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Abstract

Learning curves are used to evaluate the perfor-
mance of a machine learning (ML) model with
respect to the amount of data used when train-
ing. Curve fitting finds the unknown optimal co-
efficients by minimizing the error prediction for a
learning curve. This research analyzed the effect
of parameter initialization on the performance of
curve fitting. Our focus was on comparing the per-
formance of sampling the initial parameters from 2
random distributions: uniform and normal on the
curve fitting process for different parametric mod-
els. Moreover, we looked into the effect of chang-
ing the parameters for these 2 random distributions
and drew conclusions about potential best initial
guesses.

Finally, we arrived at the conclusion that, after
choosing parameters that maintain similar data dis-
tribution, uniform and normal distribution sam-
pling parameter initializations perform similarly
during the curve-fitting process on learning curves.
Moreover, our studies highlight the sensitivity of
the Levenberg-Maquardt curve fitting method’s
sensitivity to bad initial guesses.

1 Introduction

Learning curves illustrate how a system’s performance on a
task evolves as a function of the resources devoted to solving
it [1]. These resources can vary from case to case, such as the
time spent by the system interacting with an environment or
the number of iterations the learner spent in that environment.
Performance is a term used for the measure that successfully
captures how well the system’s task is done. This is usually
assessed using an error rate metric. This concept has multiple
applications, from comparing different learners to determin-
ing the optimal data used to successfully train a learner. In our
case, we are interested in training sets’ sizes learning curves,
which plot the number of training instances against the er-
ror rate. Our work will focus on a particularity of the curve
fitting process. Curve fitting is a mathematical technique that
seeks to find the most suitable function to represent a given set
of data points, effectively modeling a real-world phenomena,
and providing a comprehensive description of their behavior
[2]. The objective of this is to establish a clear relationship
between dependent and independent variables. Despite many
previous works on learning curves such as [3],[4], there is
not much publicly available information on curve fitting and
the potential effects of the data on the curve fitting process.
A question that hasn’t been explored yet is how sampling the
initial parameters of the objective function from a random dis-
tribution impacts the curve-fitting process. This paper aims to
tackle this question, by assessing the performance difference
between sampling from different distributions and aims to op-
timize the initial guesses using random distribution for better
performances.

1.1 Related work
Our work is based upon previous relevant works such as [4],
[3], [5]. Viering and Loog [3] show multiple ways on how to
estimate learning curves, how to plot them and finally infor-
mation about curve fitting. Firstly, it is suggested not includ-
ing a bias term in a parametric model as a pitfall, indicating
us that we should run our experiments also on more complex
parametric models. In pitfall E, it is suggested that extrapo-
lation and interpolation should be done on previously unseen
data and that mean squared error is more suitable for non-
linear curve fitting as an error metric. Moreover, this paper
exhibits the previous empirical learning curve fitting studies,
section relevant for finding out what model functions would
be used best for our experiment. However, the conclusion is
that there may not exist an universal parametric model, and
that the best parametric model depends on the shape of the
learning curve. Studies concerning basic relations between
parameters for the exponential and power functions and their
conclusions are presented. Finally, a section on how to ro-
bustly fit learning curves is presented, arriving at the conclu-
sion that there are no studies about probabilistic models that
closely match the data of the learning curve.

Mohr et al [4] introduces the Learning Curves Database,
a database storing data of learning curves for 24 classifica-
tion algorithms in 246 datasets. Besides important concepts
used in curve fitting like interpolation and extrapolation, the
performance of parametric model is compared, arriving at
the conclusion that the more complex and more parameters
the model has, the better will be its performance. Moreover,
Mohr [4] states that objective model functions similar to the
power function seem to obtain the lowest error after curve fit-
ting. In our experiments, we will use learning curves only
from the Learning Curve Database.

Kim et al [5] focuses on curve fitting techniques for learn-
ing curves and the optimization of initial parameters using
K-means clustering. Moreover, it explains the difference be-
tween curve fitting methods such as Levenberg-Marquadt and
Newton, 2 local optimization methods. He arrives at the con-
clusion that despite simple function models being easier to
fit, they also get worse extrapolation values. Despite it being
very critical about the results obtained and proving that KMI
initialization is better than random initialization, the experi-
ments were not done for a considerable number of iterations.
Moreover, for the random intialization tests it uses only the
random distribution, which is equivalent to the uniform dis-
tribution and it does not specify the parameters used for sam-
pling, which we assume it means it only used the default pa-
rameters. This can cause initial bad guesses, which result in
suboptimal fits.

Bhaskaran et al [6] studies the effect of hyper parameter
tuning on learning curves. One problem he investigates is
the difference between hyper parameter tuned models against
default models with regards to the process of curve fitting.
He arrives at the conclusion that there are not significant dif-
ferences in terms of extrapolation between the tuned and the
default version of the models. It critically shows the results
obtained for multiple objective functions on 6 anchor per-
centages, concluding that the the parametric curve fits of the
default and tuned learner perform quite similarly. However,



the experiments were done on KNN classifier and Decision
Trees.

Gavin et al [7] defines the Levenberg Marquardt method,
defining the 2 algorithms used in it, gradient descent and
Newton method. It is stated that in non-linear least squares
problems, this algorithm is sensitive to initial guesses, fact
which will help us arrive at conclusions of our experiments.

1.2 Research questions
My main research question is ”How does the distribution
sampling of the initial parameters of the model function af-
fect the performance of curve fitting in the context of well-
behaved learning curves?”. The focus of this study will be
on the effects of setting random distributions, such as normal
and uniform, to the initial parameters of curve fitting function
using Levenberg-Marquadt method [7]. In order to answer
this, I will split this question into multiple subquestions:

1. What is the performance difference between uniform
and normal distribution sampling of initial parameters
in LM algorithm curve fitting?

2. How does increasing the upper bound in uniform distri-
bution sampling impact LM algorithm in curve fitting?

3. How does increasing the mean and standard deviation
in normal distribution sampling impact LM algorithm in
curve fitting?

4. How does tuning random distributions’ parameters with
regards to the fitting data used impact LM algorithm in
curve fitting ?

1.3 Overview
In the following sections, we will discuss the motivations be-
hind this study in 2, my contributions and ideas in 3 and 5,
the experimental setup needed to replicate the experiments in
4 and the results in both conclusion 7 and experimental re-
sults and discussions 5 section. Moreover, further steps in
order to arrive at more conclusions will be hinted in detail in
5. In section 8, it will be demonstrated that our research ex-
periment and paper comply with the principles of responsible
research.

2 Background
In an evolving machine learning environment, models are be-
coming more and more complex, therefore many may come
to the conclusion that more training data used would improve
the performance of the trained model. However, this is not
necessarily true. In the context of machine learning, learn-
ing curves plot the error rate of a model against the number
of training sizes used. This can be used in order to derive
the optimal number for the training size used for that model.
Well-behaved learning curves are curves that show improved
performance with more data [3]. An example of well-behaved
learning curve can be seen in figure 1.

2.1 Curve fitting
In the context of learning curves, curve fitting aims to opti-
mize the objective function’s parameters in order to minimize

Figure 1: Example of well-behaved vs ill-behaved learning curve
from [8]

the error between the predicted learning curve and the actual
learning curve. Mathematically, this is expressed as:

min
θ

n∑
i=1

(yi − f(xi; θ))
2
, (1)

where: xi and yi are the training set sizes and error rate
r, respectively, f(xi; θ) is the parametric model used to fit
the data, θ represents the set of parameters to be optimized,
n is the total number of data points used for fitting and
(yi − f(xi; θ))

2 is the squared error for the i-th data point.
Therefore, our initial assumption is that the initial values used
for the parameters of the objective function play an important
role in the final values obtained after applying the curve fit
function. The most common method used for optimizing the
parameters is Levenberg-Marquardt algorithm [7], an al-
gorithm which uses gradient descent and Gauss-newton min-
imization methods.

2.2 Random distribution sampling
In order to test our hypotheses in an objective manner, we
will initialize the initial parameters of the curve fit function
with random values sampled from normal and uniform dis-
tribution. When sampling from a uniform distribution, all
the values from the 2 intervals are equally probable to be
sampled[9]. The default parameters of the uniform distribu-
tion sampling used in python are [0,1] where the first value is
the lower bound of the interval and the second value is the up-
per bound of the interval. In contrast, the normal distribution
samples values with regards to the mean and standard devia-
tion, values closer to the mean having a higher probability of
being selected. In figure 2, we can see a visual representation
of the normal distribution with the mean 0 and the standard
deviation 1, showing that most of the values will be drawn
from the interval [-3,3], with the probability of a value being
drawn being higher if the value is closer to the mean. Gon-
zales et al [10] states that 97% of the normal distribution’s
sampled values are in the interval [mean-3*standard devia-
tion,mean+3*standard deviation]. The default python func-
tion used for normal distribution uses the parameters of the
standard normal distribution sampling. However, because of



the the range of sampling for the normal distribution, it is pos-
sible that negative values are also sampled, which is not the
case for uniform distribution.

Figure 2: Normal Distribution Curve with mean 0 and standard de-
viation 1 from [11]

3 Methodology
In this section we will present our methodology and the initial
assumptions we derived. Firstly, we will explain the error
function we are using and on which part of the data it will be
used. Then we will explain the way we decided to tackle each
subquestion and explain what results we initially expected.

3.1 Interpolation and extrapolation
In the context of curve fitting for machine learning, interpo-
lation estimates model performance within observed training
data to validate the fit, while extrapolation predicts perfor-
mance within unseen data. While we will initially look on
how the error on unseen data differs so that it does not over-
fit. However, we will assess the error on the data used for
fitting, in case the results for extrapolation are similar. We
will consider good fits those for which curve fitting correctly
describes the behavior of the curve on both seen and unseen
data.

The measure used to compute the interpolation and extrap-
olation error is the mean squared error [12], a method gener-
ally used for generalisation problems. In the following sec-
tions, we may abbreviate it as ’MSE’.

3.2 Models used for curve fitting
In table 1, we can find the mathematical formulas of the ob-
jective functions described. The models used for our exper-
iments are the exponential and power functions, 3 parame-
ters for the first experiment and with 2 parameters for the
other 2 subquestions. Viering et al[3] suggests that well-
behaved learning curves favor exponential and power-law
shapes, meaning that for our example these 2 objective func-
tion would perform best.In the beggining, we will make as-
sumptions about the 2-parametric models, in order to as-
sess potential differences for functions which may not always
yield a curve fit. However, Viering et [3] suggests that not
including the bias term in the parametric model is a pitfall,

displaying the example of failed fits of EXP2 function on ex-
ponential shaped curves.

Table 1: Formulas for Selected Objective Model Functions

Model Formula
POW2 an−b

POW3 an−b + c
EXP2 a exp(−bn)
EXP3 a exp(−bn) + c

3.3 Levenberg-Marquardt
Gavin et al [7] states that Levenberg-Marquardt algorithm
combines two numerical minimization algorithms: the gra-
dient descent method and the Gauss-Newton method. This
method method acts more like a gradient-descent method
when the coefficients are far from their optimal value, and
acts more like the Gauss-Newton method when the coeffi-
cients are close to their optimal value. The gradient descent
method uses gradient descent method, which updates coeffi-
cient values in the ”downhill” direction. The Gauss-Newton
method is a method for minimizing a sum-of-squares objec-
tive function. It presumes that the objective function is ap-
proximately quadratic in the coefficients and typically con-
verges faster than gradient-descent methods. Finally, Gavin
et al [7] highlights the limitations of the method, stating that
the algorithm is sensitive to initial guesses.

3.4 Initial assumptions about the differences
between the effect of distributions

We believe that normal distribution with default parameters
sampling produces worse results especially for these objec-
tive functions. This is due to the probability of the initial
value of the second and first parameter being negative, re-
sulting in an negative or error above the threshold. In or-
der to completely investigate our hypothesis, we will run our
pipeline on uniform distribution with a negative lower bound,
in order to compare its performance to the normal distribution
sampling with the mean 0. Viering et al[3] states that if the
initial quantity parameter ’a’ is negative, then we can also set
the decay ’b’ to a value negative, we can still get non-negative
values until a certain value of n, for 3 parametric model. This
results in us potentially getting better results than expected
for the interpolation of 3 parametric models for normal distri-
bution, since there exists the probability of 0.25 of sampling
2 random negative values for ’a’ and ’b’ parameters. There-
fore, we expect the results for normal distribution sampling
for at least POW3 to not be that relevant for interpolation. Fi-
nally, due to the curve fitting sensitivity to initial bad guesses,
we expect that most of the curve fitting runs for each learn-
ing curve to not find the optimal value and to be stuck at a
local minimum and the convergence matrix to not be able to
be approximated. In order to find the most optimal values,
we will try to increase the probability of getting a reliable ini-
tial guesses. Firstly,we thought that for uniform distribution,
we will increase the upper bound from 1 to a larger value.
For normal values, we will also increase the mean/peak of
the normal distribution and choose a standard deviation such



that the probability of getting positive values would be close
to 100 percent.

Kim et al [5] suggests values for bounds of parameters for
the exponential function with 3 parameters, with the lower
bound being -10 for all of the 3 parameters and the upper
bound 100. However, from our experiments, we believe that
a negative lower bound would affect negatively the perfor-
mance of curve fitting for this model. Therefore, we would
initialize all the parameters with regards to the upper bound
presented, 100.

3.5 Methodology for sampling parameters with
regards to the fitting data

We believe that a better method would be to set the parame-
ters of the distributions with regards to the data. A relevant
example for this would be the following for exponential func-
tion with 2 parameters: the initial guess for the initial quantity
parameter ’a’ would be sampled from the uniform distribu-
tion with the minimum value of the fitting data as the upper
bound and with the maximum value of the fitting data as the
upper bound. For the decay parameter ’b’ we would try to
make it as close as possible to 0 such that the e−b·x would be
converge to 1. Despite not having the certainty that the fitting
data would be following an uniform distribution, we believe
that this way would certainly lead to an optimal value more
often and would not stop at local minimum. We will also try
to analytically derive formulas in a way that e−b·x would not
converge to 1, in a way that b will also be initialized with re-
gards to the data. However, Viering et al [3] states that there
is no clear relationship found between parameters. We will
analyze this problem in the following order: first, we will
compute ’a’ initial quantity parameter by sampling it with re-
gards to the fitting data. Mathematically, ’a’ will be expressed
by :

a ∼ U(min(Yfit),max(Yfit))

Now we will compute the decay ’b’. The other idea is to
firstly sample the value for b with a value from the distribu-
tion and then try to compute ’a’ and sample its value for its
distribution. Due to time constraints, we will validate our hy-
pothesis only on one model, exponential 3 in this case. First,
we will write the equation for exponential 3 which is the fol-
lowing:

y = ae−bx + c

First, in order to find a relation between parameter ’a’ and
parameter ’b’ we will apply log to this equation, by subtract-
ing c and then applying log to the equation, arriving at the
following mathematical expression:

log(y − c) = log(a)− b ∗ x
Finally, when trying to find a value relation between a and
b, we will get rid of the c value after empirically observing
from experiments on default parameters that it converges to
the same value for most of the time. We will initialize ’c’
with also an uniform distribution sampling with default pa-
rameters. Our final b value in this case will be

b = (−log(a) + log(y − c))/x

In our case, we will plug in the y value and the x value as
the mean of the fitting points used. Our other options were to

use the first point of the fitting points, however this may not
yield a good approximation for b since the ’x’ value would
be too small, close to 0, causing value errors. For the normal
distribution, however, we will sample the value similarly like
in the case of uniform, following the mean of the fitting data
and the standard deviation of the fitting data. Therefore, a
will be represented by the following mathematical equation:

a ∼ N (mean(Yfit), std(Yfit))

4 Experimental design
In this section, we present the experimental setup, delving
into the models I chose and the datasets utilized, as well as
details about the evaluation methods used and the comparing
methods to assess the results. It is worth mentioning that we
will extensively use the functions provided by SciPy [13].

4.1 Datasets used
We will extensively evaluate the curve fitting performance
of our experiments on various datasets with learning curves
provided by LCDB [4], the learning curve database. We
will assess the performance of our experiments only on well-
behaved curves, which implies that a filtering of the available
datasets will be done.

For each dataset, we will run only the learners which yield
the greatest percentage of monotonicity and convexity. For
the purpose of our experiment, we will only use the valida-
tion set of each learning curve. Due to the limited time and
computer resources used, our experiment will be done exten-
sively on well-behaved curves, which were manually selected
after plotting them.

We will split each validation set using a 80%-20% split, the
same Brumen et al [14] uses in his experiments. This means
that we will use 80% of the data for fitting (interpolating) and
only 20% percent for evaluating (extrapolating).

4.2 Learners used in the experiment
As previously mentioned, for our experiment we will use
the learners which yield the greatest monotonicity, which are
Gradient Boosting and the Linear classifier (C. Yan, personal
communication, December 05, 2024).

4.3 Pipeline
In order to investigate our hypothesis with high-fidelity, we
will run the following pipeline 2000 times for each dataset,
learner, and distribution chosen. For each run, then, we ini-
tialize the parameters with random values sampled from the
distribution chosen. Firstly, we will compute and store the
error between the actual values and the objective function
with the initial guesses as parameters. For each run, we will
compute the curve fitting function, obtaining the full output
and storing the new parameters obtained and the number of
function calls obtained. After this, we compute the MSE be-
tween the actual value and the value obtained with the new
parameters from curve fitting, for both interpolation and ex-
trapolation. Mohr, Viering, Loog and van Rijn et al. [4] rec-
ommend us to discard mean squared errors higher than 100,
value which will be used as a discard threshold in our exper-
iments. To assess the significance of our results, we will use



the Mann-Whitney U test [15]. The null hypothesis for this
test can be described as :

(H0): There is no difference in central tendency between
the two groups in the population.

4.4 Metrics used for evaluation
The metrics used in our experiments in order to compare 2
different initializations are the mean squared error obtained
for interpolation and extrapolation and the number of average
number of failed fits per method of sampling.

5 Experimental results

Table 2: Average failed fits for different methods of distributions’
sampling for EXP3 objective model function

Distribution Type Failed fits
Default Uniform Distribution 148.375
Standard Normal Distribution 1038.4375
Uniform Distribution with Bounds [-3,3] 1017.875
Uniform Distributions Improved 861.625
Normal Distributions Improved 985.125
Normal Distribution with Larger Positive Interval 2.8125
Uniform Distribution with Larger Positive Interval 2.1875

5.1 Performance differences between Sampling
Methods on Curve fitting

What is the performance difference between uniform and
normal distribution sampling of initial parameters in LM
algorithm curve-fitting for well-behaved curves?

The performance between the 2 distributions regarding the
mean squared error in terms of mean was significant for the
power function model with 2 parameters, as seen in 3. More-
over, the mean values obtained for extrapolation were identi-
cal in all cases. The power function fits the set of curves cho-
sen well, with an average of 2 fits discarded per combination
of dataset and learner, in comparison with the exponential 2
model which results in 981 average failed fits. However, the
results for the exponential parametric model with 2 parame-
ters were more decisive, showing significant differences for
both interpolation and extrapolation errors. In order to obtain
visible results, we scaled the y-axis of the results. In figures 4
and 5, we can observe that the uniform distribution sampling
outperforms the normal distribution sampling, having values
of about 70 percents smaller for interpolation and 32 percents
smaller for extrapolation on average. Finally, on 3 paramet-
ric models, our initial assumptions about pow3 interpolation
results 3.4 were correct in this case , the interpolation results
being slightly better for the normal distribution sampling, as
seen in 6. However, the results obtained for exponential 3
function remain consistent, obtaining better average fits when
uniform distribution sampling with default parameters than
normal distribution sampling with default parameters, as seen
in picture 7.

.

Figure 3: Interpolation difference for POW2 parametric model with
normal and uniform sampling, showing a slightly better value for
uniform, with the Y-axis scaled

Figure 4: Interpolation difference for EXP2 parametric model with
normal and uniform sampling, showing smaller values for uniform,
with the Y-axis scaled

Figure 5: Extrapolation difference for EXP2 parametric model with
normal and uniform sampling, showing smaller values for uniform,
with the Y-axis scaled

5.2 Analyzing uniform distribution with negative
lower bound

We initially assumed that one of the reasons why normal dis-
tribution with default parameters performs worse in practice
is due to the wider spread and the random sampling of also
negative values. Now, we will mimic the standard normal
distribution with uniform distribution with a negative lower



Figure 6: Interpolation difference for POW3 parametric model with
normal and uniform sampling, showing similar values for uniform
and normal , with the Y-axis scaled

Figure 7: Extrapolation difference for EXP3 parametric model with
normal and uniform sampling, showing similar values for uniform
and normal, with the Y-axis scaled

bound. By looking at the standard normal distribution pre-
sented in figure 2, we will set the lower bound of the uni-
form distribution sampling to -3 and the upper bound to 3,
the boundaries of the values most probable drawn for the
standard normal distribution. Firstly, looking at the table 2,
we can observe that the average number of failed fits was
very similar, uniform distribution sampling method with neg-
ative lower bound failing also around 50 percents of the time.
Moreover, in figure 8 we observe that the uniform actually
performs worse when having their bounds of [-3,3]. How-
ever, when restricting this bounds of the uniform distribution
sampling to [-1.5,1.5], we only got one pair for which the
extrapolation mean values difference between sets was sig-
nificant and it had a p-value lower than 0.05. Therefore, we
can conclude that by changing the parameters accordingly,
standard normal distribution produces the same results as an
uniform distribution.

5.3 Increasing uniform distribution parameters to
improve curve fitting

How does increasing the upper bound in uniform sam-
pling impact LM algorithm curve fitting for well-behaved
curves?

We analyzed the effect of increasing the upper bound of
the uniform distribution. Firstly, in table 2 we can observe

Figure 8: Extrapolation difference for EXP3 parametric model with
normal and uniform sampling with bounds [-3,3], showing better
values for uniform, with the Y-axis scaled

that it reduces the average failed fits to only 2.1875, showing
that by increasing the interval from which the distributions
are drawn, the changes of arriving at an optimal solution in
curve fitting process are increased. However, surprisingly, the
average mean mean squared error is not better than the ones
shown in default uniform distribution, as seen in figure 9.

Figure 9: Extrapolation difference for EXP3 parametric model
with default uniform sampling and uniform sampling with bounds
[0,100], showing better values for default uniform, with the Y-axis
scaled

5.4 Increasing normal distribution parameters to
improve curve fitting

How does increasing the mean and standard deviation in
normal distribution sampling impact LM algorithm curve
fitting for monotonic curves in the LCDB database?

In table 2 we can observe that the number of failed fits
is reduced from 1038 to 2.81 average failed fits. Moreover,
in figure 10 we can observe that normal distribution with
mean increased yields lower mean squared errors than the
standard normal distribution for extrapolation. Therefore, we
can conclude that values sampled from a normal distribution
with a higher mean and a standard deviation which ensures a
high probability of sampling positive values yield lower mean
squared errors, despite the chance that the initial guesses can
be more far from the optimal value than the method with stan-
dard normal sampling.



Figure 10: Extrapolation difference for EXP3 parametric model with
standard normal distribution and normal distribution sampling with
mean 50, standard deviation 16.66 showing lower MSE values for
normal with increased mean, with the Y-axis scaled

5.5 Fine tuning the distributions’ parameters to
improve curve fitting

How does tuning random distribution parameters with
regards to the fitting data used impact LM algorithm in
curve fitting ?

Despite our initial assumption that adjusting the distribu-
tions’ parameters with regards to the data, we can observe
that our proposed method fails to significantly decrease the
extrapolation’s MSE. For uniform distribution, around 60%
of the learning curves perform better when using the default
sampling in terms of average extrapolation error, as seen in
11. The number of failed fits per distribution is significantly
higher than the number of failed fits for the proposed method
with increased bounds/mean, as seen in 2. Therefore, we can
conclude that trying to tune parameters with regards to the fit-
ting data might not be the best approach because the function
might overfit the fitting data, giving bad extrapolation values.

Figure 11: Extrapolation difference for EXP3 parametric model with
standard normal distribution and normal distribution sampling with
parameters fitted to the fitting data, with the Y-axis scaled

6 Discussion
As Gavin stated et al [7], LM algorithm seems to be very sen-
sitive to initial guess also from our results. A representative

Figure 12: Extrapolation difference for EXP3 parametric model with
normal and uniform sampling, showing multiple different MSE val-
ues and their frequency before sampling and the MSE values after
curve fitting, which are almost identical with the X-axis scaled

example of the extrapolation MSE values done before and af-
ter curve fitting can be seen in figure 12. This concludes that
this curve fitting method tends to constantly arrive at the same
extrapolation value, showcasing that LM is prone to get stuck
in local minima values found.

Initially, we obtained that the default uniform distribu-
tion performs better in terms of failed fits and average mean
squared errors than standard normal distribution. However,
after sampling values from a uniform distribution with a neg-
ative lower bound, we arrived at the conclusion that it is not
a matter of the distribution chosen, but of the negative values
which yield failed fits or suboptimal fits for power and expo-
nential function models for well-behaved curves. However,
Kim et al [5] suggests that an appropriate lower bound for all
of the parameters of the exponential function with 3 parame-
ters would be -10, a negative value which yielded worse and
more failed fits in our case. Moreover, despite reducing the
number of failed fits, sampling with uniform distribution with
the upper bound 100 and lower bound 0 did not produce sig-
nificant differences in mean squared errors for extrapolation
in our setting, showing that the bounds presented can be more
restrictive.

Finally, our proposed approach for finding the initial guess
parameters for exponential 3 function on well-behaved curves
performs better than the default method distributions. How-
ever, it performs worse in terms of extrapolation. We believe
that this is due to the difference between the fitting data and
the extrapolation and the models chosen tend to overfit on the
data used for fitting. Since there is no previous conclusion for
the relation of the parameters in the exponential 3 function
in the process of curve fitting, sampling ’c’ parameter from
a distribution with default parameters might negatively affect
the failed fits performance of our experiment.

Due to time and computational constraints, the results ob-
tained might not be entirely accurate. One of the reasons for
that is that we only tried our pipeline on well-behaved curves,
omitting the ill-behaved curves in LCDB. We expect that the
fits will be more difficult to realize on ill-behaved curves and
that the objective model function chosen for these experi-



ments would not be fit for most of the ill-behaved curves,
as Viering and Loog state et al [3]. Another shortcoming of
our experiments would be split of 80% fitting data and 20%
extrapolation data. Trying multiple different splits and com-
paring the mean of the mean squared errors and failed fits is a
more sensible way to do it and could result in more accurate
results.

7 Conclusions
7.1 Summary of the results
In conclusion, this paper aims to describe the effect of sam-
pling the initial parameters of the objective model function
from 2 random distributions on the curve fitting process of
well-behaved curves. Moreover, it critically compares the 2
distributions used: normal and uniform in terms of failed
fits and mean squared errors. Firstly, it compares their per-
formance using the default parameters for both normal and
uniform, and we initially arrived at the conclusion that uni-
form performs better for all the models used for experiments.
However, the following experiments arrive at the conclusion
that this is the case because of the negative values sampling
which yielded more suboptimal and failed fits, meaning that
the 2 initialization method can have similar results if their
parameters are correctly chosen. Finally, we highlight the
Levenberg-Marquadt sensitivity to bad initial guesses which
yield more failed fits if the initial guess is very far from the
optimal solution. However, by tuning the parameters of the
distributions sampling functions with regards to the data, we
can observe that despite getting more failed fits, we get more
optimal fits on average, reducing the risk of the algorithm of
getting stuck in the local minima.

7.2 Future work
To further analyze and solidify our findings, the experiment
should also be conducted with ill-behaved curves and anchors
percentages should be used for further experiments. This will
create more reliable and potentially different results, as objec-
tive model’s function performance for each anchor percent-
age can differ [6]. Moreover, more complex parametric mod-
els should be analyzed, since it is believed that 4 parametric
models might yield a better fit [4]. Finally, different ways of
tuning the distributions’ parameters can help at discovering
more precise ranges for good initial guesses for LM algorithm
for curve fitting. Moreover, more methods for adjusting the
distributions’ parameters with regards to the data should be
tried, methods which can give us more insight into the rela-
tion of parameters for model objective functions in learning
curves. We suggest that sampling other parameters than ’a’
with regards to the data for the exponential 3 function might
potentially yield better results.

8 Responsible Research
In this section, we discuss the broader implications of the
research conducted, ensuring that all experiments are repro-
ducible, the data is publicly accesible and it adheres to the
ethical standards required.

8.1 Reproducibility
This research study is compliant with the Netherlands
Code of Conduct for Research Integrity(2018), and the
FAIR(Findability, Accesibility, Interopability, and Reusabil-
ity) as per [16] and integrating the research integrity vision
values from TU Delft 1. The code used to conduct the ex-
periments will be uploaded to a public Github repository 2,
an open-source platform and forwarded to the group of re-
sponsible supervisors who will assess the correctness of the
code. The datasets collected are from the Learning curves
data base, a database described in depth in the [4] paper. All
the functions used for computing the curve fitting are from
SciPy[13], an open source library from Python. The inter-
operability and and reusability of the experiments is assured
by the complex documentation in the code and the 4 section
which clearly describes the steps needed to reproduce each
experiment conducted. Additionally, results from the exper-
iment will be stored into CSV files which will also be up-
loaded on the Github repository. Some challenges regarding
the reproducibility of the experiments may be encountered
due to potential updates to the open source library used in the
code. Moreover, due to the high computational power needed
to conduct the experiments, some setups would not be able to
support the computational processes needed to arrive at the
results.

8.2 Ethical impact
The aim of our analysis is to analyze and optimize the initial-
ization of initial parameters used for CURVE FITTING algo-
rithm for learning curves. However, malicious actors could
use these findings in trying to manipulate learning curve fit-
ting process by selecting initial values which tend to yield an
unrealistic mean squared error or optimizing deceiving mod-
els. We recommend future users of our experiments to be
transparent with their experiments, reporting multiple metrics
for the performance.
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ČERNEZEL, and Marko Hölbl. Best-fit learning curve
model for the c4.5 algorithm. 25:385–399.

[9] Lih-yuan Deng. Uniform Distribution: Definitions and
Properties. 09 2014.

[10] Beatriz Adriana Rodrı́guez González, Gabriela
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Héctor Antonio Durán Muñoz. The use of the empirical
rule in the probability class: A proposed application for
university students to determine the type of statistical
thinking. 22(3):521–537.

[11] Lumina Decision Systems. Normal distribution, 2024.
[12] Timothy Hodson, Thomas Over, and Sydney Foks.

Mean squared error, deconstructed. Journal of Ad-
vances in Modeling Earth Systems, 13, 12 2021.

[13] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
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Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Van-
derPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
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