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Abstract

A display map category, originally just called a class of display maps
with a stability condition, can be used to model dependent type theory.
There are several other constructions on categories that can serve
a similar purpose, such as comprehension categories. In fact, the
similarity of such concept has been well-known, and there even have
been comparisons made using bicategories of such categorical notions.
In this thesis, I aim to formalise one such comparison, and implement
it in a proof assistant. In order to do this, I needed to formalise dis-
play map categories, some related concepts, to then construct their
bicategory, and show the comparison as a pseudofunctor into the
bicategory of comprehension categories. The formalisation has been
done using Univalent Foundations, while the implementation has
been completed using Rocq, and more specifically the UntMaTH li-
brary.
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Chapter 1

Introduction

Many programming languages have a type system, of varying strength. To verify the
correctness of programs written in such languages, a useful tool of analysis can be type
theory, which can model type systems, especially the ones of functional languages. One
can also go one level further, and model type theories themselves. A way of doing this is
by modelling the semantics of type theories using category theoretical structures. For
those unfamiliar with either of these fields, a sufficient explanation of both will be given,
as this thesis will work with both.

This thesis aims to formalise one of the correspondences given by Ahrens, Lumsdaine
and North [1]. In their paper, they give foundation-agnostic correspondences between
frameworks for modelling and studying dependent type theories. This left an opportunity
for the arguments to be formalised in some foundation, in our case Univalent Foundations.
This choice of foundation is a bit circular, as Univalent Foundations is itself a kind of
dependent type theory. While this is not an issue in itself, but it does make it difficult to
know where to start. In this thesis, when discussing the background, we will first lay out
the category theoretical concepts we use, and only then discuss type theory, both how it
will be our foundation, and how it is modelled by those categorical structures.

The frameworks under study in their paper were category theoretical structures.
In this thesis, we will be focusing on two of them. First is the display map category,
which gives a notion of stable collection of display maps, where display maps are select
morphisms of a category. The other is comprehension category, which we will not study
in detail, but include as it served as the basis of the comparison for all other models. The
reason for them being this central comparison, is that they are a middle ground between
the models that take types to be objects in some category and ones that take types to
be some display map (or morphism) instead. Further, we will follow their method of
comparison by using bicategories, an extension of categories. These give a way to compare
not only the models, but also their analogous concepts to functors and transformations.
Both display map categories and comprehension categories have been used to model
dependent type theories. An example of both interpretations can be found in the book from
Jacobs [2, Section 10.4], where Jacobs describes also the connection between the two.

Dependent type theories model mathematics using contexts I', A, ..., types A, B, ... and
terms a,b,. ... Often, contexts can be thought of as a list of variables, mirroring what we
would call context while programming. They can be used to state judgements that may or
may not hold, for example

I ctx I is a context;
' A A is a type in context I';
'a:A a is a term of type A in context I'.

These judgements are similar in concept to logical statements in classical logic, for
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1. INTRODUCTION

example we can state P A —P, but it will never hold. Further, we have a collection of rules
that can be used to derive judgements from each other. These rules further the parallels
with programming, to the extent that dependent type theory can be implemented as a
programming language. Many such languages have been created over the years, with
some examples being Rocq!, Aepa? and Lean®. These languages are often referred to
as ‘proof assistants’, as they can be used to verify proofs. To do this, they rely on the
interpretation of propositions-as-types, whereby a : A is equivalent to saying “a is a proof
of A”. For example, Rocq has been used to create a formally verified C compiler, named
CompCert.*

The choice to use Univalent Foundations as the foundation for this thesis was due to
a number of factors. The biggest one was the existence of the UniMars library.® While
there have been countless implementations of category theory in proof assistants®, most
of these do not implement bicategories, and the few that do are still missing the bicategory
of comprehension categories. Trying to also implement those would have ballooned the
scope of this thesis. In contrast, UntMarH has a wide variety of definitions for constructing
and working with bicategories, which will help our implementation.

For this thesis, in order to reduce confusion, I will use the word ‘formalisation’ to refer
to the act of creating a definition, theorem or proof using the theorems and axioms of a
given basis. So, this will refer to the things that we have formalised on paper. The other
common meaning of formalisation, being the act of writing computer code using a proof
assistant, we will refer to as ‘implementation’. This division should allow our formalisation
to be independent of the implementation choices made specifically for UntMaTH, and thus
allow for other implementations.

1.1 Contributions

As a part of this thesis, I have formalised display map categories, together with their maps,
in Univalent Foundations. Further, I have formalised their bicategory, as a displayed
bicategory over the bicategory of univalent categories. I have given a proof that this
displayed bicategory is also univalent. Finally, I have constructed a pseudofunctor from
the bicategory of display map categories into the bicategory of comprehension categories.

All of these have also been implemented in the UniMaTu library, and have been
accepted to be a part of the library. Further, the implementation includes direct maps
from display map categories to comprehension categories, and their related concepts.
Finally, I have completed the construction of the bicategory and pseudofunctor twice,
once implemented as a direct bicategory and a pseudofunctor therefrom, and once as a
displayed bicategory, and corresponding pseudofunctor. I have great confidence in that
these two are in fact equivalent, though I have not explicitly shown this. The reason for
my confidence is due to the fact that the two implementations were largely the same, with
some minor adjustments to account for the different data layout (i. e. differently ordered
pairs).

The implementation of the pseudofunctor did require some ‘massaging’ of the types to
convince Rocqof its correctness. On the other hand, as we will see in the formalisation,
the conservation laws of the pseudofunctor turn out to be quite trivial as they only
involve identities, thus implementing these was also trivial. A final consideration for the
implementation was its compilation time as it is part of a sizeable library, so even small

IThe Rocq Prover - Homepage

?Agda Wiki

3Lean Language - Homepage

4CompCert HomePage
5https://unimath.github.io/UniMath/

6Discussion on category theory libraries - Rocq Forum
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https://discourse.rocq-prover.org/t/survey-of-category-theory-in-coq/371
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optimisation add up over the entirety of the library. In this thesis, I will also present
some of the steps I took to optimise my proofs.

1.2 Contents

Chapter 2 will present the more advanced category theory definitions that are needed
for the understanding of this thesis. These will naturally include display map categories
and comprehension categories, as these are the semantic frameworks, whose comparison
I aim to formalise. The chapter will also include the necessary preliminaries for these
structures. Furthermore, the chapter will discuss bicategories, displayed bicategories
and pseudofunctors, as these serve as the frame of the comparison.

Chapter 3 will describe the foundations used in this thesis, Univalent Foundations.
As Univalent Foundations are a form of type theory, the chapter will also give a brief
introduction into dependent type theory. Then, Section 3.4.1 and Section 3.4.2 will
describe, respectively, how display map categories and comprehension categories can
be used to model dependent type theory. Finally, the chapter will conclude with a brief
discussion about the concept of univalence.

Chapter 4 will present my formalisation of display map categories in Univalent Foun-
dations, together with a discussion of the details of this definition. Using this definition,
it then will present the definition of the displayed bicategory of display map categories.
The chapter will further show proof that this bicategory is univalent, and that its total
version is equivalent to the bicategory of display map categories. Finally, to show the cor-
respondence to comprehension categories, the chapter will describe our construction of a
pseudofunctor from the displayed bicategory of display map categories into the bicategory
of comprehension categories, complete with proofs that it is indeed a pseudofunctor.

Chapter 5 presents the implementation of this formalisation using the UniMat li-
brary. While the prior section will contain references to the code, where appropriate, the
discussion of certain implementation details will often be omitted. Therefore, this chapter
will give a better overview of what I have implemented, together with some explanations
of certain implementation specific details. Furthermore, the chapter will discuss a proof
assistant specific issue, that being the optimisation of proofs. This is necessary, as the
UniMartH library is rather large, and a change in one file can require the recompilation of
many of them, so the slowness of proofs can quickly add up.

Chapter 6 presents related works in both formalisation and in semantic frameworks.
The prior will focus on the formalisation of the concepts used in this thesis. The latter will
present not just the frameworks presented in this paper, but some other related ones as
well, some which have also been in the comparison by Ahrens, Lumsdaine and North [1].

Chapter 7 will conclude by giving an overview of what I have accomplished, together
with any final thoughts I have on the project as a whole. This chapter will also include a
number of topics that could be target of future work.






Chapter 2

Category Theory Preliminaries

Category theory is an area of mathematics that is concerned with describing mathemat-
ical concepts in an abstract way. By abstract, we mean here that it is not concerned
with the specifics, and focuses rather on the larger picture. This abstraction can allow
mathematicians to make connections between seemingly unrelated parts of mathematics.
It originally started as a theory for working with topology, but turned out to have wide
reaching applications, such as in functional programming and in programming languages
research more broadly.

While this thesis is aimed at the general computer science audience, we will require
at least a cursory knowledge of category theory, concepts such as: category; functor;
and natural transformation. For those unfamiliar with these concepts, we recommend
checking out either the book “Category Theory for Programming” [3, Chapters 2, 4,
5], or the website “Category Theory for Programmers” [4, Part One]. Our notation for
morphisms, sometimes called arrows, will most often be f : « — b, marking only the
objects it is between, but in case the category it belongs to may not be apparent, we will
use f : C[a,b].

In this chapter, we will explain some of the more advanced concepts that will be
necessary for the understanding of this thesis. These concepts will be

¢ display map categories and related concepts in Section 2.1;

* comprehension categories and its preliminary concepts in Section 2.2;

* bicategories and pseudofunctors in Section 2.3;

¢ displayed bicategories, and why they are useful in formalisation in Section 2.4.

The only difference in the presentation of these definitions will be in the case of fibrations
in Section 2.2.1, where we will give their definition using displayed categories, instead of
functors. As we will also explain it there, this is a logically equivalent definition, but we
use this version to better align with the implementations in the UniMarH library.

Arrow Category. In multiple upcoming definitions, we will reference the arrow cate-
gory C—, which is the category of the morphisms of C. It is defined entirely in terms of
the base category, as such, every category has exactly one corresponding arrow category.
As the name implies, it is defined by taking the morphisms of a category C as the objects
of the arrow category C—. To give the morphisms between a pair of those arrows, we need
to give a pair of morphisms from the base category.

Definition 1 (Arrow Category.). Given a category C, we can define the arrow category C™.
The objects of this category will be the morphisms of C, and the morphisms between two
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2. CATEGORY THEORY PRELIMINARIES

objects, f : x — y and f': 2’ — ¢/, will be a pair of morphisms (g,¢’) : (x — 2) x (y > ¢/)
in C, such that the following diagram commutes

[ —(g9)— [ inC™

g9
—

Xz
fl lf’ inC
Yy

/
g Y

The identity and composition of this category can be given by using the identity and
composition of C respectively. For the identity, it is easy to see that (id,, id,) will make
the square commute, as

fidy =id, - f.
As for the composition, the proof is given by combining the two squares. So, given f, f/, f”,
and morphisms (g1,¢92) : f — f and (¢1,95) : f" — f”, we have

fro=0-f frg=g-f
f(g2-95)=(g1-91)- f"

or, as a diagram

A related definition will be the codomain functor cod: C~ — C, mapping the morphisms
f : x — y to their codomain or target y. Building on this definition, one can also define
arrow versions of functors '~ and natural transformations «—, in a manner similar to
the definitions in Section 2.1.3. Due to the similarity of the definitions, we will omit them
here.

2.1 Display Map Categories

Display maps are nothing more that a selected morphism in some category. Given a
collection of such display maps, we can call it a class (or set) of display maps. Early
definitions, such as the one given by Hyland and Pitts [5, § 2.2], does indeed define only a
class of display maps, with some added conditions. A display map category is then a base
category C, a class of display maps D < mor(C), and the conditions included in earlier
definitions.

In order to describe this condition imposed on the class of display maps, we will need
to make use of pullbacks. A pullback is similar in concept, with the difference being the
(indirect) involvement of a third object. So, where the product could be defined for two
objects, the pullback will be defined for two morphisms f: B - Aand g : C — A. The
pullback itself will be made from another object P, as well as two further morphisms
f*g: P — Bandg* f: P — C. The notation f* g should be read as “the pullback of g
along f”, this terminology comes from the fact that this morphism is corresponding to g,
but its target is now the domain of f.

Definition 2. Given a category C, three objects A, B,C, two morphisms f : B — A
g:C — A, apullback is a triple made from an object P, a morphism f*g: P — B and a

6



2.1. Display Map Categories

morphism ¢g*f : P — C, such that the following commutes

P —gtfr—> C
\ \
f*g 9
{ {
B—fr— A

Further, for any other such triple (Q, h, k), there must exists a unique morphismp : Q — P,
such that this diagram commutes

Q\\k

\ upmc

h | ‘
f*g 9
{ {
B—fr— A

Sometimes P is instead denoted as B x 4 C, or often just indicated in the square diagram
using _.

In this second part, we can see how similar the definition of pullbacks is to products,
in certain categories they do overlap. One more things of note, which we will use in the
formalisation, is the fact that any two pullbacks of the same morphisms will be isomorphic.
This can be proven easily, as they must both have a unique morphism to the other, and
these must compose to the identity on both sides, as the unique morphism from a pullback
to itself is the identity.

Remark 3. It is important to note, that any two pullbacks P, P’ : B x 4 C of the same
morphisms f, g will be isomorphic to each other.

Proof. Since both P and P’ prime are pullbacks of f, g, we get two unique morphisms
(that make the diagram below commute)

p1:P—>P/ and pQZP/—>P,

as seen in this diagram

2 P — e
P11 - _J
7 D2
v

7

To show that they form an isomorphism, we need to show

°
g

p1-p2 =idp (2.1)
p2 - p1 = idpr. (2.2)

Both of which are trivial. Equation (2.1) follows from the fact that since P is a pullback,
there is a unique arrow from P to P (such that it makes the above diagram commute), and
since both sides are such an arrow, they must be equal by the uniqueness. Equation (2.2)
follows a similar argument, but with P’. o



2. CATEGORY THEORY PRELIMINARIES

2.1.1 Display Map Category

Display map categories (DMCs) are one of the semantic frameworks that can be used to
model dependent type theory in category theory. While there are multiple definitions
for notions similar to display map categories, for example Hyland and Pitts describe a
collection of maps together with a stability condition [5], while Taylor describes class of
displays [6]. In the formalisation presented in this thesis, we will use the version of the
definition given by Ahrens et al. [1].

Definition 4 ([5, § 2.2], [6, Definition 8.3.2.], [1, Definition 11.]). A display map category
consists of a base category C, and a class D < mor(C) of display maps (shown as — ),
such that, for any display map d € D and morphism f € C that points to the target of d,
there is some display map f*d that is the pullback of d along f:

e —— @

J
N
[ ] T} [ ]

In this definition, we require chosen pullbacks of display maps, however, for using it
as a semantic framework, definitions usually require either all pullbacks explicitly, or
add a repleteness condition. This repleteness condition takes advantage of the fact that
two pullbacks of the same two morphisms will be isomorphic, as mentioned in Remark 3.

Remark 5. The repleteness condition states that the class of display maps D shall be
isomorphism invariant, i. e. any morphism that is isomorphic to a display map, shall too
be a display map. In our formalisation, however, we shall forgo this condition, as taking
the base category C to be univalent, in the sense that will be presented in Section 3.3,
guarantees this condition. This remark will be further explained in Section 4.1, when we
are formalising the notion of DMCs.

We cannot yet discuss how this structure can be used as a semantic framework for
type theory, as we have yet to introduce type theory. After introducing type theory in
Section 3.1, we will give a brief overview of DMCs’ usage as a framework in Section 3.4.1.

Another useful way of interpreting a display map category is as a subcategory of
the arrow category. This interpretation will be directly used when formalising the
correspondence. The formal definition of this interpretation will be given in Section 2.1.3.

2.1.2 Maps and Natural Transformations

Similar to functors and natural transformations between categories, one can define maps
and natural transformations between display map categories. The former will be defined
by restricting what functors we allow by adding a property that they must have, while
the latter will just be defined as a natural transformation between bases.

For a functor F : C — C’ to be a map between two display map categories (C, D)
and (C’,D’), it is a natural condition that it should preserve display maps in D, i. e. it
should map display maps in D to display maps in D’. Further, it should also preserve the
pullbacks of the display maps.

Definition 6. A map between two display map categories (C,D) and (C’, D’) consists of a
functor F', such that it preserves display maps, as well as their pullbacks. We will use
the notation ' : D — D’ to show this fact.

It will be useful in our formalisation to show that this definition will include identity
and composition, as those will be needed when constructing the bicategory. For the

8



2.1. Display Map Categories

identity functor, it is trivial to show preservation, as it is just the identity, giving us the
identity map for a display map category.

Lemma 7 (identity map). Given a display map category (C, D), the identity functor 1. is
also an identity map
1p:D —D.

Proof. Since the identity functor preserves all objects and morphisms, it will preserve
display maps, as well as their pullbacks. o

Showing that the composition of two functors, which both are maps, is also a map is
similarly trivial. Since both functors are maps, we can use their preservation properties
to show the preservation for the composition.

Lemma 8 (map composition). Given three display map categories (C1, D), (Ca, D2), (C3, D3),
and two maps F : D; — Ds, G : Dy — D3, the composition of the underlying functors is
also a map

F-G: Dl i Dg.

Proof. Since F' and G are both maps, both of their underlying functors preserve display
maps and their pullbacks. It then naturally follows that the composition of the underlying
functors shall also preserve maps and their pullbacks. =

These two lemmas will be useful when organising DMCs into a bicategory (see Def-
inition 24), as we will need identity and composition of maps. The proofs of these can
also be found in the implementation, named display_map_class_functor_identity and
display_map_class_functor_composite respectively.

As mentioned previously, we have no requirements for transformations between maps,
and can just use natural transformations directly.

Definition 9. A transformation between two maps F,G : (C,D) — (C',D’) is simply a
natural transformation between the underlying functors o : F' = G.

2.1.3 As a Subcategory of the Arrow Category

As the class of display maps D underlying a display map category is just a subset of the
set of morphisms mor(C), and since the arrow category C™ is a categorical version of the
set of morphisms, we can also define a subcategory of the arrow category C— that will
only have the display maps as its objects. Further, this will also allow to define arrow
versions of both maps and transformations. As mentioned prior, the structure of these
definitions is very similar to the arrow category.

Definition 10. Given a display map category (C,D), we can define a subcategory D * of
the arrow category C~. The elements of this subcategory are the display maps included
in D, and a morphism between two of them d, d’ consists of a pair of morphisms (f, g) in
C, such that the following diagram commutes

Identity and composition of such morphisms is given by identity and composition in the
base C respectively.


https://fcsacsa.github.io/unimath-docs-aa466e28/UniMath.CategoryTheory.DisplayedCats.DisplayMapCat.html#display_map_class_functor_identity
https://fcsacsa.github.io/unimath-docs-aa466e28/UniMath.CategoryTheory.DisplayedCats.DisplayMapCat.html#display_map_class_functor_composite
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When we have a subcategory, we can define an inclusion functor, mapping all objects
and morphisms to the same objects and morphisms in the category of which this is a
subcategory. This functor is effectively just the identity functor, but with a restricted
domain.

Definition 11. Given the display map subcategory D>, we can define an inclusion
functor . : D* — C~. It will have the following underlying functions
to(d) :=d
un(f,9) = ([, 9)-

Furthermore, if we have a map of DMCs F : (C,D) — (C’',D’), we can use it to define
a functor between the subcategorical versions of D and D’. This definition is basically
identical to the definition of an arrow functor between arrow categories.

Definition 12. Given a map F of DMCs (C,D), (C’,D’), we can define a functor F
between the corresponding display map subcategories D>, D’ > . This functor F' consists
of the following functions
Fy7 (d) := Fin(d)
an (f? g) = (Fm(f)7Fm(g))

All necessary properties can be shown using the properties of F' as a functor.

Finally, we can also create arrow versions of natural transformations, as the are just
regular natural transformations, this definition will be the same as the one for C™.

Definition 13. Given a natural transformation o : F' = G, between maps of DMCs, we
can define a natural transformation ™ : FF* = G * . We define the underlying function
ay” as mapping display maps d : © — y, to the pair of morphisms (ag(x), ao(y)), as this
will be the morphism between F;* (d) and G,” (d), as can be seen in this diagram

Fo(2) 229 @ (2)
F (d) G (d)

ao()
Foy) 25 Goly)

St — 8

The naturality condition will be given by the naturality of the transformation a.

2.2 Comprehension Categories

Comprehension category (CC), introduced by Jacobs [7, Def. 4.1.], is the central compari-
son for models of dependent type theory in the paper we are following [1]. They consist of
two categories, a fibration and a comprehension functor, hence the name. In this section,
we will start by discussing what fibrations are, then give the definition for comprehension
categories, and finish by giving the pseudo maps and transformations for CCs.

2.2.1 Grothendieck Fibration.

First described by Grothendieck, fibrations (and the underlying cartesian arrows) encode
a notion of a category ‘lying over’ another category, in some well behaved way. Given
an object A in the base category C, the fibration will give us a fibre of objects A, ... : Dy
over that object. Further, for any morphism f : A — B in the base, we will have a
corresponding ‘lifted’ morphism f : A — B in the above category. A related concept is

10



2.2. Comprehension Categories

displayed categories, introduced by Ahrens and Lumsdaine [8]. They are defined, given
some category, which we’ll refer to as the base, by assigning a collection of objects to
every object in that category, and assigning a set of morphisms to every morphism in
the base. Naturally, a set of suitable laws is required. Displayed categories are more
relaxed, as such they correspond more to functors, but Ahrens and Lumsdaine also gave
definitions of when a displayed category is a fibration. In this section, we will present
their definitions, as in the implementation, it will be this version that will be used.

Definition 14 ([8, Definition 3.1]). Given a category C, a displayed category D over C
consists of

1. for every object = in C, a collection of objects z : D,;

2. for every morphism f : © — y in C, a set of morphisms f : & ? 7

3. for every object = : D,, a morphisms id(z) : & T» z;
id(x

4. for every pair of morphisms f : 7 7» gand g : § — Z, their composition f-§: f—> .
g g

fid(@) =« f (2.3)
id(z) f =« f (2.4)
f@h)=«(f9)-h (2.5)

In this definition, the reason for the dependent equalities is the difference in types on
the two sides, when formalising this in Univalent Foundations. For example f - id will be
of a type = —1.iq ¥, while f will have a type 7 — ¢ 9. The equality of these types will be
dependent on the corresponding identity law of C. This dependence will be hidden in the
remaining definitions in this section.

A simple example of a displayed category could be the displayed category of monoids
Mon over the category of sets Set. The collection of objects over a given set will correspond
to all possible monoids made from its elements, and the collection above a morphism
(function) will have a single element over functions that preserve the monoid structure,
and will be empty otherwise.

There is a natural connection between the notion of displayed categories, and functors.
Given a displayed category, one can define a functor F' : D — C, that maps all objects
and morphisms in D to their base in C. Furthermore, given a functor ' : £ — C, one can
define a corresponding displayed category over C.

Example 15. Given a functor F' : £ — C, we can define a displayed category D over C.
This will consist of

¢ the collection of objects over ¢ : C, will be all objects «x : £, such that F,(x) = ¢;

¢ the collection of morphisms over f : + — y, will be all morphisms g : z — ¢, such
that Fy,(g9) = f;

¢ for the identities, we can take the identities of £, since F' preserves them (F'(id) = id);

* similarly, the composition will just be the composition in £, since F' also preserves
composition.

The laws can be shown to hold, using the laws of £.

11



2. CATEGORY THEORY PRELIMINARIES

Doing this the other direction is also possible, and given a displayed category D, there
is always a corresponding functor 77 : { D — C, where { D is the total version of D. The
total version is created by pairing up objects and morphisms in D with their base, for
example (z, 7) would be an object, where 7 is over x. The functor 7P simply maps these
pairs to their first element.

This is the correspondence we mentioned at the top of this section, and using it, we
can use displayed categories rather than functors to define fibrations. To do this, first, we
need to present the definition of cartesian arrows, as they are a prerequisite for fibrations.

Definition 16. Given a displayed category D over C, a morphism f : § ? Z in D is called
cartesian if for any morphism g : z — zZin D and w :  — y in C such that w - f = g, there
g

exists a unique morphism @ : £ — 7 in D, such that w - f = g.
The corresponding diagram is the following:

One relevant example of a cartesian morphism will be in the case of the codomain
functor cod : C— — C. This functor maps elements f : © — y of the arrow category
C~ (which are just the morphisms of the base category C) to their codomain y. For this
functor, a cartesian arrow corresponds to a pullback in the base category. To see why this
is, consider the following diagram.

\

iy

_

8w

//

N — 8

Y

w |-

y E
Here, z, jj and Z are objects of C, (f, f) would be an arrow over f. This arrow is cartesian
if the square in the diagram is a pullback. The reason for this is, that for any other
arrow (g, ¢g) in C—, and morphism w in C, such that ¢ = w - f, and object z, we will have a
unique morphism w, given by the pullback, which will give the unique arrow (w,w) in
C—. Similarly, one can also show this implication also holds in the other direction.

A fibration will then be defined by having a cartesian arrow above every morphism in
C. This cartesian arrow will then be called the cartesian lift of a given morphism.

Definition 17. A displayed map category is a fibration, if for all objects z : D, and
morphisms f : y — z in C, there exists a cartesian morphism f : g ? Z. The functor

version will be denoted as ' : D — C.

It is important to note here that the above definition only asks for the existence of
the cartesian morphism above f. If we want to have a function that lifts morphisms to

12
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the cartesian morphisms, that will be called a cleavage and a fibration together with
a cleavage will be called a cleaving. This may seem unnecessary, but the foundations
(see Chapter 3) we will be working with do not have the axiom of choice, or have only
a modified version, therefore, if one wants to use specific cartesian arrows above f, we
will need to use a cleaving. In fact, in the formalisation of comprehension categories, the
fibration has been replaced by a cleaving in the UniMat# library.

Building on the connection between pullbacks in the base category and cartesian
arrows for the cod functor, if a category has all pullbacks, then cod is a fibration. A
simpler example of a fibration would be the related domain functor dom : C~ — C,
mapping morphisms to their domain.

Example 18. The functor dom : C~ — C is a fibration.

Proof. In order for it to be a fibration, it must have a cartesian morphism f, for all objects
¢ : C~ and morphism fj : y — dom(y), such that dom(f) = fo. Our candidate for this
cartesian morphism will be (fy, fo - ¢), as seen below

y—rf—=x

foe ¥
l l
z —id— 2/

Then, we must show that for any v : C, g : v+ — ¢ and w : dom(y) — y, such that
dom(g) = w- fy, we must have a unique morphism w, such that w = dom(w) and g = w - f.
Let us make a new diagram for this

z
\
w g1
AN
Y Yy fo T
2 fore ®
x! x

From the first condition, we already know that w; = w, and from the diagram we can see
that

go = s - id (using the identity rules of C)
g2 = w2
So, w = (w, g2). The uniqueness of this arrow can be shown easily. o

2.2.2 Comprehension Category

We can now discuss the definition of the comprehension category, consisting of two
categories C and T, together with a fibration p : 7 — C, and a comprehension functor
from 7 to C™. For a functor to be a comprehension functor, it needs to preserve cartesian
arrows. This comprehension will then mirror the definition of DMC, as it will map
elements of 7 to arrows, and these arrows will have pullbacks, since cartesian arrows in
C~ correspond to pullbacks in C.

13



2. CATEGORY THEORY PRELIMINARIES

Definition 19 ([7, Def. 4.1], comprehension_cat_structure). A comprehension category
consists of a base category C, a fibration p : 7 — C—, and a comprehension x (i. e. it
preserves cartesian arrows) from 7 to C, such that the following commutes:

T —>——C”

N\, -

The most simple example of a comprehension category is a base category C with all
pullbacks, together with the fibration cod : C— — C (it is a fibration because we have all
pullbacks), and the comprehension 1¢— : C~ — C.

By restricting the allowed comprehensions, we can refine the kinds of CCs. Of partic-
ular interest to us is the full comprehension category, defined as follows.

Remark 20. A comprehension category is considered full, if its comprehension y is fully
faithful.

A functor is said to be fully faithful if the underlying function mapping morphisms is
bijective.

Just like with the DMCs, we will only discuss the usage of CCs as a semantic framework
after introducing the concepts of dependent type theory in Section 3.1.

2.2.3 Pseudo Map and Transformation

Pseudo maps fill a similar role for comprehension categories to what functors are for cate-
gories. While these do not play a role when using comprehension categories as a semantic
framework, they will be nonetheless needed when formalising the correspondence with
display map categories.

Since the comprehension category involves two categories, we will need two functors
F:C—C and F: T — T’ to define a pseudo map between them. Further, these two will
have to map elements in a congruent manner to each other, for this reason, the definition
includes an isomorphism, corresponding to the two functors agreeing up to isomorphism.

Definition 21. A pseudo map between two comprghension categories (C,7,x) and
(C',T',xX") consists of two functors F' : C — C' and F : T — T, as well as a natural
isomorphism ¢ : y - F~ =— F -y .

T—% C_’

\

/ / CH
T \/

This definition can be further restricted to require the two functors to agree on the
nose. It is then called a strict map. In the formalisation part of this thesis, we will see an
example for such a map.

90:> F—’
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2.3. Bicategory

Remark 22. If the isomorphism is just the identity, and we have an equality
then we call the pseudo map a strict map instead.

Finally, we can describe transformations between the pseudo maps. As a pseudo map
consists of two functors, this transformation will need to transform both, requiring two
natural transformations. Further, the two transformations will need to be coherent, this
time up to equality.

Definition 23. A {ransformation between two pseudo maps (FLF, ©) and (F', F',¢)
consists of two natural transformations o : F = F’ and & : ' = F’, such that for each
AeT

/ !/ =
©a X (@a) = ap.a pa.

That last equation might be a little hard to parse, so here’s an illustration

T L cr—
NG
F :@l{:} ) Zand ¢ \
\> T’ N

L/

The equation just states that the natural transformations must commute.

2.3 Bicategory

To show the correspondence between the above concepts, we will make use of bicategories
and pseudofunctors between them. This will not only show that we can create a function
from one to the other, but also that said function behaves well. Bicategories are an
extension of categories, adding so called 2-cells that go between morphisms, now referred
to as 1-cells. Similarly, pseudofunctors are the extension of functors, now between the
bicategories. Important to note, that this extension will mean that laws for 1-cells will be
now given as invertible 2-cells instead, this is why a bicategory is sometimes referred to
as weak 2-categories, whereas requiring equalities would give a strict 2-category.

Definition 24 ([9, Local definition (1.1)], [10]). A bicategory B consists of
* A collection of objects x,vy, z, ... : Bo;
¢ for each pair of objects z, y, a collection of I-cells x — y;

¢ for each pair of objects z,y and pair of 1-cells f,g : + — vy, a collection of 2-cells
f=9

and a number of operators on these cells
¢ for each object z, an identity idi(x) :  — z;
e foreach f: 2 > yand g:y — zacomposite f-g:x — z;
¢ for each f: 2 — y, an identity ida(f) : f = f;

e foreach6: f = gand ~: g = h, a vertical composite 6 e~ : f = h;

15
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objects 1-cells 2-cells
bicategory of comprehension categories  comprehension categories  pseudo maps transformations
bicategory of display map categories display map categories maps natural transformations

Table 2.1: Bicategory Data

e foreach f: 2z > y,9,h:y — zand 0 : g = h, a left whiskering f <0 :f-g= f-h;
e foreach f,g: x> y,h:y —> zand 0 : f = g, aright whiskering 0 =>=h: f-h= g h;
* aleft unitor \(f) : idi(x) - f = f and its inverse A\~1(f) : f = idi(z) - f;

* aright unitor p(f): f-idi(z) - f = f and its inverse p~!(f) : f = f - idi(2);

e alefta(f,g,h): f-(g-h)= (f-g)-hand aright associator a(f,g,h)"": (f-g) -h =
f(g-h);

together with a set of laws, omitted here.

An example of bicategories is the bicategory of categories, with categories as objects,
functors as 1-cells and natural transformations as 2-cells. This is also a good example for
the way in which we will be using bicategories, as we can organise the prior structures
into bicategories with the data in Table 2.1.

The bicategory of comprehension categories was already implemented in the Uni-
MartH library (bicat_comp_cat), so we will not discuss its details in this thesis. The bi-
category of display map categories was not yet implemented, so in this thesis we will
give its formalisation in Section 4.2, and its implementation details will be discussed in
Section 5.1.

As mentioned prior, pseudofunctors between bicategories are like functors between
categories, but we also need to map 2-cells, and adjust the laws that must hold for it. The
laws involving 1-cells will require invertible 2-cells and not equalities.

Definition 25. A pseudofunctor F : B — C consists of:

A function Fy : By — Co;

* a function F; : (x — y) — (Fy(x) — Fy(y));

a function Fy : (f = g) — (F1(f) = Fi(9));

for each z : By, an invertible 2-cell F;(x) : idy(Fp(a)) = Fi(idi(x));

foreach f : z —> yand g : y — z, aninvertible 2-cell F.(f,q) : FA(f) - Fi(9) = Fi(f-9);
together with a set of laws, omitted here.

The laws omitted for the pseudofunctor are all preservation laws, up to invertible
2-cells for the 1-cells, and up to equality for the 2-cells. There is a lot more of them, as we
have more operators which all need to be preserved. As we will see in Section 4.4.4 and
Section 4.4.5, in our case most of these laws will be simple to prove.
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2.4. Displayed Bicategory

2.4 Displayed Bicategory

Introduced by Ahrens and Lumsdaine [8, Definition 3.1], displayed categories are a
concept that aims to formalise the notion of a category being ‘over’ another, as discussed
in Section 2.2.1. It is also a useful definition when creating new categories using existing
ones. This latter property is why we will be discussing the bicategorical version, displayed
bicategories, as they will provide a modular approach to our formalisation. Further details
on this modularity will be given in Section 5.1.

Displayed bicategories are similar enough in concept to displayed categories, but will
necessarily require the addition of a new collection for displayed 2-cells over the 2-cells of
the base. It will further require extra laws and operators, corresponding to those of the
bicategory. Similar to displayed categories, the laws will be dependent on the base, and
similar to bicategories, laws relating to 1-cells will take the form of invertible 2-cells.

Definition 26 ([11, Definition 6.1]). Given a bicategory B, a displayed bicategory D over
B consists of

¢ for each a : By, a collection D, of displayed 0-cells a over a;

'foreachf:aabagdd:Da,B:Db, )
a collection a ? b of displayed 1-cells f over f;

. foreachG:f:gandfzé?li),gzéﬁé,
9
a collection 6 : f =9 of displayed 2-cells over 0;

together with dependent versions of the operations and laws of a bicategory.

Building on our example for the bicategory (bicategory of categories), an example
of a displayed bicategory could be the bicategory of categories with a terminal object.
For this, the collection of displayed 0-cells would be the collection of terminal objects
in a given category, and the collection of displayed 1-cells will be a single element over
1-cells (functors) that preserve terminal objects, and empty otherwise. The collection of
displayed 2-cells will all have a single element over them, as there is no condition placed
on them.

Given a displayed bicategory, its elements can be paired up with their counterparts in
the base bicategory, in order to form a new bicategory, the so called total bicategory. In
the following definition, we will use the dependant pair notation, which is often used in
dependent type theory, for its definition see Section 3.1.

Definition 27 ([11, Definition 6.2]). Given a displayed bicategory D over a bicategory B,
the total bicategory ( D consists of:

* the type of 0-cells is the type of tuples (a,a) : }.,.5, Da;

¢ the type of 1-cells is the type of tuples (f, f) : Zf:a_,b a

f
* the type of 2-cells is the type of tuples (0,0) : >0 fg f e g;

Operators are defined using the operators of D and . The laws will hold since they hold
in both D and B.

Continuing the example, the total category would have pairs of categories and their
terminal objects as 0-cells, terminal preserving functors paired with a singleton as 1-cells,
and natural transformations paired with singletons as 2-cells. For the implementation
of this displayed bicategory, see disp_bicat_terminal_obj, and for its total version see
univ_cat_with_terminal_obj.
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2.4.1 Product of Displayed Bicategories

One of the useful constructions using displayed bicategories is combining two of them to
get their ‘product’. To be able to define one, we need a bicategory B, with two displayed
bicategories D and D’ over it. The 0-cells over a 0-cell = : B will be defined as pairs made
from the 0-cells in the two displayed bicategories 7 : D, and ' : D/,.. The process is similar
for 1-cells and 2-cells as well.

Definition 28 ([11, Definition 6.6 (1)]). Given a bicategory B, and two displayed bicate-
gories D and D’ over it, the data for the product of the displayed bicategories is defined
as

¢ for each O-cell = : 3, the collection of displayed 0-cells is given by pairs (zZ,z’), made
from displayed O-cells z : D, and &’ : D.;

e for each 1-cell f : x — y, the collection of displayed 1-cells is given by pairs ( LM,
made from displayed 1-cells f : D¢[z,y] and f': D}[z",y'];

e for each 2-cell  : f = g, the collection of displayed 2-cells is given by pairs (4, 6’),
made from displayed 2-cells 6 : Dy[f, g] and &' : D[ f', 7]

The identities, composition and other operators are given by using the corresponding
operators in the two displayed bicategories. For example, the composition of 1-cells would
be:

(f7f/)‘(gag/) = (fgaf/g/)

This has been already been implemented in the UntMart# library as disp_dirprod_bicat.
We will use this later, as it makes it easier to prove certain properties, such as univalence,
as in Definition 32. For more information on how we use this in the implementation,
check Section 5.1.
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Chapter 3

Univalent Foundations

Univalent Foundations (UF), sometimes called Homotopy Type Theory, is a foundation for
mathematics, that is, it gives a set of axioms (statements accepted without proofs) to serve
as the basis of mathematical formalisation. Another such foundation is set theory with
classical logic or classical foundations, most readers should be, perhaps not consciously,
familiar with these foundations, as they are what is commonly understood as the base of
mathematics. Univalent Foundations combines type theory and homotopy theory, as well
as the univalence axiom to serve as the base, which is where the two names come from.

There have been multiple implementations of UF in proof assistants, one of them
being the UniMartH library, written in Rocq, that “aims to formalize a substantial body of
mathematics using the univalent point of view.”! When implementing our work, we will
be relying on, and extending this library. For further implementation details, refer to
Chapter 5.

As the second name, Homotopy Type Theory implies, UF is a kind of type theory. We
will give an informal overview of what this means in Section 3.1, in order to be able to
present the univalence axiom in Section 3.2, and the extension of the same principle to
categories, resulting in univalent categories, as presented in Section 3.3. Finally, we will
finish this chapter by giving an insight into formal dependent type theory in Section 3.4,
followed by the interpretation of display map category and comprehension category as a
model for dependent type theory in Sections 3.4.1 and 3.4.2 respectively. For the purpose
of this thesis, the information presented in this chapter should be enough, but for those
looking for a more comprehensive description, we recommend the book [12].

3.1 Dependent Type Theory

In this section, we will give an overview of dependent type theory, in a relaxed way.
This should give enough context to accurately describe concepts, but will not be rigorous
enough to act as foundation. For the more formal version, check Section 3.4.

As the central concept, we will have types denoted with a capital letter A, B, which
are not unlike their programming counterparts and will contain elements denoted with a
lowercase letter and using colon for the relation a,...: A. Some examples for types are
the empty type 0; the unit type 1 and the type of natural numbers nat. Given two types
A, B, we can have a function type A — B whose elements will be the functions mapping
elements of A to elements of B.

Importantly, in dependent type theory we can also have dependent types, also called
families of types. Before we can introduce them, we need to make a small detour and
define universes. Universes are essentially a type of types, with some crucial restrictions.

'UniMatH repository
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They follow a strict hierarchy, where each universe contains the smaller ones.
Uy : UL Uy - U5 - ...

Note that the suffixes are not of the type nat, they are just to show the hierarchy. Notably,
this hierarchy does not allow self-containing universes Uf; : U;, thereby avoiding Russell’s
paradox?, among others. If a type is an element of some universe A : I{;, then it is also an
element of all larger universes A : U/;,7 < j. Due to this inclusion, the subscript is often
left off, since we will not dabble with universes directly, we too shall do this. This style is
called typical ambiguity.

Returning to dependent types, we define them as B : A — U/, mapping the elements of
a type to types in some universe, hence the name family of types. An example of such a
type could be IsEven : nat — U/, mapping even numbers to the type 1 and odd numbers
to 0. Note that this is different from the function even : nat — bool, which maps even
numbers to true and odd numbers to false.

It might be that we only want to map to a single element within the target type, which
we can do using dependent functions. Given a family of types B : A — U, we can define

dependent functions
f:]]B).
a:A

These functions map elements of A to elements in the corresponding dependent type B(a).
An example of this would be a function mapping elements of n : nat to the tuple made of
n + 1 copies of themselves, as follows:

0—0 : nat
1—(1,1) : nat x nat
2—(2,2,2) : nat x nat x nat
n— (n,n,n,...) :nat x nat x nat x ---

Finally, we could also just create pairs out of corresponding elements from A and B(a).
Given a family of types B : A — U, we can also create dependent pairs

(a,b) : Y B(a)
a:A

which will do this exact thing. A simple example would be a type that pairs up natural
numbers n, with tuples that have n elements. A special example could be ), ., IsEven(n),
a type that would only have pairs of even numbers and an element of the unit type, e.
g. (0,t),(2,t),(4,t),... This construction is a special one named subtype, as it has only
some elements of the type A and we will make use of this construction throughout the
implementation. Further, a more precise definition of a subtype will be given at the end
of this section.

Usually in type theory, elements can be compared using definitional equality, but this
is cumbersome for reasoning within type theory. Instead, we have a special type, the
equality or identity type between two elements a,a’ : A

a=aa.

This type will exist for any two elements of the same type, and never between elements of
different types. For this reason, in the implementation the computer sometimes needs to
be convinced that two elements have the same type, to this end we use transports. In the

Zhttps:/plato.stanford.edu/entries/russell-paradox/
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formalisation section we will instead denote this as equality with a subscript =.. The
identity type can have any number of elements, but we must have at least the element

given by reflexivity
refl H a =4 a.
a:A

Certain types can have more than one path between equal elements, which can be useful
when working with topology. For two non-equal types, their equality type will be empty.

This flexibility with the identity type then allow us to order types into so-called h-levels.
These should not be confused with universes, as h-types describe a structure within a
type, while universes enforce an external hierarchy. The higher h-levels are most useful
for modelling topological spaces, therefore, we will only discuss the lowest three levels.
The lowest level is the level of contractible types, or types with a single element.

iscontr(X : U) := Z H r=xa (3.1)
(2:X) (2/:X)

The dependent pair enforces that we do have a term in X, and the rest enforce that there
is only one unique element. Due to univalence, any contractible type will be equal to the
unit type 1.

Then, the next level will be propositions, that is, types that have either no or just a
single element. We can state what it means to be a proposition as follows

isaprop(X : U) := H iscontr(z =x 2’) (3.2)
(z,2":X)

If we unfold iscontr, this will state that for any two elements x, 2’ in X, their identity
type z =x 2’ must be inhabited by a single unique element. This will also allow us to
introduce the interpretation of ‘propositions-as-types’, where we say that a : A is logically
equivalent to saying “a is a proof of A”. Similarly, we can interpret uninhabited types as
being false. The only issue with this second part is that we cannot directly show that
a type is uninhabited, instead we can construct the function A — 0, which should only
exist for empty types, otherwise there would be an element in 0.

Further, we can follow the same pattern to define sets in these foundations. Sets will
therefore have identity types between their elements be propositions.

isaset(X : U) := H isaprop(z =x ') (3.3)
(z,2":X)

In fact, this pattern can be continued to inductively define what it means to be of a certain
h-level. As noted prior, the unit type 1 is both contractible and a proposition, further it is
also a set. This is the case for all types, if they are of some level, then they are also of
every subsequent level. This is similar to how universes accumulate types, though these
two are not the same. As mentioned prior, these levels describe the internals of types,
while universes are more external.

There are some related concepts that we will use, when doing the formalisation. The
first of these will be the type of propositions.

hProp := Z isaprop X (3.4)
XU

The h in the name of both refers again to homotopy, and is included as proof assistants often
provide their own versions of these types, and thus would conflict with these. Elements
(X, H) of this type will be equal to the type contained within X, this is a consequence of
isaprop being a proposition as well, and since univalence will allow us to equate equivalent
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types (see Section 3.2). Further, we can define what it means for a type family to be a
predicate.
isPredicate(B: A — U) : H isaprop(B(a)) (3.5)

(a:A)

It just means that all of the types in the family is a proposition. This will be useful when
dealing with subtypes, which are of the form ¥,. 4 P(a), where P is a predicate. Any two
elements of such a type will be equal if, and only if the first element of the pair is the
same, this can be proven as a result of P(a) being a proposition, thus the second element
must be the single unique element in P(a). This is also the reason for the name subtype,
as this new type ¥,.4 P(a) will have a similar structure to A, but with (potentially) fewer
elements.

3.2 Univalence Axiom

Finally, we can discuss one of the more special aspects of Univalent Foundations, that
being the univalence axiom. As mentioned prior, UF is a basis for mathematics, and as
such, defines a set of axioms on top of which it aims to build everything else. One of these
is the univalence axiom, and it concerns notions of sameness for types. The first notion
will be (propositional) equality, i. e. the identity type =;; between two types. The other
notion is equivalence ~, which is a function that has an inverse. Naturally, if two types
are equal, it should be possible to create an equivalence between them.

Definition 29. Given two types A, B in a universe U/, we can define a function
idtoeqv : (A =y B) — (A ~ B)

that turns the equality (=) of two types into an equivalence (~). An equivalence is just
a function that has an inverse on both sides, i. e. ¢ is an equivalence if there exist two
functions f and g, such that, e¢- f =id and g - e = id.

We can informally define this function as mapping equalities to the identity, since if
two types are equal, then their identity function will be an equivalence, since id - id = id.

What the univalence axiom states, is that this function idtoeqv should be an equiva-
lence. Meaning that an equivalence can be turned into an equality.

Definition 30 ([12, Axiom 2.10.3]). For any A, B : U, the function idtoeqv is an equivalence.
Meaning that we have
(A=y B) ~ (A~ B).

As a consequence of this, any type that has only a single term can be replaced by the
unit type 1, as they are equivalent. Similarly, the types A x B and B x A will be equal,
as the function

swap: Ax B— B x A:=(a,b) — (b,a)

is an equivalence between the two of them. This may appear strange at first, but there is
no reason why our labelling of the terms should make these types different.

Another result of the univalence axiom is functional extensionality, i. e. that two
functions are equal if and only if they are point-wise equal. We mention this example to
illustrate that the univalence axiom does agree with some of our expectations of what
equality means. The full derivation of this result is beyond the scope of this thesis, and
is not needed for it, but for those interested, we recommend checking out the Homotopy
Type Theory Book [12, Section 4.9].
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3.3. Univalent Categories

3.3 Univalent Categories

Introduced by Ahrens, Kapulkin and Shulman [13], univalent categories are categories
that satisfy a property similar to the univalence axiom. Ahrens, Kapulkin and Shulman
consider it “to be the ‘correct’ definition of category in UF”, and it has indeed been widely
used in the formalisation efforts in UNIMATH.

Definition 31 ([13, Definition 3.6]). A category C is said to be univalent if for any two
objects A, B, the map idtoiso : A = B - A =~ B (mapping equivalences to isomorphisms),
is an equivalence.

The notion has later been extended to bicategories as well, by Ahrens et al. [11]. Since
in a bicategory we have two types of ‘arrows’, 1-cells and 2-cells, the notion of univalence
can be extended to isomorphisms of either, giving global and local univalence respectively.

Definition 32 ([11, Definition 3.1]). A bicategory B is said to be univalent, if it is univalent
both locally and globally.

e Tt is locally univalent, if for any f, g : a — b, the function idtoiso®! : f =g — f >~ g
(mapping identities to invertible 2-cells) is an equivalence;

e It is globally univalent, if for any a,b : By, the function idtoiso®’ : a = b — a ~ b
(mapping identities to adjoints) is an equivalence;

We will use the above definition when describing the bicategory we construct in
Section 4.2.

As mentioned in the previous chapter, we can show that given two univalent displayed
bicategories, their product (as defined in Definition 28) is also univalent. To construct
the required equivalences directly in the implementation can be cumbersome. Instead, a
pattern in the UntMaTH library is to break up the equivalence into smaller ones that are
easier to show. Then, an equivalence can be created by concatenating them, but this leaves
a final step, to show that this new function is equal to idtoiso, which is often done using
functional extensionality. This makes the proofs rather lengthy, so we will omit them
here, but they can be found in the UnitMart# library as is_univalent_2_1_dirprod_bicat
and is_univalent_2_0_dirprod_bicat. We will also use a similar process to create one of
the equivalences required in Section 4.3.

3.4 Formal Type Theory

So far, we have discussed Univalent Foundations in a somewhat informal manner. How-
ever, to be able to discuss how the categorical structures in Sections 2.1.1 and 2.2.2, we
first need to discuss the formal version of dependent type theory. For those interested in
more details about the formal version of UF, we recommend checking out the appendix
“Formal type theory” in the Homotopy Type Theory book [12], as we use their second
presentation as the reference for this section. The book gives a more comprehensive view
of the formal version of UF, while this section is meant only to give enough context to
describe how display map category and comprehension category model dependent type
theories.

Formally, types exist in contexts ', A, which are effectively just a list of variables
that belong to some type. The only restriction on this list is that its members must be
well-typed, where being well-typed means the type of the variable exists in the context
given by the other variables before it. This is similar to how we use the word context while
programming, referring to currently declared variables. Further, we can state various
judgements about contexts, types, elements and their relations.
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* I ctx I is a context;
e ' A the type A exists in some context I';
*T'Ha:A there is an element a of type A in context T’
e T'-A=B the types A and B are equal by definition;
e T'ra=d: A the elements a and o’ are equal by definition;

Just stating a judgement does not mean it necessarily holds, for that we need to also have
rules. These rules are akin to rules of computation, and this is one of the reasons we use
type theory in formalisation with proof assistants. An example of a rule looks like

Jo N T2 . In
J

and can be read as “if 7y, J1,. .. all hold, then 7 will also hold.” There are some general
rules for handling contexts and, for Univalent Foundations there are also rules for
universes. In the remainder of this section, we will present some of the rules for dependent
type theory. This will include general rules included in most dependent type theories,
some Univalent Foundations specific rules for universes and finally some examples of
types, namely the empty and the unit type.

EXAMPLE

Contexts. We have a number of rules governing how to form and use contexts.

I' ctx r—cC:y; I'z:C ctx
EMPTY EXT VAR

- ctx I'z:C ctx Ne:CrHa:C

The first of these states that given nothing else, we can create the empty context. The
second states that given a context, and a type in that context, we can extend the context
with a variable in that type. Note that the rule does not require an element in said type.
The final one states that if we have a variable in our context, then we can use it as a term,
importantly, this term is still dependent on the variable in the context.

Weakening. If we have some judgement .7, given some context T', it stands that we
must still have that judgement, even if we extend the context. This is formalised in the
weakening rule as follows
NLA+J r-c
Iz:C,A+J

WEAK

This rule can then be combined with others to enable greater manipulation of contexts,
when using them in derivations of judgements. An example will be combining it with the
following rule.

Substitiution. Another important rule is substitution, where we can replace variables
with well-typed terms.

Fx: A+ J I'a:A
'+ Jla/x]

In the above rule J is some judgement in context I';x : A, and J|[a/z] is the same
judgement, but all occurrences of x have been replaced by the term a. For example,

SUBST

x:nat+— x + x : nat - 2:nat
24 2:nat

SUBST

24



3.4. Formal Type Theory

As mentioned for the weakening rule, it can be combined with substitution and other
rules to allow for simultaneous substitution of multiple variables in context. Given two
contexts I' and A, such that, A is of the form (zg : Ag,x1 : A1,...,2, : A,), the context
morphism s from I" to A will be a list of terms ¢, 1, ..., t¢,. For it to be a substitution, it
must hold that

F [ ti[to/xo, tl/l‘l, ceey ti_l/xi_l].

Given such a context morphism, one can simultaneously substitute multiple variables.
These context morphisms are used in the semantic frameworks to model the effects of
substitutions.

Universes. As given in the book [12], universes can also be formalised to give rules for
them. The first rule introduces that we have universes in all contexts, and that they have
a certain hierarchy. The second rule introduces that they must accumulate types, so any
type in a ‘smaller’ universe is also a type in all ‘bigger’ universes.

I ctx ' A:U;
U-INTRO ——  U-cuMUL

I'—U; U '~ A: U

Universes are incompatible (as is) with the models we will present, due to them being
both types and elements, while the models will make clear distinctions between the two.
There have been more complex models that do include universes, such as the one given
by Lumsdaine and Warren [14].

Types. Types are usually declared by giving a set of rules that fall under the following
kinds

* type formation rules —stating when the type exists;

* jntroduction rules —stating how to derive terms of the type;

* climination rules —stating how to use terms of the type;

* computation rules —stating how the introduction and elimination rules interact;
* uniqueness principles —optional, stating the uniqueness of the terms.

A type does not have to have all of these to be a type, and it can have multiple rules that
fall into the same category. To see how they work, we will give the two simplest examples,
the empty and the unit type.

Example: empty type. This is one of if not the simplest types we can create, as it
should have no terms. This means that there is no need to define any introduction rules,
which will also mean no computation rules.

T ctx Fz:0-C:U; I'a:0
0-FORM 0-ELIM

'-0:Y; I'+indo(z.C,a) : Cla/x]

The first rule here states that the empty type exists in all contexts. Technically, this rule
could state that it exists only given the empty context, but the current form could then be
derived using the weakening rule. Similarly, it would suffice to only state that 0 is a term
of the universe smallest /). The second rule corresponds to the existence of the function
[1,.0C, from the empty type to any other type. This function always exists as it has to
map no elements, since 0 is empty.
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Example: unit type. A similarly simple type is the type 1 with only one term x.

T ctx I'1:U;
1-FOrRM — 1-INTRO

I'—1:U; I'Hx:1

Fe:1-C: U, I'tc:Clx/z] '~a:1
I'+indi(z.C,c,a) : Cla/x]

1-ELIM

Fz:1FC: U, 't c:Clx/z]

- 1-comp
' indi(z.C,c, %) = c: Cl*/x]

The formation rule is essentially the same as the empty type, but this time we do also
have a single introduction rule, giving the term *. This also means we need correspond-
ing elimination and computation rules. The elimination states that if we have a type
dependent on 1, then if a term exists in the type dependent on *, then there is a term
for all elements in 1, and the computation rule guarantees that this element will be the
same as the one for , since it is the only element in 1.

In the following two sections, we will present an overview of how display map category
and comprehension category get used to model dependent type theories. We will not
discuss universes in these sections, as both models make clear distinctions between terms
and types, which causes problems since universes (and also all types) are both terms and
types in UF. On a similar note, it is worth to mention that the UniMaTu library does not
have multiple universes, and relies on typical ambiguity. This is due to the internals of
the theory behind Rocgq, the details of this are beyond the scope of this thesis.

3.4.1 Display Map Category as a Semantic Framework

We are formalising display map categories in order to show their correspondence with
other semantic frameworks. For this comparison to make sense, we also have to discuss
how DMCs get used as a semantic framework. It is formalising the latter, formal version
of type theory presented above. In the following, we will be considering a display map
category (C, D).

Contexts are modelled to be objects I', A, ... of the base category C. Sometimes this
interpretation is denoted with [I'] instead, but we will use the prior for simplicity. Types
that exist given a context I" are taken to be a display map A into the object T".

r.A

|4

r

The domain of this display map A is the context extended with some term a : A. Terms of
some type A are the sections of the display map A.

r “-T.A
klf*
T

Section here means that the above diagram commutes, i. e. a - A = id.
The assumed pullbacks of display map categories will model the effects of context
morphisms. A context morphism s from I" to A will be interpreted as the morphism

r 25 A.
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3.4. Formal Type Theory

So, given a type A in context A, the substitution will be given by the pullback

T.Als] — AA

A[s]i - J?A

r——— A

Where Als] is the new type, after the substitution. Furthermore, the pullback of a display
map along another display map will correspond to the weakening rule as follows.

We do not need to substitute anything in B, as it does not depend on A, and nothing else
changed in the context.

Depending on the exact type theory being modelled, extra conditions can be added
to this model. One such condition that is often added, is the need for a terminal object,
which will represent the empty context. The various types presented can also be modelled,
using different structures.

Empty Type. To model the empty type, for any object I" we need to have a display map
0, with no sections. The lack of sections will mean that this type will not have any terms.
We do not explicitly model the elimination rule.

Unit Type. For the unit type, we need to have, for all objects I', a display map 1, with
exactly one section. This will mean that, for any other type I' - A, there will be a unique
morphism from I'. A to I'.1, such that the following diagram commutes.

3.4.2 Comprehension Category as a Semantic Framework

Now, given that we will be showing the correspondence between these two structures,
this section will describe a fairly similar interpretation to the one for DMCs. For the
interpretation we will be considering a comprehension category with base C, fibration
p: T — C and comprehension y : 7 — C.

Contexts will be once more objects in the base category C. Types will now be represented
by objects in the category 7, such that, the judgement I' - A corresponds to p(4) =T or
A : Tr, depending on notation. This will mean that the comprehension x will map this
object to a morphism

r.A

[
T.
Terms of a type will once again be sections, but this time of the morphism 7 4.

r “5T.A
\ lﬂA
id
T.

27



3. UnivaLeNT FouNDATIONS

Finally, the context morphisms will once more be morphisms in the category C. Since p is
a fibration, and we require the comprehension y to preserve cartesian morphisms, and
since a cartesian arrow for the functor cod corresponds to a pullback in the base, we once
again get a pullback square for substitutions.

T Als] —— A.A
|
WA[S]L ™A

r—— A

The weakening rule will now be given by the cartesian lift of the comprehension of a type.
So, given a type I' - A and another type I' - B, we have the following

T Br.4 —— Br I'A.B -——--- » I'.B
! o] 2]

The comprehension of the resulting cartesian arrow will be a familiar pullback square.

Furthermore, this model can also be extended by adding extra properties that the CC
must satisfy. For example, a terminal object in the category C will once more correspond
to the empty category.

The empty type 0, or rather its comprehension, will have no sections once again. The
unit type 1 will have a single section once more, which leads to a unique morphism from
any other type in the same context, meaning that 1 will be a terminal object in 7, i. e.
the subcategory of 7 over a context I'.
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Chapter 4

Formalisation

By formalisation, I here mean formalising the definition of display map category and
related definitions, using the notation and definitions of Univalent Foundations. This is
not to be confused with the act of what I will call implementation (in a proof assistant),
which is often also called formalisation, and hence can lead to confusion. I make this
distinction as this chapter will aim to give a language agnostic argumentation for my
results, relying only on the notation of Univalent Foundations. Hopefully, this should
enable potential verification of my results in other proof assistants or libraries easier.
Further, this will also allow me to make arguments easier, as I will be able to leave out
transports, which are a special ‘identity’ function that ‘transports’ a term into an equal
type to its own (e. g. transportf: A =4y B — A — B), and are used throughout the
implementation. Finally, to make it easy to reference the corresponding implementation
to each formalisation, I will add references to the code, where appropriate. For more
detail on the implementation, check Chapter 5.

We will begin by formalising the central concept of this thesis, display map category
together with some properties of this definition in Section 2.1. Further, the same section
will also include formalisation of the condition of what it means to be a map between two
display map categories, together with a proof that this is a predicate as per Equation (3.5).
Then, we will construct the bicategory of display map categories as a displayed bicategory
over the bicategory of univalent categories in Section 4.2. Further, as a bit of housekeeping,
we will give proof that the bicategory we defined is univalent, and thus conforms to the
‘correct’ version of bicategories in UF. This is done in Section 4.3 and involves the creation
of two equivalences, one trivial and one that will be constructed as a composition of
smaller equivalences. Finally, to finish off this chapter, we will give the construction
of a pseudofunctor from the above bicategory into the bicategory of full comprehension
categories in Section 4.4. The most important parts of this pseudofunctor are the first two
underlying functions, mapping the 0- and 1-cells, the rest of the section is just completing
all other necessary proofs to complete the pseudofunctor.

4.1 Display Map Category

The central concept of this thesis is DMCs, which we will formalise in Univalent Founda-
tions in this section. For this, we first give our formal definition, and discuss some of its
details and differences to Definition 4. Furthermore, we will show some of the properties
of this definition that will come handy in the rest of this chapter. Finally, we finish this
section with the formalisation of maps between DMCs (see Definition 6). The reader
might notice the lack of a definition for the transformation between these maps, which is
due to the fact that they are just natural transformations, and those have already been
formalised in Univalent Foundations.
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4. FORMALISATION

Display map category was defined as a collection of display maps together with a
stability condition in Definition 4. Therefore, to formalise it in Univalent Foundations,
we will need to formalise these two. Since the morphisms in a category form a set, and
we pick our collection of display maps from them, this collection too will be a set. A way
to formalise sets is to give a function that will select the elements, and this will indeed be
the choice we will make.

For the second part, the condition stated that given a display map d: C — A and a
morphism f : B — A, the pullback f* d of d along f should also be a display map. In our
case, this will mean that the selection function from the first part should also include
the pullback f* d. This condition also presumes that a pullback f* d exists in the base
category C, which we will also need to include in our definition.

Definition 33 (display_map_class). Given a category C, a display map category D will
consist of

¢ a set of maps, given by the dependent function D : Hd:c’[[a,b]] hProp;
¢ a proof of the fact that D includes pullbacks of display maps

has_pullbacks(D) := [[ [] D) — )| D(f*d). (4.1)
(f:Clb,a]) (d:Clc,a]) f*d

Here, hProp is the types of propositions, as presented in Equation (3.4). This means
that d will be a display map, if D(d) is an inhabited type, thus an element H : D(d) can
be understood as a proof of d being a display map. The second part states that given a
morphism f and a display map d, they must have a pullback f*d, and that this must also
be a display map D(f* d).

In the definition above, we chose to use > in Equation (4.1) that requires the existence
of a specific pullback, alternatively, we could have used the truncated version 3, which
requires a mere existence of a pullback. We chose this version as it is simpler to work
with and, as it turns out, this choice does not have consequences for the rest of the
formalisation, for reasons similar to why we have not included the repleteness condition.
This, as mentioned in Remark 5, is due to the fact that taking C to be univalent, as
in Definition 31, gives the same isomorphism invariance guarantees. Further, since
univalent categories are considered to be the ‘correct’ version of categories by Ahrens,
Kapulkin and Shulman [13], this is a natural thing to require.

Remark 34. display map category, as defined in Definition 33, satisfies the repleteness
condition, if the base C is univalent (as in Definition 31).

Proof. The repleteness condition states that given a display map d : z — ¥, and two
isomorphisms i : + — 2/ and j : y — ¢/, any other arrow d’' : 2/ — %/, such that the
following diagram commutes,

l:.

x
|
Y

must also be a display map. Since C is univalent, we can replace the isomorphisms with
equalities.

«—
&

!

J

8

«—
&

~

<
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4.1. Display Map Category

From this it is easy to see that we must have
d —x d/7

a dependent equality, as the two sides differ in types. From this, it is simple to conclude
that d’ must be a display map too. o

Further, since all pullbacks (of the same two morphisms) must be isomorphic (see
Remark 3), the base category C being univalent will also make them equal. This means
that all pullbacks will be equal, therefore it does not matter whether we choose 3 or &
in the Definition 33. As a consequence of this, we can show that the stability condition
is in fact just a predicate on the type of sets of display maps. For this, we must show
that has_pullbacks maps to a proposition type. We know, by definition, that the second
element of the dependent pair D(f* d) is a proposition, so the only thing to show is that
the pullback is unique, which follows directly from above.

Remark 35 (isPredicate_has_map_pullbacks). The function has_pullbacks, as defined in
Equation (4.1), is a predicate in the sense of Equation (3.5). This is useful, as it means
that display map category are a subtype of the type ‘subset of morphisms in C’, and two of
them are equal if and only if they include the same display maps.

As defined in Definition 6, we have an analogous concept for display map categories
to functors. We know that a map is just a functor with an added property, so we will
define the function that will tell us whether this property holds for a given functor. Using
this function, if we show that it is indeed a predicate, we can then define the subtype of
functors that will be the type of maps.

The property to be a map consists of two parts. First, the functor is required to
preserve display maps, i. e. it has to map display maps in the first DMC to display
maps in the second. Second, the functor has to also preserve pullbacks. In the following
definition we will make an exception, and briefly explain the implementation of this
second property in UNIMATH.

Definition 36 (is_display_map_class_functor). Given two display map categories D and
D', and a functor between their bases F' : C — C’, this functor will be a map F : D — D', if
the following two types are inhabited.

First, the type corresponding to the preservation of display maps

preserves_maps(F : C — (') := H D(d) — D'(Fy, d) (4.2)
(d:Cla,b])

This is logically equivalent to saying ‘d being a display map in D implies that its image
F dis a display map in D'’

For the second condition, we need to express that the image of the pullback of a display
map will be a pullback.

* ————- > ® o ————- > e
| |
r* dl ld F— F(f* d)l J7F(d)
° *>f ° ° *>f °

For this, we can define the following

preserves_pullbacks(F : C — C') := H H D(d) — isPullback(F(f* d)) (4.3)
(f:b—a) (d:c—a)

Here, we will just use a simplified version of isPullback, as the details will depend on how
isPullback is defined. In the UnitMaTH library, it takes the commutativity of the square, so
the line looks like
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isPullback (!functor_comp F _ _ @ maponpaths (#F) (PullbackSqrCommutes pb) @ functor_comp F _ _)

This maps the commutativity of the first square (PullbackSqrCommutes) to the second
squares commutativity.

For completeness, we should also give proof of this definition being a predicate on
functors, as a functor is either a map or not, and it can only be a map in one way.
The proof for both properties being a predicate rely on that D selects display maps
using a proposition, and that due to the univalence of the base category C all pullbacks
of d along f are equal. Then, using these it follows that their pair would also be a
predicate (isPredicate_is_display_map_class_functor). This will mean that maps between
two display map categories will be a subtype of the functors between their bases.

Using the definitions in this section, we can define the arrow versions as well, as
had been described in Section 2.1.3. Due to the similarity with the arrow category, their
implementation follows the same structure. This similarity could be made even more
explicit by defining D * as a subcategory of C™, but we will just use the direct version, as
the two should be equivalent. The corresponding code segments are as follows

¢ Definition 10 (D * ) — display_map_cat;
* Definition 12 (F'* ) — display_map_functor;
® Definition 13 (o™ ) — display_map_nat_trans.

These are implemented as displayed versions, since we gave special significance to the
codomain functor. The specifics of these implementations will be discussed further in
Section 5.2.

While the formalisation in this section could be used to construct functions directly to
the corresponding definitions for comprehension category, and I have indeed written those
functions (see for example: display_map_to_comprehension_category), in the next sections
we will instead follow the comparison paper in constructing a bicategory and defining a
pseudofunctor. This will give extra guarantees about the functions defined, as to be a
pseudofunctor, they will have to satisfy certain preservation laws. However, the effort
of implementing these was not entirely useless, as parts of these functions were useful
when constructing the pseudofunctor, since these are similar to the underlying functions
of the pseudofunctor.

4.2 (Displayed) Bicategory of Display Map Categories

As stated in Section 2.3, we can organise DMCs into a bicategory. This can be done
directly (see bicat_display_map_cat), but to allow for a bit more modularity, as well as to
better utilise existing proofs in the UntMat# library, we can also define this as a displayed
bicategory over the bicategory of univalent categories. One of the benefits of this approach
will be in Section 4.3, where we will be able to use the fact that the bicategory of univalent
categories is univalent, when showing that the bicategory of DMCs is also univalent.
Another example will be in Section 5.1, where it will allow us to add terminal objects into
the base category, without having to re-implement the bicategory.

To create the displayed bicategory over the bicategory of univalent categories, we will
simply define the types required by Definition 26. Then, we will need to also need to
define the displayed identity 1-cell and the composition of displayed 1-cells. Both of these
will be a term witnessing that a theorem, which we already proved, holds.

Definition 37 (disp_prebicat_1_id_comp_cells_display_map_cat). The displayed bicate-
gory of DMCs over the bicategory of univalent categories consists of
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4.2. (Displayed) Bicategory of Display Map Categories

¢ for each univalent category C, the type of displayed 0-cells over it is the type of
display map classes D over C (Definition 33);

e for each functor F : C — C’, the type of displayed 1-cells F is the type witnessing
the fact that F' is a map of DMCs, that is, it preserves display maps, as well as,
pullbacks of display maps (Definition 36);

¢ the identity 1-cell id; D is witnessing the fact that the identity functor 1. : C — C
preserves both display maps and pullbacks (Lemma 7);

e composition of the 1-cells F - G is witnessing that composition of functors that
preserve display maps and their pullbacks, also preserves display maps and their
pullbacks (Lemma 8);

e for each natural transformation 6 : F' = G, the type of displayed 2-cells 0 is simply
the unit type, as we do not have any conditions for the transformations.

All other components (e. g. identity displayed 2-cell, composition of displayed 2-cells,
etc.) will be trivial to define, since the type of displayed 2-cells is also the unit type. After
formalising these proofs, we finally get disp_bicat_display_map_cat and the corresponding
total category bicat_display_map_cat. This total bicategory will be equivalent to the
bicategory of display map categories. We will forgo giving a formal proof of this, and give
only a notion of why it holds. For this, check the data of both bicategories, presented
in Table 4.1. All of the types are the exact same, except the transformations, but even

displayed version direct version
O'Cells (C, D) . Z(C:category) DMCC (C, D) : Z(C:category) DMCC
I-cells (F.H):X pccyissmap F' (F,H): Y e cnis-map F
2-cells (Oé, *) : Z(a:FﬁG) 1 o F=G

Table 4.1: Comparison of the displayed and direct version

those are equivalent, thus equal by univalence. This equivalence simply follows, from
that for any type A, the function a — (a,*) : A — >} ., 1is the inverse of the projection
function (a,*) — a:>,,. 4,1 — A. The laws are propositions, and thus do not matter for
this comparison, as they all hold in both constructions. The only other potential difference
would be the identities and compositions, but in both bicategories these solely rely on
the identities and compositions of functors and transformations, and thus should be
equivalent.

Ideally, we could take advantage of the displayed construction when constructing the
pseudofunctor into the bicategory of comprehension categories, by making it a displayed
pseudofunctor above the identity pseudofunctor to and from the bicategory of univalent
categories. We are not able to do this in the UniMartH library, as the bicategory of com-
prehension categories is defined as a series of displayed bicategories, and illustration
of this can be seen in Figure 5.2. Theoretically, it should still be possible to use other
definitions from the UniMarH library to construct the pseudofunctor, but as we will see in
Section 4.4, constructing the pseudofunctor directly is quite doable, and it also illustrates
the correspondence of the two structures better. Further, since the comprehension cate-
gories are defined to include a terminal object in the base category, we will also need to
add a terminal object to the display map category. For more information about this, see
Section 5.1. Here it should suffice to mention that this will not influence the construction
of the pseudofunctor.
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4.3 Univalence of the Bicategory

As stated in Section 3.3, when working in UF, it is quite natural to take (bi)categories
to be univalent. To this end, we will in this section prove that the displayed bicategory
we have in the previous section, is indeed univalent. From there, the UnitMarH library
already has proofs that the total version will be univalent too, as it has already been
implemented that the total bicategory is univalent if the displayed bicategory and the
base are both univalent.

As presented in Definition 32, the univalence of a bicategory needs it to be univalent
both locally and globally, the same is true for displayed bicategories. Both types of
univalence involve showing that some function is an equivalence. The local univalence
turns out to be trivial for our displayed bicategory.

Theorem 38 (disp_univalent_2_1_disp_bicat_display_map_cat). The displayed bicategory

of display map categories is locally univalent.

Proof. By [11, Proposition 7.5], we need to show that the following function is an equiva-
lence

disp_idtoisoii’%’p, c F=p F' - F~q4,rF.
To construct this equivalence, we can make use of the fact that we have shown F (see
Definition 36) to be a proposition. That will in turn mean that the type F =r F’ will just
be the unit type.

For the other side, we have a displayed adjoint over the identity natural transformation.
However, we know that this can only be the unit type as well, as that is how we defined
transformations in Definition 37.

Trivially, the unit type is equivalent to the unit type. =

Global univalence, on the other hand, is unfortunately not so simple, and requires
a more involved proof. The proof we will present will first give an intuition on why the
function should be an equivalence. Then we will give a more detailed proof where we con-
struct two smaller equivalences, and show that their composition is equal to the function
we need to be an equivalence. This pattern of showing equivalences using composition
is a common one in the UniMaTtu library, which helped during the implementation, as I
could find other similar examples.

Theorem 39 (disp_univalent_2_0_disp_bicat_display_map_cat). The displayed bicategory

of display map categories is globally univalent.

Proof. By [11, Proposition 7.5], we need to show that the following function is an equiva-
lence

disp_idtoisog:%p, : D=¢D' > D~ D

To get an intuition, let’s first examine the two sides. For the left side, we know that
D is comprised of a subset D of the set of morphisms in C, and a proof that it contains
pullbacks. Following Remark 35, this will mean that two of them are equal if their
underlying subsets are equal. By univalence, those will be equal if they include the same
elements.

The other side will be the type of adjoints between two display map categories, which
is just two proofs of the identity being a map between D and D’. This will include proofs
that the identity keeps all display maps in both, necessarily meaning that the two contain
the same elements. Thus both sides will depend on the subsets being equal, hence, the
equality holds.
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Now that we have an intuition, we can proceed with the more formal version. For this,
we first construct another equivalence between D =¢ D’ and D ~jq, ¢ D', then we show
that it is functionally equivalent to disp_idtoiso?goD i~

The equivalence we construct is a composition of two equivalences
adj_weq_disp_adjp p : (D —— D') x (D' — D) ~ (D ~iq,c D');
’ idC id;C
DMC_equiv_weq_adjp o : D =¢ D' ~ (D — D') x (D' — D).
’ id{C idiC
The former is just an expansion of what it means to have an adjoint between two
display map categories, as
idiC - id1C = id;C

by the fact that it is the identity, and so if it is a map in both directions, then it is an
adjoint between D and D’.

The latter is an equivalence, since if and only if id; C is a map in both directions, then,
due to the preservation of maps, D and D’ contain the same display maps, meaning that
they are equal, using univalence.

Finally, we need to show that the underlying function of this equivalence and disp_idtoiso
are point-wise equal. This can be done using path-induction, and the fact that being a
map of display maps is a predicate (isPredicate_is_display_map_class_functor). o

Remark 40. In the formalised proof, there is also an added helper equivalence between
the display map category (C, D) and the display map class D

data_weq: (C,D) = (C',D')~D="D.

This is trivial to create as a display map class D implicitly presumes some category C
from which it selects its display maps.

We have shown that the displayed bicategory of display map categories is both locally
univalent, as well as globally univalent. This finally allows us to put the two together,
and prove that this displayed bicategory is univalent.

Theorem 41 (disp_univalent_2_disp_bicat_display_map_cat). The displayed bicategory
of display map categories is univalent.

Proof. A displayed bicategory is univalent, if it is both locally and globally univalent. For
the first, we use Theorem 38. For the second, we use Theorem 39. o

Using the above proof, as well as the univalence of the bicategory of univalent cate-
gories, we can show that the total version is also univalent (univalent_2_bicat_display_map_
_cat), using already formalised proofs for displayed categories. As mentioned at the end
of the previous section, in the implementation we also require the base category to have a
terminal object. This luckily does not affect the univalence of the bicategory, and since
we used displayed bicategories as we will present in Section 5.1, we can use proofs from
the UniMarH library to easily show this fact. This will be also presented in Theorem 55.

4.4 Constructing the Pseudofunctor

At the end of Section 4.1, we have stated that we can directly map a display map category
to a comprehension category, and we can also map their related concepts of maps and
transformations. But the correspondence between DMCs and CCs goes even further, for
example, the functions mentioned above preserve identities and composition, among other
things. So, following the paper by Ahrens, Lumsdaine and North [1], since we have the
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bicategory of both display map categories and comprehension categories, we can organise
the above functions and their properties into a pseudofunctor.

To construct the pseudofunctor, first we will need to give the underlying functions,
mapping 0-, 1- and 2-cells, these are essentially the same functions as the ones mentioned
above. We will construct the function from the 0-cells of the former to the 0-cells of the
latter (Section 4.4.1); then construct the function from the I-cells of the former to the
1-cells of the latter (Section 4.4.2); and finally construct the function from the 2-cells
of the former to the 2-cells of the latter (Section 4.4.3). The fact that I have already
defined the direct functions from display map categories to comprehension categories,
and their related concepts, helped tremendously in implementing these three functions,
even though I couldn’t use them as-is.

Finally, to complete the pseudofunctor, we will need to show that the aforementioned
properties, required by the definition, do hold for the three functions we will define. This is
split into two parts, as the preservation of identity 1-cells and preservation of composition
of 1-cells need only to be preserved up to an invertible 2-cell. Thus, in Section 4.4.4,
we show that both of the desired invertible 2-cells will be the identity 2-cell. Lastly,
Section 4.4.5 will give the proofs of all the laws involving 2-cells. Both of these sections
are here for completeness, and have largely trivial proofs, this is in an indirect way due
to univalence, as it allows equivalences (such as invertible 2-cells) to be turned into
equalities.

4.4.1 Function on 0-cells

First thing to define is the function mapping display map categories to comprehen-
sion categories. The input to this function will be a pair (C, D), where C is a univalent
category, and D is the displayed version of the display map category above C. The out-
put of the function will need to be a comprehension category (C,p, x), consisting of a
univalent category C, a category of types 7 over C with a fibration p, and finally a com-
prehension x from 7 into the arrow category C—. This whole section corresponds to
bicat_terminal_display_map_cat_to_bicat_full_comp_cat il the implementation. A reader mlght notice
that the implementation also includes a terminal object in the base C, this is due to how
the bicategory of full comprehension categories is implemented in UNitMarH, but this
addition has no effect on the correspondence, and it didn’t require any extra effort to add
these. For this reason, we present the non-terminal version in this section, for readability.
To construct the comprehension category given a display map category, first, we can
take the base of the display map category C as the base of the comprehension category.
Then, we need to give a fibration above this category. Since we know the connection
between cartesian arrows and pullbacks in the case of the codomain functor (see Sec-
tion 2.2.1), and we know that the display map category requires pullbacks of display maps,
the functor mapping display maps to their codomain will be a fibration. This will mean
that the category of types 7 will be the arrow version of the display map category D~ .

Theorem 42. Given a display map category (C, D), the triple (C,.-cod: D* — (C,t)isa
comprehension category.

Proof. First, let us make a diagram

D> «—— C~

L-cod\4 %od
C

For this to be a comprehension category, we need to show that
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4.4. Constructing the Pseudofunctor

1. D™ is a univalent displayed category over C;
2. 1-cod:D* — (is a cleaving;
3. ¢ preserves cartesian arrows.

All three of these facts follow from the fact that D * is a subcategory of C™ (see Defini-
tion 10), and that ¢ is just the inclusion functor into C™ (see Definition 11). The fact that
¢ - cod is a cleaving can be shown using the fact that D has pullbacks, and that pullbacks
correspond to cartesian arrows in the case of the cod functor. =

This mapping does indeed reflect how the two sctructures are used as a semantic
framework. For both, the contexts are objects in the base C, which we keep directly. In
the case of DMC, types are the display maps in D, while in the case of CC, they must be
objects in category 7. In this function, we set this category 7 to be the arrow version of
D, whose objects are indeed the display maps. The comprehension being the inclusion
functor means that the projection of the types (display maps) will be themselves, meaning
that they will retain all of their secions, and therefore retain their terms. Finally, context
morphisms remain morphisms in C, with their pullbacks becoming cartesian arrows.
Therefore, we can be confident that we have managed to formalise this correspondence.

We can even go a step further, and show that this is no ordinary comprehension
category, but it is also a full one. Being full means that the comprehension is fully faithful,
which follows from the fact that we used an inclusion functor as the comprehension.

Theorem 43. The comprehension category presented in Theorem 42 is full.

Proof. A comprehension category being full, means that its comprehension functor (in this
case 1) is fully faithful. Being fully faithful means that for any pair of objects d,d’ : D,
the following function is a bijection

tm 2 DP [, d] — C e d, e d'].

This follows from the fact that, since ¢ is an inclusion functor (see Definition 11), all its
underlying functions are just the identity function (with a restricted domain). o

As this thesis only presents the correspondence in one direction, this fact is not too
useful. However, it is a step on the way to constructing the backwards direction. That
would also require further refinement on the kind of comprehension category that a
display map category corresponds to, before the inverse direction could be defined and
the two could be put together into an equivalence. This will also be discussed as potential
future work in Section 7.1.

4.4.2 Function on 1-cells

The second function that makes up the pseudofunctor needs to map 1-cells. In the case of
display map category, the 1-cells are the maps of display map categories (see Definition 6),
which consist of a functor and a proof that the functor satisfies certain properties. For
comprehension categories, the 1-cells are pseudo maps (see Definition 21), which consist
of two functors and a natural isomorphism. This section shows the proofs that correspond
to terminal_display_map_functor_to_full_comp_cat_functor in the implementation.

Theorem 44. Given a map F' between two DMCs (C, D), (C’,D’), there is a corresponding
pseudo map (F, F' ) between the corresponding comprehension categories. Here, F' ¥ :
D* — D'* is defined as in Definition 12.
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Proof. For clarity, let us first make a diagram of the proposed pseudo map

D* ——— C”

~>

\/7\ /

To make this a pseudo map, we need F' ™ to be cartesian; and we need to construct an
isomorphism
o1 F>=F* ./
The former statement follows from the fact that F' preserves the pullbacks of display
maps, as both in D® and D’'* the cartesian arrows correspond to pullbacks.
The isomorphism will be the identity isomorphism, as both . and ./ are just inclusion
functors,and F* : D> — D'* and F : C~ — C'~ are constructed similarly over F'. o

While it has not been used in the implementation, it is worth to mention that since
we not only had a natural isomorphism, but also an equality

- F>=F~* ./

This makes the pseudo map also a strict map (see Remark 22). This, similarly to The-
orem 43, is a step toward specifying the correspondence better, in order to eventually
construct the equivalence.

4.4.3 Function on 2-cells

The pseudofunctor will also need to map 2-cells, that is, it needs to map natural transforma-
tions to transformations between pseudo maps. The result presented here corresponds to
terminal_display_map_transformation_to_full_comp_cat_transformation in the implemen-
tation. This is the least interesting of the three functions of the pseudofunctor, as display
map categories have no conditions on transformations, and the needed equality holds
trivially. We follow the same pattern of making use of the arrow versions of the concepts
related to DMC, and then using the similarity of these definitions to the arrow category
and its related concepts to show that they indeed form a transformation between the
pseudo maps.

Theorem 45. Given a natural transformation 6 between maps F, F’ of DMCs, we have a
corresponding transformation (6,0 ™ ) between the corresponding pseudo maps (F, F' * , ¢)
and (F', F'*,¢'). In this definition 6 * is using Definition 13.

Proof. First, let us make a diagram.

~>

NS

D/ > C/—)

To show that our candidate is indeed a transformation between the pseudo maps, we
need to show that
00" =07 -y
Since ¢ and ¢’ are both identity isomorphisms, and 6~ and # > are defined using the
same structure just with different (co)domains, this equation will hold. o
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4.4.4 Preservation of Identity 1-cells and Composition

For the three functions defined in the prior sections to be a pseudofunctor, they must
preserve operators. The following theorems are proven in two parts in the implementation,
one gives the 2-cell, and the other shows that it is invertible, these are

® bicat_terminal_display_map_to_bicat_full_comp_cat_id_1cell;
® psfunctor_id_is_invertible_bicat_terminal_display_map_cat_to_bicat_full_comp_cat
® bicat_terminal_display_map_to_bicat_full_comp_cat_comp_1lcell;

® psfunctor_comp_is_invertible_bicat_terminal_display_map_cat_to_bicat_full_comp_cat.

In the following, we will need to refer to the current pseudofunctor that we are defining.
For this, we will use the name DMC_to_CC. We will use subscripts to refer to the functions:
0 for the 0-cell function; 1 for the 1-cell function and 2 for the 2-cell function. Both of the
invertible 2-cells, which we need to show exist, will turn out to be the identity 2-cell.

The first invertible 2-cell we need to give, corresponds to the preservation of identity
1-cells, up to the 2-cell isomorphism, we will give. However, since the pseudofunctor
which we are constructing preserves identity 1-cells on the nose, giving this invertible
2-cell is trivial.

Lemma 46. We need to show that the following 2-cell exists, and is invertible.
DMC_to_CCiq(D) : DMC_to_CC (id; D) = id; DMC_to_CCq(D)

Proof. We know that id; D is just the identity functor 1c. The corresponding pseudo
map therefore is (1¢,1;” ). Similarly, id; DMC_to_CCy(D) is also (1¢, 1.7 ). Therefore, the
invertible 2-cell we are looking for will just be the identity 2-cell in the bicategory of full
CCs. o

The second invertible 2-cell corresponds to the preservation of the composition of
1-cells. Since our pseudofunctor preserves composition not only up to isomorphism, but
directly, giving the invertible 2-cell is once more trivial.

Lemma 47. We need to show that the following 2-cell exists, and is invertible.
DMC_to_CCeomp(F, G) : DMC_to_CC1 (F) - DMC_to_CC;(G) = DMC_to_CC,(F - G)
Proof. The left hand side of the 2-cell will be

DMC_to_CC;(F) - DMC_to_CC,(G) = (F,F* 1) - (G,G ™ ,1) (Theorem 44)
=(F-G,F” -G*,1) composition of pseudomaps

Meanwhile the right side will be
DMC_to_CCy(F - G) = (F -G, (F-G)™,1).

But, from Definition 12, we can easily show that '~ - G* = (F - G)*. Thus, the two
sides are equal, therefore the invertible 2-cell we need will be the identity 2-cell in the
bicategory of full CCs. o

The fact that both of these 2-cells are just the identity also simplifies the proofs in the
following section. This is because the laws for 2-cells rely on the usage of these two 2-cells,
and in our case this usage can be simplified away using identity laws for the 2-cells.
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4.4.5 Preservation Laws

Finally, in order to fully be a pseudofunctor, a set of laws must hold. In this section, we
show that all of those laws do indeed hold for our pseudofunctor. All of these laws state
that the pseudofunctor must preserve certain structures. The corresponding definitions
in the implementation are

i Lemma 48 — psfunctor_id2_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat,

L4 Lemma 49 — psfunctor_vcomp2_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat,

e Lemma 50 — psfunctor_lunitor_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat,

d Lemma 51 — psfunctor_runitor_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat,

e LLemma 52 — psfunctor_lassociator_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat,
i Lemma 53 — psfunctor_lwhisker_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat,

e LLemma 54 — psfunctor_rwhisker_law_bicat_terminal_display_map_cat_to_bicat_full_comp_cat.

All of these proofs boil down to a trivial equality, and are included only for completeness.
What we must show in each case, that some composition of 2-cells equals some other 2-cell
composition, as we will see, most of the proofs will show that both sides are an identity
2-cell, and thus are equal.

Lemma 48 (preservation of identity 2-cells). Given two DMCs D, D, and a map F between
them, the following holds

DMC_to_CC2(id2 F) = idQ(DMC_tO_CCI(F)).

Proof. The left hand side, by definition, is just the identity natural transformation, and
its lifted version (id; : F* = F' ). Meanwhile, the right hand side is just (idp,idg - ).
Thus, we only need to show that id; = idr - . This follows from Definitions 12 and 13. o

Lemma 49 (preservation of vertical composition). Given two DMCs D, D/, three maps
between them F,G, H, and natural transformations between those ¢ : F = G and
~: G = H, the following holds

DMC_to_CCy(¢ e ) = DMC_to_CCy(¢) ¢ DMC_to_CCa (7).

Proof. The left hand side, by definition, is (¢ e, (¢ ® v) * ). Meanwhile, the right hand
side is

DMC_to_CCz () e DMC_to_CCa(7) = (¢, " ) e (7,77 ) = (pevy,0™ ey ™).

This means we only need to show that (pe~)™> = ¢ ™® e~ ™. This can be easily done
using the definition of the lifting of natural transformations between maps of DMCs (as
given in Definition 13). o

Lemma 50 (preservation of the left-unitor). Given two DMCs D, D’, and a map F between
the, the following holds

A(DMC_to_CC, (F)) = (DMC_to_CCig (D) = DMC_to_CC,(F)) o
° DMC_tO_CCcomp(idl D7 F) ¢
o DMC_to_CCy (A(F)).
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4.4. Constructing the Pseudofunctor

Proof. The left side A(DMC_to_CC;(F")) is just the identity 2-cell, as for any pseudo map P,
it holds that P = 1 - P. Similarly, on the right side A\(F) is also an identity 2-cell, which,
by Lemma 48, will be mapped to the identity 2-cell id2(DMC_to_CC, (F)).
From Lemmas 46 and 47 respectively, we know that DMC_to_CC¢omp and DMC_to_CCigq
are both also an identity 2-cell, the latter of which will stay an identity when whiskered.
Thus, both sides are the identity 2-cell ido(DMC_to_CC, (F)), and are therefore equal. o

Lemma 51 (preservation of the right-unitor). Given two DMCs D, D', and a map F between
the, the following holds

p(DMC_to_CC; F) = (DMC_to_CC; F < DMC_to_CCig D') e
[ ] Dl\/l(:_to_(:(:cornp(f‘7 id]_D/) L]
e« DMC_to_CC; (p F).

Proof. The left side p(DMC_to_CC;(F')) is just the identity 2-cell, as for any pseudo map P,
it holds that P = P - 1. Similarly, on the right side p(F') is also an identity 2-cell, which,
by Lemma 48, will be mapped to the identity 2-cell ido(DMC_to_CC;(F)).
From Lemmas 46 and 47 respectively, we know that DMC_to_CC¢omp and DMC_to_CCigq
are both also an identity 2-cell, the latter of which will stay an identity when whiskered.
Thus, both sides are the identity 2-cell id2(DMC_to_CC; (F')), and are therefore equal. o

Lemma 52 (preservation of the associator). Given four DMCs D1, Dy, D3, D4, and maps
F:Dy - Dy,G:Dy — Dsand H : D3 — D, between them, the following holds

(DMC_to_CC; F <t DMC_to_CComp(G, H)) ® DMC_to_CCeomp(F, G - H) e
e DMC_to_CCs(a(F, G, H))

a(DMC_to_CC; (F), DMC_to_CC1(G), DMC_to_CC, (H)) e
e (DMC_to_CCeomp(F, G) & DMC_to_CCy(H)) ¢ DMC_to_CCeomp(F - G, H).

Proof. We can simplify the left side by doing

DMC_to_CC; F' <« DMC_to_CCcomp(F, G) = DMC_to_CC; F < id» (Lemma 47)
= ida

DMC_to_CCcomp(F, G - H) = id2 (Lemma 47)

DMC_to_CCq(a(F, G, H)) = DMC_to_CCzid2 (functor associativity)

= idy (Lemma 48)

lhs. = ]d2 ° ldQ () ]d2
= ids. (identity laws)

Similarly, we can simplify the right side by doing

o (DMC_to_CC; (F'),DMC_to_CC; (G),DMC_to_CCy (H)) = id2 (pseudo map associativity)
DMC_to_CCcomp(F, G) = DMC_to_CCy (H) = id2 = DMC_to_CCy (H) (Lemma 47)
= idy
DMC_to_CCcomp(F' - G, H) = id2 (Lemma 47)
rhs. = idg L] idg (] id2
= ido. (identity laws)
From this, it is trivial to show that idy = ids. o
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Lemma 53 (preservation of the left-whiskering). Given three DMCs Dy, Dy, D3, and maps
F:Dy — Dy,G, H : Dy — D3 between them, the following holds

DMC_to_CCeomp(F, G) @ DMC_to_CCy(F < ¢)

Proof. On both sides we do have DMC_to_CCcomp, Which simplifies to an identity by
Lemma 47, leaving us with

DMC_to_CCy(F <1 ¢) = DMC_to_CC;(F') < DMC_to_CCs(y).

This will hold since both bicategories have < defined using the whiskering of natural
transformations and functors. Further, DMC_to_CC maps natural transformations to the
transformation consisting of the base, and the lifted version of them, the latter of which
defines its whiskering in terms of the prior. o

Lemma 54 (preservation of the right-whiskering). Given three DMCs D, Dy, D3, and
maps F,G : D1 — Dy, H : Dy — D3 between them, the following holds

DMC_tO_CCcomp(F, H) [ ] DMC_tO_CC2(S0 > H)

Proof. On both sides we do have DMC_to_CCcomp, Which simplifies to an identity by
Lemma 47, leaving us with

DMC_to_CCy(p = F') = DMC_to_CCy(¢) = DMC_to_CC1 (F).

This will hold since both bicategories have = defined using the whiskering of natural
transformations and functors. Further, DMC_to_CC maps natural transformations to the
transformation consisting of the base, and the lifted version of them, the latter of which
defines its whiskering in terms of the prior. o

With that done, our pseudofunctor is complete. In the implementation the final pseud-
ofunctor can be found as psfunctor_bicat_terminal_display_map_cat_to_bicat_full_comp_cat.
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Chapter 5

Implementation in the
UNIMATH Library

As mentioned previously, results presented in this thesis have also been verified using a
proof assistant, namely Rocq'. A proof assistant is a computer program that can verify
that a specification given to it is sound. My work was done using the UntMars library?,
which is a library implementing various parts of mathematics formalised using Univalent
Foundations. My contributions resulted in three pull requests adding to the library, these
pull requests (in order) contained the following

¢ the first pull request contained a definition of display map categories and a direct
conversion to comprehension categories

® the second pull request contained a direct definition of the bicategory of DMCs, and
a pseudofunctor into the bicategory of full CCs

¢ the third pull request contained a displayed definition of the bicategory; definition
of its univalence and a new pseudofunctor from it to the bicategory of full CCs

The main contributions from these pull requests are concentrated in three files,
containing a combined 722 lines of specification (definitions, theorems, lemmas, etc.); and
919 lines of proof script, as reported by cogwc (a tool included in Rocq). The distribution
of these lines can be seen in Table 5.1. While I also made some small contributions to
other files as well, these files are where the majority of my contributions are.

spec proof file name

414 345 DisplayMapCat.v
111 268 BicatOfDisplayMapCat.v
197 306 DispBicatOfDisplayMapCat.v

Table 5.1: Contributions per file

A number of the definitions that I implemented, ended up being (dependent) pairs.
This is also the case for many other definitions implemented in the UniMaTH library, for
example, univalent categories are formalised as

univalent_category := Z is_univalent C,
C:category

Rocq home page
2UniMarH repository
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and in fact category is also a dependent pair

category := 2 has_homsets C.

C:precategory

To help deal with such types, and not have to litter the codebase with pr1 and pr2 (the
projection functions out of a pair), the UniMaTH library often defines Coercion-s for these
kinds of types. A Coercion allows Rocq to do the conversion between types automatically,
allowing the code to be more readable. So, when we need something of type precategory,
we can give it an element of univalent_category instead.

One possible downside of using these is that it can hide away details in RocqQ’s proof
tab. I did run into this a few times, when trying to copy a type from the goal-tab that would
not type check. Usually this could be resolved by asking Rocq to display all coercions,
and copying this instead. I am not fully sure of why this happens, but usually adding only
one of the coercions as an explicit function fixed this problem.

This chapter will discuss some of the implementation details that went into writing
this code. First, as mentioned at the end of Section 4.2, the implementation also adds
terminal objects to the base category. I will discuss the reasons for this, together with the
architecture of the displayed categories in Section 5.1. Second, the thesis has used both
the arrow category C— and the arrow version of display map categories D *, therefore,
Section 5.2 will briefly discuss the version of these that is used in the implementation.
Finally, I will end this chapter with the topic of optimisation, which is unique to computer
proofs. Section 5.3 will give the rationale for optimising the proofs, as well as, some of
the steps I took to optimise my code.

5.1 Construction of Displayed Bicategories

This thesis has been discussing all DMCs and all CCs, which has one crucial difference to
the implementation, namely that the implementation of the pseudofunctor instead relies
on display map categories with a terminal object in the base category. The reason for this
was that the bicategory of CCs was already implemented using a base category that has
a terminal object. As this addition was done at a low level (see Figure 5.2), removing it
would have required an almost full copy of multiple files. For this reason, I have opted to
just add this condition to the implementation. This change should not affect any other
part of the implementation in a substantial way. It is worth to mention that adding this
terminal object is included in some definitions of DMC and CC, when presenting them
for the use of modelling type theory. This is due to the fact that the terminal object will
correspond to the empty context.

The implementation of this change was done in a modular manner, thanks to displayed
bicategories. The displayed bicategory of univalent categories with terminal objects was
already defined as disp_bicat_terminal_obj. To begin with, I have defined the displayed
bicategory of DMCs following the formalisation in Section 4.2. Then, as given by Defini-
tion 28, we can create the product of them, corresponding to the displayed bicategory of
DMCs with a terminal object in the base. An illustration of this process can be seen in
Figure 5.3. This way of construction should allow future contributors to be able to freely
use either version, it is also not too dissimilar to certain notions of inheritance in other
programming languages.

Since this is a new bicategory that we constructed, we should show that it is univalent.
As mentioned in Section 3.3, the UniMaTu library already has proofs that the product of
two displayed bicategories, as defined in Definition 28, will be univalent if three things
hold. These three are: that the base is univalent, and that both displayed bicategories
are univalent. We have shown that the displayed bicategory of display map categories
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displayed bicategory of W ( bicategory of
comprehension categories ) comprehension categories
disp_bicat_comp_cat L bicat_comp_cat

displayed bicategory of bicategory of
categories with a terminal object § categories with a terminal object
and a displayed category with a cleaving and a displayed category with a cleaving
disp_bicat_cat_with_terminal_cleaving bicat_cat_with_terminal_cleaving

displayed bicategory of W \( bicategory of
c

categories with a terminal object | ategories with a terminal object
and a displayed category and a displayed category
disp_bicat_cat_with_terminal_disp_cat bicat_cat_with_terminal_disp_cat

displayed bicategory of displayed bicategory of
categories with a terminal object categories with a displayed category
disp_bicat_terminal_obj disp_bicat_of_univ_disp_cats

( bicategory of
univalent categories
L bicat_of_univ_cats

Figure 5.2: Construction of the bicategory of CCs
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displayed bicategory of displayed bicategory of bicategory of
categories with a terminal object display map categories { ——| display map categories
disp_bicat_terminal_obj disp_bicat_display_map_cat L bicat_display_map_cat
(
t bicategory of
univalent categories
bicat_of_univ_cats

Figure 5.3: Construction of the displayed bicategory of terminal DMCs

is univalent in Section 4.3. The other two facts have been already shown in the library,
thus we can show that the bicategory of display map categories with a terminal object in
the base will be univalent.

Theorem 55 (is_univalent_2_bicat_terminal_display_map_cat). The bicategory of termi-
nal DMCs, obtained as the total bicategory of the displayed version, is univalent.

Proof. The univalence of total bicategories of displayed product bicategories is already
shown in is_univalent_2_total_dirprod, and requires the following to hold

¢ the base bicategory must be univalent (univalent_cat_is_univalent_2);

¢ the displayed bicategory of categories with a terminal object must be univalent
(disp_ _univalent_2_disp_bicat_terminal_obj);

¢ the displayed bicategory of DMCs must be univalent (Theorem 41).

All of these conditions have been shown prior, so we are done. o
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5.2 Arrow Category as a Displayed Category

Another difference with the formalisation is the use of a displayed category instead of
the arrow category C—. This displayed category is called the codomain category Cod,
and it can be described as a displayed version of the arrow category, with a focus on the
codomain functor cod : C— — C.

Definition 56 (disp_codomain). Given a category C, the codomain displayed category Cod
contains

¢ for every object y : C, the type above Cod,, it is the type of pairs (z, f) : Z(x:c) Clz,y]
made from another object and a morphism from it pointing to y;

¢ for every morphism g : C[z, y], the type above it («/, f) — (¢/, f’) is the type of pairs
g

¢ H): > d-f'=fyg

("'~

consisting of a morphism, and a witness to the fact that the following diagram
commutes in C'

1‘*>y

b

x*ﬂy

All operators and laws are given by the corresponding operator or law in C.

The above definition will have the same objects as the arrow category, but each of
them is displayed over its own codomain. This is why we use this form, as its forgetful
projection functor will correspond to the codomain functor:

cod := 7% : [ Cod — C,

mapping elements of the total category { Cod to their first element, i. e. it will map objects
(y, (z, f)) to their base y, which is the codomain of f.

For this thesis, I have used the implementation of this displayed category as a guide
when defining the arrow version of display map category. This was very useful, as the
definition of comprehension categories in UntMaTH requires 7 to be a displayed category
over C, and this way I could use my definition for D * directly. The definition of D~ is
essentially the same as Definition 56, with an added third element in the objects

(@, £ H) 2 D) O, (refead) DS

this third element will be a proof that f is a display map. The proofs for this being a
displayed category follow a similar structure to Cod.

This switch to the displayed versions also extends to the arrow version of functors and
natural transformations, both of which also become displayed. Further, the same is true
for the arrow versions of the DMC related concepts that were implemented by me.

The reason I implemented the arrow version of display map category so similar to the
arrow category is because the former is a subcategory of the latter. The arrow version of
DMC contains a subset of the elements of the arrow category, but is otherwise identical
in construction. This fact could be made more obvious, by constructing it as a subcategory
of the arrow category. This would likely mean constructing it as yet another displayed
category, now above the total version of the arrow category. This would then require the
refactoring of the pseudofunctor, to use this new version instead.
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5.3 Optimisation

When converting the proofs into computer code, we suddenly also need to worry about
the speed of the proof. This is because while our proof may be correct, but takes a
minute to verify, then it will not be too useful, especially when considering the size of the
Un~iMarw library, as it has a large number of proofs that all need to be checked. To this
end, this section will present some of the steps I took to ensure that all proofs I write
will be reasonably quick. I will walk through three examples, mentioning how and why I
achieved the speedup.

A very useful tool for this type of analysis is Rocq’s built-in timer tool Time, which can
simply be added before any command to time it. The times included were achieved using
my laptop (HP ZBook Studio G5), and are only meant as a reference.

5.3.1 Removing rewrite and try

This may be one of the greatest time saves I have managed to make during this thesis.
The combination of the try and rewrite really made the type-checking of this fairly simple
proof take a while. For context, this proof states that all bicategory laws hold in the
displayed bicategory of DMCs, which is true since the type of displayed 2-cells is just the
unit type, therefore any two displayed 2-cell terms over a natural transformation will be
equal. The original version in Listing 5.1 took a total of 164 seconds to execute.

Listing 5.1: Original Proof Time taken in total 164.349s.
Definition disp_prebicat_laws_display_map_cat Finished transaction in 23.902 secs (9.784u,0.121s) (successful)
: disp_prebicat_laws disp_prebicat_data_display_map_cat. Finished transaction in 140.447 secs (52.798u,0.674s) (successful)

Proof.
Time repeat split; intro; intros; try (destruct nn);
simpl; rewrite transportb_const; apply idpath.

Time Qed.

The improved version in Listing 5.2 took only 0.14 seconds to execute, which is a
substantial speedup. The speedup is twofold, first, by removing the try, Rocq no longer
has to try and recover for every sub-goal, thereby reducing the time of the proof. Second,
and probably more importantly, by removing the rewrite-s, the type checking done at the
end of the proof has also become quicker. While rewrite more closely resembles a paper
proof step, it can complicate the definition or proof internally, thereby leading to a longer
type checking step at the end of proof. Further, rewrite can only be used if there is a
one-to-one match between the type of the term and goal, often requiring a simplification
step (simpl) to be executed beforehand.

Listing 5.2: Improved version Time taken in total 0.136s.

Finished transaction in 0.042 secs (0.041u,0.s) (successful)
Finished transaction in ©.094 secs (0.059u,0.s) (successful)

Time repeat split; intro; intros; apply isProofIrrelevantUnit.
Time Qed.

5.3.2 Using etrans

This example will demonstrate another way of removing rewrite from a proof. The method
relies on the etrans tactic, an equivalent of the transitivity tactic for the equality types
of the UniMartH library. This can split a goal like a = b into two sub-goalsa = 2 and ? = b,
where ? is a ‘hole’ that can be filled by the programmer by applying other tactics. Using
this, I could replace the rewrite-s with apply.
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Also important to note that here I introduce try to remove the need to deal with each
sub-goal individually, and to not have to repeat lines. This does not ultimately matter, as
in the final version (see display_map_class_adj_to_disp_adjoint_equiv) we have a slightly
faster version without try, sadly that also removes the etrans, so we do not show that here.
Further, the final version adds abstract for better code practices, and its performance
impact will be discussed in the next section. Ultimately, while etrans can be useful in
certain situations, its uses are limited, mainly due to the fact that it needs a goal of the
form a = b.

The original proof, seen in Listing 5.3, is a proof that if the identity is a map in both
directions between two DMCs, then there is an adjoint equivalence between the two. The
complicated part is to show that we have an equivalence, as this involves many equalities.
This original takes 10 seconds.

Listing 5.3: Original Proof Time taken in total: 10.239s.
Definition display_map_class_adj_to_disp_adjoint_equiv Finished transaction in ©.145 secs (0.145u,0.s) (successful)
{C : bicat_of_univ_cats} (D D’ : disp_bicat_display_map_cat C) Finished transaction in ©.854 secs (0.384u,0.026s) (successful)
: is_display_map_class_functor D D’ (functor_identity C) Finished transaction in ©.727 secs (0.301u,0.008s) (successful)
x is_display_map_class_functor D’ D (functor_identity C) Finished transaction in ©.145 secs (0.145u,0.s) (successful)
-> disp_adjoint_equivalence (idtoiso_2_@ C C (idpath C)) D D’. Finished transaction in 0.005 secs (0.001u,0.s) (successful)
Proof. Finished transaction in 0.012 secs (0.002u,0.s) (successful)
intros [HF HG]. Finished transaction in ©.135 secs (@.135u,0.s) (successful)
exists HF. use tpair. Finished transaction in ©.012 secs (0.003u,0.s) (successful)
- exists HG. cbn. exact (tt ,, tt). Finished transaction in ©.005 secs (0.001u,0.s) (successful)
- Time split; use tpair. Finished transaction in 8.199 secs (3.658u,0.093s) (successful)

+ Time cbn; rewrite transportb_const; apply idpath.

+ Time cbn; rewrite transportb_const; apply idpath.
+ Time exists tt; split; cbn.

* Time rewrite transportb_const; apply idpath.

* Time rewrite transportb_const; apply idpath.
+ Time exists tt; split; cbn.

* Time rewrite transportb_const; apply idpath.

* Time rewrite transportb_const; apply idpath.

Time Defined.

The improved version combines all the different cases into a single line that uses
etrans. This version in Listing 5.4 takes less than 2 seconds, meaning it is about 5 times
faster than the original.

Listing 5.4: Improved Version Time taken in total: 1.962s.

Finished transaction in ©.323 secs (0.322u,@.s) (successful)
Finished transaction in 1.639 secs (1.034u,0.s) (successful)

- Time split; use tpair; try (exists tt; split);
(etrans;
[apply (idpath (idfun _ tt))
| apply (egtohomot (!(transportb_const _ _)) tt)]).
Time Defined.

5.3.3 Impact of abstract

In this example we can see how I optimised one of the proofs that had a part with abstract.
The command abstract hides away the implementation details of whatever is put inside
it. It is good practice, and is recommended in the UniMatH guide, to use these for parts
of a definition that are just a proof of a property, as these will never need to be unfolded,
and making them opaque can help speed up proofs that rely on these. One downside of
abstract is the fact that it needs all commands inside it to be executed together, which
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makes editing proofs more difficult. The easiest way to deal with it is to simply remove
the abstract, optimise the proof and put back the abstract.

When we do so, we can see the impact of abstract on the proof. Since it makes part of
a definition opaque, it has to type check that part separately. This separate type checking
increases the time the opaque part of the definition needs, but is somewhat compensated
for by the final type checking of the definition. Overall, it still reduces performance
slightly, though this may be compensated by the speed-up in the other proofs (by the
opaqueness), though that is hard to measure.

The example is part of the definition of the function on 1-cells, when defining the
pseudofunctor. More specifically, we are interested in the last part, where we need to
show that we have a natural isomorphism. The original version in Listing 5.5 takes 9
seconds, with most of that time taken up by the abstract part.

Listing 5.5: Original Code Time taken in total: 9.095s.
Definition terminal_display_map_functor_to_full_comp_cat_functor Finished transaction in 9.018 secs (3.322u,0.062s) (successful)
: IIDl D, : bicat_terminal_display_map_cat, Finished transaction in 0.077 secs (0.03u,@.s) (successful)

bicat_terminal_display_map_cat [ Di, D, |
-> bicat_full_comp_cat [ ¢ D;, ¢ D, ].
Proof.
intros D; D, F; use make_full_comp_cat_functor.
- use make_comp_cat_functor.
+ use make_functor_with_terminal_cleaving.
* use make_functor_with_terminal_disp_cat.
-- exact F.
-- exact F.
-- exact (display_map_functor F).
* exact (is_cartesian_display_map_functor (_ ,, _)).
+ exact (prl (map_t_is_t¢_map F)).
- Time abstract (exact (
A x dx, prl ((pr1l (map_c_is_t_map F)) x dx)
,, id_left _
,, id_right _
).

Time Defined.

By removing the abstract in Listing 5.6, we save 0.2 seconds, and now the time is
almost evenly split between the proof and Defined.

Listing 5.6: Without Abstract Time taken in total: 8.838s.

Finished transaction in 4.07 secs (1.511u,0.029s) (successful)
Finished transaction in 4.768 secs (1.854u,0.035s) (successful)

- Time exact (
A x dx, prl ((pril (map_c_is_t_map F)) x dx)
, id_left _
,, id_right _
)

Time Defined.

Following this, we can optimise the proof, by removing holes, and overall better guiding
Rocaq, to get Listing 5.7. This version drops the time needed by a further 3 seconds, cutting
the time almost in half. Finally, we add back the abstract in Listing 5.8, which increases
the time by 0.4 seconds, and moves back the time needed to the proof step from the end
of definition.
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Listing 5.7: Optimised Time taken in total: 5.454s.

Finished transaction in ©.055 secs (0.033u,0.s) (successful)
Finished transaction in 5.399 secs (1.933u,0.033s) (successful)

- Time intros x dx;
exists (prl ((prll (map_t_is_t_map F)) x dx));
exists (id_left _); apply id_right.
Time Defined.

Listing 5.8: Abstracted Time taken in total: 5.863s.

Finished transaction in 5.787 secs (2.031u,0.028s) (successful)
Finished transaction in ©.076 secs (0.031u,@.s) (successful)

- Time abstract (intros x dx;
exists (prl ((prll (map_t_is_t_map F)) x dx));
exists (id_left _); apply id_right
)

Time Defined.

5.3.4 Overview of optimisations

Useless rewrite. Ihave found thatin general it was better to replace rewrite operations.
The impact of this is twofold. First, to be able to use a rewrite, the goal must have an
exact match to the expression in the rewrite, with minimal type unification, this often
means using one of the simplifying commands (simpl or cbn) beforehand, which sometimes
takes a while, as the computer goes through all the simplification steps. Second, at least
in my experience, using rewrite also made the final type-checking (when calling Defined
or Qed) take longer. Solutions to this issue were to either find or define an applicable proof,
or to use the tactic etrans, which splits equality goals into two transitive equalities with
a hole in the middle. This latter tactic makes it so instead of rewrite, one can apply the
same theorem.

Avoid try. While this command can be useful to shorten and condense proofs, it should
be removed if possible. In one of the examples (in Section 5.3.1), it was possible to remove
it, improving the speed of the proof drastically (together with the removal of rewrite).
The reason for this is simple, try will try to execute the tactic its given, and revert on a
failure, which can take long if there are many goals it needs to try.

Note about abstract. The UnitMarH library’s contribution guidelines advise to keep
proofs for theorems opaque (meaning that its definition cannot be unfolded), since their
proofs should be irrelevant. Similarly, one can abstract away parts of proofs that should
be similarly opaque. The one downside of this, in terms of performance, is that abstract
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has to perform type-checking similar to those at the end of proof. Though some of this
time is compensated by a faster end of proof, overall I still found it increasing the time
taken by a proof. For an example of this, see Section 5.3.3, where we can see that the
proof got quicker when removing abstract, and got slower by a bit again when adding the
abstract back after optimisation.
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Chapter 6

Related Work

Category Theory in Univalent Foundations. There are a good number of articles
using UniMatr!, here, I will highlight the ones that are most relevant to this thesis,
and its implementations. Categories and their univalence have been implemented by
Ahrens, Kapulkin and Shulman [13]. This serves as the core of the category theory in
UniMartH, this implementation also contains the definitions for functors and natural
transformations. The implementation of displayed categories was given by Ahrens and
Lumsdaine[8]. In the same paper, they also gave the implementation of disp_codomain,
which we used as reference, when implementing the arrow version D™ of display map
categories. They also gave the definition of fibrations for displayed categories, which we
used in Section 2.2.1.

Finally, bicategories have been implemented by Ahrens et al. [11]. They have also given
implementations of displayed bicategories, together with univalence for both. The product
of displayed bicategories (see Definition 28) was also implemented by them, together with
a set of useful proofs, such as the univalence of this product displayed bicategory.

Further, the bicategory of comprehension categories has been implemented in Uni-
Mars, in this pull request. It is responsible for our need to include the terminal object in
the base of displayed categories, as discussed in Section 5.1. As discussed in that section,
the construction of the bicategory is done through a series of displayed bicategories, each
displayed over the total version of the previous.

Van der Weide [15] has also published their work with comparing univalent categories
with a finite limits to univalent full democratic finite limit comprehension categories,
and implementing this comparison in UniMaTu. They also use bicategories and pseudo-
functors between them to make the comparison, but they manages to show that these
pseudofunctors form biequivalences. Van der Weide also makes use of displayed bicate-
gories, when constructing the bicategories for the comparison, similar to how we have
done.

Semantic Frameworks. Over the years, there have been many different models pre-
sented for various type theories. Here, I will mention some of the more relevant ones to
the topics discussed in this thesis.

An early example for the use of display map categories as a framework for dependent
type theory was given by Hyland and Pitts [5]. In their paper they did not use the term
display map category, referring to them as a class of display maps with a stability condition
instead. North [16, Chapter 2] and Von Glehn [17, Chapter 2] both give descriptions of
typeformers in a display map category model of type theory.

Comprehension categories on the other hand, were introduced by Jacobs [7]. In the
same paper, he discusses the use of comprehension categories as a model for depen-

L Articles using UniMaru
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dent type theory. Jacobs later also published a book titled “Categorical Logic and Type
Theory” [2], in which Jacobs presents the use of both display map categories and compre-
hension categories to model dependent type theory in Chapter 10. The book also presents
display map categories as a special case of a comprehension category, consistent with the
map presented in this thesis. Lumsdaine and Warren [14] have built on this model with
comprehension categories, to add a notion for local universes, adapted from the same
universes that underline Univalent Foundations.

Speaking of Univalent Foundations, Kapulkin and Lumsdaine [18] have given a
categorical model for it. For this, they rely on a different categorical structure, called
contextual category, which is another structure studied in the paper that inspired this
thesis. As a model, contextual categories fall take types as primitives, and are thus
closer to comprehension categories rather than display map categories. In a similar vein,
Lumsdaine and Shulman [19] give a model for higher inductive types, which are present
in Univalent Foundations as homotopy types.

Another model for dependent type theory is categories with families, as presented
by Dybjer [20]. This model has also been shown to be equivalent to some others, and to
show this, Clairambault and Dybjer [21] have also used bicategories and a biequivalence
between them.

For the comparison of such structures, we have been following the method given by
Ahrens, Lumsdaine and North [1], that being, using bicategories and biequivalences.
This is not the only way such comparisons can be made, for example Ahrens, Lumsdaine
and Voevodsky [22] make their comparisons via relative universes (a concept separate
from that of universes in Univalent Foundations).
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Chapter 7

Conclusion

In this thesis, I have completed the formalisation of a number of concepts from category
theory used to model type theory in Univalent Foundations. We started by stating what
it means to be a display map category, continuing with the predicate of when a functor is
a map between two display map categories. Our formal version definition of display map
category (see Definition 33) included chosen pullbacks, and did not ask for repleteness, as
we have shown that this can be guaranteed by taking the base category to be univalent.
Using these two types, we could construct a displayed category over the bicategory of
univalent categories in Section 4.2. As discussed in the same section, the total version of
this displayed category is equivalent to the bicategory of display map categories. Finally,
we described the construction of a pseudofunctor from the bicategory of display map
categories into the bicategory of full comprehension categories.

All of this work has also been implemented and verified by the Rocq proof assistant,
using the UNitMartH library. Following the implementation of the display map category,
we have further implemented its interpretation as a displayed category, similar to the
displayed category disp_codomain, which is a displayed category similar to the arrow
category, but with an added focus on the functor cod : C— — C, as discussed in Section 5.2.
This implementation could be improved, by showing the subcategorical nature of D, or
by directly constructing it as such. Further, I have implemented a direct function from
display map category to comprehension category, and related functions for their maps
and transformations, all of which has been good practice and could be partially reused in
the following.

The construction of the bicategory was done both directly and as a displayed bicategory
over the bicategory of univalent categories. The prior requiring a lot more effort, and
serving as good practice for the construction of the latter. In both cases I had to add a
terminal object into the base categories, as this was required by the formalisation of the
bicategory of comprehension categories. I have not proven that these two implementations
are equivalent, but as I have argued at the end of Section 4.2, I am reasonably confident
in that they are equivalent, as they both rely on the same definitions for the display map
category. Further, we have constructed a pseudofunctor into the bicategory of full CCs
from both versions. The construction of these has further convinced me of the similarity
of the two implementations, as most proofs and definitions could be reused with minimal
modifications to account for the slightly different structure.

While some of this work has been a little redundant, constructing multiple versions
of the same concept, the direct versions contributed greatly to my understanding of the
concepts, while the displayed versions should serve as a good basis for future work. As I
have shown in Section 5.1, the construction of these displayed bicategories should allow
them to be used with or without the terminal object in the base. Further, it allowed me
to show the univalence of the bicategory far more easily than it would have been for the
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direct version. However, there is still more work to be done, especially when it comes to
the bicategory of CCs, to also allow for a version without requiring the terminal object,
and without having to duplicate all the code for it.

Throughout this project, I have learned a great deal about Univalent Foundations, type
theories and their categorical models. I have also got a taste of developing a mathematical
library in Rocq. While the results given in this paper are not novel, I do still think it
is valuable to have these results be validated by a computer. Further, I hope that my
contributions to the UnitMaru library may be useful for formalising future comparisons,
or for any other purpose.

7.1 Future Work

What we managed to formalise in this thesis is just a part of the comparisons presented
in [1]. The paper also includes three more frameworks with display maps as types, and
two more with primitives as types, not counting variants. For reference, check the first
two figures in their paper, which gives an overview of this. All of those correspondences
could be formalised in a manner similar to the one presented in this thesis.

Equivalence. In this thesis, we have formalised that there is a corresponding compre-
hension category to every display map category. It would be interesting to finish this
correspondence by giving a ‘backwards’ direction. This would need to involve stating any
other relevant properties of the comprehension category that corresponds to a display
map category. Then, using those properties, we could define the pseudofunctor backwards.
Finally, in would remain to show that the two pseudofunctors form an equivalence.

UniMath. Throughout the thesis, I have mentioned a number of possible improvements
to the UniMatu library. These may not be too relevant academically, but I feel that for
completeness, they are worth summarising here. First, the arrow version of display map
category could be given as a subcategory of the arrow category, see the end of Section 5.2.
Second, I have not proven that my implementations of the direct and displayed versions
of the bicategory of display map categories are equivalent, this should not be difficult to
show as they both use the same implementations for the display map category. I have
given a comparison of the two in Section 4.2, which gives me confidence in that the two
versions are indeed equivalent. As discussed in Section 5.1, the current version of the
bicategory of comprehension categories is defined with base categories that contain a
terminal object. For completeness, a version without the terminal could also be defined,
though this would either be just a lot of repeated code, or require reorganisation of the
current construction. Finally, as mentioned at the end of Section 4.2, ideally some parts
of the pseudofunctor construction could be avoided by creating the pseudofunctor as a
displayed one, but this too would require at least some reorganisation or rewriting of the
construction of the bicategory of CCs. While none of these might be large enough for a
thesis project, they may still be important for the health of the UniMarH library.
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