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a b s t r a c t 

This paper introduces a spectral model for a moving cylindrical heat source in an infinite conductive- 

convective domain. This physical process occurs in many engineering and technological applications in- 

cluding heat conduction-convection in ground source heat pump systems, where the borehole heat ex- 

changers likely go through layers with groundwater flow. The governing heat equation is solved for 

Dirichlet and Neumann boundary conditions using the fast Fourier transform for the time domain, and 

the Fourier series for the spatial domain. A closed form solution based on the modified Bessel functions 

is obtained for the Dirichlet boundary condition and an integral form for the Neumann boundary condi- 

tion. Limiting cases of the moving cylindrical heat source to represent a moving line heat source are also 

derived. Compared to solutions based on the Green’s function and the Laplace transform, the spectral 

model has a simpler form, applicable to complicated time-variant input signals, valid for a wide range of 

physical parameters and easy to implement in computer codes. The model is verified against the existing 

infinite line heat source model and a finite element model. 

© 2020 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Heat conduction-convection in an infinite domain subjected to 

 heat source may be regarded either a case with a moving source 

f heat through a conductive medium, or a case of a convec- 

ive medium passing a heat source. The moving heat source or 

edium arises in many technological and engineering applications, 

f which are the machining process [11] and the ground source 

eat pump (GSHP) system [2] . This paper focuses on the GSHP 

ystem, a rapidly growing renewable energy technology, primarily 

onstituting a vertical borehole heat exchanger that collects and 

ejects heat from and to the ground to be used for heating and 

ooling of buildings. The borehole can go as deep as 200 m in the 

round and likely passing soil layers with groundwater flow, giving 

ise to conduction-convection heat flow. 

Modeling conduction-convection heat flow in a saturated 

orous domain subjected to cylindrical Dirichlet or Neumann 

oundary conditions can readily be made using numerical methods 

uch as the finite element method, the finite volume method or a 

ybrid between them. Among others, Al-Khoury et al. [3] and Nam 
∗ Corresponding author. 
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n

t

t
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017-9310/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article
t al. [19] utilized the finite element method to simulate heat flow 

n GSHP systems constituting layers with groundwater flow. Yavuz- 

urk et al. [25] and Nabi and Al-Khoury [17,18] utilized the finite 

olume method for this purpose. Recently, Cimmino and Baliga 

10] developed a computational model utilizing the control-volume 

nite element method (CVFEM), which is a hybrid between the fi- 

ite element method and the finite volume method, for modeling 

eat flow in ground source heat pump systems under the effect of 

roundwater flow. Despite the versatility of the numerical meth- 

ds they are computationally demanding, and the finite element 

ethod, in particular, exhibits shortcomings in simulating highly 

onvective problems. These make the analytical methods more ap- 

ealing. 

However, modeling this system analytically is intricate due to 

he involved mathematical procedure to solve the governing par- 

ial differential equations exactly (see [24] for analytical solutions 

f heat transfer problems). Carslaw and Jaeger [9] were among 

he firsts to introduce analytical solutions to heat conduction- 

onvection problems using the moving heat source/domain con- 

ept. They provided analytical solutions to the moving infi- 

ite line heat source using the Green’s function method and 

o the moving infinite cylindrical heat source using the Laplace 

ransform. 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A schematic representation of the physical domain 
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The Green’s function solution of Carslaw and Jaeger has been 

mployed intensively to formulate analytical models for GSHP sys- 

ems involving groundwater flow. Sutton et al. [22] adopted the 

reen’s function solution for a moving infinite line source to sim- 

late 2D heat flow in GSHP systems with groundwater flow. Simi- 

arly, Diao et al. [12] adopted Carslaw and Jaeger’s solution to sim- 

late the thermal interaction in a domain consisting of multiple 

nfinite line heat sources. Capozza et al. [8] implemented the mov- 

ng infinite line source model and provided three solution forms: 

losed analytic, asymptotic and tabulated. 

Molina-Geraldo et al. [16] extended the moving infinite line 

ource to a moving finite line source in a 3D domain using the 

reen’s function method, and provided an elegant comparison be- 

ween the two line source models. Similarly, Rivera et al. [20] in- 

roduced an analytical solution to the moving finite line source, 

aking into consideration the surface temperature and a spatially 

ariable land use. More recent, Erol and Francois [14] elaborated 

n Molina-Geraldo et al. [16] model to simulate a moving finite 

ine heat source in a multilayer domain including groundwater 

ow. 

In a further development in modeling the moving heat sources, 

hang et al. [26] extended the 3D finite line source model to a 

oving finite cylindrical heat source using the Green’s function 

ethod. Likewise, Zhou et al. [27] formulated a moving cylindri- 

al heat source model for GSHP systems. 

Apparently, the Green’s function seems to be the technique that 

s largely being adopted for modeling convective-conductive heat 

ow in GSHP systems. Its formulation is relatively simple com- 

ared to that derived from the Laplace transform, making it easier 

o handle in computer codes. In Section 6 we discuss these two 

olutions and give examples of their formulations. Basically, the 

reen’s function solution of the line heat source is in reality a so- 

ution for an instantaneous point source with a unity thermal load, 

here one or more points aggregated together to simulate infi- 

ite or finite line heat sources. The solution for the moving infinite 

ine source is represented by a single integral over time, and that 

or the moving finite line source represented by a double integral: 

ne over time and another over the length of the heat source. For 

n infinite cylindrical heat source, however, the solution requires a 

riple integral: one over the azimuth of the point, another over the 

zimuth of the cylinder and one over time. The integrals in many 

ases cannot be evaluated in closed forms and might impose dif- 

culties to solve numerically, especially for relatively far distances 

nd highly convective velocities. Yet, there are good attempts to 

acilitate these integrals, see for instance Zubair and Chaudhry 

28] , Molina-Geraldo et al. [16] , Zhang et al. [26] and Zhou et al.

27] . 

In this paper we depart from the Green’s function and the 

aplace transform and introduce a spectral model for heat flow 

n a convective infinite domain passing a cylindrical heat source. 

he heat flow is analyzed in a moving 2D domain in the xy −plane,

hown schematically in Fig. 1 . The spectral analysis is utilized 

o solve the governing heat equation for prescribed Dirichlet and 

eumann boundary conditions. This method relies basically on the 

ourier series to solve the governing equation in the spatial do- 

ain and the fast Fourier transform (FFT) to solve it in the tem- 

oral domain. Compared to models based on the Green’s func- 

ion and the Laplace transform, the spectral model has a sim- 

ler formulation, applicable to complicated time-variant input sig- 

als, computationally efficient and easy to implement in computer 

odes. Its Fourier series summation (rather than integration) makes 

he solution less restrictive on the model physical and thermal 

arameters. Additionally, unlike the inverse Laplace transform, in- 

erse calculation of the spectral model is rather straightforward 

ue to the use of the inverse fast Fourier transform (IFFT) algo- 

ithm. 
T

2 
. Governing equations 

The equation governing heat conduction-convection in an in- 

nite, homogeneous, isotropic domain, moving with velocity −U

long the x -axis, can be expressed as 

∂ 2 T 

∂ x 2 
+ 

∂ 2 T 

∂ y 2 
+ 

U 

α

∂T 

∂x 
− 1 

α

∂T 

∂t 
= 0 (1) 

n which T ≡ T ( x, y, t ) is the temperature (K) in an xy −plane, and

= λ/ (ρc) is the material thermal diffusivity (m 

2 /s) with λ the 

hermal conductivity (W/(m.K)), ρ the mass density (kg/m 

3 ) and c 

he specific heat capacity (J/(kg.K)). 

The domain is initially at zero temperature, and for times t > 0 

t is subjected to Dirichlet or Neumann boundary conditions at 

 

2 + y 2 = a 2 , with a the radius of the heat source (see Fig. 1 ). The

irichlet boundary condition entails 

 (a, θ, t) = T in (t) (2) 

here T in is any time-dependent input temperature signal. The 

eumann boundary condition implies 

−2 πaλ
∂T (r, θ, t) 

∂r 

∣∣∣∣
r= a 

= Q in (t) (3) 

here Q in is any time-dependent input heat flux signal, and r, θ
re the polar coordinates of the cylindrical heat source. 

Since the cylindrical cross section is periodic (continuous) in 

he azimuth ( θ− direction), the following physical constraints are 

aintained: 

 (a, θ, t) = T (a, θ + 2 π, t) 

2 πaλ ∂T (r,θ ,t) 
∂r 

∣∣
r= a = −2 πaλ ∂T (r,θ+2 π,t) 

∂r 

∣∣
r= a 

(4) 

. Solving the governing equations 

The solution to Eq. (1) can be expressed in a more convenient 

ay [9] , as 

 (x, y, t) = u (x, y, t) e κx (5) 

here u ( x, y, t ) is some function in space and time, and κ is

 constant, needs to be determined. Substituting Eq. (5) into 

q. (1) gives 

∂ 2 u 

∂ x 2 
+ 

∂ 2 u 

∂ y 2 
+ (2 κ + 

U 

α
) 
∂u 

∂x 
+ ( κ2 + 

U 

α
κ) u − 1 

α

∂u 

∂t 
= 0 (6) 

The spatial derivative in the third term of this equation can be 

liminated if κ = −U/ 2 α, leading to 

 (x, y, t) = u (x, y, t) e −Ux / 2 α (7) 
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nd 

∂ 2 u 

∂ x 2 
+ 

∂ 2 u 

∂ y 2 
− U 

2 

4 α2 
u − 1 

α

∂u 

∂t 
= 0 (8) 

Transforming this equation to the polar coordinate system in 

y − plane, yields 

∂ 2 u 

∂ r 2 
+ 

1 

r 

∂u 

∂r 
+ 

1 

r 2 
∂ 2 u 

∂ θ2 
− U 

2 

4 α2 
u − 1 

α

∂u 

∂t 
= 0 (9) 

or which x = r cos θ , y = r sin θ and r = 

√ 

x 2 + y 2 have been em-

loyed. 

Considering Eqs. (2) and (7) , the relevant Dirichlet boundary 

ondition to Eq. (9) at x = a cos θ is 

 (a, θ, t ) e −Ua cos θ/ 2 α = T in (t ) (10) 

Similarly, considering Eqs. (3) and (7) , the relevant Neumann 

oundary condition can be expressed as 

2 πaλ

(
∂u (r, θ, t) 

∂r 
− U cos θ

2 α
u (r, θ, t) 

)∣∣∣∣
r= a 

e −Ua cos θ/ 2 α = Q in (t) 

(11) 

In the same way, the physical constraints in Eq. (4) can be de- 

oted as 

u (a, θ, t) ≡ u (a, θ + 2 π, t) 

∂u (r,θ ,t) 
∂r 

∣∣
r= a ≡

∂u (r,θ+2 π,t) 
∂r 

∣∣
r= a 

(12) 

.1. Spectral analysis 

Applying the Fourier transform to Eq. (9) yields 

∂ 2 ˆ u 

∂ r 2 
+ 

1 

r 

∂ ̂  u 

∂r 
+ 

1 

r 2 
∂ 2 ˆ u 

∂ θ2 
− q 2 ˆ u = 0 ; q 2 = 

U 

2 

4 α2 
+ 

iω 

α
(13) 

here ˆ u ≡ ˆ u (r, θ, ω) , with ω the angular frequency, i = 

√ −1 , and

he transform is represented by 

u ⇒ 

ˆ u 

∂u 
∂t 

⇒ iω ̂

 u 

∂ p u 
∂ x p 

⇒ 

∂ p ˆ u 
∂ x p 

(14) 

Eq. (13) can be solved using the separation of variables, which 

an be expressed as 

ˆ 
 (r, θ, ω) = R (r, ω) 
(θ ) (15) 

Substituting this equation into Eq. (13) , dividing by R ( r, ω) 
( θ )

nd equating both terms to a constant, n 2 , gives 

r 2 

R 

d 2 R 

d r 2 
+ 

r 

R 

dR 

dr 
− r 2 q 2 = − 1 




d 2 


d θ2 
= n 

2 (16) 

.1.1. �− Dependency 

The 
 term in Eq. (16) is 

d 2 


d θ2 
+ n 

2 
 = 0 (17) 

The solution to this ordinary differential equation can be ex- 

ressed as 

n (θ ) = a cos nθ + b sin nθ (18) 

here a and b are the integration constants, which need to be de- 

ermined form the boundary conditions. 

The periodicity in Eq. (12) gives rise to an eigenvalue problem 

ith n being integer, leading to 

(θ ) = 

∑ 

a n cos nθ ; n = 0 , 1 , 2 , · · · (19) 

n 

3 
It is noteworthy indicating that the solution to Eq. (17) can also 

e expressed as 


(θ ) = 

∑ 

n 
a n e 

i n θ ; n = 0 , ∓1 , ∓2 , · · · (20) 

Comparing the two solutions it can readily be seen that the 

ummation in Eq. (20) requires double that in Eq. (19) , and hence, 

n what follows, the cosine formulation will be pursued. 

.1.2. R − Dependency 

The R term in Eq. (16) gives 

 

2 d 
2 R 

d r 2 
+ r 

dR 

dr 
− ( r 2 q 2 + n 

2 ) R = 0 (21) 

The solution to this ordinary differential equation can be ex- 

ressed in terms of the modified Bessel function of first and sec- 

nd kinds [1] , but as the first kind is unbounded at far distances,

he solution reduces to 

 (r, ω) = K n (qr) (22) 

here K n is the modified Bessel function of the second kind of or- 

er n . 

.1.3. Solution of ˆ u (r, θ, ω) 

Substituting Eqs. (19) and (22) into Eq. (15) leads to 

ˆ 
 (r, θ, ω) = 

∑ 

n 
a n cos nθ K n (qr) ; n = 0 , 1 , 2 , · · ·

(23) 

.2. Solving for Dirichlet boundary condition 

Applying the Fourier transform to the boundary condition in 

q. (10) gives 

ˆ 
 (a, θ, ω) = 

ˆ T in (ω) e Ua cos θ/ 2 α (24) 

At r = a , Eq. (23) becomes 

ˆ 
 (a, θ, ω) = 

∑ 

n 
a n cos nθ K n (qa ) (25) 

Equating Eq. (24) to Eq. (25) yields 

ˆ 
 in (ω) e U a cos θ/ 2 α = 

∑ 

n 
a n cos nθ K n (qa ) (26) 

This function is a Fourier cosine series with its coefficients ex- 

ressed as 

a 0 = 

ˆ T in (ω) 
K 0 (qa ) 

1 
2 π

∫ 2 π
0 e U a cos θ/ 2 αdθ ; n = 0 

 n = 

ˆ T in (ω) 
K n (qa ) 

1 
π

∫ 2 π
0 e U a cos θ/ 2 α cos nθ dθ ; n ≥ 1 

(27) 

The integrals in these coefficients have a closed form solution in 

erms of the modified Bessel function of the first kind of 0 order 

 I 0 ) and n order ( I n ) ( [1] , p. 376), leading to 

a 0 = 

ˆ T in (ω) 
K 0 (qa ) 

I 0 ( 
Ua 
2 α ) ; n = 0 

 n = 

2 ̂ T in (ω) 
K n (qa ) 

I n ( 
Ua 
2 α ) ; n ≥ 1 

(28) 

The solution can thus be expressed as 

ˆ 
 (r, θ, ω) = 

∑ 

n ε n 
ˆ T in (ω) 

K n (qa ) 
I n ( 

Ua 
2 α ) cos nθ K n (qr) ; n = 0 , 1 , 2 , · · ·

ε 0 = 1 for n = 0 ; ε n = 2 for n ≥ 1 

(29) 

Applying the inverse Fourier transform, gives 

 (r, θ, t) = 

∑ 

m 

∑ 

n 
ˆ u n (r, θ, ω m 

) e i ω m t (30) 

here the summing index m represents the fast Fourier transform 

FFT) sample number. 
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Having the solution for u ( r, θ , t ), using Eq. (7) , the temperature

istribution in the domain can readily be determined as 

 (r, θ, t) = u (r, θ, t) e −Ur cos θ/ 2 α (31) 

Should we have pursued the exponential form, Eq. (20) , the so- 

ution for the Dirichlet boundary condition would lead to 

ˆ 
 (r, θ, ω) = 

∑ 

n 

ˆ T in (ω) 

K n (qa ) 
i n J n ( 

Ua 

2 iα
) e inθ K n (qr) ; n = 0 , ∓1 , ∓2 , · · ·

(32) 

n which J n is the Bessel function of the first kind of order n . 

.3. Solving for Neumann boundary condition 

Taking the derivative of Eq. (23) with respect to r and substi- 

uting into the transformed form of Eq. (11) gives 

 

n 
a n cos nθ

α e −Ua cos θ/ 2 α( K n (qa ) Ua cos θ + 2 K n +1 (qa ) αqa − 2 K n (qa ) α n ) 

= 

ˆ Q in (ω) 
πλ

(33) 

This equation can be expressed as ∑ 

n a n cos nθ = f (θ ) ;
f (θ ) = 

α ˆ Q in (ω) e Ua cos θ/ 2 α

πλ( K n (qa ) Ua cos θ+2 K n +1 (qa ) αqa −2 K n (qa ) α n ) 

(34) 

The coefficients of this Fourier cosine series are 

a 0 = 

1 
2 π

∫ 2 π
0 f (θ ) dθ ; n = 0 

 n = 

1 
π

∫ 2 π
0 f (θ ) cos nθ dθ ; n ≥ 1 

(35) 

As f ( θ ) in Eq. (34) cannot be arranged in a form similar to

hat of Eq. (27) , it seems that there is no closed form solution to

q. (35) and the integrals have to be solved numerically. However, 

he integrals can readily be solved using any appropriate numerical 

olver. Here, we use the the default integral algorithm of MATLAB 

15] , which is based on a vectorised adaptive quadrature given by 

hampine [21] . 

The solution can then be expressed as 

ˆ 
 (r, θ, ω) = 

∑ 

n 
a n cos nθ K n (qr) ; n = 0 , 1 , 2 , · · · (36) 

Similar to Eq. (30) , applying the inverse Fourier transform, gives 

 (r, θ, t) = 

∑ 

m 

∑ 

n 
ˆ u n (r, θ, ω m 

) e i ω m t (37) 

Using Eq. (7) , the temperature distribution in the domain can 

hen be determined as 

 (r, θ, t) = u (r, θ, t) e −Ur cos θ/ 2 α (38) 

Should we have pursued the exponential formulation, Eq. (20) , 

he solution becomes 

ˆ 
 (r, θ, ω) = 

∑ 

n 
a n e 

inθ K n (qr) ; n = 0 , ∓1 , ∓2 , · · · (39) 

ith 

a n = 

1 
2 π

∫ 2 π
0 f (θ ) e −inθ dθ

f (θ ) = 

2 aα ˆ Q in (ω) e Ua cos θ/ 2 α

λ( K n (qa ) Ua cos θ+2 K n +1 (qa ) αqa −2 K n (qa ) α n ) 

(40) 

. Limiting Cases 

As the radius of the cylinder approaches zero, the solution of 

he moving infinite cylindrical heat source should lead to the solu- 

ion of the moving infinite line source (moving point source). 

The Neumann boundary condition for the line heat source in 

he frequency domain is 

−2 π rλ
∂ ̂  T (r, θ, ω) 

∂r 

∣∣∣∣ = 

ˆ Q in (ω) (41) 

r→ 0 

4 
Similar to deriving Eq. (34) , Eq. (41) leads to a Fourier cosine 

eries of the form ∑ 

n a n cos nθ = f (θ ) | r→ 0 ;
f (θ ) = 

α ˆ Q in (ω) e Ur cos θ/ 2 α

πλ( K n (qr) Ur cos θ+2 K n +1 (qr ) αqr −2 K n (qr ) α n ) 

(42) 

To determine the a 0 coefficient, we solve Eq. (42) for n = 0 ,

ielding 

f (θ ) = 

α ˆ Q in (ω) e Ur cos θ/ 2 α

πλ( K 0 (qr) Ur cos θ + 2 K 1 (qr) αqr ) 
(43) 

As r → 0, this equation leads to 

im 

→ 0 
f (θ ) = 

ˆ Q in (ω) 

2 λπ
(44) 

here these limiting forms are utilized [23] : 

im 

→ 0 
r K 0 (qr) U cos θ ∼ 0 

im 

→ 0 
2 K 1 (qr) αqr ∼ 2 α

(45) 

Following this, the a 0 coefficient reads 

 0 = 

ˆ Q in (ω) 
2 λπ

1 
2 π

∫ 2 π
0 dθ

= 

ˆ Q in (ω) 
2 λπ

(46) 

Taking the limit of Eq. (42) as r → 0, leads to 

 n = 0 (47) 

here this limiting case has resulted from: 

im 

→ 0 
2 K n (qr) α n ∼ ∞ (48) 

Having the Fourier coefficients Eqs. (46) and (47) , the solution 

o the moving infinite line source can then be expressed as 

 (r, θ, t) = 

∑ 

m 

ˆ Q in ( ω m ) 
2 λπ

K 0 (qr) e i ω m t 

 (r, θ, t) = u (r, θ, t) e −Ur cos θ/ 2 α
(49) 

In the same way, the limiting case for the Dirichlet boundary 

ondition yields 

u (r, θ, t) = 

∑ 

m 

− ˆ T in ( ω m ) 
ln (q a ) 

K 0 (qr) e i ω m t 

T (r, θ, t) = u (r, θ, t) e −Ur cos θ/ 2 α

}
(q a ) is a small argument 

(50) 

here these limiting forms are utilized [1] : 

lim 

z→ 0 
K 0 (z) ∼ − ln (z) 

lim 

z→ 0 
I 0 (z) ∼ 1 

} 

z is a small argument (51) 

. Model verification and application 

The model is verified against analytical solutions and numerical 

olutions, viz.: 

1 Comparing the spectral moving infinite cylindrical heat source 

model to its limiting cases and a commonly used Green’s func- 

tion infinite line heat source model by making the radius of the 

cylinder very small. 

2 Comparing the spectral moving infinite cylindrical heat source 

model to a finite element model. 

A two-dimensional, fully saturated porous domain, constitut- 

ng a solid phase and a water phase, subjected to a cylindrical 

eat source is considered for this purpose. The geometry resem- 

les a soil layer with groundwater flow passing a borehole heat 

xchanger. The domain is in local thermal equilibrium and the heat 

quation is averaged over the constituents, such that 

∂ 2 T 

∂ x 2 
+ 

∂ 2 T 

∂ y 2 
+ 

U eff 

α

∂T 

∂x 
− 1 

α

∂T 

∂t 
= 0 (52) 
eff eff 
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Table 1 

Physical and thermal parameters. 

Parameter Magnitude Unit 

Solid mass density ( ρs ) 

Solid specific heat ( c s ) 

Solid thermal conductivity 

( λs ) 

Water mass density ( ρw ) 

Water specific heat ( c w ) 

Water thermal conductivity 

( λw ) 

Porosity ( ϕ) 

Water velocity 

Heat source radius ( a ) 

2650 

900 

2.5 

1000 

4180 

0.56 

0.2 

variable: 1e-5; 1e-4; 5e-4 

variable: 0.0001; 0.075 

kg/m 

3 

J/kg.K 

W/m.K 

kg/m 

3 

J/kg.K 

W/m.K 

- 

m/s 

m 

w

α

λ
ρ

a

U

w

p

i

g

T
T
Q

5

c

m

o

fi

S

l

G

c

c

p

t

a

5

n

c

1

t

a

a

c  

1

t

c

r

p

t

t

p

s

t

i

t

c

f

r

5

i

c

p

p

F

n

m

p

n

c

r

8

a

w  

l

l

t

d

m

f

fi

T

t

s

fi

t

(  

s

s

a

a

fi

6

f

s

g

L

t

t

t

t

6

H

n

here 

eff = 

λeff 

ρc eff 

eff = ϕ λw 

+ (1 − ϕ) λs 

c eff = ϕ ρw 

c w 

+ (1 − ϕ) ρs c s 

(53) 

nd 

 eff = 

n ρw 

c w 

ρc eff 

U (54) 

here the subscripts w , s , eff denote the water phase, the solid 

hase and the effective parameter, respectively, and ϕ is the poros- 

ty. The thermo-physical parameters of the porous domain are 

iven in Table 1 . 

The initial and boundary conditions are: 

 initial = 0 

◦C ; t = 0 

 in = 10 

◦C ; t > 0 for Dirichlet case 
 in = 100 W / m ; t > 0 for Neumann case 

(55) 

.1. Verification against analytical solutions 

Computational results obtained from the spectral moving infinite 

ylindrical source (SMICS) model and its limiting case: the spectral 

oving infinite line source (SMILS) model, are compared to each 

ther and to those obtained from the Green’s function moving in- 

nite line source (GMILS) model, given by Sutton et al. [22] . 

To mimic the line source, the radius of the cylinder in the 

MICS model is made too small, namely 0.0 0 01 m. Both Dirich- 

et and Neumann boundary conditions are tested. In literature, the 

MILS model is given for a Neumann boundary condition only. To 

ompare it with the spectral models for the Dirichlet boundary 

ondition case, we first run the GMILS model and output its tem- 

erature at 0.0 0 01 m from the line source, then we prescribe this 

emperature on the cylindrical heat source in the SMICS model. 

Fig. 2 shows the temperature contours for the Dirichlet bound- 

ry condition case, for three water flow velocities: 1e-5, 1e-4 and 

e-4 m/s, and two physical times: 10 and 100 hr. The figure shows 

early perfect matching between the three models except for the 

ase with relatively fast fluid velocity and longer time ( Fig. 2 c, 

00 h), where the GMILS model exhibited some spurious oscilla- 

ions. 

Fig. 3 shows the temperature contours for the Neumann bound- 

ry condition case for the above mentioned water flow velocities 

nd physical times. The three models are in good agreement, ex- 

ept for the relatively fast fluid velocity and longer time, ( Fig. 3 c,

00 h), where the GMILS model exhibited some spurious oscilla- 

ions, similar to that for the Dirichlet case. 

The three models were implemented in MATLAB, and while 

onducting the calculations the spectral models have exhibited a 

obust capability in handling a wider range of fluid velocities and 

hysical times. The runs were conducted for a step function, and 

hus there was no significant CPU time difference between the 
5 
hree models. However, if a random input signal has been em- 

loyed, there would have been a significant difference between the 

pectral models and the Green’s function model. Using the FFT, 

he spectral models are capable of dealing with any input signal 

n the same efficiency as that for a step function; whereas using 

he Green’s function would require a temporal superposition pro- 

edure that entails discretizing the input signal into multiple step 

unctions, for each the involved integrals need to be solved sepa- 

ately. 

.2. Verification against numerical solutions 

To examine the accuracy of the spectral model in simulat- 

ng a typical cylindrical heat source as existing in GSHP systems, 

omputational results obtained from the SMICS model were com- 

ared to those obtained from the finite element package: Multi- 

hysics, Multidomain, Multiphase finite element analysis (MMM- 

EM); a comprehensive 3D thermo-hydrodynamic-mechanical fi- 

ite element software for engineering applications in geother- 

al energy, CO 2 geo-sequestration, soil freezing and thawing and 

oromechanics in general; developed at Delft University of Tech- 

ology [4–6] . 

The finite element domain is a half cylinder, 20 m in radius, en- 

ompassing a cylindrical heat source with radius 0.075 m, a typical 

adius of a borehole heat exchanger. The mesh consists of 9900, 

-node hexahedron elements with a minimum size of 0.0026 m 

long the heat source circumference. The top view of the mesh 

ith a zoom around the heat source is shown in Fig. 4 . Fluid ve-

ocities: U = 1 e − 5 m / s , and U = 1 e − 4 m / s were examined. 

Fig. 5 shows the temperature contours after 48 h for the Dirich- 

et case. The figure clearly shows a very good matching between 

he SMICS model and the finite element model. 

The good matching in the Dirichlet boundary condition case is 

ue to the exact description of the boundary condition at the ele- 

ents nodes defining the heat source. This cannot be guaranteed 

or the Neumann boundary condition case as the heat flux in the 

nite element method is by definition interelement-discontinuous. 

he heat flux is discretized at the elements integration points and 

hen mapped to the nodes; leading eventually to an error in de- 

cribing the boundary condition. To circumvent this problem, we 

rst conducted spectral analysis for a Neumann boundary condi- 

ion and output the temperature profile at the source boundary 

 a = 0 . 075 m ) versus time. This temperature profile was then pre-

cribed at the source boundary in the finite element model. Fig. 6 

hows the temperature contours after 48 hr. It shows that there is 

 good matching between the SMICS model for Neumann bound- 

ry condition and the equivalent Dirichlet case computed by the 

nite element model. 

. Comparing spectral model to Laplace transform and Green’s 

unction solutions 

Existing solution techniques for a moving cylindrical heat 

ource in a convective-conductive domain, applicable mainly to 

round source heat pump systems, can be put into two categories: 

aplace transform and Green’s function. In this section we present 

he Laplace transform solution given by Carslaw and Jaeger [9] and 

he Green’s function solution given by Zhang et al. [26] to highlight 

he difference in complexity of the mathematical formulations of 

he three models. 

.1. Laplace transform solution 

Carslaw and Jaeger provided, in their seminal monograph on 

eat Conduction in Solids [9] , an analytical solution to an infi- 

ite solid initially at constant temperature T , moving along the 
0 
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Fig. 2. Temperature contour plots of SMICS and SMILS models vs. GMILS model for Dirichlet boundary condition 

6 
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Fig. 3. Temperature contour plots of SMICS and SMILS models vs. GMILS model for Neumann boundary condition 

7 
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Fig. 4. Top view of the finite element mesh with a zoom around the heat source 
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2 + y 2 = a 2 maintained at zero temperature. Using the Laplace 

ransform, they solved Eq. (1) as 

 (r, θ, t) = u (r, θ, t) e −Ur cos θ/ 2 α + T 0 (56) 

ith 

 (r, θ, t) = −T 0 
∞ ∑ 

n =0 

ε n I n ( Ua / 2 α) K n ( Ur / 2 α) 
K n ( Ua / 2 α) 

cos nθ

− 2 T 0 
π

∞ ∑ 

n =0 

e −U 2 t / 4 αε n cos nθ I n 
(

Ua 
4 α

)
×

∫ ∞ 

0 
e −αu 2 t [ J n (ur) Y n (ua ) −Y n (ur) J n (ua ) ] u du 

[ u 2 +( U 2 / 4 α2 ) ] [ J 2 n (ua )+ Y 2 n (ua ) ] 
ε 0 = 1 if n = 0 , ε n = 2 if n ≥ 1 

(57) 

n which Y n is the Bessel function of the second kind of order n .

ll other parameters are defined above. 

Obviously, the presence of the semi-infinite integral of this 

ranscendental function with oscillatory Bessel functions makes the 

roblem complicated and the calculation, if possible, must be con- 

ucted using numerical algorithms. Carslaw and Jaeger [9] pro- 

ided no numerical results to this case, neither simplified the func- 

ion for short or long times, as they usually did for many other 

ases. They also didn’t provide a solution for the Neumann bound- 

ry condition case. 
Fig. 5. Contour plots of SMICS model vs. MMM

8 
.2. Green’s function solution 

Zhang et al. [26] provided an analytical solution to the infi- 

ite and finite cylindrical heat sources in convective-conductive 

omains. Their solution is based on the Green’s function formula- 

ion of an instantaneous point source given by Carslaw and Jaeger 

9] . Due to the unsymmetrical nature of heat convection arising 

rom groundwater flow, heat emitted from a point is described by 

ntegrating over the azimuth of the point. To consider the com- 

ined effects of all points constituting the cylinder, the solution of 

 point is integrated over the polar angles of the cylinder. As the 

eat source is moving with time with a certain velocity, the solu- 

ion is completed by integration over time. Fig. 7 shows schemati- 

ally Zhang et al. conceptual model. 

For the infinite cylindrical source case, this model is described 

y a triple integral, such that 

 (t) = 

Q in 
8 π3 λ

2 π∫ 
0 

dϕ ′ 
2 π∫ 
0 

exp 

[ 
U(a cos φ−a cos ϕ ′ ) 

2 α

] 
·

4 ατ/ 

[ 
( a cos φ−a cos ϕ ′ ) 

2 + ( a sin φ−a sin ϕ ′ ) 
2 
] 

∫ 
0 

1 
η ×

exp 

[
− 1 

η −
U 2 

[ 
( a cos φ−a cos ϕ ′ ) 

2 + ( a sin φ−a sin ϕ ′ ) 
2 
] 

16 α2 

]
d φ d η

(58) 

n which φ is the polar angle of the cylindrical heat source, and ϕ′ 
s the polar angle of the temperature distribution around a point 

ource. 

Calculating this equation requires: 

1 A proper numerical integration scheme. Though, such integrals 

might be restrictive, especially for far distances and longer 

times. 

2 Q in is a step function, but if it is a function of time, as it is

usually the case, its time signal must be divided into several 

step functions, for each, this equation must be recalculated. 

3 For detailed analysis to produce contour plots of temperature, 

this equation can take rather long CPU time. Zhang et al. 

[26] provided no numerical results for a convective case show- 

ing isothermal contours for an x – y plane; rather providing 

contour lines in the z −direction for two angles only: φ = 0 and 

φ = π . 

Comparing these two solution techniques to those given in 

q. (29) , for the Dirichlet case, and Eqs. (34) - (36) for the Neumann,
-FEM for Dirichlet boundary condition 



R. Al-Khoury, N. BniLam, M.M. Arzanfudi et al. International Journal of Heat and Mass Transfer 163 (2020) 120517 

Fig. 6. Contour plots of Neumann SMICS model vs. equivalent Dirichlet MMM-FEM 

Fig. 7. A schematic representation of Zhang et al. [26] conceptual model 
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t can readily be deduced that the spectral solution has a rather 

impler formulation which makes it computationally efficient and 

obust. 

. Conclusions 

Heat conduction-convection in porous solids occurs in many 

ngineering applications and technologies, including the ground 

ource heat pump systems; a technology designed to harvest ther- 

al energy from shallow depths of the earth to be utilized for 

eating and cooling of buildings. In the presence of groundwater 

ow, the amount of harvested energy depends significantly on the 

mount of heat that is transported by the groundwater, and thus it 

s important to be considered in the design and analysis of the sys- 

em. This paper addresses this issue and introduces an analytical 

olution to conductive-convective heat flow in an infinite domain 

ubjected to a cylindrical heat source. The spectral analysis is uti- 

ized to solve the governing heat equation for prescribed Dirichlet 

nd Neumann boundary conditions. 
9 
The solution for the Dirichlet boundary condition has led to a 

losed form function, and that for the Neumann boundary condi- 

ion has led to an integral which is relatively easy to solve nu- 

erically. Compared to solutions based on the Green’s function or 

he Laplace transform, the spectral solution has a simpler formula- 

ion, as evident in Section 6 . This makes the spectral model com- 

utationally efficient and robust. Additionally, the spectral analysis 

s inherently applicable to any random input signal and its series 

ummation (rather than integration) makes the solution less re- 

trictive on the model physical and thermal parameters. 

The spectral model presented in this paper can be incorporated 

ithin the spectral element method [13] and the superposition 

rinciple to study detailed heat flow in ground source heat pump 

ystems constituting multiple borehole heat exchangers embedded 

n multilayer systems with layers encompassing groundwater flow. 

n particular, the given spectral model can readily be incorporated 

n the spectral element model of BniLam et al. [7] . This will be

ndertaken in a future work. 

uthorship contributions 

Please indicate the specific contributions made by each author 

list the authors’ initials followed by their surnames, e.g., Y.L. Che- 

ng). The name of each author must appear at least once in each 

f the three categories below. 

eclaration of Competing Interest 

None. 

cknowledgment 

The authors acknowledge the insight of Professor Sorin Pop of 

he University of Hasselt on Eq. (5) . 

eferences 

[1] M. Abramowitz , I.A. Stegun , Handbook of Mathematical Functions, Dover Pub- 

lications, 1972 . 

[2] R. Al-Khoury , Computational Modeling of Shallow Geothermal Systems, CRC 
Press, 2012 . 

[3] R. Al-Khoury , P.G. Bonnier , R. Brinkgreve , Efficient finite element formulation 
for geothermal heating systems. Part I: steady state, Int. J. Numer. Methods 

Eng. 63 (2005) 988–1013 . 

http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0001
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0001
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0001
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0002
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0002
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0003
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0003
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0003
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0003


R. Al-Khoury, N. BniLam, M.M. Arzanfudi et al. International Journal of Heat and Mass Transfer 163 (2020) 120517 

 

 

 

[  

 

 

 

[  

[

[  

[
[

[  

[  

[  

[

[4] M.M. Arzanfudi , R. Al-Khoury , Thermo-hydrodynamic-mechanical multiphase 
flow model for crack propagation in deformable porous media, Int. J. Numer. 

Methods Fluids 84 (2017) 635–674 . 
[5] M.M. Arzanfudi , R. Al-Khoury , Freezing-thawing of porous media: An extended 

finite element approach for soil freezing and thawing, Adv. Water Res. 119 
(2018) 210–226 . 

[6] M.M Arzanfudi , R. Al-Khoury , L.J. Sluys , G.M.A. Schreppers , A thermo-hy- 
dro-mechanical model for energy piles under cyclic thermal loading, Comput. 

Geotech. 125 (2020) 103560 . 

[7] N. BniLam , R. Al-Khoury , A. Shiri , L.J. Sluys , A semi-analytical model for de-
tailed 3D heat flow in shallow geothermal systems, Int. J. Heat Mass Transfer 

123 (2018) 911–927 . 
[8] A. Capozza , M. De Carli , A. Zarrella , Investigations on the influence of aquifers

on the ground temperature in ground-source heat pump operations, Appl. En- 
ergy 107 (2013) 350–363 . 

[9] H.S. Carslaw , J.C. Jaeger , Conduction of Heat in Solids, second ed., Oxford Uni-

versity Press, 1959 . 
[10] M. Cimmino , B.R Baliga , A hybrid numerical-semi-analytical method for com- 

puter simulations of groundwater flow and heat transfer in geothermal bore- 
hole fields, Int. J. Therm. Sci. 142 (2019) 366–378 . 

[11] N.R. DesRuisseaux , R.D. Zerkle , Temperature in semi–infinite and cylindrical 
bodies subjected to moving heat sources and surface cooling, J. Heat Transfer 

92 (1970) 456–464 . 

12] N. Diao , Q. Li , Z. Fang , Heat transfer in ground heat exchangers with ground-
water advection, Int. J. Therm. Sci. 43 (2004) 1203–1211 . 

[13] J.F. Doyle , Wave Propagation in Structures: Spectral Analysis Using Fast Dis- 
crete Fourier Transforms, Springer-Verlag, New York, 1997 . 

[14] S. Erol , B. Francois , Multilayer analytical model for vertical ground heat ex-
changer with groundwater flow, Geothermics 71 (2018) 294–305 . 

[15] MATLAB®. https://www.mathworks.com/help/matlab/ref/rand.html . 

[16] N. Molina-Geraldo , P. Blum , K. Zhu , P. Bayer , Z. Fang , A moving finite line
source model to simulate borehole heat exchangers with groundwater advec- 

tion, Int. J. Therm. Sci. 50 (2011) 2506–2513 . 
10 
[17] M. Nabi , R. Al-Khoury , An efficient finite volume model for shallow geother- 
mal systems. Part I: model formulation, Comput. Geosci. 49 (2012) 

290–296 . 
[18] M. Nabi , R. Al-Khoury , An efficient finite volume model for shallow geothermal 

systems—Part II: verification, validation and grid convergence, Comput. Geosci. 
49 (2012) 297–307 . 

[19] Y. Nam , R. Ooka , S. Hwang , Development of a numerical model to predict heat
exchange rates for a ground-source heat pump system, Energy Build. 40 (2008) 

2133–2140 . 

20] J.A. Rivera , P. Blum , P. Bayer , Analytical simulation of groundwater flow and
land surface effects on thermal plumes of borehole heat exchangers, Appl. En- 

ergy 146 (2015) 421–433 . 
21] L.F. Shampine, Vectorized adaptive quadrature in MATLAB®, J. Comput. Appl. 

Math. 211 (2008) 131–140 See also https://nl.mathworks.com/help/matlab/ref/ 
integral.html . 

22] M.G. Sutton , D.W. Nutter , R.J. Couvillion , A ground resistance for vertical bore

heat exchangers with groundwater flow, J. Energy Res. Technol. 125 (2003) 
183–189 . 

23] Wolframalpha: https://www.wolframalpha.com/ 
24] B. Weigand , Analytical Methods for Heat Transfer and Fluid Flow Problems 

(2015) . 
25] C. Yavuzturk , J.D. Spitler , S.J. Rees , A transient two-dimensional finite volume

model for the simulation of vertical U-tube ground heat exchangers, ASHRAE 

Trans. 105 (2) (1999) 527–540 . 
26] W. Zhang , H. Yang , L. Lu , Z. Fang , The analysis on solid cylindrical heat source

model of foundation pile ground heat exchangers with groundwater flow, En- 
ergy 55 (2013) 417–425 . 

27] Y. Zhou , C. Xu , D. Sego , D. Zhang , Analytical solution for solid cylindrical heat
source model with convective boundary condition, J. Heat Transfer 141 (2019) 

121701-1–121701-14 . 

28] S.M. Zubair , M.A. Chaudhry , Temperature solutions due to time-dependent 
moving-line-heat sources, Heat Mass Transf. 31 (1996) 185–189 . 

http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0010
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0010
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0010
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0014
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0014
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0015
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0015
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0015
https://www.mathworks.com/help/matlab/ref/rand.html
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0018
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0018
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0018
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0021
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0021
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0021
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0021
https://nl.mathworks.com/help/matlab/ref/integral.html
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0023
https://www.wolframalpha.com/
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0025
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0025
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0026
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0026
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0026
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0026
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0029
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0029
http://refhub.elsevier.com/S0017-9310(20)33453-0/sbref0029

	A spectral model for a moving cylindrical heat source in a conductive-convective domain
	1 Introduction
	2 Governing equations
	3 Solving the governing equations
	3.1 Spectral analysis
	3.1.1.  Dependency
	3.1.2.  Dependency
	3.1.3. Solution of 

	3.2 Solving for Dirichlet boundary condition
	3.3 Solving for Neumann boundary condition

	4 Limiting Cases
	5 Model verification and application
	5.1 Verification against analytical solutions
	5.2 Verification against numerical solutions

	6 Comparing spectral model to Laplace transform and Green’s function solutions
	6.1 Laplace transform solution
	6.2 Green’s function solution

	7 Conclusions
	Authorship contributions
	Declaration of Competing Interest
	Acknowledgment
	References


