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ABSTRACT
An appropriate understanding of a machine’s competences may be
critical for safe use. Sharing measures of real-time function reliabil-
ity could help users to adjust their reliance on machine capabilities.
We designed a vibrotactile interface that communicates spatiotem-
poral information about surrounding events and further encodes a
representation of spatial uncertainty. We evaluated this interface
in a driving simulator experiment with varying levels of machine
confidence linked to a simulated degradation of sensor signal qual-
ity and varying levels of human confidence induced through a
degradation of visual feedback. A comparison between variants
of the system indicated positive performance effects of providing
uncertain information compared to a more conservative solution
that only provided information above a specific confidence level.
Subjective reports revealed a positive acceptance of uncertainty
signaling in low-visibility conditions, comparable to acceptance
ratings of a fully confident machine that accurately signaled the
precise location of events.

CCS CONCEPTS
• Human-centered computing → Empirical studies in inter-
action design;Haptic devices; User interface design;Mixed /
augmented reality.

KEYWORDS
Spatiotemporal Displays; Sensory Augmentation; Reliability Dis-
play; Uncertainty Encoding; Mobile HMI; Automotive HMI; Human-
Machine Cooperation; Cooperative Driver Assistance;

1 INTRODUCTION
Modern cars can be equipped with sensory systems that provide
the machine with perceptual capabilities surpassing human per-
ception in various aspects. For example, camera systems provide
the machine with continuous 360-degree vision, and Lidar provides
sensory capabilities in the dark. Assistance systems can recruit
these sensory capabilities to improve safety by providing the driver

with supportive information during the driving task (e.g., lane de-
parture warning, blind spot detection, navigation), or by letting the
vehicle (partially) take over control (e.g., adaptive cruise control,
automated lane keeping).

In dynamic conditions, the reliability of sensory systems may
degrade due to changes in the environment. For example, the ac-
curacy of Lidar measurements tends to decrease in the rain [8]
and car manufacturers warn about a reduced reliability of sensors
in tunnels (e.g. [1], p. 96). Since the driver cannot be expected to
have an understanding of the underlying mechanisms (or the mere
existence) of these sensory systems, users may benefit from the
availability of measures of machine reliability. A machine could
assess these measures of uncertainty by itself; the level of uncer-
tainty may be based on signal spread or disagreement between
different sensory systems. A machine that can share such measures
of self-assessed uncertainty could help users to dynamically adjust
their level of trust in the automation to appropriate levels [19] and
in consequence use this information to appropriately distribute
attention and available resources.

1.1 Background
Attempts to communicate machine uncertainty have mainly fo-
cused on visual displays [2, 5, 9, 18, 20]. A disadvantage of using
the visual modality is that it is not continuously available for input:
communication depends on the gaze direction of the user and the
visual modality is being competed for by other activities such as
monitoring the environment. Modalities that are less subject to
these problems are the haptic, auditory, and olfactory modalities.
Recent studies have investigated the use of vibrations [17] as well
as smell [23] to share measures of system uncertainty with the
driver.

Vibrotactile displays have been a topic of research in the context
of spatial perception assistance. General guidelines to the designs
of vibrotactile displays have been established by Van Erp [22].

The current study uses a vibrotactile display that has the purpose
of enhancing the user’s spatial awareness by supplying directional
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stimuli associated with the location of surrounding entities. Com-
parable applications found in literature have based the stimulus
intensity on distance [3, 4] or spatiotemporal measures [15]. We
have found no applications that have encoded measures of uncer-
tainty into the signal.

Presenting system uncertainty fits in the domain of cooperative
automation frameworks, which challenge designers to regard as-
sistance functions or autonomous features as cooperative partners
or team agents, rather than as tools, e.g. [6, 10, 14, 16]. Among
ten challenges to make automation a team player, Klein et al. [14]
listed the team agent’s ability to “make pertinent aspects of their
status and intentions obvious to their teammates” (p. 93). Also, they
mentioned the ability to “direct each other’s attention to the most
important signals, activities and changes” (p. 94).

1.2 Current Study
Here we aim to support a driver in developing an understanding of
the environment through sensory augmentation. In particular, we
map machine observations about safety-critical spatiotemporal fea-
tures to human-perceivable tactile stimuli. Additionally, we encode
a measure of machine uncertainty in such stimuli to let the user
obtain a better understanding of the accuracy of the suggestions
by the machine.

The sensory enhancement device is currently adopted in a simu-
lated automotive environment, which serves to study behavioural
influences of the assistance system. In particular, we study the sys-
tem’s influence on safety, attention distribution and measures of
user acceptance, understanding and workload.

This study may provide new insights about the design of uncer-
tainty displays, sensory augmentation using vibrotactile feedback,
transparency about spatial uncertainty and the concept of human-
machine cooperation.

2 METHOD
2.1 Hardware
The experiment was conducted in a static driving simulator (Fig-
ure 1) with controls for steering, braking and accelerating. Gear-
shifting/transmission was set to automatic mode. Three display
panels (50 inch diagonal, 1080p each) presented the driving sce-
nario and the remaining parts of the interior (dashboard, instrument
cluster, mirrors) at 60 Hz, using the SILAB 5.1 driving simulation
software developed by WIVW GmbH (Würzburg Institute for Traf-
fic Sciences, Germany). Participants were equipped with a wearable
120 Hz monocular eye-tracker from Pupil Labs [13] and a waist belt
containing 16 equally spaced vibromotors (Feelspace GmbH). The
firmware was customized for the purpose of the experiment.

2.2 Communication Signals
2.2.1 Signal For a Confident Machine. The tactile communication
was implemented with a signaling mode similar to the interface
used in the experiments by Krüger et al. [15]. It signaled to the driver
from which lane(s) vehicles were approaching by activating pre-
defined vibromotors that were corresponding to the direction of the
lane (Figure 2). The vibration intensity of the signal was a function
of the time to collision (TTC) between the object (surrounding
vehicle) and the driver’s vehicle. TTC is a spatiotemporal measure

Figure 1: Driving simulator setup in foggy tunnel scenario,
with uncertainty signaling visualized for the experimenter.

Figure 2: Schematic of the belt in an example situation
where from every lane direction an object (large gray dot)
is approaching with a TTC value under 9 s. Vibromotors nr.
0, 14, 8 and 11 (grey small dots) would activate in this case. If
the ego-vehicle drove on the left lane, the activations would
occur at vibromotor 0, 2, 5 and 8. Note that the vibromotors
on the rear were spaced further apart, as the experimenters
felt that the signals from the rear were easier to distinguish
with a larger spacing between the actuators.

that is a function of the distance and relative velocity between
entities. It is defined as the time it would take until a collision
occurs if two entities would not adjust their current velocities and
direction of traveling. As lower TTC indicates more dangerous
situations, the stimulus intensity was based on the inverse of TTC.

The onset of vibrations occurred when the TTC dropped below a
threshold of 9 seconds, at a vibration intensity that was identified by
the experimenters as the lowest perceivable intensity. The vibration
intensity increased as the TTC dropped, so that a lower TTC implied
a higher stimulus saliency. When the TTC was zero (a collision), a
stimulus reached its maximum intensity, which was equal to the
maximum stimulus intensity of the Feelspace belt.

The currently explained communication mode can give appro-
priate signals about the location of approaching objects as long as
the machine had precise knowledge about the location and veloc-
ity of these objects. The conveyed message that is being signaled
is analogous to pointing to something and saying: ‘something is
exactly over here’. We refer to this signal as the precise signal.
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2.2.2 Signal For an Uncertain Machine. In addition, the machine
was equipped with a communication mode capable of informing
the driver about the presence of approaching1 objects when infor-
mation is not conclusive enough to state the current lane of the
approaching object, but where information is reliable enough to
state that ‘an object is somewhere within a range, though there is
not enough evidence to say where exactly’. We refer to this signal
as the uncertainty signal.

Figure 3A shows a schematic of the uncertainty signal, with one
vehicle approaching from the front. The exact location of this vehi-
cle is unknown, as illustrated by the strip of overlapping grey dots.
The machine does have information that a vehicle is approaching,
but it is uncertain on which lane it is located. To communicate
this uncertainty, a dynamic vibration pattern is activated, succes-
sively activating neighboring vibromotors in the clock- or counter-
clockwise direction. The initial vibrator position and direction is
chosen randomly from the available vibromotors within this un-
certainty range. The dynamic pattern travels over a pre-defined
range that represents the overlap between the two lanes between
which is doubt. The pointer oscillates from between the two borders
with a constant frequency (1.0 Hz, from start-to-start point). The
next vibromotor activates at the same instance that its predecessor
switches off (Figure 3B). The pointer continues to bounce between
these borders until either one of two events occurrs: (1) the TTC
becomes greater than a specific threshold (in this case nine sec-
onds), in which case the signal disappears, or (2) a reliable estimate
of the current lane of the approaching vehicle becomes available.
In the latter case, the width of the range converges to zero, to the
static location associated with the object’s lane as in Figure 2. The
dependence of vibration intensity on TTC was the same as it was
for the precise signal.

For a visualization of the uncertainty signal, we refer to the
supplementary video (See Appendix A for details).

2.3 Driving Scenarios
Five simulator scenarios were designed. Two scenarios had the
purpose of familiarizing the participant with the driving simulator
and the tactile interface and the other three scenarios were de-
signed with the aim of independently modulating the uncertainty
of the vehicle’s observations and the uncertainty of the human’s
observations.

Human uncertainty was induced by substantially limiting vis-
ibility in the driving scene through fog, making the look-ahead
distance about 33 m. The machine was set to be uncertain during
rain or when driving through a tunnel. In these scenarios machine
uncertainty was simulated by making the current driving lane of
an object unknown to the machine when an object was more than
33 meters away from the ego-vehicle. The only information that
remained available to the machine was the longitudinal distance to
the object and whether the object was in front or behind the vehi-
cle. Participants were orally informed by the experimenter about
these machine limitations before the start of each driving scenario,
as follows: “In this section you will drive through rain/a tunnel.

1We regard approaching in the sense of reducing the relative distance in any direction
regardless of who is faster (being approached by someone = approaching someone).

Figure 3: Uncertainty signal for an object approaching from
the front on a two-lane road (A). The stimulus traveled be-
tween the borders and bounced back in the other direction
as it hit one of the borders (B). The width of the range was
chosen to be between the vibromotors that were allocated
for the static signal (Figure 2) plus one extra vibromotor on
each side. Thus, in the example in this image, the signal
bounced between vibromotors 13 and 1.

Therefore, the vehicle is less certain about the locations of vehicles
that are further away”.

The instructions to the participant were to maintain a speed
of 120 km/h where possible and avoid collisions with other vehi-
cles. All scenarios consisted of a straight two-lane highway. The
following subsections further detail the design of the scenarios.

2.3.1 Familiarization Scenarios. Before conducting the experiments,
participants encountered two scenarios to accommodate them with
the simulator and the vibrotactile belt functionality.

The first familiarization procedure was carried out according to
guidelines specified by Hoffmann and Buld [11]. This procedure
was aimed at reducing the probability of causing simulator sickness
by gradually increasing exposure to virtual accelerations. Longi-
tudinal accelerations were introduced by asking the participant
to accelerate to 30 km/h and then come to a full stop. This was
repeated, increasing the speed to 50, 80 and 120 km/h. Finally, par-
ticipants were asked to swerve between cones placed alternating
between the right and left lane, introducing lateral accelerations
at a speed of approximately 30 km/h. The total duration of this
scenario was approximately four minutes.

The second familiarization scenario familiarized the driver with
the spatiotemporal proximity signaling functionality of the belt
in a scenario where the machine was certain (precise signal). The
scenario consisted of a two-lane highway on a sunny day. Partic-
ipants were not informed about the functionality of the belt and
were asked to maintain a speed of 120 km/h where possible. Since
vehicles on the passing lane were designed to drive faster than
the target speed, the task was most easily fulfilled by driving on
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Figure 4: Visibility in the Foggy scenarios. Vehicles disappear into the fog at a distance of approximately 33m.

the rightmost lane. However, vehicles on the right lane that were
trailed by the ego-vehicle would occasionally slow down, forcing
the participant to either overtake via the left lane or brake to avoid a
collision. These instances ensured that the time to collision between
the ego-vehicle and its surroundings dropped below the threshold
value of 9.0 seconds, invoking exposure to the signal. After five
minutes of driving, participants were asked to park their car on
the emergency lane and the belt exploration scenario was stopped.
Participants were then asked what they thought the tactile stimuli
communicated, and they were informed about the true nature of the
assistance function. This scenario was similar to an experimental
scenario by Krüger et al. [15], who found that participants were
able to develop an intuitive understanding of the stimuli within
four minutes of system exposure. Similar rapid user understanding
times for directional tactile displays were described by Cassinelli et
al. [3] and Hogema et al. [12].

2.3.2 Foggy Road: Machine Certain, Human Uncertain (MC-HU).
The foggy road scenario was simulated as a night-time scenario,
designed to make the human uncertain by inserting a dense fog
field and disabling lights of surrounding traffic. This limited the
look-ahead distance to about 33 m (Figure 4), corresponding to a
lookahead time of about 1.0 s assuming the driver drove at approxi-
mately the target speed.

Machine observations were not affected by the mist or darkness,
so a precise signal was communicated for vehicles driving at any
distance away from the ego-vehicle.

Approaches of surrounding vehicles could be triggered by the
experimenter. When a command was given, a vehicle started ap-
proaching from behind the fog barrier from one of the four possible
lane directions, driving at a speed of 160 km/h (for vehicles from the
rear) or 80 km/h (vehicles from the front). Eventually the vehicle
would overtake (or be overtaken by) the ego-vehicle, assuming the
ego-vehicle drove around the target speed of 120 km/h. After a
vehicle passed and disappeared into the fog again, and the experi-
menter confirmed that the participant had reached a speed of 120
km/h again, the next vehicle was launched. This was repeated until
14 vehicles were launched.

Cars that approached from the rear on the right lane would
change lanes and overtake the ego-vehicle at a distance of 30m.

The direction from which cars approached was a randomized
sequence, re-used in each experiment for comparability. The order
of the encounter directions is listed in Table 1.

2.3.3 Foggy Tunnel: Machine and Human Uncertain (MU-HU). The
foggy tunnel scenario was identical to the foggy road scenario,
except for the addition of a tunnel that ran for the entire course.

Table 1: Order of launched vehicles. Vehicles annotated with
an * approached at 0 km/h instead of 80 km/h. Due to com-
parability issues they were excluded from the analysis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
FL FL FL BL BR FR* FL BL FR* BR BL BR FR FR

The driver visibility was again approximately 1.0 s. The tunnel had
the effect that the machine became uncertain about the locations
of vehicles that were outside of the visible region (>33 m away).

The traffic definitions were identical to the Foggy Road scenario,
for comparability between foggy scenarios.

2.3.4 Rain: Machine Uncertain, Human Certain (MU-HC). The rain
scenario consisted of a straight road on a rainy day. The rain was
visually present, though at an intensity at which it was assumed not
to be of influence on the driver’s visual perception. The reliability
of the machine was negatively affected by the rain, in the same
manner as it was in the foggy tunnel scenario.

In the rainy scenario, the driver’s field of viewwas not obstructed
by fog. The traffic setup from these scenarios could not be re-used
since there was no fog to mask the fact that cars suddenly appeared
on the road ahead. A different traffic profile was designed for the
rain scenario, which is explained in Figure 5.

2.4 Participants
Fourteen drivers (1 female) between 21 and 41 years old (M = 29.1,
SD = 5.4) participated this study. All participants reported that they
had (corrected-to) normal vision and held a valid driving license
for an average of 11 years. Two participants reported that, over the
past year, they had driven less than once a month. Two drove once
a month to once a week, three drove one to three days a week, and
seven drove four days a week or more. For nine participants driving
a car was their primary mode of transportation. Three participants
reported mainly using motorcycles and the remaining participants
relied primarily on walking, public transportation or other methods.
All participants were students or employees active at XXXblank
for blind reviewXXX.

2.5 Experimental Design
In two scenarios (Foggy Tunnel and Rain), the machine became
uncertain about its observations. These scenarios were encountered
twice by each participant: once without and once with uncertainty
communication functionality enabled. When uncertainty commu-
nication was disabled, the machine only communicated the precise
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Figure 5: Traffic definition in the rain (MU-HC) scenarios.
Five vehicles were driving on the right lane at 80 km/h,
spaced 250m apart (I). The ego-vehicle could stick to the tar-
get speed (120 km/h) by overtaking the vehicles. When the
front truck (E) was overtaken, a trigger point was activated
that made the trailing cars B, C and D switch to the left lane,
and adjust their speed to 160 km/h (II). This resulted in B,
C and D eventually overtaking Ego from the rear. When D
passed the ego-vehicle (III), the leading truck (A) accelerated
to 160 km/h, and it changed to the left lane if it came within
a distance of 30 meters of the ego-vehicle.

signal as soon as a reliable estimate of an object’s position became
available.

In the Foggy Road scenario, themachine had an accurate estimate
of the position of vehicles at any distance away from it, thus it could
always communicate the precise signal. Since there was no machine
uncertainty in this condition, there was no need to conduct this
scenario twice. This resulted in a total amount of five experimental
conditions, whose characteristics are summarized in Table 2.

To rule out potential learning effects, the order in which these
experimental conditions were conducted was varied between par-
ticipants. Half of the participants started with the two uncertainty
communication conditions and half without. Also, we ensured that
foggy scenarios and rain scenarios were alternated, as test runs
indicated that the foggy scenarios were most intense in terms of
mental demand. The amount of time consecutively driven with
high mental demand was minimized by this ordering.

An indicative time schematic of an experimental session is given
in Table 3.

Table 2: Experimental conditions. In the machine visibility
column, ‘33m + uc’ means that themachine observes precise
positions up to 33m. Beyond that, it communicates the un-
certainty signal.

condition scenario uncertainty
signaling

machine
visibility

human
visibility

MC-HU foggy
road

not necessary not limited 33 m

MU-HU foggy
tunnel

not available 33 m 33 m

MU-HC rain not available 33 m not limited
MU-HU-uc foggy

tunnel
available 33 m + uc 33 m

MU-HC-uc rain available 33 m + uc not limited

Table 3: Approximate time scheme.

Informed consent and demographics questions 10 min
Simulator + belt familiarization scenarios 10 min
Eye tracker installation + calibration 5 min
Experimental conditions (5x) + questionnaires 30 min
Room for open comments by participant 5 min

Total 60 min

2.6 Dependent Variables
The following variables were recorded:

Trial safety: MTTC. We consider the time fragments leading up
to an overtake of (or an overtake by) a surrounding vehicle as
individual trials. (see section 2.7.1 for details). For each trial, the
minimum time to contact (MTTC) was recorded as an indication
of trial safety. MTTC indicates safety, as higher TTC values may
indicate (1) that the ego-vehicle adjusted its speed to match that of
an approaching vehicle or (2) that the ego- vehicle changed lanes to
an unoccupied lane, causing the TTC to increase towards infinity.

Trial safety: Steer angle and brake depression. On the highway,
high steering angles and high brake depression can be indicators
of unsafe situations. They can also be used to identify if and when
participants responded to a signal and whether they chose to brake
and/or overtake.

Gaze distribution. Eye-tracking data was collected to evaluate if
the onset of the uncertainty signal caused shifts in visual attention
towards the direction of the presented signal. We defined the de-
pendent measure front gaze ratio as the ratio of the amount of gaze
points in the front window versus the total amount of gaze points
in the mirrors and wind shield (Equation 1). A higher front gaze
ratio indicates the user allocated more attention towards the front,
a lower front gaze ratio indicates more attention towards the rear.
See Section 2.7.3 for details about the analysis of the eye tracking
data.

front gaze ratio =
gaze count on windshield

gaze count on windshield +mirrors
(1)
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SubjectiveMeasures. After each experimental condition theNASA
Task Load Index (Raw-TLX, [7]) assessment was conducted as well
as the Van Der Laan usefulness/satisfaction questionnaire [21]. Fur-
thermore, after every experimental run the participant was asked to
rate the following items on a 5-point Likert scale (strongly disagree
to strongly agree). These statements allowed us to check if the en-
vironmental modulations indeed were of influence on the human’s
confidence, if the participants had understood that the machine be-
came less certain and if they found that the machine communicated
this. These questions may further serve as diagnostic indicators in
case of unexpected participant behaviour.

(1) The other road users made me unconfident
(2) The weather conditions made me unconfident
(3) The signals from the belt made me unconfident
(4) The machine was sometimes uncertain about the exact loca-

tion of a vehicle
(5) The machine told me it was uncertain about the exact loca-

tion of a vehicle
(6) I relied on what I perceived with my eyes
(7) I relied on what I perceived through the belt
(8) I had trust in my own capabilities

2.7 Analysis
2.7.1 Extracting trials from the recordings. The recordings were
split up into smaller time fragments that we will call trials. A trial
was created for every vehicle that overtook or was overtaken by
the ego-vehicle. The end point of a trial was defined as the exact
moment a vehicle passed the ego-vehicle. The starting point of a
trial was defined as the moment where time to passing (TTP) of a
surrounding vehicle dropped below 9 seconds. Here, TTP is a dy-
namic variable that was defined as the time it would take until two
vehicles would pass each other if they would maintain their current
speeds. TTP is similar to time to contact (TTC), however TTP is
also defined when two vehicles are not on a collision trajectory.
This means that two vehicles do not need to drive on the same lane
in order for TTP to take on a value. This was a helpful property
that allowed us to define the starting point of trials where the ego-
vehicle and the surrounding vehicle were not initially driving on
the same lane.

2.7.2 Analysis of Minimum Time to Collision (MTTC). For the anal-
ysis of trial safety measures, we focused on the conditions in which
the visible field of the human was limited (foggy). In particular, we
regarded the encounters with vehicles that approached from the
front right lane that were driving with 80 km/h. Since the driver
was asked to drive on the right lane when possible, these were
the vehicles that required action by the driver in order to avoid a
collision (change lane or brake). For each trial, the MTTC was calcu-
lated. Since there were three of these trials per condition, we took
the average of the three obtained MTTC values for the analysis.

For the MU-HU (Foggy Tunnel) conditions, comparisons were
made between the uncertainty-communication-disabled condition
(MU-HU) and the uncertainty-communication-enabled condition
(MU-HU-uc). It was hypothesized that MTTC scores would be
higher for the condition where uncertainty communication was
enabled, since the machine was capable of notifying the participants
earlier that a slow vehicle was driving ahead.

Another comparison was made between the foggy tunnel with
uncertainty communication enabled (MU-HU-uc) and the foggy
road condition (MC-HU). In the latter condition, the machine was
always confident about the exact lane of an object and thus commu-
nicated a precise description of the position of objects to the user.
It was hypothesized that the driver would use the precise signals
more appropriately then the uncertain signals, as the driver gets
information from which he/she could infer the lane of the object.
We hypothesized that this would be apparent from higher MTTC
scores for the MC-HU condition than for the MU-HU-uc condition.

2.7.3 Analysis of Eye Tracking Data. We defined areas of interest
around the front window and the three mirrors and recorded in
which of these areas the estimated gaze point of the participant was.
We were interested to see if the presence of the uncertainty signal
caused the driver to shift visual attention towards the direction that
was being signaled by the assistance. The measure that we used to
indicate a shift of attention towards or away from the front is the
front gaze ratio (Equation 1). We calculated the front gaze ratio for
trials where a vehicle approached from the rear. Each experimental
run contained three of these trials. Per participant, the mean score
of these trials was used for statistical comparisons. We expected
that in conditions with uncertainty communication, the drivers’
gaze would be focused more on the mirrors (lower front gaze ratio)
then for conditions without uncertainty communication.

3 RESULTS
Figure 6 shows for each trial in human-uncertain conditions the
development of TTC, speed, steer angle, brake depression and driv-
ing lane. These plots indicate earlier responses of participants in
situations where there was early communication, either in the form
of uncertainty signaling (middle column) or precise signaling (right
column). More aggressive braking for the late precise signal (left
column) can be observed, likely because participants were informed
later about oncoming traffic. They had less time to avoid the ob-
stacle. These figures indicate that participants understood that the
uncertainty signal meant that something was approaching, and
that participants were able to use the supplied information for the
benefit of safety (in terms of TTC).

3.1 MTTC
Figure 7 displays the MTTC scores for the conditions in which the
human was uncertain. A paired t-test was used to compare the
uncertainty communication in human-uncertain scenarios (MU-
HU-uc) with the baseline signal (late, certain communication; MU-
HU) and with the all-knowing variant (MC-HU). On average, the
MTTC was higher for the MC- HU condition (M = 3.9 s, SD = 1.11)
than for the MU-HU-uc system (M = 2.59 s, SD = 0.88); t(13) = 4.73,
p < .001.

Compared to the system without uc (M = 1.24s , SD = 0.46), the
uncertainty communicating system had a higher MTTC on average;
t(13) = 4.36, p < .001.

These results indicate that, in terms of MTTC values, the safest
condition was the condition with a certain machine. It is likely that
the participant correctly understood the precise signal and changed
lanes or adjusted its speed the earliest. However, in conditions with
less optimal sensory conditions, the uncertainty communication
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Figure 6: Raw data plots for trials in conditions with an uncertain human.

1 2 3 4 5 6
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Figure 7: MTTC scores for human-uncertain conditions (n =
14).

signal is superior to a machine only capable of signaling specific,
reliable observations.

3.2 Eye Tracking
Figure 8 shows the ratio of gaze points on the front (front window)
divided by front+back (front window + mirrors).

For the human-certain conditions (rain), a one-sided Wilcoxon
signed rank test did not reveal that uncertainty communication
from the rear significantly lowered the front gaze ratio: (MU-HC
vs. MU-HC-uc: p = .066, see light blue boxplots). In the human-
uncertain conditions, a significant decrease in front gaze ratio was
shown (MU-HU vs. MU-HU-uc: p < .001, see dark blue boxplots).
These results indicate that the signal successfully directed visual
attention towards the direction that the signal appeared from in
conditions where the human was uncertain.

3.3 Subjective Reports
Usefulness and satisfaction ratings were conducted for the three
conditions where the machine had the ability to communicate about

0.0 0.2 0.4 0.6 0.8 1.0
Gaze Ratio

MU-HC

MU-HC-uc

MU-HU

MU-HU-uc

Figure 8: Gaze ratio for conditions inwhich themachinewas
uncertain and for trials in which vehicles were approaching
from the rear. Lower values indicate more gazing towards
the mirrors. Due to failed eye tracking recordings, n = 13
(instead of 14) for all conditions.

vehicles that were more than 33 m ahead. In the MU conditions, this
was in the form of the uncertainty signaling, in the MC condition,
this was in the form of a precise signal. Figure 9 summarizes the
responses. A Friedman test for the usefulness and satisfaction indi-
cated a significant difference between the three conditions, (χ2(2) =
21.93, p < .001 for usefulness, χ2(2) = 11.41, p = .003 for satisfaction).
Post-hoc Wilcoxon signed rank tests showed that usefulness was
rated significantly higher for the conditions where the human visi-
bility was limited by fog (MC-HU and MU-HU) than for the rainy
condition, in which only the machine was uncertain (MC-HU vs.
MU-HU: p = .289, MU-HU vs. MU-HC: p < .001, MC-HU vs. MU-HC:
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Figure 9: Mean usefulness and satisfaction scores of the as-
sistance functionality in MC-HU (Foggy Road), MU-HU-uc
(Foggy Tunnel), MU-HC-uc (Rain). Error bars display the
standard deviation. Themean (SD) usefulness scores in these
conditions were 1.41 (0.54), 1.37 (0.50), 0.16 (0.50), respec-
tively. For the satisfaction scores: 0.82 (0.64), 0.62 (0.76), -0.04
(0.76), respectively.
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Figure 10: NASA Raw TLX scores per condition. Scores of
each sub-question were averaged to obtain the overall RTLX
score, ranging from 0-100.

p < .001). This was also observed in the satisfaction ratings (MC-
HU vs. MU-HU: p = .219, MU-HU vs. MU-HC: p = .004, MC-HU vs.
MU-HC: p = .001).

We observed higher NASA TLX workload ratings in HU condi-
tions than in HC conditions (Figure 10).

Secondly, a Wilcoxon signed rank test showed a significantly
lower workload rating for the MC-HU condition when compared
to the MU-HU-uc condition (p = 0.032). This further indicates that,
in human uncertain conditions, participants had less difficulties
when receiving long-range specific signaling then when receiving
uncertainty signaling.

Table 4: Mean (SD) answers to questionnaire, rated on a 5-
point Likert scale. Scores range from 0 (strongly disagree) to
4 (strongly agree). Items: 1. other road usersmademe uncon-
fident, 2. weather conditions made me unconfident, 3. sig-
nals from the belt made me unconfident, 4. The machine
was sometimes uncertain about the exact location of a vehi-
cle, 5. The machine told me it was uncertain about the exact
location of a vehicle, 6. I relied on what I perceived with my
eyes, 7. I relied on what I perceived through the belt, 8. I had
trust in my own capabilities.

Responses to the eight Likert items are listed in Table 4. They
indicate that the manipulations worked as we indented; partici-
pants reported that they were less confident in the foggy scenarios
and they seemed to have understood when the machine was uncer-
tain. At the end of the experiment, participants were asked what
they thought about the system and if they had any comments they
wished to write down. Two participants commented that they found
the task unrealistic since they would never drive 120 in the real
world in this type of fog. Two participants commented that they
wanted different information from the back and front, of which one
further specified that this was since (s)he did not rate cars from
behind as dangerous. One participant noted that (s)he would like
to have such a thing in his/her car, added with the comment that
(s)he would ‘probably be tempted to drive faster’. One participant
commented that (s)he ‘could never tell if the device was intention-
ally conveying uncertainty or if its behavior when it was uncertain
simply made it impossible to infer’. One other participant noted:
‘The uncertainty expression of the system was very intuitive! It
was clear that the system was uncertain about the exact location of
other cars.’

4 DISCUSSION
In the current study, we investigated the effects of communicating
spatial machine uncertainty via a vibrotactile pattern. We evaluated
the influence of the uncertainty communication on safety, atten-
tion allocation and subjective measures. To do so, we varied the
competences of the machine by simulating sub-optimal sensory
conditions for the machine (tunnel, rain). In addition, we manipu-
lated human confidence by inserting dense fog fields. A prerequisite
to this study was that these environmental manipulations indeed
had the effect that we intended. Subjective reports suggest that
successful manipulations took place. Participants perceived higher
workload in all the foggy conditions and further subjective reports
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indicated that the fog made participants uncertain (Table 4, q2) and
that they had a diminished self-reliance (Table 4, q8) .

Implications for safety. Changes in driving behaviour for the
benefit of safety were observable; the uncertainty signaling induced
earlier lane-changes or braking responses in overtaking situations
in comparison to situations where no signaling was present (Figure
6). This observation was backed up by a significant increase in
safety in terms of MTTC scores.

We observed the safest behaviour in terms of MTTC scores
and perceived workload in conditions where the machine’s sensory
capabilities were unaffected by the environment and a precise direc-
tion of safety-relevant traffic participants was provided to the user.
We interpret from this that performance is linked to the availability
of information. It confirms that the specific signal was appropriately
used by participants to acquire a more accurate understanding of
the direction of surrounding objects.

Attention distribution. Analysis of the eye tracking data revealed
that visual attention was affected by the uncertainty signaling in
scenarios where the human visibility was limited. The results sug-
gested that the onset of a signal shifted visual attention towards
the direction of the object that caused the uncertainty signaling.

Acceptance. Usefulness and satisfaction of the assistance were
rated positively in conditions where the human and machine were
uncertain and the machine provided uncertainty-encoded direc-
tional cues. We did not find significant differences when comparing
these ratings with the ratings of a system that was able to sense
and communicate precise directions of surrounding traffic. This is
a promising observation that suggests that users are still satisfied
with the directional cues and recognize the usefulness of the signals,
despite the lower quality in terms of information specificness.

We found indications that the acceptance of uncertainty com-
munication may be context-dependent; when the machine was un-
certain while the driver was confident, the usefulness-satisfaction
ratings showed neutral ratings. This could mean that there is less
need for the machine to continuously share observations when
the human agent is confident. For successful human-machine co-
operation or teaming, a human mental representation of system
uncertainty may not be enough; when the machine also has a repre-
sentation of human confidence in different environments, it allows
the machine to decide under what conditions to provide suggestions
to the user. However, such a selective and presumably personalized
communication could induce confusion when violating a user’s
assumptions on what the machine is communicating. In this ex-
ample it might not even be possible for a user to unambiguously
distinguish between cases in which the machine is not providing
stimuli because it has not detected a potential collision event and
cases in which it has selectively disabled communication because it
could confirm that the user has a sufficient scene understanding. Se-
lectively deactivating systems that implicitly encode the absence of
issues through an absence of stimuli could therefore be problematic.

Types of uncertainty communication. Subjective reports seem to
agree that the machine communicated uncertainty (Table 4, q5).
An important difference between earlier studies that have demon-
strated successful communication of uncertainty (e.g. [2, 18, 23]) is
that we currently relied on an implicit representation of uncertainty;

the uncertainty component was encoded within the spatiotemporal
signaling functionality of the belt. We argue that the distinction
between implicit and explicit uncertainty communication may be
useful for the future design of reliability displays. Implicit uncer-
tainty communication is characterized by an increase ambiguity or
vagueness, or a decrease in specificness of presented information
to convey increased uncertainty. One example of implicit uncer-
tainty communication that we encountered in literature is by Finger
and Bisantz [5], who added distortions to an image to make it in-
creasingly difficult to specify the underlying image, thus invoking
uncertainty about the contents of the image. The currently pre-
sented study falls in the same category; instead of explicitly stating
that ’I am uncertain’, the machine agent communicates uncertainty
by being less specific in its suggestions about the location of objects.

Limitations and challenges. A limitation of the current study is
that the sample may not be representative to the population (most
technically schooled, 13/14 male).

We have currently only collected evidence that the system is
effective in extremely challenging traffic situations, indicated by
two participants as feeling unrealistic. An advantage of the rapid
succession of safety-critical situations is that it allowed us to collect
data with a limited amount of participants and that it ensured that
the participants were exposed to the functionality of the device,
which only provides stimuli when operating outside of safety band-
width. This means that, in safe conditions, the system does not
produce any stimuli. The fact that the system proved its usefulness
in challenging situations can be seen as a strength, however we do
not know if the effects remain when the system is not activated
often. Future work could address this issue by implementing easier
scenarios where a participant encounters only a few, or only one
safety-critical event(s).

This study has shown that car driving is a promising application
of the presented interface. Other domains that may benefit from
displays that can share spatial uncertainty information may be
(motor)cycling or more distant domains such as the control of ships,
drones or unmanned vehicles, immersive gaming, assisting the
visually impaired, (virtual) projectile impact/origin estimation or
other dynamic situations where sensory capabilities may vary, or
where acting forces are not fully determined.

A VIDEO
As a supplement to this paper, a video is included that shows two
trials from the MU-HU-uc condition. A vehicle appears from the
rear and overtakes over the left lane. The uncertainty signaling
disappears as the machine concludes that the approaching vehicle
is not on a collision path. In the second trial, a vehicle appears from
the front and is overtaken by the ego-vehicle. The signal converges
from the uncertainty signal (Figure 3) into the precise signal (Figure
2) as soon as the machine obtains a reliable estimate of the precise
location of the object.

The visualization shown in the video is only a representation
of what participants perceived through the belt. This visualization
was not visible to the driver, only to the experimenter who could
use it to confirm functionality during the experiment.
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Appendix A

Design of a vibrotactile uncertainty
communication device

This chapter provides further information about the design process of the uncertainty communica-
tion device. This chapter may serve as a reference for future designs of uncertainty communica-
tion systems or as a reference to improve reproducibility of the experiment described in Chapter
1.

The goal of the design was to create an intuitive vibrotactile representation of uncertainty about
spatial observations. A method for communicating precise spatiotemporal information about sur-
rounding objects was designed by Krüger et al. [4]. The source code and hardware (Figure A.1)
from that project were available for the current project.

I will discuss three design variants for this system that may each represent spatial uncertainty. Be-
fore introducing the design variants, I summarize findings from the accompanied literature review
(see Appendix G) that were useful in the design of the uncertainty communication signals:

• Uncertainty can be split up into three classes. The first class is measurement uncertainty,
the second class is prediction uncertainty, and the third class is representation uncertainty.
In the current experiment, we modulated the reliabiliy of the vehicle’s sensors. Therefore,
the most relevant class to the current design is measurement uncertainty. For the current
design, we assume that measurements of the lateral position of other road users is a set of
measurements with varying spread that can be visualized with a distribution function, as in
Figure A.3a.

• Most approaches have focused on the visual modality. A sparsely investigated modality for
conveying uncertainty information is the somatosensory receptory field.

Figure A.1: FeelSpace NaviBelt. Image provided by Feelspace.
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Figure A.2: Boxplot and violin plot.

• Popular visual encodings for representing measurement uncertainty seem to be the addi-
tion of vagueness, ambiguity, or spread to the signal. All these concepts are similar in the
sense that they decrease specificness of information. This decrease in specificness is usu-
ally inevitable since lower-quality measurements generally have more spread. However,
some authors have modulated vagueness as a parameter that could be varied regardless of
measurement quality to communicate system uncertainty.

Examples where spread of a signal are summarized in a visual representation are boxplots or violin
plots (Figure A.2). The boxplot and violin plot give an intuitive visual representation of a set of
measurements and properties of the underlying distribution of the data set. For the design of a
representation of uncertainty using vibrotactile communication, I created three representations that
were inspired by these visual representations.

To explain the design of the three vibrotactile signal variants, I introduce an example situation in
Figure A.3a. The ego vehicle obtains measurements about the lateral position an object that is
approaching from the front. The distribution of these measurements is visualized on the top. It
may be regarded as a probability density function of the actual position of the object.

A.1 Signal variant 1

An early design iteration included the information about the underlying distribution of the data
into the vibrotactile signal. Figure A.3b shows the activation intensities of vibromotors in the
waist belt for this case. It can be seen that the vibromotors that lay in the direction of the front
two lanes (motors 13 - 1) are activated at intensities that directly represent a dicretization of the
underlying distribution function from Figure A.3a.

Experimenter tests with this signal representation revealed a couple of shortcomings. It was nearly
impossible to reconstruct the shape of the distribution from the feeling that the waist belt induced.
We noticed that the same shape felt different when presented on different parts of the body. This
is likely caused by variance in proprioceptive capabilities of the somatosensory receptive field
around the human waist.

Another cause of this problem may be the low spatial resolution of the vibrators on the waist. We
have a resolution of 16 vibromotors per 360 degrees of vision. When communicating about objects
on a two-lane road, as in the example situation, we could effectively use five vibromotors to encode
the shape of the distribution function. A belt with more vibromotors may be more suited to convey
the shape of the distribution in a vibrotactile signal.

Another problem was that the generation of a shape required the stimulation intensity of the vibro-
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(a) Schematic representation of measure-
ments when an object approaches the ego
vehicle from the front.

11 12 13 14 15 16 1 2 3
vibromotor

vi
br
at
io
n 
in
te
ns

ity

(b) Signal variant 1.
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(c) Signal variant 2.

Figure A.3
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motors to be modulated individually. In the design by Krüger et al. [4], the stimulation intensity
was a function of TTC. It was too difficult to combine representations of a shape of the distribution
function and an indication of the TTC variable.

A.2 Signal variant 2

As a second design alternative, the shape of the underlying distribution was removed. Instead, a
range of vibromotors was activated with equal stimulus intensity (Figure A.3c). This resulted in
a stimulus of variable width (i.e. amount of vibromotors activated). A wider signal corresponded
to measurements with less certainty (more spread) and a narrow signal corresponded to a precise
estimate of the position of an object.

The intensity of the signal was a function of TTC with the approaching object, with the same TTC-
intensity relation as described in Chapter 1 (section Signal For a Confident Machine). Since there
was no need to encode the shape of an underlying distribution with the intensity of the signal, this
approach seemed more promising.

However, there were still some issues with this signal. As more vibromotors were activated for
measurements with more spread, this resulted in more perceived intensity of the signal. This was
an unwanted effect, since we intended to keep perceived intensity unchanged when the TTC did
not change.

A.3 Signal variant 3

A third signal variant was eventually used in the experiments. Signal variant 3 is described in
Chapter 1 (Signal for an Uncertain Machine). This signal variant seemed promising as we could
distinguish small changes in widths of the signal, whilst keeping the ability to understand informa-
tion through the vibration intensity parameter. This meant that it was a promising method to use
in combination with a TTC encoding on the vibration intensity parameter.

Illusion of motion
The uncertainty signaling device made use of the apparent motion illusion. The haptic variant of
this phenomenon was first described in 1917 by Burtt [1], who found that an illusion of movement
between two actuators can be induced by sequentially presenting two tactile stimuli in close prox-
imity. Guidelines for creating reliable continuous vibrotactile movement sensations and patterns
can be found in [6] and [3].

Design parameters of the uncertainty signal
The uncertainty signal (signal variant 3) as used in the experiment conveyed a measure of uncer-
tainty which was based on measurement spread, as well as a measure of spatiotemporal proximity
(TTC). This subsection describes details of the uncertainty signal.

In the experiment, the switch between a certain and an uncertain state was simulated as a discrete
event, namely when an object was more than 33 m away from the ego vehicle (when driving
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in sub-optimal machine sensory conditions like rain or a tunnel). However, more realistically,
measurement uncertainty is based on a continuous measure of signal spread such as variance or
the width of a confidence interval.

The uncertainty measure was communicated by displaying a dynamic pattern that traveled back
and forth between two boundaries. The steps to creating the uncertainty signal are listed below,
see Figure A.4 for accompanying illustrations.

1. A measurement of the angular position of an object (between 0 and 360 degrees) is repre-
sented here as a probability density function of the position of an object. Borders b1 and
b2 are constructed by finding an area C that equals a pre-defined confidence level. Natu-
rally, for measurement distributions with less spread, the distance between b1 and b2 will
decrease.

2. Actuators positioned between the angle coordinates b1 and b2 will present the oscillating
signal. The range of actuators within b1 and b2 make up the oscillation path.

3. The oscillating pattern is initialized by selecting an inital actuator on the oscillation path.
In the experiments, it was selected at random but it may also be based on the shape of the
distribution function (e.g. the position with highest likelihood). The initial actuator starts
vibrating for a vibration time Tvib, after which it is followed up by its neighbour. The initial
direction of the oscillating signal was also selected at random.

4. The oscillation time, the time it took for the signal to travel up and down the oscillation path,
was set to 1.0 s. This means that the vibration time Tvib was dependent on the number of
actuators within the oscillation path n: Tvib = 1.0/n.
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Appendix A. Design of a vibrotactile uncertainty communication device

Figure A.4: Steps to generation of a signal.

22



Appendix B

Design of the Experimental
Conditions

This section gives a more detailed description of the implementation of the scenarios in the Silab
environment. In Table B.1 the Silab settings that were used to create the different visibility con-
ditions (e.g. time of day, air humidity) are listed. A detailed description of the traffic profile for
foggy scenario’s is discussed first, followed up by a scenario that was designed for testing

B.1 Traffic profile for foggy scenarios

As was explained in the paper, approaching vehicles were launched by the experimenter upon a
button press. How this was implemented is explained in this subsection.

Figure B.1 shows a schematic overview of the initial traffic setup in the foggy scenarios. Twelve
cars were placed at a locked distance of 110 meters m in front and behind the ego vehicle, dis-
tributed equally over the two lanes and in front and behind the Ego vehicle, in groups of three.
In addition, two more vehicles were placed on the right lane, locked at a fixed distance of 400
meters m in front of the ego vehicle. All vehicles were located well outside the visible range of
the driver and their velocity was set to always match the velocity of the Ego vehicle. This meant
that these groups of vehicles kept driving at the same, locked distances at which they were set
up. The individual vehicles within a group were driving on the exact same coordinates; the Silab

Table B.1: Silab parameters

Scenario Type

Parameter Silab Class Familiar
ization Rain Fog

World rendering mode SGEWorld.Rendermode 8 8 2
Time of day Environment.InTimeOfDay 14.00 14.00 3.00
Air humidity Environment.InHumidity 0.50 0.50 1.05
Rain intensity Environment.InPrecipitation 0.00 0.25 0.00
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Appendix B. Design of the Experimental Conditions

Figure B.1: Traffic in scenarios with fog (human uncertain) scenarios.

Table B.2: Order of launched vehicles. Vehicles annotated with an * approached at 0 km/h instead
of 80 km/h. Due to an experimental design error they were excluded from the analysis (see Section
B.2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
FL FR FL BL BR FR* FL BL FR* BR BL BR FR FR

simulator software allowed vehicles to drive trough each other. The vehicles simply behaved as
ghosts passing through each other.

Vehicles would keep driving in their groups unless a vehicle was unlocked by a key press com-
manded by the experimenter. After such a command, a vehicle instantly decreased its speed to
80 km/h (when approaching from the front), or increase its speed to 160 km/h (when approaching
from the rear). The two additional vehicles that were placed at a 400 m distance would not slow
down to 80 km/h, but instead come to a full stop. As a consequence of its new velocity, the sur-
rounding vehicle would pass (or collide with) the ego vehicle shortly after the experimenter gave
the unlocking command (assuming the ego vehicle kept driving at a velocity of around 120 km/h).
After a vehicle passed and disappeared into the fog, and the experimenter confirmed that the par-
ticipant had reached a velocity of approximately 120 km/h again, the next vehicle was launched.
This was repeated until all 14 vehicles were launched.

Cars that approached from the front right lane could be avoided by the driver by overtaking over
the left lane. Cars originating from the front left could be overtaken over the right lane. From the
rear end, the vehicles overtook the ego vehicle via the left lane. The rear end cars that started out
on the right lane would first accelerate to 160 km/h, and then blink and switch to the left lane to
overtake at a distance of 30 meters.

The direction fromwhich cars approached was a randomized sequence, re-used in each experiment
for comparability. The order of the encounters is listed in the paper and in Table B.2.

The purpose of launching the vehicles individually from behind a fog field was to create a series
of controlled trials in a relatively easy way. Since the driver had no way of knowing what was
going on behind the fog curtain, there was no need to implement realistic traffic behavior behind
this curtain. No complex driver behavior models or choreographies had to be implemented for the
surrounding vehicles. From the driver’s perspective, it only seemed like cars were appearing out
of the fog and disappearing into it again.
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B.2. Design error for foggy scenarios

B.2 Design error for foggy scenarios

Two vehicles that approached from the right lane were completely standing still (FR*, Table B.2).
These were placed further away from the ego vehicle (400m) than the three vehicles that launched
with 80 km/h. These two extra vehicles were included in the experiment since we wanted to have
different levels of difficulty in evading the oncoming traffic.

We found out that when the standing-still cars were triggered, there were were often still vehicles
driving between them and the ego vehicle. In the current implementation of our algorithm, only
the nearest vehicle was considered for communication. So, when an FR* vehicle was launched,
it would be signalled to the user only after it had passed the FR group. This group was passed
at a distance of 110 m, whilst the relative velocity between the ego and the FR* vehicle was 33
m/s, meaning that the TTC between the ego vehicle and the FR* vehicle at the moment it was first
signalled, was 110/33.33 = 3.0 s. This is far below the signalling threshold that was intended (9.0
s).

For this reason, FR* vehicles were not comparable to each other since they were not signalled to the
user at comparable time instances. Unfortunately, this problemwas identified after the experiments
took place. We excluded them from the analysis.
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Appendix C

Data Analysis

This chapter provides further details of the data analysis process. I will first describe how partici-
pant data was structured and how it was split up in smaller time fragments. Then I will follow the
structure of the Results section of the paper (Chapter 1) to explain how the results were obtained
from the data. The jupyter notebooks are stored in the digital supplement (see Appendix D).

C.1 Software

Python 3.7 was used for the data analysis. For handling the data structures I relied on the pandas
package (v. 0.23.4) and for statistical analyses on SciPy’s stats package (v. 0.14.0). Figures were
produced using Matplotlib (v. 3.0.3) and Seaborn (v. 0.9.0).

C.2 Slicing up the recordings

As was explained in Chapter 1, individual recordings were sliced up into smaller time fragments.
The start and ending points of a time fragment were dependent on the time to passing (TTP) of
surrounding objects. In this chapter, I explain why the TTP variable was used to determine the
edges of a time fragment and how the extraction of the time fragments worked.

C.2.1 Why TTP?
We were interested in the changes in user behaviour that were caused by the onset of a commu-
nication signal. In conditions with full machine overview (MC-HU), the machine signaled the
precise signal for any vehicle that was (1) on a collision path with the ego-vehicle and (2) the TTC
of the collision was under 9.0 s. In the conditions where uncertainty communciation functionality
was enabled (MU-HU-uc and MU-HC-uc), the machine was uncertain about the lateral position
of objects further then 33 m away from it. In other words, it had no information to conclude on
what lane an object was driving. In these cases, the machine presented the uncertainty signal for
objects driving on either of the two lanes, as long as they had a potential TTC of 9.0 s. The word
potential is used here, since there did not need to be a direct collision trajectory between the object
and the ego vehicle for the uncertainty signal to be triggered. This is illustrated in Figure X. This
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C.3. Analyses

Figure C.1: Velocity development of time fragments in MU-HU-uc condition.

potential TTC is the time it would take until both vehicles are on the same height (longitundinal
position) as each other, which is the same as the time to passing (TTP).

It is important to note that the starting point of a time frame is not calculated by taking the time
stamps at which vehicles passed the ego vehicle and subtracting 9 seconds from it. Like TTC, TTP
is a dynamic variable that can be calculated at any point in time. This means that time frames are
not of equal length. Participants that decided to slow down after the onset of a signal will have
longer time frames then participants that maintained their current velocity and switched lanes. This
is apparent in Figure C.1, where the velocity during each time fragment is plotted.

C.2.2 Extracting the time stamps from a recording

Here I demonstrate how the start and ending moment of a time fragment were determined from a
full recording.

Figure C.2 shows the development of TTP during a recording in MU-HU-uc (foggy tunnel) con-
ditions. For this explanation, I only show the TTP for vehicles that approached from the front.
From the figure, we can identify eight instances where the TTP equaled zero. Each of these time
instances represent a moment a vehicle passed the driver. These were directly used as the ending
points of the isolated time fragments. The starting points were determined by finding the intersec-
tion points with the TTP = 9 s line and selecting the intersection points that preceded an end point.
These intersection points are visualized with round bullets.

With this method we can extract the beginning and ending time stamp of the time fragments. By
extracting the data between these time stamps, we generated the raw data visualizations as in the
paper (Chapter 1).

C.3 Analyses

In this section I provide more detailed descriptions of the statistical analyses that were conducted
in the paper. I will justify my choice of statistical tests for the different obtained measures. I will
follow the structure of the paper, and for ease of explanation the figures from the paper are copied
to this section.
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Appendix C. Data Analysis

Figure C.2: Development of TTP for one full recording in a MU-HU-uc condition. Note that the
two approaches at t = 177 s and t = 239 s are preceded by an intersection point with the TTP = 9 s
line, however there is no orange marker to indicate this. These peaks correspond with the two
vehicles that stood completely still, where the experimental design error as discussed in section
B.2 was made. These approaches were excluded from the analysis.

Figure C.3: MTTC scores for human uncertain conditions (n = 14).
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C.3. Analyses

C.3.1 MTTC
The MTTC scores for the human-uncertain conditions are summarized in Figure C.3. It seems
apparent that the MTTC scores for the three conditions are different. We wanted to back this figure
up with inferential statistics. In particular, we wanted to compare the system with uncertainty
communication (MU-HU-uc) with two other conditions. First, a comparison was made with a
system that was not capable of expressing uncertainty but instead communicated nothing until it
had a reliable estimate of the position of an object (MU-HU). Secondly, a comparison was made
between a system that had a reliable sensory input, meaning that it was able to obtain accurate
measurements of the position of objects that were further away (>33 m) and that communicated
the precise signal for these vehicles.

We expected that in the first comparison, the uncertainty communication condition would have
higher MTTC scores, indicating earlier takeovers or earlier braking.

In the second comparison, the expectation was that the precise communication condition (MC-
HU) would have safer (higher MTTC) scores than the condition with uncertainty communication.
If the precise signaling function was interpreted by the participants as the design was intended, the
participant can infer on what lane an object is driving before he/she sees the object and change to
the unoccupied lane earlier than when receiving an uncertain signal, that only signals that there is
something but not on what lane that object is.

Since we have a repeated measures experimental design, paired statistical tests were used. The
distribution of the data was inspected visually with a histogram and a QQ-plot [2]. In a QQ-plot, the
quantiles of the obtained data are plotted against the theoretical quantiles of a normal distribution.
Samples drawn from the same distributions would approximately lie on the line y=x.

Figure C.4 shows these plots for both comparisons. Note that we did not plot the distribution of
the MTTC scores for each group, but instead the difference between the paired MTTC scores per
participant in both comparisons. To justify the use of the paired t-test, the sample distribution of
these differences have to be normally distributed. In Figure C.4c, a QQ-plot of 14 samples drawn
from a normal distribution is shown for comparison. After a visual inspection of the histogram and
QQ plot for our data, we assumed that the sampling distributions were approximately normally
distributed. The paired t-test was used. Results can be found in Chapter 1.

Software used

Figure C.3 was created using the Python 3.7 function seaborn.boxplot and overlaying it with
a categorical scatter plot created with seaborn.swarmplot. Histograms were created with the
matplotlib.pyplot.hist and QQ-plots using scipy.stats.probplots. The paired samples
t-test (Chapter 1) was performed with scipy.stats.ttest_rel.

C.3.2 Eye Tracking
For eye tracking we used hardware (Figure C.5) and software from the open-source eye tracking
platform by Pupil Labs [5]. The software allowed us to specify pre-defined areas of interest that
were mapped to the real world using 2d markers projected on the screen (Figure C.6).

Surfaces were defined around the front window, instrument cluster and the three side mirrors. For
the mirrors, we defined areas that were bound tight around the edges and one area that contained
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(a) Paired score difference between MU-HU and MU-HU-uc (n=14)

(b) Paired score difference between MC-HU and MU-HU-uc (n=14)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Theoretical quantiles

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

O
rd
er
ed

 V
al
ue

s

Probability Plot

(c) QQ plot for 14 samples drawn from a normal
distribution.

Figure C.4: Histograms and normal QQ-plot of the differences between paired MTTC scores for
the two comparisons.
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C.3. Analyses

Figure C.5: Eye tracker by Pupil Labs. Source: Pupil Labs Docs [5] (GNU LGPL licence).

Table C.1: Gaze distribution example. ‘optimist’ surfaces refer to the wider drawn surfaces.

Surface Name Count

1 topmirr 1541
2 topmirr_optimist 2885
3 leftmirr 78
4 leftmirr_optimist 166
5 frontwindow 19097
6 instrument_cluster 1598
7 not_on_any_surface 4077

the mirror plus an extra 15 cm of margin around it (see Figure C.6). These were drawn wider
around the mirrors since we noticed that the estimated gaze position of participants susceptible
to drift. One cause for this could have been that the eye tracking glasses slightly moved on the
participants head during experiments.

Between specified start- and ending points, the eye tracking software calculated a total number of
identified gaze points on each surface. An example of a gaze distribution can be seen in Table C.1.
Such a distribution was created for each isolated time fragment.

The total counts are dependent on the length of a time slice and on the quality of a recording: longer
time slices will have higher counts in general, and poorer-quality recordings contain lower counts.
To counter these effects, I chose to evaluate the ratios within a gaze distribution. More specifically,
we decided to only look at the ratio of counted gaze points towards the front window and counted
gaze points towards any of the mirrors plus the front window. This resulted in a number between
1 (only gazed through front window) and 0 (only gazed through mirrors). For the mirrors, the
optimistically drawn surface areas were used.

Results of the analysis can be found in the paper (Chapter 1). For the statistical analysis of the gaze
ratio the python function scipy.stats.wilcoxonwas used to perform theWilcoxon signed rank
test.
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Figure C.6: Screen shot from the eye tracking software. Pink outlines show the augmented surfaces
mapped to the black and white markers. The green circle in the middle indicates the currently
estimated gaze point.

32



Bibliography of Appendices A-C

[1] Harold E. Burtt. “Tactual illusions of movement.” In: Journal of Experimental Psychology
2.5 (1917), pp. 371–385. ISSN: 0022-1015. DOI: 10.1037/h0074614. URL: http://
content.apa.org/journals/xge/2/5/371.

[2] John M. Chambers et al. Graphical Methods for Data Analysis. Chapman and Hall/CRC,
Jan. 2018. ISBN: 9781351072304. DOI: 10.1201/9781351072304. URL: https://www.
taylorfrancis.com/books/9781351080750.

[3] A. Israr and I. Poupyrev. “Control space of apparent haptic motion”. In: 2011 IEEE World
Haptics Conference. IEEE, June 2011, pp. 457–462. ISBN: 978-1-4577-0299-0. DOI: 10.
1109 / WHC . 2011 . 5945529. URL: http : / / ieeexplore . ieee . org / document /
5945529/.

[4] Matti Krüger, Heiko Wersing, and Christiane B Wiebel-Herboth. “Approach for Enhancing
the Perception and Prediction of Traffic Dynamics with a Tactile Interface”. In: Proceedings
of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications - AutomotiveUI ’18. ACM. New York, New York, USA: ACM Press, 2018,
pp. 164–169. ISBN: 9781450359474. DOI: 10.1145/3239092.3265961. URL: http:
//dl.acm.org/citation.cfm?doid=3239092.3265961.

[5] Pupil Labs Eye Tracking Software. URL: docs.pupil-labs.com (visited on 05/13/2019).

[6] Jan B. F. Van Erp. “Guidelines for the use of vibro-tactile displays in human computer inter-
action”. In: Proceedings of eurohaptics. Vol. 2002. 2002, pp. 18–22.

33



Appendix D

Digital Supplement

The digital supplement of this thesis is available online at
https://github.com/tomdries/feelinguncertain

D.1 Analysis

The analysis was performed with python, implemented in Jupyter notebooks. The notebooks can
be found in the Analysis folder in the digital appendix. The notebooks were saved as .html files,
so they can be opened directly in any browser. The notebooks are also stored in their original form,
in the underlying code folder. These can be executed using Jupyter.

D.2 Example of Raw Data

Raw data for a test run by one of the experimenters can be found in the Rawdata_example folder.
The recordings contain Silab recording files and Python recording files (.csv). Silab datafiles con-
tain measurements directly obtained from the car simulator software. This data was transferred
to a second computer that ran a Python script transforming this data into variables required for
the uncertainty signal (Appendix A). The Python script controlled the waist belt. Tables D.1 and
D.2 provide a description of the recorded Silab and Python variables, respectively. Due to privacy
regulations, we did not publish the recorded raw data from the experiment.

D.3 Videos

The Videos folder contains three files. All videos were recorded during a test run where one
of the experimenters was in the driver seat. Video A shows example situations that occured in
the MUHUuc condition. A visualization of the current actuation via the belt is displayed. This
visualization was also available live, but only to the experimenter. Video B shows situations in the
same condition for situations where the approaching vehicles were completely standing still. These
vehicles were excluded from analysis due to the experimental design error explained in section B.2.
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D.3. Videos

Table D.1: Silab recording file variables. For items denoted with a *, a naming convention is
needed: the abbreviation SAN describes the lane direction Same lane, Ahead of ego, Next vehicle,
SBN denotes Same lane, Behind ego, Next vehicle. L and R denote an offset to the left and right
lane. So, for example, StLongSANL is the longitudinal distance to the nearest vehicle driving
ahead of Ego, left of Ego’s current lane.

Name Description

MeasurementTime Time (ms)
Measurement time error Time lag due to system overload (ms)
AccelPedal, BrakePedal Acceleration and Brake pedal depression [0,1]
SteeringWheel Steering wheel rotation [-1, 1]
yaw Yaw (deg)
vEgo velocity (m/s)
vLateral lateral velocity (m/s)
vyaw yaw rate (deg/s)
ax, ay Acceleration in x (lateral) and y (longitudinal) direction (m/s2)
s Distance traveled (m)
TLCLeft, TLCRight Time to lane change (s)
LaneIdx Current lane ID
vSAN, vSANR etc.* Velocity of surrounding vehicles* (m/s)
StLongSANL etc.* Longitudinal distance to nearest surrounding vehicles* (m)
StLatSANL etc.* Lateral distance to nearest surrounding vehicles* (m)

Table D.2: Python recording file variables

Name Description

angle_front, angle_rear At what angles the actuators are currently vibrating (deg)
b1, b2 Between these borders the uncertainty signal oscillates for front

objects (deg)
b3, b4 Between these borders the uncertainty signal oscillates for rear

objects (deg)
muf, mur Lane direction of most urgent vehicle from front (muf) and most

urgent vehicle from rear (mur), based on lowest TTC
pBL, pBM, etc. For all directions the p parameter is the intensity of the belt, vary-

ing between 0 and 1.
t_eye, t_silab, t_python Timestamps for eye tracking, silab and python recordings. Used

for synchronisation. t_silab corresponds to ’MeasurementTime’
in silab recordings (ms)

ttcBL etc. Computed TTC values for each lane direction. (s)
vEgo Velocity (m/s)
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Video C shows a short screen capture from the eye tracking software in a rainy scenario. This gives
an impression of the implementation in the pupil labs software.
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Questionnaires
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Demographics 

 
  

1. What is your age? 

 

 

2. What is your gender? 

☐  Male    ☐  Female     ☐ I prefer not to respond 

	

	

3. At which age did you first obtain your driver’s license? 

 

 

4. What is your primary mode of transportation? 

☐  Private vehicle            ☐  Public transportation  ☐ Motorcycle   

☐  Walking/cycling            ☐  Other                  ☐ I prefer not to respond  

 

5. On average, how often did you drive a vehicle in the last 12 months? 

☐  Every day                      ☐ 4 to 6 days a week     ☐ 1 to 3 days a week   

☐  Once a month to once a week    ☐ Less then once a month ☐ Never 

☐  I prefer not to respond 

 

6. Did you participate in the previous driving simulator experiment conducted by Matti 
Krueger? The task was to drive through scenarios while receiving vibration feedback from a 
waist belt. 

☐  Yes             ☐  No         ☐	I prefer not to respond / I’m not sure if I did 

 

 

 

 

 

Appendix E. Questionnaires

38



NASA TLX Calculation Example 
The questions below are about your experience in the run that you just performed. Put a cross on 
the line, not between them1. 
 
Mental Demand    How mentally demanding was the task?   
 

 
 
Physical Demand   How physically demanding was the task? 
 

 
 
Temporal Demand  How hurried or rushed was the pace of the task? 
 

 
 
Performance    How successful were you in accomplishing what you were asked to do? 
 

 
 
Effort     How hard did you have to work to accomplish your level of performance? 
 

 
 
Frustration    How insecure, discouraged, irritated, stressed, and annoyed were you? 
 

 
All dimensions are scored on a scale 0-100%. The overall workload is then determined by the 
average of the six dimensions. For this example, the overall TLX is = SUM / 6 = (65+45+30+80+55+25) 
/ 6 = 50% 
Source: Kyriakidis, M., De Winter, J. C. F., Happee, R. (2014). Human Factors of Automated Driving – 
Recommended Questionnaires 

                                                             
1 In the case that a participant puts the cross between the lines, the score of the line on the right-hand side 
should be taken.  

                    
                    

 
✕!

Very Low Very High 

                    
                    

 
✕!

Very Low Very High 

                    
                    

 
✕!

Very Low Very High 

                    
                    

 
✕!

Perfect Failure 

                    
                    

 
✕!

Very Low Very High 

                    
                    

 
✕!

Very Low Very High 
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Acceptance Scale Calculation Example 

My judgments of the (...) system are ... (please tick a box on every line) 
 

1. Useful      X              Useless  
2. Pleasant      X              Unpleasant  

3. Bad     X               Good  

4. Nice      X              Annoying  
5. Effective      X              Superfluous  

6. Irritating    X                Likeable  
7. Assisting      X              Worthless  

8. Undesirable    X                Desirable  

9. Raising Alertness       X             Sleep-inducing  
 
The scoring is on a scale +2 .. −2. 
The items 3, 6, and 8 are mirrored and should be scored −2..+2.  
The Usefulness scale is the sum of items 1, 3, 5, 7, and 9, divided by 5 (so that it has a range from −2 
to +2) 
The Satisfaction scale is the sum of items 2, 4, 6, and 8, divided by 4.  
 
Usefulness calculation = (−1 + 0 + (−1) + (−1) + (−2)) / 5 = −1 
Satisfaction calculation = (−1 + (−1) + (−1) + (−1)) / 4 = −1 
 
Source: Kyriakidis, M., De Winter, J. C. F., Happee, R. (2014). Human Factors of Automated Driving – 
Recommended Questionnaires 
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Further Evaluations 

 

 

 

  

 

Strongly 
disagree 

Disagree Neutral Agree Strongly 
Agree 

No 
Answer 

1  The other road users made me 
unconfident 

      

2 The weather conditions made 
me unconfident 

      

3 The signals from the belt made 
me unconfident 

      

4 The machine was sometimes 
uncertain about the exact 
location of a vehicle 

      

5 The machine told me it was 
uncertain about the exact 
location of a vehicle 

      

6 I relied on what I perceived 
with my eyes 

      

7 I relied on what I perceived 
through the belt 

      

8 I had trust in my own 
capabilities 
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Appendix F

Invitation and Informed Consent
Form

F.1 Invite

Sent via e-mail to Honda Research Institute EU employees and students

Dear all,

We are conducting a small driving simulator and eye-tracking study and are looking for partici-
pants.

The experiments will start tomorrow (wed 24 oct) and continue only until we have reached our
target number of participants.

If you would like to participate and meet all requirements listed below, please contact me to sched-
ule a time slot. First come, first served.

Requirements:

• Student or associate currently working at HRI

• Valid driver’s license

• Normal or corrected-to-normal vision (Contact lenses: no problem. Glasses: can be fine if
the frame is sufficiently thin.)

• No dark eye-makeup or other visible alterations (mascara, extended eyelashes, etc.) during
the experiment

• Waist circumference approximately between 80 and 100 cm (due to equipment limitations)

• 60 minutes of your time

• According to internal regulations, taking part in the experiment is not allowed for persons
that have:

• epilepsy,

• heart disease,
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F.2. Informed Consent Form (see next page)

• pregnancy,

• severe dizziness,

• severe back or neck problems that were recently medically treated.

Please make sure you fulfil all requirements if you volunteer to participate.

The driving simulator itself is static which leads to a mismatch between visual and vestibular sen-
sory input. For some people this mismatch can create discomfort. The experiment is designed to
reduce this sensory mismatch and thus related potential discomfort to a minimum. Additionally, a
simulator familiarization procedure to further prevent potential negative effects will be carried out
prior to the experiment.

Please don’t hesitate to contact me if you have any questions or concerns.

I am looking forward to your messages.

Best regards,

Tom Driessen

F.2 Informed Consent Form (see next page)
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Page 1 of 2 

 
 

Honda Research Institute Europe GmbH 
Carl-Legien Str. 30  

D-63073 Offenbach/Main 
Germany 

 
Informed Consent Form 

 
Project Leaders: Tom Driessen, Matti Krüger, Christiane Wiebel-Herboth 
Affiliation: Honda Research Institute EU   
Project Title: Effects of communicating uncertainty via the somatosensory receptive field in a 
simulated environment 
 

Please read the following material carefully to ensure that you are informed about the nature of 
this study and about how you will participate in it, if you consent to do so. Signing this form will 
indicate that you have been so informed and that you give your consent. 
 

Introduction: Purpose of the Research 
 
In this study we want to evaluate driving behavior in a set of simulated driving scenarios.  
 

Procedure: Tasks for the Participants 
 
Prior to the experiment you will need to enter a “first” and a “last name” which provide the basis 
for an ID that is associated with your recording. The ID is used to provide the recorded data with 
an identity that can nevertheless not directly be associated with a particular person. The names 
which you enter do not have to correspond to your real name but please remember your entries to 
allow for possible association between data from this and possible future experiments.  
Furthermore, contextual information that may potentially influence your tactile perception 
abilities is recorded. Usually this is information about the material and thickness of your clothing. 
Furthermore age, gender and driving experience information is recorded. 
To get used to the driving simulator and prevent the occurrence of simulation sickness, a 
familiarization procedure will be carried out prior to the experiment. For this procedure you will 
be asked to complete a series of small tasks with the simulator. Please notify the experimenter in 
any cases of discomfort or uncertainty about the current task. 
 
During the experiment you will be wearing a belt equipped with multiple vibrotactile actuators 
which are used to produce tactile stimuli. 
In addition you will be wearing head-mounted eye-tracking device which is used to record your 
eye-movements and infer at which screen positions you are looking while driving through the 
virtual environment. The device will record your eye movements on the screen while you are 
doing the task and a camera on top of the device will track the scene in front of you. In order to 
use the eye tracker, it might be necessary to adjust the cameras such that your eyes can be tracked 
optimally. Before the experiment and between blocks, the eye tracker has to be calibrated. This is 
done by a standard calibration procedure, where you are asked to subsequently fixate the center 
points of nine different targets on the computer screen. 
 
The actual experiment consists of five blocks of equal length. In each block your task will be to 
drive on a virtual highway while following German traffic regulations and avoiding accidents. 
You should furthermore try to match speed regulations whenever possible and, if available, 
follow visually displayed navigation instructions.  
In some blocks you will receive vibrotactile stimuli during driving. The goal of these signals is to 
enhance your perception of the surroundings. Furthermore, the signals are capable of expressing 
system uncertainty when the machine is less confident about an observation or a prediction it 
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made. There will be a procedure to familiarize yourself with these signals. 
After completion of the driving tasks you will be asked to fill out a questionnaire which contains 
several questions about your subjective experiences during the experiment.  
 

Risks and side effects 
 
For some participants the use of the driving simulator can induce simulation sickness, a form of 
motion sickness that can occur due to a mismatch between vestibular and visual sensory input 
during simulation. To prevent simulation sickness a familiarization procedure is carried out prior 
to the experiment. Snacks and refreshments are offered as an additional countermeasure. Please 
inform the experimenter in cases of any discomfort.  
This study is harmless and pain free for the participant according to our present knowledge.  
The eye tracking device contains infrared LEDs which shine on the pupils whenever the eye-
tracker is active. These LEDs are certified according to EN 62471:2008 norm exempt group (no 
photobiological hazard) and are thus considered safe for eyes and skin.  
The vibromotors of the belt operate below potentially painful levels and the belt as a whole has 
been certified as safe for consumers according to EU standards. 
 

Personal Data Handling and Confidentiality 
 
Data security regulations are strictly obeyed. Personal data will not be passed on to third parties. 
The data obtained from you will be anonymized and only processed or published in this form. 
 

Voluntary Participation and Right to Refuse or Withdraw 
 
Your participation in this study is entirely voluntary. It is your choice whether to participate or 
not. The choice that you make will have no bearing on your job or on any work-related 
evaluations or reports. You may change your mind later and stop participating even if you agreed 
earlier on without giving any reason for your decision. Also any data recorded up to that point can 
be deleted immediately if you wish to do so. 
Note however that you can only withdraw from participation until the end of the experiment. 
Afterwards it won’t be possible to access or delete your individual data as no personal identifier 
will be stored with the data. 
You are furthermore asked not to reveal any details of the actual content of this study to people 
working at HRI-EU for a period of at most 4 weeks or until all recordings of this study have been 
completed in order to avoid potential biases in future recordings.  
 

Who to Contact 
 

If you have any questions, you can ask them now or later. If you wish to ask questions later, you 
may contact any of the following: Tom Driessen (t.driessen@student.tudelft.nl), Matti Krüger 
(matti.krueger@honda-ri.de) or Christiane Wiebel-Herboth (christiane.wiebel@honda-ri.de) 
 
 

Hereby I confirm that I have read and understood the foregoing information. I had the 
opportunity to ask questions about it and any questions I have asked have been answered to my 
satisfaction. I hereby authorize the processing and analysis of the data obtained from me in this 
study. I also give my consent to the publication of results based on data recorded from me in an 
anonymized way. I consent voluntarily to be a participant in this study. I furthermore agree not 
to share any details of this study with colleagues for a period of at most 4 weeks or until the 
recordings of this study have been completed. 
 
 
Name of Participant__________________     
Signature of Participant ___________________ 
Date ___________________________ 

 Day/Month/Year    

F.2. Informed Consent Form (see next page)
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Literature Review: Human-Machine Interfaces Sharing 
Real-Time Measures of Machine Reliability 

Tom Driessen 

INTRODUCTION 
In scenarios where humans and machines share 
responsibility for executing tasks, an appropriate 
understanding of the operating domain and functional 
limitations of the machine can be crucial for safe use. 
Inappropriate trust in the competences of automated systems 
may lead to misuse or disuse of automation [1]. 

In dynamic conditions, the reliability of a machine’s 
subsystems can change [2]. For instance, systems that rely 
on camera vision may perform worse in the dark, or the 
accuracy of Lidar measurements tends to decrease in the rain 
[3]. Since operators cannot be expected to have an 
understanding of the underlying mechanisms (or the mere 
existence) of these subsystems, users may benefit from the 
availability of measures of machine reliability. A machine 
that shares updates about self-assessed reliability measures 
may help drivers to dynamically adjust their level of trust in 
the automation to appropriate level. Adjusting trust towards 
levels that are more in line with the actual reliability of other 
agents is known as trust calibration [4] and several authors 
have shown that this can be achieved by sharing information 
about machine reliability with the operator (e.g. [5]).  

Sharing situational measures of machine reliability fits in the 
domain of cooperative automation frameworks, which 
challenge designers and researchers to regard assistance 
functions or autonomous features as cooperative assistants, 
team players, or related terms [6–12]. These frameworks are 
based on requirements for cooperation and teamwork 
between humans identified in psychology and biology 
research. 

Throughout the literature, key features for teamwork and 
cooperation (or team play, team cognition, partnership, joint 
work) that most authors seem to agree on, can be 
summarized: 

• There is a basic agreement on a common goal. 
• Members of the agreement (cooperation/team 

agents) possess a model of the current world view 
and state (e.g. mental state, situational 
competences) of other agents. This model can be 
updated through direct communication (e.g. stating 
why you are doing something or whether you are 
uncertain) or by inferring it from implicit cues (e.g. 
body language). The availability of decision 
justification information or state information of an 
agent contributes to transparency. 

• Members can influence other agents in order to 
keep the goal/agreement intact and to align 
mismatching world views. 

A characteristic of human-machine cooperation is that agents 
can share updates about current beliefs, decisions and 
uncertainties. When an agent receives indications of, for 
instance, a struggling team member, the informed agent may 
adjust its preparedness to rely on the struggling agent (i.e. 
recalibrate trust) and take more individual responsibility in 
the common task.  

Human-machine interfaces that share this information on 
behalf of the machine are known as uncertainty displays, 
reliability displays or confidence displays.  

For the current review, we collected examples from literature 
where reliability information was shared by the machine. 
The aim of this literature study was to obtain an overview of 
recent attempts, to identify knowledge gaps, and to extract 
guidelines that may be useful for the design of reliability 
displays. 

METHODS 

To obtain a collection of papers that contained 
implementations of reliability displays, we used Scopus and 
Google Scholar. Keywords related to reliability displays 
were combined with keywords relating to human-machine 
interaction studies (‘operator’, ‘driver’). In Scopus, the 
following search query was used: ((“uncertainty display”  
OR  “reliability display”  OR  “uncertainty communication”  
OR  “reliability display”  OR  “confidence communication” 
OR “trust calibration”)  AND  ( “operator” OR “driver”  OR 
“robot”)). In Google Scholar, we combined the keys in front 
of the AND operator with words from behind the AND 
operator for individual searches, resulting in a total of 6x2 
individual searches.  

The resulting literature was screened based on the title and 
abstract, to confirm that one or more reliability displays were 
evaluated in the study. Only applications that provided real-
time reliability information were considered. No constraint 
was placed on the publication type: since we wanted the most 
recent examples, conference and adjunct proceedings were 
also regarded.  From the papers, relevant references were 
also taken into consideration. In the following section, we 

47



review the communication methods that we found in these 
papers. 

RESULTS 

Overview 
We found 16 papers that met the criteria. Seven papers were 
journal articles, six conference proceedings and two adjunct 
proceedings. In these papers, a total of 55 encoding variants 
were evaluated. Table 1 provides an overview. 

A few types of studies were encountered. In eight studies, 
one reliability display was evaluated in a simulated 
environment. The main body of work (5) of these simulator 
studies consisted of driving scenarios. One was an aviation 
study, and another was from the military domain. In the 
simulated environments, the machines reliability was 
degraded, usually in parallel with changing weather 
conditions. In accordance, an uncertainty display became 
present or adjusted its intensity levels. Amongst other 
measures, we found that the effects of the display on 
measures of performance, safety and trust were most 
extensively studied.  

Instead of studying one display in a simulated environment, 
several other studies [13–15] compared multiple displays or 
visual variables for their potential use as an uncertainty 
display. Participants were asked to order displays that 
presented varying reliability levels, allowing the researchers 
to investigate whether there was a consensus about the 
perceived reliability. This approach allowed for a quick 
evaluation of  multiple encodings and gave a clear overview 
of ordering. A pitfall of this approach is that the participants 
do not experience the presented encodings in an environment 
where a task with shared responsibility needs to be executed. 
These studies were typically used as preliminary evaluation 
of multiple encoding variables, from which the preferred 
display was evaluated in an individual study.  

Throughout the literature, authors spoke in terms of 
reliability, confidence or uncertainty. As most studies 
evaluated machines that became less reliable and thus needed 
to communicate a state of uncertainty, the latter of these three 
terms was the most popular choice of wording. In the 
following, we consider reliability displays, confidence 
displays and uncertainty displays as similar concepts and we 
may use them interchangeably.  

Displaying machine uncertainty may have the goal to let the 
operator engage more in the shared task. Therefore, instead 
of expressing its own uncertainty, a machine could express 
to what extent it expects the driver to be engaged in the task. 
Noah et al. [14] investigated if displaying a more human-

 
1 SAE international defined six levels of driving automation, 
from SAE Level 0 (no automation) to SAE Level 5 (full 
vehicle autonomy) [37].  

centered metric that they named ‘required driving 
engagement’ improved understanding. Twelve display 
designs that shared machine uncertainty were compared with 
displays that shared different levels of required driving 
engagement. It was found that uncertainty displays were 
generally better understood. We found that all of the 
currently selected studies provided information that reflected 
system-centered measures of uncertainty or reliability. 

Methods of communicating reliability information 
Most studies (14/16) offered reliability information to the 
visual modality. Except for one study where an auditory tone 
accompanied a flashing icon [16], we found no methods that 
employed audio. We found one example that made use of a 
haptic interface [17] and one application that used smell [18] 
to convey reliability information.  

We further discuss these displays in the current section, 
structured by display type.  

Qualitative displays 
Icons Several studies used a binary indicator to communicate 
that the system was uncertain. One was a car simulator study 
by Beller et al. [19], who used an emoji-like icon showing a 
confused face reaching out with open palms to indicate 
system uncertainty. They showed that the uncertainty display 
increased the safety (time to collision) in situations where 
automation (level SAE 2)1 failed. The data indicated 
improved situation awareness and better knowledge of 
automation weaknesses. Automation with the uncertainty 
symbol received higher trust ratings and increased 
acceptance. 

Another binary indicator of uncertainty was designed by 
Louw and Merat [16], in the form of a flashing yellow icon 
of a steering wheel visible on the instrument cluster. The 
flashing icon was accompanied by a short tone, indicating 
that the vehicle was uncertain. The uncertainty visualization 
was not the main topic of the study, and no effects on safety 
or performance effects of the uncertainty displays were 
documented. The only finding by the authors regarding the 
uncertainty display was that the visual uncertainty display 
was not of much influence on the visual attention dispersion 
of the participants, and the authors suggested that the display  
did not require much effort for visually monitoring such 
displays. Unfortunately, the study did not provide evidence 
to support that the uncertainty display was not simply 
ignored. 

Smell One of the few encountered displays that did not solely 
rely on the visual modality was one by Wintersberger et al. 
[20]. An olfactory interface was installed in a car simulator 
(SAE 2), that spread a lavender odor through the cabin for 
situations with high automation reliability and a lemon smell 
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for situations with low automation reliability. The olfactory 
display was combined with a visual icon on the instrument 
cluster, indicating high reliability with a green icon showing 
‘ACC’ (Adaptive Cruise Control). Low system reliability 
was specified with an icon of a shoe that appeared to press a 
gas pedal or a brake. It was found that the addition of the 
olfactory component to the visual display decreased the 
intensity of brake pedal actuations and increased 
performance of a secondary detection-response task. 
Subjective reports indicated positive acceptance ratings of 
the olfactory display. Based on these results, the authors 
argued that the use of scents as encodings for system 
reliability is a promising method that deserves further 
attention.  

Quantitative displays 
Graphs and bars Instead of communicating a general state 
of vehicle uncertainty, more detailed representations of 
machine reliability can be found in displays with multiple 
levels or continuous measures reliability. In a flight 
simulator experiment, McGuirl and Sarter [5] accompanied 
an automated decision support system with a continuous line 
graph that indicated the system confidence for the past five 
minutes until now. The presence of the display resulted in 
better task performance and more appropriate responses to 
system errors. The authors concluded that this observation 
indicated more appropriately calibrated trust in the system 
and better human-machine team performance. 

Helldin et al. [21] investigated the impact of visualizing 
assistance uncertainty on drivers' trust by displaying a 
visualization of assistance (SAE 2) competence in a driving 
simulation with varying weather conditions. The amount of 
machine confidence was displayed by means of seven empty 
bars that filled up as confidence increased, in a similar way 
to mobile phone status bars displaying signal quality. Drivers 
who were presented with reliability information took control 
of the car faster when needed, compared to the group without 
information about automation reliability. They also 
concluded that the reliability-info-group spent more time 
looking at non-driving related things, suggesting that they 
may be better able to perform tasks other than driving 
without compromising safety. Those presented with 
uncertainty feedback also reported less trust in the automated 
system. Helldin et al. concluded that this indicated a more 
proper trust calibration.  

Kunze et al. [22] designed an anthropomorphic reliability 
display for a simulated SAE-level 3 automated vehicle. They 
made a visual display showing a peak from a heartbeat graph 
that lit up according to a simulated heartbeat frequency 
between 50 bpm (high reliability) 140 bpm (low reliability). 
The stylized graph seemed to have been inspired by medical 
heart rate monitors that can be found next to hospital beds of 
critical patients, usually characterized with a typical beeping 
tone (which was not audible in this study). In addition to the 
graph, a numeric value of the current machine heart rate was 
visible. The display resulted in safer takeovers of 

surrounding vehicles and in observable differences in gaze 
behavior in correspondence with different level of 
uncertainty. As a shortcoming of the display, the authors 
mention an increased workload and less accurate execution 
of secondary tasks, likely caused by the necessity to visually 
inspect the display regularly. 

Further embodiments of quantitative reliability displays 
using graphs include a pie chart [23] and various proposals 
in a comparative study by Noah et al. [14]. 

Distortion, degradation, opacity Actively degrading or 
adding distortions to visual information can successfully 
convey different levels of uncertainty [23,24]. A similar 
encoding for reliability information is the manipulation of 
the opacity of the presented information, as applied in two 
studies [15,25]. Participants may prefer these types of 
encodings since the encodings are analogous to 
manifestations of uncertainty in real-world phenomena 
where uncertainty is caused by the absence, variability or 
ambiguity of available information [26]. For example, when 
road visibility conditions become worse due to fog, there is 
less information available to conclude where surrounding 
objects are. So, the natural degradation of signals can invoke 
a sense of uncertainty by the observer. Reflecting this in a 
data representation may therefore successfully communicate 
varying levels of system reliability. 

Hue In a car simulator experiment where a car had 
autonomous capabilities (SAE 2), Faltaous  et al. [27] 
encoded a continuous measure of uncertainty using an LED 
strip (30 LEDs, approx. 50 cm) capable of taking on a color 
from a full range of hue values between 0-100. This encoding 
did not turn out as successful method of communicating 
different ranges of assistance uncertainty. A problem that 
arose was that many participants did not perceive the display 
as a continuous range, but instead as three distinct states (red, 
yellow and green).  

Another attempt to encode uncertainty information through 
color was made by Kunze et al. [28]. Also using a peripheral 
LED strip (77 LEDs, 50cm), they limited the hue range to the 
colors blue and red (cold-warm analogy). This encoding was 
successful in communicating differences between four 
distinct levels of uncertainty. Moreover, participants gave 
positive responses when asked whether they found the 
encoding logic for uncertainty communication. Similar 
conclusions were obtained by these authors in a  different 
study, where subjects compared 11 different uncertainty 
visualizations for on-lane augmented projections [15]. Hue 
came out as the most preferred projection encoding when 
compared to 10 other visual encoding methods. The authors 
used a blue-purple-red color scheme, presumably similar to 
the color scheme that they used for their experiment with the 
LED strip. 

Another study where reliability representations based on hue 
were correctly ordered by participants is by Noah et al. [13]. 

49



In this study, hue values were limited to five discrete levels, 
representing red, orange, yellow, light green and dark green.  

The difference between the unsuccessful attempt by Faltaous 
et al. [27] and the successful attempts by Kunze et al. [15,28] 
and by Noah et al. [13] may be explained by data 
visualization guidelines [29,30] that advocate careful 
consideration when selecting hue ranges to represent 
continuous or multi-level information. Hue values that are 
physically ordered are not necessarily perceptually ordered; 
hue-based color maps can appear as if separated into bands 
of seemingly constant hue, with sharp transitions between 
the bands [29]. 

Vibrations In a comparative study of signal design 
parameters for a haptic car seat, Kunze et al. [17] evaluated 
if amplitude, position, movement and rhythm of vibrating 
signals could express different levels of vehicle uncertainty. 
The authors asked the participants whether they found that 
presented signals appeared to communicate an increase in 
uncertainty, or a decrease in uncertainty. Based on their 
results, the author argued that increases in vibration 
amplitude as well as rhythmic patterns consisting of long 
vibrations (3s) separated by short breaks of 0.5s 
communicated that uncertainty thresholds were reached, 
however, they were only able to communicate increases in 
uncertainty levels. The authors recommended not to use the 
proposed vibrotactile stimuli to display decreases in machine 
uncertainty.  

Displaying reliability with reliable behavior 
In a human-robot interaction study, Chen et al. [31] 
integrated a machine representation of human trust into the 
robot’s decision making strategy. In a collaborative task, a 
human and machine had to clear a table of various objects. 
The human had the possibility to intervene and put objects 
away by himself, though without human interference a 
higher reward was given. Failure to clear the table led to 
different penalties, depending on the severity of the mistake: 
higher penalties were given for dropping wine glasses than 
for dropping fish cans. No penalty was given for dropping a 
plastic bottle. 

By integrating a dynamic estimate of human trust into the 
robots decision making strategy, the researchers made the 
arm demonstrate competence by picking up the low-risk 
plastic bottles first. There were fewer human interventions 
for the wine glasses if the robot first demonstrated successful 
bottle removal, suggesting increased trust in automation. The 
authors argued that the inverse may also work: 
demonstrating failure or signs of incompetence may be used 
as a tool to lower the human’s trust to more appropriate 
levels. 

One could argue that a simple application of this relationship 
is already present in some commercially available vehicles. 
For example, Volvo’s assistance functionality named Pilot 
Assist disables automated steering when it detects that a user 
is not interacting with the steering wheel for a prolonged 

amount of time [32], indicating an overreliance in the 
assistance functionality. The assistance functionality 
displays fallibility by letting the car drift sideways without 
intervening. This display of fallacious behavior forces the 
user to take back control, and potentially recalibrates trust in 
the assistance towards a more appropriate level. 

Discussion 
Studies with a focus on human-machine interaction with 
applications in the automotive, robotics, aviation and 
military domains have demonstrated the benefits of 
integrating automation with reliability displays. We created 
an overview based on the proposed communication methods 
in an attempt to identify knowledge gaps and extract 
guidelines to the design.  

Modalities. We saw that most studies used visual encodings 
of reliability information. In comparison to other modalities, 
the visual modality may have the advantage that information 
can be transferred fast and with a high information density. 
However, a drawback is that the effectiveness of 
communication via this modality is dependent on the 
human’s gaze direction. When there are other tasks at hand 
that require visual attention, like observing the road or 
engaging in non-driving tasks, drivers may neglect 
continuous visual displays [33]. To counter this, researchers 
have scarcely communicated reliability information using 
peripheral displays, haptics, or smell. We found no examples 
that primarily employed the auditory modality. We argue 
that the employment of the auditive, somatosensory and 
olfactory modalities to communicate reliability information 
deserves more attention.  

Environmental modulations. To evaluate the effects of 
reliability communication methods, researchers have often 
created dynamic environmental conditions that altered the 
sensory performance of the machine agent. These conditions 
consisted for example of snow [21] or fog [16,19,22,27]. 
These conditions provide understandable causes of machine 
uncertainty to the human; snow and fog typically cause 
uncertainty to the human operator as well. However, causes 
of machine uncertainty that were less addressed in the 
studied literature are scenarios that unexpectedly cause 
machine uncertainty. Examples are the presence of light rain, 
which may affect a vehicle’s observations obtained with 
Lidar [3], and according to the most recent Audi A8 manual 
[34], driving through a tunnel can affect radar observations. 
Except to the few who have read the manual before using the 
machine, these potential causes of uncertainty may be 
unknown. Exploring the effect of reliability displays when 
there is no congruency between the automation’s and 
human’s reliability may be an interesting topic for future 
research.  

Trust assessments A returning topic in studies about 
reliability communication is trust, and in researchers’ 
evaluations of reliability displays we often encountered 
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subjective assessments of trust such as Jian et al.’s scale [35], 
adjusted versions thereof or custom questionnaires. 

Based on the outcomes of the trust assessments, some 
authors suggested that a machine that expressed uncertainty 
made the human trust the machine less and that this was a 
promising finding that indicated a more proper trust 
calibration [21]. Other authors stated that they found that 
trust was increased when machines were able to express 
uncertainty [19]. This second observation is often framed as 
a positive finding as increased trust can be an indicator of 
increased transparency [25]. This conclusion is 
understandable though it also shows that subjective trust 
measures should be interpreted with caution. Experimenters 
that find decreased levels of trust may be tempted to frame 
their finding as being supportive for trust calibration, and 
experimenters that find significant increases in trust may 
frame their finding as indicative of increased transparency. 
Decreases in trust should only be framed as desired effects 
in cases of overreliance and increases in trust are desired in 
cases of underreliance. To discriminate between either case, 
it is important to identify what the initial situation was in 
which the uncertainty was communicated: was the operator 
initially relying on the automation too much, or was the 
operator initially too skeptic or distrusting towards the 
automation’s capabilities? Only when this initial attitude has 
been recognized, or forcibly set by the experimenters, one 
can judge whether proper trust calibration took place [4]. 

Another confusing factor about the measurement of trust for 
the evaluation of reliability displays lies in the fact that trust 
in automation can be increased when a participant is aware 
that the automation can make the statement that it is 
uncertain – a statement that by itself should, paradoxically, 
lower trust. Perhaps, a clearer distinction should be made to 
discriminate between overall trust in the automation, 
representing overall trustworthiness of the machine, and 
short-term trust, representing the willingness to situationally 
rely on the automation given the current circumstances. We 
have not found such distinctions in the studies encountered 
in this review, however in related research we found one 
attempt by Rajaonah et al. [36], who made separate questions 
about trust in the cooperation with automation, trust in self 
and trust in the automation when they evaluated a 
cooperative driver assistance feature.  Unfortunately, the 
authors concluded from the answers to those questions that 
it was too difficult for participants to distinguish between 
these sub-types of trust. Future investigations related to this 
topic could focus on establishing frameworks and 
assessment techniques that comprise the notion of these 
different types of trust.  

 
CONCLUSION 
 

In this review, we collected research about the design and 
evaluation of machine reliability displays. We selected 16 

papers from robotics, aviation, the military and automotive 
domains that discussed a total of 55 methods of encoding 
real-time measures of machine reliability. We have found the 
recruitment of visualizations most popular, though haptic 
feedback and the olfactory modality have also been 
employed. The majority of the studies have successfully 
demonstrated the benefits of integrating automated systems 
with reliability displays. Based on the work, we identified 
knowledge gaps and design guidelines that could be of help 
in the future design and evaluation of reliability displays. 
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Table 1: Overview of studies 

key year 1st author n modality encoding 
variables  

domain publication 
type 

encoding dependent variables 

[24] 2002 Finger 20 visual 1 ergonomics Journal 
Article 

distortion, vagueness sorting task, ordering task, 
rating task 

[5] 2006 McGuirl 30 visual 1 aviation Journal 
Article 

confidence line graph 
for past five minutes 

pilot performance, 
compliance,  accuracy 
estimate 

[23] 2011 Neyedli 30 visual 2 military Journal 
Article 

pie chart, mesh 
(degradation) 

Reliance, performance 

[21] 2013 Helldin 59 visual 1 automotive Conf 
Proceedings 

display amount of 
bars machine 
competence bars 

steering angle, brake, 
acceleration, look away 
times, time to takeover, 
trust (Jian modified) 

[19] 2013 Beller 28 visual 1 automotive Journal 
Article 

uncertain face icon trust, acceptance, 
interview 

[13] 2016 Noah 36 visual 9 automotive Adjunct 
Proceedings 

compared 9 
 

[25] 2016 Mercado 30 visual 1 military Journal 
Article 

color opacity 
supported with 
textual explanation 

performance, trust, 
workload 

[14] 2017 Noah 21 visual 12 automotive Conf 
Proceedings 

compared 12 Sorting task 

[16] 2017 Louw 60 visual, 
auditory 

1 automotive Journal 
Article 

short tone, flashing 
yellow icon 

Gaze distribution 

[15] 2018 Kunze 46 visual 11 automotive Conf 
Proceedings 

compared 11  sorting task, response time 

[17] 2018 Kunze 25 haptic 4 automotive Adjunct 
Proceedings 

static and dynamic 
vibromotor patterns 
on back 

Subjective responses 

[28] 2018 Kunze 25 visual 6 automotive Conf 
Proceedings 

led strip brightness, 
hue, position, size, 
movement, pulse 

user responses. 

[27] 2018 Faltaous 20 visual 1 automotive Conf 
Proceedings 

led strip color trust, acceptance, 
perceived system 
reliability 

[31] 2018 Chen 81 visual 1 robotics Conf. 
Proceedings 

fallacious behaviour trust 

[18] 2019 Wintersberger 25 olfactory, 
visual 

2 automotive Conf 
Proceedings 

scent, icons NDRT performance, trust 
(Jian), acceptance 

[22] 2019 Kunze 34 visual 1 automotive Journal 
Article 

heartbeat animation 
combined with 
numerical display 

trust, eye tracking, SA 
(SAGAT), Workload (NASA-
TLX), performance of 
NDRT (visual search), 
MTTC, acceleration 
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