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Abstract

LoRa is being widely adopted by industrial communities for its long range,
robustness and low power wireless communication capabilities. In fact LoRa
is gaining more popularity even amongst the common people as it is an af-
fordable solution and operates in the unlicensed radio spectrum. However,
LoRa provides a widely heterogeneous coverage; it can reach hundreds of
meters or up to tens of kilometers, depending on the surrounding environ-
ment. Determining the coverage of LoRa stations is key to provide a good
quality of service. On one hand, the traditional method of expensive meas-
urement campaigns can be employed to estimate LoRa’s coverage; but this
is impractical due to the large geographical areas involved. On the other
hand, popular channel models can be adopted; but many of them are yet
to be explored for LoRa or rely entirely on the user predefining the type of
environment to estimate coverage. Neither of those approach are suitable for
thousands of non-expert citizens and organizations around the world looking
forward to understanding the coverage of their LoRa stations.

The aim of the thesis is to automatically estimate the coverage of LoRa,
before the deployment of the gateway and without relying on on-site meas-
urements or the user’s perception of the environment. Moreover, the es-
timation must be carried out in a simple, low cost and low effort approach.
Considering that the surrounding environment determines in a fundamental
manner, the coverage of wireless technologies including LoRa, we use read-
ily available remote sensing information coming from satellites to estimate
the characteristics of an area. In this manner, we free up the user from
providing any type of data. Based on this remote sensing approach, the
thesis provides two main contributions: First we analyze a group of para-
metric models (ITU-R 1812 and Okumura Hata model) and determine that
the Okumura Hata model is better suited for LoRa. Second we improve
the performance of using the basic Okumura Hata model by proposing an
automated approach that explores remotely sensed height models and land
cover maps to automatically configure channel model parameters.

The performance is evaluated based on a relative comparison due to some
unknown transmitter setting parameters and assess which algorithm accur-
ately tracks the changes in the real path loss. A validation using a relative
comparison approach on 18000+ samples of real LoRa data shows that the
modified algorithm gives an improved performance compared to the novel
approach in path loss prediction and the ITU model. The modified al-
gorithm could improve the coverage up to a factor of 5 compared to the
novel approach in free space ranges. Moreover, in an urban built-up city the
modified algorithm could improve the coverage by up to 1.5 km compared
to the novel approach.
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Chapter 1

Introduction

The Internet of Things (IoT) has created an opportunity for businesses to
become more efficient and productive and with global warming on the rise
[18], IoT could play a prominent role in reducing greenhouse emissions and
combating climate change [19]. According to IoT analytics, the leading
provider of market insights for the Internet of Things, the number of active
IoT connections will rise from 7 billion in 2018 to 22 billion in 2025 globally.
The key enabler for this growth is attributed to the Low Power Wide Area
Networks (LPWAN) technology [26]. LPWAN represents a set of low-power
wireless technologies that are designed to send small data packets a few times
an hour over long distances. LPWAN allows the connectivity of billions of
devices placed far apart using low-cost sensors that promote long-lasting
battery life with minimal human intervention. There are several competing
LPWAN technologies. Some of the leading technologies being SigFox, LoRa
and NB-IoT [48].

1.1 Motivation

LoRa has been gaining popularity world-wide [16] and is a widely adopted
technology for large-scale IoT deployments [51] [53]. Semtech has gathered
over 600 known use cases of LoRa in different end-markets [22]. LoRa based
smart agriculture has shown to provide 50% reduction in water consumption
for commercial farms [30]. LoRa enabled smart water sensors has proven
to reduce 20% wastewater and approximately 22% water bill savings [29].
Because LoRa is affordable and operates in the unlicensed radio spectrum,
it is gaining more popularity even amongst common people. Now anyone
can buy and set up a LoRa gateway, run their own applications and use the
frequencies without having to shed millions of dollar for transmission rights.

Several use cases rely on having good LoRa coverage over huge areas. For
example, the zTrack LoRa GPS tracker developed by ZANE systems Kft
offers fleet tracking solutions for smarter management, tracking mainten-
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ance issues and real-time locations [33]. SODAQ’s solar-powered smart ear
tags help keep track of cattle over huge farms for early detection of sick
animals and to reduce cattle thefts [17]. LoRa claims to connect devices
that are 30 miles apart in rural areas and it can penetrate through dense
urban areas and deep indoor environments [32]. But considering the dy-
namic and unpredictable nature of the environment, estimating coverage is
never easy. Several factors affect the quality of a wireless communication
link. Attenuation due to the atmosphere, physical objects in the surround-
ing, terrain, hardware settings, antenna gain pattern, external interference,
indoor/outdoor services, etc. play an important role in determining the
performance of the wireless link.

There is plenty of preliminary work done showing the high variability of
LoRa’s range. The authors in [52] covered paths of more than 40 km in the
Darkar Peninsula to evaluate the coverage of LoRa. The paper concluded
that their gateway could reach a maximum of 10 km only. A different study
[40] observed that LoRa worked effectively in urban areas of Raleigh, North
Carolina up to approximately 3 km, whereas the authors in [38] claimed that
LoRa reached 2.6 km in rural areas and 100 m in a built-up environment.
Another study shows that LoRa communication varied between 15-30 km
with a node placed on top of the car in urban areas and on a boat in open
waters [50]. In Hyde Park in London, LoRa measurements could reach 450
m in built-up areas [45] while a maximum distance of 90 m was achieved in
a mountain forest with dense vegetation [43]. The various studies show the
wide variations of LoRa ranges from about 100 m reaching up to 30 km in
different environments.

To understand the range behavior of LoRa, the authors in [41] makes a
good comparison of LoRa with WiFi. LoRa can achieve a high receiver sens-
itivity of -140 dBm. With the maximum transmit power in Europe being
+14 dBm, this would translate to a large 154 dB link budget. WiFi can
achieve a receiver sensitivity of -90 dBm. This difference in the sensitiv-
ity sheds light on LoRa’s capability of decoding signals 105 times weaker
than WiFi, significantly increasing the range. Considering the maximum
transmit power allowed for WiFi in Europe (+20 dBm), the resulting link
budget is 110 dB. On applying the theoretical free-space path loss model to
LoRa (868Mhz) and WiFi (2.4Ghz), their link budgets map to upper-bound
distances of 3 km and 1400 km respectively. But in reality, the range is
limited to approximately 90 m for WiFi and >= 30 km for LoRa in open
real environments. The extra 44 dB link budget can stretch the maximum
distances of LoRa by a large degree in open scenarios. But the presence of
just four brick walls along the propagation path could render this extra link
budget completely pointless. Each wall could attenuate a radio signal by
10 dB, causing the LoRa signal disappear within just a 100 m, making it
no different from WiFi. The fact remains that similar to any other wireless
communication technology, LoRa too greatly depends on its surrounding
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environment.

(a) Short range low power technology [41]

(b) Long range low power technology[41]

Figure 1.1: Link reliability (PRR) vs. distance

Figure 1.1 illustrates the link reliability as the variation of packet recep-
tion rate (PRR) with distance. As shown in Figure 1.1a short-range, low
power communication technologies like Bluetooth, WiFi, cellular, etc., have
three clear communication regions based on the link reliability [41]. At close
distances from the transmitter, the link reliability is 1 (connected region).
Considering that the connected region is just a few meters away, the prob-
ability of having a similar type of environment in every direction is high.
Moving away from this region, the probability of receiving a packet begins
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to vary (transitional region). Further away, the link reliability tends to 0
and reaches complete disconnection from the network. On the contrary,
compared with a long-range technology like LoRa, a long transitional re-
gion is noticeable as shown in Figure 1.1b. Within only 3-4 km from the
transmitter, the link reliability begins to vary. On a kilometer-scale, there
exists no noticeable connected region, as the probability of a LoRa signal
encompassing segments of different environment types is high.

Smart IoT applications that could make businesses more efficient and im-
prove everyday lives would be left futile if the coverage provided by the LoRa
network is unknown or insufficient. Drive testing is the most common tool
used by telecommunication companies to measure and analyze the coverage,
capacity, and quality of service of short-range technologies. Such expensive
on-site measurement campaigns would only increase the complexity, time
and requirement of manpower for the common user. There are companies
that provide simulation software which use popular channel models to pre-
dict path loss for radio frequencies [13],[14],[20],[27]. These models are used
for network planning and deployment and to ensure reliable service areas
with minimal infrastructure. But these software tools come with a price tag
and may not be affordable to common people.

1.2 Objective

The focus of this research is to completely automate the process of cover-
age prediction; even before investing in the deployment of a LoRa gateway
and without depending on expensive on-site measurement campaigns. The
goal is to be able to model the quality of a LoRa link in a simple, low cost
and low effort approach. To be able to do this, local and specific features
that describe the propagation environment can be obtained by leveraging
existing free online sources of information. The thesis also focuses on ana-
lyzing existing mathematical channel models that can effectively utilize this
information and make better predictions of the path-loss for LoRa. The key
idea is to provide a tool that focuses on serving the non-technical community
with a hassle-free coverage estimation.

1.3 Main contribution

The key contributions of this thesis are:

• Exploration of the ITU-R 1812 model which comes from a class of
channel models (semi-deterministic models) that are expensive in terms
of the complexity, computational effort and the need of key determin-
istic information about the propagation scenario. These models have
been largely left unexplored for LoRa and this thesis will look into the
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effectiveness of one such model.

• Taking inspiration from a novel automated approach [41] that uses
remote sensing combined with a simpler channel model based on em-
pirical measurements (Okumura Hata model), this thesis develops a
modified algorithm that gives an improvement in predicting path loss
for LoRa.

1.4 Organization

This thesis will begin with the background and related work which will be
split into two chapters. Chapter 2 will delve into a brief overview of LoRa as
well as channel model classifications. This chapter will also delve into some
prior work for LoRa’s coverage estimation. Chapter 3 will focus on giving
background information on the basics of remote sensing and the related
work using remotely sensed data. Chapter 4 will describe the system and
experimental setup used in the thesis. Chapter 5 will look into evaluating
the ITU-R 1812 model belonging to one class of channel models that is more
rich and complex in terms of the input and computational effort required
for path loss estimation. Chapter 6 will then delve into the assessment of
the state-of-the-art approach using a simpler channel model and provides a
modified approach to improve the path loss estimation algorithm. Chapter
7 will provide conclusions and possible future work related to the thesis.
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Chapter 2

Background and Related
work: Channel models

This chapter aims to give background information about some topics covered
in the thesis and discuss prior research work carried out to understand the
coverage of LoRa. Section 2.1 will give an overview of LoRa wireless com-
munication technology, Section 2.2 will highlight the channel model classi-
fications. Sections 2.3 will discuss some prior work on estimating LoRa’s
coverage.

2.1 LoRa: An Overview

LoRa (an acronym for Long Range) is a radio modulation scheme acquired
by Semtech in 2012 [21]. It is a physical layer implementation derived from
the chirp spread spectrum (CSS) modulation. This modulation technique
has been used for many years to provide long-range and robust commu-
nication in military and space applications, but LoRa is it’s first low-cost
commercial implementation [21]. Unlike FSK (Frequency Shift Keying)
modulation, where the carrier signal jumps between two discrete frequen-
cies, LoRa goes further by sweeping between the two frequencies (chirps)
to encode digital information. These up-chirps/ down-chirps are linearly in-
creasing/decreasing frequencies over the entire bandwidth at a fixed rate as
shown in Figure 2.1. This added complexity allows LoRa to be more robust
in harsh RF environments and more resistant to interference, multipath,
and Doppler effects [24].

The robust modulation scheme grants LoRa a large link budget and hence
it’s long-range capability. A link budget accounts for all the losses and gains
of the transmitted signal due to the channel medium, antenna pattern, feed
line, etc. as shown in Equation 2.2. It defines the quality of the radio commu-
nication channel. The link budget is a metric commonly used for coverage
evaluation. It is characterized by the receiver sensitivity and transmitter
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Figure 2.1: Illustration of chirps in CSS modulation [25]

power.

LinkBudget = TransmitPower −ReceiverSensitivity (2.1)

If the path loss derived in Equation 2.2 is within the available link budget
for the communication to occur, the signal can be decoded, else the packet
is lost.

Prx − Ptx = Gtx +Grx − Ltx − Lp − Lrx (2.2)

Where:
Ptx, Prx = Transmit and received signal power respectively (dBm)
Gtx, Grx = Transmitter and receiver antenna gain respectively (dBi)
Ltx, Lrx = Feedline and associated losses (dB)
Lp = Propagation loss in the channel medium (dB)

1. Receiver sensitivity
Receiver sensitivity expresses the minimum power level needed for the
receiver to decode the signal. Two major parameters that influence the
receiver sensitivity in LoRa are the Spreading factor (SF) and Band-
width (BW) as shown in Equation 2.3 [23]. The combination of LoRa
settings (SF, BW) can effect the range, data rate and time-on-air dif-
ferently.

RSmin = −174 + 10 ∗ log10(BW ) +NF + SNRmin (2.3)

Where:
RS : Receiver sensitivity (dBm)
BW : Receiver Bandwidth in Hertz (Hz)
NF : Noise Figure (dB)
SNR : Signal to Noise Ratio required by the modulation scheme
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NF is fixed for a particular hardware implementation, e.g. Lora trans-
ceiver chips SX1272 and SX1276, typically use a value of 6 dB [23].

• Spreading factor :
The Spreading factor (SF) describes the rate of change of fre-
quencies in a chirp (or sweep rate).The SF is chosen by the user
based on the trade-off between the range and data-rate require-
ments. In Europe, six different sweep rates or spreading factors
are utilized: SF 7 - SF12 as shown in Figure 2.2. The faster the
sweep rate (SF 7), the more data can be transmitted (time on
air decreases), but decoding the signal becomes harder and the
range decreases.

Figure 2.2: Illustration of sweep rates/ SF for a fixed bandwidth [46]

Each SF corresponds to a specific SNR limit, below which the
receiver will be unable to decode the signal effectively. SNR is the
ratio of the received signal power over the noise power level. For
example, for a bandwidth of 125 kHz, an SF of 12 will correspond
to SNR limit of -20dB, while an SF of 7 will correspond to SNR
limit of -7.5dB. The higher the SF, the lower the SNR required
for demodulation.

• Bandwidth
Bandwidth refers to the set of frequencies available for a chirp
pulse. LoRa is allowed to operate on three different bandwidths:
125 kHz, 250 kHz and 500 kHz [25]. A higher bandwidth in-
creases the data rate, hence reducing the time on-air. On the
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other hand, a higher bandwidth lowers decoder sensitivity due to
the integration of additional channel noise.

2. Transmission Power
Transmission power is usually expressed in dBm. For LoRa transceiv-
ers, the transmitter power can vary between -4 dBm to +20 dBm [37].
A higher transmission power results in a longer range but decreases
battery life.

LoRaWAN defines the Media access control (MAC) layer built on top of
LoRa which defines the communication protocol and the network architec-
ture. The network architecture is deployed in a simple star of star topology.
An end node can communicate with one or more gateways that in turn
communicate with a centralized network server in a bi-directional manner.

Moreover, LoRa exploits the unlicensed sub-gigahertz ISM (Industrial,
Scientific, and Medical) band. Due to regulatory requirements, the spe-
cific ways in which that band is used depends on the region of operation.
In Europe, LoRa works on the 868MHz frequency band with a maximum
transmit power of +14 dBm.

2.2 Channel model classifications

To account for the effects on radio wave propagation considering the partic-
ular properties of the surrounding environment, radio propagation models
are widely used. Modeling and simulation of radio wave propagation have
been playing a critical role in coverage analysis and network planning for
wireless communication systems. Channel models are classified mainly into
three forms: Empirical, Semi-deterministic and Deterministic models. These
classes vary based on their complexity, accuracy and computational time.

Empirical models are mathematical formulations derived from extensive
field measurements in a specific environment and using statistical analysis.
some examples include Okumura Hata model, COST-231 Hata model, Eric-
sson 9999 model etc. These models are simplistic and easy to implement as
they rely on a few simple input parameters. Since they are based on real
measurements, they account for every propagation phenomenon that can
affect the signal strength. This class of channel models will be dealt with in
the thesis.

On the other hand, deterministic channel models are more expensive in
terms of their computational demands, time and complexity but are sup-
posed to be highly accurate. They use laws governing electromagnetic wave
theory and predict the signal power at a particular location. They are
highly site-specific and rely on 3D maps and building layer information for
an accurate geometrical description of the environment. For instance, these
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include models based on ray tracing. The main drawback of these models is
that such detailed information is difficult to obtain in practice. Therefore,
deterministic models will not be dealt with in the thesis.

On the contrary, semi-deterministic channel models lie in between the
properties of empirical and deterministic models. They are a combination
of empirical models with few key deterministic aspects describing the envir-
onment. This class of channel models will be looked into in the thesis.

2.3 Prior Work

2.3.1 Dependency on Manual measurements

A large part of the research conducted to investigate LoRa’s performance in
a region has involved manually deploying LoRa nodes over large areas or us-
ing drive-test measurements to measure signal strength [52],[40],[50],[43] as
discussed in Section 1.1. Moreover, some researchers [55],[49],[44],[39], [50]
utilize the RF measurements for tuning channel models to better repres-
ent path-loss. One such commonly used model is the log-normal shadowing
model as shown in Equation 2.4 and is dependent on empirical data. This
model assumes that the path-loss varies exponentially with distance and is
commonly used to model loss in built-up urban areas [38]. It relies on curve
fitting or regression over empirical data to obtain the radio propagation
parameters of the model.

PL(d) = 10 ∗ n ∗ log10(d/d0) + PL0 +Xσ (2.4)

Where:
n : Path-loss exponent
d : Link distance
PL(d) : Path-loss at distance d (dB)
PL0 : Path-loss at reference distance d0 (dB)
Xσ : Loss due to shadow fading with zero-mean Gaussian distribution and
standard deviation σ.

The first limitation of this technique is the dependency on on-site meas-
urements to obtain channel model parameters. Secondly, the model will
provide accurate results solely for the region for which it was trained. The
process would have to be repeated with new training data to get appropriate
model coefficients for other regions. This is clearly against the objective of
the thesis.

2.3.2 Dependency on pre-defined user input

There are certain empirical channel models like Okumura Hata model, COST-
231 Hata model, Ericsson 9999 model, etc., that are mainly used for pre-
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dicting path-loss for cellular transmissions. The key characteristic of these
models is that they rely on an input parameter that defines the type of envir-
onment along the path. These models provide a set of equations that can be
used based on the type of environment. For example, a user in the crowded
street like Tokyo, will only need to select the ”urban” type of environment
and provide some simple input parameters for the models. The Okumura
Hata (OH) model has also been used to evaluate LoRa’s coverage, but this
work is very limited [36], [47].

The OH empirical model is one of the most popular radio propagation
models used for path-loss predictions in the frequency range of 150 MHz
- 1500 MHz. The model is suitable for link distances from 1-10 km, mo-
bile station antenna heights ranging from 1-10 m and base station antenna
height ranging from 30-200 m. The OH model is known for its accurate and
simplistic nature. This model is an extension of its predecessor: the Oku-
mura model, which is based on extensive large-scale measurements collected
in the built-up areas of Tokyo, Japan. The Okumura model provided a set
of graphs for obtaining median attenuation (dB) relative to free-space and
some correction factors to account for antenna heights and terrain type.

The Okumura model mainly used for signal prediction in urban areas
served as the base for the OH model. To be able to conveniently apply the
Okumura model for computer implementations, these set of curves were fit
into mathematical formulations. The OH model was further developed to
add the effects of diffraction, reflection, and scattering from built-up struc-
tures in urban areas. Additionally, correction factors are applied to the
model for use in suburban and rural areas. The OH model depends on a
few simple parameters such as frequency, link distance, transmitter and re-
ceiver antenna heights and the type of environment. The equations below
highlight the four OH variants based on the type of environment.

Under the urban environment, the following two OH variants can exist,

LU = 69.55 + 26.16 log10 f − 13.82 log10 hB − CH + [44.9 − 6.55 log10 hB] log10 d

(2.5)
For small or medium-sized cities,

CH = 0.8 + ( 1.1 log10 f − 0.7 ) hM − 1.56 log10 f (2.6)

and for large cities,

CH =

{
8.29 ( log10(1.54hM ))2 − 1.1 , if 150 ≤ f ≤ 200

3.2 (log10(11.75hM ))2 − 4.97 , if 200 < f ≤ 1500
(2.7)

Under the sub-urban environment,

LSU = LU − 2
(

log10
f

28

)2 − 5.4 (2.8)
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Under the free/open/rural environment,

LO = LU − 4.78
(

log10 f
)2

+ 18.33
(

log10 f
)
− 40.94 (2.9)

where:
LU = Path loss in urban areas (dB)
LSU = Path loss in suburban areas (dB)
LO = Path loss in open areas (dB)
hB = Height of base station antenna (meter)
hM = Height of mobile station antenna (meter)
f = Frequency of transmission (MHz)
CH = Antenna height correction factor
d = Distance between the base and mobile stations (kilometer)

Using a model whose output is based on a user’s predefined input can be
disadvantageous for long-range technologies. When applied for a point-to-
point path loss analysis, these models rely on the input for defining the type
of environment along the path. This dependency on the user’s perspective
could simply lead to discrepancies in classifying the environment. In simple
terms, it would require the user to physically make the effort to observe the
propagation path and get a feel of how densely built-up the target area is.
This is still acceptable for short-range technologies, considering the across
a small area the type of surrounding environment can be considered to be
the same as the type of environment can dramatically change over distances
that are kilometer long. But this is impractical for long-range technologies
like LoRa.

Moreover, using these models for point-to-area coverage analysis and de-
fining one type of environment for a large region would wrongly estimate
path-losses. The selection of one environment type would imply that paths
at every point from the gateway will have a similar degree of urbanization
over the entire area. Again, this could be valid for short ranges, but when
covering huge areas, the probability of spanning different types of environ-
ment is high.

This goes against our objective which is to have a coverage prediction
that is automated and can analyze the path on its own. Recently a research
paper [41] published by TU Delft in collaboration with the University of
Trento, provided a methodology to eliminate the need for predefined user
input to classify the environment. The details of the paper will be discussed
in Chapter 3 and the work of this thesis builds upon that study.

2.3.3 Unexplored Semi-deterministic models for LoRa

To the best of my knowledge, there has been no research work published that
analyzes the effectiveness of semi-deterministic models like the ITU models
for LoRa’s coverage prediction. This is important to analyze as these models
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consider more phenomena in detail compared to OH model. Chapter 5 will
look into one such semi-deterministic channel model: ITU-R 1812 for LoRa.
The aim is to inspect if the added complexity of the semi-deterministic model
would yield more accurate results compared to the popular empirical model
(Okumura Hata model).
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Chapter 3

Background and Related
work: Remote Sensing

Providing a completely automated estimation tool for LoRa requires know-
ledge from two research areas: channel models and remote sensing. The
prior chapter discussed the background and work related to channel models,
this chapter focuses on the remote sensing part. The remote sensing part
plays a key role in providing the necessary inputs for the OH model without
needing the user in the loop.

This chapter will be split into two sections; Section 3.1 will give some
background information on remote sensing and Section 3.2 will dive into the
details of the research work [41] where remote sensing technique is used to
completely automate LoRa’s link quality estimation.

3.1 Remote Sensing: Overview

Remote sensing is a technique for acquiring information about the phys-
ical characteristics of objects on the earth surface or in the atmosphere,
using satellite or aircraft-based sensor technologies. It is being widely adop-
ted in various fields for monitoring landscape transformations, for natural
resource management, to increase awareness for better risk analysis and haz-
ard management, etc. Remote sensing systems are typically classified into
two categories: Passive and Active systems.

Passive systems use external sources of energy, mainly the sun’s radi-
ations. Sensors mounted on satellites collect the sun’s radiations reflected
off obstacles in the target area and analyze the spectral response. A spec-
tral response refers to the reflectance/emittance of a substance with respect
to the wavelength. Depending on the composition, every object can treat
radiations of different wavelengths differently, leading to a unique spectral
signature. On the other hand, active sensors use their own source of energy
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(e.g. LiDAR, Radar) and record and analyze the intensity, phase and time
delay of the backscattered pulses to obtain specific information. They can
be used when a specific target needs to be examined or to investigate par-
ticular wavelengths that are not sufficiently provided by the sun’s radiation
[15].

The reflected energy variations are detected and recorded by light-sensitive
films on the sensors and converted to images. These images are usually rep-
resented in a digital format and are subdivided into equal-sized pixels. Each
pixel contains a value denoting the brightness/ intensity level of the reflected
signal.

Sections 3.1.1 and 3.1.2 will highlight two important use cases where the
information acquired from remote sensing is applied: Land cover classifica-
tion and Digital Elevation Models.

3.1.1 Land cover classification

The land cover represents the physical material on the surface of the earth
like trees, water, building, grass, etc. The method uses techniques to analyze
spectral information represented as numeric values from one or more spectral
bands [15].

There are numerous land cover products freely available to the public.
Each product differs in their resolution, accuracy, area of coverage, method
of extraction and land cover classes they can distinguish between. Table 3.1
highlights some of this information obtained from [42].

Land cover product Pixel resolution Accuracy Classes

MCD12Q1 500m 71.6% 17

UMD 1km 65% 12

GlobCover2009 300m 67.5% 22

GlobeLand30 30m 80.3% 10

GLC250 m CN 350m 75.17% 9

Table 3.1: Examples of Land cover products

3.1.2 Digital Elevation Models

A digital elevation model (DEM) is a digital representation of a terrain’s
elevation referenced to a particular vertical datum. Vertical datums are the
zero level reference surface for vertical positions. DEM’s are useful in various
applications: landscape modeling, land-use studies, 3D visualizations, flood
control etc.

DEM’s come in two forms: Digital Surface Models (DSM) and Digital
Terrain Models (DTM). DTM contains the heights of the bare-earth surface
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excluding the heights of objects like buildings, vegetation, etc. On the other
hand, DSM records the heights of the objects above the ground surface.
Figure 3.1 below illustrates the difference between DSM and DTM.

Figure 3.1: Difference between DSM and DTM [1]

DEM products provide remotely sensed surface heights, each varying with
respect to their technique of extraction, accuracy, resolution, and area of
coverage. Table 3.2 shows some commonly used DEM’s.

DEM product Pixel resolution Absolute Accuracy Coverage extent

SRTM [31] 30m x 30m <16 meters 60.0◦ N -56.0◦S

ASTER [2] 30m x 30m 17 meters 83.0◦ N -83.0◦S

ALOS [3] 30m x 30m 5 meters 60.0◦ N -60.0◦S

AHN 5m x 5m 5 centimeters Netherlands

Table 3.2: Example of Digital Elevation Model products

Actual Heights of Netherlands (AHN) is one such elevation model that
will be used throughout the thesis. Section 3.1.2.1 will describe AHN in
more detail.

3.1.2.1 Actual Heights of Netherlands

The AHN project is responsible for providing high-resolution elevation data
covering the entire Netherlands free of charge. The terrain height profile is
obtained via airborne laser scanning or LiDAR (Light Detection And Ran-
ging), where the target area is illuminated using laser pulses. The reflected
energy is captured by a sensor and the amplitude, difference in phase and
time of arrival is used to compute the surface heights. The use of LiDAR
poses several advantages over other methods. LiDAR is well known for it’s
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higher accuracy, quick extraction time and higher sampling density. The el-
evation is compared to the Normal Amsterdam Level (NAP) vertical datum
while the horizontal datum follows the Amersfoort/RD new coordinate sys-
tem.

AHN is an initiative by government bodies: Rijkswaterstaat, the water
boards, and the provinces to create up-to-date height maps for water man-
agement applications in the Netherlands. The database was made public
for commercial and non-commercial purposes in 2014 [54]. The elevation
database is available as a web map on the PDOK portal of the Dutch gov-
ernment [12]. The large data set in split into smaller tiles of size 5 x 6.25
kilometers as shown in Figure 3.2. The entire Netherlands is covered by a
total of 1372 tiles [28].

Figure 3.2: Web-map of Netherlands composed of AHN tiles [12]

Due to technological advancements and due to natural and man-made
changes in the environment, there have been three public versions of the
AHN: AHN1, AHN2, AHN3. While AHN1 contained 1 sample point per
16-32 square meters, AHN3 is updated to contain 8-10 points per square
meter on an average. It has high vertical accuracy with ≤ 5 cm systematic
error and 5 cm standard deviation [54]. These detailed high-density point
clouds are difficult to work with and therefore are resampled into equidistant
grids to form user-friendly raster maps. Rasters are a grid of evenly spaced
cells (pixels) arranged in rows and columns representing the latitude and
longitude. Each of the pixels in a DEM raster contains a numerical meas-
urement value that represents the elevation at that location. The rasters
are available in two resolutions of 0.5 x 0.5 meter and 5 x 5-meter grids.

LiDAR works on the concept of multiple returns from a single pulse trans-
mission. As shown in Figure 3.3, depending on the number of reflective
surfaces the laser pulse encounters in its path towards the ground, it gets
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split into as many returns. The AHN DSM heights are defined by the first
return of the pulse providing all the heights on the ground except for water.
Water does not reflect laser signals and hence provides No-Data values in
the raster. The AHN DTM is defined by the last return providing height
information only for the exposed ground area that can be reached during
laser scanning. Naturally, the ground elevation underneath a building is
never going to be obtained as the pulses are blocked by the building it-
self. Therefore, the raster will show No-Data values where ever an object
is present. So for example, for pixels that contain a building, only DSM
height is available and not DTM. To obtain obstacle heights above ground
level (i.e, by subtracting DTM from DSM), the No-Data values in the DTM
need to be filled using interpolation techniques as will be seen in Chapter 4.

Figure 3.3: Multiple returns from a single LiDAR transmission [34]

Regarding the DSM heights for vegetation, unfortunately, the first leaf/
branch that the laser hits does not necessarily have to be the top of the tree.
This would mean that the first return of the laser pulse might not always
represent the actual height of the tree. On the other hand, if the vegetation
is sparse enough, with multiple returns the signal can likely pass through
the vegetation to the ground surface and give correct DTM height values in
spite of being an obstacle to the laser pulses.

3.2 Related work using remote sensing data

My thesis is inspired by the work proposed in [41]. The research paper
complements the related work in Section 2.3.2 by adopting an automated
approach that no longer relies on the user pre-defining the type of environ-
ment for path-loss models. The authors utilize remote sensing and propose
a dedicated processing toolchain for land-cover classification. This inform-
ation is used to automatically classify the type of environment and further
estimate LoRa’s link quality using the Okumura-Hata channel model.
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3.2.1 Land-cover maps

The paper exploits multi-spectral images of the Sentinel-2 satellite operated
by the European Space Agency (ESA). The images are acquired via passive
remote sensing with a high spatial resolution of 10 m and having multi-
spectral data with 13 bands in the visible, near-infrared, and short-wave
infrared range. This data can be obtained from ESA archives free of charge.
The authors analyze the spectral signature and apply supervised classific-
ation techniques based on machine learning to generate land-cover maps.
Every pixel on the map corresponds to one of the seven classes of land cover
as shown in Table 3.3. The paper claims to achieve high accuracy >= 90%
with a high pixel resolution of 10 m compared to the land cover products
highlighted in Section 3.1.1.

Clutter category Low-clutter category

Buildings Field

Greenhouse structures Soil

Trees Road

- Water

Table 3.3: Land cover classes distinguished by the paper

The information obtained from the sequence of land-cover between the
transmitter and receiver is used to automatically define the ”type of envir-
onment” and select the OH variant. This will be explained in detail in the
next section. The paper chooses the small/medium city category under the
urban OH variant for the analysis as it best suits the city structure of the
Netherlands.

Sections 3.2.2 and 3.2.3 discuss the two prediction approaches used in
the paper to decide the environment type: Path analysis and Intersection
analysis.

3.2.2 Path analysis

This section will describe the logic used by the Path analysis. The tool uses
the land cover map to obtain the sequence of land cover classes along the
route between the transmitter and receiver. Consider a 1 km path in which
the link is divided into segments of 10 meters and each segment is categorized
based on the type of land cover. The land cover classes are grouped into two
categories: clutter group and low-clutter group. This classification is done
depending on whether they introduce significant attenuation (clutter group)
or do not affect the signal propagation(low-clutter group) as seen in Table
3.3. Land cover such as soil, road, water, etc. is classified as components
of the low-cluttered group, whereas trees, buildings, greenhouse fall under
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the cluttered group. Finally, a simple comparison is made between the total
percentage of the cluttered and low cluttered groups. If the majority of
segments are ”clutter”, the model selects the ”urban” type of environment
else it uses the ”sub-urban” type of environment. This classification between
an urban and suburban area can then be applied to the Okumura Hata
model to select the variant. The flowchart in Figure 3.4 illustrates the Path
analysis algorithm.

Figure 3.4: Path analysis algorithm to select the OH variant

3.2.3 Intersection analysis

While the Path analysis in Section 3.2.2 considers all the land cover between
the LoRa end device and the gateway, the Intersection analysis considers
only the land cover surrounding the end device. The idea behind the Inter-
section analysis is to capture the effect of the obstacles in the vicinity of the
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end device in a better manner. Figure 3.5 illustrates the difference between
Path analysis and Intersection analysis.

Figure 3.5: Difference between Path and Intersection Analysis [41]

The threshold TH is assumed to be 10 meters and represents the aver-
age height of the buildings in the test area. Figure 3.5 shows the threshold
intersecting the line-of-sight between the gateway and the LoRa node. In
this case, only the land cover between the node and the intersection is con-
sidered to select the OH variant (suburban or urban). The path between
the intersection and the gateway is considered free space with no obstruc-
tions. Moreover, if no intersection is detected, the rural/free/open space
path loss variant is selected directly. The flowchart in Figure 3.6 illustrates
the Intersection Analysis algorithm.
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Figure 3.6: Intersection Analysis algorithm to select the OH variant
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Chapter 4

System and Experimental
Setup

The software environment used for the thesis is MATLAB. The Mapping
toolbox package must be downloaded to utilize the functions for analyzing
and editing geographic data. Section 4.1 will discuss the TTN data used for
validation. Section 4.2 will discuss the setup method to prepare the remotely
sensed data.

4.1 Validation with TTN Mapper data

The data used in the thesis is provided by The Things Network (TTN). This
data serves as the ground truth for validating the results.

TTN initiated an open-sourced and crowdfunded Internet Of Things net-
work based on LoRaWAN [4]. The company has around 7603 gateways
operating across 140 countries. TTN Mapper is an application integration
provided by the TTN [5]. The application can be used to visualize the cov-
erage of the TTN network and analyze the performance of the gateways. It
is a worldwide community effort which allows people to upload the uplink
packet information from their LoRa node to the TTN Mapper through the
network’s back-end directly.

The data is provided as .csv files. The file includes information of each
LoRa node transmission received by the gateways such as the Received Sig-
nal Strength Indication (RSSI), the Signal-to-Noise Ratio (SNR), the oper-
ating frequency and the location coordinates, height and IDs of the LoRa
nodes. Only gateways located outdoors are used for validation in the thesis.
Information about the placement of the gateways i.e. if the gateway is in-
doors or outdoors can be acquired using the following API provided by TTN:
https://account.thethingsnetwork.org/gateways/<gateway-id>

The following API can be used to get the location coordinates and alti-
tude of the gateway:
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http://noc.thethingsnetwork.org:8085/api/v2/gateways/<gateway-id>

The API provides the location reported by the gateway from its Global
Positioning System (GPS) or as configured statically on the gateway. GPS
uses the World Geodetic System (WGS84) as it’s reference coordinate sys-
tem. Hence, the elevation of the gateway is likely relative to the WGS84
spheroid and not with respect to the ground. Moreover, GPS altitudes are
known to have low accuracy compared to the latitude and longitude values.
To obtain a better estimate of the height of the gateway from the ground,
digital elevation models are used to compute the building height and the
altitude value obtained from the API is only used as a sanity check.

To ensure that transmitter nodes are not present indoors, the samples
from the TTN data files with node height less than and equal to 2 meters is
used for evaluation as in the paper [41]. This is done assuming that as the
node height increases, the probability of a node being indoors increases.

The packet information does not include the transmit power of the node
and antenna gains of the transmitter and receiver. The paper [41] assumes a
transmit power of +14 dBm which is the maximum allowable limit in Europe
and a typical half-wave dipole antenna (gain of 2 dBi) for the evaluation and
the thesis uses the same settings. This assumption will tend to overestimate
the path loss and the thesis will later delve into the issue of doing so in
Chapter 6.

Before using the data for testing purpose, the samples are filtered using
python. The first step of filtering involves separating the large data set into
individual gateways. Then the data for each gateway is further separated
into individual nodes. Testing is done for each node and gateway combin-
ation. The second step of filtering removes samples that are outside the
boundaries of the available land cover map. The third step is to exclude
gateways that do not meet the antenna heights and link distance as stated
by the OH model as stated in Section 2.3.2.

The sample space included 8 gateways of varying heights between 30m to
110m, 105 transmitter nodes with a total of 18000+ recorded packets. The
gateways in the sample space are located in the following regions: Delft,
Utrecht, and Arnhem. The data was collected between the end of 2016 to
the beginning of 2019.

Since LoRa can decode signals with power up to 20dB below the noise
floor, the Expected Signal Power (ESP) value is used as the metric to denote
the received power of the signal Figure 4.1 shows a graph illustrating the
variation of ESP for different values of SNR assuming a fixed value for RSSI.
ESP has a major effect when the SNR tends to get more negative, while for
positive SNR the ESP becomes similar to RSSI.

ESP can be calculated from the RSSI and SNR as shown below:

ESP (dBm) = RSSI(dBm)+SNR(dB)−10∗log10(1+10SNR(dB)/10) (4.1)
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Figure 4.1: Graph comparing ESP with RSSI for different SNR [35]

Root-Mean-Square-Error (RMSE) is the metric used to evaluate the dif-
ference between the measured pathloss and the predicted pathloss. This
metric is preferred as it is more sensitive to large errors which are highly
undesirable. The equation is as follows :

RMSE =

√∑T
t=1(x1,t − x2,t)2

T
. (4.2)

Where:
x1: Actual measured value
x2: Predicted value
T: total number of samples

4.2 Preparing the remotely sensed data

Two types of remote sensing data are used in the thesis: Landcover maps
and Digital Elevation Models (DEM).

The land cover maps are provided by the authors of the paper [41]. Figure
4.2 shows the Google map screenshot marking the boundary of the land cover
map available for testing purposes.

The AHN digital elevation models need to be processed before using it for
coverage predictions. For validation using the TTN data, a python script is
prepared to get the limits of the test area for each gateway. Each tile (DSM
and DTM) within the test area is manually downloaded from [12].

The horizontal datum is based on the Amersfoort/RD new coordinate
system. The first step in preparing the DEMs is to convert the horizontal
datum to the more universally accepted WGS84 coordinate system. WGS84
is a geographic coordinate system that uses latitude and longitude to meas-
ure the location on the earth surface. There were two options to convert the
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Figure 4.2: Extent of the available land cover map

coordinate system: using the default functions provided by MATLAB or by
using QGIS software. QGIS is a free and open-source geographic informa-
tion system (GIS) application that is used to analyze and manage geospatial
data [6]. Several points were transformed from the RD new coordinate sys-
tem to the universal coordinate system using both the methods separately.
It was observed that the transformed points did not match and there was
more than a 100-meter difference between them. To decide which tool is
more precise in its conversion, Google-maps is used as a reference. For ex-
ample, the elevation of one such point in the Dutch coordinate system in a
DSM raster is noted and the point is converted into the WGS84 coordinate
system using both tools. The tools generate two different location coordin-
ates as shown in Table 4.1. The points lie about a 100 meters apart as can

Tool

Test point (RD new coordinate system) X: 456230.0140000000, Y: 85004.9975000000

Height of test point from DSM 24.19 meters

MATLAB 52.090888763158638, 4.366147468400354

QGIS 52.089892933394005, 4.365825794955500

Table 4.1: Example test point transformed into WGS84 coordinate system

be seen in Figure 4.3a. It is clear that the point generated by MATLAB
does not map to an object of height 24 meters and instead points to the
ground as shown in Figure 4.3c, while the point generated by QGIS points
to a building in Figure 4.3b. Several such cases are analyzed and eventually
QGIS software is chosen as it is more reliable in transforming the coordinate
system.
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(a) Difference in locations generated by QGIS
and MATLAB

(b) Close-up of coordinate by QGIS (c) Close-up of coordinate by MAT-
LAB

Figure 4.3: Example illustrating the reliability of the tools coordinate con-
version

An additional step must be carried out for the DTM tiles using QGIS.
As discussed in Section 3.1.2.1, the DTM raster contains No-Data values
in pixels that are occupied by an obstacle. To calculate obstacle heights
(i.e., obstacle height = DSM-DTM), the missing DTM height data for the
No-Data pixels is filled using Inverse Distance weighting (IDW) interpol-
ation. This technique uses height values from the surrounding pixels to
make predictions for the No-Data pixel. As the name suggests, IDW as-
sumes that points closer to the No-Data pixel are more similar and have
more influence compared to points that are farther away. Approximating
the ground heights using interpolation is acceptable considering the flatlands
of the Netherlands.

On changing the coordinate system using QGIS, the raster restructures
and re-projects itself according to the WGS84 coordinate system as shown
in Figure 4.4. The elevation values shift under the new coordinate system
and more No-Data values are noticed in the rasters. In Figure 4.4, the green
area represents the elevation data, whereas the white area represents No-
Data values. The elevation information for the points with No-Data value
in a tile is now available in the adjacent tile instead. The tiles now partly
overlap with its adjacent tiles.
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Figure 4.4: Restructuring of the raster after coordinate transformation

Figure 4.5 gives an example of two adjacent tiles (tile A outlined in blue
and tile B outlined in red) and the black area for each tile are the No-Data
pixels while the white area represents pixels with the actual elevation. For
example, assume that the simulator requires the height information of a
point (marked as a star in Figure 4.5) that lies in the overlapped region of
the two tiles. The same point in tile A will give a No-Data value as shown
in 4.5a while tile B will give the correct elevation value as seen in 4.5b. This
additional processing to ensure that the right tile is chosen will need to be
done for every point along the path and can increase the processing time
and complexity. This issue is avoided by merging all the tiles and processing
them as one single unit.
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(a) Point in the black region gives No-Data value while
processing Tile A separately

(b) Point in the white region gives height value while
processing Tile B separately

Figure 4.5: Transformed rasters overlap and fill each others elevation values
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Chapter 5

Evaluation of ITU-R 1812 for
LoRa

This chapter will analyze one of the ITU-R recommendations of a semi-
deterministic model: ITU-R 1812 for LoRa. Section 5.1 will give an overview
of the model followed by a comparison of the model with real data in Section
5.2.

The International Telecommunication Union (ITU) is an agency of the
United Nations. The organization is responsible for radio spectrum alloc-
ation, improving telecommunication infrastructure and managing satellite
orbit resources. ITU-R is one of the divisions of ITU that is responsible
for developing technical standards for radio communication [7]. ITU models
are chosen for two reasons for this thesis: Firstly, these models are found
to be commonly used by commercial coverage simulators [13],[14],[20],[27].
Secondly, ITU provides free MATLAB implementations for most of its re-
commendations [8]. Among the various recommendations produced by ITU-
R for path-loss estimation, ITU-R 1812 was selected for evaluation. This
model is a good fit with respect to the frequency range for LoRa but also
fits the link distances, antenna height requirements of the OH model which
is important to do a comparison of the two models for LoRa. It also con-
siders attenuation due to the atmosphere and surrounding obstacles which
is important to analyze for a long-range technology like LoRa.

5.1 Overview of ITU-R 1812

The ITU-R 1812 recommendation is developed for propagation prediction
for terrestrial services in the VHF and UHF bands (30 MHz - 3 GHz). It
predicts a median transmission loss which should not be exceeded for p%
of an average year [9]. This parameter is set by the user and can be in
the range 1% ≤ p ≤ 50%. The model allows for path lengths between 0.25
km up to 3000 km and terminal antenna heights of up to 3 km above the

33



ground. It considers the path to be symmetric with respect to the terminals
(i.e, the positions of the transmitter and receiver can be interchangeable).

The model accounts for various losses as follows:

• Line-of-sight (with short term multi-path effects)

• Diffraction (including smooth-Earth, irregular terrain and sub-path
cases)

• Tropospheric scatter

• Anomalous propagation due to ducting and layer reflection/refraction

• Height-gain variation in terminal clutter

Table 5.1 displays the basic input parameters that must be prepared by
the user to estimate these effects.

Input Parameter Description

Frequency 0.03 Ghz - 3 Ghz

Transmitter, Receiver coordinates In degrees

Antenna heights 1 - 3000 meters

p% % of average year the calculated signal level should not exceed

Clutter and Ground heights In meters above sea level

Radio climatic zones Sea, coastal, inland

Terminal distances from sea coast In meters

Radio meteorological parameters N0, ∆N

Width of the street Default 27 meters

Antenna polarization Vertical, Horizontal

Table 5.1: Basic input required by ITU-R 1812 model

1. The link distance, terminal heights, and frequency are common inputs
used to calculate the Line-of-Sight loss with some short term multi-
path effects. These inputs variables are similar to that of the OH
model. The input defining the “type of environment” in the OH model
is taken into account by the ITU-R 1812 in finer detail by considering
losses due to obstacles and the atmosphere separately.

2. The model uses the terrain elevation above mean sea level for each
point along the great circle path. The great circle path is the shortest
path traced between any two points on the surface of the earth. The
clutter and bare-ground heights are mainly used to account for the
following:

• Diffraction losses due to the bulge of the earth and the obstacles
along the path:
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The recommendation uses the Bullington diffraction model. De-
tails of this model will be addressed in Section 5.2.

• Terminal clutter losses:

This loss is considered when a clutter surrounding the terminal is
located at a height above the terminal. The model distinguishes
between two cases: for smaller terminal clutter the dominant
mechanism is identified as scattering and reflection, whereas for
bigger clutter heights diffraction is considered to be the dominant
phenomenon.

The remotely sensed terrain heights can be obtained from the AHN
digital elevation models as discussed in Section 3.1.2.1.

3. Scattering due to the troposphere layer of the atmosphere and atmo-
spheric ducting account for the attenuation by the atmosphere.

Ducting is a radio propagation phenomenon where the lower layer of
the atmosphere acts as a horizontal duct guiding the signal to follow
the earth curvature. The refractive index decreases with higher alti-
tudes which can bend the signal away from the anticipated direction.
Due to the effects of reflection and refraction from the boundary of a
region with a lower refractive index, the signal tends to remain within
this duct.

The following highlights the input parameters that account for atmo-
spheric attenuation.

• Radio climatic zones: The model distinguishes between three ra-
dio climatic zones: Sea, Coastal land and Inland. It requires data
on what lengths of the propagation path lies in each zone. If a
point on the path lies at least 50 km away from the nearest sea,
the point can be assigned to the inland zone.

• Terminal distance from the coast: If a portion of the path lies over
the sea, the model requires the distance of each terminal from the
coast in the direction of the other terminal. If a terminal is on
the sea, the distance is considered to be 0.

• Basic Radio-meteorological parameters: To describe the variabil-
ity of the atmosphere’s refractivity, the model uses two paramet-
ers:

– N0 (N-units) - represents sea-level surface refractivity

– ∆N (N-units/km) - represents the lapse-rate of the refractive
index on an average, through the lowest 1 km of the atmo-
sphere.

This data can be extracted from digital maps provided by ITU.
If a location needed for the prediction process does not match
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any grid point in the map, bilinear interpolation using the four
closest values must be performed by the user. These global maps
are derived from a ten-year analysis from 1983 to 1992.

4. All of the above losses are calculated such that they do not exceed the
value for p% of the year.

5.2 Results and Conclusion: ITU-R 1812 vs. Path
Analysis

On running a few initial sample points with the ITU model and comparing
the predicted path loss to the measured path loss as shown in Figure 5.1,
it is observed that the path loss predicted is unusually high in a few cases.
Especially the samples marked in red show path loss values reaching up to
170 dB for distances within just 3 km.

Figure 5.1: ITU pathloss with diffraction problem

To be certain there is no error caused in the way the input is prepared for
the model, the path loss components of the ITU model is evaluated. On close
analysis, it is observed that the diffraction component causes the high path
losses even though the path does not have any dominant obstacle blocking
the line-of-sight. This occurs because the receiver acts as an obstacle to
itself. To understand this better, a brief understanding of the Bullington
diffraction model is required. Firstly, the diffraction model finds the first
obstacle obstructing the line-of-sight from the transmitter to the receiver
end. Similarly, the first obstacle from the receiver to the transmitter end is
detected. Then the model constructs a single equivalent knife-edge obstacle
at the intersection of the transmitter and receiver lines as shown in Figure
5.2 and calculates the diffraction loss associated to that height.

Figure 5.3 shows a google map screenshot of the building on which the
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Figure 5.2: Illustration of the Bullington diffraction model

gateway is placed for the same samples as shown in the Figure 5.1. Figure
5.4 gives an idea of the shape and the height information of the building
obtained from the digital elevation models. The elevation values are not
constant and vary by a few meters in different pixels. This is likely due to
the objects on the surface of the roof.

Figure 5.3: Google map image of the gateway’s location

We use the DEM’s to get an approximate height of the gateway above
the ground, using the GPS heights in the TTN data files for a sanity check.
The pixel selected in the DEM in Figure 5.4 represents the location of the
gateway. Assuming the gateway height is 69 meters, the surrounding pixels
with greater height behaves like an obstruction.

Figure 5.5a tries to illustrate the varying height values of the roof obtained
via DEM and the star represents the gateway. As shown in the Figure 5.5b,
with the points on the building acting as an obstacle to itself, the effective
obstacle height for the Bullington model increases and hence the diffraction
loss increases.
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Figure 5.4: Illustration of the building on which the gateway is mounted on
using the digital elevation model

(a) Points on the receiver obstructing the line-of-sight

(b) Before and after filtering the points on the receiver shows a change in the effective
obstacle height

Figure 5.5: Illustration of the diffraction problem
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The assumption is made that the gateway will be placed in a position
that avoids getting blocked by the building it is mounted on. To eliminate
the possibility of such occurrences, the program makes sure that points
within a certain distance from the gateway and having a height close to the
gateway’s height is not considered as an obstruction during the diffraction
analysis. Figure 5.6 shows the reduction in path loss after discarding points
on the building itself. Samples from 1 to 5 show predicted path loss closer
to the real loss. But this also has a negative effect on the path loss of other
samples (6-8), bringing it farther away from the real loss.

(a)

Figure 5.6: ITU pathloss eliminating diffraction problem

Figure 5.7 gives an overall comparison of the ITU model with the Path
analysis [41] for five gateways (GW1-GW5). The comparison is made for
the ITU model with input parameter p% set as 50%, 25%, 10%, and 1%.
The higher the p% (which represents the percentage of the average year
the estimated path loss should not be exceeded), the more pessimistic the
model is and the path loss is comparatively higher. The graphs plot the
average, maximum and minimum RMSE among all the user nodes under
each gateway.

In general, the average RMSE of the Path analysis is lower or comparable
to the ITU model with a drop in the maximum RMSE except for GW2. The
ITU model does not show any significant improvement compared to the OH
model in spite of all the extensive input information that the ITU model
requires. The accuracy of path loss predictions does not seem to increase
on using a more complex semi-deterministic model. Furthermore, the model
heavily depends on the accuracy of its inputs for e.g; heights of the nodes and
gateways for the diffraction model, making it difficult to fully validate this
model with large LoRa datasets without a controlled measurement setup.

Since the Path analysis performs better than the ITU model in our ana-
lysis, the next chapter will delve into a deeper analysis of the automated
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approach used by the paper [41] for LoRa’s link quality estimation using the
simple OH model.
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Figure 5.7: Comparison of ITU model with varying p% against Path Ana-
lysis
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Chapter 6

Improved Pathloss Model
Development

This chapter takes inspiration from the paper [41] and covers the devel-
opment of the improvised algorithm for path loss prediction using the OH
model. We have developed the final algorithm in a series of stages and at
every stage, the approach is evaluated and improved upon. Sections 6.1, 6.2
and 6.3 will discuss the different approaches and the results and conclusion
of each approach. Section 6.4 will describe the relative comparison as an
alternative to evaluate the performance of the models.

6.1 Approach One

This section will discuss a different approach to apply the land cover map
information to the OH model compared to the Path algorithm discussed in
Section 3.2.2.

The paper [41] follows a binary decision-making process to distinguish
between the urban and suburban-type of environment. This causes a point
in between the path-loss curves defined by the urban and suburban OH
variants to move to the closest curve, causing a quantization error as shown
in Figure 6.2a. Instead, a weighted average approach can be implemented,
using the percentages of the cluttered and low cluttered groups as weights.
To explain this idea better, consider two paths as shown in Figure 6.1 that
have the same link distance, frequency, and antenna settings. According
to the Path analysis, both paths qualify as urban scenarios because the
majority of the cells have clutter. But the two scenarios can be differentiated
based on the degree of urbanization along the path. The path on the bottom
shows more cluttered components compared to the path on the top. Hence,
the percentages can be used as weights/ indicators to factor in this degree
of urbanization. Depending on the percentage values, the path loss can now
lie anywhere between the sub-urban and urban scenario as shown in Figure
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6.2b and is no longer limited to the two discrete values on the path-loss
curves of the model. This method no longer depends on a binary decision
and deviates from the traditional method of using the OH model.

(a) Lower cluttered path

(b) Higher cluttered path

Figure 6.1: Example of two paths with different degree of urbanization

(a) Discrete path loss without weighted
averages

(b) Continuum path loss with weighted
averages

Figure 6.2: Pathloss versus distance graphs for OH model

Equation 6.1 illustrates the path loss obtained using the weighted average
between the urban and sub-urban OH variants.

PathLoss(dB) = C%× Lurb + L.C%× Lsub−urb (6.1)

where:
Lurb : Pathloss using the urban OH variant (dB)
Lsub−urb : Pathloss using the sub-urban OH variant (dB)
C% : Cluttered components percentage
L.C% : Low-cluttered components percentage

The flowchart in Figure 6.3 explains the modified algorithm using the
weighted average approach.
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Figure 6.3: “Approach One” Algorithm

6.1.1 Approach One: Results and Conclusion

6.1.1.1 Approach One: Analysis

This section compares the results from the Path Analysis and Approach
One. The graphs highlight few samples of user nodes and gateway combin-
ations and the associated RMSE in the path loss.
While the nodes in Figure 6.4 show a reduction of the RMSE (dB) in Ap-
proach One compared to the Paper Path, the graph in Figure 6.5 shows an
opposite effect for other nodes. In Figure 6.5 the Path analysis gives better
results than the weighted average approach. To debug this issue, Section
6.2 will delve into investigating the output of the land cover map.
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Figure 6.4: Nodes showing improvement with Approach One

Figure 6.5: Nodes showing higher errors with Approach One

6.1.1.2 Approach One: Overall comparison

The graphs in Figure 6.6 give an overall comparison of the average, minimum
and maximum RMSE of each gateway across all transmit nodes for the
Approach One, Path and Intersection analysis.
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Figure 6.6: Comparison of Approach One with Path and Intersection Ana-
lysis
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6.2 Approach Two

On closely analyzing points on the land cover map and cross-referencing
the predicted land cover with Google Maps, many cases are observed where
pixels are not classified correctly. As an example, three such cases are listed
in Table 6.1. The corresponding Google map location of the pixels is shown
in Figure 6.7. At coordinate location A, Google map points to the Aula
building at the TU Delft campus. The land cover map wrongly classifies
the pixel at this location as ”Fields”, whereas the obstacle height obtained
from the digital elevation models gives a value of 14.20 meters. Similarly,
the water body at location B is classified as ”Trees” by the land cover map,
whereas the height models provide a No-Data value. This is consistent with
the fact that LiDar pulses do not get reflected off water bodies and therefore
gets stored as a No-Data height value. These three examples are particularly
highlighted as such cases of misclassification will have an adverse effect on
the decision making the process for selecting the OH variant. Furthermore,
the paper also mentions that the tool misclassifies ”building” as ”road” and
vice-versa for certain pixels. The authors state that the cause is likely due
to the similar spectral signature of the related materials used for the road
and building. Confusing a cluttered component (e.g: Building) for a low-
cluttered component (e.g: Bare soil), will reflect on the percentages and
hence, affect the weighted average approach. Thus, Approach Two uses
freely available remotely sensed surface heights, eliminating the need for
land-cover maps to classify the type of environment.

Coordinates Google maps Land Cover Map DEM

A 52.002202, 4.373419 Building Fields 14.20 meters

B 52.002962, 4.373823 Water Tree No-data

C 52.001367, 4.374419 Building Bare soil 11.61 meters

Table 6.1: Examples illustrating wrongly classified pixels of the land cover
map

We make use of LiDAR generated digital elevation models (AHN) as dis-
cussed in Section 3.1.2.1 and propose an alternate method to classify com-
ponents in the cluttered and low-cluttered category.

The sequence of obstacle heights at every 5m spacing is obtained along
the path between the transmitter and receiver. Obstacle heights can be
obtained by subtracting the altitudes of the interpolated DTM from the
DSM. If the obstacle height is above a threshold, the point is associated
with the clutter category, whereas if the height lies below a threshold, it
contributes to the low-cluttered category. Sources [10], [11] state that the
height of greenhouses must be approximately 4 meters or taller. Keeping this
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(a) Location A (b) Location B (c) Location C

Figure 6.7: Screenshots of mis-classified locations on Google map

in mind and on further analyzing the heights of buildings from the DEMs,
the threshold is set to 4 meters. Moreover, the results of the approach when
the threshold is set lower than 4 meters did not do as well as when the
threshold is set to 4 meters.

The Path analysis utilizes only two variants of the OH model i.e. the
sub-urban and urban variants as discussed in Section 3.2.2. Since the height
information is available using DEMs, the free/open/rural variant of the OH
model is incorporated in Approach Two. This variant is applied when two
conditions are met: Firstly, the path has no city-like built-up structures and
secondly there is no obstruction to the line-of-sight between the transmitter
and receiver. For the first condition, the algorithm checks if all the heights
along the path remain below the threshold (low cluttered = 100%). This will
indicate that the possibility of having a free space scenario is high. For the
second condition, along the entire path at each point, the elevation angles
from the transmitter to the obstacle and the transmitter to the receiver are
used to analyze possible obstructions to the line-of-sight as shown in Figure
6.8. The scenario on the left indicates no obstruction, whereas the scenario
on the right indicates an obstruction to the line-of-sight.

If the above two conditions are met, the free/open path loss variant is
applied, otherwise, the program resorts to the weighted average between
the sub-urban and urban variant losses.

The flow chart in Figure 6.9 illustrates the modified algorithm that re-
places land cover maps with DEMs.
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Figure 6.8: Using the elevation angles to check for obstruction to the line-
of-sight

Figure 6.9: Algorithm for “Approach Two”
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6.2.1 Approach Two: Results and Conclusion

6.2.1.1 Approach Two: Analysis

This section compares the path loss RMSE of Approach Two with the Path
analysis and Approach One. The same set of nodes used to analyze the
performance of Approach One in Section 6.1.1 is plotted here. The nodes in
Figure 6.10a show a further reduction in the RMSE compared to Approach
One. Also, Figure 6.10b shows the effect of Approach Two on the set of
nodes that had performed poorly in Approach One. All the nodes show a
reduction in the error compared to Approach One. Moreover, the majority
of the nodes also do better than the Path analysis.

(a) Nodes showing further improvement with Approach Two

(b) Nodes showing improvement with Approach Two compared to Approach One

Figure 6.10: Comparison of Approach Two against Path analysis and Ap-
proach One
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The main advantage of this approach is that the model no longer relies on
the availability of land cover maps for different regions of the Netherlands.
The method of replacing land cover maps with free and publicly available
high-resolution height models eliminates the effort to undergo land cover
classification for different regions. But in spite of the reduction in the RMSE
shown by Approach Two, the improvement is limited. This is expected
because compared to the Path analysis which chooses between the sub-
urban and urban variants, the Approach Two now performs a weighted
average between the same two variants.

6.2.1.2 Approach Two: Overall comparison

This section will give an overall comparison of the average, minimum and
maximum RMSE of each gateway across all transmit nodes. The graphs
in Figure 6.11 show an overall reduction in errors from Approach One to
Approach Two.
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Figure 6.11: Comparison of Approach Two with Approach One
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The graphs in Figure 6.12 compares the Approach Two with the Path and
Intersection Analysis.

Figure 6.12: Comparison of Approach Two with the Path and Intersection
Analysis
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To validate the final approach further, the sample space is increased to
include three more gateways (GW8 in Arnhem and GW6, GW7 in Utrecht).
Figure 6.13 shows the result of the 3 gateways.

Figure 6.13: Comparison of Approach Two with the Path and Intersection
Analysis for 3 more gateways

As shown in the Figures 6.12 and 6.13, overall the Approach Two shows
improved performance compared to the Path and Intersection analysis ex-
cept for GW6 giving higher errors in terms of the average and maximum
RMSE. Also, GW4 and GW5 shows an increase in the minimum RMSE
with Approach Two. These gateways (GW4, GW5, GW6) will be further
looked into in Section 6.3.
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Table 6.2 and Table 6.3 quantifies the errors of Approach Two with Path
analysis and Approach Two with Intersection analysis respectively.

Path analysis Approach 2

(dB) (dB)

Avg. RMSE Max. RMSE Min. RMSE Avg. RMSE Max. RMSE Min. RMSE

GW1 9.19 12.25 6.84 8.12 9.68 6.95

GW2 4.75 6.51 3.54 3.37 5.07 1.52

GW3 8.17 11.18 6.40 6.29 9.02 3.43

GW4 11.76 16.08 5.62 10.45 15.88 5.34

GW5 9.79 14.93 1.33 8.89 12.47 3.80

GW6 10.19 22.37 4.70 11.11 23.56 4.41

GW7 7.81 14.24 1.93 6.25 12.69 0.56

GW8 9.38 12.64 4.71 7.70 10.12 3.91

Table 6.2: Comparison of Approach Two with Path Analysis

Intersection analysis Approach 2

(dB) (dB)

Avg. RMSE Max. RMSE Min. RMSE Avg. RMSE Max. RMSE Min. RMSE

GW1 9.43 11.25 7.64 8.12 9.68 6.95

GW2 4.90 6.95 3.54 3.37 5.07 1.52

GW3 7.87 9.95 3.97 6.29 9.02 3.43

GW4 10.66 15.60 2.65 10.45 15.88 5.34

GW5 9.43 13.75 1.38 8.89 12.47 3.80

GW6 10.79 22.37 4.70 11.11 23.56 4.41

GW7 7.26 14.24 0.46 6.25 12.69 0.56

GW8 9.27 12.64 4.71 7.70 10.12 3.91

Table 6.3: Comparison of Approach Two with Intersection Analysis
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6.2.1.3 Effect of samples at very short distances (1-2 km)

The OH model is valid for link distances between 1-10 km only. The results
for the overall comparison is shown for samples from 2-10 km, excluding
samples between 1-2 km. This is done because for samples at short distances,
the prediction of the OH model does not map well to the measured path loss.
To illustrate this, the path loss versus distance graphs for GW1 and GW2
are shown in Figure 6.14. The graphs show the measured samples (Blue),
the predicted loss of the Path analysis (Black) and the Approach Two (Red).
For samples at very short distances from the gateway, the measured path
loss is almost equivalent to or higher than the path loss measured at longer
distances. Moreover, the measured path loss goes much higher than the
path loss curve of the urban variant of the OH model and does not map well
to the measured losses for samples within 1-2 km. This unusual spike in the
path loss for short distances could be the result of nodes being indoors.

The Figure 6.15 illustrates the effect on the maximum RMSE for Approach
Two, Path and Intersection Analysis with samples from 1-10 km compared
to with samples from 2-10 km. Only the effect on the maximum RMSE is
shown as the number of samples within the 1-2 km only form a small part of
the overall samples for most gateways and hence, its effects can be witnessed
in the change in maximum RMSE compared to that of the average RMSE. In
some cases, the modified algorithm does not work well for samples between
1-2 km. Hence, the thesis performs all the evaluation for samples from 2-10
km range.
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(a) GW1

(b) GW2

Figure 6.14: Plot showing a spike in the path loss for distances between
1km-2km
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Figure 6.15: Comparison for Path, Intersection and Approach Two with and
without samples from 1-2 km
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6.3 Approach Three

To further investigate the gateways (GW4, GW5, GW6), Figure 6.16, Figure
6.18 and Figure 6.17 displays the real path loss against the predicted losses
obtained from the Path analysis and the Approach Two for the gateways.
The path loss curve of the pure rural/free-space OH variant is also included
in the graphs.

Figure 6.16: Pathloss(dB) versus Distance(km) plots for GW4

Figure 6.17: Pathloss(dB) versus Distance(km) plots for GW6

The black lines in the graphs represent the Path analysis losses that shift
among the two variants (urban and sub-urban), while the red lines represent
the Approach Two’s losses that vary within the limits set by the two vari-
ants. We notice that a big portion of the real path loss samples lies further
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Figure 6.18: Pathloss(dB) versus Distance(km) plots for GW5

below the lower limit (suburban variant). The weighted average approach
between the suburban and urban variant path loss did show an improvement
compared to the Path and Intersection analysis for the gateways as seen in
Figure 6.15. But this improvement is limited as the region within which the
loss can vary is limited between the path loss given by the two variants. In
other words, the plots show that the Approach Two is a more pessimistic
approach for the three gateways. To provide more room for the path loss to
vary, the range for the weighted averages is increased to include paths that
can lie between a suburban and rural/open/free space scenario (represented
by the green curve in the graphs).

The free space OH variant in Approach Two was considered only when
there was a certainty that the propagation path has only low cluttered
components with no line-of-site obstruction. To increase the range of the
weighted averages, setting the lower extreme limit for the weighted aver-
ages as the free space OH variant path loss will underestimate the loss to a
great extent. If a path has a higher percentage of low cluttered components
(L.C% > C%), a weighted average between the free space and urban vari-
ants extremes will give a very low path loss value. This tends to represent a
path close to open/free space in spite of some clutter presence in the path.
Hence, the lower limit for the averages is set to a value between that of the
suburban and free-space variant limits.

Considering that for a particular propagation setting, the difference in
path loss predicted by the urban and suburban variant is around 10 dB and
between the suburban and free-space variant is around 20dB, the lower limit
can be set to a value between the path loss represented by the suburban
and free-space variant. Approach Three calculates the weighted average
between the urban variant and the path loss between a suburban and free
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space-variant as shown in Equation 6.2.

PathLoss(dB) = C%× Lurb + L.C%× (Lsub−urb − Lfree)/2 (6.2)

where:
Lurb : Pathloss using the urban OH variant (dB)
Lsub−urb : Pathloss using the sub-urban OH variant (dB)
Lfree : Pathloss using the free/open space OH variant (dB)
C% : Cluttered components percentage
L.C% : Low-cluttered components percentage

The Table 6.4 compares the performance of the Path analysis, Approach
Two and Approach Three in terms of the average RMSE and the maximum
RMSE observed across all nodes for each gateway. The cells marked in green
show the best performance (lowest errors).

Path analysis Approach 2 Approach 3

(dB) (dB) (dB)

Avg. RMSE Max. RMSE Avg. RMSE Max. RMSE Avg. RMSE Max. RMSE

GW1 9.19 12.25 8.12 9.68 10.44 15.90

GW2 4.75 6.51 3.37 5.07 8.40 10.67

GW3 8.17 11.18 6.29 9.02 9.03 14.31

GW4 11.76 16.08 10.45 15.88 10.08 15.01

GW5 9.79 14.93 8.89 12.47 9.97 16.70

GW6 10.19 22.37 11.11 23.56 8.34 17.42

GW7 7.81 14.24 6.25 12.69 8.51 19.86

GW8 9.38 12.64 7.70 10.12 13.86 17.18

Table 6.4: Comparison of Approach Three with Path Analysis and Approach
Two

In general, the Approach Three does not show any improvement in the
average and maximum errors except for GW4 and GW6. Moreover, GW5
does not do better with Approach Three and the improvement shown by
GW4 using Approach Three is not significant compared to that of Approach
Two. Observing the graphs of the path loss versus distance in Figure 6.16,
Figure 6.18 and Figure 6.17 for GW4, GW5, and GW6, the expectation was
to have a more significant improvement in the performance on increasing
the range for the weighted average approach. This was expected because
majority of the samples have losses lower than the limits set for the weighted
averages in Approach Two.
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Figure 6.19 and Figure 6.20 plots the RMSE of the path loss for indi-
vidual nodes for these gateways (GW4, GW5, GW6). Due to the high
number of transmitting nodes for GW6, the graph is split into two: Figure
6.20a includes the nodes that show a reduction in the RMSE with Approach
Three and Figure 6.20b includes nodes that show worse performance with
Approach Three.

Figure 6.19: Plot of RMSE(dB) of each user node for GW4 and GW5

On closer analysis of the performance of the individual nodes for the
gateways, we observe that the Approach Three does show a significant im-
provement for around half of the nodes for GW4 and GW5 and 75% of the
nodes in GW6. While the reduction in errors of Approach Three is sig-
nificantly higher compared to that of the Approach Two for the first half
of the nodes in GW4 and GW5, the rest of the nodes shoot up the errors
leading to an increase in the overall maximum and average RMSE. The sig-
nificant improvement in some nodes gets hidden while computing the overall
performance of the approach for the gateways.

With Approach Three there is a possibility of having much lower path
losses than what the Approach Two predicts since the range for the weighted
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(a) Nodes showing improved performance for GW6

(b) Nodes showing increased errors for GW6

Figure 6.20: Plot of RMSE of each user node for GW6

averages is increased by setting the lower limit further below the sub-urban
variant. While these lower predicted path losses tend do improve the per-
formance significantly for some nodes, the errors shoot up for samples that
have measured path losses that are much higher.

There could be two reasons for this varied performance of Approach Three
among different nodes.

One of the reasons could be the possibility of having some nodes inside
buildings which results in a low received signal power (or high measured
path loss). The thesis tried to eliminate this issue by considering only nodes
with height less than and equal to 2 meters under the assumption that as
the nodes go higher the possibility of them being indoors increases. The
testing was carried out in a similar manner in the paper [41]. But this does
not ensure that all nodes within 2 meters high will be used outdoors. So
samples from nodes that lie on a very low cluttered path but was transmitted
from indoors, will result in a higher path loss than what the model predicts.
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Such samples will show a better performance with Approach Two compared
to Approach Three as the losses vary between the higher limits set by the
urban and sub-urban variants.

To verify this claim, shapefiles for each node is created, imported and
viewed with QGIS to get an idea of the route taken by the nodes. Shapefile
is a common storage format for locations and other attributes of geographic
features for use in GIS (geographic information systems). Some nodes as
shown in Figure 6.21 show a clear indication of nodes being outdoors and
forming an obvious route. On the other hand, some nodes in Figure 6.22
show samples that form a cluster as though they could be transmitted from
within a building. Moreover, some nodes show samples that are scattered
and located far from each other and do not form an obvious route. These
samples could have been transmitted during different times of the year. Also,
many nodes show a mixture of these patterns, hence making it difficult to
assign a node as being indoors or outdoors. The Figure 6.22 shows the
Google-map location of the clusters spotted in the shapefiles.

Figure 6.21: Shape files of nodes with a higher probability of being outdoors
as they follow a clear path (e.g. roads)
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Figure 6.22: Shape files of nodes with a higher probability of being indoors

Moreover, the graphs in Figure 6.16 and Figure 6.18 can contribute to the
reasoning of the possibility of having nodes indoors. Ideally, the path loss
should increase with distance, showing a curve similar to that of the Path
analysis with the OH model. But the graphs show a spike in the path loss
for samples at short distances which then tends to decrease with an increase
in the distance. This trend in the path loss for shorter paths could be the
effect of having nodes indoors.

The second reason behind the varied performance of Approach Three for a
set of nodes could be the assumption made about the transmit power. Since
we cannot obtain any information about the transmit power for the nodes,
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similar to the paper [41] we assume a transmit power set to the maximum
limit of 14 dbm in Europe. This will give an upper bound to the path loss
and hence would lead to an overestimation of the measured path loss for a
set of nodes. Therefore, as an example, as shown in Figure 6.23, assume a
packet is transmitted with a transmit power of +4 dbm, but the comparison
is done with an assumption for the transmit power as +14 dbm. The direct
comparison of the predicted path loss of Approach Two with the assumed
measured path loss will give better results than Approach Three, in spite
of Approach Three being closer to the actual measured path loss. Hence
directly comparing the true value of the losses in this case will not be the
right approach to verify whether the Path analysis or the weighted average
approaches perform better.

Since we cannot do a direct comparison of the predicted loss with the real
loss, it is difficult to estimate the suitable range for the weighted averages to
vary between i.e, the Approach Two or Approach Three. The analysis using
Approach Three is mainly a means to state that while the Path analysis
and Approach Two limits its evaluation between the urban and suburban
variants, the possibility of utilizing the other variants of the OH model
must not be completely excluded due to the assumptions made regarding
the transmitter settings and the indoor nodes.

Figure 6.23: Illustration of the issue with direct comparison of pathloss while
assuming the Tx.power of +14dbm

6.4 Relative comparison of the approaches

To avoid the issue of the possibility of having indoor nodes and having un-
known transmit power and antenna gains, a relative comparison can instead
be adopted. Here the difference in the predicted path loss of a particular
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approach is compared to the difference in the received signal powers. This
comparison is done for every combination of samples of one node and gate-
way pair.Equation 6.3 and Equation 6.4 represent the link budget equation
for two samples from the same node sent from two locations with variables
being Prx1, Prx2, PL1 and PL2. The dependency on common terms such as
the transmit power and antenna gains can be eliminated by subtracting the
two equations to give Equation 6.5.

The relative comparison will be able to track the changes in the predicted
pathloss of the models and compare them to the trend in the real received
power. To some extent, the relative comparison between samples of the
same node and same gateway will cancel out the dependency of antenna
gains and transmit powers. This is assuming the best case scenario that
the same user node will have the same antenna and will transmit packets
at the same power for all the samples. Moreover, it will also cancel out the
dependency of additional loss from buildings due to samples sent from an
indoor node to some extent. This is assuming that all the samples from
one node were transmitted from indoors. This kind of comparison is one
way to analyze the performance of the approaches but it will not be able to
detect if the absolute values of the predictions are comparable to the real
measurements.

Ptx = Prx1 +Gtx +Grx − PL1 − Lindoor (6.3)

Ptx = Prx2 +Gtx +Grx − PL2 − Lindoor (6.4)

∆Prx = ∆PL (6.5)

where:
Ptx : Transmit power (dBm)
Prx1,Prx2, : Received power at location 1 and 2 (dBm)
PL1, PL2 : Path loss at location 1 and 2 (dB)
Gtx, Grx : Transmit and receiver antenna gains
Lindoor : Additional loss due to indoor nodes (dB)

This can be used as a metric for comparing the trend captured by the
binary decision making approach using land cover map of the Path and
Intersection analysis of the paper [41] versus the trend captured by the
weighted average approaches using digital elevation models.

The Table 6.5 compares the percentage change in the average, maximum
and minimum RMSE of the approaches from the Path analysis. The cells
marked in green indicate the better performing approach for the gateway.
The more negative is the percentage, the higher is the reduction in errors.
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% Improvement of Approach Two % Improvement of Approach Three

(From Path analysis) (From Path analysis)

Max. RMSE Avg. RMSE Min. RMSE Max. RMSE Avg. RMSE Min. RMSE

GW1 -17.8 -14.4 -9.5 -17.4 -15 -10.9

GW2 -38.9 -25.8 -10.5 -41.9 -28 -15

GW3 -5.8 -18.4 -0.1 1.8 -15.1 0.2

GW4 -11.8 -5.4 -10.9 -12.5 -5.7 -8.5

GW5 -18.7 -12.9 -5.5 -19.8 -14.1 -6.5

GW6 2.2 -9.5 -60 4.2 -8.6 -45.9

GW7 -11.3 -18.9 -36.4 -12.7 -20.7 -93.1

GW8 -1.2 -3.1 -0.8 -3.9 -6.2 -3.3

Table 6.5: Comparison of the % improvement of Approach Two Approach
Three from Path Analysis

Approach Two shows an improvement from the Path analysis of up to
25.8% for the average RMSE, 38.9% for the maximum RMSE and 60%
for the minimum RMSE. While Approach Three shows an improvement
from the Path analysis of up to 28% for the average RMSE, 41.9%for the
maximum RMSE and 93.1% for the minimum RMSE.

The Table 6.6 compares the percentage change in the average, maximum
and minimum RMSE of the approaches from the Intersection analysis. The
cells marked in green indicate the better performing approach for the gate-
way. The more negative is the percentage, the higher is the reduction in
errors.

Compared to the Intersection analysis, Approach Two gives an improve-
ment of up to 25% for the average RMSE, 48.9% for the maximum RMSE
and 60% for the minimum RMSE. Similarly, the Approach Three gives an
improvement of up to 27.3%, 49.7% for the maximum RMSE and 45.9% for
the minimum RMSE.

We notice the majority of the cells in Approach Three is marked green,
hence showing a better improvement compared to Approach Two from both
the Path and Intersection analysis.
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% Improvement of Approach Two % Improvement of Approach Three

(From Intersection analysis) (From Intersection analysis)

Max. RMSE Avg. RMSE Min. RMSE Max. RMSE Avg. RMSE Min. RMSE

GW1 -30.7 -18.6 -4.3 -30.4 -19.2 -5.7

GW2 -37.6 -25.1 -10.5 -40.7 -27.3 -15

GW3 -1.6 -18.8 0.1 6.3 -15.5 0.2

GW4 -4.1 -3.6 5 -4.9 -3.9 7.8

GW5 -48.9 -19.2 48.4 -49.7 -20.3 46.9

GW6 2.2 -9.3 -60 4.2 -8.4 -45.9

GW7 -8.2 -8.2 1887.3 -9.7 -10.1 117.6

GW8 3.2 -3.4 -0.8 0.4 -6.5 -3.3

Table 6.6: Comparison of the % improvement of Approach Two Approach
Three from Intersection Analysis
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions

This thesis provides an analysis of the automated approaches used to estim-
ate the coverage of LoRa using remotely sensing methods. First, the thesis
delves into analyzing the suitability of the semi-deterministic channel model
ITU-R 1812, largely neglected by LoRa literature and compares its perform-
ance with the Path analysis using the empirical OH model. The motive was
to understand if a more complex and rich model like the ITU-R 1812 can
fulfill the objective of estimating accurately LoRa’s coverage or if we can
use simpler empirical channel models by effectively utilizing their capabilit-
ies to provide more accurate predictions. We observe that the ITU model
does not show any significant improvement compared to the OH model in
spite of the extensive input information it requires. The accuracy of path
loss predictions does not seem to increase by using a more complex semi-
deterministic model. We also notice that the ITU model heavily depends
on the accuracy of its inputs e.g. heights of the nodes and gateways for the
diffraction model.

The thesis then delves into the assessment of the state-of-the-art that uses
a combination of the land cover map obtained from remote sensing satellite
images and the Okumura Hata model for automating LoRa’s coverage estim-
ation. The thesis introduces the concept of weighted averages between the
OH variants (urban and sub-urban) to factor in the degree of urbanization
along a path (Approach One). The approach no longer depends on a binary
decision to select the type of variant like the Path analysis and also devi-
ates from the traditional method of using the OH model. The thesis further
tries to improve performance by replacing the use of land cover maps with
more accurate digital elevation models (Approach Two). The approach uses
heights to understand the clutter composition along a path. Furthermore,
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the logic to select the third OH variant (rural/free-space) using height data
is introduced in the algorithm to account for paths with only low cluttered
components and no line-of-sight obstruction.

The approach is further modified to investigate the performance on in-
creasing the limits for the weighted averages to include paths that could
have a very low degree of urbanization and represent scenarios between that
of the sub-urban and free-space environment (Approach Three). The ana-
lysis using this approach is done as a means to state that while the Path
analysis and Approach Two limits its evaluation between the urban and sub-
urban variants, the possibility of utilizing the other variants of the OH model
must not be completely excluded due to the assumptions made regarding
the transmitter settings and the indoor nodes.

The thesis further resorts to a relative comparison to eliminate the de-
pendencies on transmitter settings and the placement of the nodes. In con-
clusion, the thesis finds that the Approach Three improves the performance
from the state-of-the-art approaches and the ITU model and can better track
the changes in the received signal power. Moreover, the evaluation in the
thesis is carried out for link distances from 2-10 km.

7.2 Future Work

LoRa is proprietary and relatively new wireless communication technology.
Hence, not much work has been implemented in automatically predicting
it’s coverage. During the study and analysis of this thesis, many potential
topics have come across to improve the accuracy and performance of the
thesis work. The following represents some possible future work:

• Exploration of other semi-deterministic models for LoRa.

• Combining the land cover and digital elevation model data to gain
more insight into the obstacles in the propagation path i.e, for instance
including the excess loss due to foliage.

• The data in this thesis is limited to the Netherlands. Further evalu-
ation and verification of the modified approach with other areas can
be implemented using data from controlled measurement campaigns.

• Using machine learning techniques to automatically understand the
type of environment classification to predict the attenuation.
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