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1. Introduction 
This report is a summary and review of the literature which will serve as a 

background to study the shear capacity of existing reinforced concrete slab bridges 

without shear reinforcement under wheel loads close to the support. 

Chapter 2 gives background information with regard to the scope of the research. 

Information about concrete slabs, slab bridges and existing concrete bridges as well as 

wheel loading is given and the influence of the position of the load near to the support 

is discussed. 

Chapter 3 is the core of this literature review and contains an overview of the 

literature about the shear capacity of slabs without shear reinforcement. Slabs under 

point loads containing sufficient flexural reinforcement can fail as a wide beam (one-

way shear) or in punching shear (two-way shear). As very few shear tests have been 

carried out on one-way slabs, the one-way shear theory is mainly based on the shear 

capacity of reinforced concrete beams. The concepts of shear failure, the mechanisms 

of shear transfer and the majority of the discussed models are entirely based on beam 

shear. The models for punching (two-way) shear on the other hand are based on the 

shear capacity of slab-column connections. The punching capacity for a slab under a 

wheel load is calculated based on this configuration.  

Chapter 4 contains test data from the literature concerning shear tests of one-way 

slabs and wide beams without shear reinforcement. To compare with the tests carried 

out at Delft University of Technology, data from test series with comparable widths 

(0,5m and larger) and shape (b/h ≥ 1 ) have been gathered. The full database is given 

in the Annex.  

Chapter 5 gives an overview of some current code provisions for beam shear and 

punching shear. The code formulations are cited, and the assumptions and research 

leading to the current code formulas are emphasized.  

Chapter 6 discusses the information that is gathered in this document and conclusions 

are given in chapter 7.  
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2. Scope 

2.1. Existing slab bridges 

2.1.1. Slab bridges 
The results of this research will be used to study the shear capacity of existing 

reinforced concrete solid slab bridges. Concrete slab bridges are economical for spans 

in the range of 3 to 8 m. However, spans up to 16m can also be feasible. These 

bridges are normally reinforced with reinforcing bars, but prestressing strands and I-

beams can be used in practice. An example of an existing Dutch slab bridge is shown 

in Fig. 2.1, Fig. 2.2 and Fig. 2.3. The reinforcement ratio for bridge deck slabs with d > 

25cm and a reasonable maximum amount of reinforcement of 25cm2/m will always be 

below ρl = 1% (Rombach et al. 2009).  

According to Aktan et al. (1992): “Certain bridge types, such as reinforced concrete 

slab bridges with sound piers and abutments, are inherently more resistant to collapse 

than others.” Testing a deteriorated bridge shows that it still can carry 22 rating trucks, 

a load exceeding four times the bridge rating. Beal (1982) tested scale models of 

reinforced concrete bridge decks and discovered that the failure load was 6 times 

higher than calculated. The failure mode was punching shear and not flexure as 

assumed in design. The high capacities in solid slabs are the result of the compressive 

membrane action. The membrane action in slabs enhances the flexural and punching 

shear capacity, as shown in Azad et al. (1994); Chamululu (2009); Eyre (1997); Guice, 

Slawson and Rhomberg (1987); Hewitt and de Batchelor (1975), Hon, Taplin and Al-

Mahaidi (2005); Taylor and Hayes (1965); Taylor et al. (2003) and Vecchio and 

Collins (1990). As the flexural capacity of concrete slabs is larger due to the 

compressive membrane action, shear failure modes become more important (Ebeido 

and Kennedy, 1996). Likewise, Azizinamini et al. (1994) point out that experimental 

results indicate that  reinforced concrete slab bridges possess a much higher strength 

than that indicated by current rating procedures. The authors refer to tests by Fenwick 

and Dickson (1989), in which it was found that for all three specimens the stresses in 

the reinforcement were considerably lower than the analytical predictions using thin 

plate theory (60%, 50% and 35% for the simply supported, flexurally restrained and 

fully restrained slabs, respectively). This is attributed to wider distribution of flexural 
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forces across the slab width, residual tensile capacity of the concrete at a crack and, 

for the restrained slab, compressive membrane action. 

Azizinamini et al. (1994) tested a five span continuous reinforced slab bridge. This 

bridge failed in flexure after forming two yield lines. While the bridge was rated to 

carry a maximum truck load equivalent to 67% of the HS20 truck, it carried 3 times 

the HS20 truck load while behaving in a perfectly linear elastic manner. More than 

seven HS20 trucks loads on each span were required to reach the ultimate capacity. 

The results corresponded well to the ultimate load calculated with yield line analysis. 

However, Jackson (2010) in a discussion to Zheng et al. (2010) argues that accounting 

for compressive membrane action leads to good results for single wheel loads, but not 

necessarily whole vehicles or combinations of vehicles.  

 
Fig. 2.1: Side view of slab bridge, TNO report 2010. 

 

 

Fig. 2.2: Top view of slab bridge, TNO report 2010. 
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the state of Georgia that require posting, 800 are governed by deficient shear rating of 

their reinforced concrete pier caps (Wang et al. 2010). Wang et al. (2010) showed that 

the shear capacity of reinforced concrete pier caps (a/d < 1,5) when calculated using a 

strut and tie model or finite element analysis is higher than when using the traditional 

ACI 318-08 equations for the shear capacity.  

In Europe, it has been estimated that repairs could account for 40% of the total 

construction contract costs (Pearson-Kirk, 2010). In 1989 inspections in the UK led to 

the conclusion that only 12% of the concrete bridges were in good condition. 

However, when the results of corrosion testing and laboratory testing of samples were 

reviewed, 30% of the bridges were considered in good condition (Pearson-Kirk, 2010).  

In the Netherlands, about 600 slab bridges are under discussion. Investigations on the 

existing bridges in The Netherlands are carried out, with the aim to determine the 

actual shear bearing capacity. As the Dutch government decided to extend a large 

number of existing highways with an additional lane, a large round of assessments 

was deemed necessary (Walraven, 2007).  

Existing bridges typically contain poor flexural anchorage and cutoff details and 

smaller sized and more widely spaced stirrups than permitted currently. These bridges 

can be vulnerable to low-cycle fatigue, which is fatigue caused by repeated plastic 

deformations (Forrest et al., 2010).  

When there are existing flaws in a slab, the punching shear capacity is reduced. The 

most critical angle for cracks is 20º to 30º, for which the punching shear capacity is 

reduced by as much as 50% (Azad et al., 1994). In deteriorated structures, corroded 

reinforcement leads to different bond conditions and hence a different behavior in 

shear (Coronelli and Radaelli, 2010). Cullington, Daly and Hill (1996) report that a 

number of bridges have been found insufficient in shear capacity as a result of poor 

anchorage of the longitudinal reinforcement. On site testing to failure of a slab strip, 

however, led to flexural failure. The influence of ASR on existing slab bridges was 

studied by den Uijl (2005). If the swelling due to ASR is not restrained, tensile 

stresses which lead to cracks result. In slab bridges, this can lead to compressive 

stresses in the horizontal direction because of the reinforcement. In the vertical 

direction (no reinforcement), horizontal cracks can occur. The tensile strength will 

then depend on the direction. Even for a significant decrease of the tensile strength, 

the failure mechanism is still flexure for slab bridges with a reinforcement ratio 
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bending moments in the support region, Fig. 2.20. Also, m and v are spread over 

different effective widths.  

 

Fig. 2.20: Comparison between the ratio a/d and the bending moment to shear ratio 
m/v for a beam and a slab with concentrated load, Rombach and Latte (2008). 

 
 
In the vicinity of the loads and support, the concrete is in biaxial compression and 

therefore has an increased strength and deformation capacity (Manuel, 1973). The 

ultimate strain in the concrete can then be taken as 0,008.  
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3.1.1.2 Horizontal shear and diagonal tension 
In the early 1900’s two ideas for shear transfer were competing: horizontal shear (as 

in other materials) and diagonal tension. The idea for diagonal tension was first 

formulated by Ritter (1899) who stated that stirrups resist tension and not horizontal 

shear. Mörsch (1922) further developed this for beams in shear without and with web 

reinforcement. Experimental proof and nominal shearing stresses close to the tensile 

strength of concrete led to the classic diagonal tension equation, based on the assumed 

stress distribution shown in Fig. 3.5 (ACI-ASCE committee 326, 1962): 

8

7

V
v

bd
          (3.1) 

with 

v the unit horizontal shear stress at a distance y from the neutral 

axis; 

V   the total vertical shear at the section; 

b the width of the cross section at a distance y from the neutral 

axis; 

d   the effective depth to the longitudinal reinforcement. 

Equation (3.1) is based on the following assumptions: 

1. Concrete and steel are homogeneous and isotropic. 

2. Stresses do not exceed the proportional limits. 

3. Beams have constant cross sections. 

4. Distribution of the shearing stresses is uniform across the width of the beam. 

5. Concrete carries no flexural tension below the neutral axis. 

6. The concentration of reinforcement at the tension face does not influence the 

distribution of shear stresses (van den Berg, 1962). 

Van den Berg (1962) showed that the measured stress concentration gave comparably 

good results for both 
8

7

V
v

bd
  and 

V
v

bjd
 . It is then a safe estimate (j ≈ 0,9) to use 

the formula that is nowadays used in design: 

V
v

bd
      (3.2) 

However, this assumption is only true for uncracked concrete. The internal stresses in 

the cracked state depend upon the shape and extent of the cracks and the layout of the 

reinforcement (Leonhardt and Walther, 1962). Laupa et al. (1953) also pointed out 
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equilibrium of shear stresses on the interface. The shear stresses cause principal 

tensile and compressive stresses in the adjacent concrete. If compression is the 

weakest component, then the bar is just pulled out. If the failure mode is tension, then 

cracks in the transverse direction to the stresses around the bars develop (Reineck et 

al., 1997). According to Marti (1999): “shear, bond and development problems are 

inseparable and should be treated in a unified manner”. Reineck (1990) links shear 

and bond together by showing that the nominal shear stress vn has the physical 

relevance of an average tooth-bond stress over the beam width bw due to ΔT. 

n
w cr w

T V
v

b s b z


      (3.4) 

This tooth-bond is by equilibrium related to the bond stress τb at the bar surface: 

4n b
b

d
v

d
       (3.5) 

Therefore, the bond may principally limit the possible transfer of ΔT to the tooth, and 

consequently, according to (3.4) also the ultimate shear force. In slender B-regions 

this is not the case. It should be noted that structural concrete codes of about 40 years 

ago had clauses related to ‘local bond’, which could be a problem at points of low-

moment/high-shear such as simple supports and points of contraflexure. Local bond 

often required a larger number of smaller bars. In order to demonstrate that anchorage 

and local bond are a major part of the shear strength riddle, one must first make some 

assumptions about anchorage strength (Gurley, 2011). 

 

 

Fig. 3.6: Forces in the shear span (Kani, 1969). 
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of the concrete above the crack or in a shear-tension failure (Fig. 3.11a) when 

combined with the loss of bond and an anchorage failure (ACI-ASCE Committee 

426,1973). In case of a shear-tension failure, a secondary crack will form which 

extends along the reinforcement for a short distance towards the support. This 

horizontal crack may be associated with either slip or dowel action of the 

reinforcement. According to Kotsovos (1984) the shear-compression type of failure is 

generally considered as a crushing mode of failure when the applied load increases to 

the level at which the diagonal crack that forms within the shear span at an earlier 

load stage penetrates into the compressive region towards the loading point. He 

suggested, however, that a crushing mode of failure in the region of the loading point 

is unlikely since the multi-axial compressive state of stress that exists which causes a 

local increase of the concrete strength. He proposes a failure mode in which the 

diagonal crack branches almost horizontally toward the compressive zone of the 

middle span of the beam in order to bypass this high-strength region, Fig. 3.12.  

In a deep beam (0 ≤ a/d ≤ 1) 4 types of failure can occur: flexural failure, shear failure, 

anchorage failure and bearing failure (Fig. 3.11c). A flexural failure occurs either 

when the concrete rib of the tied arch fails by crushing at the crown or when the 

tension tie ruptures. Full flexural capacity and ductility are achieved. The appearance 

is similar to the shear compression failure in short beams. A shear failure occurs 

through the destruction of the inclined strut that forms between the load point and the 

support. This failure mode involves little or no inelastic deformation (Manuel, 1973). 

The shearing stresses and vertical normal stresses require more consideration than the 

flexural stresses and significant compression and tension will be present in the section.  

The stress distribution becomes nonlinear with a concentration of tensile stresses 

towards the bottom of the beam (Cho, 2003). If the longitudinal reinforcement is 

high-performance steel, shear failure will occur before yielding of the reinforcement 

but with a nonlinear response of the reinforcement (Desalegne and Lubell, 2010). 
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3.1.3.1.3 Contribution of concrete compressive zone to shear carrying 
capacity 

An overview of the contribution to the shear carrying capacity that is attributed to the 

concrete compressive zone is given in Table 3.1 

Table 3.1: Contribution of concrete compressive strength according to authors from 
literature. 

Author(s) year % comments 
Fenwick and Paulay 1968 20% based on measurements 
Taylor 1972 20 – 40% based on measurements 
ACI-ASCE com. 426 1973 20 - 40%  
Sherwood, Bentz and 
Collins 

2007 24% measurement 
21% calculation based on stress distribution 

from Mörsch 
Kani 1979 40%  
Hamadi and Regan 1980 37% calculated for beams with natural gravel 

aggregates 
40% calculated for beams with expanded clay 

aggregates 
Reineck 1990 30% maximum, calculated from Eq. (3.7) 
 

3.1.3.2 Residual tension over crack 
As a shear crack is not a “clean break” and small pieces of concrete are bridging the 

crack, the residual tension over the crack contributes to the shear capacity. In fracture 

mechanics approaches to the shear capacity, these residual tensile stresses are seen as 

the primary shear transfer mechanism (ASCE-ACI committee 445, 1998), and it has 

also been implemented in finite element software (Reineck et al., 1997, 

Blaauwendraad and Walraven, 1992)  

Reineck (1992) claims that residual tension can be neglected for practical ranges of 

beams, since the crack widths in the web become too large. Likewise, Rombach et al. 

(2009) point out that for beams with smaller effective depths, the contribution of the 

residual tension to the shear capacity is higher than for large beams. 

Other models only consider the residual tension at the crack tip, for example by taking 

a characteristic length into account. 

Pruijssers (1986) described the tensile capacity at the crack tip. The zone in which the 

tensile strain exceeds the fracturing strain is called the fracture zone (or tension-

softening zone) and consists of concrete intersected by small micro-cracks, Fig. 3.29. 

The tension-softening zone contributes to the shear resistance by means of the (low) 

shear stiffness of the uncracked cross-sectional area and the mechanisms of aggregate 
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Fig. 3.35: Punching shear strength in critical shear crack theory (a) concrete in tension 
and aggregate interlock contributions for small rotations; (b) concrete in tension and 
aggregate interlock contributions for large rotations; and (c) punching shear strength 
and shear-carrying contributions of aggregate interlock and concrete in tension for 

cases (a) and (b) as a function of the rotation of the slab (Muttoni and Fernandez Ruiz, 
2010).  

 

3.1.3.3.2 Models 
 
the first aggregate interlock models only related the interlock capacity to the crack 

width (Paulay and Loeber, 1973; Fenwick and Paulay, 1968).  

Gambarova (1981) placed particular emphasis on the allowable paths in the 

displacement field when the crack starts opening, resulting in empirical relations 

between the interface stresses and the crack. This model (rough crack model) is based 

on the assumption that crack properties may be considered as a material property in 

the case of densely cracked plates. However, tests by Millard and Johnson (1984) 



 

show

resu

Wal

is ta

idea

do n

a re

esse

both

the 

In (W

of th

func

fund

cont

and 

con

the 

crac

resp

 

A fl

slid

furth

obta

cont

wed experim

ults. 

lraven (198

aken as a tw

ally-plastic 

not open to 

sult, both th

ential comp

h the shear s

shear displa

Walraven, 1

he crack str

ction of the 

damental m

tact area be

irreversible

crete as a m

particles is 

ck (aggregat

pect to the m

Fig. 3.36

lat crack pla

ing, the con

her plastic d

ained. On th

tact area σpu

mentally tha

0, 1981) de

wo-phase ma

cement mat

their final w

he shear stre

onents. Ass

stress τ and 

acement Δ: 

1981) a fun

ructure and 

displaceme

modes of beh

etween parti

e deformati

matrix and a

considerabl

te particles 

macrorough

6: Generally

ane (Fig. 3.3

ntact area is

deformation

he contact a

u and tangen

at the local/

eveloped a m

aterial consi

trix. Earlier 

width and sh

ess and the 

suming that 

the normal




,t

n

f w

f w









damental m

the associat

ents, w and Δ

havior chara

icles and ma

on of the m

ggregate pa

ly greater th

projecting f

ness (the ov

y observed 

37, Fig. 3.3

reduced. T

ns until in th

area, the stre

ntial τpu, Fig

/global roug

model for ag

isting of sti

r measureme

hear then, b

normal stre

the irregula

l stress σ are


,w




 

model is dev

ted contact 

Δ, and the c

acterize the 

atrix at oppo

matrix by hig

articles, and

han the crac

from the cra

verall undul

structure of

8) is thus us

This leads to

he x and y d

esses are res

g. 3.39. A ri

ghness mod

ggregate int

ff aggregate

ents on beam

but open and

ess have to b

ar faces of a

e functions 

 

veloped, bas

areas betwe

composition

aggregate i

osite sides o

gh contact s

d taking into

ck width, th

ack plane) i

lations of th

f crack plan

sed in the m

o high conta

direction equ

solved into 

igid-plastic 

el does not 

terlock in w

e particles e

ms had show

d shear simu

be taken into

a crack can 

of the crack

sed on a stat

een the crac

n of the con

nterlock: sl

of the crack

tress. Consi

o account th

e microroug

is seen as do

he crack plan

 

e (Walraven

model. Initia

ct stresses, 

uilibrium of

a stress nor

stress-strain

yield to goo

which concre

embedded in

wn that crac

ultaneously

o account a

be deforme

k width w an

    (

tistical analy

ck faces as a

ncrete mix. T

liding at the

k (overriding

idering 

hat the size o

ghness of th

ominant wit

ane), Fig. 3.3

n, 1981). 

ally during 

resulting in

f forces is 

rmal to the 

n relation fo

45

od 

ete 

n an 

cks 

. As 

as 

ed, 

nd 

(3.8) 

ysis 

a 

Two 

e 

g) 

of 

he 

th 

36.  

n 

or 



 

the 

sign

 

Fig

 

 

Und

as  

Equ

Con

prob

matrix is us

nificantly la

F

g. 3.38: (a) 

Fig. 3.39: (

der the cond

uilibrium at 

nsidering all

bable avera

sed, since it

arger than th

Fig. 3.37: C

Cracked co

a) Contact a

dition that th

a particle su

F

F

l particles o

ge projected

t is expected

he elastic de

Contact area

oncrete body
slice. (

area betwee
(W

he contact a

.pu  

urface leads

.

.

y pu x

x pu y

F a

F a









over a unit le

d contact le

d that the pl

eformation.

as during sli

y; (b) Z-plan
(Walraven, 

en matrix an
Walraven, 19

areas are ab

. pu  

s to the reac

.

.

pu y

pu x

a

a








 

ength of cra

engths over 

lastic deform

iding (Walra

ne of inters
1981). 

nd aggregat
981) 

out to slide,

 

ctions: 

ack and taki

the unit cra

mation will 

aven, 1981)

ection; (c) R

 
e; (b) stress

, the stresse

  

ing xa , a

ck length le

be 

 

). 

 
Representat

s conditions

es are combi

 (

    (3

ya   as the m

eads to: 

46

tive 

s. 

ined 

(3.9) 

3.10) 

ost 



 

Proc

area

The

Fig

 

ceeding to a

a and using 

e projected c

1. The pro

with a d

The agg

curve. 

2. The con

between

3. Combin

area as 

represen

g. 3.40: Tota

of 

y

x

F

F

 

 

areas with A

equation (3





contact area

obability den

diameter D0

gregate part

ntribution o

n the crack 

ning the pre

a function o

ntation of th

al projected

crack width

.

.

pu x

pu y

a

a

 

 

  

  

xA and yA as

3.9), leads to




pu x

pu y

A

A

 

 





as xA and A

nsity functi

0 which inte

ticles are as

f the individ

faces is det

evious result

of the displa

he resulting

d contact are

h w and shea

.

.

pu y

pu x

a

a









s the most p

o: 




y

x

A

A








 

yA are then ca

ion for an ex

ersect also th

sumed to be

dual interse

termined.  

ts, leads to 

acements be

g expression

eas xA and 

ar displacem

 

probable con

alculated as

xpected num

he unit crac

e distributed

ection circle

the total con

etween the c

ns is shown 

yA for 1 mm

ment Δ. (Wa

ntact areas f

  

s follows: 

mber of inte

k length is c

d according

es to the con

ntact area fo

crack faces.

in Fig. 3.40

 

m2 crack pla

alraven, 198

 (3

for a unit cr

    (3

ersection cir

constructed

g to the Full

ntact area 

for a unit cra

. The graph

0.  

ane, as funct

81). 

47

3.11) 

rack 

3.12) 

rcles 

d. 

er 

ack 

hical 

tion 



 

Exp

yiel

frict

σpu i

cub

'
ccf  

appr

the 

Res

Fig.

con

16 –





It w

the 

give

N

perimental r

lding stress 

tion coeffic

is found thr

e concrete c

the uniaxia

roximate re

matrix yield

sulting relati

. 3.42 (norm

crete with g

– 32 mm: 

'

1
30

cf    

'

20
cf    

was thus sho

stresses τ an

en, the two 

Fig. 3.41: C
N/mm2, Dmax

concrete v

results from

σpu and the 

cients from μ

rough fitting

compressive

al concrete s

elation since

ding strengt

ions are gra

mal strength

gravel aggre

0,81,8 0w 

0,631,35w 

own that for 

nd σ and the

remaining o

Comparison
x = 16mm, p
volume) and

m push-off te

friction coe

μ = 0,4 (Wa

g as 6pu 

e strength) o

strength). It 

e the relation

th is slightly

aphically pre

h concrete). 

egates, cube

0,7070, 234w

 0,50,191w

unreinforce

e displacem

ones are als

n between ex
pk = 0,75 (ra
d theoretica

(W

ests are then

efficient μ. T

alraven, 198

'0,566,39 cf  (W

or 5,8pu 

must be no

n between σ

y higher tha

esented in F

Simplified 

e crushing s

 '0, 20 cf  

522 0,15 f

ed cracks, th

ments w and 

o known. 

xperimenta
atio betwee

al values, wi
Walraven, 19

n used to de

The best res

81) to μ = 0,

Walraven, 1

'0,6383 ccf (Wa

oted that this

σpu and f’cc i

an the streng

Fig. 3.41 (hi

linear relati

strengths 13

   (τ > 

'
cf    (σ > 

here is a un

Δ. If two of

l values for
en total volu
ith σpu = 65 
81). 

termine the

sults are obt

,5 (Walrave

1981) (N/mm

alraven, 198

s is only a p

is not uniqu

gth of the co

igh strength

ions are dev

< f’c < 59 N

0) (N, mm)

0) (N, mm)

ique relatio

f these para

concrete w
ume of aggr

N/mm2 and

e matrix 

tained for 

en, 1980)  an

m2, '
cf  the 

80) (N/mm2

provisional, 

ue. As expec

oncrete itse

h concrete) a

veloped for 

N/mm2, Dma

)     (3

)      (3

onship betw

ameters are 

 
with f’cc = 59
regate and th
d μ = 0,40. 

48

nd 

2, 

cted, 

lf. 

and 

ax = 

3.13) 

3.14) 

een 

9 
he 



 

F
N

Bas

con

For 

restr

Fig. 3.42: C
N/mm2, Dmax

concrete v

sed on the th

clusions: 

1. A consi

elimina

occurs. 

2. The sm

greater.

3. The nor

aggrega

size lea

influenc

4. A gradi

maximu

largest 

5. Aggreg

6. The inf

reinforced 

raining forc

Comparison 
x = 32 mm, p
volume) and

heoretical m

iderable par

ated, more o

mall aggregat

. 

rmal stress i

ate size. The

ads to a sma

ce becomes

ing curve w

um shear an

on the shea

gate interloc

fluence of th

concrete th

ce is now in

between ex
pk = 0,75 (r
d theoretica

(W

model, param

rt of the she

overriding o

te fractions 

is not very s

e shear stres

ller maximu

 larger for l

with a higher

nd normal st

r stress and

ck is mostly 

he bar diame

e mechanism

ntroduced in

xperimental 
ratio betwee
al values, wi

Walraven, 19
 

meter studie

ear resistanc

of the particl

loose impo

sensitive fo

ss is influen

um shear st

larger crack

r proportion

tresses at a 

d becomes la

governed b

eter is insig

m works in

nternally by 

values for c
en total volu
ith σpu = 44 
81). 

es were carr

ce is provide

les and less 

ortance if th

or a variation

nced: a smal

ress at a giv

k widths. 

n of sand pa

given crack

arger for lar

by the streng

gnificant. 

n a similar w

the reinforc

concrete wi
ume of aggr
N/mm2 and

ried out, lead

ed by frictio

deformatio

e crack wid

n of the max

ller maximu

ven crack w

rticles leads

k width. The

rger crack w

gth of the co

way (Walrav

cement and 

 

ith f’cc = 33,
regate and t
d μ = 0,40. 

ading to the 

on. If frictio

on of the ma

dth becomes

ximum 

um aggrega

width. The 

s to smaller

e influence 

widths. 

oncrete. 

ven, 1981). 

d depends on

49

,4 
he 

on is 

atrix 

s 

ate 

r 

is 

The 

n the 



 

bon

forc

How

to b

been

crac

stru

exte

spec

crat

betw

is si

A 5

et al

(3.1

acco

crac

appr

Fig
 

nd properties

ce in the rein

wever, it wa

be significan

n observed 

ck structure

ucture was a

ernal restrai

cimens with

ter-shaped h

ween the sh

imilar to the

% fractile i

l., 1987). In

15) is multip

ount for the

ck widths an

roximately 

g. 3.43: Cra

s between r

nforcement

as observed 

ntly influenc

in specimen

s was believ

also observe

int showed o

h reinforcin

holes around

hear stress τu

e relation be

u C 

1C f

2 0C 

s obtained b

n case not a 

plied by 0,8

e long term e

nd the shear

3, Fig. 3.43

ack opening

einforceme

results in a

experiment

ced by the r

ns with exte

ved to be re

ed after testi

only a smal

g bars show

d the bars w

u and the no

etween τu an

  2

1

C

avC f

0,36'
cf  

 0,46'0,09
c

f

by multiplyi

compressiv

. Frenaij (19

effects. Pru

r slip of the 

3. 

g path in bea

ent and conc

an equivalen

tally that th

reinforceme

ernal restrai

esponsible f

ing. While c

ll amount of

wed a consid

were visible.

ormal restrai

nd σ in an u

(N/mm

(N/mm

 (N/mm

ying equatio

ve but a tens

989) extend

uijssers (198

crack at the

ams subject

crete and the

nt normal st

he crack ope

ent ratio. Th

int bars. Loc

for this diffe

crack faces 

f fine mater

derable amo

. Assuming 

ining stress

unreinforced

m2) 

m2) 

m2) 

n (3.15) wit

sile stress ac

ded Walrave

86) indicates

e bottom of

ted to shear 

e yield stren

tress on the 

ening path d

his is contrar

cal disturba

erence. A di

of specimen

ial torn off 

ount of loos

that the rel

avf  in a re

d crack, lead

th 0,85 or 0

cts on the cr

en’s model 

s that the ra

f the beam is

 

forces, Pru

ngth. The yi

crack, avf

does not see

ry to what h

ance of the 

ifferent crac

ns with 

the crack fa

se particles a

lationship 

einforced cr

ds to 

  (3

   (3

  (3

0,82 (Walrav

rack, equati

in order to 

atio between

s 

uijssers (198

50

ield 

. 

em 

had 

ck 

ace, 

and 

rack 

3.15) 

3.16) 

3.17) 

ven 

ion 

n the 

86). 



 

Mil

Wal

the 

to a

dow

rem

wid

con

mod

 

Vin

shea

slip

can 

rein

com

com

the 

Rep

beh

F

 

lard and Joh

lraven (198

use of the tw

aggregate in

wel action is

moved. In a r

dening will b

stant during

del can be u

ntzileou (199

ar transfer b

, graph (b) g

be translate

nforcement e

mpressive str

mpressive str

calculation 

peating this 

avior of a sh

ig. 3.44: Co

hnson (1984

0) should b

wo-phase m

nterlock in c

s eliminated

reinforced c

be different

g the test. T

used. 

97) shows t

behavior at 

gives the co

ed into a ten

equals the c

ress at the i

ress value a

of the shea

procedure f

heared inter

oncrete to co

4) show exp

be used and 

model to pre

racked rein

d, the local b

concrete spe

from that w

his axial sti

hat when th

a reinforced

orrespondin

nsile stress i

compression

nterface wh

and for the g

ar stress whi

for different

rface. 

oncrete fric

perimentally

not a local/

edict the com

nforced conc

bond betwe

ecimen, the 

when the ba

iffness must

he constituti

d interface c

ng crack wid

in the reinfo

n force on th

hen divided 

given shear 

ich is mobil

t values of s

ction; consti
1997). 

y that the tw

/global roug

mponent of 

crete is not s

en reinforce

axial stiffn

ars are sleev

t be evaluat

ive laws of 

can be predi

dth. With cu

orcement. T

he interface

by the area

slip value, 

lized to resi

s leads to cu

tutive laws 

wo-phase m

ghness mode

shear stiffn

straightforw

ement and c

ess restraini

ved and will

ed before th

Fig. 3.44 ar

icted. For a 

urve (c), this

The tensile f

e, which giv

a of the crac

the curve in

st the impos

urve (d), wh

(schematic)

model by 

el. However

ness attribut

ward. When

concrete is a

ing crack 

l not remain

he two-phas

re available

a certain she

s crack wid

force in the 

ves the mean

ck. For this 

n (a) allows

sed slip. 

hich shows 

 

) (Vintzileo

51

r, 

table 

n 

also 

n 

se 

, the 

ear 

dth 

n 

s for 

the 

ou, 



 

Vaz

anal

open

any 

Fig

 
Rein

with

the 

This

state

This

Wal

thre

inte

 

Fig

z Rodrigues

lysis on the

ning but no

shear force

g. 3.45: Sen

neck (1990)

hout normal

crack width

s maximum

e of the toot

s method is

lraven (199

eshold value

erlock is bas

g. 3.46: Con

s (2007) pro

 form of the

o sliding of t

e. 

nsitivity anal

) assumes th

l stresses pe

h Δn: 

fu 

m value for t

th; the corre

 valid up to

2) point out

e are rather 

sed on shear

nstitutive re

oved the nec

e critical she

the crack ca

lysis on the

hat the max

erpendicular

0,45 1ctf





the friction s

esponding s

0,3us 

o crack widt

t that Reine

dubious, sin

r and norma

elation for fr
width

cessity for a

ear crack, F

an occur, an

e form of the
2007). 

ximum value

r to the crac

u

n

n


  

 with

stress is ass

slip is: 

336 0,0n 

ths of 0,5mm

eck’s use of 

nce the fund

al stresses.

friction alon
h (Reineck, 

a rounded cr

Fig. 3.45. In

nd thus a str

e critical sh

e of the fric

ck surface, F

h Δnu = 0,9m

sociated wit

01mm  

m. However

f the concret

damental m

ng the crack 
1990). 

rack based o

n a straight c

aight crack 

 

ear crack (V

tion stress τ

Fig. 3.46, de

mm 

h a critical d

r, Blaauwen

te tensile str

model for agg

shown for c

on a sensitiv

crack, only 

cannot carr

Vaz Rodrigu

τfu is that 

depending on

 (3

deformation

 (3

ndraad and 

rength and 

gregate 

constant cra

52

vity 

ry 

ues, 

n 

3.18) 

n 

3.19) 

ack 



 53

In finite element analysis (Voormeeren, 2011), the aggregate interlock can be best 

modeled by using a variable shear retention factor. 

3.1.3.3.3 Contribution of aggregate interlock to shear carrying capacity 
An overview of the reported contribution of aggregate interlock to the total shear 

capacity as reported in the literature is given in Table 3.2. 

 

Table 3.2: Contribution of aggregate interlock to shear capacity as reported in 
literature 

Author(s) Year % Comments 
Fenwick and Paulay 1968 60 measured 
Taylor 1972 33- 50% measured 
ACI-ASCE com. 426 1973 33 - 50% after cracking 
Sherwood, Bentz and 
Collins 

2007 <70%  

Kani 1979 50 - 60%  
Hamadi and Regan 1980 44% calculated for beams with natural 

gravel aggregates 
26% calculated for beams with expanded 

clay aggregates 
Swamy and 
Adriopoulos 

1973 50 – 90% see below 

 
Swamy and Andriopoulos (1973) combined the amount of forces transferred through 

aggregate interlock and dowel action. They measured it to vary between almost 90% 

for a beam with 1,97% of tension steel and a/d = 2 to about 50% for a beam with 3,95% 

of tension steel and a/d = 6.  

Yang et al. (2011) point out that the reserve strength (ratio of ultimate shear strength 

to inclined cracking shear strength) is influenced by the maximum aggregate size, 

resulting in an increase in the ultimate shear strength for an increase in maximum 

aggregate size. 

3.1.3.4 Dowel action 

3.1.3.4.1 What is dowel action? 
Dowel action is the resistance of a reinforcing bar, crossing a crack, to shear 

displacement. The deflection of a bar, subjected to a dowel force, is partially a result 

of the deformation of the concrete around the bar and partially of the deformation of 

the steel over a free length (Walraven, 1980). Dowel action is typically small as the 

maximum shear stress to be carried by dowel action is limited by the tensile strength 
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of the concrete cover supporting the dowel. As a result of dowel action and 

deformation of the crack survace, the reinforcement bar wil be pulled twards the 

concrete face. If this downward force exceeds the longitudinal splitting strength of the 

concrete, the cover can fail (Lubell, 2006). The dowel action contribution to the shear 

force is larger for large amounts of reinforcement (ASCE-ACI committee 445, 1998). 

Cope (1985) reported that dowel action in slabs is less significant than in beams 

because failing section lengths may not cross the entire member and because of the 

continuity provided by bars in two directions. Ghazavy-Khorasgany and 

Gopalaratnam (1993) on the other hand write that there is some evidence that dowel 

action is quite effective in slabs. Since this mechanism relies on shear deformations at 

the level of tension steel, bond characteristics and concrete stiffness around the bars 

play an important role. 

 

3.1.3.4.2 Models 
Fenwick and Paulay (1968) reported the results of their pioneering work regarding 

dowel action, Fig. 3.47. Their experimental results showed that the position of the bar 

in the concrete at the time of casting had a marked influence on the capacity and 

performance of the dowel. An attempt to quantify the force transferred through dowel 

action was based on a linear elastic stress distribution in the steel, Fig. 3.48. The 

maximum stress in the top bars was calculated as: 

1 1
'

3 1f r rD b s f
R

    
     (3.20) 

and the corresponding expression for bottom bars is: 

1
'

3 1f r r

R
D b s f

R
    

     (3.21) 

in which: 

R  the ratio of the displacements at the end of the dowel; 

sr  the length of the dowel in a test or the crack spacing in a beam. 

The average value of R was found as 1,42 for top bars and 1,75 for bottom bars. 
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An overview of the contribution of dowel action to the overall shear capacity as 

reported in the literature is shown in Table 3.3. 

Table 3.3: Contribution of  dowel action to total shear capacity. 
Author(s) Year % Comments 
Fenwick and 
Paulay 

1968 20% measured 

Taylor 1972 15 - 25% measured 
ACI-ASCE 
com. 426 

1973 15 - 25% more important after cracking 

Barker et al. 1969 33 – 82% see below 
Hamadi and 
Regan 

1980 19% calculated for beams with natural gravel 
aggregates 

34% calculated for beams with expanded clay 
aggregates 

Long 1975 30% for punching in slabs 
 
The shear study group (Barker et al., 1969) mentions Ashdown’s model which 

includes dowel action and carries between 33% and 82% of the shear force. However, 

the shear study group claims that: “…, but it is generally agreed that it is safer to 

ignore dowel action as a contribution to shear resistance. To ignore dowel action is to 

assume that failure has taken place before the tearing begins, which is a wise 

assumption since a tearing failure is sudden and dangerous.” Bresler and Scordelis 

(1963) on the other hand attribute the higher tested shear capacities than calculated by 

large to the effect of dowel action. 

3.1.3.5 Arch action 

3.1.3.5.1 What is arch action? 
Arch action enables load to be transferred from its point of application towards the 

support by means of a compressive strut. In members with plain reinforcement, arch 

action is the main shear transfer mechanism after the collapse of beam action 

(Feldman and Bartlett, 2005; Feldman and Bartlett, 2008). According to Elzanaty et al. 

(1986), arch action is not a shear transfer mechanism, in the sense that it does not 

transmit a tangential force to a nearby parallel plane, but permits the transfer of a 

vertical concentrated force to a reaction and thereby reduces the demand on other 

types of load transfer. The principle of internal arches can be based on a study of 

stress trajectories, Fig. 3.54 and Fig. 3.55 (Kani, 1969).  
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fractures off at the end, so that the arch loses its bearing, Fig. 3.57 (Zararis and 

Papadakis, 2001).  

 

Fig. 3.57:Line of diagonal compressive action (Zararis and Papadakis, 2001). 
 
The parameters influencing arching action are: the layout of the reinforcement, with 

layering resulting in a smaller depth for arching action, the anchorage of the tie (Rafla, 

1971; Ghazavy-Khorasgany and Gopalaratnam, 1993), the crack shape (influenced by 

the a/d ratio) that defines the remaining uncracked compression zone (Reineck, 1997) 

and the type of reinforcement - with plain bars faciliting arching action more than 

ribbed bars in which the force in the tension chord decreases due to bond  (Reineck, 

1990). 

However, Adebar (2000) claims that the development of a compression strut is 

unreliable and that it depends on the exact diagonal crack orientation. 

3.1.3.5.2 Experiments 
Olonisakin and Alexander (1999) measured beam and arch action in wide beam shear 

tests, Fig. 3.58. Yielding of the reinforcement was found to shift the forces from beam 

action to arching action. They also pointed out that the concept of a limiting nominal 

shear stress is more consistent with beam action than with arching action and that it is 

conceptually incorrect to assign all load to beam action. 

 

Fig. 3.58: Measured beam and arch action in test RB1 (Olonisakin and Alexander, 
1999). 
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According to Sundquist (2005), no good analysis method has been presented to date 

that can really explain the size effect for punching shear. A model developed by 

Hallgren (1996) was cited, based on fracture mechanics that incorporated the 

aggregate size. This led to the formula: 

03,6

1,4
F

cTu

G

x
      (3.29) 

where 

cTu  the ultimate tangential strain, 

x the depth of the compression zone in mm,  

GF0 the fracture energy equal to 0,025; 0,030; 0,038 for aggregate size da = 8 mm, 

16 mm, 32 mm respectively. 

With the ultimate tangential strain, the stress distribution in a section at a given 

location in the critical zone can be calculated. Then the forces are found and the 

maximum punching force is calculated. Hallgren and Bjerke (2002), however, stated 

that the influence of tensile strength and fracture energy has been found significant for 

the size effect in earlier research, but in their research based on non-linear finite 

element analysis of footings, no significant influence was found. 

 
 
In 1939, Weibull introduced the statistical concept of the weakest link. In the context 

of size effect, the strength size effect comes from the probability to meet the most 

dangerous defect (depending on its size and orientation), which obviously increases 

with increasing structural size, thus providing the strength reduction (Carpentiri et al., 

1993). The strength of the specimen is inversely proportional to the volume of the 

specimen, to the inverse power of the Weibull parameter m: fv ~ V-1/m. The parameter 

m is governed by the scatter in strength. The basic assumptions within the Weibull 

theory are that the ultimate structural failure occurs as soon as a stress criterion is 

reached anywhere within the structure, and that the material is not able to expose any 

gradual softening (Gustaffson and Hillerborg, 1988). These assumptions are not valid 

for shear failure. Weibull’s model only gives realistic results if no redistribution of 

stresses is possible (Walraven, 1993). 

Other possible contributions to the size effect in shear are unintended out-of-plane 

actions such as nonsymmetrical cracking (Kotsovos, 2006), the decrease in concrete 

strength in the upper layers of the section when concrete is cast in deep members in 
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practical construction and the possible change in critical section location with 

increasing beam size (Khuntia and Stojadinovic, 2001). Sabnis (1993) also points out 

that significant structural size effects can be obtained due to the diffusion process of 

drying of concrete in structures, the conduction of heat produced by hydration and the 

non-uniformities of creep produced by differences in temperature and moisture 

content throughout the structures. He also mentions the “wall effect” which could be a 

source of the size effect. This effect is caused by the fact that a boundary layer near 

the surface of concrete inevitably has a different composition and strength than the 

interior of the concrete structure. This layer contains a lower percentage of large 

aggregates and a higher percentage of mortar.  

3.1.4.2 Size effect explained by aggregate interlock 
A possible reason for the size effect is that larger crack widths occur in larger 

members, leading to a reduced aggregate interlock (Taylor, 1972, 1973). The crack 

widths increase nearly linearly both with tensile strain in the reinforcement and 

spacing between the cracks. For the same reinforcement strain, doubling the depth of 

the beam will double the crack widths at mid-depth (Lubell et al. 2004). Taylor (1972) 

and Leonhardt (1978) as a result concluded that if the maximum size of the aggregates 

used in the concrete is scaled correctly, the loss of strength is smaller. The larger the 

size effect, the smaller the influence of aggregate interlock and the smaller the 

bending stiffness of the concrete teeth. However, it was shown by Walraven (1980) 

that aggregate interlock is not responsible for the size effect. If aggregate interlock 

were the main cause of the size effect, the implication would be that, in lightweight 

concrete beams, scarcely any size effect could occur (Walraven and Lehwalter, 1994). 

The experimental results proved this hypothesis wrong, as a very pronounced size 

effect was observed in lightweight beams. Blaauwendraad and Walraven (1992) 

discuss the hypothesis that size effect is caused by aggregate interlock by pointing out 

the following arguments:  

1. the size effect does not disappear in lightweight concrete members in spite 

of their smaller aggregate interlock capacity;  

2. in tests with plastic sheets to reduce the aggregate interlock capacity, the 

residual tension in the concrete was eliminated as well. 

After testing a 3m high beam, Shioya et al. (1989) (Fig. 3.69) contribute the size 

effect to two factors: (1) reduced aggregate interlock due to larger crack widths and (2) 
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Lehwalter, 1994). The so-called softening behavior of concrete at crack opening is the 

key to the solution of the size problem. In small beams the cracks have small widths 

so that over the crack faces, substantial tensile stresses can be transmitted, whereas in 

large beams with the same crack pattern but larger crack widths, the contribution of 

stresses across the cracks to the shear capacity is much smaller. 

The dimensional disparity between tensile stress    -2
F L  and stress-intensity factor 

   -3/2
F L  causes a constant slope equal to -0,5 in the nominal strength versus 

structural size bilogarithmic diagram, Fig. 3.71 (Carpinteri et al., 1993). This 

approached results in the linear elastic fracture mechanics size effect law. 

Two major theoretical scaling laws exist for concrete structures (Ozbolt and 

Elighausen, 1997). The first type of scaling laws is based on linear elastic fracture 

mechanics (LEFM), nonlinear fracture mechanics, cohesive crack models or a simple 

energy balance consideration between the structural energy release and the concrete 

energy consumption capacity. These approaches are based on a single crack and an 

assumption of proportionally scaled initial flow. With the assumption of crack length 

proportionality at peak load and the size of the concrete fracture process zone 

Bažant’s size effect law, Fig. 3.71, can be found, based on an energy criterion of 

failure (Bažant and Kim, 1984; Bažant and Kazemi, 1991): 

1

2(1 )N tBf 


       (3.30) 

with: 

0

d

d
  the brittleness number; 

σN the nominal strength, the ultimate load divided by the characteristic area; 

d the structural size (beam depth, embedment depth, …); 

ft the concrete tensile strength; 

B,d0 two constants, to be determined experimentally or by a more sophisticated 

analysis. 

Eq. (3.30) is based on 4 hypotheses: 

1. Fracture propagation requires an approximately constant energy supply per 

unit length and width of fracture. 

2. The potential energy released from the structure due to fracture growth is a 

function of both the fracture length and the area of the cracking zone. 
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Lubell (2006) calculated for each thickness the member bw/d ratio that would 

represent the transition from one-way to two-way shear failure modes, for a range of 

loaded width to member width ratios. A parameter κ was introduced to represent the 

more severe difference in width: 

min

y

w

s

w

c

b

b

b





 



         (3.32) 

in which: 

cy   the width of the loaded area; 

bw   the member width; 

bs   the support width. 

For very large values of κ, greater than about 0,8, the punching crack at 45 degrees 

would intercept the edge of the member. In this case, a continuous punching perimeter 

cannot form around the loaded area and a one-way shear mechanism will govern. The 

calculations are based on the Canadian Code (Fig. 3.87).  

 

Fig. 3.87: Failure mode prediction for κ values (Lubell, 2006). 
 
Hawkins and Mitchell (1979) studied one-way shear action in slabs. These results 

suggest that the beam shear formula is not appropriate for slabs and that the variation 

in shear capacity with reinforcement ratio is small for slabs. All specimens had depths 

of 178mm or less. It could be argued, however, that these results lie within the scatter 

observed for beams, Fig. 5.7, and that not enough test data are presented to conclude 

this. 
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3.2.3.1 Observations and measurements with regard to effective 
width 

Zokaie (1992) writes: “…, very little has been reported on shear distribution factors or 

distribution factors for bridges other than beam-and-slab.” For slab bridges, it only 

reads: “According to the AASHTO specifications, slab bridges are adequate for shear 

if they are designed for moment.” Ferguson, Breen and Jirsa (1988) wrote: “The 

effective width for shear would call for the concentrated load near the support that 

would give less slab deflection and a much reduced effective width… Although there 

are limited data about reaction distribution, it is difficult to imagine a diagonal tension 

failure that would involve less than a width of four to five times the slab thickness.” 

The load spreading is three-dimensionally shown in Fig. 3.92 (Lubell, 2006).  

 
Fig. 3.92: Load spreading from point load (Lubell, 2006). 

 
Leonhardt and Walther (1964) tested a series of 500mm wide slab strips under 4-point 

bending. One of the applied loads was a line load across the full member width, while 

the other represented a concentrated load through a plate approximately 16% of the 

specimen width. Both supports were across the full specimen width. It is noted that 7 

of the 9 specimens that were reported to fail in shear did so on the side with the 

concentrated load. This suggests that the shear capacity decreased as the loaded width 

to specimen width (cy/bw) ratio decreased, but the influence was, according to Lubell, 

(2006) not much more than typical laboratory scatter.  

Zheng et al. (2010) developed an expression for the effective slab width subjected to 

arching forces based on non-linear finite elements calculations. The effective depth 

(position of reinforcement), depth of bridge deck, the concrete compressive strength 

and the loading styles were found not to influence the effective width. The main 

influence was found to be the size of the loaded area: cx and cy as shown in Fig. 3.93. 

The a/d ratio used for these calculations was ≈ 9. 
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It was observed during testing that the slabs of b = 50cm and 150cm showed straight 

cracks on the bottom while the slabs of b = 250cm and 350cm showed cracks 

inclining towards the support, indicating two-way action, as shown in Fig. 3.96. For b 

= 50cm and 150cm the reported failure modes are beam shear failure. For b = 250cm 

the shear crack developed at the inside of the slab, and was only visible at the side 

faces of the slab after attaining the maximum load and was categorized by the authors 

as a secondary failure. It was also remarked that the shear crack crossed the flexural 

cracks and could not have developed at the side face as a flexure-shear crack. For b = 

350cm no shear crack was visible at the side and the critical shear crack had 

developed fully at the inside of the slab. The authors quantify beff to be smaller than 

250cm since for this width inclined cracks at the bottom face were visible. However, 

for b = 250 cm a shear crack was still visible at the side face and between b = 250cm 

and b = 350cm an increase in ultimate load was still observed. The authors also point 

out that the shear capacity of slabs q (in kN/m) is smaller than for beams. The authors, 

however, used the entire width of the specimen to calculate q. The transition of beam-

to-slab bearing behaviour is assumed to be between 1,5m and 2,5m, indicated by the 

failure behavior, the crack development, the load-deformation behavior and the 

principal stresses on the top surface. 

 

Fig. 3.96: Cracking patterns of b = 150, 2.TV and b = 250, 2.TV (Hegger and Reißen 
2011). 



 

 
To d

beq,e

Wit

VF,u

VG,l 

vRm,

vg 

For 

indi

≤ 1

sma

has 

Fi
 
The

wid

pote

ratio

wid

with

λb 

determine th

exp which is 

th 

u  

 

ct 

increasing 

icated the fu

,5m. In con

aller than th

been activa

ig. 3.97: Exp

e equivalent

dth, span and

ential for lo

o due to the

dth was then

h 

 

he effective

the experim

the experim

the dead we

the  mean v

divided by 

the shear fo

specimen w

ull activatio

ntrary, the e

he actual sla

ated to carry

perimental 

t width and 

d transverse

ad redistrib

e decreasing

n described 

a factor to c

e width in an

mental equiv

,expeq

V
b

v


mental maxi

eight of the 

value of the 

the full spe

orces over th

widths, the

on of the wid

equivalent w

ab width in

y the loads.

equivalent w

thus the she

e reinforcem

bution, and i

g influence o

as: 

.eq bb b 

consider the

n experimen

valent width

, ,

,

F u G l

Rm ct g

V V

v v




imum shear

 loading pla

shear resist

ecimen widt

he width du

e results of 

dth respecti

width of th

ndicating tha

widths beq,e

ear resistanc

ment ratio in

it decreases

of the direct

/. . .pQ l a d  

e slab width

nt, Hegger a

h: 

 

force 

ate 

tance accor

th 

ue to the dea

beq,exp are s

ively a beam

he specimen

at not the fu

exp dependen

ce increase 

n the tension

wih increas

t compressi

  

h b, accordin

and Reißen 

ding to EN 

ad load of th

shown in F

m-bearing b

ns with wid

ull width of

 

nt on the spe

with an incr

n zone due t

sing shear s

on strut. Th

ng to Table 

(2011) defi

 (3

1992-1-1:2

he specimen

Fig. 3.97, w

behavior wh

dth b ≥ 2,5

f the specim

ecimen wid

creasing slab

to the highe

span to dept

he equivalen

 (3

3.5, 

92

fined 

3.35) 

2005 

n. 

which 

hen b 

m is 

mens 

dth. 

b 

er 

th 

nt 

3.36) 



 

λpQ 

λl 

λa/d 

Ta

In a

sect

F

 

a

able 3.6: Fac

a series of co

tions betwee

Fig. 3.98: Ef

a factor to c

zone accord

a factor to c

a factor to c

/ 1,8 0,a d  

Table 3.5

ctors λpQ an

omputer mo

en the conc

ffective wid
co

consider the

ding to Tab

consider the

consider the

,19
a

d
 for 2

5: Factor λb

d λl due to v
tensio

odels, the ef

entrated loa

dht for a cas
onsidered cr

e transverse

ble 3.6, 

e span lengt

e shear span

,91 ≤ 
a

d
≤ 5

due to vari

variation of
on zone and

ffective wid

ad and the s

se with b = 
ross-section

e reinforcem

th according

n to depth ra

5,41  

iation of slab

f transverse 
d span. 

dth was dete

support, 

350cm, C30
n and top vie

ment ratio in

g to Table 3

atio:  

b width b 

reinforceme

ermined ove

 

 

0/37 as a fu
ew. 

n the tension

3.6, 

 (3

 

ment ratio in 

 

er several 

unction of th

93

n 

3.37) 

the 

he 



 

3.2
In D

the 

Fig

 
In G

vali

and 

vali

.3.2 Desig
Dutch practi

load spread

g. 3.99: (a) L

German prac

id for 

0

y

x

x

t

t

 
 
 

for a cantil

id for 

0, 2

0, 2

x

l

l

t




 

gn metho
ice, a 45° lo

ding is taken

Load spread
as used

ctice (DAfS

0,8

x l

l

l


 with t

lever: 

0, 4

0, 2

k k

k y

k

l x l

l t

l

 
 

ds for effe
oad spreadin

n from the f

ding under 4
d in French p

StB Heft 240

,eff V yb t 

0 12yt b h 

,eff V yb t 

kl  with yt 

(a)

(b)

fective wid
ng is used (F

farthest end 

45° as used 
practice, Ch

0), the theo

0,5x b  

h
 

0,3x b  

0 12b h h  

beff1

 load

suppor

beff2

 load

suppor

dth 
Fig. 3.99(a)

of the load 

in Dutch pr
hauvel et al.

retical effec

 

 

h
 

rt

rt

) and in Fre

(Fig. 3.99(b

 

ractice, (b) L
 (2007). 

ctive width 

ench practic

b)).  

Load spread

for a slab a

    (3

    (3

 

94

ce 

ding 

as: 

3.38) 

3.39) 



 

Fig

 

 
Tay

regi

span

the 

Zhe

in w

rcp 

 

 

g. 3.100: De

Fig. 3.101:

ylor, Rankin

ion in which

n = av; h = t

external res

eng et al. (20

which 

 

 

Fig. 3.102: 

efinition of 
spa

 Definition
ca

n and Clelan

h the archin

the depth of

straint, Fig. 

010) determ

2

effb 

 

the ratio of 

= 0,4 when

(a) Typical
(modifie

width t for 
an beams (R

s of width t
antilever (Re

nd (2003) ta

ng force is p

f the slab), w

3.102.  

mined the ef

1
23,3 35,

y

cp

c L r

r

 



f cx and the s

n rcp > 0,4. 

l restraint m
d from Tay

load transfe
Reißen and H

t for load tra
eißen and H

ake the effec

present beff =

while the ou

ffective wid

  tan

,1

cpr 

span of the 

model; (b) T
ylor, Rankin

fer and effec
Hegger, 20

ansfer and e
Hegger, 201

ctive width 

= Le + h = a

utside regio

dth to be: 

 

bridge deck

Typical crack
n and Clelan

ctive width b
11). 

 
effective wid
1). 

as a measur

av + h (Le = 

n is assume

k 

k pattern in 
nd, 2003). 

beff,V for sin

dth beff,V for

re for the 

the effectiv

ed to attribu

 (3

n experimen

95

ngle 

r 

ve 

ute to 

3.40) 

 
t 



 

 
Diaz

the 

dist

exce

is an

simp

 
The

wid

load

in w

cl 

ct 

dl 

Gra

sugg

to th

Rom

of a

This

z de Cossio

effective w

ance from t

eeding the t

n insufficien

ply bwd cap

Fig. 3.1

e Swedish C

dths of slab t

ds. The grea

which: 

 

 

 

af (1933) sug

gest an effe

he center of

mbach and V

a cantilever 

s formula is

efb

o (in a discu

idth s’ as ha

the load plat

total slab wi

nt range of 

ptures the re

103: Deterim

Code BBK79

to be used i

ater of the fo

dimension 

dimension 

effective de

ggests an ef

ective width

f the suppor

Velasco (20

deck assum

s extended f

, 0, 20eff v  

ussion on the

alf the perim

te (optimal 

idth, Fig. 3.

data to dete

levant influ

mination of 

9 includes s

n calculatin

ollowing tw

1

2 0

eff

eff

b c

b





of the loade

of the loade

epth of long

ffective wid

h beff = 3,5a

rt. 

005) develop

ming a 400m

, 0,eff vb 

for the case 

0, 0,95yb h 

e ACI-ASC

meter of a c

results wer

.103. Accor

ermine whet

uence.  

f effective w

specific reco

ng wide bea

wo values is 

7

0,65( )

l l

l t

c d

c c





ed area para

ed are perpe

gitudinal bar

dth beff = 5d

with a the 

ped the foll

mm x 400mm

60 0,95h 

of a laod w

1,15 0h a 

CE Committ

ritical sectio

e obtained f

rding to Lub

ther using th

 

width by Dia

ommendatio

am shear stre

used as eff

) 10,65 ld

allel to the s

endicular to

rs. 

d and Regan

shear span f

owing form

m wheel loa

1,15a  

which is not 

,

,

0,09. VK L

VK L c

m

z f

tee 326, 196

on taken at 

for a distanc

bell (2006) h

he enlarged

az de Cossio

ons for the e

engths at co

fective width

 

span of the s

the span of

n and Rezai–

from the cen

mula for the 

ad: 

400mm x 4

ckf
 

62) calculate

a certain 

ce 0,75d), n

however, th

d perimeter 

o, 1962. 

effective 

oncentrated 

h: 

    (3.41

slab; 

f the slab; 

–Jorabi (198

nter of the l

effective w

 (3

400mm: 

 (3

96

ed 

not 

here 

or 

1) 

88) 

load 

width 

3.42) 

3.43) 



 

with

b0,y 

h 

mVK

zVK,L

A co

show

Fig

 
Bas

equ

with

b0,y 

h 

a 

h  

 

 

K,L 

L 

omparison b

wn in Fig. 3

g. 3.104: Ef

sed on exper

ation for the

h 

the width o

slab depth i

the momen

for the conc

= 0,9.dVK,L 

between Eq

3.104. 

ffective wid
12

rimental res

e effective w

, ,effv R Hb

the width o

direction of

the height o

the distance

cantilever s

of the loadin

in the middl

nt at the fron

centrated lo

q. (3.42), Ge

dth beff and g
20kN (romb

sults, Hegge

width of a c

00, 2H b 

of the loadin

f the cantile

of the slab a

e between th

slab [m], 

ng plate perp

dle of the loa

nt side of th

oad, 

erman pract

greatest she
bach and Ve

er and Reiße

cantilever d

0, 0,95y h 

ng plate perp

ever slab [m

at the center

he center of

pendicular t

ad 

e load as a r

tice and the 

ar force vma

elasco, 2005

en (2011) su

eck: 

1,15 0,0a 

pendicular t

m], 

r of the load

f the load an

to the main 

result of all 

45° load sp

ax for a whee
5). 

uggested th

09
.

fl

fl ck

m

z f

to the main 

d, 

nd the clam

span direct

l loads exce

preading is 

 

el load of Q

he following

 (3

load-bearin

mped edge of

97

tion 

pt 

Qv = 

g 

3.44) 

ng 

f the 



 98

mf,l the moment at the front edge of the load plate due to all loads except 

the considered single load [kNm/m], 

zf,l the inner leverarm at the front edge of the load plate with zf,l = 0,9df,l, 

fck the characteristic compression strength. 

3.3. Models for shear 

3.3.1. Compression field theory models 

3.3.1.1 Development of the compression field theory 
Compression field approaches are inspired by the tension field theory from aerospace 

engineering developed by Wagner in 1929 to study the post-buckling shear resistance 

of thin webbed metal beams. After buckling the metal cannot resist compression and 

that shear stresses are carried by a field of diagonal tension. The angle of the diagonal 

tensile stresses should equal the principal tensile strain from deformations.  

The diagonal compression field theory was originally developed for concrete in pure 

torsion (no warping) by Mitchell and Collins (1974). After cracking, the theory of 

elasticity is no longer applicable, requiring a model for cracked concrete. In the 

original compression field theory the shear stress was used to find the stresses in the 

steel and the concrete (inclined at a certain angle θ or α), which were combined to 

stress-strain relationships for cracked concrete. After cracking the concrete was 

assumed not to carry tension, resulting in a field of diagonal compression. The angle 

of diagonal compression θ (or α)was found with an energy criterion: the internal 

energy will be a minimum if the external work done, and hence for a given load the 

external displacement, is a minimum.  The crack pattern is idealized as a series of 

parallel cracks all occurring at an angle θ (or α) to the longitudinal direction. 

These principles were then applied to reinforced concrete members in shear with 

shear reinforcement (Collins, 1978). The strains were analyzed with Mohr’s circle, 

Fig. 3.106, and the stresses were analyzed with Mohr’s circle in pure compression, 

Fig. 3.105. The method uses a relation between average strains and average stresses. 

These average strains are measured over a base length that is several times the crack 

spacing. The relations between the strains are based on compatibility requirements. 

For the diagonally cracked concrete it was assumed that the direction subjected to the 

largest average compressive stress will coincide with the direction subjected to the 

largest average compressive strain. When studying stress-strain distributions, it is 
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Fig. 3.109: Combined shear and torsion (Rahal and Collins, 1995). 
 
Consequently, Adebar and Collins (1996) used the MCFT to determine the shear 

strength of members without transverse reinforcement by introducing concrete tension 

ties perpendicular to concrete compression struts. The modified compression field 

theory can be seen as a variable angle truss model that includes a contribution from 

the tensile stresses in cracked concrete. The total shear capacity can then be written as 

the sum of a stirrup contribution and a concrete contribution. The principal 

compressive stress is given by 

2 cot cot
2

f v v
       (3.45) 

and, although there can be no tension stress normal to the crack plane, a principal 

tensile stress 

1 tan tan
2

f v v
       (3.46) 

does exist in the concrete at an inclination of θ/2 from the normal to the crack plane. 

The shear stress on the crack plane (interface) is independent of the diagonal crack 
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inclination and is equal to the shear stress on the vertical and horizontal planes. Thus 

the concrete contribution can be expressed independently of the crack angle as: 

c ci v vV v b d       (3.47) 

where vci is the shear stress resisted by the crack interface. The modified compression 

field theory, which attributes the concrete contribution Vc to the shear that can be 

transmitted across diagonal cracks by aggregate interlock, captures the influences of 

the longitudinal reinforcement.  

The average principal tensile strain ε1 in the cracked concrete is used as a “damage 

indicator” (Collins et al., 1996). This strain controls the average tensile stress f1 in the 

cracked concrete, indicating the ability of the diagonally cracked concrete to carry 

compressive stresses f2 and the shear stress vci that can be transmitted across a crack. 

The principal compressive stress in the concrete f2 is related to both the principal 

compressive strain ε2 and the principal tensile strain ε1 in the following manner: 

2

2 2
2 2max ' '

2

c c

f f
 
 

  
       

    (3.48) 

where 

'
'

2max
10,8 170

c
c

f
f f


 


    (3.49) 

2
2

2max

0,002 1 1
f

f


 
     

 
    (3.50) 

and εc’ is taken as 0,002. After cracking, the principal tensile stress in the concrete f1 

is related to the principal tensile strain ε1 as follows: 

1

11 500
crf

f





    (3.51) 

where the cracking stress fcr can be taken as '0,33 cf . For large values of ε1 the 

cracks will become wide and the magnitude of f1 will be controlled by the yielding of 

the reinforcement at the crack and by the ability to transmit shear stresses vci across 

the cracked interface.  

For members without stirrups, the ability of the cracked concrete to transmit shear is 

primarily governed by the width of the diagonal cracks. Hence, for a given value of ε1 

the shear strength will be a function of the crack spacing, with more widely spaced 
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Fig. 3.111: Stress-strain relationships for cracked concrete (Collins et al., 1996).  

 

 

Fig. 3.112: Compressive stress – compressive strain relationships for diagonally 
cracked concrete: (a) proportional loading ε1 and ε2 increased simultaneously; (b) 
sequential loading, ε1 applied first, then ε2 increased. (ACI-ASCE Committee 426, 

1998). 
 
Softened concrete behavior is also described by Hsu et al. (1987). A three-

dimensional panel tester has been developed at the University of Houston and 

currently the softening behavior of concrete under triaxial loading is studied (Labib et 

al., 2009), to expand the scope of smeared crack models to account for three-

dimensional load effects. 

3.3.1.2 Design method: modified compression field theory 
The Modified Compression Field Theory (MCFT) is used for one-way shear only. It 

is the basis for the provisions of CSA and AASHTO and is described as a design 

method, for example, in Collins, Mitchell and Bentz (2008). The MCFT considers 

cracked reinforced concrete as a new material, with constitutive properties reflecting 

tension stiffening of the average concrete response in the principal tension direction 

and compression softening of the peak compressive resistance in the principal 

direction due to the parallel tension cracks. The design equations of this method are 

based on equilibrium equations, geometric equations and a stress-strain relationship, 

Fig. 3.113. The design method based on the MCFT is the Simplified Modified 
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with 

ag the aggregate size in mm; 

sx the spacing of the vertical cracks near mid-depth of the member, 

0,9xs d . 

For high strength concrete the cracks will go through the aggregate rather than around 

the aggregate particles leading to smoother crack surfaces with less aggregate 

interlock capacity. To account for this, ag in Eq. (3.59) is taken as zero if fc
’ exceeds 

70 MPa and is linearly reduced to zero as fc
’ goes from 60 MPa to 70 MPa.  

In D-regions, for example in regions close to concentrated loads, a strut and tie model 

is used. The principal tensile strain ε1 in the concrete strut is 

2
1 ( 0,002)cots s s          (3.60) 

εs  the tensile strain in the reinforcing steel tension tie; 

θs  the angle between the strut and tie. 

The crushing strength of the strut fcu is then given by: 

'
'

1

0,85
0,8 170

c
cu c

f
f f


 


    (3.61) 

Wei et al. (2011) developed an improvement for the MCFT based on a linear crack 

width expression over the depth of the beam, leading to a size effect factor similar to 

Bažant and Kazemi (1991). The MCFT assumes that the aggregate interlock 

resistance of the complex crack geometry can be estimated at only one depth in the 

beam. This means that the shear strength of the section in the flexural region of a 

beam may be modeled by an element loaded in shear combined with axial stress. As a 

result, parameters such as shear stress, tension stress, compression stress, aggregate 

interlock stress, the angle of inclination of the compression struts and the strains 

corresponding to these stresses over the depth of the beam are all uniform. In reality, 

the crack width profile is a complex function of material properties and geometrical 

parameters such as the effect of the shear stresses transmitted across the crack, the 

presence of longitudinal steels crossing the crack and the size effect on the crack 

shape.   

Wei et al. (2011) assumed that the shear crack width is a linear function of the depth, 

with zero opening at the tip and maximum opening at the bottom: 

max 1max 1max 1max( ) v
v v v

y y y
w y w s kd k y

d d d        (3.62) 
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The average aggregate interlock stress vci along the crack surface can be derived by 

integrating this stress along the depth and taking the average value: 

1

10

0,18 ' 0,18 '1
ln 1

0,31 0,686 ( ) 0,31

vd
c c v

ci
v v

f f k d
v dy

d w y k d

        (3.63) 

with 

   2 5 4

1 4

1 cot 4.10 cot
0,686

1 0,0034cot
sx

k k
  



 



  (3.64) 

To obtain a consistent result with that of the classic MCFT, k = 2,5 is taken in Eq. 

(3.64). For design purposes, a simplified formula was sought. The best fit to the 

numerical results was found in the format of: 

1 sx v

a

b d






    (3.65) 

with a = 0,4 and b = 6,25. This expression is similar to the size effect expression of 

Bažant and Kazemi (1991), leading to a simple expression for the shear capacity of 

beams without stirrups: 

0, 4 '

1 6, 25
c v

v

sx v

f bd
V vbd

d
 


    (3.66) 

3.3.1.3 Methods based on a compression field 
A similar method considering the properties of cracked concrete is the fixed-angle 

softened truss model (FA-STM) (Fig. 3.114), which is based on the observation that 

concrete struts in membrane elements under shear and normal stress remain parallel to 

the initial cracks. Softened equilibrium equations and compatibility equations are used. 

The fixed angle α2 lies between the 2-axis and l-axis, Fig. 3.115. After initial cracking, 

the change in direction of the subsequent cracks are due to changes in the direction of 

the principal tensile stresses in the concrete, which, in turn, are dependent on the 

relative amount of steel in the longitudinal and transverse directions (Hsu, 1996). A 

fixed-angle softened-truss model is the only model capable of predicting the concrete 

contribution. 

A simpler method is the rotating-angle softened-truss model (RA-STM), which is 

very similar to a compression field approach. The rotating angle stands for the fact 

that the angle of diagonal tensile stresses becomes smaller as the shear force goes up. 

The angle between the d-axis and the l-axis is called the rotating angle α, because this 
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The cracked membrane model considers maximum stresses at the crack, whereas the 

modified compression field approach considers average stresses in the concrete 

between the cracks. The experimental evidence also suggests a more drastic softening 

for high-strength concrete; hence fc is supposed to be proportional to  
2

' 3
cf  rather 

than to fc’. Extension of the tension chord model to cracked panels eliminates the need 

for constitutive equations relating average stresses and average strains in tension. 

Thus, contrary to the modified compression field approach, crack spacing and tensile 

stresses in the concrete and in the reinforcing bars between the cracks can be 

determined from equilibrium conditions and bond shear stress-slip relationships. 

Concrete tensile stresses enhance the stiffness but they do not directly affect the 

ultimate strength; thus, the cracked membrane model reintroduces the link to limit 

analysis that had been lost with the modified compression field approach. As 

compared to the MCFT, the cracked membrane model more accurately takes tension 

stiffening into account, but similarly simplified the treatment of cracks. 

 

The sandwich model for transverse shear in reinforced concrete slabs (Marti, 1990 

and Jaeger, 2002) consists of a reinforcement cover and a concrete core. The covers 

are assumed to carry moments and membrane forces, while the transverse shear forces 

are assigned to the core, Fig. 3.116. The twisting moment is divided into a couple of 

forces that are added to the shear force. The core is considered uncracked as long as 

the nominal shear stress due to the principal shear force does not exceed '0,17 cf  (fc’ 

in MPa). When this value is exceeded, a diagonal compression field is considered in 

the cracked core, Fig. 3.117. Additional membrane forces are consecutively added to 

the cover elements, Fig. 3.118. In the vicinity of concentrated loads or reactions, fan-

shaped stress fields should be used.  

 

Fig. 3.116: Sandwich model consisting of cover parts and core, Marti (1990). 
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3.3.1.4 Discussion of compression field theory models 
The link between compression field models and plasticity models is found in the 

redistribution capacity in shear for the mechanisms transfering shear across the crack 

(Hsu et al., 1987). 

The main deficiencies of the MCFT are (Sun and Kuchma, 2007): 

1. The restriction in coincidence of principal directions of average stress and average 

strain. The observed tendency is for the principal stress direction to lag behind the 

change in the principal strain direction. 

2. Reorientation of the crack direction: the MCFT is a fully rotating crack model in 

which a gradual reorientation occurs in the direction of cracks. However,  crack 

patterns in girder tests have shown that crack directions remained fixed in the 

direction of first cracking. 

3. Exclusion of shear slip:  shear slip together with crack opening contributes to the 

most component parts of average strain in compatibility. 

4. Inaccuracy in the crack spacing estimation: the assumed crack spacing was found 

not to correspond with experimental results. 

5. Perfect bond without stress variation in the reinforcement: in reality, the 

distribution of stress in the reinforcement between cracks is like a parabolic curve 

with the highest values at the crack points and the lowest at the middle point. 

Hawkins and Kuchma (2009) compared measurements to the strain distributions as 

calculated with the MCFT and found some inconsistencies. The principal stress direction 

was found to lag behind the principal strain direction.  

Sun and Kuchma (2007) developed a model (Crack Displacement Field Theory) in which 

bond between reinforcement and concrete is based on the MC90 local bond-slip relation. 

Aggregate interlock is based on the rough crack model by Bažant and Gambarova (1980). 

Since the model captures the discrete displacement due to crack opening and slip, the 

restriction that principal directions of average strain and average stress must coincide is 

removed.  

Gurley (2011) points out that placing skin reinforcement is not aimed at countering the 

size effect, but ensures sufficient ductility for applying a plastic method like the MCFT. 

Another two areas of improvement of the MCFT include; 
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1. members containing heavy amounts of reinforcement in both directions, members 

subjected to high biaxial compression in addition to shear, or members where the 

reinforcement and loading conditions are such that there is no rotation of the 

principal stress or strain conditions, for example panels where the principal 

loading directions are coincident with the reinforcement directions and hence, no 

reorientation of the stress-strain fields occurs. 

2. Shear strength and stiffness are generally overestimated for uniaxially reinforced 

panels or for panels containing very light reinforcement in the transverse 

direction. 

Reduced accuracy is also observed in shear-critical beams containing very little or no 

transverse reinforcement. Hsu (1996) questions the possibility of transmitting forces 

across cracks when combining concrete struts with a crack shear stress and criticizes the 

combination of an average stress-strain diagram of concrete in tension with a local stress-

strain curve of the steel bars rather than an average stress-strain curved of steel bars 

embedded in concrete. 

Vecchio (2000) developed the Disturbed Stress Field Model which is a hybrid 

formulation between a fully rotating crack model and a fixed crack model. A new 

approach to the reorientation of concrete stress and strain fields, removing the restriction 

that they be coincident as well as an improved treatment of shear stresses on crack 

surfaces were developed. With rotating crack models it is assumed that a gradual 

reorientation occurs in the direction of cracks, as dictated by the loading or material 

response. Vecchio (2000) points out that it is the assumption of coaxiality of stresses and 

strains which, in large part, leads to the inaccuracies of the MCFT. Also, MCFT allows 

no actual shear slip along the crack. The Disturbed Stress Field Model takes local 

disturbances by cracks into account, Fig. 3.119. The concrete tensile stresses fc1 will 

approach zero at the crack locations, but will be greater than zero between the cracks due 

to tension stiffening and other mechanisms. The concrete compressive stresses fc2 will be 

increased somewhat near cracks due to aggregate interlock mechanisms and equilibrium 

requirements. The internal force resisting mechanism is expressed in terms of average 

stress fields, but recognizing that these fields are disturbed by the presence of cracks. The 

localized deformation must be considered in addition to the average (smeared) strain 
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resulting from the constitutive response of the concrete of the average stresses. The 

element equilibrium condition becomes then: 

        
1

n

c c s si i
i

D D  


     (3.67) 

where 

n  the number of reinforcement components; 

 cD ,  s i
D  the concrete and reinforcement stiffness matrices, respectively; 

 c ,  s i
  the net strains in the concrete and reinforcement components. 

Crack interfaces are considered planes of weakness. The componenet of the concrete 

principal tensile stresses due to tension stiffening is assumed to be zero at the crack 

location. The combination of the smeared and local strains is shown in Fig. 3.120. The 

apparent total strains will be the summation of the continuum stress-induced strains, the 

shear slip strains, and the elastic and plastic offset strains (both typically taken as equal to 

zero).  

 

Fig. 3.119: Nature of disturbed stress fields in cracked reinforced concrete (Vecchio, 
2000). 
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Fig. 3.120: Compatibility Conditions: (a) Deformations due to Average (Smeared) 

Constitutive Response; (b) Deformations due to Local Rigid Body Slip along Crack; (c) 
Combined Deformations. (Vecchio, 2000). 

3.3.2. Critical shear crack theory 

3.3.2.1 Development of CSCT 
The Critical Shear Crack Theory (CSCT) has been developed since 1985 in order to 

estimate the ultimate beam shear capacity and the ultimate punching shear capacity. The 

theory is treated in more detail in Muttoni and Fernández Ruiz (2008a, b) and Muttoni 

(2003). The basic assumption of this theory is that the shear strength of members without 

transverse reinforcement is governed by the width and roughness of a shear crack which 

develops through the inclined compression strut carrying the shear.  

3.3.2.2 Design procedure based on CSCT 
The critical zone is estimated at a cross section located at 0,5d from the point of 

introduction of the load and at 0,6d from the extreme compression fiber. The width of the 

critical shear crack w is proportional to the strain ε in a control depth for one-way 

members and to the slab rotation ψ for two-way members (Muttoni, 2008). The width w 

is also influenced by the aggregate size and the spacing between the layers of 

reinforcement. Based on these assumptions, the following failure criteria have been 

developed for members without stirrups: 
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for one-way shear (units: MPa, mm)
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for two-way shear (units: MPa, mm)

R
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g g

V
db d f

d d
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
  (3.69) 

in which 

VR  the shear strength; 

b0 a control perimeter, equal to the width of the member b in beams and set at 

d/2 of the border of the loaded area for punching shear; 

d the effective depth of the member; 

fc the average cylinder compressive strength of the concrete; 

ε  the strain in a control depth for one-way members;  

ψ  the slab rotation for two-way members; 

dg the aggregate size; 

dg0 the reference aggregate size equal to 16mm. 

For one-way shear the strain in the control depth is taken as: 

0,6

3

2
1 1

s

s c

c s

M d x
x d xd E d

E E
x d

E E


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

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

  
 
 

    
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    (3.70) 

in which 

x the depth of the compression zone; 

M the bending moment at the critical cross section; 

ρ the reinforcement ratio for the longitudinal steel; 

Es Young’s modulus of steel; 

Ec Young’s modulus of concrete. 

For two-way shear the rotation can be assumed as: 
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deformation capacity (rotation) at failure, providing valuable information to the designer 

on the behavior of the structure (ductility, brittleness). 

Windisch (2011, in a discussion to Vaz Rodrigues et al., 2010) questions the possibility 

of the shear crack to penetrate the compressive strut. The detrimental development of the 

critical shear crack is assumed along the theoretical compression strut that leads to the 

failure of the inclined compression strut and that of the member. This compression strut 

is “prestressed” by the compressive force in it; and therefore it might be questionable that 

the shear crack can penetrate this strut. In this way, the critical shear crack model 

contradicts both the variable angle stress field and the MCFT. According to the discussor, 

however, this could actually be considered an advantage of the CSCT model. 

3.3.3. Strut and tie models and truss models 

3.3.3.1 Development of strut and tie models 
Strut and tie models are mechanical models representing the force flow in a concrete 

member by compressive struts and tension ties. The tensile ties can be reinforcing bars, 

prestressing tendons or concrete tensile stress fields (Schlaich et al, 1987). Strut-and-tie 

models also incorporate the major elements of detailing. The lower bound theorem of 

plasticity is used. For slabs in which the state of stress is not predominantly plane, as for 

example in the case of concentrated loads, three-dimensional strut-and-tie models should 

be developed. The direction of struts can be taken in accordance with the mean direction 

of principal compressive stresses. Since loads follow the path which requires the least 

forces and deformations, and reinforced ties are much more deformable than concrete 

struts, the model with the least and shortest ties is the best (principle of minimum strain 

energy for linear elastic behavior of the struts and ties after cracking). Three types of strut 

and ties are used: Cc (concrete struts in compression, two or three-dimensional stress 

field), Tc (concrete ties in tension without reinforcement, two or three-dimensional stress 

field) and Ts (ties in tension with reinforcement, linear, one-dimensional element). 

Depending on the combination of struts and ties, 4 types of nodes are possible: CCC, 

CCT, CTT and TTT. Since Cc and Tc are stress fields, these tend to spread in between 

two adjacent nodes. Three types of compression fields are used: the fan, the bottle and the 

prism, Fig. 3.127. In case of bottle-shaped stress fields, force distribution leading to a 
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ultimate capacity, the bar force at yield and the angle of the compression strut (α) need to 

reach a critical value. The parameters which are likely to affect α are assembled in a non-

dimensional empirical term. From geometric considerations, tan(α) equals the ratio of the 

out-of-plane component (defined by the ability of the slab to confine the bar, function of 

tributary width of each bar (s), cover (d’) and concrete strength) to the in-plane 

component (yield force in steel). These observations led to the expression: 

K
fA

P

y
top
SV

failuretan  

 

' '

0,25

. .

. . /

eff c

bar y s

s d f
K

A f c d
                   (3.79) 

where 

Pfailure   the failure load;  

ASV
top    the top mat shear steel;  

fy    the yield strength of the steel;  

seff    the maximum of s or 3d’; 

d’    the cover of the reinforcement measured to the near side of the slab; 

ds    the cover of the reinforcement measured to the far side of the slab; 

c    the column dimension perpendicular to the bar being considered; 

fc
’    the concrete strength;   

Abar    the area of a single reinforcing bar. 

Based on these theoretical considerations, a design equation for α was determined from 

test results: 

2,25tan 1,0 Ke         (SI units)          (3.80) 

3.3.3.4 Discussion of strut and tie models 
Strut and tie models are based on the principle of an inclined compression field in the 

concrete. Not only does this mechanism provide a load path for shear forces in the 

presence of diagonal cracking, it explains the role that flexural reinforcement plays in 

determining shear strength, according to Alexander and Simmonds (1986). 

As a result of the multi-axial stress state, simplified strength values of the concrete 

compressive design strength need to be used, which could be seen as a disadvantage 
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(Schlaich et al, 1987). Reineck (1990) connects the subdivision in B- and D-regions by 

Schlaich et al. (1987) to Kani’s valley (1964) by pointing out that in order to have a B-

region develop in a beam, the load should be at a distance greater than 2h from the 

support axis, which corresponds with the minimum of Kani’s valley around a/d = 2,5.  

Marti (1999) points out that strut and tie models include strain compatibility and an 

effective concrete compressive strength fc just like compression field approaches, and that 

they also provide a theoretical framework with experimental evidence.  

Gastebled and May (2001) argue that a different approach is needed to capture the shear 

failure of slender members without stirrups, for which the failure mechanism differs 

significantly from those assumed in the truss models. 

In his discussion to the 1987 ACI paper by Alexander and Simmonds, Braestrup 

(1988) denotes the strut-and-tie model as an example of the lower bound method of 

plastic analysis. He criticizes the assumption that all steel is yielding, since the 

typical slab-column tests might not be able to describe adequately the conditions in 

prototype structures. The same remark is made by Rangan (1988), regarding the 

angle α. Braestrup further argues that it may be desirable to preclude concrete failure, 

but this requires an adequate design which can only be based upon a description of 

the failure which is to be avoided. Windisch (1988) states that the model does not 

meet the equilibrium conditions: 

1. At the bar-strut junction there exists a force component out of the plane of 

the slab that is not equilibrated directly by the applied load, which must be 

balanced by some form of tension field in the concrete. This concrete tension 

field, which is not treated further in the paper, is incompatible with the 

assumptions of the truss model. 

2. The anchoring struts deliver considerable in-plane compressive forces that 

are not balanced by any other truss member. The inclination of these 

anchoring struts hardly depends on the pure geometrical conditions. 

3. A gravity strut should belong to the strut steel of bar A in Fig. 3.136. The 

tensile force in the reinforcing bar is not equilibrated in the cross section of 

the plate parallel to the front side of the column. 
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The tooth model was introduced as an explanation for the riddle of shear failure by Kani 

(1964). Kani’s tooth model (Fig. 3.139) consists of free cantilevers fixed in the 

compression zone and loaded by horizontal shear forces resulting from the bonded 

reinforcement. Kani (1964) correctly linked the beam shear capacity (the capacity of the 

concrete teeth) and the capacity of the remaining arch to the experimentally observed 

valley of diagonal failure, Fig. 2.18. The bond force between the deformed bars and the 

concrete was expressed as a distributed load, Fig. 3.138. The concrete teeth were 

calculated as short vertical cantilevers anchored in the compression zone, Fig. 3.139. 

Kani (1964) also measured the transformation into a concrete arch by registering the 

increase in compressive strain at the neutral axis, Fig. 3.140. Assumptions concerning the 

inclination and spacing of the discrete cracks (the factor 
x

s


in Fig. 3.139) were made and 

remain a source of discussion (Brock et al., 1964). MacGregor and Walters (1967) used a 

programming routine to calculate stresses. Several values of crack spacing Δx were 

assumed to study the effect of crack spacing on the computed inclined cracking load. The 

computed strengths depended on the crack spacing to some extent, but were not nearly as 

strongly affected as predicted by Kani. The reason for this appeared that the more flexible, 

narrow teeth deflected laterally under load and thus the steel stress on each side of them 

tended to approach the same value. In addition, the larger lateral deflections led to large 

friction and doweling shear forces between the teeth which tended to reduce the tooth 

stresses. Reineck (1997) estimates the crack spacing as 0,70( )crs d x   with x the depth 

of the compression zone, which mainly depends on the reinforcement ratio. The shear 

strength in Kani’s tooth model is expressed as VR = ruMy/a  where My is the yielding 

moment, ru the reduction factor as shown in Fig. 2.18 and a the shear span. The problem 

of “shear strength” has thus become an investigation, and search for, the type and 

quantity of web reinforcement required to increase the reduction factor ru to 1 (Kani, 

1966). 

The assumed force distribution versus the later measured force distribution is shown in 

Fig. 3.141. 
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- cantilevering action of the tooth from the compression zone, and  

- a shear force component in the compression chord.  

Reineck’s model is based on strut-and-tie models representing the principal stress fields 

in a concrete tooth. The dowel forces are equilibrated by friction stresses along the crack, 

so that the bending stresses in the tooth due to the dowel forces superimpose with a 

biaxial tension – compression stress field as before. The friction stresses are assumed to 

be a superposition of a constant friction part and a parabolic part related to the dowel 

action. The dowel action causes a negative slip in the lower part of the tooth and thus 

reduces the possible friction transfer over the crack, which results in the parabolic shape 

of the friction stresses. Equilibrium and the condition of equal shear stresses for an 

element at the neutral axis lead to: 

2 ,2f n dv   with , ( )
d

n d
w

V
v

b d c



   (3.81) 

This leads to a statically admissible and consistently described stress-field in the tension 

zone. The resulting stress fields are visualized through a strut-and-tie model, Fig. 3.145. 

Some bending occurs at the lower part of the tooth, but the inclined tension and 

compression field prevails. The maximum shear force is then 

3

4w f d

z
V b z V

d c
 


   (3.82) 

The stress field is completely known. At the crack tip zone, the crack opens without any 

slip so that no friction stresses can be activated. It is shown by Reineck (1990) that the 

assumed stress field near the neutral axis can be transferred by a combination of friction 

and tensile stresses in this fracture zone. The stress field is then represented by a simple 

truss model, Fig. 3.146, which shows that the tensile strength of the concrete is utilized in 

members without transverse reinforcement such as slabs. 

This model requires the constitutive laws to be formulated for all the considered 

mechanisms of shear transfer (Reineck, 1997a). Reineck (2010) explains the ultimate 

capacity not by the concrete ties attaining the concrete tensile strength, but by the limited 

capacity of friction along the cracks and the dowel action. 
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Fig. 3.146: Truss model with biaxial tension-compression stress field in concrete of web 
(Reineck, 1990). 

 
Reineck (2002) points out that failure mechanism approaches have a common feature 

with fracture mechanics approaches, where the localization of the failure zone either in 

tension or compression plays the major role. When the friction in the concrete is correctly 

modeled, a truss model with crack friction can be developed. In such a method, the shape 

and the geometry (inclination) of the crack is modeled and also the spacing. This 

approach is in principle different from the smeared approaches such as the shear-

compression field theory (MCFT, Collins 1978) and the rotating-angle softened truss 

model (Hsu, 1999). In these methods, the crack angle and the angle of the compression 

field are equal, such that no slip occurs and the friction cannot be checked correctly. In 

fact, friction forces can not be transferred at cracks which are assumed parallel to the 

compression field. Although refined tooth models and the MCFT approach the problem 

from different directions, the end result is very similar. Both methods consider that the 

ability of diagonal cracks to transfer interface shear stress is most important in 

determining the shear strength of members without transverse reinforcement (ASCE-ACI 

committee 445, 1998). 

 

The tooth model method was illustrated with test results by Mihaylov et al. (2010). The 

shaded area of concrete in the LS3 crack diagram (Fig. 3.147) can be viewed as a 

cantilever fixed at the top part of the beam, which Kani et al. (1979) called a “tooth.” The 

bond forces between the bottom reinforcement and the concrete tend to bend the 

cantilever toward midspan, while the aggregate interlock (AI) and dowel action (DA) 

resist this bending. Both of these resisting mechanisms degrade as cracks widen; and by 

LS4 (Fig. 3.147), this cantilever had failed as shown by the now nearly uniform stress in 

longitudinal reinforcement over the width of the tooth. In deep beams, the loss of the 

teeth does not result in an immediate collapse of the beam. It resulted in almost constant 

tension in the bottom reinforcement, showing that the load-bearing mechanism has 

switched from beam action to almost pure arch action, as suggested by Kani (1964). 
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The flexural capacity depends upon the amount of reinforcement that effectively acts 

within the strip and is composed of the negative and positive moment capacity. 

cjdfM ynegneg
2      (3.85) 

cjdfkM ynegrpos
2      (3.86) 

In these equations, the following symbols are used: 

bd

AsT
neg   the negative effective reinforcing ratio; 

bd

AsB
pos   the positive effective reinforcing ratio; 

AsT the total cross-sectional area of top steel within the radial strip plus half 

the area of the first top bar on either side of the strip; 

AsB  the total cross-sectional area of bottom steel within the radial strip plus 

half the area of the first top bar on either side of the strip; 

b  the total distance between the first reinforcing bars on either side of the  

  radial strip;   

d  the effective depth; 

jd  the internal moment arm; 

c  the width of the radial strip; 

fy  the yield stress of the reinforcement; 

kr a factor which accounts for the proportion of the bottom steel that can be 

developed by the rotational restraint at the remote end of the strip. This 

 is zero if the remote end is simply supported. 

The loading term w represents a lower bound estimate of the maximum shear load that 

may be delivered to one side of a radial strip by the adjacent quadrant of the slab.  

The maximum value of the loading term w is based on the maximum value of beam 

action shear  

'166.0 cACI fdw      (3.87) 

The bond model also explains how load may be carried in the presence of diagonal 

cracking. Test results have shown that diagonal cracking occurs at 50 to 70% of the 

ultimate load.  
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3.3.5. Plasticity-based models  

3.3.5.1 Failure criteria 
This section focuses on the failure criteria used in plasticity-based models. The concrete 

material strengths are the effective uniaxial tensile ft and compressive fc strengths, as 

opposed to the actual measured uniaxial tensile and compressive strengths. Typically, 

effectiveness factors need to be applied to the measured concrete material strengths.  

3.3.5.1.1 Coulomb’s hypothesis and the modified Coulomb criterion 
In 1776, Coulomb advanced the frictional hypothesis, based on the observation that 

failure often occurs along certain sliding planes or yield planes. These yield planes are 

determined by: 

- their resistance: the cohesion, and 

- an internal friction, the magnitude of which depends on the normal stress in the 

sliding plane. 

Mohr (Fig. 3.150) generalized this theory and assumed that failure occurs when the 

stresses in a section satisfy the condition  , 0f    which gives a failure envelope in a 

(σ, τ) coordinate system.  

 
Fig. 3.150: Mohr’s circles of principal stresses. (Nielsen, 1984). 

 

Combining Coulomb’s hypothesis with an extra limitation on the greatest principal stress 

σ1 (a tension cutoff), the modified Coulomb criterion is obtained (Nielsen, 1984). By 

combining Coulomb’s criterion with a limit on the tensile stress, two failure modes can 

be distinguished:  

- sliding failure (characterized by cohesion c and internal friction which is a 

fraction μ of the normal stress), or  

- separation failure (characterized by the separation resistance fA).  

The condition for sliding failure is given as: 
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A plasticity-based model for punching shear was developed by Kinnunen and Nylander 

(1960). The theory was based on the assumption that the slab portion outside the shear 

crack, which is bounded by this crack, by radial cracks, and by the circumference of the 

slab, can be regarded as a rigid body, which is turned under load action around a centre of 

rotation located at the root of the shear crack.  

The considered failure modes were: 

- failure in shear under the plane of flexural reinforcement, 

- failure of the concrete cone between the shear crack and the column, 

- failure in compression of the concrete in a  tangential direction. 

Kuang and Morley (1993) used a two-phase approach in a plasticity model to describe the 

punching capacity of slabs taking the compressive membrane action into account. A 

parabolic Mohr failure criterion was used. 

Salim and Sebastian (2002) used rigid plastic theory to analyze punching shear based on 

a  parabolic Mohr failure criterion, Fig. 3.155. The upper-bound theorem of plasticity 

states that if, for any assumed failure mechanism, the external rate of work is equated to 

the rate of dissipation of internal energy, then an upper-bound for the collapse load of the 

structure can be found. Salim and Sebastian (2002) used a parabolic and linear failure 

generatrix to describe the punching cone. Comparison to experimental results gave high 

coefficients of variation. 

3.3.5.2.4 Discussion of plasticity models 
The main points of criticism of the plasticity models are the following: 

1. The location of the crack is based on simplifications. When the crack is 

transformed into a yield line, there will be a displacement component parallel to 

the crack. The cracking moment is derived from simplifications, a fracture 

mechanics approach could lead to an improved quantification of the cracking load 

(Nielsen, 1984).  

2. Plasticity models require a certain amount of redistribution and ductility which is 

not always available in the case of a brittle shear failure (Lubell 2006,  

3. The effectiveness factors need to be determined empirically. These factors are not 

the same for all load cases and cannot be physically explained in a satisfactory 

way (Walraven 1980). Salim and Sebastian (2002), however, see it as an 
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advantage that only effectiveness factors relating concrete compressive and 

tensile strengths need to be determined through the calibration of theoretical 

results against experimental results. Nielsen (1984) explains that finding the 

effectiveness factor is straightforward for beams with web reinforcement, but 

becomes complicated and dependent on a/h for elements without web 

reinforcement.  

4. The size effect is not modeled correctly. According to Bažant and Kim (1984), 

this is not surprising, since the stress-strain relation of concrete has no yield 

plateau and exhibits strain softening, which causes that the limit stress state 

cannot exist along some postulated failure surface, as required by plastic limit 

analysis, but is reached successively at various points of the failure surface. 

3.3.6. Fracture mechanics models 

3.3.6.1 Introduction to fracture mechanics models 
Fracture mechanics approaches were first applied to the problem of shear in concrete in 

the late 1970s. The field of fracture mechanics provides tensile stress-crack opening 

relations further to stress-strain relations, making it possible to better describe the 

behavior of structures, especially those which exhibit a brittle failure behavior. The 

fracture  energy, as a function of the concrete compressive strength and the maximum 

aggregate size, is used in these expressions (Walraven, 2007).  

Fracture mechanics models (ASCE-ACI committee 445, 1998) study the peak tensile 

stress near the crack and the reduced tensile stress (the so-called softening) in the cracked 

zone.  Shear cracks are supposed to have the Mode II (shear) facture energy. However, 

Mode II fracture energy can be neglected and replaced by mode I fracture energy if the 

crack plane is properly modeled (McCabe and Niwa, 1993). Normal and shear stresses on 

a crack plane correspond to modes I and II respectively (Reinhardt, 1986). Shear failure 

is related to the critical stress intensity factor of the material. Fracture mechanics 

approaches do not treat fracture as a point phenomenon, but recognize that in a brittle 

heterogeneous material such as concrete, the fracture propagates with a relatively large 

fracture process zone ahead of the crack tip in which progressive microcracking gradually 

reduces the tensile stress to zero (Mihashi and Nomura, 1993). Most approaches are 
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At peak stress, a localized fracture zone, or a concentrated damage zone, is assumed to 

develop. This strain localization is a result of strain instability. As the total elongation of 

the specimen increases further, the stress within the specimen decreases gradually. 

During this decrease in stress, the strain outside the concentrated facture zone decreases 

(unloading) while the additional deformation or elongation w within the fracture zone 

increases (softening) The fictitious crack model uses tension softening to go from the 

initiation of micro-cracks in concrete under tension to the development of major 

macroscopic cracks (Niwa, 1997). Tension softening means that once the tensile stress 

reaches the tensile strength of the concrete, the stress decreases as the fictitious crack 

increases in width. This behavior is represented by a tension softening curve, Fig. 3.168; 

simplified models in Fig. 3.169 and Fig. 3.170. The properties of the material are thus 

described by one stress-strain (σ - ε) diagram valid for the material outside the fracture 

zone, and by one stress-elongation (σ – w) diagram, valid for the additional deformation 

of the material within the fracture zone, Fig. 3.167c, schematized in Fig. 3.167d. Three 

parameters are required for defining the material properties and thus the magnitude of 

stress, strain and elongation. These parameters can be chosen as ft (tensile strength), E 

and GF (fracture energy). The area enclosed by the tension softening curve is the fracture 

energy of the concrete, GF. The fracture energy is defined as the energy required to create 

a fully cracked unit surface of concrete across which the tensile stress cannot be 

transferred. The main drawback of the fictitious crack model is that the crack plane must 

be modeled before analysis (McCabe, 1997). The fictitious crack model also cannot 

provide analytical expressions which could be used in a design formula (Reinhardt, 1986). 

The local fracture energy gf increases as the crack grows and then turns almost constant if 

the ligament lengths are sufficiently long. 

0

0

w

FG dw       (3.110) 

The influence of the fictitious crack on the overall behavior of a structural element is 

large when the element is small and the influence diminishes as the element becomes 

larger (Reinhardt, 1986). The characteristic, or intrinsic length can be defined as: 

2
t

F
ch f

EG
l 

     (3.111)
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fcm  the mean concrete compressive strength. 

Voormeeren (2011) varied the crack bandwidth in nonlinear finite element analysis to 

model a reinforced concrete slab under a concentrated load close to the support. The 

assumption of a band width 3h V seemed to simple, since the crack bandwidth is 

greatly depending on the mesh shape and the inclination of the crack in brick elements. In 

case of a higher fracture energy the structure shows a stiffer response and a higher peak 

load, and more ductile behavior. An increase in the crack bandwidth h to 31,5h V

implies a reduction of the fracture energy Gf/h, which in turn results in a lower ultimate 

strain εu (ductility) of the concrete. Three reasons are given for this reduction of the 

fracture energy: 

1. The assumption that cracks in rectangular solid element meshes do not always run 

along the meshing lines. Especially in the case of the slab subjected to a 

concentrated load, the shear crack propagation is expected in an inclined 

direction. 

2. The adopted linear softening curve: in case of exponential softening, the negative 

slope after reaching the tensile strength is steeper than in case of linear tension 

softening. Therefore, one normally reduces the adopted amount of tensile facture 

energy by a factor (1/3 – ½) to simulate the slope of the real exponential softening 

curve of concrete. 

3. An overestimation of the fracture energy by the guidelines is also a possibility. 

3.3.6.3 Fracture mechanics models for shear 
Gustaffson and Hillerborg (1988) used a semi-empirical approach to show that the shear 

strength of concrete is proportional to 

1
' 4

f cEG f

d

 
  
 

with E the elastic modulus and Gf  the 

fracture energy of concrete. 

Pruijssers (1986) altered Kani’s tooth model (1964) to account for the shear carried by 

residual tension at the crack tip, Fig. 3.172. He described that at the onset of shear failure, 

the crack propagates into the compression zone, decreasing the effective depth of the 

uncracked area. The concrete teeth are shown in detail in Fig. 3.173. The concrete teeth 

deform due to the bond between the concrete and the longitudinal reinforcing bars. At the 
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

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v
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9
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
    (3.120) 

with 

Gs  the shear modulus of steel, 

Σs  the reduced cross section of the bar 

δs  the unbonded length of the reinforcement. 

In Eq (3.120) the principles from beam theory for a circular cross section are used: 

ss A9,0  

  s
s

s
s E

E
G

26

9

12






 

Moment equilibrium around the free body as shown in Fig. 3.176 and assuming the 

diagonal crack extent y and the internal moment arm jd to be proportional to the height of 

the beam H ( y=βH  and jd=γH) leads to a formula for the rotational stiffness: 




 2

26

9
H

AE
Va

s

ss
c 



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
    (3.121) 

Differentiating this expression about the unbonded length δs yields: 
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  (3.122) 

with 

δe the variation of the unbonded length, that is, the variation of the extent of 

the splitting crack. 

It is now possible to write the fundamental relation of fracture mechanics as a criterion 

for splitting failure: 

GWext  2      (3.123) 

eVa crc  .2     (3.124) 

with 

Γ the fracture energy necessary to extend the splitting crack by unit length. 
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Substituting the Eq. (3.122) into Eq. (3.124) gives the expression for the critical shear 

load: 















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
 ss

c
cr EA
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H
V




2
13

9
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2    (3.125) 

 ss
c

cr EA
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H
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

2
13

9
   (3.126) 

To simplify this formula, the following assumptions can be made: 

HHjd 9,0     (3.127) 

HHy 8,0     (3.128) 

dagg = 20mm      

For the assessment of the facture energy, the formula from CEB-FIP Model Code (1990) 

was used: 

 
7,0

10
265,00469,0 






 c

aggaggf

f
ddG  in Nm/m2   (3.129) 

If failure occurs without further increase in load, then only the fracture energy from the 

splitting crack is required to estimate the failure load. It is then possible to simplify Eq. 

(3.126): 

bEAf
a

H
V ssc

c
cr

35,0517,4     (3.130) 

It remains difficult to determine the position of the critical diagonal crack ac. The point of 

first shear cracking can be obtained by assuming that the diagonal crack initiates from a 

flexural crack when the tensile strength of the concrete is reached due to bond stress 

concentration at the steel bar level, near the flexural crack.  First, the load required for a 

flexural crack to exist is given as: 

c
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
     (3.131) 

with k1 an empirical factor. Secondly, the load at which the bond stress reaches the tensile 

strength of concrete is given: 
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A new approach (Xu and Reinhardt, 2005) focuses on using the mode II fracture 

toughness KIIc and mode II fracture energy GIIF of concrete materials. A method to 

determine these properties experimentally is described. The authors argue that the bond 

fracture as described by Gastebled and May (2001) is a mode II fracture case and not a 

mode I fracture. Therefore the mode II fracture properties should be used, replacing Eq. 

(3.125) by 

bGEA
q

r

a

qH
V IIFss

c
c 
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

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2

13

9
2

2    (3.135) 

Assuming q = 0,8 and r = 0,9 as done by Gastebled and May (2001), the following 

expression is obtained: 

ssIIF
c

c EAbG
a

H
V 372,1     (3.136) 

The same assumptions for ac as in Eq. (3.136) are used and d = 0,9H is introduced, which 

leads to the shear capacity of reinforced concrete beams without stirrups to be: 

  bHGE
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H
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   (3.137) 

Using a basic fundament of linear elastic fracture mechanics there is a relationship of 

cIIFIIc EGK  Eq. (3.137) could then be expressed as: 

bHKH
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E
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s
c 1

372,1    (3.138) 

In terms of mode II fracture toughness, the expression for Vc then becomes: 
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3.3.6.4 Discussion of fracture mechanics models 
Reineck (1990) points out that fracture mechanics considerations are needed in the case 

of a relatively brittle failure, wherein a discrete crack propagates into the compression 

zone. However, before a refined failure criterion can be applied, there must be an 

explanation of how the shear force is transferred and how the stresses and forces in the 

member are calculated.  
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3.3.7. Empirical models 
As the mechanics of the shear problem are still not fully understood, many empirical 

models have been developed. These models have been developed based on laboratory 

tests on beams under point loads (for one-way shear: for example Zsutty, 1971; Tureyen 

and Frosch, 2004) or slab-column connections (for two-way shear). The code 

formulations which are discussed in section 5 are also based on experimental results. Of 

all empirical methods which are available in the literature, Regan’s formula (Regan, 1982) 

is of most interest as it is developed for slabs under concentrated loads near to supports.  

3.3.7.1 Regan’s formula for concentrated loads close to supports 
Based on a series of small-scale tests, Regan (1982) developed a method to calculate the 

shear capacity of slabs under concentrated loads close to the support. The basis for this 

method is the punching shear formula from the British code CP110. The critical 

perimeter is calculated depending on the clear shear span, av. The critical perimeter is 

subdivided and the longitudinal and transverse slab properties are taken according to the 

part of the perimeter under consideration as shown in Fig. 3.177. 

 

Fig. 3.177: Illustration of design method as proposed by Regan: (a) critical perimeter and 
slab properties for parts of the perimeter for 2dl >av >1,5dl; (b) critical perimeter and slab 

properties for parts of the perimeter for av < 1,5dl; (c) slab properties. (Regan, 1982) 
The resistance of the part of the perimeter parallel to the support is calculated as: 

 2 2 2

2 cu
R s c

v m

fd
P v u d u d

a



 

  
 

    (3.140) 

with 

av  the clear distance between the load and support; 
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ξs  a depth factor 4
500

( )s d mm
  ;             (3.141) 

vc  the shear stress (resistance) 3
0, 27

100c cu
m

v f


 ;          (3.142)     

γm  the partial safety factor for materials; 

u2  the length of the part of the perimeter under consideration, Fig. 3.177; 

fcu  the cube crushing strength of the concrete. 

The resistance of the remainder (Σu = u1) of the perimeter is calculated as: 

1R s cP v ud     (3.143) 

The total shear resistance is then: 

1 2R R RP P P           (3.144) 

Each part of the calculation should use the local values of the ratio of flexural 

reinforcement ρ (ρt and ρl) and the effective depth d (dt and dl) as indicated in Fig. 3.177c.  

At a continuous support, the total resistance to punching is multiplied with a factor α: 

1 2

1

M M

M
 
      (3.145) 

in which 

M1  the larger moment at the end of the shear span; 

M2  the smaller moment at the end of the shear span. 
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4. Experimental data 
In this section, an overview of previous experiental research of interest is given. All 

results are combined into a database, which can be found in Annex 1. 

4.1. Test data by Regan 
Regan (1982) carried out tests for different values of the shear span, different sizes of the 

loading plate and at a simple and continuous support. The size of the tested slab 

specimens was 1,6m x 1,2m x 0,1m. The reinforcement layout is shown in Fig. 4.1a and 

the test setup in Fig. 4.1b. The maximum aggregate size was 20mm and the yield strength 

of the steel was fy ≈ 500 MPa. The effective depth d equals 83,5mm, resulting in a 

reinforcement percentage of 0,602%. The test results are given in Table 4.1, in which 

fcu  the concrete cube compressive strength; 

av  the clear shear span; 

SS  loading at the simple support; 

CS  loading at the continuous support; 

P  punching shear failure; 

WB  wide beam shear failure. 

 

Fig. 4.1: a) Reinforcement layout; b) test setup, Regan (1982). 
 

Table 4.1: Test data from Regan (1982). 
Slab 
no 

fcu 
(N/mm2) 

Location 
of load 

Dimensions of load
b x l (mm) 

av 
(mm) 

a/d Pu 
(kN) 

Failure
mode 

1 29,3 SS 
CS 

100 x 100 
100 x 100 

120 
120 

2,93 
2,63 

120 
150 

P 
P 

2 27,1 SS 100 x 100 80 2,93 130 P 
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CS 100 x 100 80 2,16 180 P 
3 35,4 SS 

CS 
100 x 100 
100 x 100 

40 
40 

2,46 
1,68 

195 
250 

P 
WB 

4 41,3 SS 100 x 100 20 1,98 230 P 
5 35,7 SS 200 x 100 80 1,44 190 P 
6 32,4 SS 

CS 
100 x 200 
100 x 200 

80 
80 

2,16 
2,75 

160 
160 

WB 
WB 

7 43,2 SS 
CS 

200 x 100 
200 x 100 

40 
80 

3,05 
1,68 

200 
230 

P 
P 

 
Regan and Rezai-Jorabi (1988) reported a series of tests on one-way slabs under 

concentrated loads at larger distances from the support and leading to either wide beam 

shear failure or punching shear failure. The test setup is shown in Fig. 4.2. The specimens 

were reinforced with Swedish steel type Ks60s. The 10mm longitudinal bars had a yield 

strength of 670MPa and an ultimate strength of 955MPa. The maximum aggregate size 

was 10mm for slabs 1-6 & 24-26 and 20mm for the other slabs. The results of the tests 

are given in Table 4.2, in which  

ct   the dimension of the loaded area transverse to the span of the slab;  

cl   the dimension of the loaded area parallel to the span of the slab; 

a  the shear span; 

ρl  the amount of longitudinal reinforcement; 

fc’  the concrete cube compressive strength. 

The failure modes are denoted WB for wide beam, P for punching, P/WB for a 

combination of punching shear and wide beam shear failure and P2 for punching around 

both concentrated loads. 

 

Fig. 4.2: Test arrangements, Regan and Rezai-Jorabi (1988). 
 
Table 4.2: Summary of data for slabs loaded with two symmtrical loads and with single 

central loads (denoted R), Regan and Rezai-Jorabi (1988). 
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Test 
No. 

fc’ 
(MPa) 

ρl 
(%) 

dl 
(mm) 

a 
(mm)

a/d b 
(mm)

ct 
(mm)

cl 
(mm)

Vu 
(kN) 

Mode

1 37,8 1,66 83 450 5,42 400 75 75 62,5 WB 
2 37,8 1,58 83 450 5,42 600 75 75 85 WB 
3 37,8 1,54 83 450 5,42 800 75 75 97,5 WB 
4 28,1 1,66 83 450 5,42 400 400 100 54,5 WB 
5 28,1 1,58 83 450 5,42 600 600 100 80,0 WB 
6 28,1 1,54 83 450 5,42 800 600 100 96,5 WB 

10 33,4 1,66 83 450 5,42 400 150 100 52,5 WB 
11 33,4 1,66 83 450 5,42 400 300 100 55,0 WB 
12 33,4 1,58 83 450 5,42 600 150 100 76,0 WB 
13 33,4 1,58 83 450 5,42 600 300 100 79,5 WB 
14 31,0 1,54 83 450 5,42 800 150 100 92,5 WB 
15 30,8 1,54 83 550 6,63 800 150 100 85,0 WB 
16 31,2 1,54 83 450 5,42 800 800 100 108,0 WB 
17 31,0 1,51 83 450 5,42 1000 100 75 90,0 WB 
18 31,2 1,51 83 450 5,42 1000 300 100 120,0 WB 
19 29,0 1,51 83 450 5,42 1000 150 100 111,0 WB 
20 30,8 1,51 83 450 5,42 1000 1000 100 122,5 WB 
21 38,2 1,64 80 450 5,63 1200 70 100 117,5 P 
22 37,0 1,64 80 450 5,63 1200 150 100 121,5 P/WB
23 35,4 1,64 80 450 5,63 1200 300 100 125,0 WB 
24 38,6 1,64 80 450 5,63 1200 100 300 150,0 WB 
25 30,3 1,64 80 550 6,88 1200 150 100 105,8 P2 
26 29,7 1,64 80 350 4,38 1200 150 100 137,5 WB 

14R 31,0 1,54 83 450 5,42 800 75 100 77,0 P 
15R 30,8 1,54 83 450 5,42 800 150 100 86,0 P 
16R 31,2 1,54 83 450 5,42 800 600 100 116,5 WB 
17R 31,0 1,51 83 450 5,42 1000 600 100 137,5 WB 
19R 29,0 1,51 83 450 5,42 1000 150 100 85,0 P 
20R 30,8 1,51 83 450 5,42 1000 300 100 132,5 P 

 

4.2. Test data by Furuuchi et al. 
Furuuchi, Takahashi, Ueda and Kakuta (1998) tested the shear capacity of structural 

elements in between beams and slabs, with small shear span to depth ratios, which they 

called “deep slabs”. The goal of this series of experiments is to determine which effective 

width has to be taken when using the shear capacity equation for deep beams. The 

reinforcement is 9φ16mm for bw = 500mm and 12φ16mm for bw = 650mm. The effective 

depth is 160mm. For the loading and supporting plates the width and depth are 50mm and 

10mm respectively. The longitudinal bars have a yield strength of 345MPa and the 

stirrups 295MPa. Stirrups of φ10mm with 50mm spacing are used outside of the 
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in Table 4.7. The data from specimen AW8 are taken from Lubell, Bentz and Collins 

(2009b). All specimens had a maximum aggregate size of 10mm. 

 

 
Fig. 4.7: Typical configuration of test specimens, Lubell (2006) and Lubell et al. (2009a 

and 2009b). 
 

Table 4.7: Specimens properties and test results, Lubell et al. (2009). 
Specimen bw 

(mm) 
d 

(mm) 
h 

(mm)
L 

(mm)
a/d ρ 

(%) 
fc’ 

(MPa)
Bearing 
plates 

(mm x mm) 

Vu 

(kN)

AY1 249 434 467 2600 3,00 0,328 40,7 152 x 249 85 
AX7 704 287 335 2080 3,62 1,04 41,0 152 x 704 249 
AX6 703 288 338 2080 3,61 1,73 41,0 152 x 703 281 
AX8 705 289 339 2080 3,60 1,72 41,0 152 x 152 272 
AW1 1170 538 590 3700 3,44 0,79 36,9 305 x 305 585 
AW4 1168 506 590 3700 3,66 1,69 39,9 305 x 305 716 
AW8 1169 507 591 3700 3,65 1,69 39,4 152 x 1170 800 

4.4. Test data from EPFL 
Vaz Rodrigues, Muttoni and Olivier (2006) tested two ¾ models of a bridge slab 

cantilever. Loading was applied according to the traffic loads from EN 1991-2. The 

dimensions of the tested cantilever are 2,78m span and 10,0m length. The a/d ratio for the 

concentrated load Q (test DR1c and test DR2-c) is a/d = 4,66 based on the value of d = 

278 mm at the position of the load. The concrete cover is 30mm. The hot rolled 

reinforcement steel has a yield strength of 515 MPa for bars with 16 mm and 22 mm 

diameter, and 535 MPa for bars with 12 mm diameter. For DR1, the top reinforcement of 

the top layer at the fixed end consists of 16mm diameter bars at 75mm spacing (ρ = 

0,79%). For DR2, the top reinforcement of the top layer at the fixed end consists of 

14mm diameter bars at 75mm spacing (ρ = 0,6%). The results are given in Table 4.8, in 

which: 
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Table 4.10: Geometric properties of relevant tests, based on Jaeger and Marti (2009), 
Jäger (2005, 2007). 

Slab h  
(mm)

φ0 

(º)
dm  
(mm)

ρx  

(%) 
Pu  
(kN) 

A1V1 200 45 156 1,538 169,2
A3V1 200 0 162 1,745 265,6
A4V1 200 45 168 0,952 140,5
A5V1 200 0 174 1,056 222,1
B1V1 500 45 390 1,538 852 
B3V1 500 0 405 1,745 1282 
B4V1 500 45 420 0,952 804 
B5V1 500 0 435 1,056 1170 

 
In which: 

h  slab thickness; 

φ0  direction of bending reinforcement; 

dm  average effective depth; 

ρx  effective reinforcement ratio in x-direction; 

fcw  concrete cube strength; 

fcc  concrete cylinder strength; 

Ec  modulus of elasticity; 

fct  tensile strength; 

fsy,stat  yield strength of 30mm bar; 

fsu,stat  ultimate strength of 30mm bar; 

Pu  ultimate load. 

4.6. Experiments on wide beams and slabs 
Graf (1933) carried out tests on reinforced concrete slabs under concentrated loads near 

to supports. The effective width was assumed to be beff = 5d but experiments were needed 

to confirm this. Three slabs (1243, 1244, 1245) are cast, Fig. 4.21, and on every slab, four 

tests are reported (a1, a2, b1, b2). The size of slab 1243 is 2500mm x 2000mm; slab 1244 

is 2050mm x 2004mm and slab 1245 is 2050mm x 2404mm. The size of the load was 

100mm x 150mm. Bent bars are provided close to a1 and a2, but the shear reinforcing 

action of these bars is questionable as the bars did not cross the shear span. The distance 

dl is 115mm for 1243, 104mm for 1244 and 106mm for 1245 and dt is 105mm for 1243, 

92mm for 1244 and 94mm for 1245. The maximum aggregate size is 30mm. Conversion 
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of kg-m units to N-m units is made assuming g=9,807 m/s2. The results are given in 

Table 4.11, in which 

ρ  the amount of longitudinal reinforcement; 

fy  the yield strength of the reinforcement steel; 

fu  the ultimate strength of the reinforcement steel; 

fc’begin the mean concrete compressive strength of cylinders tested at beginning of 

a series of tests on a specimen; 

fc’end the mean concrete compressive strength of cylinders tested at end of a 

series of tests on a specimen. 

Photographs of the failed specimens are given in Graf (1933), and from the cracking 

pattern it is deteremined whether the failure mode is punching (P) or wide beam shear 

failure (WB). Some photographs show a partial punching cone; these failures have been 

denoted P/WB. The failure pattern of a2 (Fig. 4.22) for example shows a half developed 

punching cone at the left side and then shear cracks running towards the free edge at the 

right side. 

Table 4.11: Results of tests by Graf (1933). 
Specimen Test a/d ρl 

(%) 
ρt 

(%) 
fy 

(MPa) 
fu 
(MPa) 

fc’begin 

(MPa) 
fc’end 

(MPa) 
Pu 
(kN) 

Failure 
mode 

1243 a1 

a2 
b1 
b2 

1,13 
2,17 
0,65 
1,52 

0,65 0,27 289 400 16,6 21,6 314 
235 
355 
206 

WB 
P/WB 

P 
WB 

1244 a1 

a2 
b1 
b2 

1,92 
2,40 
1,68 
2,16 

1,14 0,44 435 708 12,7 13,9 275 
196 
157 
147 

WB 
WB 
WB 
WB 

1245 a1 

a2 
b1 
b2 

1,89 
2,36 
1,65 
2,12 

1,52 0,43 412 616 23,7 23,5 333 
257 
196 
206 

P/WB 
WB 

P/WB 
P/WB 
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Fig. 4.21: Test specimens from Graf (1933): a) specimen 1243; b) specimen 1244; c) 
specimen 1245. 

 

 



 

Fig

 
Rich

of th

test 

conc

shea

parti

127m

com

30,5

6,35

in T

Fig.

 

S

S

S
 
Rich

503)

356m

g. 4.22: Pictu

hart and Klu

he load, Fig

2. The auth

cluded that t

ar failure, bu

icular tests. 

mm to the tr

mpressive str

5cm). The fi

5mm to 25,4

Table 4.12, in

 4.23: Loca

T
Specimen 

Slab 1 

Slab 2 

hart (1948) t

) and six foo

mm square 

ure from the

uge (1939) t

. 4.23. The r

hors wrote: “

the tests wit

ut pictures o

The effecti

ransverse re

rength of the

irst slab is g

4mm. The re

n which bedg

ation and po

Table 4.12: R
Test a/d 

2 
3 

2,72
2,72

2 1,64

tested a seri

otings of 1,5

concrete stu

e bottom fac

tested two o

relevant tes

“In most cas

th loading c

of the slabs 

ive depth wa

einforcemen

e concrete is

graded from 

elevant test 

ge equals the

ints of appli

Relevant tes
bedge 
(mm)

ρ
(

2 
2 

2438 
1219 

0
0

4 1016 0

ies of rectan

52m x 3,05m

ub. The test 

ce of 1243 s
(Graf, 1933

one-way slab

ts are: Slab 

ses the slab 

close to the s

after failure

as 139,7mm

nt. The supp

s measured 

6,35mm to 

data have b

e distance fr

ication of lo
Kluge, 1939

st data from 
ρl 

(%) 
ρt 

(%)
0,907
0,907

0,99
0,99

0,907 0,99

ngular slabs

m (504 – 50

setup is sho

showing the 
3). 

bs on which

No. 1, test 2

punched thr

support mig

e are not inc

m to the long

port width w

on 6in by 1

38,1mm an

been convert

rom the load

oads produc
9). 

Richart and

) 
fy 

(MPa)
98
98

313,7 
313,7

98 313,7

. Six footing

06) are teste

own in Fig. 

failure patt

h they chang

2 and test 3

rough…” an

ght have sho

luded in the

gitudinal rein

was 101,6mm

2in cylinde

nd the secon

ted to SI uni

d to the free

ing local fai

d Kluge (193
fu 
(MPa)

f
(

501,9 
501,9 
501,9 

gs of 1,83m

d. The loadi

4.24. The m

terns of a1 an

ged the posit

; and Slab N

nd therefore

own a wide b

e report for t

nforcement 

m. The 

rs (15,2cm x

nd slab from

its and are s

e edge. 

 

ilure (Richa

39). 
fc’ 

(MPa) 
Pu 
(kN

25,6 
25,6 

342
391

29,1 369

m x 2,74m (5

ing area is a

maximum 

185

nd a2. 

tion 

No. 2, 

e it is 

beam 

these 

and 

x 

m 

shown 

art and 

N) 
2,5 
1,4 
9,2 

501 – 

a 



 186

aggregate size is 25,4mm. Jones and Laughlin hard grade deformed billet steel bars are 

used. The bars of footings 503 and 506 are welded into mats. All bars are hooked at the 

ends, except in footings 503 and 506. The compressive strength of the concrete is 

measured on 6in by 12in cylinders (15,2cm x 30,5cm) and is found to be 24,8 MPa. The 

test data of series 5 have been converted to SI units and are given in Table 4.12. The 

failure mode is abbreviated as DT (diagonal tension) or T (tensile failure of the 

reinforcement). The main flexural reinforcement ratio is denoted ρlx and the transverse 

flexural reinforcement ρly. The measured strains in the reinforcement bars are shown in 

Fig. 4.25 and Fig. 4.26.  

Richart (1948) concluded that the average stress in the long bars in the rectangular 

footings agree very well with that calculated from the full static bending moment at loads 

approaching the ultimate capacity of the footing. Further, he concluded that the maximum 

shearing stresses in these footings are definitely greater than those developed in square 

footings. The main bars running lengthwise of the footing behaved normally, but the 

stress in the short bars was highly concentrated at mid-length of the footing. This 

suggests that in these footings a somewhat greater width of shearing section is effective 

than that prescribed in the ACI design procedure of that time. It seems logical that as the 

ratio of length to width of the footings increases, the failure section must change from a 

pyramidal punching surface to the usual inclined diagonal plane across the width of the 

member, as in a beam.  
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Table 4.15: Wide beam test data from Collins, Bentz and Sherwood (2008). 
Author Beam 

Name 
b 
(mm) 

h 
(mm) 

d 
(mm) 

a/d bsup 

(mm) 
ρw 
(%) 

fc’ 
(MPa) 

ag 
(mm) 

fy 
(MPa) 

Vu 

(kN) 
Leonhardt 
& Walther 

P2 503 162 142 3,45 45 0,95 13,4 30 427 76,2 
P3 502 162 142 3,45 45 1,11 13,4 30 427 81,1 
P4 500 165 145 3,38 45 1,40 14,5 30 427 100,8 
P5 503 165 145 3,38 45 1,86 13,4 30 427 100,8 
P8 502 168 148 3,31 45 0,91 24,9 30 427 88,0 
P9 500 166 146 3,36 45 1,86 24,9 30 427 105,8 
P10 503 122 102 3,43 45 1,10 12,4 30 427 59,3 
P11 498 203 183 3,44 45 1,11 13,7 30 427 101,2 
P12 501 162 142 2,46 45 0,95 12,6 30 427 100,5 

de Cossio 64-8F 639 102 83 4 17 1,88 30,4 12 373 71,3 
64-8E 639 102 87 4 17 1,92 31,2 12 373 67,7 
64-8C 640 102 82 4 16 1,90 28,5 12 383 85,2 
64-8D 640 102 81 4 16 1,95 28,5 12 383 81,6 
48-8B 505 102 82 4 16 1,98 27,8 12 399 65,3 
64-8A 640 105 82 4 16 1,90 28,5 12 397 87,0 
64-8B 636 102 81 4 16 1,94 29,2 12 440 85,5 
A50-25A 501 305 253 2,67 51 1,81 34,5 12 399 188,7 
A50-25B 502 305 252 2,67 50 1,85 34,1 12 394 171,2 

Kani 271 611 305 269 6,07 152 2,75 27,0 19 377 217,2 
272 611 305 271 5,02 152 2,73 27,0 19 377 227,8 
273 612 305 271 4,01 152 2,72 27,2 19 377 206,2 
274 612 305 270 3,02 152 2,73 27,2 19 377 250,2 

R & F S-15 761 311 269 4,16 50 0,63 33,0 13 524 150,8 
Aster & 
Koch 

11 1000 539 500 3,65 100 0,46 24,6 30 535 267,4 
16 1000 794 750 3,67 150 0,42 30,4 30 536 406,7 
2 1000 281 250 3,68 50 0,64 26,9 30 554 218,0 
12 1000 540 500 3,65 100 0,65 27,3 30 535 330,2 
3 1000 289 250 3,68 50 0,91 27.3 30 535 222,5 
8 1000 544 500 5,50 100 0,63 31,1 30 535 287,1 
9 1000 544 500 5,50 100 0,63 19,9 30 535 260,6 
10 1000 544 500 5,50 100 0,63 20,0 30 535 261,6 
17 1000 794 750 3,67 150 0,42 28,7 30 535 363,5 

Reineck 
Koch 
Schlaich 

N8 500 250 226 3,50 10 0,79 25,8 16 501 101,5 
N6 500 250 226 2,50 10 0,79 25,8 16 501 117,5 
N7 500 250 225 2,50 10 1,39 24,6 16 441 139,5 

Heger & 
McGrath 

SW9-0A 914 224 184 3,24 50 0,62 48,5 19 603 167,6 
SW9-0B 914 227 190 3,14 50 0,60 48,5 19 603 155,5 
SW9-6A-
15 

914 225 188 2,03 50 0,61 48,5 19 603 267,7 

SW9-0B-
15 

914 225 186 2,05 50 0,62 48,5 19 603 270,7 

SW9M-0A 914 225 197 3,19 50 0,61 48,5 19 594 155,7 
SW9M-0B 914 226 185 3,23 50 0,62 48,5 19 594 174,3 
SW9M-0A-
15 

914 225 190 2,01 50 0,60 48,5 19 594 299,8 

SW9M-0B-
15 

914 226 174 2,19 50 0,66 48,5 19 594 308,1 

SW14-0A 914 227 191 3,13 50 0,93 49,0 19 673 197,2 
SW14-0B 914 226 186 3,21 50 0,96 49,0 19 673 195,9 
SW18-0A 914 225 184 3,25 50 1,24 48,3 19 633 202,6 
SW18-0B 914 225 180 3,31 50 1,27 48,3 19 633 222,8 
SW18-0A-
15 

914 227 179 2,13 50 1,28 48,3 19 633 378,9 

SW18-0B-
15 

914 227 176 2,17 50 1,30 48,3 19 633 390,2 
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Fig. 4.32:: Reinforcemment of slabbs 1,2 and 3.. (Corresponndence withh Mr. Coin).
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Fig. 4.35: Test setup, a) CB1(b) and RB1; b) CB2 and RB2 (Olonisakin and Alexander, 

1999). 
 

Table 4.18: Result of tests (Olonisakin and Alexander, 1999). 
Mark a/d fy 

(MPa)
Vmax 
(kN)

CB1(b) 3,32 439 129 
CB2 2,93 439 130 
RB1 3,32 425 123 
RB2 2,93 425 128 

Ekeberg et al. (1982) carried out in-situ tests on a four story concrete warehouse building 

which was scheduled for demolition (Fig. 4.36). The distance from the loaded area to the 

nearest support is varied (Fig. 4.37). In two slabs in the building the two-way effect is 

neutralized by sawing through the slab along the two short sides. This is found not to 

have essential importance for the collapse load. In one of the two slabs mentioned above, 

the slab is also sawed along the long sides on the outer side of the supporting beams. This 

is done to test if the reduction in the restraining of the slab has any influence on the load-

carrying capacity. The collapse load for this slab is not significantly different from the 

collapse load for slabs without sawed sides.  

The building slabs have a height of 170mm plus a mortar layer of 40mm, a length of 

2,5m and a width of 5m. The clear span in the length direction is 2,2m and in the width 

direction 4,6m. The maximum aggregate size is not known. The measured concrete 

cylinder (10cm diameter) compressive strength is 25MPa for the first floor and 17,8 MPa 

for the second floor. The yield strength of the reinforcement consisting of smooth bars is 

310 MPa. The results with a/d < 7 are given in Table 4.19, in which  

dx   the effective depth to the main reinforcement; 
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4.7. Experiments on bridge decks 
Rombach and Latte (2008, 2009) carried out tests on cantilever slabs (with and without 

haunches) to examine whether bridge deck slabs under concentrated wheel loads exhibit 

reserves of shear capacity which are not represented by EN 1992-1-1:2005. The test setup 

is shown in Fig. 4.49 and the specimens are shown in Fig. 4.50. The reinforcing steel has 

a yield strength of 550MPa. The maximum aggregate size is 16mm and the water-cement 

ratio is 0,49. The size of the load plate is 400mm x 400mm. The cover in VK1 is 45mm 

and in the other slabs 25mm. A line load the represent the edge loading is applied. The 

results are given in  

Table 4.27, in which: 

fc,cyl  the concrete cylinder compressive strength; 

fct,sp  the split tensile strength of the concrete; 

e  the eccentricity of the line load. 

Failure occurred over the full width of the specimen (2,40m wide) while a 45° load 

spreading gives an effective width of 2,10m and load spreading based on linear elasticity 

results in an effective width of 1,42m. The failure crack pattern is shown in Fig. 4.51. 

Due to the restraint of the middle slab, normal forces result and the failure mode is 

punching. The following reasons are summed up to explain the much higher shear 

capacities than calculated with EN 1992-1-1:2005: 

- redistribution of forces in the cracked specimen, 

- influence of the moment-shear force ratio, 

- direct load transfer between the load and the support, 

- influence of the transverse flexural reinforcement. 
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5. Code provisions 

5.1. NEN 6720 
The Dutch code NEN 6720 uses the following criterion for one-way shear: 

d u        (5.1) 

in which 

τu  = τ1 + τs ≤  τ2 ; 

τ2 = '0, 2 b nf k k ;  

with  

'

'

5
(1 ) 1,0

3
bmd

n
b

k
f


   in which 

'
' d
bmd

b

N

A
  the average concrete 

compressive stress due to the design value of the normal force 

including the prestressing and fb
’ the design value of the 

compressive strength of the concrete; 

2

cot cot
2  for 45 90

1 cot
k

  


 
  


; 

1 for 90  and if no stirrups are usedk    , with α the angle 

between the stirrups and the axis of the member and θ the angle 

between the compression diagonal and the axis of the member; 

fb’ = concrete compressive strength. 

τ1 the ultimate shear capacity of the concrete without stirrups; its value for 

reinforced concrete members in bending is 3
1 0, 4 0,4b h o bf k k w f    

 with 

  fb = concrete tensile strength; 

3
12

1oA
k

g bd


   for corbels and members at end supports where a 

compression strut can be formed between the load and the support, 

21  if 0,6;

2,5 3  if 0,6.

v v

v v

g

g





 

 

  

  
 

kλ = 1 for all other cases; 
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max

max

d
v

d

M

dV
  the shear slenderness with Mdmax the maximum 

absolute value of Md in the member and Vdmax the maximum 

absolute value of Vd  in the member; 

Ao is the smallest value of the area of the load or support, not 

exceeding bd; 

1,6 1,0hk h   with h in meters; 

100( )
2,0 and 0,7 0,5s p

o v

A A
w

bd



    ; 

τs  the shear capacity of the stirrups; 

τd  the shear stress in the section, d
d

V

bd
  . 

The concrete tensile strength fb is taken as the long-term tensile strength (CUR rapport 

94-13): 

 '0,7 1,05 0,05
cmbmf f      (5.2) 

in which fcm’ is the measured mean cube concrete compressive strength.  

 

The NEN 6720 uses the following criterion for punching shear for concentrated loads of 

which the length is not larger than three times the width: 

d u        (5.3) 

in which 

τu  = τ1 + τs ≤  τ2 ; 

τ1 the ultimate shear capacity of the concrete without stirrups 

3
1 0,8 0,8b d o bf k w f   ; 

  for a1 > 2ab, τ1 has to be multiplied with 1
1 (2 ) 0,5

2 b

a
k

a
   ; 

  for a > 2d,  τ1 has to be multiplied with 2

4
0,5

2
k

a
d

 


; 

d = the effective depth around the concentrated load; 

kd = the size factor 1,5 0,6 1,0d   with d in meters; 
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wo 2,0ox oyw w   with wox and woy the reinforcement ratio of the 

flexural reinforcement in the x- and y-direction; 

a = the diameter of a circular loaded area, taken as 
2

( )l ba a a


   for a 

rectangular loaded area; 

τs  the shear capacity of the stirrups; 

τ2  ' 20,15 5,0N/mmbf  ; 

τd  the design value of the largest shear stress, e d
d

F

pd

   

  with 

   Fd = the design value of the punching force; 

   αe = the eccentricity factor 1
yx z

e x y

ee e
a

d a d a
 


  

 
; 

ex,ey = the eccentricity of punching force with respect to the 

centroid of the loaded area in x- resp. y-direction;    

ez = the eccentricity of the centroid of the periphery with respect to 

the centroid of the loaded area; 

d = the effective depth; 

a = the diameter of circular loaded area, 
2

( )l ba a a


   for a 

rectangular loaded area; 

p = the perimeter: 

 middle column: ( )p d a  ; 

 edge column: 0,5 ( ) 2 rp d a a   ; 

 corner column: 0,25 ( ) 2 rp d a a   ; 

ar = the distance from the centroid of the loaded area to the edge of 

the slab: 

 edge column : 0, 25 ( )ra d a  ; 

 corner column: 0,375 ( )ra d a  ; 
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bw  the smallest width of the cross-section in the tensile area; 

fck   the characteristic concrete strength in MPa; 

0,2
200

1 
d

k ; 

d  the effective depth in mm; 

  2/czcycp   ; 

σcy, σcz  the normal concrete stresses in the critical section in y- and z-directions 

(MPa, positive if compression) 
cy

yEd
cy A

N ,  and 
cz

zEd
cz A

N , ; 

NEd,y, NEd,z  is the axial force in the cross-section due to loading or prestressing (NEd>0 

for compression). The influence of imposed deformations on NE may be 

ignored. 

Ac  the area of concrete according to the definition of NEd. 

The values of CRd,c, vmin and k1 depend on the National Annex. The recommended values, 

also used in the Dutch annex, are: 

CRd,c = 0,18/γc; 

3/ 2 1/ 2
min 0,035 ckv k f ; 

k1 = 0,15. 

In the French National Annex (Chauvel et al., 2007) a different approach is used for vmin: 

1/ 2
min 0,34 ckf    for slabs benefiting from a transverse redistribution effect under 

the load case considered; 

3/ 2 1/ 2
min 0,053 ckv k f   for beams and for slabs other than those above. 

The effective width from the French professional recommendations (Cortade, 2007) is 

obtained by spreading the load from the far corners of the load under 45º towards the face 

of the support. 

The value for CRd,c is based on a reliability analysis of 176 tests by König and Fischer 

(1995). A coefficient of C = 0,12 was found as a good lower bound for characteristic 

values and C = 0,15 can be used for average values. To distinguish between different 
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loading combinations for which different safety levels apply, CRd,c is taken as 0,18/γc 

(Walraven, 2002). 

The expression for vmin is based on the idea that for low reinforcement ratios the capacity 

can never be lower than the flexural capacity (Walraven, 2010): 

 1/3
0,15 100uk l cmV k f bd     (5.5) 

At a/d = 2,5 the flexural moment is: 

 1/3 2.2,5 0,375 100uv uk l cmM V d k f bd     (5.6) 

The maximal moment resistance is approximated as: 

 , 0,9u fl l ykM d bd f        (5.7) 

Equating (5.6) and (5.7) and taking fyk = 500MPa results in the percentage of 

reinforcement ρl at which shear capacity and moment capacity are equal: 

3/ 2 1/ 20,00024l cmk f      (5.8) 

Substituting this into equation (5.5) leads to: 

3/ 2 1/ 20,035ud
cm

V
k f

bd
     (5.9) 

Finally, replacing fcm by fck leads to the recommended value of vmin: 

3/ 2 1/ 2
min 0,035 ckv k f     (5.10) 

According to Walraven (2007), it would be scientifically more correct to directly involve 

the fracture energy GF and the concrete tensile strength fct instead of the factor k for the 

size effect. These parameters can be introduced by using the characteristic length lch, 

defined as: 

2
F

ch
ct

EG
l

f
      (5.11) 

The mean ultimate nominal shear strength can then be formulated as: 

3 ch l
u ct

l
v Cf

d




    (5.12) 

For members with loads applied within a distance 0,5d ≤  av ≤  2d from the edge of a 

support, the contribution of this load to the shear force may be multiplied by β = 
2

va

d
, Fig. 

5.2. This is only valid provided that the longitudinal reinforcement is fully anchored at 
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In EN 1992-1-1:2005, the design punching shear capacity is calculated as follows 

(equation 6.47 in the EN 1992-1-1:2005): 

   cpcpcklcRdcRd kvkfkCv  1min1
3/1

,, 100     (5.14) 

with 

02,0.  lzlyl   

ρly, ρlz relate to the bonded tension steel y- and z-directions respectively. The 

values ρly and ρlz should be calculated as mean values taking into account a 

slab width equal to the column width plus 3d each side. 

The shear stress vEd should not exceed vRd,c. 

Ed
Ed

i

V
v

u d
      (5.15) 

with 

VEd  the shear force; 

ui  the perimeter of the critical section; 

d  the effective depth; 

β  a factor, approximate values are: 

   internal column: β = 1,15; 

   edge column: β = 1,4; 

   corner column: β = 1,5. 

The critical section is taken at 2d from the loaded area (Fig. 5.4). Around rectangular 

loaded areas, rounded corners are used (Fig. 5.5). 

 

Fig. 5.4: Verification model for punching shear at the ultimate limit state, Figure 6.12 
from EN 1992-1-1:2005. 
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Fig. 5.8: Ability to accurately predict breakdown of beam action (Collins, Bentz and 
Sherwood, 2008). 

 

Fig. 5.9: Ability to accurately predict 1601 observed shear failure loads (Collins, Bentz 
and Sherwood, 2008).  

 
Nowak and Paczkowski (2009) calculated the reliability index based on more than 300 

experiments for equations (5.16) and (5.17), Fig. 5.10. 

 

Fig. 5.10: Reliability index for different values of the resistance factor: (a) ACI 318-08 
Eq. (11-3), here (5.16); (b) ACI 318-08 Eq. (11-5), here (5.17), Nowak and Paczkowski, 

2009. 
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The nominal punching shear strength Vc shall be taken as the smallest of (ACI 318-08 

§11.11.2.1, in US customary units): 

dbfV occ
'4

2 
 







      (5.18) 

dbf
b

d
V oc

s
c

'

0

2 










        (5.19) 

dbfV occ
'4      (5.20) 

in which: 

β the ratio of the long side to the short side of the column, concentrated load or 

reaction area; 

bo the perimeter of the critical section for shear; 

αs 40 for interior columns, 30 for edge columns, 20 for corner columns. 

The other parameters are calculated in the same way as for formulas (5.16) and (5.17). 

The critical section is taken at a distance of d/2 away from the periphery of the loaded 

area. Formulas (5.18), (5.19) and (5.20) are based on the work done by ACI-ASCE 

committee 326 (1962), ASCE-ACI committee 426 (1974) and Moe (1961). Widianto et 

al., (2009) showed that this leads to unsafe predictions for lightly reinforced slabs. 

5.4. Model Code 2010 
 

The draft of the Model Code 2010 (fib, 2010) proposes a shear resistance attributed to the 

concrete as: 

,
ck

Rd c v w
c

f
V k zb


     (5.21) 

in which: 

fck  the characteristic cylinder compressive strength of the concrete; 

z  the effective shear depth, Fig. 5.12; 

bw the width of the web, Fig. 5.12 or for slabs under concentrated loads Fig. 

5.11. 
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, 0
ck

Rd c v
c

f
V k b d 

      (5.27) 

with fck in [MPa]. 

The parameter kψ depends on the deformations (rotations) of the slab and follows from  

1
0,6

1,5 0,9 dg

k
k d 

 


    (5.28) 

where d is the mean value in [mm] of the flexural effective depth for the x- and the y-

directions. Provided that the size of the aggregates is not less than 16mm kdg can be taken 

as 1,0. If the aggregate size is smaller than 16mm, then Eq. (5.24) can be used.  

The rotations around the loaded area can be calculated according to different levels of 

approximation. Level I is for a regular flat slab designed according to an elastic analysis 

without significant redistribution of internal forces: 

1,5 yds

s

fr

d E
       (5.29) 

where rs denotes the position where the radial bending moment is zero with respect to the 

support axis. In the cases where significant bending moment redistribution is considered 

in the design, the slab rotation can be calculated as: 

1,5

1,5 yds sd

s Rd

fr m

d E m


 
  

 
   (5.30) 

where:  

msd  the average moment per unit length for calculation of the flexural 

reinforcement in the support strip (for the considered direction); 

mRd the design average flexural strength per unit length in the support strip (for 

the considered direction). 

The rotation has to be calculated along the two main directions of the reinforcement. The 

width of the support strip for calculint msd is: 

min1,5s sx syb r r L      (5.31) 

The sme value for rs as in a level I approximation can be used. The commentary also 

provides formulas for determining msd for inner, edge and corner columns.  
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For a level III approximation, the factor of 1,5 in Eqs. (5.29) and (5.30) can be replaced 

by 1,2 if: 

- rs is calculated according to a linear elastic model; 

- msd is calculated from a linear elastic model as the average value of the moment 

for design of the flexural reinforcement over the width of the support strip bs 

The width of the support strip can be calculated as in Level II taking rsx and rsy as the 

maximum value in the direction investigated. 

In a level IV approximation, the rotation ψ can be calculated on the basis of a nonlinear 

analysis of the structure and accounting for cracking, tension-stiffening effects, yielding 

of the reinforcement and any other non-linear effects relevant for providing an accurate 

assessment of the structure. 

 
An design example for punching of flat slabs can be found in Lips et al. (2010). 
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6. Discussion 
Most of our knowledge on shear is the result of experiments on small, heavily reinforced 

slender beams under two concentrated loads, and most of our knowledge on punching 

shear is the result of experiments on slab-column specimens. It might be questionable to 

extrapolate this knowledge to the case of a slab bridge under traffic loads. In chapter 2, it 

is shown that slab bridges are robust strcutures, typically designed to fail in flexure 

instead of shear. However, due to compressive membrane action the actual flexural 

capacity is a multiple of the design capacity and shear failure modes become governing. 

Another aspect in slabs is that, due to the extra dimension as compared to beams, 

transverse moments and shears should be taken into account. 

In chapter 3, the different types of shear failure are explained as a function of their shear-

span-to-depth ratio. It is assumed that, as in Kani’s valley, a minimum capacity can be 

observed for a/d = 2,5. However, in chapter 4, the results of Ekeberg et al. (1982) show a 

minimum for a/d = 7,3. Another point of discussion is the breakdown of shear into the 

shear carrying mechanisms. It is difficult to experimentally investigate these mechanisms 

separately, and to prove that the total shear capacity is the result of the sum of the 

capacities of these mechanisms. The distinction between one-way and two-way shear in 

slabs is not clear and there seems to be a transition zone between these two failure 

mechanisms. Also, there seems to be no consensus in the literature on how to determine 

the failure mode based on pictures and the cracking pattern as observed in experiments. A 

limited amount of guidelines exist to give an estimate of the effective width in shear and 

the origins of these guidelines and national practices seems to be based on tradition rather 

than on experiments or theoretical work. Up to date, the only code which gives guidelines 

for the determination of the effective width in shear is ModelCode 2010. Even though the 

recommendations for the effective width do not lead to satisfactory results when 

compared to test results, it is a positive evolution that a code is providing guidelines for 

the determination of the effective width in shear. One of the observations made in the 

sideline of this literature review is that there exist different schools which adhere to their 

theory on shear in a sometimes rather rigid way. As a result, several theoretical 

approaches to the problem of shear in concrete members exist, none of which seems to be 

able to fully explain the mechanics at the basis of this problem. For the problem of a one-
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way slab under a concentrated load, the additional dimension of the slab needs to be 

taken into account, thus further complicating the mechanics behind the failure mechanis. 

For design, therefore, simplified methods need to be used. The only method which is 

tailored for the problem of shear in slabs under concentrated loads close to the support, is 

the method developed by Regan (1982). The modified compression field theory seems to 

be less suitable for loads close to the support, and cannot be applied to the problem of 

punching. Therefore, it is questionable if this method can adequately model the 

transitional problem of shear in one-way slabs under a concentrated load. The critical 

shear crack theory uses the same approach for one-way shear as well as for punching 

shear. However, in the case of a concentrated load close to the support, the non-axis-

symmetrical layout need to be taken into account, and finite element packages need to be 

used to determine the stress distribution along the punching perimeter. Strut and tie 

models can be applied for the problem of a concentrated load on a slab. There is however 

an art to chosing the right strut and tie model which might make the approach not suitable 

for the design practice. Both plasticity-based an fracture mechanics models need to be 

considered with regard to the assumptions that were made when developing the model. 

These assumptions are a simplification of reality and may not always be applicable to the 

problem under study. For example, the ductility requirement for using plasticity-based 

models is not always fulfilled for shear failures. Ideally, the empirical code formulas 

should be replaced by calculation methods with a theoretical basis. 

A database with relevant test results is gathered in the Annex. In this database, a 

distinction is made between punching shear failures and one-way shear failures. This 

distinction, however, is not based on guidelines on how to interpret cracking patterns as 

different authors seem to use different approaches. Different categories are also 

subdivided in the database, as not all design approaches are suitable for all cases. 

Databases with test results typically show crowding in the small size and relatively large 

reinforcement percentage region. A way to analyze these data is by using a knowledge-

based system, which uses a database of knowledge in combination with a method that 

mimics the problem-solving strategy of a human. This method is discussed in Jung and 

Kim, 2008. 
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When comparing results from a database to a suggested method, the variability of the 

material should be taken into account. Reineck (1997a) points out that different control 

specimens could yield differences in tensile strength of more than 20% and up to 30%. 

Therefore it is futile to demand more from a prediction of the ultimate load capacity in 

shear than this scatter. Reineck (1997b) emphasizes the importance of a discrete model 

for shear in concrete. 
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7. Conclusions 
 

A study a slab bridges shows that for existing bridges the failure mode for which these 

bridges are designed (flexure) does not always occur in practice. As a result of 

compressive membrane action, shear can become the governing failure mode. Previous 

research, however, shows that solid slab bridges can typically carry loads that are a 

multiple of their design load. 

An overview of the research on beam shear and punching shear from the past decades is 

given. Also, the difference between and the transition from beam shear to punching shear 

is studied. An overview of past research on the effective width in shear is also given. 

These results show that the currently existing models for shear cannot fully cover the 

problem, and especially the problem of concentrated loads near to the support on slabs 

requires an alteration of existing methods. The forces in the transverse direction have to 

be taken into account.  

A database of existing test results is compiled. This database shows that a very limited 

amout of experimental results on slabs under concentrated loads close to the support is 

available. Most of the available results are based on small-scale specimens in which the 

size effect might have resulted in higher shear capacities as compared to slabs in practice, 

The lack of consensus in the literature on how to deal with shear in concrete members is 

also reflected by the code provisions. The studied codes (NEN 6720, EN 1992-1-1, ACI 

318 and ModelCode 2010) all recommend very different approaches which also result in 

different design shear capacities.  

Therefore, experiments on slabs under concentrated loads close to the support are 

necessary to gain a better understanding of the problem. 
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