
IN3405

Final Report Bachelor Project
Visual Voicemail and Greetings

Version 2

Computer Science

Faculty of Electrical Engineering, Mathematics and Computer Science

Date:

University:

Course:

Company:

Authors:

Supervisor:

Coordinator:

July 8, 2008

Delft University of Technology

IN3405

Bachelor Project

Greetinq B.V.

Nathan Bruning 1274465

Medya Amidi 1289780

Michelle Cheung 1262912

Ir. H.J.A.M. Geers

Ir. B.R. Sodoyer

 2

Preface

This report is the result of a project done in the period of almost three months by N. Bruning,

M. Cheung and M. Amidi at Greetinq B.V. The project was intended to accomplish the

bachelor Computer Science program at the TU Delft University of Technology. According to

the TU Delft bachelor curriculum, each undergraduate computer science student has to do an

internship within a group of at least two students to be able to obtain his/her BSc. degree.

The purpose of this program is to give students a chance to experience actual work in a

company and make them ready for entering the career world.

The assignment was to create an application for mobile phones enabling people to use the

Greetinq service at any time and location.

Late in March, we did a pre-research for the project about what techniques and methods are

needed to develop the application. We studied the different aspects of the project, trying to

anticipate possible upcoming problems in the process of development, the current possibilities

and so forth
1
. Beginning of May 2008, we started our internship at Greetinq, a start-up high-

tech company located in Delft. The duration of the internship was 10 weeks.

The project was to develop a software application (visual voicemail & greetings) called

“myGreetinq mobile” to be written in Java Micro Edition (Java ME) for mobile phone

devices.

During this period we have gained many valuable experiences. Our team work skills were

enhanced, we have got familiar with the principles of working in a company and on top of

that we have enjoyed working on the project and got familiar with mobile application

development. All these experiences were not possible without the support from TU Delft and

Greetinq Company.

Willingly, we would like to thank Greetinq for providing us a pleasant work environment and

facilities. The ease of communication with them accelerated the decision making process. We

have enjoyed working with them.

Thanks to Mr. Sodoyer for coordinating and arranging the project. And finally thanks to Mr.

Geers for his support and supervision during the project. His valuable comments and critiques

provided great improvement for our project regarding both technical and managerial aspects.

July 2008, Delft

Medya Amidi

Michelle Cheung

Nathan Bruning

1
 All this information is gathered in our Orientation Document, attached as appendix A.

 3

Summary

Having launched this year a web-base service managing voicemails and personal greetings

through the Internet, Greetinq Company has the intention to expand its services. The company

introduced its new project - the development of a visual voicemail and greetings application,

as a bachelor project to the department of software engineering of TU Delft University.

We were assigned to develop a mobile application that enables users to browse through a list

of voicemail messages and personal greetings; select, play and in the case of greetings record

them, in a user friendly GUI environment. The product is called “myGreetinq Mobile”.

According to the TU Delft curriculum the bachelor project begins in April and will last for

three months. Due to workplace problems related to the Greetinq Company, our internship

was postponed to the beginning of May. Putting much effort in our work we finally could

manage to compensate two weeks of the delay and finish the project in less than three months.

Before the project started, we focussed on the pre-research. The purpose of this phase was to

get to know what kind of techniques we would meet and need during the project. When the

implementation phase started, we still needed to do research for better solutions particularly

for the Graphical User Interface, audio format support, and testing methods.

The design was mainly based on Greetinq‟s design principles
2
. Both the Requirements and

Design Document were evaluated by Greetinq before starting the actual implementation.

After discussing with the company, we decided to use the Model View Controller (MVC)

architectural pattern to build the application. Choosing this pattern enabled us to implement

different parts of the application independently.

The implementation phase began with a mock-up (GUI prototype having no actual functional

implementation), which gave us a view of how the code works in the early phase. We noticed

three main parts of the implementation which can be divided into phases, namely, Graphical

User Interface, Voicemail and Greetings. During the implementation we faced different

problems such as compatibility of different mobile devices and support of different audio

formats.

Testing a Java application on small devices is different from testing on computers. There are

several constraints set up by the device. It was hard to test our product thoroughly. Standard

testing libraries do not work on a mobile phone and different mobile phones have different

implementations of the Java environment. We applied the following tests: unit tests,

functionality tests and system tests.

2
 See chapter 5

 4

Although our final product did not meet all the requirements we initially agreed on, it works

properly. One of the major problems is that Java ME is not a very mature platform. The main

problem of Java ME is the relatively high amount of bugs in implementations. Sun provides a

reference implantation, while phone manufacturers have to create their own implementations

specifically optimized for the targeted mobile phone. Our recommendations for developing a

mobile application contain some guidelines that we believe would have helped us and greatly

simplified our process. There is a need of great attention for the platforms and support of

mobile phones.

 5

Glossary

AMR: Adaptive Multi-Rate, an audio data compression scheme optimized for speech

coding.

API: A formalized set of software calls and routines that can be referenced by an

 application program in order to access supporting system or network services.

CLDC: The Connected Limited Device Configuration is a specification of a framework

for Java ME applications targeted at devices with very limited resources such

as pagers and mobile phones.

Greetings: voice greetings recorded by callee and listened by caller if the callee failed to

 answer his/her mobile phone.

Greetinqs used interchangeably with greetings.

MIDP: Mobile Information Device Profile is a specification published for the use of

Java on embedded devices such as mobile phones and PDAs. MIDP is part of

the Java Platform, Micro Edition (Java ME) framework.

MMAPI: The Mobile Media API (MMAPI) extends the functionality of the J2ME

platform by providing audio, video and other time-based multimedia support to

resource constrained devices.

MP3: MPEG-1, Audio Layer 3, more commonly referred to as MP3, is a digital audio

 encoding format using a form of lossy data compression
3
.

myGreetinq: the name of the web-service product.

Platform: describes hardware architecture or software framework (including application

frameworks), that allows software to run. Typical platforms include a

computer's architecture, operating system, programming languages and related

runtime libraries or graphical user interface.

RTP: The Real-time Transport Protocol defines a standardized packet format for

delivering audio and video over the Internet.

Streaming: is a variant of Streaming Media
4
, where the audio data is continuously

Audio transmitted on the computer network.

3
 Lossy data compression is a method where compressing data and then decompressing it retrieves data that may

well be different from the original, but is close enough to be useful in some way.
4
 Streaming multimedia is multimedia that is constantly received by, and normally displayed to, the end-user

while it is being delivered by the provider

http://en.wikipedia.org/wiki/Audio_data_compression
http://en.wikipedia.org/wiki/Speech_coding
http://en.wikipedia.org/wiki/Speech_coding
http://en.wikipedia.org/wiki/Speech_coding

 6

 Symbian OS: is an operating system, designed for mobile devices, with associated

 libraries, user interface frameworks and reference implementations of common

 tools, produced by Symbian Ltd.

Voicemail: audio messages spoken by the caller when a call is unanswered.

XML: The Extensible Markup Language is a general-purpose specification for

creating custom markup languages.

 7

Table of contents

Preface .. 2

Summary .. 3

Glossary .. 5

1. Introduction .. 9

1.1. The Company ... 9

1.2. The project ... 9

1.3. People involved ... 10

1.4. Description of the chapters ... 10

2. Project Organization ... 11

2.1. Project Plan .. 11

2.2. Project meetings .. 12

2.3. Documentation .. 13

2.4. Team work ... 13

3. Problem domain and Analysis .. 13

3.1. Problem domain .. 13

3.2. Analysis .. 13

3.2.1. General analysis ... 14

3.2.2. Users ... 14

4. Research ... 16

4.1. Pre-research .. 16

4.2. Requirements .. 16

4.3. Scenarios .. 16

4.4. During project .. 19

5. Design phase and its problems .. 20

5.1. Graphical User Interface .. 20

5.2. Application Logic .. 20

5.3. Data Model .. 21

5.4. Audio Processing ... 23

6. Implementation phase and its problems ... 24

6.1. Graphical User Interface .. 24

6.2. Application Logic .. 25

6.3. Voicemail ... 25

6.4. Greetings ... 26

7. Testing .. 27

7.1. Unit Testing .. 27

7.2. Functionality Testing ... 28

7.3. System Testing ... 28

7.4. Acceptance Testing .. 32

8. Final product .. 33

8.1. Requirements Satisfaction ... 34

8.2. Screenshots.. 35

8.3. Logging Functionality ... 38

8.4. Code Fragment .. 39

8.5. Future Plan... 40

9. Conclusion and Recommendation ... 41

 8

10. Personal Reflection .. 43

10.1. Medya Amidi .. 43

10.2. Nathan Bruning .. 44

10.3. Michelle Cheung .. 45

References .. 47

Attachment: task division ... 48

Appendix A: Orientation Document ... 49

Appendix B: Requirements Document ... 62

Appendix C: System Design Document .. 84

Appendix D: Project Plan Document .. 101

Appendix E: Test Report ... 110

1.

 9

1. Introduction

1.1. The Company

Greetinq B.V. is a high-tech start-up company, established in January 2007 and located in

Yes!Delft
5
, Rotterdamseweg 145 in Delft. The company is started by three students; Arthur

Tolsma (27), a technical management student, Richard Stronkman and Ruben van Eijnatten

(both 24), computer science students, all studying at TU Delft University. The company

started to develop a system for mobile phone users to personalize greetings
6
. The system

provides users to record different greetings for different people or groups of people. Recorded

greetings are coupled with phone numbers in the users contact list of his/her mobile phone. In

this way the user can separate his/her business greetings from personal ones. Working almost

one year on this product, the company wanted to expand its potential by adding extra features

to its existing personal greeting service. One is a web-based service for managing voicemails

and personal greetings and the other one is to visualize voicemails & personal greetings on

the mobile devices.

The web-based service is currently being developed. The second project, the visual voicemail

& greeting application, was introduced as a bachelor project to the department of software

engineering of TU Delft University. After interviewing with the Greetinq staff the company

decided to assign this project to us.

1.2. The project

Our assignment was to develop a mobile application that enables users to browse through

their voicemail messages and personal greetings; select, play and in the case of greetings

record them in „any order‟ of their choice, in a user friendly GUI environment. The product is

called “myGreetinq Mobile”.

We chose this project for number of reasons. First of all none of us had experience in the field

of mobile application development therefore it appeared very interesting to us. Secondly,

mobile Internet technology and its related services have been greatly progressed in the past

few years and are still being developed rapidly. This creates more job opportunities for one

who is experienced in this field.

5
 Yes!Delft is a „Young Entrepreneurs Society‟ who inspires, stimulates, and supports students and young

technologists to start their own business. See www.yesdelft.nl
6
 See Glossary for the definition of greeting

http://www.yesdelft.nl/

 10

1.3. People involved

The people and organizations involved in this project are as follows:

- Organization:

o Delft University of Technology:

 bachelor project mentor: Ir. H.J.A.M. Geers, department of Software

Engineering

 bachelor project coordinator: Ir. B.R. Sodoyer, department of

Software Engineering,

o Greetinq:

 Principal: Mr. A.D. Tolsma

 Principal: Mr. R. Stronkman

 Principal/contact person: Mr. R.van Eijnatten.

1.4. Description of the chapters

This report is presented in 8 chapters. In chapter two, Project Organization, we will explain

the planning process consisting of the project plan (how we divided different tasks into

phases), project meetings, documentation and finally the team work experience.

Chapter 3 analyzes the problem domain. This chapter mainly describes which user groups will

use the final product and which factors are important to us to consider.

In the next three chapters (chapter 4 to 6), we explain the problems we have faced and

consequently the changes we have made to our planning and the decisions we have taken

during the process. Chapter 4 explains the pre-research phase and the research we had to do

during the process; the difficulties that we did not have or could not predicted before starting

our project and their effect on the process. The design phase is described in chapter 5 and the

implementation phase is in chapter 6 with its related problems, boundaries and limitations.

Further, in chapter 7, we introduce the final product and explain, among others, whether it has

realized and satisfied the requirements.

The conclusion and the recommendations are written in chapter 8. And finally, we finish the

report with our personal reflections.

Note: here we tried to explain the process globally and hence have omitted details. For any

detailed information you can refer to the corresponding documents in appendices attached to

the end of this report.

 11

2. Project Organization

2.1. Project Plan

According to the TU Delft curriculum the final bachelor project should started in April and

would last for three months. Due to problems related to the Greetinq Company (moving and

preparing suitable place to work) the start of our internship was postponed to the beginning of

May. By working hard every day we could manage to compensate two weeks of the delay and

finish the project in less than three months.

One of the most important factors in software development is to meet the deadline to deliver

the final product - “time to the market”. Greetinq Company has planned to introduce its

product to the market in September. However, according to the TU Delft curriculum our

actual deadline is specified in mid July. Based on this, we planned to deliver our work in the

beginning of July and spend the rest of the time to finalize our report and documentations and

prepare our presentation. Despite of many unexpected incidences during the project we could

successfully manage to catch our deadline. The following paragraph will give a brief

explanation of our planning.

In the first two weeks of May we have finished the first version of the requirements, design

and project planning documents. The design was mainly based on Greetinq‟s design

principles7. Both Requirements and Design Documents were evaluated by Greetinq before

starting the actual implementation. After discussing with our contact person at Greetinq, we

decided to use the Model View Controller (MVC) architectural pattern to build the

application. Choosing this pattern enabled us to implement different parts of the application

independently. We divided the project in four implementing phases: mock-up, voicemail,

greetings, and error correction8. Next to these phases, we assigned one week for spare time

and one and a half week for the final report. However after starting the actual implementation

we faced different problems (mostly in the first phase9). This caused to change our planning:

1. instead of completing phases sequentially, we started implementing them in parallel. We

did so to prevent potential delays in the process - since some phases needed more time than

what we had expected. More importantly, we needed a mobile device to test which was not

available for the first month of our internship. 2. We had planned to combine the development

and testing of each phase. To test the application, we needed to communicate with the

Greetinq‟s server. Since Greetinq‟s server was also being developed, there were still bugs in it

while we wanted to use it. Therefore the major testing part was done later in the process. In

figure 2.1 you find the process flow during 10 weeks of our internship.

7
 See chapter 5

8
 For more information please see Project Planning Document, Appendix D

9
 Problems relating implementation phase are described in chapter 6

 12

February Get acquainted with the Greetinq

Attending Greetinq pilot

Administrative arrangements for the Project

March Get started with the pre-research

Preparing Orientation Document

April 25th start off the project

Tasks W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

Planning

Analysis

Requirements

Elicitations

Requirements

Document

Design

Implementation

 Phase 1 Phase 2 Phase 3 Phase

4

Testing

 Unit

Testing

 System Testing Acceptance

Testing

Final report

Figure 2.1: the process flow

2.2. Project meetings

During the first month of the internship we were working at the Civil Engineering Faculty

where Greetinq had temporary arranged us to work. During that period we were having lunch

everyday at YES Delft and had a chance to discuss the problems, our progress in the project

and to exchange ideas with Greetinq. In the beginning of June we moved, together with the

Greetinq staff, to a new office at YES Delft! so we could discuss problems more frequently

than before. This has accelerated the progress of the project. Besides, we could use the mobile

phone of one of the Greetinq members as a test device.

Next to our daily informal meeting with Greetinq, we had an appointment almost every week

with Mr. Geers, our TU Delft supervisor, to inform him about our progress and to evaluate

our works. Among the team, we had a short informal meeting almost two times per week to

inform each other about our individual progress in the project, make to do-lists and divide the

remaining tasks among us.

 13

2.3. Documentation

During the internship we created different types of documentation. We started with a Project

Log document to keep track of the daily work and particularly the problems we encountered.

Further, the requirements, design and project planning documents were made in the early

stage of the internship but were constantly improved during the project. As requested by

Greetinq, we made a user manual for the final product. The user manual and the Project Log

are not included in this report. The rest are found in the appendices.

2.4. Team work

Tasks were divided based on preferences of the group members. We did not have to spend

much time redoing each other‟s works. Fortunately, there were no conflicts among team

members. We fully cooperated and discussed the problems with each other. This was one of

the important success factors in speeding up the process. Using the SVN tool was another

factor which eased the team work. We mainly worked individually although some tasks were

done by a group of two persons. Everyone participated equally in the decision making process.

This prevented conflicts in the process.

3. Problem domain and Analysis

The myGreetinq pilot web service was announced in April 2008. This service, a form of

visual voicemail, provides mobile users to manage their voice messages and to use personal

greetings. The Greetinq Company wanted to expand its services by providing a mobile phone

version of myGreetinq. This allows users to access myGreetinq anywhere at any time.

In this chapter we introduce the problem domain and an analysis of it. This research is needed

to understand our problem and to make the right decisions. In section 3.1 the problem domain

is explained. The analysis in section 3.2 focuses on the potential market of the product.

3.1. Problem domain

Greetinq assigned us to develop a mobile service (visual voicemail & greetings) called

“myGreetinq Mobile”. Voicemail services provide phone users facilities to listen to messages

left by callers when they fail to answer incoming calls. This service has been in use in most of

the countries for over a decade. What is new in this field is the possibility of a „visual‟ service

to manage voicemails. Next to this, Greetinq wanted the users to be able to set personal

greetings for different callers. Currently, there is no way to set different greetings.

3.2. Analysis

This section is divided into two parts. Part 3.2.1 describes a general analysis of the problem

domain involving general knowledge and a short introduction to competing software. Part

3.2.2 gives an analysis of the users.

 14

3.2.1. General analysis

Telephony and in particular mobile telephony is a service which has had a growing amount of

users ever since its invention. Together with fast growing wireless technology, the number of

services that a mobile phone can offer is increasing dramatically. This has opened a new area

in software development that is evolving very fast. As mentioned in the previous section, our

plan is to develop a visual voicemail and greeting service for mobile phones.

The traditional voicemail service is implemented by forwarding calls that are not answered, to

a voicemail operator line. This line is connected to an advanced answering machine that

handles the call; it asks the caller to leave his voice message, and records the message on

some storage medium to be listened later by the callee.

Of course, in this strong competitive mobile phone market there are several telecom

companies such as Apple [1] which provides a similar visual voicemail service. Currently, in

the Netherlands there is no such service available yet. At this moment Greetinq has a great

opportunity to introduce a visual voicemail and personal greetings service. An important

feature making myGreetinq different from others is to combine web based service with

mobile service, which other existing companies do not have.

3.2.2. Users

The number of mobile phone users is increasing rapidly. Currently, the number of mobile

phones in use is more than there are inhabitants. Research has shown that within a few years

the percentage of mobile phones with internet will be around the 70 percent of all mobile

devices [4]. Further, it is remarkable that mobile internet is popular especially among

educated people younger than 45 years. Only 7 percent of the old or low educated people use

mobile internet [2]. Every mobile phone owner is a potential customer. People that already

heavily using their voicemail are most likely interested in the improved service offered by

Greetinq Company. However, people who do not use their voicemail currently- because of its

bad service, could also be persuaded by the new service. We have categorized the potential

customers in four groups:

- Businessmen: because of the nature of their work, they are always in contact with

people. Sometimes they need to talk in different languages with their clients. Besides

they are hard to reach because they have many meetings and appointments. It would

be very practical for them if they can make different greetings for different groups of

people.

- Employees: using one phone for both work and private life may not be favourable. It

wouldn‟t be affordable either for many people to buy two different mobiles to separate

their work from their personal life. Especially choosing an applicable greeting is not

evident; a more formal greeting would be good for business, but not for kids. The

possibility of making multiple greetings and selecting between voicemails comes in

handy here.

- Teenagers: recently, a few companies have been very successful at selling ringtones

for mobile phones. Many of these ringtones were popular because they are funny.

Greetinqs could cause the same hype: selecting different funny Greetinqs for friends

when they get your voicemail.

 15

- People with foreign contacts: being anything from business partners to close family, it

would be clear and polite to speak to people in a language they understand. With the

Greetinq service, one could configure the voicemail service to provide an English

greeting to numbers calling from outside The Netherlands.

 16

4. Research

4.1. Pre-research

End March, before the project started, we focussed on the pre-research. The purpose of this

phase was to get familiar with techniques and tool needed during the project. Later in the

design and implementation phase it became clear which of these techniques and tools were

applicable and should be used. The final decisions made during the project are explained in

chapter 5 and chapter 6.

Since the application must be implemented in Java Micro Edition (Java ME), we concentrated

on the following techniques and tools with respect to Java ME: XML, HTTP, Symbian OS,

CLDC, MIDP, MMAPI and Sun Java Wireless toolkit (for more details of these terms, refer

to Glossary). We could not collect enough useful information of all these techniques. A good

solution was to have a try to get familiar with them. We needed to actually use them to figure

out whether they are applicable and useful. This strategy we adapted during the project.

4.2. Requirements

We have interviewed the Greetinq company staff for the identification of requirements. These

requirements have been classified in functional (functions that the program must be able to

perform), constraint (a situation the program must be able to cope with, or a property the

program must have), quality requirement (how is software quality asserted), platform

requirement (in what environment the program must function) or process requirements (how

must development be planned and managed).

For a detailed list of requirements, see appendix B section 3.1.

4.3. Scenarios

User scenarios are used to explain an interaction of a fictitious person with a system by simple

logical stories, helping readers grasp complex ideas, non-technically. This section gives a

brief introduction of the use case model, and the user scenarios we collected after

interviewing the company. We describe here one of the user scenarios in details. The rest of

the scenarios and their related use cases are explained in the Requirements Documents in

Appendix B.

Figure 4.1 illustrates the interaction of a user with the system. The model describes a system‟s

functional requirements in terms of use cases. Here it is shown which tasks the user can

initiate when interacting with the system. For example if the user wishes to delete a message,

he has to login first, select that particular message he wants to delete in the screen and select

afterwards the delete option in the menu. The scenario related to this task is given below:

 17

Deleting a message

Actor: Peter

Flow of events:

1. Peter successfully logged in and sees that he has a few new messages.

2. Peter notices that a person whom he does not like has left a message. He chooses this

new voice message and goes to „Menu‟.

3. Here he selects the option „Delete‟ and presses „OK‟.

4. A confirmation message is shown and asks whether he is sure to delete the message.

5. Peter chooses “Yes” and the message is deleted from the system.

 18

Figure 4.1: Use Case Model

 19

4.4. During project

When only studying techniques and tools and not applying them in an actual work, it is hard

to find out whether they can be used in developing a particular application, and if so, how

well they will work. We applied the strategy mentioned in the section 4.1, when we designed

the system. First we discovered what Java ME can offer for the user interface environment of

our product. With the standard of Java ME, it was not possible to implement the user interface

compatible with the style that Greetinq had requested. The standard Java Me gave us only a

very basic user interface. A research to additional Java ME GUI libraries was necessary. We

found a number of open source libraries, J4ME
10

 and jMobileCore
11

, but none of them

fulfilled our requirements. The problems with the graphical user interface will be treated in

section 6.1.

A second subject, which was also significant, was the support of different audio format on

different mobile phones. To choose the right audio format we focussed on three criteria:

Time/Size, Quality and Support. Time: streaming of an audio file from the server to the

mobile phone must take less than a minute, thus the size of the file cannot be too large. Size

should be less than 1 Mb for one minute audio. Even taking the size of the file into account, it

should keep its quality at an acceptable level, which means that the user can hear the voice

message well. And of course, the file format should be supported by Nokia S60 mobile

phones. First we considered the mp3 format, but we found out later that it was not fully

supported by JavaME. Our results showed that AMR and WAV
12

 are the best audio formats

we can use for our product.

Testing was an important part of the whole project. To do a thorough but not exhaustive test

we needed some testing tools. For unit testing there were JMunit and J2MEUnit test

frameworks available. Sun Java Wireless Toolkit provides us Debugger, Profiler, Network

Monitor and Memory Monitor. Besides we had the JT Harness and ME framework. A

problem was that they function below our expectations and so we needed to find another

additional test. Besides, testing the system with these frameworks required more time than we

had left. Problems with testing are discussed in section 6.4

10

J4me, http://code.google.com/p/j4me/
11

 jMobileCore, http://jmobilecore.sourceforge.net/
12

 WAV or WAVE is a file format developed by Microsoft. WAV contains audio which can be compressed with

a codec, but practically always no compression is used. [6]

http://code.google.com/p/j4me/
http://jmobilecore.sourceforge.net/

 20

5. Design phase and its problems

We started out by decomposing the application into a small number of subsystems. They are,

loosely based on the System Design document (appendix C):

- Graphical User Interface

- Application Logic – including web service access

- Data storage

- Audio processing (playback / recording)

The first three subsystems relate to our decision of using the Model View Controller (MVC)

design pattern [3]. This pattern decouples the data object model (model), graphical

representation (view) and the application logic (controller). Greetinq is planning to work

together with different companies, in particular mobile phone service providers. In such

cooperation, the service provider would want to distribute our application using their own

corporate identity (their logo, colors, text style). Having a separate view “layer” reduces this

adjustment to replacing only that layer.

5.1. Graphical User Interface

From our past experience with the Java programming language we knew that libraries are

available (AWT, Swing) which greatly simplify the process of developing a graphical user

interface (GUI). Therefore, we did not expect great problems to arise for the GUI (this

hypothesis proved to be false later on, see chapter 6 for the encountered problems). We had

already identified the various screens needed in the Requirements Document (appendix B),

and appointed one class for each screen.

5.2. Application Logic

The application logic receives events from the user interface, and provides all data that the

interface has to display. Events can update the data model, trigger a server operation, and

possibly make the application change its current state and/or screen.

Web service access should be fully asynchronous, for reasons described in the Orientation

Document (appendix A). While waiting for a response from the web service, the user

interface should indicate that the system is busy, while not blocking the user interface. When

the response is received and parsed, the application logic is notified and takes action

appropriate for the response. Figure 5.1 illustrates the architecture of the application logic.

 21

Figure 5.1: architecture of the controller

5.3. Data Model

The application communicates with the Greetinq web server which stores and processes all

account data. Therefore, the data model of the application domain is already fixed. We

received the Greetinq web service specifications document describing the high level interface

to the web service. The data model used in the application is an exact copy of the XML

objects structure used while communicating with the web service.

 22

Figure 5.2: architecture of the Model

A short overview of the objects in the system:

 Account: stores information about the users account, such as username, password, and

 personal information.

 Contact: a contact of the user, consisting of a phone number and a name.

 Greeting: consists of name, description, and audio file of a greeting.

 Message: a received voicemail message. It includes data such as sender, date and the

 associated greeting.

 Phone: a phone owned by the user, on which it can receive voicemail messages.

 Profile: describes which contacts will hear a specific greeting when they get the

 voicemail of the user. Associates Contact objects with Greeting objects.

 Setting: all the settings configured by the user.

 Mailbox: configures the current voicemail service for the user. Options include

 enabling/disable the Greetinq service and choosing the active profile.

Serializable is the base class for data storage. It provides a function to read and parse

the object from a XML stream. Storage is implemented with a collection of elements of

various types. We chose not to use specific attributes in the data classes for each data element,

because the specification is likely to change. With the chosen approach we can easily adapt to

such changes.

 23

5.4. Audio Processing

Choosing an audio format supported by all mobile phones provided quite a challenge. We

started looking at the well-known MP3 format but it seemed to be supported only on very new

phones from Nokia. We then determined that we should support multiple audio formats, and

choose one at runtime. This means the server has to be able to deliver audio files in various

formats. Also, we chose to support multiple transport protocols. For details, see System

Design document section E3. Because detailed information concerning which phones support

which protocols was not available, we decided to determine the exact formats during the

implementation phase.

 24

6. Implementation phase and its problems

In this chapter we describe the implementation phase. From the principal we were advised to

have a mock-up before we started with the implementation of the core of the system. The

mock-up, which gave us a view of how code works in the early phase, was a basic user

interface of the product. In section 6.1 we discuss the implementation of the graphical user

interface and its problems we met during the process. Regarding to the divide and conquer

principle
13

, we noticed two main parts of the implementation which we divided into two

phases, namely Voicemail phase and Greetings phase. These two phases will be discussed in

section 6.3 and 6.4, respectively.

6.1. Graphical User Interface

At the recommendation of the company we first started with a mock-up. The mock-up is a

sketch of the GUI program without functionality. Quite early in the project we discovered that

the UI was actually a notable problem. Different mobile phones provide different kinds of

support for various graphical operations. Screen sizes, color depth, processor speed and

interaction methods (keypad, pointer, touch screen) all differ to such an extent that making a

uniform interface is very hard.

From the orientation phase we knew there are two forms of UI development for mobile

phones: low level and high level. The former means that drawing of primitive components

(labels, images, text boxes and so on) must be implemented by the developer, while the latter

uses a default implementation provided by the mobile phone.

The product requirements state that the user interface must be in Greetinq style (colors, fonts,

icons) and that is must be adaptable to another company‟s style. Using the high level API the

mobile phone implementation draws all components. This means that the exact looks of the

application depend on the device. It also means there is no customization possible with

respect to colors and background images / colors, which was one of the requirements. We

therefore ruled out the option of using the high level API.

Low level development, on the other hand, requires us to create every component by hand

(handling graphical representation and providing an interaction method), because mixing low

level and high level components is not possible in the current version of Java ME. Creating all

components equals developing a UI framework; this was simply too much work for the two

months reserved for this project.

A third option was to use a readily-available UI library. We tested a few libraries, including

Apime, LwVCL, J4ME, jMobileCore and LWUIT. Most of them were still in very early stage

of development. Using the accompanying demos provided by the authors the libraries worked

like a charm, but when we created a simple screen the result was one big mess. Three libraries

were identified as possible candidates: TagsME GUI
14

, J2ME Polish
15

 and LWUIT
16

. Due to

13

 Divide and conquer principle: Trying to deal with something big all at once is normally much harder than

dealing with a series of smaller things. As software system can be divided in subsystems or in packages etc.[5]
14

 TagsME homepage: http://www.tagsme.com/

http://www.tagsme.com/

 25

time shortage we decided, together with Greetinq, not to further investigate these libraries.

This will be included in the next version, released by a new team of developers.

Finally we decided to use the high level GUI. While not meeting the initial requirements, we

saw no way to include a fancy GUI in the product while not failing to support some phones,

or failing to meet the deadline. Therefore, the requirement stating the application should have

the graphical Greetinq style was dropped.

6.2. Application Logic

Options for deleting a message or a greeting, and marking a message as listened / new where

put in the message / greeting details screen. When showing the application to the Greetinq

staff around half way the project, one employee noticed that these options would be better

suited in the message / greeting list screens. We agreed and moved the options. However,

because of limitations of the high level user interface API, it was not possible to show the

difference between marking a message as listened and marking a message as new. The

options was therefore renamed to just „Mark‟. When used on a new message, the message is

marked as listened; when used on a listened message, the message is marked as new.

6.3. Voicemail

In this phase we had to implement the communication with the web service. Network traffic

can block the user interface because the network is unreachable, the mobile phone has to ask

permission for the network access, or the operation simply takes very long. Blocking the user

interface prevents the user from using buttons, and no feedback can be provided on the screen.

Therefore, network access (and also file access) is done in a separate thread, asynchronously

with the GUI. While this prevents blocking issues, it gives rise to synchronization issues, the

worst case being a deadlock. Luckily, the Java ME provides means to synchronize two

threads. The implementation uses callbacks to indicate when the network operation is done.

See the System Design Document, appendix C, for implementation details.

Next problem was the support of various audio formats in mobile phones. Uncompressed

sound in a WAV file is supported on nearly all phones, but is far too large to be transferred

over a slow wireless communication link. We chose for AMR files
17

 as they are supported by

all S60 3
rd

 edition Nokia phones [3]. These files are of low quality, but this is not an issue for

voice. The low quality combined with compression makes the files extremely small.

Downloading a voicemail message takes only little waiting time. As a backup method, WAV

file playing is supported by the application, but has yet to be implemented at the server side.

As transport protocol we chose HTTP as it is the simplest and most supported protocol. RTP

streaming is supported by the application (as decided in the Design Document), but is

presently not supported at the server side.

Demo: http://netbeans.tv/community/TagsMe-GUI-in-Action-352/
15

 j2mepolish http://www.j2mepolish.org/
16

 LWUIT https://lwuit.dev.java.net/
17

 See System Design Document, section E3.

http://netbeans.tv/community/TagsMe-GUI-in-Action-352/
http://www.j2mepolish.org/
https://lwuit.dev.java.net/

 26

A particularly hard problem was the synchronization of the user interface, which should

display the progress of the audio player, and the audio player itself. Both are residing in

different threads and are therefore executing asynchronously. They need to interact with

messages in two directions: the UI should inform the player about buttons pressed (play, stop,

and pause) and the player should inform the UI about the current status (playing, paused,

current time position).

6.4. Greetings

In the Greetings phase, functions related to the “Greetings” were implemented. The main

function in this phase was the ability to record voice with this mobile application. Therefore

we had to take the possibilities and limitations of a mobile phone into account. We tried to

store the audio we recorded in a byte array. This was an easy solution, because the audio was

passed in plain wave form, we did not have to worry about mobiles that do not support a

specific audio-format. But storing in a byte array had two disadvantages: memory usage (the

whole byte array is allocated in memory) and size (no compression), which means long

transfer times to the Greetinq server. We noticed that all Nokia phones supported the AMR

file format. For non-Nokia phones we chose the WAV file format as a backup file format. For

the whole process we had two options:

- Record first in the main memory, create a file in the hard disk, save in the file, send to

server, and delete the file.

- Create a file on the hard disk and store the audio while recording, send to server,

delete the file.

To ensure that we do not lose any data (in case of memory shortage) we chose for the second

option. The recorded audio file is only temporarily saved on the storage of the device. After

sending it to the server the file will be automatically deleted.

We developed the system to be robust. It finds a match between supported audio types on the

device and supported audio types of the server. The server then converts all supported input to

AMR. In spite of this we found phones on which the application did not work. The phone

simply did not accept audio formats it claimed to support. Our workaround for this situation is

to let the mobile phone choose which file format to use if all our suggested formats fail. Then,

the resulting format is checked for server support.

 27

7. Testing

Testing a Java application on small devices is quite different from that of on a computer.

There are several constraints set up by the device. For example, a mobile phone has a small

screen and limited memory. There are also just a few threads, the connectivity is intermittent

and there is no clear file system. Automating the testing does not work on mobile because

multiple tests are hard to run. Besides, the growing number of different devices makes it more

complicate to test a mobile application.

Although we restricted to mobile phones with Symbian S60, it was still hard to have our

product thoroughly tested. While there was no standard to test Java mobile application we still

needed the existing test methods to verify if our product fulfils the requirements.

Due to complexity of the code, it was not possible to write tests for all the packages in time. It

would also be an exhaustive job. We decided to apply unit testing to packages where it can

test one class at a time; in our case only the model package. After each phase we tested the

functionality on the emulator and on our testing mobile device. The final or system testing

was done manually. The unit testing, functionality and system testing are discussed in section

7.1, 7.2 and 7.3, respectively. We also planned to take an acceptance testing. But at this

moment, this document it is not done yet. In section 7.4 we introduce the acceptance test.

7.1. Unit Testing

We have been familiar with JUnit during one of our course, Software Quality and Testing, at

TU Delft. JMUnit, a variant of JUnit for Java ME, was thus quick to learn and easy to use.

After studying JMUnit we realized that the testing in this framework may have limitations

because of the simplicity of JMUnit. So we were forced to keep the unit testing strict into the

classes of the model package. Unit testing is to verify that a particular source code is working

properly. Due to time limitation we were unable to do unit testing in other complex classes.

Unit tests are not designed for testing multiple classes but for a single class in isolation.

JMunit has all basic assertions that JUnit has, but it does not allow us to insert assertions in

the source code. We used primitive code to assert the pre- and post conditions. For example,

for assertNotNull() we used if(something!=null).

The whole unit testing resulted in three errors which we corrected right after. The test result

after removing those errors was 100% passed as it is shown in figure 7.1. We can only say

that the code fulfils the assertions. About the coverage we cannot say anything, because there

are no coverage tools available for Java ME.

 28

Class Pass Fail Error Total Time

Account 11 0 0 11 31

Contact 5 0 0 5 12

Greeting 8 0 0 8 16

Mailbox 4 0 0 4 2

Message 9 0 0 9 41

Phone 3 0 0 3 1

Profile 6 0 0 6 18

Setting 3 0 0 3 1
Figure 7.1 Final results of the classes under unit testing

7.2. Functionality Testing

During each phase, a part of the product was implemented. Before we integrated these parts

into the system, we tested whether it worked properly. We tested whether the functions

worked properly in the emulator and device. Of course this did not happen without problems.

The first problem we met was that there was no mobile phone available for testing our

graphical user interface implementation. We had indeed a mobile device with a Windows

Mobile 5.0 platform, but unfortunately till today there is no Java virtual machine developed

which works properly. Doing tests on Windows Mobile 5.0 was not working. We have

propounded to our principal that it was necessary to have a mobile phone to test our product.

They agreed and until the test phone was available we had to do our test using the emulator

and Windows Mobile.

According to Sun Microsystems, when an application is running in the WTK emulator it is

supposed to work on mobile devices too, but it was not the case. Some functions might not

work on the mobile device but do work well in the emulator and visa versa. Note that we are

developing a product for mobile devices and not for emulators. Therefore we give a greater

weight to tests failing on the mobile phone then in the emulator.

7.3. System Testing

As mentioned in section 4.2 the currently available testing tools for Java ME were not enough

for a thorough testing. Besides, the structure of the implementation was too complicated to

write a simple test with one of the tools. We finally decided to write possible situations and

test these manually. It required much more work and could not be automated too, but with our

situation it was the best solution. We called this system testing and it was needed to detect

defects that would occur only when the complete system was assembled. The testing verified

functionality, usability and security of the system.

Taking use cases and scenarios of the Requirement Documents
18

 into account, we have the

following test cases: Log In, Main Menu, Messages, Message Details, Greetinqs, Greetinq

Details, New Greetinq and Settings.

18

 Requirement Documents , Appendix B.

 29

Each test case has a Pass/Fail column in the tables below. The green colour indicates that the

test has passed. After debugging, all tests have passed. Therefore the tests which failed once

have their row in the table coloured orange. These errors are described in the Test Report

(Appendix E). Situations that will never happen are coloured grey and not tested.

The test cases we used are the following:

Log In

Username Password Expected Result Pass/Fail

correct correct Login Succeed,
IF |messages| = 0

MainMenu Screen
ELSE Messages Screen

Login Succeed
IF |messages| = 0 MainMenu Screen

ELSE Messages Screen

P

correct incorrect Login Failed,

Warning

Login Failed,

Warning

P

incorrect incorrect Login Failed,
Warning

Login Failed,
Warning

P

incorrect correct Login Failed,
Warning

Login Failed,
Warning

P

Null null Login Failed,

Warning

Login Failed,

Warning

P

Main Menu

 Option Expected Result Pass/Fail

Messages = null Messages Alert Alert P

Messages ≠ null Messages Messages screen Messages screen P

Greetinqs = null Greetinqs Alert Alert P

Greetinqs ≠ null Greetinqs Greetinqs screen Greetinqs screen P

 New Greetinq GreetinqNewType screen GreetinqNewType screen P

 About About screen About screen P

 Settings Settings screen Settings screen P

 Exit Application closed Application closed P

Messages

| Messages| Expected Result Pass/Fail

0 Alert Alert P

1 Messages Screen Messages Screen P

>1 Messages Screen Messages Screen P

 30

Message Option Real result Pass/Fail

Null Details - - -

True && New Details Message details Screen ,

Old

Message details

Screen, Old

P

True && Old Details Message details Screen,
Old

Message details
Screen, Old

P

Null Delete - -

True Delete,

Confirmation = YES

Messages - Message

Messages Screen

Messages – Message

Messages Screen

P

True Delete,

Confirmation = NO

Messages Screen Messages Screen

Null Mark - - -

True && New Mark Messages Screen , Old Messages Screen ,

Old

P

True && Old Mark Messages Screen , New Messages Screen ,
New

P

 Main Menu MainMenu Screen MainMenu Screen P

Message Details

 Option Expect Result Pass/Fail

AudioState = Stopped Play AudioState = Playing AudioState = Playing P

AudioState = Playing Pause AudioState= Paused AudioState= Paused P

AudioState = Playing Stop AudioState=Stopped AudioState=Stopped P

- Back Messages Screen Messages Screen P

Greetinqs

|Greetinqs| Expected Result Pass/Fail

0 Alert Alert P

1 Greetinqs Greetinqs P

>1 Greetinqs Greetinqs P

Greetinq Menu Expected Result Pass/Fail

Null Details -

True Details Greetinq Details Greetinq Details P

Null Delete -

True Delete

Confirmation=NO

Greetinqs Screen Greetinqs Screen P

True Delete

Confirmation= YES

Greetings - Greetinq

Greetinqs Screen

Greetinqs - Greetinq

Greetinqs Screen

P

 Main Menu MainMenu Screen MainMenu Screen P

 31

Greetinq Details

Greetinq Details Menu Expected Result Pass/ Fail

 Play AudioState = Playing AudioState = Playing P

AudioState =

Playing

Pause AudioState = Paused AudioState = Paused P

AudioState =
Playing

Stop AudioState = Stopped AudioState = Stopped P

 Edit Edit Greetinq Screen Edit Greetinq Screen P

 Add

Contact

GreetingAddContact

Screen

GreetingAddContact

Screen

P

|Contact | = 0 Delete

Contact

GreetingRemoveContact

Screen, Contact = 0

GreetingRemoveContact

Screen, Contact = 0

P

|Contact| >= 1 Delete
Contact

GreetingRemoveContact
Screen,|Contact| >=1

GreetingRemoveContact
Screen,|Contact| >=1

P

 Back Greetings Screen Greetings Screen P

Screen Option Expected Result Pass/Fail

Edit Greetinq Cancel GreetingDetail Screen GreetinqDetail Screen P

Edit Greetinq Save GreetingDetail Screen +

updated details

GreetingDetail Screen

+ updated details

P

GreetingAddContact Cancel GreetingDetail Screen GreetinqDetail Screen P

GreetingAddContact Add GreetingDetailScreen +

added Contacts

GreetingDetailScreen

+ added Contacts

P

GreetingRemoveContact Cancel GreetingDetail Screen GreetinqDetail Screen P

GreetingRemoveContact Save GreetingDetail Screen –
deleted Contact

GreetingDetail
Screen – deleted

Contact

P

Settings

 Option Expected Result Pass/Fail

Maximum

messageduration =null

Save Maximum

messageduration = 0

New Maximum

messageduration = 0

Maximum
messageduration =

t>0

Save New Maximum
messageduration =t>0

New Maximum
messageduration=t>0

P

Voicemail Activation =
No

Yes Voicemail Activation =
Yes

Voicemail Activation =
Yes

P

Voicemail Activation =

Yes

No Voicemail Activation =

No

Voicemail Activation = No P

Default Greetinq = null Save Default Greetinq = null Default Greetinq = null P

Default Greetinq =

Greetinq

Save Default Greetinq =

Greetinq

Default Greetinq =

Greetinq

P

Language = Dutch Modify,

English,

Save

Language = English Language = English P

Language = English Modify,

Dutch,
Save

Language = Dutch Language = Dutch P

 Main

Menu

MainMenu Screen MainMenu Screen P

 32

Most of the errors in this testing were easily found in the code and debugged. They were not

hard to correct. They were rather human mistakes. For example, a wrong String is given as

parameter. Other errors were caused by the server side. Because we were not responsible for

what happens at the server side, we could not see what was wrong and why it was wrong. The

only thing we could do is deliver these problems to the responsible department of the

company and let them fix these problems. In this situation we only can ensure that the client

side, thus the mobile application, is tested well. Taking into consideration the possibility of

the server bugs delayed out testing process.

7.4. Acceptance Testing

The acceptance test will be conducted to enable a user/customer to determine whether to

accept a software product. Normally it is performed to validate whether a software product

meets a set of agreed acceptance criteria. Greetinq has made an appointment on July 10
th

 to

test the final product. Therefore we cannot include the acceptance testing in this report. We

will discuss the results during the presentation
19

.

19

 Presentation at July 15
th

, 2008 at Mekelweg 4, Delft

 33

8. Final product

The final product must fulfil all constraints and requirements demanded by Greetinq.

According to Greetinq Company the delivered final product must include:

- The application

- Documentation

- User Manual

- The source code

- Generated Javadoc and UML diagrams

During the process some of the requirements and constraints were changed and even

eliminated. The reasons of these changes are already mentioned in their corresponding parts

in this report. In section 8.1 we have summarized all requirements in a table and give a

description in the case of differences with the initial requirements document. Section 8.2

demonstrates what myGreetinq mobile product looks like in an emulator.

 34

8.1. Requirements Satisfaction

Functional Requirements
20

 Tasks Description

Voicemail messages

Marking the messages as

listened or new: Changed

Changed to “Mark”.

Greetinq service

Successful

Settings Change cache policy:

Eliminated

Not required because of the small file

format of the audio

Mp3 support Eliminated No support on our target mobile device

Instead the AMR format in chosen

Audio streaming Eliminated

No server support

Quality Requirements

User Manual Successful

Delivered in Dutch

Source code Successful

Technical Documentations Successful

Delivered in English

Java Logging API Successful

Platform Requirements

Symbian OS, S60 series 3
rd

edition

Successful

Windows Mobile 5.0 Eliminated

No Java Virtual Machine available

which works properly

Constrains

Pretty designed GUI

compatible with the Greetinq

style

Changed

Simple GUI compatible with the

Greetinq style.

Multiple language option Successful

Change the graphic style Eliminated

No possibility

Figure 8.1 Table of (un)satisfied requirements

20

 The detailed requirements can be found in Requirements Documents (Appendix B)

 35

8.2. Screenshots

These screenshots show some of the main screens of the application. Because the high level

graphical library of the target mobile phone is used
21

, the look and feel of the application

differs from phone to phone. Screenshots below, unless noted otherwise, were taken from the

Nokia S60 3
rd

 edition Feature Pack 2 emulator for PC
22

.

21

 For more information, see section 6.1
22

 Downloadable from http://www.forum.nokia.com/info/sw.nokia.com/id/6e772b17-604b-4081-999c-

31f1f0dc2dbb/S60_Platform_SDKs_for_Symbian_OS_for_Java.html

Loading screen Message List

http://www.forum.nokia.com/info/sw.nokia.com/id/6e772b17-604b-4081-999c-31f1f0dc2dbb/S60_Platform_SDKs_for_Symbian_OS_for_Java.html
http://www.forum.nokia.com/info/sw.nokia.com/id/6e772b17-604b-4081-999c-31f1f0dc2dbb/S60_Platform_SDKs_for_Symbian_OS_for_Java.html

 36

Message Details Settings

Greetinq List Greetinq Details

 37

Add Contact to a Greetinq

 Login on Windows Mobile 5.0 with IBM

JVM v9

Trying to delete the default Greetinq

Message List on Windows Mobile v5.0

with IBM JVM v9

8.3. Logging Functionality

The application contains logging statements throughout the code. This has proved to be very

useful when debugging on a mobile device. The output is stored in the device‟s memory and it

is sent to the debugging output window of the development environment.

The text below illustrates debugging output when starting the application, playing a voice

message and then recording a greetinq. This example shows only lines tagged with „info‟, but

we also used „warning‟ and „error‟.

[info] in com.greetinq.mobile.storage.Storage: RecordStore: 4 records

[info] in com.greetinq.mobile.Greetinq: Platform: SunMicrosystems_wtk

[info] in com.greetinq.mobile.Greetinq: Model: wtk-emulator

[info] in com.greetinq.mobile.Greetinq: Locale: nl-NL

[info] in com.greetinq.mobile.Greetinq: Timezone: UTC

[info] in com.greetinq.mobile.server.HttpRequester:

Requesting: ?action=Login&passwordhash=098f6bcd4621d373cade4e832627b4f6&use

rname=Nathan

[info] in com.greetinq.mobile.control.LoginHandler: Storing login data

[info] in com.greetinq.mobile.server.HttpRequester:

Requesting: ?action=GetMailboxData

[info] in com.greetinq.mobile.audio.player.Player: Supported protocols:

http file device capture

[info] in com.greetinq.mobile.audio.player.Player: Supported formats:

video/mpeg image/gif audio/x-wav audio/amr audio/x-tone-seq audio/sp-midi

audio/midi

[info] in com.greetinq.mobile.audio.player.Player: Using type audio/amr,

protocol = http

[info] in com.greetinq.mobile.audio.player.Thread: Loading audio from

http://asterix.greetinq.com/GreetinqWebservice/DownloadServlet?gtqItemType=

messages>qMailboxID=4>qFilename=C9D76870554743C7669CA97501E65F64>qFil

eType=amr>qHash=956463546fd7749576aa59b07f5560b7

[info] in com.greetinq.mobile.audio.player.Thread: Realized: duration =

27400000

[info] in com.greetinq.mobile.audio.player.Thread: Prefetched: duration =

27400000

[info] in com.greetinq.mobile.audio.player.Thread: Done.

[info] in com.greetinq.mobile.audio.recorder.Recorder: Chose

pcm&rate=8000&bits=8&channels=1 as record encoding.

[info] in com.greetinq.mobile.audio.recorder.Recorder: Possible recording

encodings: encoding=pcm encoding=pcm&rate=8000&bits=8&channels=1

encoding=pcm&rate=22050&bits=16&channels=2

[info] in com.greetinq.mobile.audio.recorder.Thread: Trying recording url:

capture://audio?encoding=pcm&rate=8000&bits=8&channels=1

[info] in com.greetinq.mobile.audio.recorder.Thread: Recording media in

content type: audio/x-wav

[info] in com.greetinq.mobile.audio.recorder.Thread: Recording audio at

file:///root1/testrecord.wav

[info] in com.greetinq.mobile.audio.recorder.Thread: Recording started.

 39

8.4. Code Fragment

We provide here some code fragments to give the reader an idea of how the system design

looks in practice.

Storing new greetinq details in the handler class of the greetinq details screen,

GreetinqDetailsHandler, first checks for an empty greetinq name. When an empty name is

passed, it instructs the view package to show an error message. The „translate‟ comments hint

the translation system that these strings ought to be translated.

public void store(String name, String desc) {

 if (name.equals("")) {

 BaseScreen.displayMessage(

 /* TRANSLATE */"Please fill in a name for this Greetinq.",

 /* TRANSLATE */"Error", null, AlertType.ERROR, null);

 return;

 }

 screen.startWaiting();

 Server.getInstance().updateGreeting(gr.getId(), name, desc, this);

}

The method updateGreeting in the Server class simply converts its parameters to a format

conforming to the web service specification. The code is as follows:

public void updateGreeting(int greID, String name, String description,

 RequestCallback callback) {

 Hashtable params = new Hashtable();

 params.put("greetingid", String.valueOf(greID));

 params.put("name", name);

 params.put("description", description);

 RequestThread r = new RequestThread(ACTION_UPDATEGREETING, params,

 callback, new Integer(greID));

 r.start();

}

 40

This method returns immediately without waiting for the server to respond. The result of the

operation will be provided through the following callback method of

GreetinqDetailsHandler:

public void respond(Response res, Object data) {

 switch (res.getResult()) {

 case Response.CMD_EXCEPTION:

 case Response.CMD_FAILED:

 screen.stopWaiting();

 screen.error(LanguageManager.get(

"Error during request:") + "\n” +

res.getException().getMessage());

 return;

 case Response.CMD_SUCCEEDED:

 screen.stopWaiting();

 BaseScreen.display(new GreetingDetailsScreen(gr));

 return;

 }

}

This method shows the error message if one occurred, and goes to the Greetinq Details Screen

if the operation succeeded.

8.5. Future Plan

In section 2.1 we described how Greetinq planned to release the final version of the product to

the market in September 2008. Time-to-market was an important factor for this project

because the mobile phone market is developing fast and competition may be on their way.

Later in the project, as described in chapters 5 and 6, quite some unexpected difficulties arose.

The scope of supported hardware was greatly narrowed down. The initial requirement of

supporting Windows Mobile-based devices was dropped, and because only one phone was

available for testing we are not able to completely verify the product for other devices.

At some point, Greetinq decided not to launch the application in September. This is of course

disappointing both for us as developers and for Greetinq. However, this decision was taken

regardless of our work. Our final application provides all of the functionality required and has

been finished within the deadline of our bachelor project.

Greetinq intends to continue development of the application after we finish our project.

Development will be taken over either by Greetinq staff, by hiring extra developers or by

outsourcing it to another team of interims. The good practices of documenting design decision,

commenting code and writing a development manual will in this case surely prove to be

abundantly fruitful.

 41

9. Conclusion and Recommendation

Developing an application for a mobile device has proven to be much more difficult that

developing for a computer. The difference can be mainly attributed to two factors:

- A mobile phone has less capabilities

- Mobile phones differ more in capabilities

While personal computers also differ a lot (processor architecture, operating system and even

localization) these differences seem to be negligible when using the Java programming

language. The same cannot be said of the Java ME language.

Sun Microsystems tried to minimize the chaos by specifying a subset of the Java ME API

which all mobile phones should support. The rest of the functionality is available in optional

packages, which a mobile phone can support or not, and the API provides a way to determine

which packages are available. However, the real problem is that the functionality common to

all phones is not enough to build commercial applications. As mentioned in section 6.1, there

is no way to implement a nice looking user interface, for example.

Another huge problem of the Java ME platform is the relatively high amount of bugs in

implementations. Sun provides a reference implantation, while phone manufacturers have to

create their own implementation specifically optimized for the phone. In general, Windows

Mobile based phones do not even have a standard Java implementation. Various companies

offer (commercial) Java implementation, but they are so buggy that we decided not to support

them at all.

Nokia provides a bulk of information, consisting of a resource library, implementation notes

(describing specific details about their implementations), a maintained wiki
23

, a lot of

examples and detailed information about the supported APIs on all phones. While this helped

a lot, the many implementation bugs (although sometimes documented) make it particularly

hard to develop a robust application.

While it was not easy, we did manage to complete the project in the reserved time. The

pitfalls took much more time than we expected. This was compensated mainly by the

following three decisions:

- spending less time than expected on things like web service access,

- having a full week of spare time planned in from the beginning,

- making sure that all hours are used; if for some reason one could not be present in the

morning, it was possible to work in the evening

Our recommendations for developing a mobile application are some guidelines that we

believe would helped us and greatly simplified our process.

First of all, pay attention to the target platforms. Fully targeting and supporting all mobile

phones will amount to testing, adapting and maintaining a separate version for almost every

phone. This approach is taken by J2ME Polish, a software library trying to hide the

differences between mobile phones.

If not every mobile phone is to be supported, choosing S60 3
rd

Edition as a minimum platform

overcomes a lot of issues with unsupported features. S60 3
rd

edition and onwards phones

provide a vast subset of the Java ME specification and the phones share a lot of particularities.

23

 A wiki is a library in which visitors are allowed to edit content. See http://nl.wikipedia.org/wiki/Wiki

http://nl.wikipedia.org/wiki/Wiki

 42

Note that while this should also apply to non-Nokia phones, we did not try the application on

these phones.

Something else we should have done much earlier is read through the Nokia Implementation

Notes very carefully. Although the document is not on the main documentation index of the

Nokia website, it provides detailed information essential for developing mobile applications

on Nokia phones.

Concluding we can say that this project has been completely different than expected due to

the various unexpected issues, but therefore also a big challenge. We have learned to

overcome unforeseen limitations, and to adapt both the requirements (in consultation with

Greetinq) and our planning during the project.

Besides the troublesome development for mobile phones, the cooperation with Greetinq and

their technical staff has been excellent. The advantages were twofold. Greetinq provided us

with useful knowledge and tips, helped us find bugs, and provided us with the needed

documentation. On the other hand, we used their web service, which is still in beta phase. We

provided useful first-hand feedback and reported some otherwise hard-to-find bugs.

 43

10. Personal Reflection

10.1. Medya Amidi

First of all, I have very much enjoyed working on the project. To me it was an interesting and

informative project because I haven‟t had an experience in developing a mobile application before.

I do have to admit that at first I did not have a clear vision of how we are going to tackle the

project. By using the TU Delft guidelines for bachelor project and also the experiences we have

gained during the projects we have done in our study, we could finally manage to figure out how

we can approach the problem. This was of course not possible without lots of brainstorming with

each other.

During the project, knowledge of a variety of courses I attended at TU Delft came of use.

Software engineering, software quality and testing, project skills, data structure, and Java

programming were the main relevant courses.

I had work experience in a Dutch company before I started my bachelor project. So I was more or

less familiar with work sphere within a company. However there were some major differences

between Greeting Company and the one I had worked in before. Greetinq is a new, fresh company

established by three enthusiastic students. This resulted in a friendlier working sphere. The

communication with the Greetinq staff was straightforward and we could frequently discuss with

them about the problems we have encountered during the process. The other company, however,

had a clear discipline and methodology of software development. When we started our project we

could choose which methodology we are going to use during the process. During our internship, I

had a chance to get to know basic principles to start a company. Because of close, daily contact

with Greetinq staff, I could see how they manage their work and cooperate with each other.

When working in a team, the most important factor is cooperation. During our study, I had done a

few projects with both of my team members. Both are hard working and determined students. I

could perfectly communicate with them. So when I chose my team work I was pretty convinced

we can cooperate well. Fortunately, we could work with each other and discuss our problems with
no conflicts. This has enhanced the progress of the process.

My major contribution in this project was in developing the GUI environment of the product. This

phase, as it is also mentioned in the report, was problematic and needed the great deal of effort. I

have participated in creating the documents and reports. Further, I have done researches regarding

audio format support, searching for useful and available libraries for the GUI, tried out low level

GUI APIs during the process. At the beginning of the project it was very difficult for me to figure

out how the structure of the system should be. So I couldn‟t participate in the design of the system.

It took me a while to understand the structure. The project seemed to be simpler before starting

actual implementation. Later in the project, we have faced many problems which we had to work

hard to figure them out. But at the end, despite of difficult moments, when I look back to the past

few months, I can say I have gained valuable experience during this period.

Finally I would like to thank Greetinq for providing us a pleasant work environment and

facilities; Mr. Geers for his support and supervision during the project and Mr. Sodoyer for

coordinating and arranging the project.

My special thanks to my team members, Nathan and Michelle, for their great effort, cooperation

and dedication to the project.

 44

10.2. Nathan Bruning

Looking back at the past half year, from the moment I first met Greetinq, a lot has happened.

At the very beginning, I was not having any preference of which project to choose for my

bachelor project. Greetinq was an option, but other companies were clearly very eager to find

students for their projects. Even though, Greetinq managed to get me interested for this

project in a way other companies had not been able to.

When one of the team members asked me to join her for the bachelor project, it took little

time to agree. We had been doing a few projects together earlier in the study program and we

get along too outside of university-related activities. The third project member was familiar

(we all started our study in the same year) and I got to know her quite well along the project.

The project itself started very relaxed, just reading through the available information and

getting familiar with the field of mobile application development in which we had no

experience at all. It was not until we actually tried to code a simple application we found out

that the documentation had presented us with an oversimplified view of reality.

Previous experience in using concepts like HTTP, XML, audio processing and multi-threaded

programming proved to be absolutely necessary to complete the project within the planned

time frame. Because we all followed the same curriculum we all had a solid theoretical

knowledge base. Even though, differences were noticeable because of the different amounts

of experience in programming. For me, programming reasonably large-scaled applications

was not a completely new experience, while the other project members had more difficulties

overseeing the application structure. On the other hand, the knowledge of the English

language provided by the other team members was very valuable for writing the many

documents.

We started working in a room separate from the Greetinq staff, but close enough to it that we

could walk to their office for lunch every day. However, we very much missed the ability to

ask for support at any time. Because our application uses the Greetinq web service, which is

still in beta at the time writing, we needed thorough knowledge of its working. If not, we

could be stuck trying to solve a bug in our application which actually is a bug in the web

service.

Working in the same office as the Greetinq staff gave me a good look at the inner workings of

a starting company. I noticed that every member of Greetinq had a fairly specialized function.

They did not interfere with each other‟s work, neither did they understand each other‟s work

at all times. This fact surprised me, because many of the work I have done involved close

collaboration of multiple developers on the same piece of software. Also, at one time I

remember two members of the staff, just returned from a meeting with a potential customer,

telling they did not know what to say when the customer asked them about some technical

issues.

The collaboration between our team and Greetinq worked very well, giving rise to a

friendship which extends beyond the work floor, for example, when we watched the European

soccer championship together.

 45

My part in developing the application has involved mainly the backend of the system; for

example, communicating with the server, determining audio formats and avoiding deadlocks

and race conditions. Also, I spend much time cleaning up code, adding Javadoc and writing a

developers manual. Finally, we all spend about the same time writing the documents that can

be found in the appendices.

I would like to conclude saying that this bachelor project has been a good experience for me,

exploring the ups and downs of both our application and a starting company. We have had

fun on the project as well as difficult moments. I am very glad with my choice of team

members and even so with the choice of assignment to work on. Greetinq has proven to

possess the skills needed to supervise a team of young developers creating a complex

application.

10.3. Michelle Cheung

Before the start of the project, there was an orientation phase where we had to do research in

techniques that are appropriate for the product. Some techniques and tools were already

pointed out by the principal.

The process from beginning to the end was constructive, each time I was getting more and

more involved in the subject. In this phase, I was still at an unknown territory. Developing

mobile application was a new challenge for me; even I was familiar with Java programming.

It was confusing to research so many techniques and their information was a little bit

superficial. They remained vague until I worked with them. Companies of all kind techniques

claim that their products are functioning well and have the features to develop or to support a

mobile application. During the implementation phase it turned to be the other way. Here I

experienced what could happen when developing new software. For a next project I know

there need more attention for a research to other developers‟ experiences. They often can

provide objective more information about a technique than the companies do.

Different from other projects done in TU Delft, we had to find solutions ourselves and

presenting these to the principal. Since the principal has certain knowledge in this area, we

could easily discuss about possible solutions. The informal deliberation which took place

almost every workday accelerated the process. We could nearly take decisions immediately.

As well as new experiences with the programming language Java ME, it was also my very

first time working in a company of the software industry. Greetinq is an infant company

which is still growing. After we moved from our first location at the Stevinweg 1 to the new

office, there was the opportunity to see what their daily work was. It varied from such as

obtaining new clients as adjusting legal affairs. Bringing a new product in the market does not

only depend on a good application but also the whole organisation of the company. Most of

the assignments for Bachelorproject are situated in experienced companies. Trainees then

create a picture how a part of a company functions, in this case only the development

department. In the Greetinq Company, I had the opportunity to have a look at the whole

entrepreneurship. Which was also one of the reasons I chose for this assignment: there is a lot

of chances to work in big companies, but not in a starting up company.

The collaboration with the other two team members was as expected good. Partly due to the

same motivation and guideline we had; having this assignment done together and supporting

 46

each other through this long process. Until we had the product finished, I was a little bit

nervous about the deadline. Mainly due to the late start of our project. Of course it was exiting

to take part of the developing of an interesting product. Perhaps this uncertainty was my

incentive to work hard. And seeing my team members putting many efforts in this project

stimulated me too. Also division of tasks was not a problem. Each of us took his or her task

serious. It happened that one of us could not finish a task; there was someone willing to take

over the responsibility.

This bachelor project is indeed a nice experience for an entrance in the real business world,

but also an intensive process requiring patient, teamwork, endurance, and certain knowledge

about developing software. I consider this project as a big practical where I can gather

experiences which I cannot find in other practical of the bachelor study.

 47

References

[1] Apple, Apple iPhone

http://www.apple.com/iphone

[2] Centraal Bureau voor de Statistiek. Eén op de vijf internetters mobiel online.March

17, 2008. Fetched June 20, 2008.

http://www.cbs.nl/nl-NL/menu/themas/vrije-tijd

cultuur/publicaties/artikelen/archief/2008/2008-2415-wm.htm

[3] Nokia Forum, Mobile Media API Support In Nokia Devices v2.0

http://www.forum.nokia.com/info/sw.nokia.com/id/54200041-bdb3-4e25-817e-

66ed9b56abb1/MIDP_Mobile_Media_API_Support_In_Nokia_Devices_v2_0_en.xls

.html

[4] Wikipedia, Mobile Commerce. Fetched June 19, 2008

http://en.wikipedia.org/wiki/Mobile_Commerce

[5] Wikipedia, Model-view-controller. Fetched June 23, 2008

http://en.wikipedia.org/wiki/Model-view-controller

[6] Wikipedia, WAV. Fetched June 19, 2008

http://en.wikipedia.org/wiki/WAV

http://www.apple.com/iphone
http://www.cbs.nl/nl-NL/menu/themas/vrije-tijd%20cultuur/publicaties/artikelen/archief/2008/2008-2415-wm.htm
http://www.cbs.nl/nl-NL/menu/themas/vrije-tijd%20cultuur/publicaties/artikelen/archief/2008/2008-2415-wm.htm
http://www.forum.nokia.com/info/sw.nokia.com/id/54200041-bdb3-4e25-817e-66ed9b56abb1/MIDP_Mobile_Media_API_Support_In_Nokia_Devices_v2_0_en.xls.html
http://www.forum.nokia.com/info/sw.nokia.com/id/54200041-bdb3-4e25-817e-66ed9b56abb1/MIDP_Mobile_Media_API_Support_In_Nokia_Devices_v2_0_en.xls.html
http://www.forum.nokia.com/info/sw.nokia.com/id/54200041-bdb3-4e25-817e-66ed9b56abb1/MIDP_Mobile_Media_API_Support_In_Nokia_Devices_v2_0_en.xls.html
http://en.wikipedia.org/wiki/Mobile_Commerce
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/WAV

 48

Attachment: task division

Tasks Medya Amidi Nathan Bruning Michelle Cheung

User interface X X

Voicemail X

Server

communication

 X

Greeting

record/playback

 X

Test X X

Documentations X X X

 49

Appendix A: Orientation Document

 50

IN3405: Bachelor Project

Orientation: state of the art techniques

Bachelor Project at Greetinq

Technische Informatica

Faculty Elektrotechniek, Wiskunde en Informatica

IN3405 – Bachelor Project

Date:

University:

Course:

Authors:

Teacher:

July 8, 2008

Technische Universiteit Delft

IN3405

Bachelor Project

Nathan Bruning

Medya Midi

Michelle Cheung

B.R. Sodoyer

 51

1. Preconditions

The first condition is implicitly introduced by the product: the software package we are to

create has to run on a mobile phone.

Furthermore, we are bound to support a specified number of platforms. The mobile device-

platforms Symbian S60 3
rd

 Edition and Windows Mobile 5.0 are to be supported as minimal

systems.

Because these two platforms are quite different in both operation and technical design, we are

required to use the programming language Java which allows us to develop an application that

runs on both platforms (and their successors).

2. Familiar Techniques & Tools

In this section we will shortly review known techniques and tools which will be used during

the project. Most of the knowledge comes from lectures and practical experience.

2.1. Techniques

The familiar techniques used in this project are as follows:

- Programming in Java

 Java is the programming language that we have used in all projects that we have done during

our study. In this project we are going to write our application in this language. The major

advantage of using Java in mobile application is its portability. This means it can be run on

different mobile phones with various mobile operating systems.

- Building a Graphical User Interface

In order to build a mobile application with an interface for users to interact, we need to be

familiar with graphical User Interfaces in Java. As in other projects that we have done before,

we are quite familiar with GUI in Java SE and its features.

- Using Databases

To transfer data from a database to the mobile phone we need to have some knowledge of

how a database works.

- Using XML

XML is the de facto standard for encoding messages when transferring them between various

platforms. The messages from the database are encoded into XML by the server, and we need

to handle this format in our application.

- Using the Hyper Text Transfer Protocol (HTTP)

 52

For the messages to be transferred from the Greetinq servers to a mobile phone, a

communication protocol is needed. HTTP is used for its simplicity and wide spread

implementations.

2.2. Tools

Because the project management wants to use our project right after its completion, we have

been given a couple of guidelines about how to store the code and in which environment to

develop. This ensures a smooth transition of code maintenance from us to Greetinq.

- Storage and Version Control

To keep to project accessible from multiple locations, and to be able to work simultaneously

we are going to use Subversion (SVN). This version control system is widely accepted as the

successor of the well-known CVS (Concurrent Version System).

We are already familiar with the details of using SVN for storing application code because we

have been using it in earlier projects.

- Development Environment

Although we are not obligated to use a specified development environment, we are advised to

use a free and open-source IDE (Integrated Development Environment) called Eclipse. This

software package has come a long way since its original start at IBM [7]. It has been given to

an independent non-profit corporation called The Eclipse Foundation which has lead its

development ever since the transition from IBM.

The Eclipse environment is also familiar to use because of previous projects.

3. New Techniques

In our study we have been learning to program for embedded devices, but not for mobile

devices running Java. Therefore quite a few techniques are new to us. We have been

orientating in the world of mobile programming, and we will describe both the techniques we

are required to use and the techniques we suspect to be useful when implementing the

application.

3.1. Symbian OS

Symbian OS is a proprietary operating system, designed for mobile devices. Symbian is

currently owned by Nokia (47.9%), Ericsson (15.6%), Sony Ericsson (13.1%), Panasonic

(10.5%), Siemens AG (8.4%) and Samsung (4.5%). Although BenQ acquired the mobile

phone subsidiary of Siemens AG, the Siemens AG stake in Symbian did not pass to BenQ

[14].

The Symbian OS MIDP (to be described later) runtime environment is an integrated

component of the operating system. The platform allows Java applications to exploit the

 53

advanced multitasking, graphics, and communication capabilities of the underlying OS. The

platform includes similarly highly integrated implementations of many optional Java ME API

packages, including Bluetooth, 3D graphics, Multimedia and Content Handling.

Symbian OS v9 supports very high Java ME standards such as:

 CLDC 1.1

 MIDP 2.0

 Large collection of optional APIs – such as WMA, File and PIM access, Bluetooth,

3D graphics

 On-device debugging

In order to write a mobile application, we need also to have SKD – a MIDP Software

Development Kit – which allows us to write the program for the mobile phone. There are a

number of MIDP SDKs available, depending on the phone. When writing programs for

Symbian mobiles and no particular phone is targeted, the most recommended platform and

SKD to use is S60 and UIQ respectively.

3.2. Sun Java ME

Java Micro Edition (Java ME) is a Java platform for micro devices. Micro devices are devices

with limitation in processing power, in storage capacity, and devices with no or low

bandwidth network connection. Mobile phones, PDAs and car navigation systems are such

devices.

Java ME is subdivided by Configurations, Profiles and optional packages.

A Configuration is the specification of a JVM and a base set of necessary class libraries;

commonly based on a subset of the J2SE APIs. Currently, there are two Java ME

Configurations:

 Connected Limited Device Configuration (CLDC)

 Connected Device Configuration (CDC)

A Profile sits on top of a configuration to complete the runtime environment by adding more

high-level APIs, thereby preparing a device for a specific device category. Currently, there are

two common Java ME Profiles:

 Mobile Information Device Profile 1.0 (MIDP1)

 Mobile Information Device Profile 2.0 (MIDP2)

 Mobile Information Device Profile 3.0 (MIDP3)

The combination of MIDP/CLDC standard is widely used to provide a complete Java

platform for mobile phones and other similar devices. It provides core application

functionality required by mobile applications in the form of a standardized Java runtime

environment and a rich set of Java APIs. Developers using MIDP can write applications once,

and then deploy them quickly to a wide variety of mobile information devices.

 54

The MIDP applications have many benefits. Among others is Rich User Interface Capabilities:

The graphical user interface is optimized for the small display size, varied input methods, and

other native features of modern mobile devices.

Optional packages add functionality to the Java ME platform by offering standard APIs for

the use of various technologies, such as databases, connectivity, web services, 3D graphics

and much more [16].

3.3. Connected Limited Device Configuration

Connected Limited Device Configuration (CLDC) is a specification set up by Sun in which a

number of programming interfaces are defined, together with a (virtual) environment in which

mobile application can be run [4].

It gives a developer the possibility of developing applications for devices with limited speeds,

memory sizes and screen capabilities. The CLDC can be complemented with optional

packages so that specific possibilities of more advanced phones can be exploited.

Sun Microsystems manages the specification and provides a reference implementation. This

implementation can be used as a reference to build applications. But, this implementation is

explicitly not meant for use in a production environment (on released phones) [7]; mobile

phones developers have to create their own implementation of the standards.

3.4. Mobile Information Device Profile

The Mobile Information Device Profile, also known as MIDP, is a key element of J2ME.

Combining with the previously mentioned CLDC, MIDP provides a standard Java runtime

environment for cell phones and other mobile information devices.

Using MIDP an application can be written once and then being deployed quickly to a wide

variety of mobile information devices. MIDP is deployed globally on phones of all popular

brands and is supported in most leading development environments [9]. MIDP 2.0 is a

backwards compatible revised version of MIDP 1.0. Some new features are added, like more

extensive connectivity and end-to-end security.

By adhering to the MIDP, we can assure that our application runs on any commercially

available mobile phone that is capable of running Java applications.

 55

3.5. Sun Java Wireless Toolkit

This product, also released by Sun Microsystems, is a collection of tools that come in handy

when developing for the CLDC platform. It includes, among other tools, an emulator

environment and programs for analyzing performance, optimization and tuning [6].

In addition to tools it includes many examples, documentation and tips making it possible to

manage developing applications for mobile phones more quickly.

3.6. Playing audio on mobile devices

In J2ME the package javax.microedition.media is needed to support audio and provides

upward compatibility with all of the multimedia APIs available. The package was introduced

in the MIDP2.0 profile.

3.6.1. Mobile Media API

Mobile Media API (MMAPI) defines the superset of the multimedia capabilities that are

present in MIDP 2.0. MMAPI allows one to play mp3 files from a server on J2ME devices. It

is built on a high level and its abstraction can be divided in three main classes that form the

bulk of operations. These classes are the Player, Control and the Manager class.

Figure 1 Player creation and management [10]

Figure 1 shows that the Manager class creates Player instances for different media by

specifying DataSource instances. DataSource is another abstract class and is used to locate

Manager

Player
Data

source

creates

input

Controls for the media

Volume

control

Tone

Control

XYZ

Control

 56

resources. Though, with the known ways of reading data, there is no need to use it directly.

Reminding that not all mobile devices support all the options and MMAPI is designed in such

a way that it takes full advantage of the capabilities that are available, despite of those that it

cannot support. MIDP 2.0 comes with a subset of the MMAPI which gives a certainty when a

device does not support MMAPI, one can still use a scaled down version. This version only

supports a minimal set of functions regarding streaming audio.

3.7. Streaming Audio

While the Mobile Media API makes it possible to play audio files on every device containing

a speaker, it does not provide services for retrieving the actual audio data from a remote

location over a network. Because the time needed for a complete transfer could be quite long,

and because the device could have very limited storage capabilities, we need a way to stream

audio data from a server to the device.

3.7.1. MIDlet

A MIDlet is an application which only works with devices that have implemented at least

Java ME, CLDC and MIDP. The ability to stream media over the network is crucial to create

a successful MIDlet application. The MIDlet can play media over the work easily by

specifying an HTTP based file.

In this case there are two issues to be considered:

1) Media access over the network requires permission from the end user.

2) Media access over the network is an operation that can take a lot of time. It is then

recommended that this operation should not be done in the main application thread but

in a separate thread. Otherwise it will tie up the main user interface for a long period

when communicating over the network, which is not permitted [11].

For the first issue, one can use Application Management Software (AMS) to solve the

permission problem. The second issue is taken care of just by separating the network media

access code in its own thread.

3.7.2. Red5Server

Red5Server is an open source and fast Java server. It is a project dedicated to the interaction

between a Flash Player client and a Free Connection Oriented Server, for which the

communication protocol RTMP is used [12]. As the most basic operation, Red5Server lets

the server operator store audio files on the disc of the server for streaming them to clients.

Furthermore, Red5Server supports the following which is useful for the Greetinq project:

Stream Audio (MP3), Stream Data, Live Stream Publishing, On Demand Streaming and

Universal Java Integration. Red5Server will be useful for storing the recorded voice

messages and streaming the audio files to and from the clients. This server is using a

specialized protocol called RTMP that only can be used by a Flash Server. Thus access is only

 57

possible made by Flash. It keeps a constant and persistent connection with the client, so that

the server is able to deliver audio, video or other data types.

3.7.3. RTMP Protocol

RTMP is an acronym for Real Time Messaging Protocol. It is a proprietary protocol

developed by Adobe Systems for streaming files over the Internet. The project Red5 aims to

produce a feature-complete implementation written in Java [8]. To know which packets are

successfully delivered and which have failed transmission, RTMP uses the TCP/IP protocol

for packet transmission. The protocol has three variations:

1) RTMP protocol which works on top of TCP

2) RTMPT which basically is a HTTP wrapper around the RTMP.

3) RTMPS is just like RTMPT but works with HTTPS [13]

3.8. Web Service Access

The mobile device on which our application runs needs to access various web services

provided by Greetinq. The interactions with their servers include:

- load a list of received voicemail messages

- load (stream) a received voicemail message

- mark messages as read

- load (stream) a voicemail greeting

- upload (send) a new voicemail greeting

- read information about contacts and their associated greetings

- update information about contacts

The interactions not specified as streaming will be implemented by sending messages in the

modern and extendable language XML, over a standardized HTTP connection. Some, if not

most of the operations, need to be secure; that is, they have to be done via an encrypted link.

Therefore, we will use a HTTP connection encrypted with SSL.

3.8.1. Network communication with HTTP

The base implementation of Java ME, CLDC, provides a general interface for network

communication [1]. Furthermore, we need readily available packages for:

- communication with HTTP (both GET and POST methods)

- composing and parsing messages in the XML format

Packages for communicating over HTTP protocol, both using an encrypted and an

unencrypted link, are included in the Mobile Information Device Profile (MIDP) technology.

The difficulties of maintaining a connection while roving from one access point (radio tower)

to another, and overcoming the differences between packet-switched and circuit-based

networks are hidden from the developer by this package.

The MIDP package is available on the all phones that ought to be supported for our software.

 58

3.8.2. Parsing XML

Parsers, in particular XML parsers, are notorious for the size of their memory footprint and

their memory usage at runtime. Because mobile phones do not have a great amount of

memory available, we need to take care in selection our parser.

There are various free XML parsers to be found on the Internet, with different memory

footprints. Here we present an overview of products that are readily available and supported

on a standard Java ME configuration [2]:

Product Size Type

ASXMLP 6 kB Push, model

kXML 9 kB Pull

Xparse-J 6 kB Model

When reading a document, the model type of XML parsers will completely parse the

document before giving any results. This can use a lot of memory when the document is large.

Therefore, we will use the kXML package for XML parsing. It is freely distributed by the

Enhydra Public License, based on the Open Public License, which gives us the right to use the

package royalty-free [3].

3.9. Graphical User Interface on mobile phones

Before Java ME technology there were not many choices available for developers for

graphical API. At that time it was J2ME. In fact, the only API that was available was the

standard LCD user interface packages of javax.microediation.lcdui of MIDP. MIDP was

only at version 1.0, and there was no Sun Java Wireless Toolkit tool, Netbeans Mobility Pack,

or Websphere Device Developer. Today, the current and upcoming APIs of the mobile Java

platform allow the developer to create a wide experiences ranging from vector graphics

manipulation to 3D object rendering. Nowadays, the Java SE applications even with a Swing

user interface can run on some mobile devices.

A majority of these APIs available today have been finalized in mobile devices, but some of

them are still under specification in JCP
24

.

The graphical capabilities of the MIDP 1.0 and 2.0 specifications were designed to support

the multi-color displays of today's mobile phones. MIDP 3.0 devices will be equipped

towards a richer mobile experience, and requires that mobile devices support at least 64k

colors. All MIDP implementations support high-level and low-level user interface

components. All user interface classes for MIDP devices can be found in the

javax.microedition.lcdui package, and the high-level user interface components are

subclasses of the Screen and Item classes.

24

 Java Community Process is a participative process to develop and revise Java technology specifications,

reference implementations, and test suites, the Java Community Process (JCP) program has fostered the

evolution of the Java platform in cooperation with the international Java developer community.

Source: http://jcp.org/en/introduction/faq

http://jcp.org/en/introduction/faq

 59

One of the major advantages of the high-level API is the fact that high-level GUI components

can be used in the mobile devices, thus allowing the device to present the components in an

appropriate manner.

In contrast, the low-level APIs for MIDP applications allow the developer to have greater

control of the user interface, and therefore the developer has the responsibility for drawing

and rendering the display. The major low-level API classes are Canvas and Graphics: classes

for creating gaming applications. But this does not mean that the low-level MIDP API is used

only for gaming applications. In the figure bellow you can see Java ME graphical API in a

glance [15].

Summary of the Java ME Graphical APIs

3.9.1. GUI in Java ME and its differences with Java SE

Java ME does not use AWT or Swing. Instead it defines its own GUI classes which are part of

the MIDP API. Reasons for not using AWT or Swing are:

 AWT and Swing are designed with desktop computers. They are windowing elements

for a screen with a higher resolution and more capabilities than a mobile phone's

screen.

 AWT and Swing are supposed to work with a mouse. Most mobile phones however do

not have such a pointing device.

 60

 Most of the features that the AWT and Swing supports, such as the Window

Management and overlapping windows, are impractical and impossible on a mobile

device.

 AWT and Swing creates event objects during runtime for each GUI event such as

mouse-move and button-click. These objects exist only until the event is processed

and is later freed during garbage collection. However, the limited processing power

and memory of mobile device cannot handle such a heavy process.

Due to these reasons MIDP decided to have its own set of GUI APIs. These APIs are

classified as high level and low level APIs. Both the high level and low level APIs come in

the javax.microedition.lcdui package.

One of the classes used in MIDP is Diplayable class. Anything that can be displayed is

represented by this class. The Screen class is a sub-class of the Displayable class and

represents screens that take the full screen area. There are three types of screens:

 Screens that have a predefined structure and are for a specific purpose. This means we

cannot add any other components to them. For example List and TextBox are of this

type.

 General purpose screens made using the Form component. You can add other

components to this Form creating custom screens of your desire.

 Screens created using low-level APIs; as a subclass of Canvas, GameCanvas etc. they

are used mainly for game applications. [17]

 61

References

[1] MIDP Network Programming using HTTP and the Connection Framework, Qusay

Mahmoud, fetched April 14

http://developers.sun.com/mobility/midp/articles/network/

[2] Parsing XML in J2ME, Jonathan Knudsen, fetched on April 14

http://developers.sun.com/mobility/midp/articles/parsingxml/

[3] Open Public License version 1.0, fetched April 14

http://kxml.objectweb.org/software/license/opl.html

[4] Connected Limited Device Configuration (CLDC); JSR 30, JSR 139 Overview, Sun

Microsystems, fetched April, 16

http://java.sun.com/products/cldc/overview.html

[5] J2ME CLDC and K virtual machine: Frequently Asked Questions, Sun Microsystems,

fetched April 16

http://java.sun.com/products/cldc/faqs.html

[6] Sun Java Wireless Toolkit for CLDC, Sun Microsystems, fetched April 16

http://java.sun.com/products/sjwtoolkit/

[7] About the Eclipse Foundation, The Eclipse Foundation, fetched April 16

http://www.eclipse.org/org/

[8] Information priority within the RTMP protocol, fetched April 16

http://www.adobe.com/go/tn_16458

[9] Mobile information Device Profile(MIDP); JSR 37, JSR 118, fetched April 17

http://java.sun.com/products/midp/overview.html

[10] J2ME Tutorial, Part 4: Multimedia and MIDP 2.0, java.net: Vikram Goyal, fetched

April 14

http://today.java.net/pub/a/today/2005/09/27/j2me4.html

[11] Streaming media over the network, java.net: Vikram Goyal, fetched April 14

http://today.java.net/pub/a/today/2005/09/27/j2me4.html?page=3#streaming-media

[12] RED5 Server mission, Red5 Server, fetched April 14

http://www.red5server.com/mission.jsp

[13] RTMP protocol Draft, Open Source Flash, fetched April 17

http://osflash.org/documentation/rtmp

[14] Symbian Software Limited

 www.wikipedia.org/symbian

 http://developer.symbian.com/main/learning/press/books/pdf/JavaME.pdf

[15] GUI APIs in Java ME By Bruce Hopkins, June 2007

 http://developers.sun.com/mobility/midp/articles/guiapis/

 http://developers.sun.com/mobility/midp/articles/guiapis/#1

[16] Symbian Software Limited

 http://developer.symbian.com/main/learning/press/books/pdf/JavaME.pdf

[17] GUI in Java ME and its differences with Java SE, Java ME Blog

 http://www.javameblog.com/2007/12/this-is-presentation-that-i-made-to.html

http://developers.sun.com/mobility/midp/articles/network/
http://developers.sun.com/mobility/midp/articles/parsingxml/
http://kxml.objectweb.org/software/license/opl.html
http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/cldc/faqs.html
http://java.sun.com/products/sjwtoolkit/
http://www.eclipse.org/org/
http://www.adobe.com/go/tn_16458
http://java.sun.com/products/midp/overview.html
http://today.java.net/pub/a/today/2005/09/27/j2me4.html
http://today.java.net/pub/a/today/2005/09/27/j2me4.html?page=3#streaming-media
http://www.red5server.com/mission.jsp
http://osflash.org/documentation/rtmp
http://www.wikipedia.org/symbian
http://developer.symbian.com/main/learning/press/books/pdf/JavaME.pdf
http://developers.sun.com/mobility/midp/articles/guiapis/
http://developers.sun.com/mobility/midp/articles/guiapis/#1
http://developer.symbian.com/main/learning/press/books/pdf/JavaME.pdf
http://www.javameblog.com/2007/12/this-is-presentation-that-i-made-to.html

 62

Appendix B: Requirements Document

 63

Bachelor Project
Visual Voicemail and Greetings

Requirements Analysis Document

Version 6

Computer Science

Faculty of Electrical Engineering, Mathematics and Computer Science

Date:

University:

Course:

Company:

Authors:

Supervisor:

Coordinator:

July 8, 2008

Delft University of Technology

IN3405

Bachelor Project

Greetinq B.V.

Nathan Bruning

Medya Amidi

Michelle Cheung

Ir. H.J.A.M. Geers

Ir. B.R. Sodoyer

 64

Table of Contents

1. Introduction .. 65

2. Domain Analysis .. 65

2.1. Glossary .. 65

2.2. General Knowledge .. 66

2.3. Customers and users ... 66

2.4. Tasks and procedures currently performed .. 66

2.5. Competing Software ... 67

2.6. Similarities across domains and organizations ... 67

3. Proposed Solution .. 67

3.1. Requirements .. 68

3.1.1. Functional Requirements .. 68

3.1.2. Constraints .. 68

3.1.3. Quality Requirements ... 69

3.1.4. Platform Requirements ... 69

3.1.5. Process Requirements .. 69

3.2. Models .. 70

3.2.1. Scenarios .. 70

3.2.2. Use Case Models .. 74

3.3. Use case and interaction with the System .. 75

State Diagram of the Graphical User Interface .. 80

3.4. User Interface ... 82

 65

1. Introduction

Visual Voicemail or Random Access Voicemail is the standard phone voicemail service with

an added visual aspect. Users can select their voicemails and play them in any order of their

choice, in a user friendly GUI environment.

Recently several companies in the telecommunications world have integrated a visual element

into their voicemail services. The most prominent usage of this technology is found in Apple's

iPhone.

This document describes in details the technical requirements needed to realize such a visual

voicemail services as a mobile phone application. The project is given to us by the newly

started company Greetinq B.V. – consisting of three under graduated students at TU Delft

University of Technology - in the third quarter of 2008, as our bachelor project. This

document is formulated based on information obtained from interviewing the company as our

principal.

After studying this document one can attain the technical insight of what this product is

capable to offer to its users before being released.

2. Domain Analysis

Telephony and in particular mobile telephony is a service which has a growing amount of

users ever since its invention. Together with fast growing wireless technology, the number of

services that a mobile phone can offer is increasing dramatically. This has opened a new area

in software development that is evolving very fast. As we mentioned in our introduction, our

plan is to develop a mobile service called visual voicemail. As everyone probably knows

voicemail service provides facilities to the mobile phone users to be able to listen to their

messages left by callers when they failed to answer their incoming calls. This service has been

in use in most of the countries for the last decades. What is new in this field is the possibility

of a „visual‟ service to manage voicemails.

2.1. Glossary

 Greetinqs: voice greetings recorded by called and heard by caller if the called one

failed to answer his/her mobile phone.

 Platform: describes some sort of hardware architecture or software framework

(including application frameworks), that allows software to run. Typical platforms

include a computer's architecture, operating system, programming languages and

related runtime libraries or graphical user interface.

 SMS: Short Message Service, a mobile phone service which provides the ability to

send and receive short text messages.

 Voicemail: audio messages spoken by the caller when a call is unanswered.

 66

2.2. General Knowledge

Voicemail is implemented by forwarding calls that are not answered, to a voicemail operator

line. This line is connected to an advanced answering machine that handles the call; it asks the

caller to leave his voice message, and records the message on some storage medium to be

listened later by the called person.

2.3. Customers and users

Every mobile phone owner is a potential customer. People that already heavily using their

voicemail are most likely interested in the improved service offered by Greetinq the company.

Even though, people that currently do not use their voicemail because of its bad service could

also be persuaded by the new service.

A few not non-disjoint categories of potential customers can be identified:

- Businessmen: because of the nature of their work, they are always in contact with

people. Sometimes they need to talk in different language with their clients. Besides

they are hard to reach because they have many meetings and appointments. It would

be very practical for them if they can make different greetings for different groups of

people.

- Employees: using one phone for both work and private life may not be favourable.

 It wouldn‟t be affordable either for many people to buy two different mobiles to

 separate their work from their personal life.

 Especially choosing an applicable greeting is not evident; a more formal greeting

 would be good for business, but not for the kids. The possibility of making multiple

 greetings and selecting between voicemails comes in handy here.

- Teenagers: recently, a few companies have been very successful at selling ringtones

for mobile phones. Many of these ringtones were popular because they are funny.

Greetinqs could cause the same hype: selecting different funny Greetinqs for friends

when they get your voicemail.

- People with foreign contacts: being anything from business partners to close family, it

would be clear and polite to speak to people in a language they understand. With the

Greetinq service, one could configure the voicemail service to provide an English

greeting to numbers calling from outside The Netherlands.

2.4. Tasks and procedures currently performed

The voicemail service currently being used works through a long procedure with little power

given to the user. The user has to dial first a special number given by the provider and then

listen to a standard operator- which is sometimes not in a favour of the user, and after that he

can listen to the voicemails. During this process, the user does not know who the sender is

before playing the voice message. Besides, the duration of a voice message is not specified.

He cannot select which message to listen first and which one to ignore or remove either.

 67

The user can record only one greeting message for all callers. There are three kinds of

greetings the user can choose from:

1) A standard voicemail greeting provided by the mobile network.

2) A standard voicemail greeting with the users name spoken by him/her

3) A voicemail greeting completely spoken by the user.

2.5. Competing Software

Until now there are only Apple‟s iPhone and the Blackberry which have a visual voicemail

service. Apple has control of the interface; the core of this application is provided by the

phone network. Dividing responsibilities in this way creates difficulties with backwards and

forwards compatibility when for example Apple wants to change their interface.

Currently, in the USA and Canada a company called Callwave provides users a voicemail

service, allowing them to manage their voicemail via Internet on their own computers.

Another company called YouMail provides also extra voicemail facilities such as allowing

users to listen to their voicemails both online and on their mobile phones. Another service

YouMail presents is personalizing the greetings, i.e. the user can make different greetings for

different callers.

GrandCentral, recently taken over by Google, provides among others, an online voicemail

service. It collects voicemails from different phone numbers and presents them on a website.

Lastly, another company called GotVoice tries to convert voice messages into text messages

by speech recognition technology and subsequently send an SMS message to the user‟s

mobile phone‟s mailbox.

2.6. Similarities across domains and organizations

All Dutch telecom companies have a voicemail service that comes with the standard phone

service. Recording a voicemail message costs just as much as a normal conversation, but

listening to recorded voicemail messages differs in price from one provider to another.

In The Netherlands, listening to the voicemail of a land line cannot be free because of

regulations of the OPTA (the independent postal and telephone postal authority). Some

mobile telephony providers do not charge for using voicemail at all. Most of them inform the

user of a new voicemail message by sending them an SMS.

3. Proposed Solution

To have a fast and easy-to-use service, we will develop a mobile application for both

voicemail messages and voicemail service settings. Our system provides the user an intuitive

interface to listen to received messages. The user is able to browse through a list of messages.

Further the product can be used for configuring the Greetinq voicemail service. This consists

of allowing the user to record Greetinqs, and linking them to the contact list (choosing who

gets which Greetinq when they call).

 68

3.1. Requirements

We interviewed the Greetinq company staff for the identification of requirements. These

requirements have been classified in functional (functions that the program must be able to

perform), constraint (a situation the program must be able to cope with, or a property the

program must have), quality requirement (how is software quality asserted), platform

requirement (in what environment the program must function) or process requirements (how

must development be planned and managed).

3.1.1. Functional Requirements

The user must be able to perform the following tasks with the application:

- Work with voicemail messages:

o Browse through a list of received voicemail messages

o Listen or remove a message

o View details
25

 of a message

o Mark a message as listened or new

- Work with the Greetinq service:

o Browse through a list of Greetinqs

o Listen or remove a Greetinq

o View and edit the details
26

 of a Greetinq

o Change the assigned contacts of a Greetinq

o Record a new Greetinq

- Settings:

o Turn voicemail service on and off

o Change maximum time limit for new voicemail messages

o Choose the default Greetinq

o Remember the login data

o Language settings
27

- View “About screen”:

o Greetinq Logo

o Application Version

o Platform Information

o Website address

o Greetinq service e-mail address

o Greetinq hotline

3.1.2. Constraints

The following constraints have been imposed by the principal:

25

 Details screen of messages include: phone number of the caller, the date the message is sent and the Greetinq

(standard/personal) made for the caller
26

 Detail screen of greeting include: name of the greeting, date in which the greeting is recoded, list of contacts

associated with the greeting, and description.
27

 Currently: Dutch and English.

 69

- The application must communicate with the user in Dutch.

- The application graphics must be consistent with the house style of the company.

- The user interface must be designed to provide easy changing language or graphic

style services.

3.1.3. Quality Requirements

We must provide documentation for end users as well as for other developers. The end user

documentation must be in Dutch and easy understandable for non-technical readers.

As the application (source code) might eventually be sold to a foreign company or investor or

further be developed by other English speaking developers, all code and comments must be in

English. The technical documentation must be in English and use the formal Javadoc notation.

Various UML diagrams should accompany the documentation for better clarification.

For easy debugging and consistency with other Greetinq applications, we are required to use

some form of application logging.

Finally we need to document and provide a rational for each choice we make so that all of

these choices can be easily re-evaluated.

3.1.4. Platform Requirements

The application must be able to run with complete functionality on the Symbian Operating

System 9.3, running the S60 3
rd

 edition platform. For more information about this platform,

refer to the Orientation Document.

The version number indicates a minimum; that is, it should run on any newer version of this

operating system as well.

3.1.5. Process Requirements

The hard deadline for the application to be completely finished is in the 3
rd

 quarter of 2008.

This is because the Greetinq service must be in production state at that time, and will be

launched to the public (we however intend to finish it earlier, as indicated in our project

schedule).

The first deliverable will be a mock-up (non-functional prototype), in which the user is able to

navigate through all menus and select all options, but no functionality is actually implemented.

Listening to voicemail messages will be implemented in the second phase. This makes the

application usable as soon as possible and will stress and test the Greetinq servers, which

consequently will aid Greetinq in discovering errors on their side.

A third phase consists of implementing the management of greetings; recording, editing and

listening greetings.

 70

The last phase will make the system robust in the sense that it does not fail under erroneous

conditions (for example, failing internet connection).

For easy file and version management, the principal will provide a SVN server for all

artefacts (code, documentation, and graphics).

For easy and smooth communication, one contact person is appointed between the project

members and the company, and between the project group and the TU Delft supervisor Hans

Geers. Contact information of the people involved can be obtained from the Project Schedule.

Finally, we need to know what is done and what decision have been made during the process.

For this reason, in a document called the Project Log we keep track of our daily work and put

this document on the public SVN server.

3.2. Models

3.2.1. Scenarios

1) Log In

Actor: Peter

Flow of events:

1. Peter is in a meeting and is not able to answer his incoming calls. It is now after the

meeting and he is in his office. He opens myGreetinq mobile application and waits for

the program to be loaded. He enters his username and password.

2. His login information is correctly verified and Peter has logged in. Peter sees the

window screen with messages.

2) Playing a message

Actor: Peter

Flow of events:

1. Peter has successfully logged in.

2. Peter sees a new message and selects it. The voice message is now playing.

3) Deleting a message

Actor: Peter

Flow of events:

6. Peter successfully logged in and sees that he has a few new messages.

7. Peter notices that a person whom he does not like has left a message. He chooses this

new voice message and goes to „Menu‟.

8. Here he selects the option „Delete‟ and presses „OK‟.

9. A confirmation message is shown and asks if he is sure to delete the message.

10. Peter chooses “Yes” and the message is deleted from the system.

4) Marking a message as new

Actor: Peter

 71

Flow of events:

1. Peter successfully logged in and has just listened to a new message. He returns to the

window of messages

2. Peter chooses the listened message and goes to „Menu‟.

3. He selects the „Mark‟ option. The system marks the message as new. Peter sees that

the message has the “New Message” pictogram now.

5) Marking a message as listened

Actor: Peter

Flow of events:

1. Peter has logged in and sees his new messages.

2. He notices that a person who is not important for him has left a message. He chooses

this message and goes to the „Menu‟

3. He selects the „Mark‟ option and presses „OK‟ on his phone. The system marks the

message as listened. Peter sees that the message has the “Old Message” pictogram

now.

6) Add new Greetinq

Actor: Jan

Flow of events:

1. It is the first time Jan using the Greetinq mobile application. He has successfully

logged in.

2. Jan selects „Main Menu‟ and the Main Menu screen is shown

3. He is excited and he chooses the „New Greetinq‟ option from the menu screen.

4. A list with all contact persons appears. John excitingly chooses some of his friends

and presses „OK‟.

5. He can now record his Greetinq. He presses „Record‟ to record.

6. When he finishes he presses on „Stop‟.

7. The first Greetinq is ready and Jan hears his new recorded Greetinq.

8. He is happy with the Greetinq and chooses to send. The system sends the Greetinq to

the server and asks Jan to be patient.

9. The system has successfully sent the Greetinq and displays the window for the name

and description of the Greetinq.

10. Jan fills „First‟ and „First Greetinq‟ as its name and description, respectively. And

presses „OK‟. The system saves this new Greetinq, and returns to the list of Greetinqs.

7) Edit Greetinq

Actor: Jan

Flow of events:

1. Jan has logged in and has just added a new Greetinq.

2. Jan changes his mind and wants to edit the Greetinq. He selects the „First‟ Greetinq

and goes to the „Menu‟.

3. He selects the „Edit‟ option and an „Edit Greetinq‟ window is shown.

4. He changes the name „First‟ into „Friends‟ and presses on „OK‟. The system saves the

change and returns to the details of the updated Greetinq.

 72

8) Add contacts to a Greetinq

Actor: Jan

Flow of events:

1. Jan successfully logged in and is now watching his „Friends‟ Greetinq. He wants to

add a new friend into this group.

2. He goes to „Menu‟ and selects „Add contact‟. He sees a list of all his contacts from his

mobile phone now.

3. He selects the one he wanted to add and presses „OK‟. The system saves the contact.

9) Delete contacts from a Greetinq

Actor: Jan

Flow of events:

1. Jan has just added contacts to his „Friends‟ Greetinq. And he discovers that one of the

associated contacts „Vincent‟ is his boss. He wants to delete this contact.

2. Jan selects in „Menu‟ the „Delete contact‟ option. He sees a list of the contacts for this

Greetinq.

3. Jan selects „Vincent‟ and presses on „OK‟

4. The system deletes the contact from the Greetinq. Jan now sees the „Friends‟ Greetinq

without „Vincent‟ as one of the contacts.

10) Playing a Greetinq

Actor: Sandra

Flow of events:

1. Sandra has just got a new contact in her phone book. She logs in and selects

„Greetinqs‟ in the „Main Menu‟.

2. Sandra sees a list of Greetinqs and selects one of the Greetinq named „Colleagues‟.

3. She wants to listen if this Greetinq is suitable for the new contact. She presses „Play‟.

4. She listens to the Greetinq and after 20 seconds she presses on „Stop‟ and decides to

link this Greetinq to the new contact.

11) Remember password

Actor: Jan

Flow of events:

1. Jan has just received an SMS-notification about a new voice message. He logs in for

the second time. Because he does not want to log in every time, he chooses „Yes‟ for

„Remember Password‟ under the „password‟ field.

2. Jan presses on „OK‟. The system logs in and recognizes this combination and saves

this setting on the phone.

12) Edit settings

Actor: Monica

Flow of events:

1. Monica is using myGreetinq application for the first time. She installs it and logs in.

2. She wants to be sure that the voicemail service is working as she wants it. So the first

thing she does is selecting “Settings” in the “Main Menu”.

 73

3. In the “Settings” there are five option fields: the first one she sees is the “Maximum

message length(in sec)”. She thinks that most of the people will not talk too long, thus

she types “60” in the field.

4. Because this is the first time she is using this service, she chooses Yes at “Voicemail

service activated?”. Now, she can use this voicemail application.

5. There is no change needed for the other options, and then she presses „OK‟. The

system saves this changes and returns to the message window.

13) View information

Actor: Jan

Flow of events:

1. Jan wants to know if he has got the latest version of the program. He logs in and goes

to the „Main Menu‟.

2. He selects „About‟ and the system displays a window with information about Greetinq

(website, address, service hotline), the version number and platform.

 74

3.2.2. Use Case Models

Figure 1. Use case diagram

 75

3.3. Use case and interaction with the System

1) Use case: Log in

Related use cases: None

Actors: Mobile phone user

Goals: The user wants to use the Greetinq service with the mobile application

Current situation: A login screen is shown.

Steps:

User action System reaction

1. User fills in his username and password.

2. User presses on “OK” 3. System validates the username and the

password.

 4a. (success) The system shows the Main

window (Message window).

4b. (failure) The system reports a failure of

log in.

5b. User presses on “OK” 6b. System shows the login window again

2) Use case: Play message

Related use cases: Log in

Actors: Mobile phone user

Goals: The user wants to listen to a new voice message.

Current situation: A list of messages is shown.

Steps:

User action System reaction

1. User selects a message. 2. The system plays the voice message and

displays the details of it.

 3. The system marks the voice message as

listened.

3) Use case: Delete message

Related use cases: Log in, Play message

Actors: Mobile phone user

Goals: The user wants to delete a message which he has already heard.

Current situation: The message list is currently shown on the screen.

Steps:

User action System reaction

1. User presses on „Menu‟. 2. The system shows a pop up list of options.

3. User chooses a message and selects

„Delete‟

4. The system shows a confirmation to delete

the voice message.

5. User presses on „Yes‟. 6. The system deletes the voice message and

shows the messages list display.

4) Use case: Mark message as new

 76

Related use cases: Log in, Play message

Actors: Mobile phone user

Goals: The user has listened to a message and found that the message was

important to him. He wants to mark this message to catch his attention

the next time.

Current situation: A list of messages is shown.

Steps:

User action System reaction

1. User presses on „Menu‟. 2. The system shows a pop up list of options.

3. User selects „Mark‟ 4. The system marks the message as not

listened and returns the updated list of

messages. The message has a “New

message” pictorgram.

5) Use case: Mark message as listened

Related use cases: Log in, Play message

Actors: Mobile phone user

Current situation: A list of messages is shown.

Goals: The user think that a message is not important but not yet to be deleted.

He wants to mark it as listened.

Steps:

User action System reaction

1. User presses on „Menu‟. 2. The system shows a pop up list of options.

3. User selects „Mark‟ 4. The system marks the message as listened

and returns the updated list of messages. The

message has a “Old message” pictogram.

6) Use case: Add Greetinq

Related use cases: Log in

Actors: Mobile phone user

Goals: The user wants to add a personal Greetinq for some (new) contacts.

Current situation: The main menu is shown on the display.

Steps:

User action System reaction

1. User selects “New Greetinq” in the „Main

Menu‟.

2. The system shows two possible type for

the new Greetinq: Personal or Default

Greetinq. It asks the user to select one of

them.

3. User selects „Personal‟ and presses on

„OK‟.

4. The system shows a list of contacts from

the phone book.

5. User chooses the contacts he want to add

and presses on „OK‟.

6. The system shows a voice recorder

window.

7. User presses on „Record‟. 8. The system starts to record the voice of the

user.

9. User presses on „Stop‟. 10. The system stops the recording. It

 77

displays the new Greetinq with the associated

contacts. The recorded Greetinq is playing.

14. User listens to the Greetinq and presses

on „Stop‟.

14. The system plays the recorded audio file.

15. User presses on „Save‟ 16. The system saves the audio file. Asks the

user to wait and then displays the screen with

fields for the name and description.

17. User fills the name for the Greetinq and

presses on „Save‟.

17. The system saves the name. And displays

the „Main Menu‟ window

7) Use case: Play Greetinq

Related use cases: Log in

Actors: Mobile phone user

Goals: The user wants to listen to a Greetinq he has added.

Current Situation: Message screen

Steps:

User action System reaction

1. User presses on „Main Menu‟. 2. The system shows a popup list of options.

3. User selects „Greetinqs‟. 4. The system shows a list of the Greetinqs.

5. User selects a Greetinq. 6. The system shows the details of the

Greetinq.plays the selected Greetinq and

displays its details.

7. User presses on the „Menu‟. 8. The system shows a popup list of options.

9. User selects “Play”. 10. The system plays the Greetinq.

8) Use case: Edit Greetinq

Related use cases: Log in, Play Greetinq

Actors: Mobile phone user

Goals: User wants to change information (title and/or description) of a

Greetinq.

Current Situation: A Greetinq has been selected and is shown with details on the display.

Steps:

User action System reaction

1. User presses on „Menu‟. 2. The system shows a popup list of options.

3. User selects „Edit‟. 4. The system shows an edit window of the

Greetinq.

5. User changes the title and its description.

6. User presses on „OK‟. 7. The system saves the changes and return

the updated Greetinq.

 78

9) Use case: Add contacts

Related use cases: Log in, Play Greeting

Actors: Mobile phone user

Goals: The user wants to add some (new) contacts to a greeting.

Current Situation: A Greetinq has been selected and is shown with details on the display

Steps:

User action System reaction

1. User presses on „Menu‟. 2. The system shows a popup list of options.

3. User selects „Add Contacts‟. 4. The system shows all the contacts stored

in the mobile phone.

5. User selects of the contacts he wants to

add.

6. User presses on „OK‟ . 7. The system links the selected contacts to

the Greetinq and returns the updated

Greetinq.

10) Use case: Delete contact

Related use cases: Log in, Play Greetinq

Actors: Mobile phone user

Goals: The user wants to delete a contact of a Greetinq

Current Situation: A Greetinq has been selected and is shown with details on the display

Steps:

User action System reaction

1. User presses on „Options‟. 2. The system shows a popup list of options.

3. User selects „Delete Contacts‟. 4. The system shows all the contacts linked

to the Greetinq.

5. User selects the contact he wants to delete.

6. User presses on „OK‟ . 7. The system deletes the selected contact

from the Greetinq and returns the updated

Greetinq without the deleted contact.

 79

11) Use case: Settings

Related use cases: Log in

Actors: Mobile phone user

Goals: The user wants to change his preferences(voicemail service on,

maximum length 120 seconds, „General‟ as default Greetinq and Language is Dutch).

Current situation: Message screen

Steps:

User action System reaction

1. User presses on „Menu‟. 2. The system shows a popup list of options.

3. User selects „ Settings‟. 4. The system shows all settings for the user.

5. User fills in 120 seconds for the maximum

message length. Then he chooses „Yes‟ for

the voicemail service. Next, he selects

„General‟ as Default Greetinq. And he

switches the language from „English‟ to

„Dutch‟. And finally he presses on „Save‟.

6. The system saves the changes and returns

the updated settings in Dutch.

12) Use case: About

Related use cases: Log in

Actors: Mobile phone user

Goals: The user wants to know where he can find more information about this

mobile application.

Current situation: Main Menu

Steps:

User action System reaction

1. User selects „About‟. 2. The system shows detailed information

about the software. (Version number of the

application, platform, Greetinq company

website, Greetinq company service email

address and hotline.

 80

 State Diagram of the Graphical User Interface

Figure 2. State diagram of the user interface

In the Main Menu state there are the following options:

- Messages, leading to the Messages List state (screenshot no.3 in section 3.4)

- Greetinqs, leading to the Greetinqs List state (screenshot no.5)

- New Greetinq, leading to the New Greetinq state

- About, leading to the About state (screenshot no. 11)

- Settings, leading to the Settings state (screenshot no. 10)

In the Messages List state, the Menu button will reveal a popup list with the following

options:

- Details, leading to Message Details state (screenshot no.4)

- Delete

- Mark message (depending on the message state, mark the message new or old)

 81

In the Message Details state, the Menu button will reveal a popup list with the following

options:

- Play (only available when it is paused or stopped)

- Pause (only available when it is playing the Message)

- Stop (only available when it is playing the Message)

In the Greetinqs List state the following options are available:

- Details , leading to the Greetinq Details state (screenshot no. 6)

- Delete

In the Greetinq Detail state (screenshot no.6), the following options are available:

- Play (only available when Greetinq is not playing)

- Pause (only available when it is playing)

- Stop (only available when it is playing)

- Edit, leading to the Edit Greetinq Details state (screenshot no. 7)

- Add contacts, leading to the Add Contacts state (screenshot no.8)

- Delete contact, leading to the Delete Contact state

In the New Greetinq state, the following option is available:

- OK, confirmation of the type, leading to the Add New Contacts state

In the Add New Contacts state, the following option is available:

- OK, confirmation of the contacts, leading to the Record state (screenshot no. 9)

In the Record state, the following options are available:

- Record

- Stop, (available when it is recording) leading to New Greetinq Play state

In the New Greetinq Play state, the following option is available:

- Save, leading to the New Greetinq Details state

In the New Greetinq Details state, the following option is available:

- Save, leading to the Greetinqs list state

In the four states in the centre column, a button named Main Menu (screenshot no. 12 in 3.3)

is presented that leads to the Main Menu state.

In all states on the right side of the state diagram, a button named Back or Cancel is presented

leading to the state to the left of it.

 82

3.4. User Interface

 Log in Messages

make it personal

Welcome to myGreetinq!

Username

Password

Remember Password? Yes

Richard Stronnkman 

Ruben van Eijnatten 

Arthur Tolsma 

Richard Stronnkman 

Ruben van Eijnatten 

Richard Stronnkman 

Ruben van Eijnatten 

Details

Delete

Mark

 Exit OK Main Menu Menu

No. 1 No. 2 No. 3

Message Details Greetinqs Greetinq ‘Voor Richard’



Playing…

From: Ruben van Eijnatten

Recorded on: 31-01-2008 10:45

Voor Richard

Johan Cruijff „ Da‟s
logisch…‟

Standaard begroeting

Details

Delete



Name: Voor Richard

Description: bla bla bla
Recorded at: 31-01-2008 10:45 uur

Associated contacts:

Richard Stronkman

Richard Stronkman (thuis)

Back Menu Main Menu Menu Back Menu

No.4 No. 5 No. 6

 83

Edit Greetinq Add Contacts New Greetinq

Name

Description

Select contacts for the Greetinq:

„Voor Richard‟

X Richard Stronkman

 Richard Stronkman (thuis)

X Ruben van Eijnatten

 Arthur Tolsma

 Michelle Cheung


15 sec

Recording.

Cancel OK Cancel OK Back Stop

No. 7 No. 8 No. 9

Instellingen About MainMenu

Maximum message duration:

300

Activate voicemail service?

Yes

Remember Pasword.

Yes

Default Greetinq:

Hello

Language:

English

 make it personal

Version: 1.1
Platform: Windows Mobile 5.0

© Copyright Greetinq B.V. 2008

Visit: www.greetinq.com

Email
address:support@greetinq.com

Service Hotline: 015 2400 200

 Messages

Greetinqs

New Greetinq

About

Settings

Cancel Save OK Exit Select

No. 10 No. 11 No.12

http://www.greetinq.com/

 84

Appendix C: System Design Document

 85

Bachelor Project
Visual Voicemail and Greetings

System Design Document

Version 4

Computer Science

Faculty of Electrical Engineering, Mathematics and Computer Science

Date:

University:

Course:

Company:

Authors:

Supervisor:

Coordinator

July 8, 2008

Delft University of Technology

IN3405

Bachelor Project

Greetinq B.V.

Nathan Bruning

Medya Amidi

Michelle Cheung

Ir. H.J.A.M. Geers

Ir. B.R. Sodoyer

 86

Table of Contents

A. Purpose .. 87
B. General priorities ... 87
C. Outline of the design ... 87

D. Major design issues ... 87
1. Subsystem Decomposition .. 87
2. Hardware/Software Mapping .. 88
3. Persistent Data Management ... 88
4. Global Resource Handling and Access Control .. 88

E. Detailed design .. 89
1. Class Diagrams .. 89
2. Sequence diagrams .. 94
3. Algorithms ... 98

F. MoSCoW .. 99

G. Implementation Plan ... 99
H. Code template .. 100

 87

A. Purpose

This document describes the most important aspects of the design of the visual voicemail

Greetinq system, presenting a framework in which the actual implementation can be build.

B. General priorities

The decisions made in this document are based on the following priorities: maintainability,

simplicity, efficiency, safety, reliability and finally ergonomics.

C. Outline of the design

We chose to use the Model View Controller (MVC) architectural pattern to build the

application. Using this pattern ensures a clear division between the presentation (view) and

the application logic (controller). Therefore, adapting the layout for different phones or for

different companies will only require changes in the view package.

The model package provides storage of data. It parses data received in XML format from the

web services, and stores it in Java classes. When an object needs to be sent to the server, the

package has to convert from a Java class to an XML object.

The controller package facilitates data retrieval and sending, responds to user stimuli and

handles error conditions.

D. Major design issues

1. Subsystem Decomposition

We can divide the system to be built in the following subsystems:

- Model

o Data Storage (model): several classes are used to store and pass model data,

such as greetings, messages and contacts

- View

o GUI: displays the controls on the screen

- Controller

o Command Handlers: react to actions in the GUI (such as keystrokes).

o Server Access: handling all communication with the server, including:

 Formatting messages / responses

 Handling Internet connection failure

o Streaming Media: real-time streaming of audio data from (playback) and to

(recording) the Greetinq servers

- Auxiliary Services: providing easy access to various external data, for example:

o Language data (all displayed texts can be localized)

o Style data (all graphics and colours can be styled)

o User Settings (some preferences are stored persistently on the mobile phone)

 88

2. Hardware/Software Mapping

There are two hardware devices involved with the application. First is the mobile phone

which runs the Java code and communicates with the Internet. Secondly, the Greetinq servers

keep all voicemail, greeting, contact and service settings data. Note that we are not going to

implement the Greetinq servers. These servers runs software already created by Greetinq (and

currently in beta phase, in which the server serves about 50 testers).

3. Persistent Data Management

As just mentioned, the account data (voicemail messages, user settings, recorded greetings) is

stored on the Greetinq servers. The data that has to be stored on the mobile phone is limited to

data that is important only for our application. This data is stored on the mobile phone by

means of the Java Persistence Package (the actual storage location is mobile phone dependent;

it could be on-device non-volatile memory, a storage card, or a hard drive).

4. Global Resource Handling and Access Control

Global resources are all managed by the Greetinq servers and hence are not an issue. Access

control is provided by letting the user enter a username and a password before using the

application. When not logged in, the server denies any requests, thus making the application

unusable.

 89

E. Detailed design

1. Class Diagrams

Controller

This figure presents the architecture of the controller. For network access, a handler calls the

appropriate method on the Server object, which starts a RequestThread so the user

interface will not be stalled. This thread will use HttpRequester for Internet access, or

ServerScaffold (which simulates a connection to a server) if configured to do so.

A response received in this worker thread will be converted to a Response object and is

then queued in the main thread for handling by a RequestCallback-implementing class

(handler). One such handler, LoginHandler, is showed here, but for every Screen class

(see below) there is one handler.

 90

Model

 The data model is originating from the Greetinq webserver data model. This model is

descibed as XML objects in the Greetinq Webservice Specification document.

 A short overview of the objects in the system:

 Account: stores information about the users account, such as username, password, and

personal information.

 Contact: a contact of the user, consisting of a phone number and a name.

 Greeting: consists of name, description, and audio file of a greeting.

 Message: a received voicemail message. It includes data such as sender, date and the

associated greeting.

 Phone: a phone owned by the user, on which it can receive voicemail messages.

 Profile: describes which contacts will hear a specific greeting when they get the voicemail of

the user. Associates Contact objects with Greeting objects.

 Setting: all the settings configured by the user.

 Mailbox: configures the current voicemail service for the user. Options include

enabling/disable the Greetinq service and choosing the active profile.

 91

 Serializable is the base class for data storage. It provides a function to read and parse

the object from a XML stream. Storage is implemented with a collection of elements of

various types. We chose not to use specific attributes in the data classes for each data element,

because the specification is likely to change. With the chosen approach we can easily adapt to

such changes.

The Server class is implemented as a singleton. It stores all data objects and thus it

represents the data model.

 92

View

The user interface consists of a collection of screens that display information, and pass user

stimuli (pressing a button) to the associated controller (handler) class. This decoupling of user

interface and control logic classes allows for changing the graphical presentation later.

The interface Updatable specifies that all screens should have a method that refresh the

screens content; this provides a way for some external event (i.e. receiving a web service

response) to propagate an update of the data model to the user interface.

Please note that for clarity we displayed just one screen (GreetingListScreen) in the

diagram, but there is one screen class for every user interface state described in the

Requirements Document.

 93

Auxilary Classes

These classes handle language management (including date localization), style management,

simple file parsing, XML reading and local persistent data storage.

 94

2. Sequence diagrams

Figure 1 Login sequence diagram

Here we show the login process and the remote server access. XML responses are parsed into

a Response object and then returned to the handler that requested the operation.

Figure 2 Play message sequence diagram

When a message is chosen from the list of messages, the user proceeds to the details screen.

This screen creates a player (which creates an associated thread) that handles the audio

playing. The Player communicates with the Thread by passing it commands which are

then processed asynchronously.

 95

Figure 3 Delete message sequence diagram

Here we have shown in detail the asynchronous nature of the server requests.

Figure 4 Add greeting sequence diagram

This shows the various steps (screens) involved when creating a greeting. The last step is

sending the audio file and greeting data to the server.

 96

Figure 5 Add contact sequence diagram

Precondition: user has chosen a greeting to edit in the Greetinq List screen, and then selected

„Add Contacts‟. The PIM manager
28

 loads contacts from the mobile phones address book. The

user can then select any number of contacts to associate to the greeting. The chosen contacts

are converted into a so called rule string
29

 and then passed on to the server.

Figure 6 Edit greeting sequence diagram

Precondition: the user selected a greetinq to edit in the Greetinq List screen, and then selected

„Edit Greetinq‟.

After giving the new name and description, the greeting is updated on the server and then the

user returns to the Greetinq Details screen.

28

 PIM stands for Personal Information Management, which is an optional package for the Java ME platform.
29

 As defined in the Greetinq Webservice Specification document.

 97

Figure 7 Delete contact sequence diagram

Precondition: the user selected a greetinq to remove a contact from in the Greetinq List screen,

and then selected „Remove contact‟.

After selecting the contact to remove, the removeContactFromProfile operation is called on

the server, and the user returns to the details of the greetinq.

Figure 8 Delete greeting sequence diagram

The user interface checks with the handler if deleting is possible before trying; the default

greeting cannot be deleted. The screen to show after the deletion depends whether there are

greetings left; if all greetings are deleted, the Main Menu is shown, otherwise the Greetinq

List screen is shown.

 98

Figure 9 Logout sequence diagram

3. Algorithms

Streaming media with limited bandwidth is a difficult problem in general. It is even more

problematic on mobile phones because of the inconsistent support for file formats and

protocols. After comparing the support of various formats on mobile phones, we have

identified AMR (Adaptive Multi-Rate
30

 compression) as the most suitable. It is supported by

a wide range of phones and needs little bandwidth, while still providing quality reasonable for

voice.

Other candidates we chose not to use were:

- MP3, not supported by all phones not from Nokia

- WAVE, taking too much space & bandwidth

- WMA, supported by some Windows Mobile devices but not by any other brand.

While choosing a transport protocol we noticed two suitable candidates:

- HTTP (see Orientation Document)

o This protocol is availability on every mobile phone the application runs on.

- RTP (Real-time Transport Protocol
31

)

o It is specially constructed to guard against varying bandwidth availability, high

latency and varying latency.

We have chosen to implement both protocols. The application will use RTP if it is supported,

and will fall back to HTTP otherwise. When using HTTP, the application first tries to use

progressive download (listen while downloading), but if this is not supported it will download

the entire file before playing it.

We note that RTP streaming has yet to be implemented on the server side, while a HTTP

server is already providing access to all audio data.

30

 See http://en.wikipedia.org/wiki/Adaptive_Multi-Rate
31

 See http://en.wikipedia.org/wiki/Real-time_Transport_Protocol

http://en.wikipedia.org/wiki/Adaptive_Multi-Rate
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol

 99

F. MoSCoW

Must have (see Requirements Document):

- Listening and editing voicemail messages

- Listening, editing and creating greetings

- Changing settings of the Greetinq voicemail service

- Work on Symbian OS 9.3

Should have:

- Possibility of adding / changing languages and styles

- Enable or disable SMS notifications for received messages and/or missed calls

- Ergonomic interface which suits to small displays.

Could have:

- Adaptive quality control for fluctuating bandwidth

- Send recorded Greetings in the background

Would have:

- Nothing currently known.

G. Implementation Plan
Phase 1:

- Operational mock-up: the GUI is fully done, calling only empty stubs on commands

Phase 2:

- Listening to voicemails:

o Retrieving list of voicemails from server

o Playback voicemail (streaming)

Phase 3:

- Adding other functionality (greetings, recording, storing settings)

Phase 4:

- Provide for fluctuating bandwidth

- Provide for losing the Internet connection (recovery)

 100

H. Code template

Because of restrictions of the Java ME language, we will use the Java 1.3 language

specification. We use the coding style borrowed from the Eclipse Formatter tools. An

example follows:

/**

 * A sample source file for the code formatter preview

 */

package mypackage;

import java.util.LinkedList;

public class MyIntStack {

 private final LinkedList fStack;

 public MyIntStack() {

 fStack = new LinkedList();

 }

 public int pop() {

 return ((Integer) fStack.removeFirst()).intValue();

 }

 public void push(int elem) {

 fStack.addFirst(new Integer(elem));

 }

 public boolean isEmpty() {

 return fStack.isEmpty();

 }

}

 101

Appendix D: Project Plan Document

 102

Bachelor Project
Visual Voicemail and Greetings

Project Plan Document

Version 2

Computer Science

Faculty of Electrical Engineering, Mathematics and Computer Science

Date:

University:

Course:

Company:

Authors:

Supervisor:

Coordinator

July 8, 2008

Delft University of Technology

IN3405

Bachelor Project

Greetinq B.V.

Nathan Bruning

Medya Amidi

Michelle Cheung

Ir. H.J.A.M. Geers

Ir. B.R. Sodoyer

 103

Table of Contents

Foreword .. 104

1. Introduction .. 104

2. The Project Assignment ... 104

2.1. The project principal .. 104

2.2. The goal .. 105

2.3. The deliverable Product ... 105

2.4. Important success factors ... 105

3. Project Planning ... 106

3.1. Phase 0: Requirements Gathering & System Design ... 106

3.2. Phase 1: mock-up ... 106

3.3. Phase 2: Implementing and Testing: Voicemails ... 106

3.4. Phase 3: Implementing and Testing: Greetings .. 106

3.5. Phase4: Implementation and Testing: Error correction .. 107

4. Important factors in developing software product ... 107

5. Documentation ... 108

Attachment A: Project Planning ... 109

 104

Foreword

This document describes the planning of the Bachelor of Science project at the TU Delft

University of Technology. The project is to develop a software application written in Java

Micro Edition (Java ME) for mobile phone devices.

First, the aspects of the project will be described and the document will be concluded with the

actual plan.

1. Introduction

Fast growing technology brings many opportunities to realize many new ideas. Not while ago,

the idea of making a mobile phone device was a dream. Today, every one can use them

almost everywhere. This feature refers to one of the special characteristics of evolving

technology: the constant demand and supply of new services. Mobile telephony is not

excluded from this fact. As the wireless and hardware technology grows, the number of

services that a mobile phone can offer increases accordingly. This has opened a new area in

software development which is evolving very fast. Our project is to realize new features and

services for mobile phone devices.

2. The Project Assignment

Voicemail is a service with which users of the mobile phones are able to listen to their

messages left by callers. The service currently being used in the Netherlands has an

inconvenient and tiresome procedure with little power given to the user. The challenge is how

to develop a service which decreases the duration of the procedure while giving the users

more freedom to manage their own voicemails.

Greetinq Company (see section 2.1) has decided to develop an application which enables

users to manage their voicemails “visually”- i.e., users can “select” their voicemails and play

them in “any order” of their choice, in a user friendly GUI environment.

For our bachelor project, we are assigned by Greetinq to develop this application.

2.1. The project principal

Greetinq B.V. is a new high-tech start-up company, established on January 2007 and located

in Yes!Delft
32

, Rotterdamseweg 145 in Delft since September 2007.

The company started to develop a system for mobile phone users to personalize their

greetings with which they can record different greetings for different people. In this way users

can separate their business greetings from personal ones. The company has expanded its

32

 Yes!Delft is a „Young Entrepreneurs Society‟ who inspires, stimulates, and supports students and young

technologists to start their own business. See www.yesdelft.nl

http://www.yesdelft.nl/

 105

productions by offering personal greeting service through the Internet and visual voicemail &

greeting service.

2.2. The goal

As mentioned before the voicemail service currently being used has some limitations. Here

are the main disadvantages of this service:

1. Voicemails can only be listened sequentially with no alternative given to users to

select them.

2. There is no information indicating who has left a voicemail, therefore user has to listen

to the message in order to know who has called.

3. Listening to the voicemails is not directly possible. User has to dial first a special

number given by the provider and then listen to a standard operator which is

sometimes not in a favour of the user.

Currently there are only three possibilities available to make any voicemail greetings:

1. A standard voicemail greeting provided by mobile network provider

2. A standard voicemail greeting with the user‟s name spoken by him/her.

3. A voicemail greeting completely spoken by the user

The goal of our project is to develop an application with a user friendly graphical interface

which solves all the issues mentioned above in an easy, reliable and fast way for the users to

use.

2.3. The deliverable Product

The final product must fulfil all constraints and requirements demanded by Greetinq
33

.

Furthermore, from the software development perspective, it must accomplish the essential

features such as functionality, scalability, efficiency and so on. For more information see

section 4.

2.4. Important success factors

When developing a software product, one of the most important factors is to meet the

deadline to deliver the final product- “time to the market”. Greetinq‟s plan is to introduce the

product to the market in September. However, according to the TU Delft curriculum our

actual deadline will be in the first half of July. Hence our planning to deliver the final product

will be at the beginning of July.

Another success factor is whether the final product has met all the requirements demanded by

the company. With frequent feedback from Greetinq, and discussing important factors in

33

 For details, see Requirements Documents

 106

developing the product, such as whether we have focus more on the performance and

functionality than for example the customizability, we try to assure that the final product

satisfies the requirements.

3. Project Planning

Late March, we have done a research about what techniques and methods are needed to

develop the application. We have studied the different aspects of the project, trying to

anticipate possible upcoming problems in the process of development, the current possibilities

and so forth. All this information is gathered in an Orientation Document (for more detail, see

Orientation Document).

3.1. Phase 0: Requirements Gathering & System Design

Officially bachelor projects at TU Delft University start in April. Due to some problems

related to the Greetinq Company- such as moving and preparing suitable place to work, our

project is postponed to the beginning of May. In April we have had an interview to gather

requirements and start writing documents.

3.2. Phase 1: mock-up

The first deliverable will be a mock-up (non-functional prototype), in which the user is able to

navigate through all menus and select all options, but no functionality is actually implemented.

3.3. Phase 2: Implementing and Testing: Voicemails

The objective of this phase is to develop a part of the application which provides a user the

ability to listen to his/her voicemails using a mobile device. After finishing this phase we are

able to:

 Retrieve list of voicemails from the server

 Playback the voicemails (streaming)

3.4. Phase 3: Implementing and Testing: Greetings

Adding “greeting” functionalities to the application will be done in this phase. The goal is to

achieve how to record and store a voice message on the mobile device, and finally how to

send it to the server.

 107

3.5. Phase 4: Implementation and Testing: Error correction

We need to consider all possible disturbances that may occur during the process. Such

problems can be bandwidth fluctuation, loss of the Internet connection and so forth. This

phase is assigned to deal with these problems. Further we have allocated an extra week for

possible delays in any of the above mentioned phases.

Note: Depending on the process flow, the plan may change. We will keep track of daily

activities and decision making in a separate document called Project Log. For more

information about the plan, refer to the Project Log.

4. Important factors in developing software product

One of the problems when developing a software product is that developers generally have a

particular kind of user in their mind as their target user. However it is not always easy to

predict what kind of users will finally end up using the product. Different group of users may

have different priorities when they use a specific product.

Further, since the first release of a specific product is usually immature (not all needed

features are predicted in forehand); developers need to consider possible changes in the

structure of their products for next releases. Below you can find some of these important

factors that we need to take into account during the development of our product.

 Functionality

 Efficiency

 Portability

 Reliability

 Maintainability

In the first place, the final product must be functional and simple. Since this will be the first

release of the product it is essential that it works perfectly while having all the goals

achieved
34

. The application must be simple so that users in different range of age can easily

work with it. Simplicity of the program also increases its reliability.

Our final product must be portable, i.e. it has to run on multiple platforms. The product must

work well on different mobile phones and must be easily adaptable to the environment of

other mobile devices.

Maintainability is the ease with which the software system or component can be modified to

correct faults, improve performance or to adapt to the changed environment
35

. This is easily

understood under the modularity, comments, naming conventions, documentation, design

34

 See section 2.2
35

 As time passes new hardware and software technologies come into existence: new version of operating

systems, programming libraries etc. Therefore software products should be made in a way that they can adapt to

and take advantage of changes in the environment. Changing in requirements is also common during developing

software programs.

 108

patterns, etc. Regarding this factor we are going to use, among others, the standard Javadoc

and UML.

Software Reliability is the probability of failure-free software operation for a specified period

of time in a specified environment. The high complexity of software is the major contributing

factor of Software Reliability problems
36

. Users in general don‟t like to use faulty programs.

The service that our application offers should be available 24 hours per day. Of course

external problems such as failing internet connection, is not the responsibility of this product,

but the program should be able to reconnect the internet at most in a few minutes. Otherwise

it has to report the error to the user.

And finally the efficiency plays an important role in our application. It is important to have a

fast response to the server, i.e. fetching data from, and sending it to the server should be done

in a few seconds to a minute. This depends on how big the data is.

5. Documentation

All the documentations will be written in English with the same layout. The end-user manual

of the product will be published in Dutch. Development documentation will be provided in

the form of the System Design document with UML diagrams of the system.

36

 Software Reliability, Carnegie Mellon University 18-849b Dependable Embedded Systems

 109

Attachment A: Project Planning

MONDAY THUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY

31 April, 1 April, 2 April, 3 April, 4 April, 5 April, 6

 Orientation Document

April, 7 April, 8 April, 9 April, 10 April, 11 April, 12 April, 13

April, 14 April, 15 April, 16 April, 17 April, 18 April, 19 April, 20

April, 21 April, 22 April, 23 April, 24 April, 25 April, 26 April, 27

 Requirement Elicitation

Interview at Greetinq

April, 28 April, 29 April, 30 May, 1 May, 2 May, 3 May, 4

 Requirements Document

May, 5 May, 6 May, 7 May, 8 May, 9 May, 10 May, 11

Liberation Day System Design Document & Mockup: phase 1

May, 12 May, 13 May, 14 May, 15 May, 16 May, 17 May, 18

Second Pentecost day

May, 19 May, 20 May, 21 May, 22 May, 23 May, 24 May, 25

 Deliverable: mock-up Implementation & Testing: phase 2 – voicemails

May, 26 May, 27 May, 28 May, 29 May, 30 May, 31 June, 1

June, 2 June, 3 June, 4 June, 5 June, 6 June, 7 June, 8

 Bachelor Seminarium Implementation & Testing: phase 3 – greetings

June, 9 June, 10 June, 11 June, 12 June, 13 June, 14 June, 15

 Phase 3 done

June, 16 June, 17 June, 18 June, 19 June, 20 June, 21 June, 22

Implementation & Testing: phase 4 (error correction)

June, 23 June, 24 June, 25 June, 26 June, 27 June, 28 June, 29

SPARE TIME

June, 30 July, 1 July, 2 July, 3 July, 4 July, 5 July, 6

 Final report

July, 7 July, 8 July, 9 July, 10 July, 11 July, 12 July, 13

 Create presentation

July, 14 July, 15 July, 16

Presentation

 110

Appendix E: Test Report

 111

Bachelor Project
Visual Voicemail and Greetings

Test Report

Version 2

Computer Science

Faculty of Electrical Engineering, Mathematics and Computer Science

Date:

University:

Course:

Company:

Authors:

Supervisor:

Coordinator

July 8, 2008

Delft University of Technology

IN3405

Bachelor Project

Greetinq B.V.

Nathan Bruning

Medya Amidi

Michelle Cheung

Ir. H.J.A.M. Geers

Ir. B.R. Sodoyer

 112

Table of Contents

1. Executive summary .. 113

1.1. System Overview ... 113

1.2. System Architecture and Software Components .. 113

2. Test Environment ... 113

2.1. Software Items Under Test .. 113

2.2. Components in the Software Test Environment ... 113

3. Test Results... 114

3.1. Overall Assessment of the Software Tested .. 114

3.2. Detailed Test Results ... 114

3.2.1. Unit testing ... 115

3.2.2. System testing .. 116

3.2.2.1. Errors ... 117

3.2.2.2. Test Cases .. 118

3.2.3. Acceptance Test ... 121

 113

1. Executive summary

1.1. System Overview

The mobile application under test is myGreetinq mobile version 1.0. myGreetinq mobile is

developed to provide mobile phone users a visual voicemail and personal greeting service

with a user friendly graphical interface. This software is written in the programming language

Java ME programming language for Nokia S60 series mobile phones.

1.2. System Architecture and Software Components

To build the mobile application, the Model View Controller (MVC) architectural pattern is

used. Using this pattern ensures a clear division between the presentation (view) and the

application logic (controller). There are three main packages: view, mode and controller. The

View package is responsible for the interface of the application. The Model package provides

storage of data. And the Controller package facilitates data retrieval and sending, responds to

user stimuli and handles error conditions.

2. Test Environment

2.1. Software Items Under Test

The software we tested is the myGreetinq mobile application version 1.0.

2.2. Components in the Software Test Environment

The tests are done in two different environments:

1) Emulators:

a. DefaultColorPhone emulator of Sun Java Wireless Toolkit 2.5.2 for CLDC.

b. S60 Emulator of S60 3
rd

 Edition FP1 SDK for MIDP

2) Mobile devices:

Nokia 6120 classic using S60 3
rd

 edition

We used the Java compiler of the Java SE 1.3 edition.

Based on J2ME's Connected Limited Device Configuration (CLDC) and Mobile Information

Device Profile (MIDP), Sun Java Wireless Toolkit‟s wireless applications are designed to run

on cell phones, mainstream personal digital assistants, and other small mobile devices. The

toolkit includes an emulator, performance optimization, and tuning tools.

By running the application with the Sun emulator we suggest that the application would run

on the actual mobile devices as well. However it was different in reality. The results of the

tests on the mobile and in the emulator were not always the same. If this differences exist we

will discuss them in the error description (section 3.2.2.1).

 114

Connecting to the server is done through the internet. The internet connection can be made by

the following internet access media:

1. dial- up

2. broadband

3. Wi-Fi

4. GPRS / UMTS / HSDPA

The emulators use the broadband connection and the mobile phone under the test use the

GPRS network.

For unit testing we used the testing tool JMUnit version 1.0.1 for CLDC 1.0.

3. Test Results

3.1. Overall Assessment of the Software Tested

As it will be explained in section 3.2, the results of the test are promising for the developers.

The main functions of the application work as they were defined in the requirement

documents
37

. A user can listen to the messages and is able to add a new Greetinq and linked

this to the contacts.

The bugs found are relatively small and mostly were quickly recognized in the code and

debugged. Other errors were caused by the server side. Since we were only responsible for the

mobile application and we had no access to the server, we could not correct the server side

errors. Instead we had to report these server-side errors to the responsible department of the

company and wait until they were fixed. In this case we could only ensure that the client side,

hence the mobile application, was tested well. This has caused delays in our testing phase.

Another constraint for testing was the compatibility of the application with the mobile devices

with different characteristics and platforms. This made it more complicated to test the mobile

application for us. Restricting to S60 3
rd

 edition mobile phones only ensures that the

application will perform well in this environment, but does not tell anything about the

performance on other mobile phones.

3.2. Detailed Test Results

In this section the results of the test are exposed. We have applied two test methods, unit

testing and a system testing. Unit testing verifies that a specific module of source code is

working. Unit testing is treated in section 3.2.1. In system testing, the logic of the whole

system was tested to verify the functionality, usability and installation. We used both the

emulator and a mobile device (Nokia 6120) for system testing. We combined our final results

into a set of tables with test cases. Differences between results of emulators and results of

mobile device are described in errors descriptions. This part is described in section 3.2.2.

37

 Requirements document v.6

 115

3.2.1. Unit testing

Unit tests are designed to test a single class, component or module in isolation. We applied

unit testing only for some classes. In this case, we applied unit testing on the model package.

For other classes, it was not possible to test each of them as a single class because they could

not be isolated. For each of the classes in the model package (Account, Contact, Greeting,

Mailbox, Message, Phone, Profile and Setting) there is a TestCase class implemented

which checks for the boundaries and functions. After running the test cases the results were

displayed on the emulator screen. Figure 3.1 gives an example of such a unit test run. If a test

method failed, an error message was displayed on the IDE‟s console. This error message told

where the failed assertion was located.

Figure 3.1: example of a test run on emulator

JMUnit has all the basic assertions that JUnit has, but it does not allow us to insert assertions

in the source code. Therefore we used primitive code to assert the pre- and post conditions.

For example, for assertNotNull() we have used if(something!=null).

During the whole test process, we detected three errors in the unit testing. After debugging

these errors, we had the tests all 100% passed (see Figure 3.2). Unfortunately, we can not say

anything about the coverage, because we could not find any coverage tools applicable for

JMUnit. To make it possible to do the unit test again after modifying source code, we made a

testsuite “TestAll” which runs all test cases together.

Error: testBrand

Location: AccountTest in test code model package.

Related class: Account.java in source code model package.

Fix: the setBrand() method in Account called setString() given the wrong

name parameter. Changed the parameter in “AccBrand”

- version of JMUnit

- name of test case/suite

- bar can be red or green
o red indicates that failures/errors are detected

o green indicates that all tests passed

 116

Error: testDefProfileId

Location: MailboxTest in test code model package.

Related class: Names.java
38

 in source code package utils

Fix: To ensure that methods in Serializable use the correct names for the

elements of the class, a Vector of allowed names is stored in Names.

The String for MaiDefaultProId did not meet the given name. Changed

the String into “MaiDefaultProId”.

Error: testNumber

Location: ContactTest in the test code model package.

Related class: Serializable.java

Fix: setNumber does not accept String with no number. Ensure that the

given String contains a number and throw exception if it is not.

Class Pass Fail Error Total Time

Account 11 0 0 11 31

Contact 5 0 0 5 12

Greeting 8 0 0 8 16

Mailbox 4 0 0 4 2

Message 9 0 0 9 41

Phone 3 0 0 3 1

Profile 6 0 0 6 18

Setting 3 0 0 3 1
Figure 3.2. Final results of test classes

3.2.2. System testing

System testing is needed to detect defects that will only occur when the complete system is

assembled. Because of the complexity of our code, the testing is done manually. For the

system test we first set up the possible situations for the test cases. We went through these

situations and checked if the results corresponded with our expectations. Taking use cases and

scenarios of the Requirement Documents
39

 into account, we have the following testcases:

Log In, Main Menu, Messages, Message Details, Greetinqs, Greetinq Details, New Greetinq

and Settings.

38

 Names.java is deleted after the test. This class is added for testing the correct names, not in use after test.
39

 Requirement Documents v.6

 117

3.2.2.1. Errors

The errors we found during the test process are described in this section. For each error we

give a name and the location where it has occurred. The Steps shows how the error was

invoked. Then a short description is given how the application behaves because of the error.

And at last a solution for this error is described.

Error: Log in

Location: LoginHandler.java in source code controller package

Steps: 1) Login with wrong username and/or wrong password

2) Login with wrong/correct login data.

Problem: After the Warning Alert the system returns to the LoginScreen, but it does not

clean the input data. The user cannot login again.

Solution: Call LoginScreen again, with clean input textfields

Error: Delete Message

Location: Server

Steps: 1) Go to Messages

2) Choose a Message and delete

3) Confirm the deletion with “Yes”

Problem: Cannot delete message, NullPointerException thrown.

Solution: The cause of this error is not in our code but in the Server. We turned this to the

responsible person of the Server.

Error: Delete Greetinq

Location: Server

Steps: 1) Go to Greetinqs

2) Choose a Greetinq and delete.

3) Confirm the deletion with “Yes”.

Problem: Cannot delete greetinq, NullPointerException thrown.

Solution: The cause of this error is not in our code but in the Server. We turned this to the

responsible person of the Server.

Error: Delete Default Greetinq

Location: Server

Steps: 1) Go to Greetinqs

2) Choose the default Greetinq and delete.

3) Confirm the deletion with “Yes”.

Problem: Cannot delete, failedHideAndDefault error returned.

Solution: The Server developer has a new constraint for deleting a default Greetinq. It is not

possible to delete a default Greetinq. Added a Warning.

Error: TimeZone

Location: TimeZone.java in package Java.util

Steps: -

Problem: The emulator only knows UTC as time zone, so in Holland all times are one or

two hours behind (depending on whether summer time is in use).

Mobile devices do support our local time zones.

 118

Solution: It works on mobile devices.

Error: Greetinq Standard Type

Location: GreetinqRecorderHandler.java

Steps: 1) New Greetinq

2) Choose a standard type

3) Record

4) Go back to previous screen

Problem: A list of contacts was shown and not the list of types. The RecordScreen calls an

incorrect previous screen.

Solution: Let the handler ask the type of the new Greetinq and return

GreetinqNewTypeScreen if it is standard else return GreetinqNewContactsScreen

if it is personal.

Error: Language

Location: LanguageSetting.java in package control.util

Steps: 1) Go to Settings

2) Change language “Nederlands” to “English” and Save the change

Problem: Title was not translated.

Solution: Using the method LanguageManager.get() was redundant, it automatically

translates the word.

Error: Yes/No

Location: BooleanSelector.java

Steps: 1) Go to Settings

2) Change “Nederlands” to “English” and Save the change

Problem: “Yes” and “No” were not translated.

Solution: Added LanguageManager.get().

Error: Maximum message duration

Location: SettingsScreen.java

Steps: 1) Go to Settings

2) Fill nothing in the field of maximum message duration.

Problem: NumberFormatException returned.

Solution: It does not accept an empty String. Check that the Field is not empty. Otherwise

set Maximum message duration sec = 0.

3.2.2.2. Test Cases

Each test case has a Pass/Fail column in the tables below. The green colour indicates that the

test has passed. After debugging, all tests have passed. Therefore the tests which failed once

have their row in the table coloured orange. Situations that will never happen are coloured

grey and not tested. The test cases we used are the following:

 119

Log In

Username Password Expected Result Pass/Fail

correct correct Login Succeed,

IF |messages| = 0
MainMenu Screen

ELSE Messages Screen

Login Succeed

IF |messages| = 0
MainMenu Screen

ELSE Messages Screen

P

correct incorrect Login Failed,
Warning

Login Failed,
Warning

P

incorrect incorrect Login Failed,

Warning

Login Failed,

Warning

P

incorrect correct Login Failed,
Warning

Login Failed,
Warning

P

Null null Login Failed,
Warning

Login Failed,
Warning

P

Main Menu

 Option Expected Result Pass/Fail

Messages = null Messages Alert Alert P

Messages ≠ null Messages Messages screen Messages screen P

Greetinqs = null Greetinqs Alert Alert P

Greetinqs ≠ null Greetinqs Greetinqs screen Greetinqs screen P

 New Greetinq GreetinqNewType screen GreetinqNewType screen P

 About About screen About screen P

 Settings Settings screen Settings screen P

 Exit Application closed Application closed P

Messages

| Messages| Expected Result Pass/Fail

0 Alert Alert P

1 Messages Screen Messages Screen P

>1 Messages Screen Messages Screen P

Message Option Real result Pass/Fail

Null Details - - -

True && New Details Message details Screen ,
Old

Message details
Screen, Old

P

True && Old Details Message details Screen,

Old

Message details

Screen, Old

P

Null Delete - -

True Delete,

Confirmation = YES

Messages - Message

Messages Screen

Messages – Message

Messages Screen

P

True Delete,

Confirmation = NO

Messages Screen Messages Screen

Null Mark - - -

True && New Mark Messages Screen , Old Messages Screen ,
Old

P

True && Old Mark Messages Screen , New Messages Screen ,
New

P

 Main Menu MainMenu Screen MainMenu Screen P

 120

Message Details

 Option Expect Result Pass/Fail

AudioState = Stopped Play AudioState = Playing AudioState = Playing P

AudioState = Playing Pause AudioState= Paused AudioState= Paused P

AudioState = Playing Stop AudioState=Stopped AudioState=Stopped P

- Back Messages Screen Messages Screen P

Greetinqs

|Greetinqs| Expected Result Pass/Fail

0 Alert Alert P

1 Greetinqs Greetinqs P

>1 Greetinqs Greetinqs P

Greetinq Menu Expected Result Pass/Fail

Null Details -

True Details Greetinq Details Greetinq Details P

Null Delete -

True Delete
Confirmation=NO

Greetinqs Screen Greetinqs Screen P

True Delete

Confirmation= YES

Greetings - Greetinq

Greetinqs Screen

Greetinqs - Greetinq

Greetinqs Screen

P

 Main Menu MainMenu Screen MainMenu Screen P

Greetinq Details

Greetinq Details Menu Expected Result Pass/ Fail

 Play AudioState = Playing AudioState = Playing P

AudioState =
Playing

Pause AudioState = Paused AudioState = Paused P

AudioState =

Playing

Stop AudioState = Stopped AudioState = Stopped P

 Edit Edit Greetinq Screen Edit Greetinq Screen P

 Add

Contact

GreetingAddContact

Screen

GreetingAddContact

Screen

P

|Contact | = 0 Delete

Contact

GreetingRemoveContact

Screen, Contact = 0

GreetingRemoveContact

Screen, Contact = 0

P

|Contact| >= 1 Delete
Contact

GreetingRemoveContact
Screen,|Contact| >=1

GreetingRemoveContact
Screen,|Contact| >=1

P

 Back Greetings Screen Greetings Screen P

Screen Option Expected Result Pass/Fail

Edit Greetinq Cancel GreetingDetail Screen GreetinqDetail Screen P

Edit Greetinq Save GreetingDetail Screen +
updated details

GreetingDetail Screen
+ updated details

P

GreetingAddContact Cancel GreetingDetail Screen GreetinqDetail Screen P

GreetingAddContact Add GreetingDetailScreen +
added Contacts

GreetingDetailScreen
+ added Contacts

P

GreetingRemoveContact Cancel GreetingDetail Screen GreetinqDetail Screen P

GreetingRemoveContact Save GreetingDetail Screen –
deleted Contact

GreetingDetail
Screen – deleted

Contact

P

 121

Settings

 Option Expected Result Pass/Fail

Maximum

messageduration =null

Save Maximum

messageduration = 0

New Maximum

messageduration = 0

Maximum
messageduration =

t>0

Save New Maximum
messageduration =t>0

New Maximum
messageduration=t>0

P

Voicemail Activation =
No

Yes Voicemail Activation =
Yes

Voicemail Activation =
Yes

P

Voicemail Activation =

Yes

No Voicemail Activation =

No

Voicemail Activation = No P

Default Greetinq = null Save Default Greetinq = null Default Greetinq = null P

Default Greetinq =

Greetinq

Save Default Greetinq =

Greetinq

Default Greetinq =

Greetinq

P

Language = Dutch Modify,

English,

Save

Language = English Language = English P

Language = English Modify,

Dutch,
Save

Language = Dutch Language = Dutch P

 Main

Menu

MainMenu Screen MainMenu Screen P

3.2.3. Acceptance Test

The acceptance test will be conducted to enable a user/customer to determine whether to

accept a software product. Normally it is performed to validate whether a software product

meets a set of agreed acceptance criteria. Greetinq has made an appointment on July 10
th

 to

test the final product. Therefore we cannot include the acceptance testing in this report. We

will discuss the results during the presentation
40

.

The following requirements and constraints should be satisfied:

Work with voicemail messages:

1. Browse through a list of received voicemail messages

2. Listen or remove a message

3. View details
41

 of a message

4. Mark a message as listened or new

Work with the Greetinq service:

5. Browse through a list of greetings

6. Listen or remove a greeting

7. View and edit the details
42

 of a greeting

8. Change the assigned contacts of a greeting

9. Record a new greeting

40

 Presentation at July 15
th

, 2008 at Mekelweg 4, Delft
41

 Details screen of messages include: phone number of the caller, the date the message is sent and the Greetinq

(standard/personal) made for the caller
42

 Detail screen of greeting include: name of the greeting, date in which the greeting is recoded, list of contacts

associated with the greeting, and description.

 122

Settings:

10. Turn voicemail service on and off

11. Change maximum time limit for new voicemail messages

12. Remember password

13. Choose the default greeting

14. Language settings
43

View “About screen”:

15. Greetinq Logo

16. Application Version

17. Platform Information

18. Website address

19. Greetinq service e-mail address

20. Greetinq hotline

Constraints

21. The application must communicate with the user in Dutch.

22. The application graphics must be consistent with the house style of Greetinq.

23. The user interface must be designed to provide easy changing language or

graphic style services.

43

 Currently: Dutch and English

	Preface
	Summary
	Glossary
	Table of contents
	1. Introduction
	The Company
	The project
	People involved
	Description of the chapters

	Project Organization
	Project Plan
	Project meetings
	Documentation
	Team work

	Problem domain and Analysis
	Problem domain
	Analysis
	General analysis
	Users

	Research
	Pre-research
	Requirements
	Scenarios
	During project

	Design phase and its problems
	Graphical User Interface
	Application Logic
	Data Model
	Audio Processing

	Implementation phase and its problems
	Graphical User Interface
	Application Logic
	Voicemail
	Greetings

	Testing
	Unit Testing
	Functionality Testing
	System Testing
	Acceptance Testing

	Final product
	Requirements Satisfaction
	Screenshots
	Logging Functionality
	Code Fragment
	Future Plan

	Conclusion and Recommendation
	Personal Reflection
	Medya Amidi
	Nathan Bruning
	Michelle Cheung

	References
	Attachment: task division
	Appendix A: Orientation Document
	Preconditions
	Familiar Techniques & Tools
	Techniques
	Tools
	Storage and Version Control

	New Techniques
	Symbian OS
	Sun Java ME
	Connected Limited Device Configuration
	Mobile Information Device Profile
	Sun Java Wireless Toolkit
	Playing audio on mobile devices
	Mobile Media API

	Streaming Audio
	MIDlet
	Red5Server
	RTMP Protocol

	Web Service Access
	Network communication with HTTP
	Parsing XML

	Graphical User Interface on mobile phones
	GUI in Java ME and its differences with Java SE

	References
	Appendix B: Requirements Document
	Introduction
	Domain Analysis
	Glossary
	General Knowledge
	Customers and users
	Tasks and procedures currently performed
	Competing Software
	Similarities across domains and organizations

	Proposed Solution
	Requirements
	Functional Requirements
	Constraints
	Quality Requirements
	Platform Requirements
	Process Requirements

	Models
	Scenarios
	Use Case Models

	Use case and interaction with the System
	State Diagram of the Graphical User Interface

	User Interface

	Appendix C: System Design Document
	Purpose
	General priorities
	Outline of the design
	Major design issues
	Subsystem Decomposition
	Hardware/Software Mapping
	Persistent Data Management
	Global Resource Handling and Access Control

	Detailed design
	Class Diagrams
	Sequence diagrams
	Algorithms

	MoSCoW
	Implementation Plan
	Code template
	Appendix D: Project Plan Document
	Table of Contents
	Foreword
	Introduction
	The Project Assignment
	The project principal
	The goal
	The deliverable Product
	Important success factors

	Project Planning
	Phase 0: Requirements Gathering & System Design
	Phase 1: mock-up
	Phase 2: Implementing and Testing: Voicemails
	Phase 3: Implementing and Testing: Greetings
	Phase 4: Implementation and Testing: Error correction

	Important factors in developing software product
	Documentation
	Attachment A: Project Planning
	Appendix E: Test Report
	Table of Contents
	Executive summary
	System Overview
	System Architecture and Software Components

	Test Environment
	Software Items Under Test
	Components in the Software Test Environment

	Test Results
	Overall Assessment of the Software Tested
	Detailed Test Results
	Unit testing
	System testing
	Errors
	Test Cases

	Acceptance Test

