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Abstract

Nowadays, the society strongly depends on computer networks and systems as a means of reliable

communication and data storage. In order to maintain absolute security of the networks and thus

the society, one would need to separate everything, but this is not feasible. Consequently, sharing of

resources is inevitable. There are security products that rely on an FPGA to create domain separation.

The domain separation is required to prevent leakage of confidential information and manipulating of

critical processes.

A modern FPGA has enough resources to have multiple soft-cores initiated on it- each of them

working in a different domain. However, due to the limited amount of IO pins on an FPGA, using

multiple DRAM chips is not an option. Therefore a single DRAM is shared between multiple soft-cores,

threatening the domain separation.

The main threats when using a shared DRAM are communication channels due to latency deviations,

data corruption due to rowhammering and direct access to unauthorized data due to the data being

available on shared addresses. Research has been done to determine what causes the latency deviation

and how to mitigate it. The results of the research are that the only fundamental solution to mitigate the

latency deviation is to have a fixed latency when accessing the DRAM. A fixed time arbiter is designed

and tested. The fixed time arbiter is using a deterministic delay after each DRAM access in order to

mitigate the latency deviation.

Before mitigating the rowhammer vulnerability it is shown that rowhammering causes bitflips not

only in the adjacent rows, but also in non-adjacent rows. To mitigate the rowhammer vulnerability

for adjacent rows, a row refresher is created that tracks the rows that are accessed and refreshes the

adjacent rows when accessed more than the bitflip threshold. To mitigate the vulnerability for non

adjacent rows a test is created to give an overview of all non adjacent rows that contain bitflips so that

those rows can be be dedicated as unused guard rows.

The last part that is implemented is an address mapper to be sure that no soft-core can access the

addresses of another soft-core.

The fixed time arbiter, row refresher and address mapper are combined into the memory domain
protector. The consequence on the bandwidth of the DRAM is that the bandwidth is halved compared

to the benchmark design. The memory domain protector also uses 23× more logic than a standard

arbiter.
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1
Introduction

Nowadays, the society strongly depends on computer networks and systems as a means of reliable

communication and data storage. To keep those networks and thus the society secure, the computer

networks and systems depend on security products.

These security products depends on domain separation to make sure that there is no interference

between different communication channels and none of the communication can leak to unauthorized

domains.

To make the domain separation possible, the security products uses several soft-cores. A soft-core is

a digital circuit that can be wholly implemented on e.g. FPGA, ASIC, CPLD by using logic synthesis.

Each soft-core is running in a different security domain. The number of soft-cores scale well with the

amount of resources available on an FPGA. However, the due to the limited amount of IO pins a single

DRAM is shared between the soft-cores.

Sharing a single DRAM between multiple soft-cores threatens the domain separation since data

might leak through the DRAM from one soft-core to another.

A solution is needed to mitigate this threat. This solution should consist of allocating an address

space to each of the security domains that can not be accessed by other security domains. It should also

provide security against malicious activities that try to leak or change data from one security domain to

another on purpose.

1.1. Problem statements and methodology
The main research question is:

How can a single DRAM chip be shared between multiple soft-cores without leaking information
from one soft-core to another soft-core?

Within this project, it is assumed that an attacker deliberately tries to access data on critical security

products. Even if the attacker has software root access to one or multiple soft-cores within these security

products, there should not be any form of data transfer possible from one core to another.

Some of these security products run in a physically protected environment. In this project it is

assumed that an attacker has no physical access to the security product. Therefore, any hardware related

attacks are out of the scope of this project. Furthermore, it is assumed that the attacker has no access to

the reconfigurable part of the FPGA either, limiting the focus of this project to software attacks only.

From within software there are two ways that unauthorized data accesses can happen through the

DRAM: directly access the address on the DRAM that contains the data, and indirect communication.

To make indirect communication happen, the attacker monitors physical quantities that could

contain information about what is happening on the system in another security domain. For example,

when the DRAM access is occupied by another soft-core and the attacker tries to access the DRAM,

it will take longer, since the attacker needs to wait for the DRAM to be available. This waiting time

carries information about the other soft-core: it is accessing the DRAM. This extra information that can

be gathered because of the fundamental way a computer protocol or algorithm is implemented is called

a side-channel.

1



1.2. Design considerations 2

Side-channels can also be used to setup a communication channel between different soft-cores that

are not allowed to communicate with each other. In this case, it is called a covert-channel. Taking

the previous example, when the waiting time to access the DRAM takes longer than usual, a ’1’ is

communicated. If the waiting time is normal, a ’0’ is communicated makes a covert-channel using a

side-channel.

For covert-channels, the attacker needs his software running on both soft-cores to be able to transmit

data from one soft-core to another. By contrast, for side-channel attacks the attacker only needs access

to a single soft-core.

For crucial security products, it is important that both side-channels and covert-channels are

mitigated. Since covert-channels use side-channels as communication channel, it is sufficient to mitigate

the side-channels.

Different side-channels are possible in different situations. Therefore the side-channels need to be

identified first. After that the identified side-channels needs to be mitigated. On top of this the direct

unauthorized data accesses should also be mitigated.

This leads to the following underlying sub questions and utilized methodology to answer the

question:

1. How to prevent direct unauthorized data access on a shared DRAM?

• A literature study to determine current existing methods to share DRAM between soft-cores.

• Discuss the existing methods to share DRAM.

• Implement a suitable design to share DRAM for this project.

• Evaluate the functionality of the design.

The implemented design should be able to guarantee that a core can only access its allocated

addresses. After the direct unauthorized data access is mitigated, the focus is on the indirect

communication, resulting in the question and approach:

2. What side-channels are introduced that can be exploited through software, when sharing a
DRAM chip between multiple soft-cores?

• A broad literature study will determine what classes of side-channels exists.

• The findings of the literature study will be discussed with security experts to minimize the

chance that any side-channel is missed.

• Create a list with side-channels that need to be mitigated within this project.

The following question follows from the list of side-channels:

3. How can DRAM side-channel attacks be mitigated?

• Discuss countermeasures found in literature.

• Design countermeasures for each side-channel in the previously created list.

• Test the functionality of the countermeasures.

After every aspect of this project is implemented, the influence on the performance needs to be

determined resulting in the last question and chosen approach:

4. What are the consequences of the implemented countermeasures on the performance?

• Create a benchmark test and run this test on a system with and without the mitigation.

• Discuss the comparison of the results.

1.2. Design considerations
For this project, security is the most important aspect for the final design. Furthermore, the design

should be easy to understand, so that when used in future projects the security can be proven by

inspection. Therefore two design principles are considered: Security over performance and simplicity

over complexity.

It is also assumed that each softcore runs its own operating system and there for it does not rely on

any data or instruction sharing between different softcores.
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1.3. Overview
The remainder of this report is divided into four chapters. Chapter 2 gives an overview of the required

background information to understand the rest of the report. It describes the fundamental hardware

architecture of a DRAM chip and how a typical memory hierarchy looks like. This is followed by a short

introduction of the AXI4 bus that is used for within every hardware design in this project. Following

that, the chapter gives an overview of the currently known side-channels of DRAM and explains which

side-channels are mitigated in this project.

Chapter 3 contains a description of the complete design that is implemented and tested to safely share

DRAM between multiple soft-cores. Chapter 4 analyzes the performance tradeoff of the implemented

design. It compares the new design with a consisting benchmark design. Finally, Chapter 5 summarized

the work that is done and gives an overview of the main contributions. The report then finishes with an

overview of potential future work.



2
Background

This chapter will provide an overview of the security vulnerabilities of DRAM and the current solutions

against those vulnerabilities. It will also show where current solutions are lacking.

Section 2.1 describes the typical memory hierarchy of a computer and it explains the architecture of

a DRAM chip. Section 2.2 describes the AXI4 protocol that is used for the communication between

the softcores and the DRAM controller. Section 2.3 describes the different side-channels found in a

computer. This section also gives an overview of the related work of each of the relevant side-channels

found. It will explain where the existing solutions are relevant and where they are lacking for the

purpose of this work. At last, Section 2.4 gives a summarizing conclusion of this chapter.

2.1. Memory hierarchy
To understand the side-channels caused by the DRAM, it is important to understand how the DRAM

works and how the interaction is within the memory hierarchy.

A typical memory architecture of a multi-core system is shown in Figure 2.1. The memory architecture

of a multi-core system has typically one or two private caches per core that communicate with a shared

last level cache between all cores [1]. The last level cache is connected with the DRAM.

The data in the L1 cache is coherent with the data in the L2 cache, which is coherent with the data in

the last level cache, which is coherent with the data in the DRAM [2]. This architecture is created to

optimize the latency and bandwidth for frequently accessed data, because smaller caches close to the

core have a better latency than DRAM, which is further away from the core.

Figure 2.1: Typical memory structure of a dual-core processor connected to external DRAM. The CPU consists of two cores, each

of them has their own private L1 and L2 caches. The Last level (L3) Cache and DRAM memory are shared by all cores [3].

4



2.2. AXI4 5

Figure 2.2 shows the typical structure of the DDR (double data rate) DRAM structure. In most

computers the DDR DRAM structure consists of a DDR DIMM. On the DIMM, there are several ICs

with several banks. A bank consists of a cells that are connected through a wordline and a bitline. Each

cell consists of a transistor and a capacitor. For this project, a single DRAM IC is connected to an FPGA,

meaning that the address only contains information about the bank, row and column.

In DRAM, data is stored in the charge over the capacitor (e.g. charged is a ’1’, discharged is a ’0’).

The charge over a capacitor will always change to its default state over time due to charge leakage of the

capacitor. The default can either be charged or discharged depending on if the capacitor is connected to

a pull up or pull down circuit. To prevent data loss due to this charge leakage, the DRAM specifications

require a refresh every 64 ms for each individual row [4, 5].

Figure 2.2: Overview of a DDR3 DIMM [6].

2.2. AXI4
The softcores that are used for this project uses the AXI4 bus to access all the peripherals including the

DRAM. In this section, the basics of the AXI4 are explained based on the official AXI4 documentation

[7]. After this explanation, an implementation is shown that is used later on in this project.

The AXI4 protocol is widely used for micro controllers and SoCs. The AXI4 specifications describe a

point-to-point protocol between two interfaces: a master and a slave. It has 5 channels: read address

(ar), write address (aw), read data (r), write data (w) and write response (b), see Figure 2.3.

Figure 2.3: This figure shows the direction of each individual AXI4 channel, with the manager being the Master and the

Subordinate being the slave [8].

Each channel uses a two-way handshake to send data from source to destination. The handshake

happens on the rising edge of the clock when both the ready and valid signals of a channel are high, see

Figure 2.4. When a handshake happens the transaction is complete.

2.2.1. AXI4 transfers
There are two types of transfers, a write transfer and a read transfer, see Figure 2.5. Both transfers

consists of multiple transactions over multiple channels. A read transfer starts with a transaction over

the ar channel and contains information about the address, burst type, length and size of the requested

read transfer. After the ar transaction the r channel will be used to send the read data to the master.
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(a) Valid is asserted before the ready. (b) Ready is asserted before the valid. (c) Ready and valid are asserted at the same

time.

Figure 2.4: An overview of the AXI4 channel handshake. However, the ready signal can be high only if the destination can accept

the transaction [9].

It can consist of multiple transactions on the r channel and each transaction contains a part of the

requested data and information about whether or not the address was valid.

A write transfer starts with a transaction on the aw channel or on the w channel. The aw channel

contains information about the address, burst type, length and size of the requested write transfer.

The w channel contains the actual data and information about which bytes of the data are valid and

information about whether it is the last data transaction. After all the transactions of the aw channel

and the w channel have been finished, there will be a transaction on the b channel with information of a

successful transfer or not.

(a) Write transfer (b) Read transfer

Figure 2.5: Overview of a write and read burst transfer [9].

2.2.2. AXI4 package
To make the use of AXI4 a bit easier a VHDL package is used that combines all AXI4 signals from

the master into a single type req and all signals from the slave into a single type resp. Both the req
and the resp have as subtypes the aw, ar, w, b and r channels which contain all signals of the AXI4 bus.

From now on in this report req is used for all signals from the AXI4 master to the AXI4 slave and resp
is used for all signals from the AXI4 slave to the AXI4 master. When talking about a single channel

req.channel_name and resp.channel_name are used and for specific signals req.channel_name.signal_name
and resp.channel_name.signal_name are used. For example req.r.ready is used to access the ready signal of

the r channel and resp.r.data is used to access the data from the r channel.

2.3. Side-channels
Any unintended information that can be gathered by the way a computer algorithm, protocol or

hardware is implemented is defined as a side-channel and thus a potential threat to the security [10,

11, 12, 13, 14, 15]. Side-channels found in literature and after discussion with security experts at

Technolution’s are:

• Power: The voltage on or current through supply rails contain information about the systems and

its application [16].

• Electromagnetic: The electromagnetic radiation contains information about the system and its

application [17].

• Timing: Latency and duration of an instruction can hold information [18].
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• Visual: For example, status LEDs, UART LEDs, LEDs on the hard drive etc. can contain information

about the data that is being transferred.

• Sound: The vibration of electrical components, usage of keyboards, etc. creates sounds that

contain information [19].

• Data remanence: Data that is left even after attempts at erasing the data [20].

• Photon emission: Photon emissions from switching transistor can be related to the program

running on the chip [21].

• Thermal: The temperature can contain information about the program running on the chip [22].

There are many types of side-channels, but as stted earlier, this project is constrained to side-channels

that can be exploited through software only. The attack tree of Figure 2.6 is created to find all possible

ways an attacker can exploit the side-channels through software. It is import to note that after the attack

tree branches to an attack that requires physical access or that requires an extra sensor attached to any

of the soft-cores the research stopped, because it is assumed that the attacker has no physical access and

there are no sensors attached to any of the softcores. The only physical quantity that can be measured

by the software running on the core is elapsed time in passed clock cycles. For the attack tree, it is

also assumed that the attacker has root access to the soft-core and therefore the attacker can access any

memory address that is reachable from the soft-core.

The starting point is that an attacker wants to gather unauthorized data from another security

domain through the memory. This can be done directly by accessing the data stored in the memory or

indirectly by measuring side-channels. Direct memory access should be mitigated. The side-channels

can be measured in two ways, directly by using probes or specific hardware on the FPGA, and indirectly

by manipulating the different IPs connected to the soft-core. The probes and specific hardware are not

in the scope of this project since it is assumed that the attacker has no physical access or access to the

reconfigurable parts of the FPGA.

The indirect manipulation and measurements consist of two categories: voltage changes in the

DRAM, which cause bitflips and manipulation of the timing of an application in another security

domain due to the limited amount of resources.

2.3.1. Rowhammer attack
As shown in Section 2.1, the actual data is stored as voltage over a capacitor and needs to be refreshed

every 64 ms. However, when the wordline is being opened repetitively using the activate command

from the DRAM controller the voltage changes on the wordline influence the charge over the capacitor

of cells in adjacent rows, adding a probability of bitflips in those cells. If the adjacent rows have not been

refreshed or activated recently, the charge of the repetitively activated row leaks into the the dormant

adjacent rows and causes a bit to flip. This exploit is called rowhammering [23, 24, 25, 26, 27, 28, 29].

The first documentation about rowhammering came from Kim et al. in 2014 [25]. They found out that

almost every DRAM module (110 out of 129 of 3 different manufacturers) are sensitive to rowhammering.

It took them as little as 139k activations to cause a bit flip in an adjacent row. However, it worsened after

a similar study was done a few years later with the more modern DDR4 DRAM modules [26]. These

new studies showed that modern DDR4 DRAM modules are even more sensitive for rowhammering

than the previous generation: 300 DRAM modules were tested and bitflips where introduced after as

few as 9.6k activations.

The attacker can use rowhammering to manipulate the data stored in the DRAM that belongs to

another security domain. This manipulation can even be used to setup a covert-channel, since the

attacker could create a protocol that if the data is manipulated it transmits a 1 otherwise it transmits a 0

or vice versa. Therefore, it is crucial to mitigate this threat.

Fundamental solutions against rowhammering
Since the data is stored as voltage over a capacitor within a DRAM cell, the only way to prevent bitflips

is to refresh the charge before the voltage drops below a certain threshold. In normal usage the refresh

frequency is 64ms, which is more than sufficient to prevent bitflips. However, due to rowhammering the

voltage drops faster and might drop too much before it is refreshed. Therefore all mitigation techniques

against rowhammering in DRAM consists of either adding extra refreshes, blocking repeating memory

accesses, or detect bitflips and correcting them.
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Figure 2.6: Attack tree for DRAM chip

In modern DRAM chips an Error Correction Code (ECC) is used to detect and correct bitflips.

However, it can only correct a single bitflip, if there are multiple bitflips in the data it can not correct

them properly [27]. There are other error detection and correction algorithms but none of them are

a 100% error free and they all have a significant impact on the performance [30, 31, 32]. Therefore

preventing bitflips is preferred over correcting them.

The only way to prevent bitflips due to rowhammering is to make sure that each row is refreshed

before the voltage within a DRAM cell is dropped below a certain threshold. It is also possible to accept

that bitflips can happen within a security domain and add some empty rows between the different

security domains. This gives four methods to prevent bitflips from happening in one security domain

due to hammering in the other:

• Block frequently accessed rows until a refresh of its neighbors has been established [33].

• Targeted refreshes: Keep track of how often each row is accessed and if its more than a predeter-

mined threshold refresh its neighbors [25, 34, 35].

• Refresh one of the neighbor rows with a probability every time a row is accessed [25, 36, 37, 38, 39,

40].

• Add guard rows between each security domain, this will prevent that rowhammering in one

security domain causes bitflips in another security domain.

Tracking frequently accessed rows
Blocking frequently accessed rows and targeted refreshes both requires a table to keep track on which

rows are accessed a lot. Blocking the access of a row can cost performance bandwidth and latency wise,

since instructions of the softcore might wait on the blocked access to finish. Therefore it is preferred to

refresh the neighbor rows instead of blocking the frequently accessed row.
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Keeping track on how often each row is accessed requires area on a FPGA . For example, a DRAM

chip with 2
3 = 8 banks, 2

14 = 16384 rows and 2
10 = 1024 columns will need 16384 ∗ 8 = 131072 entries.

A bitflip can occur after 10000 accesses of a neighbor row before a refresh happened [26]. Therefore,

each counter needs to be able to count to 10000/2 = 5000. The division by 2 is required, because the

number of accesses are divided between both neighbors. Therefore, the total size needed for the table is

131072 ∗ 2 bytes = 256 kB.

Graphene [35] and TWiCe [34] reduced the total size of the table by implementing algorithms

that guarantee that the most accessed rows are kept in the table. Graphene uses significantly less

area compared to TWiCe, while it offers the same amount of protection and only has slightly more

performance overhead [35]. Graphene uses the Misra-Gries algorithm [41] to guarantee that there are

no bitflips due to more than 10000 accesses of all neighbor rows. This algorithm reduces the table size

by 7.7 times, compared to the example above.

Probability based refreshes
Another approach is to refresh neighbor rows with a certain probability after every DRAM access [25,

36, 37, 38, 39, 40]. This will reduce the amount of bitflips due to rowhammering significantly. However,

it also means that there will always be a chance that the neighboring row of the hammered row is not

being refreshed in time. Although this chance is small, it is still not sufficient for the purpose of this

research.

Guard rows
The last solution is putting guard rows between security domains. Guard rows are unused rows that

none of the security domain can access. The idea behind guard rows is that if an attacker hammers a

row in one security domain it can only cause bitflips within the same security domain or in the empty

guard rows next to the allocated addresses in the DRAM. This will prevent bitflips from happening

across security domains due to rowhammering.

However, there is a problem: In some DRAM chips the neighboring physical row might not be

the same as the neighboring address row due to a remap of the addresses of the manufacturer[25].

Therefore to successfully use guard rows against rowhammering it is required to know which row

influences which row.

2.3.2. Cache attack
The last level cache is typically shared between the different softcores and is located between the private

caches and the DRAM. However, this typical design causes various vulnerabilities. The most obvious

vulnerability is that another softcore can directly access private data from another softcore (nr. 4 in

Figure 2.6) and even if the direct access was not possible it leaves a timing side-channel open.

There are several ways the timing side-channel can be exploited. One way the timing side-channel

can be exploited is the Flush + Reload attack [15]. Flush + Reload attack use shared pages between the

victim process and the spy process. The spy can ensure that a specific memory line is evicted from the

whole cache hierarchy and then this is used by the spy to monitor the accesses to the memory line.

This attack consists of three phases. First, the monitored memory line is being flushed by using the

clflush instruction. In the second phase the spy waits to allow the victim to access the memory line. Then

in the last phase, the spy reloads the memory line, measuring the time it takes for the spy to load the

data into the cache. Since loading the data from the DRAM will take significant more time compared to

when the data is available in the cache, the spy knows whether or not the cache line has been accessed.

If the memory line is mapped to an instruction within an executable file, a probe is created that

triggers every time the linked instruction that is being executed. The attacker could even chose to probe

multiple memory lines each mapped to a different instruction. This gives the attacker information about

what instruction is being executed at what time. If the executable is depending on a secret key and the

instructions for a ‘0’ are different than for a ‘1’ then the probes created by the Flush + Reload attack can

steal the key that is being used in the executable file.

The Prime + Probe attack exploits the cache hit and miss timings without having shared memory

between the victim and the attacker [42]. Here there is no shared memory between the victim and the

attacker. The attacker fills the memory with his own data from the memory, then waits so the victim

has time to access his data and instructions, then the attacker accesses all his memory addresses again

while measuring the load time.
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Now the attacker knows that the victim has accessed the memory if the load time was slow, due to a

cache miss, or did not access the memory when the load time was fast, due to a cache hit.

The principle of Flush + Reload and Prime + Probe is similar: get information by exploiting the

cache hit and cache miss timings. There are more variations on these types of attacks, like Flush + Flush,

Flush + Evict, Evict + Time[43, 44, 45, 46], but it all uses the same principle of the cache hit/miss latency.

All cache attacks rely on a shared cache between different softcores and most of the attacks make use

of the cache attacks rely on the clflush instruction [43, 15, 11, 12]. The restriction of the clflush command

is suggested as possible countermeasure against cache attacks [15, 47]. However, Gruss et al. showed

that it is possible to execute cache attacks even without the clflush instruction available [48]. Therefore

restricting the clflush is not sufficient to secure the memory hierarchy. They also stated that preventing

cache-line sharing is not an option due to the fact that an operating system uses a lot of shared data.

However, in the case of this study each softcore runs its own operating system and therefore preventing

cache-line sharing is a possibility. Hence, it is even possible to not share any cache between the different

cores, which would make a cache attack impossible.

2.3.3. Row buffer attack
Something similar to cache attacks can be exploited in the DRAM. When an address on the DRAM

is accessed it loads the data stored on the cells of the DRAM into the row buffer, refer to Figure 2.2.

The data will stay in the row buffer until an address is requested from another row or if the DRAM

controller actively closes the row. Each bank has its own row buffer that can contain data independently

from row buffers in other banks.

If the data is already available in the row buffer, the latency of the response will be lower than if the

data is not available in the row buffer yet. This behavior can be exploited in a similar way as with the

cache attacks. Liu et al. found 24 different kinds of DRAM timing-based attacks using computation tree

logic [49]. Even though they found 24 different attack types, the root of each of the vulnerabilities is the

row buffer hit/miss latencies.

It is even possible to reverse engineer which addresses are on each row and what rows are on the

same bank using the latency differences [50]. Knowing the exact architecture of the DRAM even helps

an attacker with a rowhammer attack because when the layout of the DRAM is known, it is possible to

target specific rows during the rowhammer attack.

There are several papers describing how to exploit the row buffer hit/miss timing [51, 52, 49].

However, none of those papers came up with a mitigation technique. The only security solution came

from Pessl et al., stating that the only counter-measure to mitigate the threat is to make the duration of

corresponding DRAM operations constant [50]. Pessl et al. also states that the performance loss due

to this solution is unacceptable. However, although this last statement might be true for most of the

applications, for some specific applications the DRAM performance might still be sufficient with the

constant timing.

2.4. Conclusion
This chapter gave an overview on how a typical memory hierarchy looks like. It explained how the

architecture of DRAM consists of banks, rows and columns and that a cell consists of a capacitor and a

transistor. The data is stored as electric charge in the capacitor and the data can be loaded in to the row

buffer by activating the corresponding row.

An overview is given about the basic functionality of the AXI4 protocol. For the complete

specifications it is recommended to read the official documentation of the AXI4 protocol [53].

It is explained what side-channels and covert-channels are and how attackers can exploit them.

There are a lot of different types of DRAM attacks but there are only three relevant: Rowhammering,

cache-timing attacks and rowbuffer timing attacks.

Because the data is stored as electric charge over a capacitor, the charge needs to be refreshed every

64ms to prevent data loss. Rowhammering causes the charge in adjacent cells to leak below a threshold

causing bitflips before the periodic refresh on 64ms. To prevent this, it is possible to block the access

to the hammered row until its neighbors have been refreshed, detect the hammered row and refresh

its neighbors, on every row access refresh its neighbors with a small probability or use guard rows.

Detection of the hammered row(s) and refresh its neighbors in combination with guard rows is the

most effective against rowhammering. Although the downside is that it costs a lot of resources to keep
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track of all row activations, in this research it is most suitable because of its simplicity and effectiveness

against bitflips compared to probabilistic refreshes and blocking frequently accessed rows.

Since there is no shared operating system, data or instructions between any softcore, shared cache is

not required and therefore the cache attack can be avoided. Each individual softcore can still have its

own private cache if required.

Currently there is no defense against the row buffer timing attack. In the literature it is suggested

that the only potential solution is to make the DRAM operations a constant time, but that would cost

too much performance. For this research security is the most important feature and therefore it should

be researched what the performance loss is and if the performance is still sufficient to be used in the

security products.



3
Implementation

This chapter will describe the implementation of the memory domain protector, an hardware block

written in VHDL to secure the usage of DRAM when shared between multiple softcores. Section 3.1

describes the top level of the memory domain protector which consists of a fixed time arbiter, a row

refresher and an address mapper. The fixed time arbiter is described in Section 3.2, the row refresher is

described in Section 3.4 and the address mapper is described in Section 3.5.

For the fixed time arbiter an experiment is executed to determine the parameters for the implementa-

tion. This experiment is described in Section 3.2.2. Another experiment is done to determine which

rows needs to be tracked and refreshed for the implementation of the row refresher. This experiment is

described in Section 3.3.

3.1. Overview memory domain protector
Figure 3.1 shows the overview of the memory domain protector. The memory domain protector uses a

fixed time arbiter, row refresher and address mappers to share the DRAM in a secured manner. The row

refresher protects the DRAM from rowhammering, the fixed time arbiter mitigates the DRAM timing

attacks and the address mappers make sure each softcore can only access its own memory domain.

The amount of AXI4 slaves of the fixed time arbiter is one AXI4 slave more than the amount of

softcores using the memory domain protector due to the rowhammer protector. This adds an extra time

slot reserved for the rowhammer protector and therefore will cause extra performance loss.

Figure 3.1: Overview of the memory domain protector. Each arrow is an AXI4 bus and the left side is the slave and the right side

is the master of each individual block. The rowhammer protector monitors the AXI4 bus between the fixed time arbiter and the

DRAM controller.

12
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3.2. Fixed time arbiter
The solution to mitigate the timing side-channel of the rowbuffer is the fixed time arbiter (FTA). The

goal of the FTA is to have a predetermined bandwidth and a predetermined latency for each of the

softcores that does not contain any information about the other softcores that share the same DRAM.

The required behavior to reach this goal is described in Section 3.2.1. In order to have a predetermined

latency it is required to know the latency deviation of the DRAM. The experiment to determine the

latency deviations of the DRAM is described in Section 3.2.2.

3.2.1. Desired behavior
To have a constant bandwidth for each individual softcore it is required to set time slots in which each

softcore can access the DRAM, see Figure 3.2. After each time slot a time buffer is required to make

sure all transfers are finished before the next core has access to the DRAM. However, the time slots on

their own are insufficient to prevent any type of latency deviation. In Figure 3.3 is shown what stage of

the transfer time could be manipulated to contain information about the other cores. To prevent this,

extra time can be added to the transfer time, see Figure 3.4. The extra time should be chosen in such a

way that the total transfer time consists of a fixed latency plus the minimal transfer time required. The

fixed latency should be big enough to encompass any latency deviation from the DRAM and DRAM

controller. The time buffer, see Figure 3.2, Figure 3.3 and Figure 3.4, should be equal to bigger than the

fixed latency so the transfer is finished before switching to the next core. However, this only works

when the fixed duration is bigger or equal to the maximum duration possible.

Figure 3.2: This figure shows how each core has its own time slot to access the DRAM. During the accept transfers stage it can

accept transfers. During the time buffer stage it can not accept transfers but transfers could still be finished and during the block
transfer stage all transfers to that core are blocked.

Figure 3.3: Two transfers when there is no security on the latency yet. The first transfer starts within the accept transfers stage and

is accepted immediately. The response from the DRAM can contain information about the other cores since the response time

varies, depending on the state of the DRAM and the DRAM controller. The second transfer starts in the block transfers stage and

only get accepted after some time. This adds extra latency, but this latency does not contain any information since the time that is

added is already known before the transfer request is created. The duration of the transfer after it has been accepted can contain

information about the other cores since the response time varies, depending on the state of the DRAM and the DRAM controller.

Figure 3.4: Creating a fixed duration of the transfer that only depends on the transfer length mitigates the timing side channel.

Since all transfers are determined before the transfer has started.
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3.2.2. Timing research
The goals of this experiment are to find the latency deviation of a DRAM access and to find the time

buffer required for the fixed time arbiter. The reason to determine the latency through experimentation

is because the DRAM and DRAM controller are from the manufacturer and it is not clearly documented

what the maximum latency is.

For this experiment a simple design is created consisting of a softcore, a traffic generator, DRAM

controller, DRAM, and an Integrated Logic Analyzer (ILA), see Figure 3.5. The softcore has a direct

connection to the arbiter and the traffic generator. The arbiter connects the traffic generator and the

softcore to the DRAM controller. The DRAM controller translates the requests from the arbiter to the

interface of the DRAM chip. The ILA captures all signals between the traffic generator and the DRAM

controller. This experiment focuses on the 128 bit AXI4 bus between the traffic generator and the DRAM

controller, because every thing after this bus is shared by multiple cores in the final system.

Figure 3.5: Design used to measure all signals between the traffic generator an the DRAM controller.

Methodology
There are several types of AXI4 transfers: single read, burst read, single write, and burst write. Each

type transfer has its own latency properties and therefore needs its own measurement. On top of these

transfers it is also possible to have a burst transfer that request to access addresses over multiple rows or

banks.

To determine the latency of each type of transfer the following experiments are executed:

1. 64 single read request on the same row.

2. 64 single read request with each request on a different row.

3. 16 burst read requests of each 128 transactions each on the same row.

4. 16 burst read requests of each 256 transactions that crosses 2 different rows.

5. 64 single write requests on the same row.

6. 64 single write requests with each request on a different row.

7. 16 burst write requests of each 128 transactions each on the same row.

8. 16 burst write requests of each 256 transactions that crosses 2 different rows.

The hardware used for this experiment is an Arty a7-100t development board with a micron

MT41K128M16 DRAM chip [54][5]. It is important to note that the latencies are depending on the

DRAM and DRAM controller, therefore these results are only useful for the Arty a7-100t with a micron

MT41K128M16 DRAM chip and standard DRAM controller of Xilinx. Also, the experiment is executed

on room temperature and on a single copy of the Arty a7-100t.

Results and discussion
During each experiment the ILA is used to measure the behavior of the AXI4 bus. The latencies of each

transfer are defined by the time difference between the moment the transfer is accepted and the last

transaction of the transfer. For both read and write transactions this means the the start point is the

AXI4 handshake of the address channel. However, the end point of the transaction is the handshake

on the write response channel for a write transaction and the last read data transaction for the read

channel. The results of the measurements are shown in Table 3.1.

The total latency for transfers that consist of more than 1 data transaction should be proportional to

the amount of data transactions within the transaction. For example, a burst transfer that consists of 123

data transactions should have a latency of 122 clock cycles more than a transfer with only a single data

transaction. Therefore the effective latency is equal to the measured latency minus the amount of data

transactions. The maximum effective latency, shown in the last column of Table 3.1, is 57 clock cycles.
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Experiment nr. Min latency Max latency Number of transactions per transfer Max effective latency
1. 24 26 1 25

2. 25 32 1 31

3. 162 173 128 45

4. 286 306 256 50

5. 6 7 1 6

6. 6 8 1 7

7. 139 145 128 17

8. 286 313 256 57

Table 3.1: AXI4 latencies

Conclusion
To determine what the constant latency response of the DRAM should be, an experiment is executed and

the latency deviation is measured. To mitigate the timing side-channel the latency should be constant

and equal to or bigger than the maximum latency of the DRAM chip. For the Arty a7-100t development

board, the maximum effective latency measured is 57 clock cycles. Since there are a limited amount of

measurements the chances are high that the latency of the DRAM might be higher than 57 clock cycles

at one point in time. Therefore it is safer to take a 15% safety margin and take 65 clock cycles as fixed

constant latency of the DRAM. Since the time buffer should be equal or bigger than the fixed latency, it

is therefore set to 65 clock cycles as well.

3.2.3. Design
The overview of the design for the FTA is shown in Figure 3.6. The FTA consists of one AXI mux, one

time slot tracker, per AXI4 input bus a deterministic delay and one AXI4 channel controller per AXI4

input bus.

Time slot tracker
The counter is responsible for generating an input_sel signal that controls which AXI input bus connects

to the AXI bus to the DRAM for a certain time slot. The period of the time slot is set with two generics,

the allocated time per transfer and a time buffer. The counter will also send information about the

amount of time that has passed within the current time slot. This information will be used by the

controllers to determine whether the next AXI transfer fits within the time slot or whether it should

wait for the next time slot when it is its turn.

AXI mux
The AXI mux takes the state of each AXI4 channel controller and the input_sel from the counter to

connect the correct AXI input bus to the AXI output bus.

The AXI mux has the following inputs and outputs:

• req_vector: Input AXI request vector.

• resp_vector: Output AXI response vector.

• req: Output AXI request.

• resp: Input AXI response.

• state_vector: State information vector.

• input_sel: Input select.

• clock: Input clock.

• reset: Input reset.

The AXI mux uses the input_sel as an index to select an AXI bus from the req_vector and resp_vector
and it selects the corresponding state from the state_vector. Depending on the selected state it connects

one of the channels of the selected AXI bus to the AXI output bus. The VHDL description can be found

in Listing 3.1. The AXI mux is not clocked which means that the input and output AXI signals should

be generated and captured by clocked registers. Another potential weakness of this mux is the fact that

it does not check whether or not a transfer is finished before connecting the next input bus to the output

bus. However, this should not be a problem as long as the time buffer after the time slot is big enough.
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Figure 3.6: Overview of the design for the Fixed Time Arbiter.
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Listing 3.1: VHDL code within the AXI mux to connect the AXI output to the correct AXI input.

1

2 req.ar <= req_vector(input_sel).ar when state_vector(input_sel) = rd_accept else
3 c_axi4_128_address_req_init;
4

5 req.aw <= req_vector(input_sel).aw when state_vector(input_sel) = wr_accept else
6 c_axi4_128_address_req_init;
7

8 req.r <= req_vector(input_sel).r when state_vector(input_sel) = rd_resp else
9 c_axi4_any_resp_init;

10

11 req.w <= req_vector(input_sel).w when state_vector(input_sel) = wr_data else
12 c_axi4_128_wdata_req_init;
13

14 req.b <= req_vector(input_sel).b when state_vector(input_sel) = wr_resp or state_vector(
input_sel) = wr_data else

15 c_axi4_any_resp_init;
16

17 select_resp_vector: for inputs in 0 to g_number_of_ports -1 generate
18 resp_vector(inputs).ar <= resp.ar when input_sel = inputs and state_vector(inputs)

= rd_accept else
19 c_axi4_any_resp_init

;

20

21 resp_vector(inputs).r <= resp.r when input_sel = inputs and state_vector(inputs) =
rd_resp else

22 c_axi4_128_rdata_req_init
;

23

24 resp_vector(inputs).aw <= resp.aw when input_sel = inputs and state_vector(inputs)
= wr_accept else

25 c_axi4_any_resp_init
;

26

27 resp_vector(inputs).w <= resp.w when input_sel = inputs and state_vector(inputs) =
wr_data else

28 c_axi4_any_resp_init
;

29

30 resp_vector(inputs).b <= resp.b when input_sel = inputs and (state_vector(inputs)
= wr_resp or state_vector(inputs) = wr_data) else

31 c_axi4_wresp_req_init
;

32 end generate select_resp_vector;

AXI4 channel controller
Each input AXI bus has its own AXI4 channel controller. The goal of the AXI4 channel controller is

to guarantee the correct behavior of the AXI 4 protocol for each individual input AXI bus and to help

the AXI mux to connect the correct input to the output AXI bus. Each controller has its own unique id

number g_port_nr to identify the instance of each controller.

The FSM of each AXI4 channel controller has 7 states, see Figure 3.7. The state transition conditions

are described below:

• idle: It waits for the input_sel to select the corresponding AXI bus. If the input_sel is equal to the

g_port_nr it checks if there is any read or write request on the input AXI bus. If there are any

requests, it compares the length of the transfer to the time left in the time slot. If the thransfer fits

in the remaining time of the time slot, the state changes to rd_accept or wr_accept.
• wr_accept: In this state the controller waits for the write address transaction to happen. If aw.ready

and aw.valid are both ’1’ the state goes to wr_data otherwise it stays in wr_accept.
• wr_data: In this state the controller waits for all data to be send. If w.last, w.valid and w.ready are all

’1’ the state transitions to wr_resp, otherwise it stays in wr_data.



3.2. Fixed time arbiter 18

Figure 3.7: The seven states of the AXI4 channel controller

• wr_resp: In this state the controller waits for the response from the DRAM. When b.valid and

b.ready are both ’1’ the state becomes idle again.

• rd_accept: In this state the controller waits for the read address transaction to happen. If ar.ready
and ar.valid are both ’1’ the state goes to rd_data otherwise it stays in rd_accept.

• rd_resp: In this state the controller waits for all data to be send. If r.last, r.valid and r.ready are all ’1’

the state transitions to idle, otherwise it stays in rd_resp.

Deterministic delay
The goal of the deterministic delay is to delay the response from the r and b channels in such way that

the latency is predetermined and does not contain any information, as described in Section 3.2.1. The

deterministic delay consists of two parts: FIFOs and FIFO controllers. The inputs of the FIFOs are the b

and r channel responses form the AXI mux. Together with the b and r ready signals from the input

AXI bus, the FIFO controllers determine when the data stored in a FIFO is allowed to be send to the

softcore. Each input AXI bus has two FIFO controllers, one for the r channel and one for the b channel.

The controller consist of a counter and some control logic.

When the FIFO controller is used for a r channel it enables the counter when the ready and valid

signals of the ar channel are both ’1’ and disables the counter when the ready, valid and last signals of

the r channel are all ’1’. When the FIFO controller is used for a b channel it enables the counter when

the ready and valid signals of the aw channel are both ’1’ and disables the counter when both ready and

valid of the b channel are ’1’. The last signal is fixed to high, since the b channel does not have a last

signal.

The control logic compares a generic delay to the value of the counter. If the counter is bigger than

the delay the fifo_en is ’1’ otherwise the fifo_en is ’0’. The fifo_en signal goes to an AND gate together with

the r or b ready signal. The output of the AND gate goes into the FIFO enable port. This guarantees the

compliance with the AXI protocol and a fixed latency for every transfer.

3.2.4. Verification
To verify the design Cocotb is used to simulate the fixed time arbiter. Cocotb is a Python based simulator

for VHDL. The test cases created in Cocotb are:

1. Single transfer with burst length 1.

2. Multiple transfers with burst length 1.

3. Multiple transfers with burst length 1 when the slave is delayed.

4. Multiple transfers with burst length 128.

5. Multiple transfers with burst length 256.

This set of test are chosen because a single transfer is to check if the basic principle works and if the

delay is as expected. Multiple single transfers is to make sure that when there is not enough time left in



3.3. Rowhammer bitflip characteristics 19

the current timeslot the next transfer will be executed in the next timeslot. The test with the delayed

slave is used to simulate a memory access with a higher latency from the DRAM, the latency to the

master should be the same as in the previous test. The 128 burst transfer is used to show that if there is

not enough time left in the timeslot the transfer will be executed in the next timeslot. The last test is to

make sure that a timeslot is big enough to execute a burst transfer with the maximum length of 256

transaction is possible.

The results are that each of the transfers is only executed when the fixed time arbiter is in the window

of the selected time slot. Also when measuring the latency of each transfer is equal to the preset time

buffer plus the transfer length after the corresponding timeslot has started. This is just as described in

Section 3.2.1 and therefore the design is correct in simulation.

3.2.5. Conclusion
The fixed time arbiter gives a fixed predetermined time slot to each of the AXI4 input buses. To mitigate

the latency deviations from the DRAM it uses FIFOs to create a predetermined latency for all transfers

depending on a preset fixed latency and the burst length. This will make sure that the latency has no

hidden information about the other softcores. Due to the predetermined time slots, the bandwidth side

channel is also mitigated.

The behavior is tested with a simulation and the results are as expected.

3.3. Rowhammer bitflip characteristics
This experiment is required to determine which rows are suitable to be guard rows and which rows

should be refreshed if a individual row is hammered. These properties are required to created a solution

to protect the DRAM chip against rowhammering. A physical map of the DRAM is created that contains

information about the electromagnetic interaction between the rows on the DRAM. The result of this

experiment are specific for the individual chip on the Arty A7 100t that is used and should be done for

any chip before allocating address space of each softcore.

3.3.1. Methodology
For all rows within the DRAM the following steps are executed:

1. Initialize the DRAM so all addresses contain the data 0x55.

2. Switch off the refreshes of the DRAM.

3. Hammer a row by writing data at the maximum bandwidth of the AXI4 bus for 1 second.

4. Switch on the refreshes of the DRAM.

5. Validate all data in the DRAM and return for each row the amount of bytes that have changed.

6. Repeat step 2 to 5 for each row in the DRAM.

3.3.2. Results
The hardware used is the same as in Section 3.3. However, it uses another application. The application

hammers a single row at a time for a second. Then, it checks the full DRAM on flips and returns the

amount of flips per row and then it hammers the next row until the full DRAM is hammered. After the

test has run, the results are captured in a text file showing for each of the hammered rows, the rows it

caused bitflips to and the amount of bitflips per row. After analyzing the results the following categories

are created:

• No rows: There are no rows with bitflips after a particular row has been hammered.

• One row: There is one row with bitflips after a particular row has been hammered.

• Two rows: There are two rows with bitflips after a particular row has been hammered.

• More than two rows: More than two rows have bitflips after a particular row has been hammered.

• Single adjacent row: Only one of the adjacent rows has bitflips after a particular row has been

hammered.

• Both adjacent rows: Both adjacent rows have bitflips after a particular row has been hammered.

• Non adjacent rows: Number of non adjacent with bitflips after a particular row has been hammered.
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Each hammered row is analyzed and put into one or multiple categories depending on how many

and in which rows it caused bitflips.

Table 3.2 shows the result of the experiment. Hammering any row caused bitflips in at least one other

row. Most of the rowhammer attacks caused bitflips in at least both its adjacent rows. The bitflips that

are found in non adjacent rows are only limited to the rows shown in Table 3.3. 99% of the hammered

rows cause bitflips in both of their neighbor rows. When looked at the nonadjacent rows, 93% of the

rows cause bitflips in nonadjacent rows. However, when looked at the where the nonadjacent flips took

place, there are only 17 different rows that are sensitive for rowhammering in a nonadjacent row, see

Table 3.3. Therefore, it is better to keep those 17 rows unused.

Rows with bitflips Nr. of hammered rows that caused bitflips

No rows 0

One row 35

Two rows 9360

More than two rows 121677

Single adjacent row 512

Both adjacent rows 130560

Non adjacent rows 121990

Table 3.2: Every row in the DRAM is hammered and it is measured in which rows it caused bitflips. The rows with bitflips

describes where the bitflips are after a single row has been hammered. The Nr. of hammered rows are the amount of rows that

when hammered they caused bitflips as described in the column rows with bitflips.

Row Bank Nr. of unexpected flips

0x6C5B 1 121987

0x129A1 4 42005

0x7700 1 34010

0x1BF64 6 15157

0x4DEC 1 3886

0x3691 0 3205

0x2B8E 0 1660

0x49E5 1 653

0x111E8 4 275

0xCC96 3 309

0xC9D3 3 166

0xE3A9 3 66

0x66F7 1 87

0x76D7 1 52

0x1C089 7 29

0x8D4A 2 13

0xB535 2 2

Table 3.3: List of rows that got bitflips by hammering non of its adjacent rows.

3.3.3. Conclusion
The effects of rowhammering on a specific DRAM chip has been tested. If any row is hammered, there

is at least one row that has bitflips in it. In 99% of the cases rowhammering causes bitflips in both of

their adjacent rows. In 17 rows there were bitflips due to hammering in a nonadjacent row. With those

two observations it is concluded that those 17 rows should be unused and that guard rows between

two security domains are sufficient to prevent bitflips in one domain due to rowhammering in another

domain. However, if it is required that there are no bitflips within a single security domain, refreshing

of the adjacent rows should be implemented.
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Figure 3.8: Address mapping on a DRAM

3.4. Row refresher
The goal of the rowhammer refresher is to refresh the adjacent rows before there is a chance on a

bitflips in the adjacent rows. The implementation consists of block RAM and a controller. Two different

implementations of the controller are created. One tracks all rows on all banks and refreshes only two

the adjacent rows on one bank at the time. The second implementation only tracks the row bits of

the address and does not check on which bank the row is. When the access threshold is exceeded it

refreshes all corresponding adjacent rows on every single bank.

3.4.1. Addressing
In order to refresh the neighbors of an attacked row the amount of accesses needs to be tracked and

therefore the mapping from AXI 4 addressing to the actual DRAM location is needed. The DRAM

controller is responsible for the addressing remapping. In case of the Arty A7 development kit, 11 bits

are used to select a column, 14 bits are used to select a row and 3 bits are used to select a bank, see

Figure 3.8. The column bits are the LSB, the bank bits are the MSB and the row bits are in between.

3.4.2. Tracking accesses
The most obvious method to track the accesses of each row is to have a memory array that contains a

counter for each row on each bank. The address of each counter is determined by the bank and row

address bits. In case of the used DRAM this would mean that there are 2
17

addresses each containing

2 bytes. This would add up to 256 KiB. The Arty A7-100T has 593 KiB in block RAM so it would fit on

the FPGA.

To reduce the amount of block RAM required it is also possible to only use the row address bits to

track the row accesses. This would reduce the amount of memory required to 32 KiB. The downside of

tracking the rows only is that it is not known on which bank the rows are and therefore all rows with

the same row address need to be refreshed on every bank. In case of the used DRAM this would mean

8 extra refreshes instead of 1.

Both methods are implemented and with a generic, so it is possible to switch between the two

depending on the end user requirements.

Both implementations use block RAM and a tracker to protect against rowhammering, see Figure 3.9.

The tracker works similarly with three pipeline stages. Stage one checks the address of the read request

and send a read request to the block RAM. Stage two checks if the current row access count received

form the block RAM exceeds the predetermined threshold and writes the new value of the count back

to the block RAM. The last stage generates AXI read request if the row needs to be refreshed, see

Figure 3.10. The difference between tracking all rows on all banks compared to only tracking the row

bits is the amount of input address bits (17 vs. 14), and the amount of AXI read requests (2 vs. 16).

For the block RAM a two-port block ram is used with a read priority. Port a is used to read the access

count and port b is used to write the updated access count back. The block RAM controller from Xilinx

handles the read and write operations for a correct functionality. The advantage of having two ports is

that both can write and read at the same time so it is easier to implement.

3.4.3. Validation
For the validation a testbench for the controller is created. The signals of the Block RAM are simulated

in the testbench, the same holds for the AXI4 signals. There are two test cases created, test case one test

if the pipeline is correct, test case two tests if the access counter is reset to zero when the threshold is

reached.

The expected result of the pipeline is that after an AXI4 request (write or read) the controller send a

read request to the Block RAM on an address equal to the row number. In the next cycle when the data
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Figure 3.9: Overview of the implementation for the rowhammer refresher. It consists of 2 parts: a pipelined tracker and Block

RAM.

Figure 3.10: Overview of the pipeline within the rowhammer refresher. There are 3 stages. Stage 1 sends a read request to the

Block RAM. Stage 2 receives the data from the block RAM, checks if the threshold has been exceeded and then it increases the

counter or set the counter on zero, before writing it back to the Block RAM. The last stage generates the corresponding AXI read

requests in order to refresh the targeted rows in the DRAM.

from the Block RAM is available to the controller it increases the data by one and write the data back to

the Block RAM.

The expected results of the reset of the counter is that the data written to the Block RAM is equal to

zero and that two or sixteen AXI4 read requests are created for both of the adjacent rows of the AXI4

request from the softcore, depending on which one of the two implementations is used.

When running the simulation for both test cases the controller behaves as expected.

3.4.4. Conclusion
The row refresher is created and the end user can use a generic to choose between two different

implementations: track all rows on all banks, or track only the row bits of the addressing. The trade-off

between the two options is on area and performance. Tracking all rows on all banks uses 8 times more

Block RAM than tracking the row bits only. However, when the counter in the Block RAM reaches the

threshold it will also have eight 8 more refreshes, two refreshes on each bank.

In simulation the design behaves as expected. Increasing the counter of each row when accessed

and refreshing the correct adjacent rows. When the threshold of the counter is reached two or sixteen

refreshes are send to the DRAM, depending on which of the two implementations are used.

3.5. Address mapper
The goal of the address mapping is to allocate a fixed address space for each individual softcore

implemented in the hardware. This will prevent the connected softcore from accessing unauthorized

addresses directly. If the softcore tries to access an address that is not within the range of the allocated

address space the address mapping will respond with a decode error.

The address mapping checks if the requested address is within the allocated size of the memory. It

also remaps the incoming address to its allocated physical address in the DRAM by adding a preset

offset to the incoming address. If an incoming address is outside of the allocated size the address

mapper makes sure that no data is send of received from the DRAM. Instead it respond to the core with
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a decode error.

3.5.1. Implementation
Figure 3.1 shows how the address mapping should fit into the design. It has an AXI4 slave connected to

the AXI4 master of the softcore and an AXI4 master connecting to the slave of an arbiter that is also

connected to multiple other softcores. The other connections to the arbiter are not drawn in the figure.

Figure 3.11: Overview of the address mapping with a separate control logic for each of the 5 AXI4 channels.

The overview of the the address mapping is shown in Figure 3.11. Each AXI4 channel has its own

controller that makes sure that the AXI4 protocol is correctly followed. The allocated address offset and

address size is set through two generics offset and size. The addr_check checks if the incoming transfer is

within the allocated size and is used for both the aw channel and ar channel. It also adds the offset to

the incoming address from the softcore before sending the remapped address to the DRAM controller.

If an address is out of range of the allocated size, the addr_check waits for an error_resp_done signal before

it can accept the next transaction.

The r channel controller send data from the DRAM controller to the softcore as long as the address

is legal. If the address is illegal it sends a decode error to the softcore. Any open transactions before the

illegal address are finished first before the error message.

The w channel controller only sends data to the DRAM controller if there is a transfer in progress

with a legal address. The w channel controller gets the information on whether the address is legal or

not from the addr_check of the aw channel. If there is an illegal address the w channel controller makes

sure all pending transfers are finished and no data from the illegal transfer goes through to the arbiter.

The b channel controller sends the data from the DRAM controller to the softcore if the address is

legal, otherwise it sends a decode error to the softcore as specified in the AXI4 documentation. After

an illegal transfer is handled it sends an error_resp_done signal to the addr_check of the aw channel so it

knows the illegal address has been processed.

The address mapper only supports increased burst transfers and single transfers, because they are

the most common and cover the other transfers when checking if the requested transfer is within the

allocated range. The other types of burst transfers are fixed and wrap. Fixed burst transfers only reads

or writes data from a single address. Wrap transfers wraps around to a set address after it has accessed

the highest address in its transfer. Both the fixed and the wrap burst transfer have a lower maximum

address than an increased burst transfer. Therefore, if they are treated as a increased burst transfer they

will be rejected if they are out of the allocated address space. The only problem with relying on the

increased burst transfer check is that some of the fixed and wrap transfers are rejected even tho their

actual transfer is within the allocated address space.



3.6. Conclusion 24

3.5.2. Validation
To validate the design several test cases are created and simulated. The address mapper is set to have an

offset of 0x1000 and an size of 0x1000.

1. Read and write multiple single transfers on address 0x0 to check if the offset is applied correctly.

2. Read and write multiple single transfers on address 0x0 with a throttled ready to check if the AXI4

protocol is compliant.

3. Read and write increased 256 burst transfer with a constant ready on address 0x0 to check if the

burst transfers are AXI4 compliant and the offset is correctly.

4. Read and write increased 256 burst transfer with a throttled ready on address 0x0 to check if the

burst transfers are AXI4 compliant and the offset is correctly.

5. Read and write single transfer on address 0x5 to check if it is compliant with asynchronous

addresses.

6. Read and write single transfer on the last address 0xFF0 and the first address that is out of the

allocated range 0x1000 with a steady ready, to check if the preset size is handled correctly.

7. Read and write single transfer on address 0xFFFFF to check that it gives the correct error response

when the address is out of the allocated range.

8. Read and write 256 burst transfer transfer on address 0xF00 to check if a burst transfer that is

partially inside the allocated range and partially outside the allocated range is rejected and gives

the correct error response.

The address mapper behaves as expected when the above test cases are simulated. It checks if the

incoming address is within its address range and adds the preset offset to the address correctly. The test

prove that it can handle increased burst transfers and that the last address is handled correctly. Other

type burst transfers are not tested, since this is not fully supported in the address mapper.

3.5.3. Conclusion
The address mapping uses a size generic to check if the incoming address is within the allocated address

space and it uses an offset generic to map the incoming address to the physical address on the DRAM.

By making the data channels wait for the addresses, it guarantees that no out of bound data transfers

can leak in to the wrong address domain. This design supports only increased burst transfers and single

transfers. Other type of burst transfers can be falsely rejected by the address mapper.

The cost of this are 4 extra clock cycles before the response reaches the softcore. This hardware block

is very flexible and can therefore be used to make sure the rows that are sensitive for rowhammering,

see Section 3.3, can be left unused.

3.6. Conclusion
The latency side-channel has been mitigated. There are still latency deviations, but the deviations can

not be used to transfer information from one core to another, since the latencies depend on how long a

transfer needs to wait on its timeslot, which is predetermined and therefore contains zero information.

There is a downside on the implementation, namely if the fixed latency is not set to the maximum latency

possible, the implementation has no way to identify this. Therefore, before using this solution the

experiments in Section 3.2.2 should be done to determine the maximum latency and set the parameters

accordingly.

The bitflip characteristics of the DRAM chip is created for a specific DRAM chip. The bitflips are

mostly in the adjacent rows of the row that is being hammered. There are a few non adjacent rows that

also had bitflips due to rowhammering, see Table 3.3. The address mapper can be used to set the rows

that have bitflips when a non-adjacent row is hammered on non active.

There are two implementations described to mitigate rowhammering, one tracks all rows on all

banks, the other one only tracks the row address bits of the AXI4 address and refreshes all corresponding

adjacent rows on all banks. The second option causes some performance loss, but it uses significantly

less resources on the FPGA.

The address mapper makes sure that no softcores can access addresses outside of its domain. When

a softcore tries to access an unauthorized address the address mapper responds with a decode error.

It is up to the final user of the address mapper to set the offset and size correctly for its design. The



3.6. Conclusion 25

address mapper can be used to add guard rows against rowhammering. It can also be used to keep the

rows in Table 3.3 unused.



4
Results

This chapter describes the performance results and the amount of resources used for the complete

design as described in Section 3.1 and compares it to a design that uses a standard arbiter. Section 4.1

describes the methodology used to measure the performance and the amount of resources used on

the FPGA. Section 4.2 shows the amount of resources each of the components of the Memory Domain

Protector uses on the FPGA. The measured performance is discussed in Section 4.3 and this chapter is

finished with a conclusion in Section 4.4.

4.1. Methodology
The interfaces between the softcore and the secure arbiter and the secure arbiter and the DRAM

controller are using the AXI4 protocol. Since the performance of the AXI4 protocol depends on the

burst length of the transfer, the bandwidth is measured for all possible burst lengths. Figure 4.1 shows

the algorithm used to measure the duration for each of the transfer lengths. The traffic generator is used

to generate 256 request for all possible transfer lengths. Per transfer length the average bandwidth is

calculated.

This experiment is repeated four times: all burst writes have the same start address, all burst reads

have the same start address, all burst writes have alternating start addresses of 0x0 and 0x800 (row 0

and row 1) and the last experiment is all burst reads have alternating start addresses of 0x0 and 0x800

(row 0 and row 1).

The hardware used for the benchmark is a standard round robin based arbiter that has 2 AXI4 input

buses, with only a single input bus is generating requests. The results of the benchmark are compared

with the results of a similar design with the memory domain protector that uses the fixed time arbiter,

address mapping and rowhammer refreshes as described in Section 3.1.

To determine the resources used by the secured shared DRAM solution the Vivado synthesis report

is used. The secured shared DRAM solution is compared to a standard round robin arbiter with the

same amount of input AXI4 buses.

4.2. Synthesis
To determine the resources used on the FPGA, Vivado’s hardware reports are used. The hardware

reports can show exactly how much Slice Look-Up-Tables (LUTs), Slice registers, F7 Muxes and Block

RAM (BRAM). are used by each individual ip block. The results are shown in Table 4.1.

4.3. Performance
Figure 4.2 shows the bandwidth results of the standard round robin arbiter. All 4 experiments show a

drop in bandwidth when the burst length is bigger than 128. The reason for this drop is that the DRAM

on the Arty A7-100t has 1024 columns per row and each address contains two bytes. Therefore each

row can contain 2048 bytes. This is equal to an AXI4 transfer with a burst length of 128 and 16 bytes per

transaction. Therefore burst lengths bigger than 128 are accessing at least two rows on the DRAM and

26
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Figure 4.1: Flowchart of methodology of the bandwidth measurements.

Slice LUTs Slice Regs F7 Muxes Slices BRAM
Available resources 63400 126800 31700 15850 135 (4860 Kbits)

Round Robin arbiter 105 49 0 52 0
Rowhammer protection 78 88 0 44 6.5 (234 Kbits)

fixed time arbiter 1200 569 4 551 6 (216 Kbits)

address map 586 1195 0 468 0

Total 1864 1852 4 1063 12.5 (450 Kbits)

Table 4.1: FPGA resources after synthesis. The available resources are the available resources on the Arty A7-100t. The Round

Robin arbiter is the benchmark for the resources used. The total is the total of the rowhammer protecion, fixed time arbiter and

the address map.

the bandwidth drop is due to the load time of the row into the rowbuffer as explained in Section 2.3.3.

The maximum bandwidth is 1184 Mb/s for read transfers with burst length 256.

Figure 4.3 depicts the performance of the secure shared DRAM. The first thing that stands out is

the sawtooth pattern. This is due to the use of fixed time slots in the fixed time arbiter. The length of

each time slot is chosen in such way that a 256 burst transfer fits exactly in a single time slot. However,

burst transfers with smaller burst lengths can fit multiple times within a time slot and therefore it cause

jumps in the bandwidth when the burst length exceeds the threshold that fits within a single time slot.

When comparing the bandwidth with the standard round robin arbiter the performance is roughly 4

times worse. This is due to the fact that the secured arbiter uses fixed time slots for each AXI4 input bus

for scheduling the DRAM accesses and therefore one core cannot use the time slot of another core even

tho the other time slot is idle. On top of this the secured arbiter also has an extra time slot inside for the

rowhammer protection. The last reason why the performance is 4 times worse than the standard arbiter

is due to the fact that there is a fixed transfer time equal to the worst case scenario for each DRAM access

and no new transfer can start until the old transfer is finished.

However, the performance gap will be smaller when multiple cores are accessing the DRAM at the

same time, since the secured arbiter has a constant bandwidth no matter what the other cores do and

the standard arbiter divides the maximum bandwidth over each core.

4.4. Conclusion
In this chapter the resources and performance of the memory domain protector are compared to a

standard round robin arbiter. The amount of resources it takes to secure the DRAM is a lot and in most
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(a) Increasing write transfers with the same starting address for each

transfer.

(b) Increasing write transfers with alternately address 0x0 and address

0x800 as starting address.

(c) Increasing read transfers with the same starting address for each

transfer.

(d) Increasing read transfers with alternately address 0x0 and address

0x800 as starting address.

Figure 4.2: Bandwidth for the standard round robin arbiter. The x-axis shows the burst transfer length and no the y-axis shows

the bandwidth.

user cases not worth the tradeoff. However, for high security products it is a must and therefore it is

justified. The maximum bandwidth is also significantly worse compared to the round robin arbiter. But

again it is application dependent whether or not it is sufficient.

All in all if it is required for the product to have shared DRAM between multiple softcores the extra

area and the performance loss is the cost that needs to be paid.
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(a) Increasing write transfers with the same starting address for each

transfer.

(b) Increasing write transfers with alternately address 0x0 and address

0x800 as starting address.

(c) Increasing read transfers with the same starting address for each

transfer.

(d) Increasing read transfers with alternately address 0x0 and address

0x800 as starting address.

Figure 4.3: Bandwidth for the secure shared DRAM. The x-axis shows the burst transfer length and no the y-axis shows the

bandwidth.
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Conclusion

5.1. Summary
Security products in computer networks depend on domain separation. In order to create the domain

separation multiple softcores are used within a product. The softcores scale well with the amount of

resources available on an FPGA, but due to limited amount of IO pins a single DRAM is shared between

the softcores. This thesis presented the memory domain separator in order to share a single DRAM

without having any data leakage from one domain to another domain.

In Chapter 2 the necessary background knowledge about the memory hierarchy, DRAM and the

AXI4 bus is explained. It also gave an overview of the currently known security vulnerabilities. The

three main vulnerabilities for sharing DRAM are: direct access to another domain, timing deviations

and rowhammering. The mitigation for direct access to another domain is trivial.

There exists several solutions that mitigate rowhammering. Those solutions rely on keeping track of

the memory accesses and have targeted refreshes of the adjacent rows that are accessed more than a

certain threshold. The other solution is probabilistically refreshing one of the adjacent rows every time

the memory is accessed. Unfortunately, rowhammer can also cause bitflips in non-adjacent rows due to

production faults or remapping by the producer and therefore more research was required to give an

overview of which rows get influenced by other non adjacent rows.

There has not been a lot of research on latency deviations of DRAM accesses. There is only one

solution named in the literature about mitigation of the latency deviations of DRAM, namely the

implementation of a fixed latency. However, this was not implemented by anyone since the performance

penalty is too high for them.

Chapter 3 gives an overview of the memory domain protector. In Section 3.2 it is described how the

latency deviation is mitigated. There are still latency deviations, but the deviations do not contain any

information about the other softcores, or can it be influenced by other softcores. Therefore, those latency

deviations do not contain any information that could be used to setup a covert-channel. There is a

downside on the implementation, namely if the fixed latency is not set to the maximum latency possible,

the implementation has no way to identify this. Therefore before using this solution the experiments in

Section 3.2.2 should be done to determine the maximum latency and set the parameters accordingly.

Section 3.3 explains the bitflip characteristics of the DRAM chip that is being used when it is under a

rowhammer attack. The bitflips are mostly in the adjacent rows of the row that is being hammered.

There are a few non adjacent rows that also had bitflips due to rowhammering, see Table 3.3.

Section 3.4 explains how the row refresher works to mitigate rowhammering. There are two

implementations described, one tracks all rows on all banks, the other one only tracks the row address

bits of the AXI4 address and refreshes all corresponding adjacent rows on all banks. The second option

causes some performance loss, but it uses significantly less resources on the FPGA.

The address mapper is described in Section 3.5. It makes sure that no softcores can access addresses

outside of its domain. When a softcore tries to access an unauthorized address the address mapper

respond with a decode error. It is up to the final user of the address mapper to set the offset and size

correctly for its design. The address mapper can be used to add guard rows against rowhammering. It

can also be used to keep the rows in Table 3.3 unused.

30
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In Chapter 4, the resources and performance of the memory domain protector are compared to a

standard round robin arbiter. The amount of resources it takes to secure the DRAM is a lot and in most

user cases not worth the trade-off. However, for high security products it is a must and therefore it is

justified. The maximum bandwidth is also significantly worse compared to the round robin arbiter.

Whether or not there is sufficient performance left depends on the application.

All in all if it is required for the product to have shared DRAM between multiple softcores the extra

area and the performance loss is the cost that needs to be paid.

5.2. Main contributions
In this section the research questions that were introduced in Section 1.1 will be answered, after which

the main contribution are listed.

The main research question was as follows:

• How can a single DRAM chip be shared between multiple soft-cores running in different security

domains without leaking information from one soft-core to another soft-core?

The answer to this question is found in Chapter 2 and Chapter 3. To share a single DRAM between

multiple soft-cores an arbiter is needed to connect several AXI4 masters to a single AXI4 slave. However,

using a standard round robin arbiter will introduce security vulnerabilities in the form of bandwidth

and latency deviations that can be exploited to create covert-channels. Also the DRAM itself has timing

deviation that can be used to create a covert channel. Therefore to prevent any form of data leakage

the arbiter should make sure the DRAM access has a constant latency and each soft-core gets its own

allocated time slot so so the bandwidth is also fixed.

On top of that the address accesses need to be tracked in order to add extra refreshes against

rowhammering.

• How to prevent direct unauthorized data access on a shared DRAM?

The answer is to add an address mapper that also checks whether or not the requested address is within

the allocated address space of the soft-core. If the requested address is out of the allocated address

space the address mapper returns a decode error.

• What side-channels are introduced that can be exploited through software when sharing a DRAM

chip between multiple soft-cores?

There are two major side-channels found: latency deviations introduced by the rowbuffer and

rowhammering.

• How can the DRAM side-channels be mitigated?

To mitigate the latency deviation side-channel it is required to add a deterministic delay after the

response of the DRAM controller. This will make sure that the latency will not contain any information

and therefore cannot be used to leak data from one soft-core to another.

To mitigate rowhammering extra refreshes need to be added to prevent bitflips in the adjacent rows

of the frequently accessed row. To reach this extra hardware needs to be added to track how often

each row is accessed and when a row is accessed more than the preset threshold it should refresh the

adjacent rows. It is also possible that there are bitflips in nonadjacent rows due to faults introduced by

the making of the chip. Often there are only a limited amount of nonadjacent rows that could have

bitflips due to rowhammering and therefore it is possible to not use those rows without losing tons of

memory. The address mapper could be used for this purpose.

• What are the consequences of the implemented side-channel countermeasures on the performance

and the amount of resources required?

The consequences of the implemented side-channel countermeasures are significant. The maximum

bandwidth per soft-core soft-core is around 280 Mb/s per when two soft-cores are used on the arty

a7-100t development board. The benchmark had a maximum bandwidth of 1184 Mb/s. However, it

is important to note that in both cases only single soft-core is accessing the DRAM. When multiple
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soft-cores are accessing the DRAM, the maximum bandwidth stays the same when the counter measures

are used, on the other hand the maximum bandwidth of the benchmark design will be divided equally

between the soft-cores. This means that when 2 softcores are used and both require the maximum

bandwidth possible the performance are a lot closer to each other: 280 Mb/s for the design with the

countermeasures and 592 Mb/s for the design without the countermeasures.

The amount of extra resources required for the implementation of the countermeasures is significant

when comparing it to a standard round robin arbiter. However, when looking at the total available re-

sources on the arty a7-100t it only uses 10% of its block RAM and only a few percent of all other resources.

The major contribution of this work consists of the following:

• The design and implementation of the fixed time arbiter.

• The research on the performance loss of having a fixed latency and bandwidth from the DRAM.

• Designing and implementing hardware to mitigate rowhammering based on only the row address

bits.

• Designing and implementing a test to determine the influence of rowhammering on a specific

DRAM chip.

5.3. Future work
The development of the memory domain protector has proven to secure the shared DRAM against

rowbuffer latency attacks and rowhammering. However, there is room for improvement. The most

interesting improvements are as follows:

• Currently there is no fail-safe mechanism for the fixed time arbiter. If an event happens that the

latency from the DRAM is bigger than the measured maximum latency then there is no way to

detect this event and correct for it. Therefore, a useful feature would be to keep track of the latency

from the DRAM and adapt the deterministic delay of the fixed time arbiter to the new maximum

delay. This will also help to initialize the fixed time arbiter to delay not more than the maximum

delay possible.

• Currently the addresses needs to be allocated manually withing the VHDL code of the memory

mapper for each individual soft-core. This requires a lot of understanding of the code and makes

debugging of the address allocations hard. In the future it would be a good idea to create a file

that contains all address allocations that can be an input of the memory domain protector to

automatically generate the correct memory map for all soft-cores.

• The design of the address mapper currently supports only burst transfers that uses increased

burst, meaning that all data transactions within the transfer have incremental addresses. The

wrap and fixed burst transfer might get blocked when their base address is too close to the edge of

the allocated address space. Therefore, full support for those two types of transfers should be

implemented in the future.

• The most important work that needs to be done is to create better and safer DRAM chips that do

not have latency deviations when accessing them and are not sensitive for rowhammering.
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