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The relation between humans’ interactive behavior and fixation
behavior in a coupled virtual reality driving simulator.

Loran Bogaart
Department of Cognitive Robotics, Delft University of Technology, Faculty of 3mE

Abstract

In order to design safe and effective interactions between autonomous vehicles (AVs) and human road users, it is essential
to understand the mechanisms underlying human-human merging behavior. Driving simulator experiments can be used to study
these mechanisms, but previous research has primarily focused on the behavior of individual drivers rather than the dynamics
of interactions. In addition, current experimental scenarios and data analysis tools do not adequately capture interactive human-
human merging behavior. To address these issues, I propose an experimental framework featuring a simplified highway-merging
scenario that can facilitate human factors research on merging interactions. In a case study with fourteen participants, I used the
framework in a coupled virtual reality driving simulator to show a relation between participants’ interactive behavior and fixation
behavior. This work shows how to better understand human-human merging interactions, which is essential for developing AVs
that can safely and successfully interact with other road users.

1. INTRODUCTION

Massive interest is going out to autonomous vehicles
(AVs), and work on various algorithms for AVs is published
regularly [1, 2, 3]. Work contains, for instance, path planning,
decision-making, and perception. Allowing an AV to drive on
a highway or through urban cities will involve solving highly
complex scenarios with much uncertainty [4]. It is a difficult
challenge to mitigate the complexity and uncertainties to
ensure safety, and until this day, numerous problems remain
unsolved for autonomous driving. For instance, when AVs
are integrated into the daily traffic, they will encounter
interactions with human drivers. In order to guarantee safety
(i.e., avoid collisions, perform safe actions) and make well-
estimated predictions on humans, a new technology, named
interaction-aware controller (IAC), is proposed [5]. IACs
incorporate two prediction models: a dynamical model to
predict future states and a human behavior model that pre-
dicts the human driver’s future actions. However, modeling
natural human behavior is a difficult challenge, and much
research is done to find optimal human behavior models.

1.1 Related work. Work in non-interactive traffic scenarios
model human behavior as car-followers with constant veloc-
ity [6, 7, 8, 9, 10, 11]. In such control approaches, surround-
ing ’human-driven’ vehicles are programmed in swarms with
fixed positions to the vehicle ahead. The AV may react to
upcoming vehicles, yet it cannot influence the other vehicles.
Predefined traffic scenarios are solved. However, such models
do not simulate natural human behavior and mainly focus
on controlling the AV. More advanced car-following models
allow the interacting vehicles to change accelerations [12,
13, 14, 15, 16, 17, 18]. As a result, a more natural human
behavior is realized, yet strong motion assumptions are made.
In this work, the car-following models are classified as
one-way interacting models that obey a leader-follower rule

[19]; the follower (human driver) may react upon the leader
(AV), but not vice versa. In other words, the main focus is
controlling the AV, and human behavior is modeled as an
individual with simple motion heuristics.

On the contrary, game theoretical-based approaches [20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30] incorporate a two-
way interacting model. Interesting scenarios involving two
vehicles are solved, and optimal solutions to a game are
found. In game theoretical-based approaches, taken actions
influence both the AV and the other vehicle’s future actions.
However, future actions taken by the human driver are based
on a rational utility-maximizing model. This simplification
made on human behavior does not hold in interactive driving.

A new framework to model human behavior is proposed
by Siebinga [19]. This approach does not model the vehicles
as individual drivers or rational agents but models a two-
way human-human interaction with communication. Two
interacting vehicles are both given a plan and a belief. The
belief about what the other will do is interchanged through
communication. This new interacting model is validated
with a case study in a coupled driving simulator involving
participants [31]. In the case study, the scenery is presented
in a 2D top-down view, and participants are tasked to merge
in a simplified merging scenario. However, it is assumed
that participants always observe the opponent, which does
not hold in 3D driving scenarios.

Besides mathematically modeling human behavior, inter-
esting research is done in quantifying humans’ gaze behavior
during driving scenarios [32, 33, 34, 35]. Analyzing gaze
behavior allows researchers to gain additional insights into
one’s area of interest at specific times during driving scenar-
ios. Furthermore, existing literature studies human’s merging
behavior [36, 37, 38]. Nevertheless, most work on gaze and
merging behavior focused on the behavior of single drivers,
which does not hold in interactive driving scenarios.
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1.2 Aim and hypotheses. Little is known about how
humans behave in a two-way interacting driving scenario
since previous work mainly focused on the behavior of single
drivers. The approach by Siebinga [19] does model the two-
way interacting approach. However, doing a case study in a
2D scenery is limited, and participants are expected to behave
differently in realistic 3D driving scenarios since they need
to observe the other vehicle.

This research addresses that gap by presenting a frame-
work for conducting human factors experiments using a
coupled virtual reality (VR) driving simulator. The frame-
work investigates interactive human-human driving behavior
during a simplified merging scenario in a 3D scenery. The
3D space is realized with new VR technologies. This space
makes studying participants’ areas of interest possible. The
framework relates this VR data to participants’ interactive
behavior (i.e., the behavior of controlling a vehicle). By
doing this research, I want to better understand the un-
derlying mechanisms of interactive human-human merging
interactions, which is crucial for creating AVs that can safely
interact with other road users. Furthermore, understanding
the interaction dynamics better might help future researchers
who incorporate human behavior models. This work, there-
fore, aims to find answers to the following research question:

What is the relation between participants’ interactive
behavior and fixation behavior?

In order to find answers to the aimed research question, I
constructed five sub-questions which are chronologically
revised to studiable hypotheses in Table I:

1) What is the effect of velocity differences on partici-
pants’ merging behavior?

2) What is the effect of velocity differences on the conflict
duration?

3) What is the effect of a different conflict duration on
the number of participants’ head rotations?

4) What is the effect of velocity differences on the number
of participants’ head rotations during the interactive
section?

5) What is the effect of velocity differences on the number
of participants’ head rotations before and after the
conflict?

A different relative velocity implies that the vehicles are
positioned differently in the tunnels. These various locations
might influence participants’ merging behavior since the
vehicles exit the tunnel at different times. For example, the
vehicle that exits the tunnel first is ahead of the opponent
and gets control earlier. As a result, this ahead vehicle might
reach the merging point earlier than its opponent. The first
question investigates whether this assumption holds.

The second question studies the effect of different velocity
conditions on the conflict duration. Participants are forced to
be in conflict and tasked to solve it naturally. I expect that
the different velocities influence the duration of the conflict
because the vehicles exit the tunnel at different times. In
other words, the earlier a vehicle exits the tunnel, the shorter

the conflict last due to one vehicle getting control earlier.
The third question investigates how often participants

observe the other vehicle during a different conflict duration.
If the conflict is longer, I assume that participants are more
aware of the opponent since they need more time to solve it.

The fourth question studies the fixations of participants. In
this case, participants are expected to be differently focused
on each other during the interactive section. I assume that
the participant who exits the tunnel first tries to observe
the opponent more often since this participant expects an
upcoming vehicle.

The fifth question investigates the number of fixations be-
fore and after solving the conflict. I assume that participants
fixate less on the opponent when the conflict is resolved since
the chance of a collision diminishes.

2. METHOD

2.1 Participants. Fourteen participants (3 females) between
22 and 65 (M = 33.6, SD = 15.2) volunteered in this research.
Everyone had good vision and was in possession of a driver’s
license. All participants signed an informed consent, and the
Human Research Ethics Committee (HREC) of the Delft
University of Technology approved this research.

Fig. 1: Overview of the experiment setup

2.2 Apparatus. Figure 1 shows the experiment setup. Two
desks are centered within a truss system that is placed
in a square with curtains attached, separating both desks
and minimizing light interference. An Alienware Aurora R9
computer with an NVIDIA GeForce RTX 3090 graphics card
is connected to a monitor on each desk. The experimenter
only uses these monitors. Each computer has a Varjo VR-3
head mount connected. In order to orientate the head mounts,
two HTC steamVR base stations 2.0 are mounted to the truss
system above each desk. Activating VR is done with the
SteamVR plugin in Steam [39]. The head mounts have eye
trackers integrated and broadcast the scenery with a 115-
degree viewing range. The scenery is built with Roadrunner
[40] and integrated into Unreal Engine, which simulates ve-
hicle dynamics using PhysX [41]. Two commercial Logitech
Driving Force GT steering wheels with corresponding pedals
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TABLE I: Hypothesized sub-questions with the aim to find the relation between participants’ interactive behavior and fixation behavior.

Hypothesis
1. The vehicle that is ahead has the highest probability of merging first.

2. Increasing the relative velocity decreases the conflict resolution time.

3. Participants’ average fixations on the opponent increase during longer conflicts.

4. The vehicle that is ahead will have higher average fixations on the opponent compared to the vehicle that is behind during the interactive section.

5. Participants’ average fixations on the opponent decrease when the conflict is resolved.

are used for controlling the vehicles. Vehicles are spawned
in the simulator by using an open-source software frame-
work called JOAN [42], developed at the TU Delft. This
software is built upon the CARLA open-source simulator
[43] (version 9.13). Furthermore, two Sony WH-1000XM3
noise-canceling headphones are provided to the participants
to prevent communication.

Fig. 2: A top-down view of the simplified merging scenario. Two
vehicles approach a merge point that fluently merges into a straight
section. The track is divided into three sections: tunnel section,
interactive section, and car-following section. Positive x is upwards,
and positive y is rightwards.

TABLE II: Measures of the track in Figure 2.

Parameter Value
lt 125 m
la 325 m
le 120 m
θ 45°

Track width 6 m
Vehicle length 4.7 m
Vehicle width 2 m

2.3 Environment design. In the simplified merging scenario
depicted in Figure 2, two vehicles of the same size approach
a predetermined merging point. The track is divided into
three sections: the tunnel section, the interactive section, and
the car-following section. The tunnels in the tunnel section
function as barriers that block participants’ vision to see the
other vehicle. In addition, the track has two approach sections
(la) with equal dimensions under an approach angle (θ). The
interactive section captures the actual merging behavior. If

the course of the road is followed, both vehicles will reach a
predefined merge point. The taken assumption on this merge
point is explained in section 3.2. At the merging point, the
track fluently merges into a straight car-following section
(le). All track dimensions are summarized in table II.

The merging scenario simplifies environmental factors. For
example, this scenario has no right of way, so the collected
data is symmetrical. Furthermore, a speedometer is integrated
into each vehicle’s dashboard, but other visual cues for
velocity (e.g., speed signs and trees) are not included. The
reason for this is that participants can better focus on the
interaction.

The track is built with Roadrunner, which provides an easy
and efficient way to design a track. Moreover, it is integrative
into Unreal Engine. Appendix A shows a complete overview
of the used track. This double-sided track is a mirrored
version of the simplified merging scenario visualized in
Figure 2. Section 2.4 explains the motivation for mirroring
the track. A wall is placed in the middle of the double-sided
track to make the other side invisible to the participants.
More walls are placed along the outer side of the track to
instruct participants on which side they will exit the tunnel.
Furthermore, they function as a boundary.

2.4 Experiment design. The experiment included seven
sessions with two participants each. During each session,
two vehicles were continuously spawned at various locations
with different initial velocities in opposite tunnels visualized
in Figure 2. As argued in section 2.3, the two tunnels
function as visual barriers. The predefined spawn locations
with the corresponding velocities are computed such that if
participants maintain their initial velocity, they will collide
at the merging point. This forces the participants to adapt
to the current situation and solve the conflict by avoiding
a collision at the merge point. Participants were exposed to
three initial velocity conditions:

1) 50-50 km/h,
2) 55-45 km/h,
3) 60-40 km/h.
For instance, condition 2 implies that the vehicle of

participant A gets an initial velocity of 55 km/h and the
vehicle of participant B an initial velocity of 45 km/h. This
also implies that participant A is seated in a vehicle that is
behind, whereas participant B is seated in a vehicle that is
ahead. Figure 3 illustrates the conditions and being ahead
or behind. The participant is able to steer the vehicle at any
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time. However, the initial velocity of each vehicle is fixed
until it reaches the end of the tunnel. By fixing the velocity
until this moment, I assume that the interaction starts when
the first vehicle exits the tunnel.

The conditions were repeated 48 times in random order
during each session. Each condition is repeated 16 times,
with a particular case for conditions 2 and 3. In these
conditions, the 16 trials are split into two sets of 8. For
example, in the first set of condition 2, participant A is seated
in a vehicle with a velocity of 55 km/h, and participant B
is seated in a vehicle with a velocity of 45 km/h. In the
second set of condition 2, participant A is seated in a vehicle
with a velocity of 45 km/h, and participant B is seated in a
vehicle with a velocity of 55 km/h. Additionally, participants
were randomly swapped between the tunnels. This ensures
that one does not notice the three conditions. In order to
create more randomness, five trials (≈ 10%) of condition
1 were added. However, during these trials, each vehicle is
spawned on one side of the double-sided track. Consequently,
participants will never have an interactive conflict since they
were alone on the track.

If a vehicle reaches the endpoint, the trial is stopped
automatically, and another is manually started directly after
through JOAN. Participants may experience motion sickness
in virtual reality [44]. Therefore, I integrated collision detec-
tion into JOAN, which stops the trial immediately when a
collision occurs.

Fig. 3: A top-down view of the velocity conditions. The length of
the roads illustrates the length of the tunnels. The different velocities
are indicated with velocity vectors. In condition 1, neither vehicle
is ahead or behind. In conditions 2 and 3, the right vehicle with a
lower initial velocity is ahead of the left vehicle that has a higher
initial velocity.

2.5 Procedure. To instruct participants, a similar top-
down view as Figure 2 was shown. The instruction mainly
explained how the track is designed and that participants’
vehicles were being spawned inside one of the two tun-
nels at predefined positions with various initial velocities.
Furthermore, participants were instructed to maintain these
initial velocities and that right-of-way is not applicable. The
participants were then requested to take their seats. A short
setup period started to orientate the Varjo head mounts
and to correctly place the participants in the driver seat.
Before the start of the actual session, participants performed

several training runs (≈ 5) to familiarize themselves with
the scenario. Condition 1 was used during each training
run. Finally, participants were provided with noise-canceling
headphones that played non-copyrighted music [45].

Each session took approximately 1 hour. This included a
15-minute setup period, a 15-minute break, and 30 minutes
of driving the trials. The length of this experiment is chosen
to be relatively short due to the possibility of experiencing
motion sickness in VR. I conducted an extra break when
participants experienced any form of motion sickness.

2.6. Data collection. Besides spawning the vehicles in
Unreal Engine through JOAN, it can log various data. In
this research, the data logger was used to collect the current
epoch in nanoseconds, position [x, y] of the vehicles, and
the velocity of the vehicles. The data collection for the head
mounts was done by a python wrapper that is based on
Varjo’s open-source C++ API [46]. After calibration, this
wrapper collected the current epoch in nanoseconds, head
mount rotation, and participants’ gaze. Only the head mount
rotations are used in this work since it is assumed to give a
good enough estimation of participants’ areas of interest at
specific times. The term fixation behavior is used throughout
this work and describes participants’ head rotations. Fixation
behavior is described in detail in section 3.4. Both data
collectors ran simultaneously during each session.

After the data collection, the data from JOAN and the
wrapper were merged on the closest epoch with a neglectable
small error since both epochs were captured at nanoseconds.
Collected data in which vehicles collided at the merging
point or at the car-following section were removed from the
data set. The five random trials during each session were
also removed from the data set since this does not include
interactive data. The entire data set included 315 trial files.

3. RESULTS

This chapter starts with analyzing participants’ merging
behavior, and findings show additional insights into who is
reaching the merge point first.

Next, two metrics to study interactive merging behavior
are used in this work [31]: 1) a visual representation of
the pair-wise behavior and 2) conflict resolution time. After
showing the visualization of the pair-wise behavior, the
conflict resolution time is explained and captured in a metric
for all trials.

Finally, various visualizations show participants’ fixation
behavior. These visualizations show the average fixations at
an area of interest during the interactive approach and before-
after the conflict.

3.1 Merging behavior. Figure 4 shows an in-depth analysis
of the probability of merging first for vehicle 1 depending on
the initial velocity for each session individually. The various
velocities entail that one vehicle is ahead of the opponent
(40 and 45 km/h), behind the opponent (55 and 60 km/h), or
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Fig. 4: Probability of merging first for vehicle 1. The blue dots
indicate the probability of merging first at the exposed velocity.

TABLE III: Probability of merging first for vehicles 1 and
2 combined, computed for each session individually and as an
average.

Session Probability
1 0.94
2 0.88
3 0.88
4 0.38
5 0.69
6 0.78
7 0.94

Average 0.78

neither (50 km/h), as argued in section 2.4. The probability
of merging first is visualized for vehicle 1, and 1−Pvehicle1

symbolizes the probability of merging first for vehicle 2. The
probabilities on condition 1 (50 km/h) indicate participants’
aggressiveness in merging. For example, if the probability
is higher than 0.5, it indicates that this particular participant
is more aggressive than the opponent since the interaction
starts simultaneously. Table III shows the average probability
of merging first for vehicles 1 and 2 when they are ahead.

The analysis shows that the vehicle ahead merges first
0.78 of the time. To further investigate this result, a logistic
regression [47] is performed on the dependent binary data
(i.e., reaching the merge point first or not) with velocity as an
independent predictor variable for each trial. The regression
model (β = −0.17, z-score = - 7.43, p = 1.09e−13) is
visualized in Figure 5 and shows a negative coefficient with
a statistical difference, indicating that the ahead vehicle will
most likely merge first.

3.2 Visualization of the pair-wise behavior. Understanding
what happens during each trial between participants is nec-
essary to study human behavior. Therefore, an illustration
is given in Figure 6 and shows the pair-wise behavior for
a random trial. The triangles in the panels indicate the
moment the vehicles exit the tunnel, and the squares indicate
the moment the vehicles reach the merge point. The cross
indicates when the conflict is resolved and is explained in
section 3.3.

Panel A shows the positions of both vehicles during the
trial. The light gray connected dots illustrate the positions in
time. As described in section 2.3, the roads in the interac-

Fig. 5: The logistic regression shows the relation between various
initial velocities and the merging behavior of vehicle 1. The dots
indicate the binary data (i.e., reaching the merge point first or not)

Fig. 6: Pair-wise behavior visualization of trial 44, session 4, and
condition 3. Panel A shows the vehicles’ positions individually,
and the connected markers visualize the relative positions in time.
Panel B shows correlating velocities. The headway against the
average traveled distance is illustrated in panel C. The trajectory
trace reflects the gap and relative velocity. When vehicles exit the
tunnel it is indicated with a triangle and reaching the merge point
with a square. The conflict resolution time is indicated with a cross
and describes the final moment participants solve the conflict.

tive section merge fluently with curvatures into the straight
section, but in this panel, it is assumed that the curvatures
at the merging point are straight section parts, resulting in
a fixed merge point. This assumption is made to efficiently
define the collision area later explained in this section. An
illustration is given in Appendix B. However, in practice,
the vehicles arrive differently at the merge point during each
trial due to free steering. Panel B shows the corresponding
velocity changes. Panels A and B illustrate information about
the vehicles’ dynamics, yet how participants react during the
interactive section is still vague.

Panel C is, therefore, used and captures the gap between
the vehicles, relative velocity, and safety margins. For a
detailed explanation, see [31] (p. 6). What is important re-
garding this work is the trajectory trace and the collision area.
The trajectory trace arises by computing the distance between
the front bumpers (i.e., headway) against the average traveled
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distances for both vehicles. The trace is positive if vehicle 1
is ahead. All conditions are designed such that if the vehicles
maintain their initial velocity, they collide at the merge point.
Vehicles cannot collide during the interactive section, yet
participants can be on a collision course. Therefore, the
collision area is defined to visualize a possible collision. If
the trajectory trace orientates towards the collision area, it
indicates that the vehicles are on a collision course. When the
trajectory trace enters the collision area, a collision occurs.
The collision area only exists at the merging point and at the
car-following section.

A brief elaboration on the trajectory trace and collision
area is needed to explain section 3.3. The pair-wise visual-
izations are mainly used to spot corrupted data and collision
data. Furthermore, it is used to validate the CRT algorithm.

3.3 Conflict resolution time. Both vehicles are positioned at
predefined locations in the tunnel with a corresponding initial
velocity, as described in section 2.4. By doing so, participants
are initially heading towards a collision (i.e., trajectory trace
pointing towards the collision area) and must change their
velocity during the interactive approach to solve the conflict.
During analyzing the trials, it is recognized that participants
often alternate between being on a collision course and
having a conflict solved, indicating that participants regularly
get back into conflict after solving it initially. Appendix C
emphasizes this. The work of Siebinga et al. [31] quotes:
”We define the CRT as the time between the start of the
interaction (tunnel exit) and the first moment the vehicles
are no longer on a collision course.”. Since the CRT often
occurred multiple times during a trial in this work, I define
the CRT as the time between the start of the interaction (first
vehicle exiting the tunnel) and the last moment the vehicles
are no longer on a collision course. The CRT algorithm [31]
computes if the vehicles will end up in the collision area
if they maintain their current velocities for each time step
in the trial data. At the last time step during the interactive
section, when vehicles are no longer on a collision course,
it is assumed that the conflict is resolved.

This research aims to find the effect of the velocity
differences on the conflict duration. Therefore, Figure 7
shows the distribution of all CRTs between the conditions
captured in a boxplot. Table IV summarizes the medians
of Figure 7 and the number of alternations of being on a
collision course or not. To statistically show a distinction
between conditions, a one-way ANOVA test [48] (F = 40.84,
p = 1.75e−16) is performed that compares the means of each
condition on the dependent CRT variable. The ANOVA test
can tell if the results are statistically significant, yet it does
not answer the differences between conditions. Therefore,
Table V shows the results of a Tukey-HSD test that compares
all possible pairs. Based on the results, I conclude that the
CRT changed significantly between conditions, being lowest
in condition 1 (50-50 km/h) and highest in condition 3 (60-40
km/h), indicating that a higher initial relative velocity leads
to more prolonged conflicts.

Fig. 7: Boxplot of all CRTs between conditions.

TABLE IV: Summary of the CRT results for each condition.

Condition # of alternates Median CRT
1 4.8 6.3
2 6.2 10.3
3 5.5 10.8

TABLE V: The results of the tukey-HSD test.

Comparison T p

1&2 -6.68 3.25e−10

1&3 -9.12 0
2&3 -2.56 2.91e−2

3.4 Fixation behavior. During the interactive section, par-
ticipants are in conflict and alternate between focusing on
the road and focusing on the other vehicle. Therefore, the
simulator has two areas of interest: 1) on the road and 2) on
the opponent. Two assumptions are made during the design
of the areas of interest. The first assumption is that fixations
on the speedometer are classified as fixations on the road
since participants were not focusing on the interaction at
this moment. The second assumption is that fixations to the
other side of the road are neglectable small compared to
fixations on the other vehicle. This assumption is made since
the walls indicate on which side the vehicle exits the tunnel.
Furthermore, it is expected that participants are not interested
in this area due to being tasked to focus on the interaction.

As argued in section 2.6, head rotations are used to de-
scribe when participants fixate on the areas of interest instead
of gaze. In order to determine when participants switch
between the areas of interest, a threshold needs to be found.
Therefore, Appendix D shows an analysis that visualizes the
head rotations against time during the interactive section
for multiple trials. This analysis is based on the python
wrapper, described in section 2.6, that returns a value of
1 for looking straight and a reduced value for every head
rotation. Rotating the head 90 degrees results in a value of
0. Based on the analysis, I assume that the threshold is at 0.95
since most peaks in head rotations crossed this value. In the
following sections, head mount rotations above the threshold
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are classified with a value of 1 (i.e., fixation on the road),
and head mount rotations below the threshold are classified
with a value of 0 (i.e., fixation on the other vehicle). This
classification of fixations on the areas of interest is defined
as fixation behavior.

This chapter separates the combined analysis of the fixa-
tion behavior in condition 1 and the individual analysis of
the fixation behavior in conditions 2 and 3. This is because
in condition 1 both vehicles enter the interactive section
simultaneously, whereas one vehicle is ahead of the other
in conditions 2 and 3.

Fig. 8: Aggregated fixation behavior of the participants in condition
1. The blue area illustrates fixations on the road, and the red area
represents fixations on the opponent during the interactive area. The
median conflict-resolved distance is visualized with the red vertical
line.

Fig. 9: Linear regression visualization for condition 1. The regres-
sion indicates the trend based on the average fixations at a certain
CRT.

3.4.1 Combined fixation behavior analysis. In condition
1, both vehicles exit the tunnel simultaneously. Therefore, it
can be assumed that collected data can be combined since

both participants are positioned in the same situation (i.e., a
vehicle is not ahead nor behind).

Summing the threshold values over all trials leads to a
fixation percentage on a particular area of interest which can
be visualized against traveled distance or time. It is chosen to
visualize the average fixations against the traveled distance
for one crucial reason: the distance traveled in time differs
for each trial since velocities differ over time, whereas the
distance of the interactive section is always the same. The
traveled distance contains only the distances of the interactive
section. Figure 8 visualizes the aggregated fixation behavior
during the interactive section. The fixation behavior and
traveled distances of each trial are linearly interpolated to
merge all concerning trials easily.

Besides having a figure that captures the fixation behavior
of all trials, individual traces (i.e., data containing fixations,
traveled distance, and CRT for one vehicle during a trial) can
show additional insight into the number of fixations during
the interactive section. Figure 9 shows the linear regression
[49] analyses on the individual average fixations at a certain
CRT. In this figure, the average of the individual fixation
trace describes all fixations between the tunnel exit and
merge point. This average is matched to the specific CRT,
indicated with the dots.

The CRT is also related to an index of the individual trace
and can be used to obtain the traveled distance. Appendix
E shows the histogram and kernel density estimation of
all traveled distances at which the conflict is resolved. The
median conflict-resolved distance is visualized with the red
vertical line in Figure 8.

3.4.2 Individual fixation behavior analysis. In Conditions
2 and 3, one vehicle is ahead of the other. Therefore, it is
expected that participants’ fixation behavior differs between
being ahead or behind. Figure 10 divides the participants
into two classifications: 1) a participant is ahead, and 2) a
participant is behind. For instance, the vehicle in condition
2 with a velocity of 55 km/h is initially positioned at the
tunnel’s beginning and thus classified as behind, whereas
the vehicle with a velocity of 45 km/h is positioned near
the tunnel’s exit and is classified as ahead, as visualized in
Figure 3. Figure 11 visualizes the linear regression analysis
for both conditions. The same approach as in section 3.4.1
is used to complete the figures.

3.4.3 Results of the fixation behavior analysis. The spike
in average fixations at 275 meters in Figure 8 and Figure 10
indicate the beginning of the curvatures, suggesting that the
participant starts focusing on steering more.

Table VI summarizes the results of the aggregated com-
bined and individual fixation behavior analysis. This table
captures the average fixations on the opponent over the
traveled distance in a percentage with corresponding statis-
tical Pearson values [50] of the linear regressions. No clear
statistical differences can be argued. Therefore, a multi-linear
regression [51] is performed between conditions on the de-
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pendent average fixation variable with independent variables:
CRT and relative velocity. The relative velocity describes
the condition. Based on the results shown in Table VII, I
found that participants’ number of fixations on the opponent
increased during more prolonged conflicts. Furthermore, the
relative velocity variable tells us that the number of fixations
decreases if the relative velocity is increased. Hence, the most
fixations occurred in condition 1 (50-50 km/h) and the fewest
fixations occur in condition 3 (60-40 km/h)

Figure 12 illustrates whether the participant ahead or
behind fixates more on the opponent. This boxplot captures
all the data from Figure 11 and enables the possibility
of performing a 2-sample T-test [52] to show statistical
differences between the behind and ahead participant within
condition 2 and 3. The T-test outcomes are summarized
in Table VIII and show that the participant ahead fixates
more on the opponent than the participant behind. A multi-
linear regression is performed on the same data to further
investigate this result and is summarized in Table IX. In
this multi-linear regression, an extra independent variable,
named behind or ahead, is added. The results also indicate
that the participant ahead fixates more on the opponent than
the participant behind.

My findings can be summarized as 1) a higher CRT results
in higher average fixations, 2) increasing the relative velocity
results in fewer average fixations, and 3) the participant
ahead fixates more on the opponent.

TABLE VI: Summary of the results of the fixation behavior
analysis.

Conditon Fixation on opponent [%] r p

1 0.31 0.31 4.44e−6

2 participant behind 0.24 0.02 0.84
2 participant ahead 0.31 0.43 3.28e−6

3 participant behind 0.18 -0.22 0.03
3 participant ahead 0.31 0.15 0.13

TABLE VII: Results of the multi-linear regression on all condi-
tions with dependent variable: average fixations and independent
variables: CRT and relative velocity.

Independent variable Regression coefficient T p

CRT 6.5e−3 3.63 5.74e−4

Relative velocity -4.4e−3 -4.59 5.47e−6

TABLE VIII: Two-sample T-test summary of Figure 12.

Condition t p

2 3.56 4.61e−4

3 5.77 3.02e−8

TABLE IX: Results of the multi-linear regression on conditions 2
and 3 with dependent variable: average fixations and independent
variables: CRT and behind or ahead.

Independent variable Regression coefficient T p

CRT 5.0e−3 2.31 2.14e−2

Relative velocity -7.1e−3 -3.62 3.30e−4

Behind or ahead 7.3e−2 3.29 1.09e−3

Fig. 10: The aggregated individual fixation behavior is divided into
a participant being ahead or behind for conditions 2 and 3. The blue
area illustrates fixations on the road, and the red area represents
fixations on the opponent during the interactive area. The red line
illustrates the median conflict-resolved distance

Fig. 11: Linear regression visualizations for conditions 2 and 3. The
average fixations are computed for each CRT individually, indicated
by the dots.

3.5 Before-after CRT analysis. Intuitively it is expected
that participants’ fixation behavior differs between being
in conflict and after resolving it. Accordingly, this section
analyses the fixation behaviors before and after solving the
conflict within conditions. Multiple linear regressions are
performed on the before-after data to indicate an increase
or decrease in average fixations.
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Fig. 12: Boxplot visualization of the average fixations on the
opponent for conditions 2 and 3, divided into being ahead or behind.

3.5.1 Combined before-after CRT analysis. In section 3.4,
it is argued that the aggregated data can best be visualized
over the traveled distance. In this chapter, it is best to
visualize the aggregated data over time. The reason behind
this is that a specific CRT is related to an individual trace. If
one subtracts the CRT from the particular time trace, the trace
can be divided into two parts: 1) negative time representing
fixation behavior before the CRT and 2) positive time rep-
resenting fixation behavior after the CRT. Furthermore, the
CRT gets aligned at time zero for each individual trace in the
data set. This enables the visual comparison of the fixation
behavior before-after the CRT over all trials and is shown in
Figure 13. In this figure, the data is linearly interpolated so
that the aggregated data only contains individual traces with
an equal number of data points.

3.5.1 Individual before-after CRT analysis. Figure 15
shows the aggregated fixation behavior of participants before
and after the CRT for conditions 2 and 3, divided into a
participant being ahead and behind. The same approach as
in section 3.5.1 is used to complete the figure.

3.5.3 Results before-after CRT analysis. As argued in
section 1.2, I presume that participants fixate more during a
conflict than after. Therefore, this before-after CRT analysis
aims to show differences in participants’ average fixation
behavior during and after solving the conflict. To compare
equal amounts of data, it is chosen to study the fixation
behavior 5 seconds before and after the CRT. I chose the
5 seconds since Figures 13 and 15 show the most fixations
around this period.

Table X summarizes the fixation behaviors of Figure 13
and Figure 15 in a percentage. This table suggests that

Fig. 13: Before-after CRT analysis for condition 1. The figure shows
the fixation behavior in percentages for both areas of interest, the
CRT at zero, negative time corresponding to fixation behaviors
before the CRT, and positive time representing fixation behaviors
after the CRT.

Fig. 14: Linear regression analysis 5 seconds before and after the
CRT for condition 1.

TABLE X: Summary of 5 seconds before-after CRT analysis for
each condition. The values represent percentages.

Condition CRT - 5 sec CRT + 5 sec
1 0.16 0.35

2 participant behind 0.14 0.29
2 participant ahead 0.19 0.38

3 participant behind 0.12 0.1
3 participant ahead 0.19 0.17

participants fixate more on the opponent after the CRT than
before the CRT in conditions 1 and 2, whereas this is the
opposite for condition 3.

To statistically dive into the numbers of Table X, linear
regressions are performed in Figure 14, Figure 16, and
Figure 17 for condition 1, 2, and 3 respectively. In these
visualizations, the average fixation of 5 seconds before and
after the CRT is computed for each individual trace. In each
individual trace, the time located at the index of negative
or positive 5 seconds is used to match the average fixation,
resulting in the dots. Table XI summarizes the Pearson values
of the linear regressions. Based on these results, I cannot
statistically prove clear differences in fixations 5 seconds
before or after the CRT.
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Fig. 15: Individual fixation behavior before-after CRT for conditions
2 and 3, divided into being ahead or behind. The fixation behavior
is visualized against time. The CRT is located at zero, negative
time represents fixation behavior before the CRT, and positive time
represents fixation behavior after the CRT.

Fig. 16: Linear regression analysis 5 seconds before and after
the CRT for condition 2. The top two figures illustrate the linear
regression for the participant being behind. The lower two figures
illustrate the linear regression for the participant being ahead.

4. DISCUSSION

This chapter starts with a discussion of the methods.
Next, it discusses the findings and if the hypotheses can
be confirmed or denied. Finally, a glance is given at the
implications of this work.

4.1 Discussion of methods. In order to let the participants
behave as naturally as they would in real driving scenarios, I

Fig. 17: Linear regression analysis 5 seconds before and after
the CRT for condition 3. The top two figures illustrate the linear
regression for the participant being behind. The lower two figures
illustrate the linear regression for the participant being ahead.

TABLE XI: Summary of 5 seconds before-after CRT analysis
divided into combined, being behind, or being ahead.

Conditon Peason value CRT - 5 sec CRT + 5 sec
1 r 0.52 0.76

p 2.30e−6 4.52e−21

2 participant behind r 0.18 0.47
p 9.69e−2 3.96e−7

2 participant ahead r 0.3 0.54
p 8.65e−3 2.18e−9

3 participant behind r 0.02 -0.22
p 8.41e−1 2.39e−2

3 participant ahead r 0.20 -0.04
p 4.96e−2 7.12e−1

considered two factors during the environment- and experi-
ment design. The first consideration concerns disregarding
velocity cues (e.g., trees, speed signs). The speedometer
gives the participant some visual feedback on the velocity,
but it is limited and makes speeding easy. Better velocity
indicators are useful in virtual reality since perceiving speed
is difficult [53, 54]. Literature shows various solutions to
improve participants’ speed perception. For instance, sound
effects of the vehicle’s engine are proven to diminish speed-
ing [55]. Advanced auditory and visual feedback is not
included in this work, despite the benefits it could have on the
studied human behavior. The second consideration is about
attaching mirrors to the vehicles. The Varjo head mounts
could only be used in the newest version of Unreal Engine,
which consequently led to the newest version of Carla. This
Carla version is based on a forked Unreal Engine. In this
forked version, the option to use mirrors is not available. A
workaround is found, yet this led to a tremendous decrease
in process performance. Accordingly, mirrors are excluded,
and an increased approach angle is chosen, so mirrors are not
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needed during the interactive section. Nevertheless, mirrors
are presumably important in future research when studying
participants’ natural behavior in different traffic scenarios.

Another limitation is that participants are free to steer on
a 6-meter wide road, which leads to deviations from the
middle of the road. This could have led to unrealistic traveled
distances, resulting in wrongful related data. Furthermore,
the curvatures around the merging point are needed to merge
the interactive sections into the straight section smoothly.
However, a considerable simplification is made here. The
merge point is taken as a predefined point, but in practice,
it should be a merge line since participants always arrive
differently at the merge point due to the curvatures in the road
and free steering. Hence, it remains to be determined how
the collision area should be defined based on the curvatures
and merge line. It is recommended to do further research in
correctly converting the merge point into a line. Having a
more realistic collision area will probably result in different
CRTs.

Appendix F shows another limitation which is the negative
velocity bump recurring every time one takes control (i.e.,
uses the pedals). In some cases, this has a negative effect
on the CRT since the velocity of the vehicles is changed
unknowingly to a different velocity (i.e., a higher initial
velocity results in a more significant velocity drop). Hence,
in some trials, it is not reliable that the participant solved the
conflict, but it was solved due to this random error. Therefore,
in future work, one must investigate which software (JOAN
or Unreal Engine) causes this error.

After evaluating the experiment, the interactive section
might be too long. This is due to several reasons. First,
the CRT is defined as the final moment in time participants
deviate from the collision course. This definition arose since
multiple conflicts are generally solved during a trial, indi-
cating that participants have much time to alternate between
being on a collision course or not. Second, as argued above,
it is difficult for participants to perceive speed. The long
interactive section only amplifies this effect since the other
vehicle is often quite far away in the participants’ viewing
range. Therefore, I expect more realistic interactions with a
shorter interactive section. Also, fewer alternations between
being on a collision course or not are expected, which
probably results in different CRTs.

Another significant limitation needs to be discussed. The
fixation data for the participant behind might be heavily
influenced by the fact that the participant needs less steep
head rotations due to almost or already (i.e., this depends on
the velocity profile of the ahead vehicle) having the other
vehicle in the viewing range when exiting the tunnel. Con-
sequently, one does not cross the threshold used to indicate
when one switches attention between the areas of interest,
while in practice, the participant is fixating on the opponent.
As described in section 3.4.3, the ahead vehicle fixates more
on the opponent, yet this result might be different since
the average fixation for the participant behind are probably
higher. In future research, it is advised to include the forward
[x, y] gaze data combined with head rotations instead of head

rotations only.
A wide variety of statistical techniques exist to empower

the statistical significance of data in behavioral science
[56, 57]. Even within specific techniques, more in-depth
approaches can be used to prove relations. For example, sta-
tistical interactions [58] investigate an independent variable’s
effect on another independent variable. In this work, more
straightforward techniques are used to illustrate relations.
Nevertheless, these techniques still suffice in answering the
hypotheses statistically.

A final limitation of the method is the number of partici-
pants. Fourteen participants volunteered in this work, which
resulted in an interesting analysis with quite some data.
However, the results will be strengthened if more participants
are recruited (i.e., increasing the statistical power) [59].

4.1 the effect of velocity differences on the merging be-
havior of participants. Section 3.1 shows the probability of
merging first. The probability is statistically justified with a
logistic regression on the binary merging data, and results
show a negative regression coefficient with a p < 0.05,
indicating that the ahead vehicle most likely merges first with
a statistical significance. Hence, the null hypothesis can be
rejected, confirming hypothesis 1 in Table I.

4.2 The effect of velocity differences on the CRT. The
metric in section 3.3 captures all the CRTs per condition,
and the ANOVA test statistically compares the differences
in medians. The ANOVA test shows a p < 0.05, suggesting
that increasing the relative velocity increases the CRT. Thus,
hypothesis 2 in Table I can be denied based on this finding.

A possible explanation that substantiates the findings is
proposed in the work of Siebinga et al. [31]. They approach
conditions according to the level of conflict. The level of
conflict concept with respect to this work could be sum-
marized as follows: smaller deviations in relative velocity
during the interactive section are needed in condition 1 to
solve the conflict compared to conditions 2 and 3. This is
because the initial headway is zero in condition 1, resulting
in a flat trajectory line toward the collision area. In contrast,
in conditions 2 and 3, the trajectory trace starts under an
angle. This difference holds that changes in relative velocity
in condition 1 will solve the conflict more easily compared to
conditions 2 and 3. The level of conflict concept is excluded
in this work, yet it might have shown interesting findings
that enhance answering the hypothesis.

Another possible effect of this result could be that increas-
ing the relative velocity leads to unawareness in combination
with the limitation on speed perception. This assumption
mainly leads to a limitation on CRTs found in conditions
2 and 3. The CRT is computed based on the assumption that
the interaction starts when the first vehicle exits the tunnel. In
condition 1, both vehicles exit the tunnel simultaneously, so it
is known that the interaction starts immediately. Contrary to
conditions 2 and 3. In these conditions, there is a difference
in time between the vehicles exiting the tunnels. Appendix
G shows the effect of different initial relative velocities by
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visualizing the velocity traces of the first vehicle exiting the
tunnel over all trials for conditions 2 and 3. Results show
that participants in almost all cases start speeding shortly
after exiting the tunnel. This has the most effect on condition
3. Herefore, the assumption of starting the interaction when
the first vehicle exits the tunnel might heavily influence
the found CRTs. In future research, decreasing the relative
velocity differences between conditions is advised.

4.3 the effect of different conflict durations on participants’
fixation behavior. Hypothesis 3 in Table I aims to find an
answer to the relation between the CRT and participants’
fixation behavior. The analysis in section 3.4 shows the
trends within conditions with corresponding Pearson values.
To reject the null hypothesis within a condition where
multiple samples are compared, a Bonferroni correction [60]
needs to be applied to decrease the false positive rate. Hence,
the value to reject the null hypothesis is α < 0.01 (i.e., 5
samples). Based on this correction, the null hypothesis can
be rejected for condition 1 and for the participant ahead in
condition 2. The failure to reject the null hypothesis for the
participant being behind in conditions 2 and 3 may be due
to the limitation of not exceeding the threshold, as argued
in section 4.1. Based on these findings, I conclude that the
individual linear regression analyses within the conditions
do not immediately indicate a clear trend with statistical
significance. Therefore, a multi-linear regression analysis
between the conditions is performed to show a clear relation
with statistical significance. The model indicates that higher
CRTs lead to more fixations on the opponent, confirming
hypothesis 3.

4.4 The differences in participants’ fixation behavior dur-
ing the interactive section. Hypothesis 4 in Table I investi-
gates differences in fixation behavior between being ahead
or behind. There is no difference in fixation behaviors in
condition 1 since both participants are positioned in the same
situation. Hence, this hypothesis applies to the results of
conditions 2 and 3. The null hypothesis can be rejected based
on comparing the p-values of the T-test to the Bonferroni
correction and by the multi-linear regression, confirming
hypothesis 4.

4.5 The differences in participants’ fixation behavior be-
fore and after the CRT. It is chosen to study the fixation
behaviors 5 seconds before and after since the most aver-
age fixations occurred during this period. This shows an
interesting finding which indicates that participants focus
heavily around the CRT. In conditions 1 and 2, the trend 5
seconds after shows a more substantial r value than before,
indicating that participants fixate more after the CRT than
before with statistical significance. On the contrary, the
Pearson values in condition 3 show the opposite result,
suggesting that participants fixate less after the CRT than
before. Furthermore, the statistical power is insignificant in
two out of four cases.

Based on these findings, no clear answers are found
to hypothesis 5 in Table I, and more extensive statistical
techniques are advised to find answers to this hypothesis.

4.6 Discussion of implications. Results show that the
proposed metrics by Siebinga et al. [31] can also be used
for human behavior analyses in the coupled virtual reality
simulator. The framework shows that traditional velocity and
position visualization can be extended. Moreover, using the
framework can aid in comparing human-human behavior in
interactive scenarios across trials and between conditions in
a meaningful and realistic way.

Integrating fixation behavior can be valuable for re-
searchers incorporating human behavior models since it re-
veals humans’ attention during driving scenarios. For exam-
ple, Siebinga et al. [31] assume that participants constantly
observe the other vehicle during a trial, which is clearly not
the case based on the shown results.

5. CONCLUSION

This work showed a framework to study interactive
human-human merging behavior in a coupled virtual reality
simulator. The analyses are done on participants’ merging
behavior, interactive pair-wise behavior, conflict resolution
time, and fixation behavior. Furthermore, the conflict reso-
lution time is related to humans’ fixation behavior. Various
statistical techniques are used to justify answers regarding
the relation between participants’ interactive behavior and
fixation behavior during a simple merging scenario. The main
findings can be summarized as follows:

1) Humans who are ahead of the opponent most likely
merge first.

2) Increasing the relative velocity yield longer conflicts.
3) Humans focus more on the opponent during longer

conflicts.
4) Humans observe the opponent more often when they

are initially ahead compared to humans positioned
behind.

No clear answer is found to the following sub-question:

1) What is the effect of velocity differences on the number
of participants’ head rotations before and after the
conflict?

This work may have utility to researchers that incorpo-
rate human behavior models since it shows that integrating
fixation behavior is essential to understand human-human
merging behavior. The simulator is believed to be a valuable
tool for studying interactive merging behavior between a
pair of human drivers. Moreover, future work can extend
the simulator to study interactive human-human behavior
in various traffic scenarios. The ultimate goal is to under-
stand humans better and improve traditional human behavior
models, which will enhance the safety and predictions of
autonomous vehicles.
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Behavior During Simulated Driving: Elements for a Visual Driving
Aid,” Driving Assessment Conference, vol. 3, no. 2005, Jun. 2005.
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APPENDIX

A. Overview entire track

Figure 18 shows the overview of the mirrored track. Both sides have equal dimensions. The walls function as boundaries
and as waypoint indicators. Another wall is placed between the two sides to make the other side invisible to participants.

Fig. 18: Overview of the two-sided track.



B. Overview of the simplified curvatures at the merging point

Figure 19 shows the simplification made at the merging point.

Fig. 19: One side of the track with the curvatures at the merging point simplified.



C. Analysis of trails with multiple conflict resolution times

Figure 20 visualizes the general pair-wise behavior for all conditions. During analysis, it is discovered that the CRT can
be found multiple times. The average amount of CRTs found during a trial is 4.8, 6.2, and 5.5 for conditions 1, 2, and 3
respectively. After analyzing the trials it is concluded that the final CRT is the most reliable one in this work.

Fig. 20: Visualization of the pair-wise behavior for each condition. Results show that in each condition multiple CRTs are found.



D. Head mount rotation analysis to determine the threshold

Figure 21 shows two examples for each condition of the head mount rotation against time during the interactive section.
The analysis shows that if participants look straight, the output is near 1 and each time their attention switches to the other
vehicle, a peak arises. This peak is steeper near the merging point compared to peaks at the beginning of the interactive
section. After analyzing all trails, a threshold of 0.95 is chosen. Values > 0.95 indicate that a participant is focused on the
road, whereas values < 0.95 imply one is focused on the other vehicle. The figures for all trails can be found in the Data
Availability section.

Fig. 21: Head mount rotations against time to determine the threshold when one switches between areas of interest. Peaks arise when one
fixates on the the opponent.



E. Histograms for resolved conflict at traveled distance for each condition

Figures 22, 23, and 24 show the histograms and kernel density estimations of each condition. The histograms show the
number of occurring traveled distances for specific CRTs captured in bins.

Fig. 22: Histogram and kernel density estimation condition 1

Fig. 23: Histogram and kernel density estimation condition 2



Fig. 24: Histogram and kernel density estimation condition 3



F. Limitation on velocity bumps

Figure 25 illustrates the negative velocity bumps with red squares. These bumps always occur when participants take
control. This is dependent on the initial velocity. Greater initial velocities result in greater negative velocity bumps.

Fig. 25: Visualization of the negative velocity bumps for condition 1, 2, and 3.



G. Velocity traces ahead vehicle until behind vehicle leaves the tunnel

Figure 26 shows the velocity traces of the ahead vehicle exiting the tunnel until the behind vehicle exits the tunnel. What
can be seen is that the ahead participants start speeding after exiting the tunnel. The time between the ahead and behind
vehicle leaving the tunnel is 2.25 seconds in condition 2 and 4.67 seconds in condition 3. This suggests that speeding has
the most effect on condition 3. Furthermore, it indicates that the interactive time for condition 3 is much longer compared
to condition 2, which influences the outcome of the CRTs.

Fig. 26: Visualization of the velocity traces of the ahead vehicle in conditions 2 and 3.
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