padding slides
across the input till all positions are covered. The values in the kernel are
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multiplied by the values in the input array at every position and the
multiplications of a position are summed up to obtain a single output value. The
matrix that contains the output values associated with all positions of the input
is called a feature map.

The size of a feature map is controlled by 3 hyperparameters: stride, padding,
filter size and depth (see Equation 1). Stride is the distance between two
consecutive kernel positions. Padding the image boarder with zeros would allow
the boarder pixels to play a bigger role in determining the output, since the
convolution operation is not able to place the center of a kernel on the outmost
components of the input. Depth is the number of kernels used.

w—F+2P h—F+2P

W = +1, H=

+1 Equation 1

Where W, H are the width and height of feature map, w, h are width and height of
the input image, F is the size of the filter, P is amount of zero padding and S is the
stride. Therefore, the size of feature map is H xW x Depth.

9.2.1.2 Nonlinear activation layer

The outputs of each convolution layer are then passed through a nonlinear
activation function such as Relu, sigmoid or hyperbolic tangent (tanh) function
(see Figure 2). The main objectives of nonlinear activations are to add nonlinearity
and differentiability to the network. A convolution is a linear operation which is
inadequate to be used to model complex datasets such as images and videos, since
those datasets contain multiple dimensions and can’t be simply represented by
linear transformations. Differentiability is important because it is mandatory for
performing backpropagation. Backpropagation is an algorithm used to optimize
learnable weights during training (See section 9.2.2.2.3). The mostly used
nonlinear activation function is Relu33-38, which gives an output X if X is positive,
otherwise it gives 0 (f(x) = max (0,x)). The reason that Relu is the most
commonly used activation function in CNN is that the model uses Relu requires
less training time and achieves better performance®. A detailed discussion about
different activation functions can be discovered in the book Deep learning by
Goodfellow. There is no learnable parameters or weights in any activation layer.
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Figure 2.Activation functions frequently used in the CNN: Relu (a), sigmoid (b)
and tanh (c)®.

9.2.1.3 Pooling layer

A pooling layer, placed in-between consecutive convolutional layers in CNN, is
a form of down-sampling, which adds location translation invariance to the
network as well as reduces the computational time by reducing the learnable
parameters?®. The output feature map of the convolutional layer is sensitive to the
location of the features in the input, which means small changes in the location of
a feature in the input e.g. cropping and rotation of the input can result in different
feature maps. A pooling layer down-samples the output feature map of the
convolutional layer and creates an approximate version of the feature map that is
more robust to the changes in the position of the feature in the input®®. There is no
learnable parameter in any pooling layer, whereas there are hyperparameters i.e.,
kernel size, stride and padding in a pooling layer which are similar to
convolutional layers. There are two types of pooling: max pooling and average
pooling. Max pooling extracts salient features such as edges, whereas average
pooling picks smooth features. Max pooling has become the default pooling
operation because empirically it achieves better performance33 3940,

Max pooling

Max pooling returns the maximum value of the area of the input covered by the
kernel and dismisses all the other values (see Figure 3).
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Figure 3.An example of max pooling (modified from Fig.6 from Yamashita et
al.(2018)%?)). A kernel with size 2x2, strid 2 and no padding slides cross the
input and outputs the maximum value in each position it covers, while dismisses
all the other values. The size of output is smaller than the initial input after max
pooling.

Average pooling

Another pooling operation is average pooling. Average pooling returns the
average value, rather than the maximum value, of all the values from the area
covered by the kernel (see Figure 4).

DABNE Qh
1 2 :
T }{ Output
8 (2)(2)
Input \
(4x4)

Figure 4.An example of average pooling (modified from Fig.6 from Yamashita
et al.(2018)%3)). A kernel with size 2x2, strid 2 and no padding slides cross the
input and outputs the average value in each position it covers, resulting in
down-sampling of the input.

9.2.1.4 Fully connected layer

The output of the final pooling layer is flattened into a 1D vector and passes
through one or more fully connected layers, otherwise known as dense layers. In
fully connected layers, every output of the previous layer is connected to every
input of the successive layer by a weight, which needs to be learned through the
training process. The number of outputs of the final fully connected layer is the
same as the number of classes. Each fully connected layer is followed by a
nonlinear layer.

9.2.1.5 Last activation layer
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The last fully connected layer is usually connected to an activation function,
which converts the output values of the last fully connected layer to probabilities
of all classes. For a multi-class classification task, softmax is the common
choice®. Softmax function is a generalized sigmoid function (see Equation 2-3).
It often follows the last fully connected layer to yield probabilities of an input
belonging to different classes. The sum of softmax probabilities always is 1. A
higher value of softmax suggest a higher probability. Softmax has a number of
outputs, representing the predicted probability of different classes. The output
with the highest value represents the predict class (see Figure 5).

_ _&xp () .
f(x)sigmoid T exp(0)+1 Equation 2
f(xi)softmax = o) fori=12..k Equation 3

YrZLexp (xk)

Output of the last
fully connected Probabilities

layer .-
\
O.Z' Class dog

\ 2
_> _>|: 1 :|_’_> Q:Z Class cat
0.1 0.

O 3 Class horse

-~

Figure 5. An example of softmax operation. There are three classes here: class
dog, class cat and class horse. For the input image of a dog, , the probability of
it belongs to class cat is 0.7, dog class is 0.2 and horse class is 0.1 The
predicted class is class dog*.

9.2.2 CNN-based image segmentation

Image segmentation is a process of partitioning an image into multiple segments
of pixels®. Image segmentation can be otherwise considered as a process of
classification of every pixel in an image, which can be achieved by using CNN.

9.2.2.1 Input data and labels
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Input data and labels are the most critical elements in deep learning projects that
are tailored to image segmentation. As a well-known proverb originating from
computer science states: “Garbage in, garbage out.” The quality of the input data
and labels affect the chance of success of a deep learning project. Therefore, The
quality control of the input data and labels is mandatory. The collected input data
and labels are normally split into 3 sets: a training set, a validation set and a test
set (see Figure 6). A training set is used to train a model via forward propagation
and back propagation, as described in the overfitting section. A validation set is
used to monitor the training process, adjust the hyperparameters and make model
selection decision (See section 9.2.2.3). A test set is used to evaluate the
performance of the selected model at the very end of the project. Each set has its
own function in the training process, which is explained in the overfitting section.

Whole data

B

Training Validation
data data

| l l

Training a model Monitoring model Evaluation
performance of final model
l performance

Hyperparameter tune

Model selection

Figure 6. Collected data and labels are split into three sets: a : a training set, a
validation set and a test set®3. Each set has its own purpose in the training
process, which is discussed in the folowing sections.

9.2.2.2 Traininga CNN

Training a CNN is a process of finding specific sets of learnable parameters for
kernels in the convolutional layers and weights in the fully connected layers that
minimize the differences between the ground truth and the output prediction. The
training process is a repetitive process of forward propagation and
backpropagation (see Figure 7). Forward propagation is an algorithm of
calculating output from input. Backpropagation is an algorithm that computes the
gradient of the loss in the reverse order: from output to input. Forward propagation
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and backpropagation are executed with the assistance of the loss function and an
optimizer.

Figure 7. Scheme of the training process.

9.2.2.2.1 Loss function

The loss function, also referred to as cost function, is used to calculate the
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difference between output predictions of the model and the given ground truth
labels. Cross entropy is a commonly used loss function for multiclass image
segmentation®? 4243, Cross entropy measures the difference between the predicted
and true probability distributions for all classes. The predicted probability
distribution, a vector, represents the predicted probabilities of all classes,
summing up to 1. It is the output of the softmax layer. The true probability
distribution is a vector with 1 for the actual class and 0 for all other classes (see
Figure 8—9). Cross entropy decreases as the predicted probability converges to
the ground truth and the ideal cross entropy value is O (see Equation 4).

Loss = —% N,y xlog (P) Equation 4

Where N is number of classes, y; is the true probability of class i (0 or 1) and ¥;
Is the predicted probability of class i (a value between 0 and 1).
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Figure 8.Image classification of 3 classes: dog, cat and panda*. The model
gives predicted probability for each class. The probability of the image belongs
to class dog, class cat and class pands is 0.5, 0.3 and 0.2. The sum of the
probabilities of all classes is 0.5 + 0.3 + 0.2 =1.
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Figure 9.True probability vector (left) and predicted probability vector (right)of
a dog image. True probability vector has value 1 for the class dog and 0 for
other 2 classes. The prediction, produced by the model, gives class dog a
probability of 0.5 and the other 2 classes a probability of 0.3 and 0.2
respectively.

9.2.2.2.2 Optimizer

An optimizer is an algorithm or method that iteratively updates the learnable
parameters of the network in order to minimize the loss function (i.e., learnable
parameters of kernels and weights between each connection of fully connected
layers,).

Gradient descent, the commonly used optimization algorithm, calculates the
gradient of loss function and iteratively moves in the direction of the steepest
descent to minimize the loss function. Figure 10 illustrates this concept with a
simplified example where a loss function has only one learnable parameter w.
With multiple learnable parameters, the gradient is a vector of partial derivatives
of the loss function with respect to all learnable parameters. The gradient descent
algorithm has been studied extensively, resulting in many modified versions of
the algorithm, which improve its performance. Among those modified gradient
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descent algorithms, Adam is the most recommended one in medical image
segmentation®#¢, which gives different learning rate for different learnable
parameters.
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Figure 10. An illustration of how gradient descent minimizes loss
function(modified from Fig.7 from Yamashita et al.(2018))*3. Considering a
simplified example as showing in the polt: a loss function with a single
learnable parameter w In order to find the minimal loss, gradient descent starts
with choosing a starting point w; and then calculates the gradient of the loss
function at this point. The gradient is a partial derivative of the loss with respect
to w, which gives the direction of steepest increase of the loss function. The
gradient descent algorithm takes a step in the negative direction of the gradient

(2% < 0). The step size is determined by a hyperparameter known as learning

rate (a).
9.2.2.2.3 Backpropagation

ow

The backpropagation algorithm, which propagates the error from the loss function
backwards through the network, calculates the partial derivatives of the loss
function w.r.t each learnable parameter. The derivative associated with each
learnable parameter determines how to change each learnable parameter in order
to minimize the loss function (see Section 9.2.2.2.1). Figure 7 explains the
backpropagation process training. The training starts with initialization of weights
and propagates forward through the network. The outputs of the network are used
to calculate the loss / error for the given set of weights. If the error is minimum,
the model is ready to be tested on new input data. Otherwise, the weights will be
updated using error backpropagation to minimize the loss function.

32



9.2.2.3 Overfitting

Overfitting is a condition when the model fits too well to the training data to the
extent that it is difficult for the model to generalize well from the training data to
a new set of unseen data, therefore, the performance of the model on a new data
Is poor. For instance, if the model memorizes irrelevant information or noise,
instead of learning the general underlying pattern of the training data, it will make
predictions based on noise rather than underlying patterns of the training data. In
this case, the performance of the model on the training data can be very well,
while very poor performance on an unseen, new data. A routine check for
detecting overfitting to the training data is to monitor the training and validation
loss®. If the model performs much better on the training data than on the
validation data, then the model is likely overfitting to the training data (see Figure
11). There are several solutions to avoid overfitting including: training with more
data, data argumentation, weight decay and early stop. Among those solutions,
training with more data is the best solution®, as a larger dataset provides more
diversities, however, it is often hard to create a large dataset with medical images
due to data privacy concerns* 3, Data augmentation, modifies data via random
transformation such as cropping, rotating and flipping to provide more
information for the network to learn, is an effective method to limit overfitting®’.
Weight decay can limit overfitting by adding a regulation term to the loss function
(see Equation 5). The regulation term encourages small weights and keeps the
model simpler to avoid overfitting (see Equation 6)%°.

1 .

LoSSpeyw = LOSS original + E)Lllwll2 Equation 5
oL .

Wigg = W; — a%’i“w — alw; Equation 6

Equation 5 and 6 demonstrate how the regulation term helps to avoid overfitting.
The regulation term works based on the assumption that less learnable parameters
generate a simpler model, which is less prone to overfitting. Equation 5 is the new
loss function with a L2 regulation, where A is a coefficient and w is a set of
learnable parameters. Equation 6 is the updated learnable parameters using the
new loss function. Where w;,, is the updated learnable parameter, w; is the
original learnable parameter and « is learning rate. The term —aAw; introduced
by the regulation term leads decays all learnable parameters proportionally and
thus keep them small.

Early stop refers to stopping the training at the point where overfitting occurs and
the model saved at this point is the model selected for further evaluation. The
performance of the selected model is evaluated by testing it on new unseen data,
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known as the test set. The results from the test set confirm how well the model
performs on new (unseen) data.

Overfitting

validation

iterations

Figure 11. An illustration of monitoring training and validation loss to detect
overfitting. Overfitting occurs when the validation loss starts to increase,
whereas the training loss keeps decresing.
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