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1. Introduction

This report is a summary and review of the literature which will serve as a
background to study the shear capacity of existing reinforced concrete slab bridges
without shear reinforcement under wheel loads close to the support.

Chapter 2 gives background information with regard to the scope of the research.
Information about concrete slabs, slab bridges and existing concrete bridges as well as
wheel loading is given and the influence of the position of the load near to the support
is discussed.

Chapter 3 is the core of this literature review and contains an overview of the
literature about the shear capacity of slabs without shear reinforcement. Slabs under
point loads containing sufficient flexural reinforcement can fail as a wide beam (one-
way shear) or in punching shear (two-way shear). As very few shear tests have been
carried out on one-way slabs, the one-way shear theory is mainly based on the shear
capacity of reinforced concrete beams. The concepts of shear failure, the mechanisms
of shear transfer and the majority of the discussed models are entirely based on beam
shear. The models for punching (two-way) shear on the other hand are based on the
shear capacity of slab-column connections. The punching capacity for a slab under a
wheel load is calculated based on this configuration.

Chapter 4 contains test data from the literature concerning shear tests of one-way
slabs and wide beams without shear reinforcement. To compare with the tests carried
out at Delft University of Technology, data from test series with comparable widths
(0,5m and larger) and shape (b/h > 1) have been gathered. The full database is given
in the Annex.

Chapter 5 gives an overview of some current code provisions for beam shear and
punching shear. The code formulations are cited, and the assumptions and research
leading to the current code formulas are emphasized.

Chapter 6 discusses the information that is gathered in this document and conclusions

are given in chapter 7.



2. Scope
2.1. Existing slab bridges
2.1.1. Slab bridges

The results of this research will be used to study the shear capacity of existing
reinforced concrete solid slab bridges. Concrete slab bridges are economical for spans
in the range of 3 to 8 m. However, spans up to 16m can also be feasible. These

bridges are normally reinforced with reinforcing bars, but prestressing strands and I-
beams can be used in practice. An example of an existing Dutch slab bridge is shown
in Fig. 2.1, Fig. 2.2 and Fig. 2.3. The reinforcement ratio for bridge deck slabs with d >
25c¢m and a reasonable maximum amount of reinforcement of 25cm*/m will always be
below p; = 1% (Rombach et al. 2009).

According to Aktan et al. (1992): “Certain bridge types, such as reinforced concrete
slab bridges with sound piers and abutments, are inherently more resistant to collapse
than others.” Testing a deteriorated bridge shows that it still can carry 22 rating trucks,
a load exceeding four times the bridge rating. Beal (1982) tested scale models of
reinforced concrete bridge decks and discovered that the failure load was 6 times
higher than calculated. The failure mode was punching shear and not flexure as
assumed in design. The high capacities in solid slabs are the result of the compressive
membrane action. The membrane action in slabs enhances the flexural and punching
shear capacity, as shown in Azad et al. (1994); Chamululu (2009); Eyre (1997); Guice,
Slawson and Rhomberg (1987); Hewitt and de Batchelor (1975), Hon, Taplin and Al-
Mahaidi (2005); Taylor and Hayes (1965); Taylor et al. (2003) and Vecchio and
Collins (1990). As the flexural capacity of concrete slabs is larger due to the
compressive membrane action, shear failure modes become more important (Ebeido
and Kennedy, 1996). Likewise, Azizinamini et al. (1994) point out that experimental
results indicate that reinforced concrete slab bridges possess a much higher strength
than that indicated by current rating procedures. The authors refer to tests by Fenwick
and Dickson (1989), in which it was found that for all three specimens the stresses in
the reinforcement were considerably lower than the analytical predictions using thin
plate theory (60%, 50% and 35% for the simply supported, flexurally restrained and

fully restrained slabs, respectively). This is attributed to wider distribution of flexural



forces across the slab width, residual tensile capacity of the concrete at a crack and,
for the restrained slab, compressive membrane action.

Azizinamini et al. (1994) tested a five span continuous reinforced slab bridge. This
bridge failed in flexure after forming two yield lines. While the bridge was rated to
carry a maximum truck load equivalent to 67% of the HS20 truck, it carried 3 times
the HS20 truck load while behaving in a perfectly linear elastic manner. More than
seven HS20 trucks loads on each span were required to reach the ultimate capacity.
The results corresponded well to the ultimate load calculated with yield line analysis.
However, Jackson (2010) in a discussion to Zheng et al. (2010) argues that accounting
for compressive membrane action leads to good results for single wheel loads, but not

necessarily whole vehicles or combinations of vehicles.
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Fig. 2.2: Top view of slab bridge, TNO report 2010.



Fig. 2.3: Geometry of slab bridge, TNO report, 2010.

A recent example of a collapse of a bridge due to shear is the collapse of the de la

Concorde overpass in Laval, Quebec (Wood, 2008).

Fig. 2.4: Collapse of the de la Concorde overpass (Wood, 2008).



Fig. 2.5: Shear failure of the Laval bridge (Mass1cotte 2007)

Cope (1985) pointed out that when the deck has a skew angle, the concentration of
shear forces increases considerably, owing to the additional twisting action. ncreasing
skew angles reduce the shear capacity. According to Ebeido and Kennedy (1996)
skew effects become important when the skew is larger than 20°. In the current study,
skew effects are not considered.

Rombach and Velasco (2005) observed that due to the new code provisions, shear is
often the governing failure mode in slabs without shear reinforcement. This results
from the increase in the sectional forces due to the more concentrated wheel loading.
Moreover, the maximum shear stress which a member without transverse
reinforcement can resist, is reduced. Rombach et al. (2009) contribute the
underestimation of the load bearing capacity to neglecting the shear-bending
interaction in the code formula and the redistibutions of shear forces after the

formation of shear and bending cracks.

2.1.2. Reinforced concrete slabs

2.1.2.1 Forces in slabs
According to EN1992-1-1:2005: “A slab is a member for which the minimum panel

dimension is not less than 5 times the overall slab thickness.” A slab has an extra
dimension to carry load as compared to a beam and is therefore statically multiply
indeterminate. The additional dimensions in a slab lead to additional force

components. Marti (1999) states that for plates and shells: “similar to shear forces in
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beams and frames, it can be seen that principal and diaphragm shear forces in slabs
provide the key to understanding the internal force flow.” According to Marti (1990),
conventional design methods consider potential shear failures of a slab as a wide
beam as well as punching failures in the vicinity of concentrated loads or reactions.
Nominal shear stresses at well-defined critical sections are limited to guard against
such failure modes. While such methods are simple and conservative, they have at
least three shortcomings:

1. They do not provide a basic understanding of how transverse shear forces are
transferred in the interior of reinforced concrete slabs.

2. They do not recognize shear transfer by twisting moments along slab edges.

3. They do not provide a consistent model for the dimensioning of transversely
reinforced slabs.

Marti (1999) analyses shear in slabs based on the 8 stress resultants, out of which he

takes the components v, and v, to form the principal shear v, = ,/v.* + vyz at an angle

v ) . . . . . . .
@, = tan™' [—yj to the x-axis. The direction of the principal shear does not coincide
v

with the direction of the flexural reinforcement in slabs. Other authors use the sum v,
+ v, (Rombach and Latte, 2009). Some examples of force flow in slabs are shown in
Fig. 2.6. More details about force flow in slabs can be found in Marti (1990, 1999,
2003).

Vaz Rodrigues et al. (2008) state that intermediate cases between one- and two-way
shear where shear forces in a slab develop neither parallel nor radially can be found in
practice. The strength of these intermediate cases between one- and two-way shear is

not always covered by current codes of practice.

SHEAR FLOW ALONG
SLAB EDGE
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Fig. 2.6: Notation and shear flow and lines of equal principal shear for slab quadrant
(Marti, 1990)

2.1.2.2 The difference between slabs and beams
Coin and Thonier (2007) point out that the French practice allows for 3,43 times

larger shear stresses in slabs than when using EN 1992-1-1:2005. They argue that due
to the three-dimensional behavior of a slab the shear capacity of slabs is higher
because of a lateral redistribution. Iyengar et al. (1988) found a decreasing shear
strength for an increasing d/b ratio, meaning that slabs have a significant higher shear
strength than beams, which may be due to “plate action”. Rensaa (1967) in a
discussion to Kani (1967) suggests allowing 10% or higher shear in ordinary one-way
slabs, since slabs are typically shallow and have a minimum amount of transverse
reinforcement which “undoubtedly puts slabs in a better class than ordinary
rectangular beams without web reinforcement.” He added: “If practical experience
counts, it might be mentioned that many European building codes, without any
adverse effect known to the writer, for more than 30 years have allowed considerably
higher shear stresses for slabs than for beams.” Kani (1967) replied in the closure that:
“The impression that slabs fail at higher shear stresses than beams probably originated
form the comparison of test results of slabs, which usually have small depths, with the

results of beams of greater depths.”

2.1.3. Existing concrete bridges

Mabsout et al. (2004) wrote: “According to the U.S. Federal Highway
Administration’s 2001 National Bridge Inventory data, about 27% of the nation’s
590984 bridges are structurally deficient or functionally obsolete as reported in Better
Roads magazine (November 2001). Single-span concrete bridges represent about
163000 of these, of which 23% are structurally deficient or functionally obsolete. The
majority are short spans, averaging less than 15m in length.” Out of 2000 bridges in

12



the state of Georgia that require posting, 800 are governed by deficient shear rating of
their reinforced concrete pier caps (Wang et al. 2010). Wang et al. (2010) showed that
the shear capacity of reinforced concrete pier caps (a/d < 1,5) when calculated using a
strut and tie model or finite element analysis is higher than when using the traditional
ACI 318-08 equations for the shear capacity.

In Europe, it has been estimated that repairs could account for 40% of the total
construction contract costs (Pearson-Kirk, 2010). In 1989 inspections in the UK led to
the conclusion that only 12% of the concrete bridges were in good condition.
However, when the results of corrosion testing and laboratory testing of samples were
reviewed, 30% of the bridges were considered in good condition (Pearson-Kirk, 2010).
In the Netherlands, about 600 slab bridges are under discussion. Investigations on the
existing bridges in The Netherlands are carried out, with the aim to determine the
actual shear bearing capacity. As the Dutch government decided to extend a large
number of existing highways with an additional lane, a large round of assessments
was deemed necessary (Walraven, 2007).

Existing bridges typically contain poor flexural anchorage and cutoff details and
smaller sized and more widely spaced stirrups than permitted currently. These bridges
can be vulnerable to low-cycle fatigue, which is fatigue caused by repeated plastic
deformations (Forrest et al., 2010).

When there are existing flaws in a slab, the punching shear capacity is reduced. The
most critical angle for cracks is 20° to 30°, for which the punching shear capacity is
reduced by as much as 50% (Azad et al., 1994). In deteriorated structures, corroded
reinforcement leads to different bond conditions and hence a different behavior in
shear (Coronelli and Radaelli, 2010). Cullington, Daly and Hill (1996) report that a
number of bridges have been found insufficient in shear capacity as a result of poor
anchorage of the longitudinal reinforcement. On site testing to failure of a slab strip,
however, led to flexural failure. The influence of ASR on existing slab bridges was
studied by den Uijl (2005). If the swelling due to ASR is not restrained, tensile
stresses which lead to cracks result. In slab bridges, this can lead to compressive
stresses in the horizontal direction because of the reinforcement. In the vertical
direction (no reinforcement), horizontal cracks can occur. The tensile strength will
then depend on the direction. Even for a significant decrease of the tensile strength,

the failure mechanism is still flexure for slab bridges with a reinforcement ratio
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smaller than 1,3%. It is also shown that in slab bridges not affected by ASR, the uni-
axial tensile strength is very low, while the splitting tensile strength is unaffected.
Methods of assessing the remaining service-life of existing bridges are given in
Enright and Frangopol, 2000; Estes and Frangopol, 2001; Li et al., 2004; Stewart and
Val, 2003 and Wang, Ellingwood and Zureick, 2010. The cost of constructing and
maintaining a bridge over its lifetime is denoted as whole life costing (WLC) (Taylor

et al., 2007). The present value is taken as:

py=—5_p 3.1)
(l + r)t
with
c the cost
r the discount rate
t time in years.

The cost of delaying traffic can be up to 10 times higher than the cost of the
associated bridge works. The interruption to traffic tends to be the highest cost
influence in the whole life cost of bridges. A comparison of different bridge types is

shown in Fig. 2.7.

Conventiomally

. - reinforce
elfect of increased e '“rL"r‘l"d_
Unit probshiliey of rup-..l'r"‘"-»._%_,‘..‘--"' brdge decis
Costy ( — e
"‘__..--""“ - Centre reinforcement

bower imatial costs
bower maintenance costs

Fig. 2.7: Comparison of total unit cost for bridges with different initial and
maintenance costs (Taylor et al., 2007)

These existing bridges have been designed for the traffic loads and volumes of their
era. It is however predicted that between 2010 and 2025 an additional increase in
transport of goods of 80% will occur (Naumann, 2010), Fig. 2.8. The author points
out that the previous prediction for 1998 — 2015 was already reached in 2008. The
existing bridges typically contain less prestressing and less reinforcement (flexural as
well as shear reinforcement). Regardless of the increase in admissible traffic loads,

overloading of trucks is also a long-standing practice, Fig. 2.9. It is therefore
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necessary to investigate wether the existing bridges can support the ever-increasing

traffic loads and volumes, or if retrofitting or replacements are necessary.

Modal Split
2004

12.2% 17,6%

i

Verkehrsprognose 2025

Mol fum
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Enenb Seatengitert o a hffabet 747%

Fig. 2.8: Current traffic forecast (Naumann, 2010).
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Fig. 2.9: Traffic measurement Brohltal Bridge (Naumann, 2010).

2.2. Wheel loading

Recent research (Fernandez Ruiz et al., 2009) showed that: “For road bridges, in
general, concentrated loads are decisive for the dimensioning of the slab for flexure as
well as for shear.” Bridge deck slabs under wheel loads behave in a complex way.
Several load-carrying mechanisms can develop and coexist, depending on the loading
and the geometry of the structure. Two-way shear can become prevalent over one-
way shear but with a flow of inner forces quite different from that of symmetric
punching shear (Vaz Rodrigues, 2007). According to Cope (1985) the critical loading

case occurs with a design truck (HB bogie) near a free edge.
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The tire contact area as prescribed in EN 1991-2 is 400mm x 400mm with an axle
load of 300kN in load model 1 (Fig. 2.10a) and 600mm % 350mm in load model 2
(twin tires, normally relevant to orthotropic decks, Fig. 2.10b). In AASHTO LRFD
2007 the tire contact area is 510mm x 250mm (20in % 10in) for design truck and
tandem with axle loads of 45kN and 2 times 145kN. For other design vehicles, the tire
contact area should be determined by the engineer. The Dutch VBB uses a tire contact
area of 320mm x 250mm.

Nowak (1995) showed that the actual moments and shears caused by the heaviest
vehicles observed in truck surveys, range from 1,5 to 1,8 times the design moments

and shears calculated using the HS-20 load.
s

| 200
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i ' |
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i T Key
4 040 X Bridge longitudinal axis direction
4 1 1 Kerb

(a} (B}
Fig. 2.10: (a) Application of tandem systems for local verifications, Figure 4.2b from
EN1991-2:2003; (b) Load model 2, Figure 4.3 from EN1991-2:2003.
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Fig. 2.11: Characteristics of design truck, AASHTO (2007).

The resulting shear forces from the load model from EN1991-2:2003 are shown in Fig.
2.12 for a practical case. The force distribution as a result from one wheel load is

shown in Fig. 2.13 and for two wheel loads in Fig. 2.14.
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Fig. 2.12: Shear force distribution in section A-A (Rombach and Velasco, 2005).
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Fig. 2.13: Moment- and shear force distribution in longitudinal direction at the
relevant section for a wheel load of Q, = 120kN (cantilever length L; = 3m, depth of
the slab # = 0,4m).
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model 1 (Rombach and Velasco, 2005).
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Kirkpatrick, Rankin and Long (1984) report that wheel loads, delivered by rubber
pneumatic tires result in a better load distribution and thus improve the load capacity
of the slab as compared to steel loading plates which are used in laboratories. Vaz
Rodrigues (2007) concluded likewise that the punching shear capacity under a wheel
with pneumatic pressures is less critical because curvatures tend to be distributed over

the surface of the applied load rather than concentrated near the edges, Fig. 2.17.
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Fig. 2.17:Stress distribution on slab under wheel load and slab-column specimen (Vaz
Rodrigues, 2007).

2.3. Influence of the support
The influence of the distance to the support on beam shear was first explained by

Kani (1962) on the basis of the tooth model. The resulting “Kani valley” is also
related to the amount of flexural reinforcement, Fig. 2.18. Zsutty (1968, 1971) used a
statistical analysis of published data of beam shear tests to validate the widely
accepted assumption that slender members having an a/d of 2,5 or greater should be
considered separately from shorter members.

Test results combined with North-American code methods are shown in Fig. 2.19.
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and Sherwood, 2008).

Rombach and Latte (2008, 2009) point out that the ratio of bending moment to shear
force m/v is not directly proportional to the geometrical ratio a/d for bridge deck slabs

under concentrated loads, because m/v depends on the elastic distribution of shear and
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bending moments in the support region, Fig. 2.20. Also, m and v are spread over

different effective widths.
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Fig. 2.20: Comparison between the ratio a/d and the bending moment to shear ratio
m/v for a beam and a slab with concentrated load, Rombach and Latte (2008).

In the vicinity of the loads and support, the concrete is in biaxial compression and
therefore has an increased strength and deformation capacity (Manuel, 1973). The

ultimate strain in the concrete can then be taken as 0,008.
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3. Shear in slabs

3.1. Shear transfer
3.1.1. What is shear in reinforced concrete?

3.1.1.1 A historical overview
Researchers worldwide have been trying to solve the riddle of shear failure for the

past 110 years. A lot of work was done up to about 1914 and then since the mid
1950’s (Regan, 1993). In 1948, Richart wrote: “diagonal tension seems to be the
point of weakness in current design practice”. An overview of the amount of
experimental work that has been done over the past century is shown in Fig. 3.1 and
Fig. 3.2. As early as 1909, Talbot indicated the percentage of longitudinal
reinforcement, the shear span to effective depth ratio and the concrete compressive
strength as the main factors influencing the shear capacity. He also pointed out that
the actual diagonal tension is considerably greater than the vertical shearing stress. He
distinguished the horizontal or longitudinal component stresses for the calculation of
resisting moments from the diagonal, vertical and horizontal stresses like shear and

diagonal tension and diagonal compression and termed these web stresses.

NUMBER OF PAPERS ON SHEAR DESIGN PUBLISHED
IN AC1 JOURNAL IN EACH 5 YEAR PERIOD

[ |
1900 1910 1960 1970 1980 1990 2000

Fig. 3.1: Research into shear design methods (Collins et al., 1996).
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Fig. 3.2: Sixty years of shear research (Collins, Bentz and Sherwood, 2008).

The complex internal force system was pointed out very early on as the cause for the
ongoing debate on shear. The joint committee on concrete and reinforced concrete
(1916) wrote: “For the composite structure of reinforced concrete beams, an analysis
of the web stresses, and particularly of the diagonal tensile stresses, is very complex;
and when variations due to a change from no horizontal tensile stress in the concrete
at the remotest fiber to the presence of horizontal tensile stress at some point below
the neutral axis are considered, the problem becomes more complex and indefinite.
Under these circumstances, in designing, recourse is made to the use of the calculated
vertical shearing stress, as a means of comparing or measuring the diagonal tensile
stresses developed, it being understood that the vertical shearing stress is not the
numerical equivalent of the diagonal tensile stress and that there is not even a constant
ratio between them.” Zararis and Papadakis (2001) too state that one of the major
difficulties in developing a theoretical expression for shear is due to the indeterminacy
of the internal force system of a cracked member.

Particularly the biaxial stress situation which results due to shear loading is seen as a
challenge. Clark (1951) described the problem as: “Vertical stresses caused by the end
shear combines with longitudinal stress from bending in the beam and produces

tensile and compressive stress components.” Combined tension and compression
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loadings, which are the shear stresses, reduce both the tensile and compressive
stresses at failure, ASCE-ACI committee 426 (1973), Fig. 3.3. Leonhardt (1978)
points out that shear must be considered as the combined action of inclined principal
tension and compression. Shear stresses are the projections of the principal stresses
while shear cracks are the result of inclined principal tension. According to Leonhardt
(1978) it is wrong to “relate the upper limit of the shear stresses to the tensile strength
of the concrete or to a so-called shear strength of concrete which does not exist.”
Bresler and Pister (1958) examined the combination of shear stress and uniaxial
compression, Fig. 3.4.

Moreover, the diagonal direction of shear failure requires designers to think out of the
scope of the traditional cross-sectional analysis. Unlike flexural failures, which are
confined to a cross-section normal to the longitudinal axis, members failing in shear
have failure surfaces that encompass inclined cracks in addition to the normal section

through uncracked portions of the compression zone at the crack tip (Lubell, 2006).
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Fig. 3.3: Biaxial strength of concrete, ASCE-ACI committee 426 (1973).
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Fig. 3.4: Shear-compression strength (Bresler and Pister, 1958).
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3.1.1.2 Horizontal shear and diagonal tension
In the early 1900’s two ideas for shear transfer were competing: horizontal shear (as

in other materials) and diagonal tension. The idea for diagonal tension was first
formulated by Ritter (1899) who stated that stirrups resist tension and not horizontal
shear. Morsch (1922) further developed this for beams in shear without and with web
reinforcement. Experimental proof and nominal shearing stresses close to the tensile
strength of concrete led to the classic diagonal tension equation, based on the assumed

stress distribution shown in Fig. 3.5 (ACI-ASCE committee 326, 1962):

V= % (3.1)
with
v the unit horizontal shear stress at a distance y from the neutral
axis;
14 the total vertical shear at the section;
b the width of the cross section at a distance y from the neutral
axis;
d the effective depth to the longitudinal reinforcement.

Equation (3.1) is based on the following assumptions:
1. Concrete and steel are homogeneous and isotropic.
2. Stresses do not exceed the proportional limits.
3. Beams have constant cross sections.
4. Distribution of the shearing stresses is uniform across the width of the beam.
5. Concrete carries no flexural tension below the neutral axis.
6. The concentration of reinforcement at the tension face does not influence the
distribution of shear stresses (van den Berg, 1962).

Van den Berg (1962) showed that the measured stress concentration gave comparably

good results for both v = 78—V and v = % It is then a safe estimate (j = 0,9) to use
)
the formula that is nowadays used in design:

_r
bd

\%

(3.2)

However, this assumption is only true for uncracked concrete. The internal stresses in
the cracked state depend upon the shape and extent of the cracks and the layout of the
reinforcement (Leonhardt and Walther, 1962). Laupa et al. (1953) also pointed out

24



that the formation of a diagonal crack changes the state of stress in a reinforced
concrete beam, asno stress can be transferred across a crack. Hence, the popular
conception of the distribution of shearing stresses in a reinforced concrete beam
cannot be true and it is believed that any agreement between an empirical expression

based on the nominal shearing unit stress v and test results is coincidental.

Fig. 3.5: Idealized stress distribution in the cracked state (Leonhardt and Walther,
1962).

Measurements have shown that the average principal tensile stress for diagonal
cracking is smaller than the concrete tensile strength. According to ASCE-ACI
committee 445 (1998) this observation is due to the stress concentration at the tip of
the initial cracks and the reduction of the cracking stress due to the coexisting
transverse compression, or because of the non-uniform shear stress distribution at a
flexural crack from the concentration of bond stresses and the reduction of the internal

lever arm due to arch action in a flexurally cracked zone.

3.1.1.3 Which forces define the shear resistance?
Bazant and Kim (1984) and Alexander and Simmonds (1991) write the shear force as

p_d@d) _dT) L, dGid) 653
dx dx dx

which emphasizes the combination of beam and arch action.

Kani (1979) claimed that shear stress is not directly related to shear failure, and
renamed it “diagonal failure”. According to Kani (1969) as well as Bresler and Pister
(1958) the problem of shear strength is not the transfer of the smaller component V
(the shear force) to the support while neglecting the component C, but rather how to
transfer both of them, Fig. 3.6. Kani (1964) stated that bond, not shear, is the
important parameter in the determination of the shear strength. He also showed that
diagonal failures can exist without the presence of a shear force, Fig. 3.7. The force

transfer from a reinforcing bar anchored by bond in concrete is described by the

25



equilibrium of shear stresses on the interface. The shear stresses cause principal
tensile and compressive stresses in the adjacent concrete. If compression is the
weakest component, then the bar is just pulled out. If the failure mode is tension, then
cracks in the transverse direction to the stresses around the bars develop (Reineck et
al., 1997). According to Marti (1999): “shear, bond and development problems are
inseparable and should be treated in a unified manner”. Reineck (1990) links shear
and bond together by showing that the nominal shear stress v, has the physical

relevance of an average tooth-bond stress over the beam width b,, due to AT.

ATV (3.4)
bWSC" WZ
This tooth-bond is by equilibrium related to the bond stress 7, at the bar surface:
v, = 4117,0i (3.5)

db

Therefore, the bond may principally limit the possible transfer of 47 to the tooth, and
consequently, according to (3.4) also the ultimate shear force. In slender B-regions
this is not the case. It should be noted that structural concrete codes of about 40 years
ago had clauses related to ‘local bond’, which could be a problem at points of low-
moment/high-shear such as simple supports and points of contraflexure. Local bond
often required a larger number of smaller bars. In order to demonstrate that anchorage
and local bond are a major part of the shear strength riddle, one must first make some

assumptions about anchorage strength (Gurley, 2011).
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Fig. 3.6: Forces in the shear span (Kani, 1969).
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Fig. 3.7: Correspondence of shear failure with the presence of bond forces and shear
forces, Kani, 1979.

3.1.2. Types of shear failure

3.1.2.1 The influence of flexure
When loading a beam with two point loads (Fig. 3.8) a series of observations can be

made.

ral
] !
For ’ T

Fig. 3.8: Typical test setup for a beam shear test, ACI-ASCE committee 326 (1962).

First, vertical tension cracks will appear at the location of maximum moment. Then,
inclined cracks will form towards the load. This cracking sequence is called flexure-
shear (Fig. 3.9b) cracking, while web shear cracking (Fig. 3.9a) is inclined cracking
before the occurrence of flexural cracking. The formation of flexure-shear cracks is
complicated by the disturbed force flow in the concrete previously cracked in flexure

(Lubell, 2006).
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3.1.2.2 Classification of types of shear failure
For beams with a long span and a small percentage of reinforcement, a flexural

failure (Fig. 3.9¢) will occur and the capacity of the beam is not affected by shear.
For beams with an intermediate span and a high percentage of longitudinal
reinforcement, a critical diagonal tension crack (Fig. 3.9d) will appear and the
failure mode will be flexure-shear failure. The shear cracks then rise so high that
eventually the compressive zone fails (Leonhardt and Walther, 1962). Diagonal
tension failure is related to the failure of the concrete teeth, Fig. 3.10. The
transformation of a flexural crack into a flexure-shear crack depends on the rate of
growth and the height of the shear crack in the shear region and the magnitude of
shear stresses near the tops of the flexural cracks (MacGregor and Hanson, 1969). The
combination of shear and flexure is discussed in Vaz Rodrigues et al. (2010). Mathey
and Watstein (1963) also identify a failure mode which they call “shear proper”, in
which the diagonal tension crack develops gradually until full development, but

crushing of the concrete does not occur as in shear-compression failures.
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Fig. 3.9: Types of inclined cracks and failures of slender beams: (a) web shear crack;
(b) flexure shear crack; (c) flexural failure; (d) diagonal tension failure. (ASCE-ACI
committee 426, 1973).
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Fig. 3.10: Tooth failure crakcing and diagonal tension failure. Bresler and
MacGregor, 1967.

For beams with a short span (1 < a/d < 2,5) the shear crack will form slower and

result in a shear-compression failure (Fig. 3.11b) when combined with the crushing
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of the concrete above the crack or in a shear-tension failure (Fig. 3.11a) when
combined with the loss of bond and an anchorage failure (ACI-ASCE Committee
426,1973). In case of a shear-tension failure, a secondary crack will form which
extends along the reinforcement for a short distance towards the support. This
horizontal crack may be associated with either slip or dowel action of the
reinforcement. According to Kotsovos (1984) the shear-compression type of failure is
generally considered as a crushing mode of failure when the applied load increases to
the level at which the diagonal crack that forms within the shear span at an earlier
load stage penetrates into the compressive region towards the loading point. He
suggested, however, that a crushing mode of failure in the region of the loading point
is unlikely since the multi-axial compressive state of stress that exists which causes a
local increase of the concrete strength. He proposes a failure mode in which the
diagonal crack branches almost horizontally toward the compressive zone of the
middle span of the beam in order to bypass this high-strength region, Fig. 3.12.

In a deep beam (0 < a/d < 1) 4 types of failure can occur: flexural failure, shear failure,
anchorage failure and bearing failure (Fig. 3.11c). A flexural failure occurs either
when the concrete rib of the tied arch fails by crushing at the crown or when the
tension tie ruptures. Full flexural capacity and ductility are achieved. The appearance
is similar to the shear compression failure in short beams. A shear failure occurs
through the destruction of the inclined strut that forms between the load point and the
support. This failure mode involves little or no inelastic deformation (Manuel, 1973).
The shearing stresses and vertical normal stresses require more consideration than the
flexural stresses and significant compression and tension will be present in the section.
The stress distribution becomes nonlinear with a concentration of tensile stresses
towards the bottom of the beam (Cho, 2003). If the longitudinal reinforcement is
high-performance steel, shear failure will occur before yielding of the reinforcement

but with a nonlinear response of the reinforcement (Desalegne and Lubell, 2010).
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Fig. 3.12: (a) Generally accepted, and (b) postulated mode of failure of reinforced
concrete beams with values of a/d between 1,0 and 2,5 (Kotsovos, 1984).

A frequently observed secondary failure mode is failure of the compression zone by
instability. According to the shear study group (Barker et. al, 1969) it is caused by the
development of the shear crack in such a way that the thrust line necessary for
equilibrium with the external load falls outside the compressive zone over part of its
length. According to Braestrup (2009), secondary buckling is a consequence of a
hyperbolic yield line. The failure mechanism of Fig. 3.13 implies that the beam end
rotates outwards about a center on the extension of the main reinforcement, which
does not yield. Vaz Rodrigues (2007) explains this phenomenon based on a strut and
tie model. When a strut is crossed by cracks (in this case the shear crack), only a
limited amount of compression can be transmitted (Fig. 3.14c). As a result, the strut
shifts towards the top edge of the beam. To maintain equilibrium, two additional ties
are necessary to equilibrate the deviated strut (Fig. 3.14d). These ties will cause the
decompression of the top fiber. Buckling of the compression zone then occurs when

the tensile strength of concrete is reached on the tension tie near the concrete surface.
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The same phenomenon is also observed in slab-column tests. The associated strut and

tie models are shown in Fig. 3.15.

Fig. 3.13: Shear failure of reinforced concrete beam without stirrups (hyperbolic yield
line) (Braestrup, 2009).

a) bending moment diagram
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——

2007).

tensile stresses
may appear at the bottom surface

Fig. 3.15: Flow of inner forces prior to punching shear failure (Vaz Rodrigues, 2007).

Zararis and Papadakis (2001) divide the critical crack (leading to collapse) into two
branches. The first branch is an inclined shear crack, which develops after nearby
flexural cracking. The second branch initiates from the tip of the first branch and
propagates towards the load point crossing the compression zone. Failure is induced

by the second branch, typically failing in negative bending.
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Fig. 3.16: Critical diagonal crack (Zararis and Papadakis, 2001).

3.1.2.3 The influence of arching action on the failure mode
After the formation of the critical diagonal tension crack, force redistribution will take

place: the shearing and compressive forces in the concrete compression zone will
increase, the tensile stress in the longitudinal reinforcement will increase and the
transverse shear and local bending due to the resistance against transverse
displacements in the longitudinal reinforcement will increase (Bresler and Scordelis,
1963; Moody et al, 1954). If this redistribution does not result in equilibrium, the
beam will collapse upon the formation of the diagonal tension crack. In beams with
short shear spans, a tied arch will form after inclined cracking. As not enough was
known about the ability to reach equilibrium after force redistribution and the long-
term behavior of a diagonally cracked beam, ACI-ASCE committee 326 (1962)
decided that the load at which the critical diagonal tension crack forms should be
taken as the maximum shear capacity. The design value of V. from ACI 318-08 is still
based on this assumption. The previous shows that the mode of failure is related to the

a/d ratio for beams with concentrated loads, Fig. 3.17. A more general description is

based on the %ratio. The TNO method (van den Beukel and Monnier, 1985) is

M . : . : .
based on the —ratio and requires a calculation at a sufficient number of locations

along the span of the member.
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Fig. 3.17: Variation in shear capacity with a/d for rectangular beams, ASCE-ACI
committee 426, 1973. Originally by Bresler and MacGregor, 1967.
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3.1.3. The mechanisms of shear transfer
An overview of the mechanism contributing to shear transfer is given in Fig. 3.18 and

Fig. 3.19:

e forced carried by the concrete compressive zone, V. or V;

o the force carried by aggregate interlock 7yor V, and

o the force carried by dowel action V.
The forces with their associated force polygon are shown in Fig. 3.20. The
contribution of each of the mechanisms is shown in Fig. 3.21 and Fig. 3.22. The
proportion of force carried by each of the mechanisms will vary as failure approaches,
but if there is a breakdown in any of the mechanisms, there is typically insufficient
capacity in the remaining mechanisms and collapse will result (Lubell, 2006; Fenwick
and Paulay, 1968). Reineck (1997b) also identifies the clamping of the tooth into the
compression zone. This mechanism is of transitory nature and can be neglected near
failure. Taylor (1972) measured that up to the point at which the beam cracks, half of
the shear is carried by the compression zone. This shear force is then parabolically

distributed down the beam in accordance with the theory of elasticity, Fig. 3.23.

Fig. 3.19: Forces acting at inclined crack, ASCE-ACI committee 426 (1973).
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Fig. 3.21: Forces measured in test beam by Fenwick and Paulay (1968).
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Fig. 3.23: Distribution of shear force in reinforced concrete beam without web
reinforcement (Taylor, 1972).
A first attempt to describe the shear problem based on a critical crack, Fig. 3.24, was
done by Bresler and MacGregor (1967). These authors gave a conceptual description
of such a model, but pointed out that a bond-slip law must be formulated and that for

a realistic determination of the stress a 3-dimensional model should be used.
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Fig. 3.24: Cracking and failure states, Bresler and MacGregor (1967).

Muttoni (2003) describes the shear transfer as first consisting of dowel action,

cantilever action and aggregate interlock. These mechanisms can be represented by
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strut and tie models (Muttoni and Schwartz, 1991), Fig. 3.25. For aggregate interlock,
the concrete compressive forces are assumed to be transferred across the cracks. The
dowel action can also be represented by a strut-and-tie model in which the
longitudinal reinforcement also transmits forces in the transverse direction. After a
critical point when several concrete ties break in the cantilever action, the crack will
protrude horizontally, making the aggregate interlock impossible. At the same
moment, the tie of the dowel action cracks and a new crack forms along the
reinforcement. After formation of the critical shear crack, the mechanisms of shear
transfer are arching action and strut and tie action with an elbow-shaped strut, Fig.
3.26. The resultant stress path can also be compared to a traditional frame model for

the compressive force path. The failure load is very dependent upon the crack pattern.
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Fig. 3.25: Mechanism of shear transfer without shear reinforcement: cantilever action,
aggregate interlock and dowel action (Muttoni and Schwartz, 1991).
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Fig. 3.26: Load-carrying capacity after development of the critical shear crack: (a)
elbow-shaped strut; (b) straight strut (enabled by aggregate interlock); and (c)
combined response, Muttoni and Fernandez Ruiz, 2008.

Swamy and Andriopoulos (1973) argued that dowel action and aggregate interlock are

interdependent and questioned the validity of simplified model tests to quantify the

separate mechanisms of shear failure. The breakdown of dowel resistance results in a

higher width of the diagonal crack, because the section is able to rotate more about the
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head of the crack. The aggregate interlock forces depend on the crack width and crack
rotation, and their contribution will thus be influenced by the action of the dowel
forces. There is a time lag, in terms of the development of the diagonal crack, between
the commencement of aggregate interlocking action and that of the dowel forces. In
the initial stages of diagonal crack formation, the aggregate interlock action
predominates while in the later stages of its development the influence of dowel
forces predominates.

Although the shear resistance is typically found as the sum of the capacity of the
concrete compression zone, the aggregate interlock, the dowel action and the residual
tension over the crack, some models start from quite a different perspective. Ehmann
(2006) based his model on the Zararis and Papadakis model (2001) in which a new
and sudden shear crack crossing the previous cracks leads to collapse. This shear
crack is caused by concrete splitting on the connecting line between the load and the

support.

3.1.3.1 Concrete compression zone

3.1.3.1.1 Models based on the capacity of the concrete compressive zone
The first models for shear attributed the shear carrying capacity of the concrete

entirely to the capacity of the concrete compression zone (Shear study group — Barker
et al., 1969; Kani, 1979). A few recent models (Khuntia and Stojadinovic, 2001,
Zararis and Papadakis, 2001) also fully count on the capacity of the compression zone,
arguing that dowel forces are not activated as the shear force of steel bars at a crack
location is caused by pure shearing deformation and not due to kinking or a slip of the
crack faces. Simlarly, Kotsovos (1992) questions aggregate interlock and dowel
action, and claims that the shear capacity is based solely on the capacity of the

compressive force path, Fig. 3.27, tacitly combining it with arching action.

Fig. 3.27: Schematic representation of region of compressive force path (Kotsovos,
1992).
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However, the compression zone cannot carry all shear force, as this would lead to
flexural stresses too high to be resisted by the concrete (Taylor, 1973). In uncracked
regions of a member, the shear force is transferred by inclined principal tensile and
compressive stresses, as visualized by the principal stress-trajectories. In slender
members without axial compression, the shear force in the compression zone does not
contribute significantly to the shear capacity because the depth of the compression
zone is relatively small (ASCE-ACI committee 445, 1998). The parameters
determining the shear carrying capacity of the concrete compression zone are: the

depth of the compression zone and the concrete compressive strength (Taylor, 1973).

3.1.3.1.2 Determination of the capacity of the concrete compressive zone
Fenwick and Paulay (1968) first determined the flexural strength of the concrete

cantilever per unit length of beam to be:

B, :QSZ—b\/Z‘ 1—[5 SVJ?J (3.6)

with:

vy average horizontal shear stress in the tension zone of the beam;

Sy crack spacing at the level of reinforcement;

h. the height of the cracks measured from the level of reinforcement;
0 a constant which experimentally was determined to be 0,78.

Reineck (1990) calculated the force in the compression zone by integrating the shear

stresses over the depth ¢ of the compression zone, Fig. 3.28:

V. =2chy, (3.7)
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Fig. 3.28: Stresses and forces in compression zone of tooth (Reineck, 1990).
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3.1.3.1.3 Contribution of concrete compressive zone to shear carrying
capacity
An overview of the contribution to the shear carrying capacity that is attributed to the

concrete compressive zone is given in Table 3.1

Table 3.1: Contribution of concrete compressive strength according to authors from

literature.

Author(s) year | % comments

Fenwick and Paulay | 1968 | 20% based on measurements

Taylor 1972 | 20 —40% | based on measurements

ACI-ASCE com. 426 | 1973 | 20 - 40%

Sherwood, Bentz and | 2007 | 24% measurement

Collins 21% calculation based on stress distribution
from Morsch

Kani 1979 | 40%

Hamadi and Regan 1980 | 37% calculated for beams with natural gravel
aggregates

40% calculated for beams with expanded clay

aggregates

Reineck 1990 | 30% maximum, calculated from Eq. (3.7)

3.1.3.2 Residual tension over crack
As a shear crack is not a “clean break™ and small pieces of concrete are bridging the

crack, the residual tension over the crack contributes to the shear capacity. In fracture
mechanics approaches to the shear capacity, these residual tensile stresses are seen as
the primary shear transfer mechanism (ASCE-ACI committee 445, 1998), and it has
also been implemented in finite element software (Reineck et al., 1997,
Blaauwendraad and Walraven, 1992)

Reineck (1992) claims that residual tension can be neglected for practical ranges of
beams, since the crack widths in the web become too large. Likewise, Rombach et al.
(2009) point out that for beams with smaller effective depths, the contribution of the
residual tension to the shear capacity is higher than for large beams.

Other models only consider the residual tension at the crack tip, for example by taking
a characteristic length into account.

Pruijssers (1986) described the tensile capacity at the crack tip. The zone in which the
tensile strain exceeds the fracturing strain is called the fracture zone (or tension-
softening zone) and consists of concrete intersected by small micro-cracks, Fig. 3.29.
The tension-softening zone contributes to the shear resistance by means of the (low)

shear stiffness of the uncracked cross-sectional area and the mechanisms of aggregate
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interlock of the cracked cross-sectional area. The mean shear stiffness of the tension-

softening zone is approximately 40% of the shear stiffness of the compressive zone.

fictitious c:ru-::._k l
or tension-
softening zone i
A tension
softening

Ectu Zone

Fig. 3.29: The fracture zone. (Pruijssers, 1986).

Due to the development of micro-cracks the strain in this zone increases with a
decreasing tensile stress, Fig. 3.30. The ultimate strain in the tension-softening zone is
estimated as eleven times the cracking strain (equal to /0°): &, =1,1.107. For large
shear deformations the contribution of the tension-softening zone to the shear transfer
is considerable, Fig. 3.31. For the presented normal stresses the normal strain of the

element ¢,, is kept constant during the increase in the shear deformation y. For

increasing ratios of )/, the shear and normal stresses are shown.
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Fig. 3.30: Stress-deformation relation in tension-softening zone. (Pruijssers, 1986).
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Fig. 3.31: Shear transfer in the tension-softening zone (Pruijssers, 1986).
3.1.3.3 Aggregate interlock

3.1.3.3.1 What is aggregate interlock
The shear capacity from aggregate interlock is a result of the friction in a crack caused

by its rough surface. Aggregate interlock is directly related to the way in which a
crack is formed in concrete. Because the strength of the hardened cement paste in
most concretes is lower than the strength of the aggregate particles, cracks intersect
the cement paste along the edges of the aggregate particles. So the aggregate particles,
extending from one of the crack faces, “interlock” with the opposite face and resist
shear displacements (Walraven, 1980). Millard and Johnson (1984) concluded from
the repeatability of their aggregate interlock tests that this mechanism does not depend
upon the random path propagation of a tensile crack. According to Hamadi and Regan
(1980), Bjuggren was the first author to point out the importance of aggregate
interlock. Aggregate interlock forces are required to maintain the rotational

equilibrium of the free body shown in Fig. 3.32 (a concrete tooth, Lubell, 2006).
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Fig. 3.32: Forces acting on a concrete tooth (Lubell, 2006).

The factors influencing the aggregate interlock capacity are: the concrete
microstructure, the fracture energy of the concrete (Ghazavy-Khorasgany and
Gopalaratnam, 1993), the aggregate size (Sherwood, Bentz and Collins, 2007) and the
type of aggregate (Regan et al. 2005), with limestone and clay aggregates resulting in
low aggregate interlock capacities. As the aggregate interlock capacity depends on the
concrete microstructure and chosen mixture, several types of concrete with lower
aggregate interlock capacities can be identified: self-consolidating concrete (Hassan,
Hossain and Lachemi, 2010), lightweight concrete (Fig. 3.33 and Fig. 3.34, Taylor,
1973; Vaz Rodrigues, 2007) in which the shear crack crosses the aggregates because
of their low strength and high strength concrete, where fracture of the aggregates
leads to a smooth crack surface (Vintzileou, 1997). However, Khuntia and
Stojadinovic (2001) do not see the smooth surface concept as a convincing
explanation for the reduction in shear strength in high-strength concrete without
stirrups. The shear capacity just before diagonal cracking (where aggregate friction
has no role to play) is almost equal to that after formation of diagonal cracking.
Khuntia and Stojadinovic (2001) consider the formation of longer flexural cracks (and
thus a smaller effective shear depth) more appropriate as an explanation for the lower

shear strength of high-strength concrete.

N I v T - 1l
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gravel concrete lightweight concrete

Fig. 3.33: Aggregate interlock in gravel concrete (intermediate or low strength) and
lightweight concrete. (Walraven, 1980).
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(d) Specimen N-4 (normal weight mortar)

Fig. 3.34: Representative photographs for failure planes of tested beams. circles with
perforated lines indicate unborken coarse aggregate particles (Yang et al. 2011).

In Fig. 3.35 the contribution of aggregate interlock and concrete in tension to the
punching shear capacity of a slab are shown with respect to the crack width. Where
limited crack widths develop (small depths, large amounts of flexural reinforcement)
the punching strength is mostly governed by the tensile strength of the concrete, while

for large crack widths aggregate interlocking becomes more dominant.
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'_ concrete in tension

Fig. 3.35: Punching shear strength in critical shear crack theory (a) concrete in tension
and aggregate interlock contributions for small rotations; (b) concrete in tension and
aggregate interlock contributions for large rotations; and (c) punching shear strength

and shear-carrying contributions of aggregate interlock and concrete in tension for
cases (a) and (b) as a function of the rotation of the slab (Muttoni and Fernandez Ruiz,
2010).

3.1.3.3.2 Models

the first aggregate interlock models only related the interlock capacity to the crack
width (Paulay and Loeber, 1973; Fenwick and Paulay, 1968).

Gambarova (1981) placed particular emphasis on the allowable paths in the
displacement field when the crack starts opening, resulting in empirical relations
between the interface stresses and the crack. This model (rough crack model) is based
on the assumption that crack properties may be considered as a material property in

the case of densely cracked plates. However, tests by Millard and Johnson (1984)
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showed experimentally that the local/global roughness model does not yield to good
results.
Walraven (1980, 1981) developed a model for aggregate interlock in which concrete
is taken as a two-phase material consisting of stiff aggregate particles embedded in an
ideally-plastic cement matrix. Earlier measurements on beams had shown that cracks
do not open to their final width and shear then, but open and shear simultaneously. As
a result, both the shear stress and the normal stress have to be taken into account as
essential components. Assuming that the irregular faces of a crack can be deformed,
both the shear stress 7 and the normal stress ¢ are functions of the crack width w and
the shear displacement 4:
r=f(w,A)
o=f, (w, A)

In (Walraven, 1981) a fundamental model is developed, based on a statistical analysis

(3.8)

of the crack structure and the associated contact areas between the crack faces as a
function of the displacements, w and 4, and the composition of the concrete mix. Two
fundamental modes of behavior characterize the aggregate interlock: sliding at the
contact area between particles and matrix at opposite sides of the crack (overriding)
and irreversible deformation of the matrix by high contact stress. Considering
concrete as a matrix and aggregate particles, and taking into account that the size of
the particles is considerably greater than the crack width, the microroughness of the
crack (aggregate particles projecting from the crack plane) is seen as dominant with

respect to the macroroughness (the overall undulations of the crack plane), Fig. 3.36.

Fig. 3.36: Generally observed structure of crack plane (Walraven, 1981).

A flat crack plane (Fig. 3.37, Fig. 3.38) is thus used in the model. Initially during
sliding, the contact area is reduced. This leads to high contact stresses, resulting in
further plastic deformations until in the x and y direction equilibrium of forces is
obtained. On the contact area, the stresses are resolved into a stress normal to the

contact area oy, and tangential z,,, Fig. 3.39. A rigid-plastic stress-strain relation for
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the matrix is used, since it is expected that the plastic deformation will be

significantly larger than the elastic deformation.

Z-section

Fig. 3.38: (a) Cracked concrete body; (b) Z-plane of intersection; (c) Representative
slice. (Walraven, 1981).

a,

(a)

Fig. 3.39: (a) Contact area between matrix and aggregate; (b) stress conditions.
(Walraven, 1981)

Under the condition that the contact areas are about to slide, the stresses are combined

as
T, = M0, (3.9
Equilibrium at a particle surface leads to the reactions:

F =0 a -7, .a
y p pu "y (3.10)

F.=0,a+7,.4,
Considering all particles over a unit length of crack and takingZa, , £a, as the most

probable average projected contact lengths over the unit crack length leads to:

46



XF, =0,2a,—7,.24a,

X =0,.2a,—71,.2a,

3.11)

Proceeding to areas with Zx and A | as the most probable contact areas for a unit crack

area and using equation (3.9), leads to:

oc=0, (Zx —,uZy)
r=o0,, (Zy +,uZx)

The projected contact areas 4, and Ey are then calculated as follows:

1.

(3.12)

The probability density function for an expected number of intersection circles

with a diameter Dy which intersect also the unit crack length is constructed.

The aggregate particles are assumed to be distributed according to the Fuller

curve.

The contribution of the individual intersection circles to the contact area

between the crack faces is determined.

Combining the previous results, leads to the total contact area for a unit crack

area as a function of the displacements between the crack faces. The graphical

representation of the resulting expressions is shown in Fig. 3.40.
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Fig. 3.40: Total projected contact areas ZX and Zy for 1 mm? crack plane, as function

of crack width w and shear displacement 4. (Walraven, 1981).
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Experimental results from push-off tests are then used to determine the matrix
yielding stress o, and the friction coefficient u. The best results are obtained for

friction coefficients from x = 0,4 (Walraven, 1981) to « = 0,5 (Walraven, 1980) and
opy is found through fitting as o, = 6,39 £.%% (Walraven, 1981) (N/mm’, f. the

cube concrete compressive strength) or o, =5,83 195 (Walraven, 1980) (N/mm”,

f.. the uniaxial concrete strength). It must be noted that this is only a provisional,

approximate relation since the relation between o0, and f’.. is not unique. As expected,
the matrix yielding strength is slightly higher than the strength of the concrete itself.
Resulting relations are graphically presented in Fig. 3.41 (high strength concrete) and
Fig. 3.42 (normal strength concrete). Simplified linear relations are developed for
concrete with gravel aggregates, cube crushing strengths 13 < . < 59 N/mm?, D,qx =

16 — 32 mm:

T= _3_](}4'[1,8\4/'_0’8 +(0’234w—0,707 -0, 20)ﬂ]A (z>0) (N, mm) (3.13)
___ﬁ 0,63 0,522 |
o== +[1,35w +(0,191w O,IS)ﬁ]A (6> 0) (N, mm) (3.14)

It was thus shown that for unreinforced cracks, there is a unique relationship between
the stresses 7 and ¢ and the displacements w and 4. If two of these parameters are

given, the two remaining ones are also known.
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Fig. 3.41: Comparison between experimental values for concrete with f°.. = 59
N/mm?, Dye: = 16mm, pi = 0,75 (ratio between total volume of aggregate and the
concrete volume) and theoretical values, with g, = 65 N/mm? and w=0,40.
(Walraven, 1981).
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Fig. 3.42: Comparison between experimental values for concrete with /.. = 33,4
N/mm?, Dy = 32 mm, py = 0,75 (ratio between total volume of aggregate and the
concrete volume) and theoretical values, with o, = 44 N/mm? and u = 0,40.
(Walraven, 1981).

Based on the theoretical model, parameter studies were carried out, leading to the
conclusions:

1. A considerable part of the shear resistance is provided by friction. If friction is
eliminated, more overriding of the particles and less deformation of the matrix
occurs.

2. The small aggregate fractions loose importance if the crack width becomes
greater.

3. The normal stress is not very sensitive for a variation of the maximum
aggregate size. The shear stress is influenced: a smaller maximum aggregate
size leads to a smaller maximum shear stress at a given crack width. The
influence becomes larger for larger crack widths.

4. A grading curve with a higher proportion of sand particles leads to smaller
maximum shear and normal stresses at a given crack width. The influence is
largest on the shear stress and becomes larger for larger crack widths.

5. Aggregate interlock is mostly governed by the strength of the concrete.

6. The influence of the bar diameter is insignificant.

For reinforced concrete the mechanism works in a similar way (Walraven, 1981). The

restraining force is now introduced internally by the reinforcement and depends on the

49



bond properties between reinforcement and concrete and the yield strength. The yield

force in the reinforcement results in an equivalent normal stress on the crack, of, .

However, it was observed experimentally that the crack opening path does not seem
to be significantly influenced by the reinforcement ratio. This is contrary to what had
been observed in specimens with external restraint bars. Local disturbance of the
crack structures was believed to be responsible for this difference. A different crack
structure was also observed after testing. While crack faces of specimens with
external restraint showed only a small amount of fine material torn off the crack face,
specimens with reinforcing bars showed a considerable amount of loose particles and
crater-shaped holes around the bars were visible. Assuming that the relationship

between the shear stress 7, and the normal restraining stressef,, in a reinforced crack

is similar to the relation between 7, and ¢ in an unreinforced crack, leads to

7, =C (0f,)" (N/mm?) (3.15)
¢=(£)" (N/mm?) (3.16)
C,=0,09(/)"  (NVmmd) (3.17)

A 5% fractile is obtained by multiplying equation (3.15) with 0,85 or 0,82 (Walraven
et al., 1987). In case not a compressive but a tensile stress acts on the crack, equation
(3.15) is multiplied by 0,8. Frenaij (1989) extended Walraven’s model in order to
account for the long term effects. Pruijssers (1986) indicates that the ratio between the
crack widths and the shear slip of the crack at the bottom of the beam is

approximately 3, Fig. 3.43.
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Fig. 3.43: Crack opening path in beams subjected to shear forces, Pruijssers (1986).
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Millard and Johnson (1984) show experimentally that the two-phase model by
Walraven (1980) should be used and not a local/global roughness model. However,
the use of the two-phase model to predict the component of shear stiffness attributable
to aggregate interlock in cracked reinforced concrete is not straightforward. When
dowel action is eliminated, the local bond between reinforcement and concrete is also
removed. In a reinforced concrete specimen, the axial stiffness restraining crack
widening will be different from that when the bars are sleeved and will not remain
constant during the test. This axial stiffness must be evaluated before the two-phase

model can be used.

Vintzileou (1997) shows that when the constitutive laws of Fig. 3.44 are available, the
shear transfer behavior at a reinforced interface can be predicted. For a certain shear
slip, graph (b) gives the corresponding crack width. With curve (c), this crack width
can be translated into a tensile stress in the reinforcement. The tensile force in the
reinforcement equals the compression force on the interface, which gives the mean
compressive stress at the interface when divided by the area of the crack. For this
compressive stress value and for the given shear slip value, the curve in (a) allows for
the calculation of the shear stress which is mobilized to resist the imposed slip.
Repeating this procedure for different values of s leads to curve (d), which shows the

behavior of a sheared interface.
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Fig. 3.44: Concrete to concrete friction; constitutive laws (schematic) (Vintzileou,
1997).
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Vaz Rodrigues (2007) proved the necessity for a rounded crack based on a sensitivity
analysis on the form of the critical shear crack, Fig. 3.45. In a straight crack, only
opening but no sliding of the crack can occur, and thus a straight crack cannot carry

any shear force.
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Fig. 3.45: Sensitivity analysis on the form of the critical shear crack (Vaz Rodrigues,
2007).
Reineck (1990) assumes that the maximum value of the friction stress zy is that
without normal stresses perpendicular to the crack surface, Fig. 3.46, depending on
the crack width An:

A
7, =0,45f, [1—A—”J with An, = 0,9mm (3.18)
n

This maximum value for the friction stress is associated with a critical deformation
state of the tooth; the corresponding slip is:

As, =0,336An+0,01mm (3.19)

This method is valid up to crack widths of 0,5mm. However, Blaauwendraad and
Walraven (1992) point out that Reineck’s use of the concrete tensile strength and
threshold value are rather dubious, since the fundamental model for aggregate

interlock is based on shear and normal stresses.

Fig. 3.46: Constitutive relation for friction along the crack shown for constant crack
width (Reineck, 1990).
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In finite element analysis (Voormeeren, 2011), the aggregate interlock can be best

modeled by using a variable shear retention factor.

3.1.3.3.3 Contribution of aggregate interlock to shear carrying capacity
An overview of the reported contribution of aggregate interlock to the total shear

capacity as reported in the literature is given in Table 3.2.

Table 3.2: Contribution of aggregate interlock to shear capacity as reported in

literature
Author(s) Year | % Comments
Fenwick and Paulay | 1968 | 60 measured
Taylor 1972 | 33- 50% measured

ACI-ASCE com. 426 | 1973 | 33 -50% after cracking

Sherwood, Bentz and | 2007 | <70%

Collins

Kani 1979 | 50 - 60%

Hamadi and Regan 1980 | 44% calculated for beams with natural
gravel aggregates

26% calculated for beams with expanded

clay aggregates

Swamy and 1973 | 50 —90% see below

Adriopoulos

Swamy and Andriopoulos (1973) combined the amount of forces transferred through
aggregate interlock and dowel action. They measured it to vary between almost 90%

for a beam with 1,97% of tension steel and a/d = 2 to about 50% for a beam with 3,95%
of tension steel and a/d = 6.

Yang et al. (2011) point out that the reserve strength (ratio of ultimate shear strength

to inclined cracking shear strength) is influenced by the maximum aggregate size,
resulting in an increase in the ultimate shear strength for an increase in maximum

aggregate size.

3.1.3.4 Dowel action

3.1.3.4.1 What is dowel action?

Dowel action is the resistance of a reinforcing bar, crossing a crack, to shear
displacement. The deflection of a bar, subjected to a dowel force, is partially a result
of the deformation of the concrete around the bar and partially of the deformation of
the steel over a free length (Walraven, 1980). Dowel action is typically small as the

maximum shear stress to be carried by dowel action is limited by the tensile strength
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of the concrete cover supporting the dowel. As a result of dowel action and
deformation of the crack survace, the reinforcement bar wil be pulled twards the
concrete face. If this downward force exceeds the longitudinal splitting strength of the
concrete, the cover can fail (Lubell, 2006). The dowel action contribution to the shear
force is larger for large amounts of reinforcement (ASCE-ACI committee 445, 1998).
Cope (1985) reported that dowel action in slabs is less significant than in beams
because failing section lengths may not cross the entire member and because of the
continuity provided by bars in two directions. Ghazavy-Khorasgany and
Gopalaratnam (1993) on the other hand write that there is some evidence that dowel
action is quite effective in slabs. Since this mechanism relies on shear deformations at
the level of tension steel, bond characteristics and concrete stiffness around the bars

play an important role.

3.1.3.4.2 Models
Fenwick and Paulay (1968) reported the results of their pioneering work regarding

dowel action, Fig. 3.47. Their experimental results showed that the position of the bar
in the concrete at the time of casting had a marked influence on the capacity and
performance of the dowel. An attempt to quantify the force transferred through dowel
action was based on a linear elastic stress distribution in the steel, Fig. 3.48. The

maximum stress in the top bars was calculated as:

D, =%b's,fr (ﬁj (3.20)
and the corresponding expression for bottom bars is:

D, =%b's,fr (%) (3.21)
in which:
R the ratio of the displacements at the end of the dowel;
Sy the length of the dowel in a test or the crack spacing in a beam.

The average value of R was found as 1,42 for top bars and 1,75 for bottom bars.
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Fig. 3.48: Dowel action from long and short dowel. (Fenwick and Paulay, 1968).

Dulacska (1972) observed the dowel action to be almost ideally elasto-plastic. The
probable and assumed system of forces on the steel are shown in Fig. 3.49. This

results in the following expression for the dowel action:

V, =0,2d;pf, (sin 0)( \/1 + 0. 03;2; 5 —1J (3.22)

in which:

dp, the diameter of the bar;

Jee the cube compressive strength of the concrete;

0 the angle between the bar and the shear crack;

2
p=1- [Ni] accounts for the axial bar force.
sy

55



+— Fracture of concrete

a, b,

Fig. 3.49: (a) Probable system of forces; (b) assumed system of forces. Dulacska,
1972.

Chana (1988) developed a conceptual model for the dowel action based on the stress
state in the reinforcement and the compression zone. The conceptual model is based
on defining the distance s, (the distance between the base of the inclined crack and the
first crack) as s;* when the theoretical dowel force required to cause yielding V) is
equal to the dowel splitting force V. If s, is greater than s, splitting failure takes
place. V, is taken as 2m,/s; with m,, the plastic moment capacity of the reinforcing bar

including the effect of axial tension. The plastic capacity is taken as:

m, = §r3fy sin’ (g) (3.23)
in which
r the bar diameter;
b the yield strength of the bar;
0 as shown in Fig. 3.51.
V4 1s based on a simplified stress distribution, Fig. 3.50.
V, =1,05b ¢o, (3.24)
in which
b, the beam width minus the sum of the bar diameters;
2 the bar diameter;
oy the tensile stress in the concrete, approximately taken as twice the

splitting tensile strength attributable to the large strain gradient.
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Fig. 3.51: Plastic analysis of circular section, Chana (1988).

Bhide and Collins (1989) considered the dowel to be an element in double curvature,
limited by the plastic hinge capacity of the bar cross-section. Millard and Johnson
(1984) showed that the shear stiffness associated with dowel action decreased as the
axial force in the bar approached yield. The initial dowel stiffness was predicted well
by the assumption of a beam on elastic foundation, and then decreased as the axial
force increased. The ultimate load in dowel tests was predicted well by plasticity
approaches. An axial tensile force in a bar reduces its dowel stiffness considerably.
Taylor (1973) related the dowel split force to the side cover to the bars, the distance
between the bars, the splitting tensile strength and the bar diameter.

Vintzileou (1997) show the 2 possible failure modes of dowel action, Fig. 3.52:
splitting failure of the side or/and bottom concrete cover (mode 1) or crushing of the
concrete under the dowel and yielding of the bar (mode II). The stress distribution
along the dowel and within a section is shown in Fig. 3.53. The stress distribution also
shows that the maximum force to be transferred by means of dowel action will be

decreased with increasing bar diameters.
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Fig. 3.53: Stress distribution along a dowel and within a section (schematic)
(Vintzileou, 1997).

Reineck (1990) uses the following expression for the dowel action force:

vV, = f?/s d, f., with b, =b - d, (3.25)
and a lower limit:
Vi P
ijfc =L4——— 7T with p[1], f- [MPa] and d [m] (3.26)

Near failure, these values are independent from the corresponding relative crack

displacement within the considered range of application.

Fischer and Konig (1997) use the following expression for the dowel force:

H=0,76d b 312 f. (in kN) (3.27)
with
d the diameter of the reinforcement bars in mm,
b, the width of the cross-section in mm,
Sfem the cylinder concrete compressive strength in N/mm?.

3.1.3.4.3 Contribution of dowel action to shear carrying capacity
The load-transfer capacity after the peak load of the beam would thus be mainly

caused by the dowel action of the longitudinal reinforcement (Yang, 2010).
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An overview of the contribution of dowel action to the overall shear capacity as
reported in the literature is shown in Table 3.3.

Table 3.3: Contribution of dowel action to total shear capacity.

Author(s) Year | % Comments
Fenwick and 1968 | 20% measured
Paulay
Taylor 1972 | 15 -25% | measured
ACI-ASCE 1973 | 15 -25% | more important after cracking
com. 426
Barker et al. 1969 | 33 — 82% | see below
Hamadi and 1980 | 19% calculated for beams with natural gravel
Regan aggregates
34% calculated for beams with expanded clay
aggregates
Long 1975 | 30% for punching in slabs

The shear study group (Barker et al., 1969) mentions Ashdown’s model which
includes dowel action and carries between 33% and 82% of the shear force. However,
the shear study group claims that: “..., but it is generally agreed that it is safer to
ignore dowel action as a contribution to shear resistance. To ignore dowel action is to
assume that failure has taken place before the tearing begins, which is a wise
assumption since a tearing failure is sudden and dangerous.” Bresler and Scordelis
(1963) on the other hand attribute the higher tested shear capacities than calculated by

large to the effect of dowel action.

3.1.3.5 Arch action

3.1.3.5.1 What is arch action?
Arch action enables load to be transferred from its point of application towards the

support by means of a compressive strut. In members with plain reinforcement, arch
action is the main shear transfer mechanism after the collapse of beam action
(Feldman and Bartlett, 2005; Feldman and Bartlett, 2008). According to Elzanaty et al.
(1986), arch action is not a shear transfer mechanism, in the sense that it does not
transmit a tangential force to a nearby parallel plane, but permits the transfer of a
vertical concentrated force to a reaction and thereby reduces the demand on other
types of load transfer. The principle of internal arches can be based on a study of

stress trajectories, Fig. 3.54 and Fig. 3.55 (Kani, 1969).
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Fig. 3.54: Forces and trajectories in the shear span (Kani, 1969).
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Fig. 3.55: Internal arches in a reinforced concrete beam (Kani, 1969).
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Fig. 3.56: Cracking pattern of beam that failed due to the breakdown of the arching
mechanism (Sneed and Ramirez, 2010).
Kim et al. (1999) developed an empirical method based on strain readings to predict
the arching action capacity. The arch action capacity is taken as proportional to the
beam action capacity — these components are shown in Eq. (3.3). Leonhardt and
Walther (1962) point out that the arch action is clearly manifested in the pattern
presented by the shear cracks, which take on a very flat slope at the top under the arch.

In more slender beams, the portion of the beam situated above the arch suddenly
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fractures off at the end, so that the arch loses its bearing, Fig. 3.57 (Zararis and
Papadakis, 2001).
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Fig. 3.57:Line of diagonal compressive action (Zararis and Papadakis, 2001).

The parameters influencing arching action are: the layout of the reinforcement, with
layering resulting in a smaller depth for arching action, the anchorage of the tie (Rafla,
1971; Ghazavy-Khorasgany and Gopalaratnam, 1993), the crack shape (influenced by
the a/d ratio) that defines the remaining uncracked compression zone (Reineck, 1997)
and the type of reinforcement - with plain bars faciliting arching action more than
ribbed bars in which the force in the tension chord decreases due to bond (Reineck,
1990).

However, Adebar (2000) claims that the development of a compression strut is

unreliable and that it depends on the exact diagonal crack orientation.

3.1.3.5.2 Experiments

Olonisakin and Alexander (1999) measured beam and arch action in wide beam shear
tests, Fig. 3.58. Yielding of the reinforcement was found to shift the forces from beam
action to arching action. They also pointed out that the concept of a limiting nominal

shear stress is more consistent with beam action than with arching action and that it is

conceptually incorrect to assign all load to beam action.
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Fig. 3.58: Measured beam and arch action in test RB1 (Olonisakin and Alexander,
1999).
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3.1.3.5.3 Models
Fenwick and Paulay (1968) studied the arch action in a beam, Fig. 3.59. Two points
worth noting emerged from their study:

(1) Substantial translational displacements develop when arch action occurs. The
maximum slip for the model beam studied, is of the same order as the total
elongation of the reinforcement in the shear span; and

(2) in the vicinity of the load point, the line of thrust and the position of the
neutral axis rise well above their respective positions predicted by
conventional flexural theory.

The authors determined the arching index = Y ;v, in which v= b]Ld as the normal

shearing stress and v, the average horizontal shear stress in the tension zone of the

beam, found from the bond forces which act on the concrete cantilevers. An arching
index of unity would indicate that the whole of the external shear is resisted by arch
action. Towards the ultimate, the arching index increases, as wide diagonal cracks

appear in the shear span.

Slip as Proportion of Total
Extension of Steel
in Shear Span

L | |

Slip between Reinforcement and Concrete

Fig. 3.59: Arch action in beam without bond. (Fenwick and Paulay, 1968)

Kim and Jeong (2011) decoupled arch and beam action for shear in beams. A section

(a tooth) is idealized as a tied arch having a shear element inside, Fig. 3.60, in which

the lever arm z varies along the span. Combining the definition of oV =C % and
X

X . xdz . .
C =V — leads to the expression« = e The value of a is assumed to remain
z zdx
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constant throughout the shear span of a given member. With boundary conditions of z

= zp at x = a the expression for the compressive force paths (Fig. 3.61) becomes:

x\* o
Z( =2, (Z] =z,R;,, (3.28)

with z, the lever arm calculated by the beam theory at the maximum moment section
(x = a). All models of the compressive force paths can be modeled: from Bernouilli

beam theory with a = 0 to a simple strut-and-tie model with o = 1, Fig. 3.61

0 dz/de M

Inclined
Compression Chord
{arch)

Wab Shear Element

Tension Chord

(tig) r-d

Ef.“( (&4
z
'bu' L
7o - R
dT' [ dx= shear flow tie Eond.
a
(b)
Fig. 3.60: Smeared truss idealization with inclined compression chord (Kim and
Jeong, 2011).
Bernoulli beam theory *

A N A simple strut-and-tie model

- -

a
Fig. 3.61: Simplified compression force paths in a point-loaded simple beam (Kim
and Jeong, 2011).
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The internal distribution of shear force mainly depends on the relative ratio between
the axial stiffness of the chords and the shear stiffness of the web. The beams with
smaller slenderness ratios show greater shear resistance by the concrete compression

zone (Kim and Jeong, 2011).

3.1.3.5.4 Contribution of arch action to shear carrying capacity
In T-beams the contribution of arch action to the overall shear carrying capacity is

found to be larger than for rectangular beams (Kim and Jeong, 2011). At the ultimate,
Kim and Jeong (2011) found that 26 to 55% of the ultimate load is resisted by arching.
Leonhardt (1962) stated that 15 to 25% of the total shear was carred by the inclined
compression chord in the beams. As the compression zone is now assumed to be
inclined, the contribution also takes into account the contribution of the compression

zone on the shear carrying capacity.

3.1.4. The size effect

The size effect in shear is the relative decrease in shear capacity for an increasing
effective depth. Recently, more attention has been given to the size effect in shear.
Researchers have uttered their concern about the validity of the current code
provisions empirically derived from small beam shear tests. The failure of the Shelby
Warehouse, which was originally contributed to the combination of shear and axial
tension (Anderson, 1957) and later to a lack of longitudinal reinforcement (Bhide and

Collins, 1989) is now believed to have failed due to the size effect, Fig. 3.62.

Fig. 3.62: Shear failure of 900mm deep beams in the Air Force Warehouse, Shelby,
OH (Lubell, et al. 2004).
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The size effect in concrete is not limited to shear only (Morita et al., 1993) but
includes:
o the effect of the cylinder size on plain concrete in compression and tension,
e the bar size effect in bond at the interface between steel and concrete, and
o the effect of strength reduction for increasing size of reinforced concrete

elements in flexure and shear under monotonic and reversed cyclic loading.

An example of a large beam failing in shear is shown in Fig. 3.63.

Fig. 3.63: Large beam failing in shear (Lubell et al., 2004).

3.1.4.1 Observations related to size effect
As early as 1948, Richart experimentally observed that: “The maximum shearing

stresses, computed on the conventional critical section varied considerably with the
effective depth of the footing, being larger for the thinner footings.” In 1967, Kani
wrote: “To date (1966), the majority of reinforced concrete beams which have been
tested to failure range in depth from 10 to 15in (25 fo 38 c¢m). Essentially, these are
the beams on which all our design practices and safety factors are based. The
immediate aim of the test program described in this paper was to answer the question:
How representative are the test results derived from such relatively small beams for
the safety factors of large beams?”” Based on his rational theory, Kani had stated: “All
other factors being equal, the safety factor decreases as the depth of the beam
increases.” The results reported by Kani (1967) show indeed a decrease in relative
beam strength due to increasing depth. He assumed the differences in the crack
pattern , Fig. 3.64, which dictates the shape of concrete teeth, to be the main reason.
MacGregor suggested in the discussion to Kani’s paper (1967) that part of the
reduction in shear strength with depth can be explained by the reduction in modulus

of rupture with increasing depth. Leonhardt and Walther (1962) attributed Kani’s
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observations to the varying bond resulting from complete similarity in his

experiments.
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Fig. 3.64: Differences in crack patterns among beams of different depths (Kani,
1967).

Morita et al. (1993) observed experimentally much larger crack widths for full-scale
specimens, not allowing stress transfer across the crack. while in the half and quarter-
scale specimens the cracks remained in the tension softening zone.

Bazant et al. (2007) show that the failure probability of a 200mm deep beam is about

P, ~10™° while the failure probability for a Im deep beam is P, 107, Fig. 3.65. As a

result, the safety factors used in design and the expected (mean) design strength

should not be considered as size independent (BaZant and Pang, 2006).
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Fig. 3.65: (a) Probability distribution of shear strength of beams from 10 to 30cm
deep, based on ACI committee 326 (1962) database, compared with Toronto data; and
(b) failure probability for small beam and 1m deep beam.

Bazant (2004) shows that very little test data are available to support a theory for size

effect, Fig. 3.66, with too many tests on small, heavily reinforced beams, leading to

statistical bias (Bazant and Yu, 2008).
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Fig. 3.66: Histogram of the number of tests in ACI 445 database as a function of beam
depth d, demonstrating the necessity of extrapolating on the basis of a sound theory.
(Bazant, 2004).

Bazant and Kazemi (1991) use a fracture mechanics based approach in which the size
effect is attributed to brittleness, based on a series of experiments. These experiments,

however, turned out not to be repeatable (Bentz and Buckley, 2005). The repeat tests
had shear capacities of 31 to 70% higher of the original 1991 series. As shown in Fig.
3.67, there is large scatter on the test data as compared to most size effect laws (not all
shown). While the size effect as of now stands undisputed, the size effect law to use is

still under discussion.
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Fig. 3.67: Comparison with existing test data for beams of different sizes (Bazant and
Kim, 1984).

Iguro et al. (1984) and Shioya et al. (1989) tested a series of beams with effective

depths up to 3m to investigate the size effect in shear. A 4™ root of effective depth

size law was developed and it was noted that the ultimate compressive strain in the

concrete &, became lower due to the size effect.

Additional tests by Niwa et al. (1987) confirmed the findings of the test series by
Iguro et al. (1984). Brown et al. (2006) argue that Shioya’s beams might have failed
due to the effects of anchorage and bar cutoff and did not produce a genuine shear
failure.

The size effect is also observed in slab-column tests (Guandalini, Burdet and Muttoni,
2009). Birkle and Dilger (2008) suggest that for slabs with a thickness larger than
260mm the size effect should be taken into account and that the reduction is larger for
slabs without shear reinforcement, Fig. 3.68. Uzel et al. (2011) showed that in the

case of direct strut action, the size effect is smaller.
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Fig. 3.68: Influence of slab thickness of failure stress in slabs without shear
reinforcement (Birkle and Dilger, 2008).
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According to Sundquist (2005), no good analysis method has been presented to date
that can really explain the size effect for punching shear. A model developed by
Hallgren (1996) was cited, based on fracture mechanics that incorporated the

aggregate size. This led to the formula:

Euy = ?2 % (3.29)
where
&,  theultimate tangential strain,
X the depth of the compression zone in mm,

Grp  the fracture energy equal to 0,025; 0,030; 0,038 for aggregate size d, = 8§ mm,
16 mm, 32 mm respectively.

With the ultimate tangential strain, the stress distribution in a section at a given

location in the critical zone can be calculated. Then the forces are found and the

maximum punching force is calculated. Hallgren and Bjerke (2002), however, stated

that the influence of tensile strength and fracture energy has been found significant for

the size effect in earlier research, but in their research based on non-linear finite

element analysis of footings, no significant influence was found.

In 1939, Weibull introduced the statistical concept of the weakest link. In the context
of size effect, the strength size effect comes from the probability to meet the most
dangerous defect (depending on its size and orientation), which obviously increases
with increasing structural size, thus providing the strength reduction (Carpentiri et al.,
1993). The strength of the specimen is inversely proportional to the volume of the
specimen, to the inverse power of the Weibull parameter m: f, ~ V'm The parameter
m 1s governed by the scatter in strength. The basic assumptions within the Weibull
theory are that the ultimate structural failure occurs as soon as a stress criterion is
reached anywhere within the structure, and that the material is not able to expose any
gradual softening (Gustaffson and Hillerborg, 1988). These assumptions are not valid
for shear failure. Weibull’s model only gives realistic results if no redistribution of
stresses is possible (Walraven, 1993).

Other possible contributions to the size effect in shear are unintended out-of-plane
actions such as nonsymmetrical cracking (Kotsovos, 2006), the decrease in concrete

strength in the upper layers of the section when concrete is cast in deep members in
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practical construction and the possible change in critical section location with
increasing beam size (Khuntia and Stojadinovic, 2001). Sabnis (1993) also points out
that significant structural size effects can be obtained due to the diffusion process of
drying of concrete in structures, the conduction of heat produced by hydration and the
non-uniformities of creep produced by differences in temperature and moisture
content throughout the structures. He also mentions the “wall effect” which could be a
source of the size effect. This effect is caused by the fact that a boundary layer near
the surface of concrete inevitably has a different composition and strength than the
interior of the concrete structure. This layer contains a lower percentage of large

aggregates and a higher percentage of mortar.

3.1.4.2 Size effect explained by aggregate interlock

A possible reason for the size effect is that larger crack widths occur in larger
members, leading to a reduced aggregate interlock (Taylor, 1972, 1973). The crack
widths increase nearly linearly both with tensile strain in the reinforcement and
spacing between the cracks. For the same reinforcement strain, doubling the depth of
the beam will double the crack widths at mid-depth (Lubell et al. 2004). Taylor (1972)
and Leonhardt (1978) as a result concluded that if the maximum size of the aggregates
used in the concrete is scaled correctly, the loss of strength is smaller. The larger the
size effect, the smaller the influence of aggregate interlock and the smaller the
bending stiffness of the concrete teeth. However, it was shown by Walraven (1980)
that aggregate interlock is not responsible for the size effect. If aggregate interlock
were the main cause of the size effect, the implication would be that, in lightweight
concrete beams, scarcely any size effect could occur (Walraven and Lehwalter, 1994).
The experimental results proved this hypothesis wrong, as a very pronounced size
effect was observed in lightweight beams. Blaauwendraad and Walraven (1992)
discuss the hypothesis that size effect is caused by aggregate interlock by pointing out
the following arguments:

1. the size effect does not disappear in lightweight concrete members in spite

of their smaller aggregate interlock capacity;
2. in tests with plastic sheets to reduce the aggregate interlock capacity, the
residual tension in the concrete was eliminated as well.

After testing a 3m high beam, Shioya et al. (1989) (Fig. 3.69) contribute the size

effect to two factors: (1) reduced aggregate interlock due to larger crack widths and (2)
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the size effect on the flexural tensile strength of concrete (Shioya and Akiyama, 1993).
The first contribution affects the shear strength of a beam of d < 1m, Fig. 3.70.
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Fig. 3.70: Effect of maximum aggregate size. (Shioya et al., 1989).

3.1.4.3 Size effect explained by fracture mechanics

Ozbolt and Elighausen (1997) attribute the main reason for size effect to concrete
cracking and the related structural energy release. There is a relation between the rate
of crack propagation and the size of the member. This phenomenon is a consequence
of the energy-release rate, which is larger for larger structures. In large beams, the

cracking pattern develops significantly faster than in small beams (Walraven and
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Lehwalter, 1994). The so-called softening behavior of concrete at crack opening is the
key to the solution of the size problem. In small beams the cracks have small widths
so that over the crack faces, substantial tensile stresses can be transmitted, whereas in
large beams with the same crack pattern but larger crack widths, the contribution of

stresses across the cracks to the shear capacity is much smaller.

The dimensional disparity between tensile stress ([F][L]z) and stress-intensity factor

([F][L]'m) causes a constant slope equal to -0,5 in the nominal strength versus

structural size bilogarithmic diagram, Fig. 3.71 (Carpinteri et al., 1993). This
approached results in the linear elastic fracture mechanics size effect law.

Two major theoretical scaling laws exist for concrete structures (Ozbolt and
Elighausen, 1997). The first type of scaling laws is based on linear elastic fracture
mechanics (LEFM), nonlinear fracture mechanics, cohesive crack models or a simple
energy balance consideration between the structural energy release and the concrete
energy consumption capacity. These approaches are based on a single crack and an
assumption of proportionally scaled initial flow. With the assumption of crack length
proportionality at peak load and the size of the concrete fracture process zone
Bazant’s size effect law, Fig. 3.71, can be found, based on an energy criterion of

failure (Bazant and Kim, 1984; Bazant and Kazemi, 1991):

o, =Bf.(1+ ﬂ)% (3.30)

with:

d .
[ = —the brittleness number;
0

oN the nominal strength, the ultimate load divided by the characteristic area;
d the structural size (beam depth, embedment depth, ...);
1 the concrete tensile strength;

B,dy two constants, to be determined experimentally or by a more sophisticated
analysis.
Eq. (3.30) is based on 4 hypotheses:
1. Fracture propagation requires an approximately constant energy supply per
unit length and width of fracture.
2. The potential energy released from the structure due to fracture growth is a

function of both the fracture length and the area of the cracking zone.

72



3. At the ultimate load, the fracture shapes and lengths in geometrically similar
structures of different sizes are also geometrically similar.

4. The structure does not fail at crack initiation.
For propagating failures in which the fracture process is not concentrated at a point,
but takes place within a finite zone ahead of the fracture front, the size effect is
transitional between plasticity and linear elastic fracture mechanics. The dissipated
energy depends on: (1) length of the fracture of cracking zone and (2) its area. If only
the first part of the hypothesis is made, the size effect of linear elastic fracture
mechanics results, and if only the second part of the hypothesis is made, there is no
size effect as in plasticity (Bazant and Kazemi, 1991). As shown in Fig. 3.71, for
small depths the strength criterion dominates and for large depths the fracture
mechanics aspect of failure dominates (Bazant and Kim, 1984). The strength reserve
due to stable crack growth becomes smaller as the size increases and vanishes when a

certain size is exceeded.
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Fig. 3.71: Illustration of size effect according to various theories (Bazant and Kim,
1984).
Especially in large structures, the hypothesis of crack similarity and its proportionality
at peak load is generally not fulfilled. According to Ozbolt and Elighausen (1997), the
validity of Bazant’s size effect law is limited. Carpenteri et al. (1993) also point out
that several experimental results indicate that even the largest members without initial

cracks resist some stress, contrarily to Bazant’s size effect law. Some theoretical
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explanations of the inadequacy of Bazant’s size effect law have also been provided. A
main point of criticism is that Bazant obtained his formulation only for notched
specimens and assuming that the notch size, responsible for the stress singularity, was
scaled proportionally to the structural size. When applying the size effect law to
unnotched specimens, the hypothesis merely falls, since in disordered material the
size a of the characteristic flaw, which is responsible for the crack propagation,
should be independent of the specimen size.

The second type of scaling laws is based on multifractal aspects of damage and
multifractality of crack surfaces. The concept is based on the homogeneity of the
material. In a small concrete structure the aggregate size is large relative to the
structure size. Therefore, the inhomogeneity is maximal and the size effect is strong.
In large structures, the aggregate size is small relative to the structure size (perfect

homogeneity) and the size effect disappears. This is expressed by:
1
oy =(A+§)2 (3.31)

in which 4 and B are two constants obtained by fitting of experimental data, Fig. 3.72.
Since the microstructural morphology of a disordered material is obviously the same,
independently of the macroscopic specimen dimensions, the influence of disorder on
the mechanical properties of the material strictly depends on the ratio of the size of
the largest heterogeneities (here: aggregates) to the macroscopic size of the specimen

(Carpinteri et al., 1993).

T :

d
—>

Fig. 3.72: Multifractal scaling law (Carpinteri et al., 1993)

For size effect, it can be said that in large structures the microstructures is somehow
homogenized, i.e., behaves macroscopically as an ordered microstructure. Therefore
the scale effect should vanish in the limit of structural size d tending to infinite. For

small specimens, the effect of the disordered microstructures becomes progressively
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more important, and the strength increases with decreasing size, ideally tending to

infinity as the size tends to zero, Fig. 3.73.
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Fig. 3.73: Geometrical multifractality (Carpinteri et al., 1993)

Contrarily to Bazant’s size effect law, in multifractal scaling law (MFSL), limit
analysis governs only in correspondence with the homogeneous regimes, when the
disordered microstructures has been homogenized at the larger scales. On the other
hand, according to MFSL, the linear elastic fracture mechanism is supposed to govern
the collapse mechanism of an unnotched material when the characteristic flaw size a
becomes comparable with the macroscopic dimensions or, when the disorder comes

essentially into play, Fig. 3.74. A comparison between MFSL and Bazant’s size effect

law is shown in Fig. 3.75.
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Fig. 3.74: Multifractal scaling law: bilogarithmic diagram (Carpinteri et al., 1993).
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Fig. 3.75: Multifractal scaling law as corl;}ired to the size ffect law and test data
(Carpinteri et al., 1993).
Criticism on this procedure is based on the fact that in larger structures the material
inhomogeneity disappears but the inhomogeneity of the strain field generally does not
disappear.
Ozbolt and Elighausen (1997) show with a parametric study that for small beams the
concrete fracture energy significantly contributes to the shear strength while for large
beams, the ultimate load is mainly controlled by concrete tensile strength. By
comparing experimental data, they found that the size effect is significant up to depths
of Im. For large beams the shear strength is constant and size independent. When the
flexural reinforcement ratio increases, the shear strength increases as well and the size
effect is present in a smaller size range. They conclude by pointing out that from a
LEFM point of view there are two types of geometries:
1. Geometries which exhibit stable crack growth before the ultimate load is
reached.
2. Geometries for which the ultimate load coincides with crack initiation.
The first type shows a strong size effect in a broad range, while the second only
shows a size effect in a limited size range. As a result, there is no general size effect

law.

3.1.4.4 Size effect related to type of shear failure

Different opinions on the influence of the slenderness of the member on its
vulnerability to the size effect exist.
Yang (2010) postulated that the size effect becomes more significant in beams that

have a smaller shear span-depth ratio because the failure of concrete struts joining the
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loading and support points show more brittle behavior with the decrease of shear
span-depth ratio. Simlarly, Yu and Bazant (2011) wrote that “If the deep beam fails

by compression crushing of concrete, the compressive strength of the “strut” exhibits

a strong size effect.” Experimental work by Walraven and Lehwalter (1994), Fig. 3.76,
showed that the load at which inclined cracking occurs in deep beams is hardly size-
dependent, while the final bearing capacity shows strong size dependence. The size
effect in short members was found to be similar to that in slender members, in spite of

the different types of failure.
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Fig. 3.76: Relative shear stresses at inclined cracking and failure for short members
with a/d = 1 but different absolute dimensions. (Walraven and Lehwalter, 1994).

Contrarily, Reineck (1992) says that, since the crack widths are reduced if a/d
decreases, the size effect becomes less important in members with short shear spans.

Adebar (2000) states that the size effect reduction is only needed when a/d > 2.

3.2. One-way and two-way shear

3.2.1. Distinction
When a slab under a point load fails as a wide beam with a distinct shear crack on the

side, the failure mode is denoted as “one-way shear”. When a slab under a point load
fails like a slab-column connection with a circular failure face, the failure mode is
denoted as punching or “two-way shear”, Fig. 3.77. Fig. 3.78 shows the distribution
of cracking due to the occurring moment in a slab-column connection. The radial
moment M, decreases at a rapid rate with the distance from the loaded area. It causes
yielding to develop first at the perimeter of the loaded area. Meanwhile, a tangential

moment My will restrain any rotation at the inclined crack (ASCE-ACI Committee
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426, 1974). My leads to cracks on lines radiating from the center of the loaded area
and dividing the slab into sectors. M, leads to inclined cone-shaped internal cracks.
Models for punching shear can be divided into four categories: models based on shear
stress, strut and tie models, beam analogy models and plate analysis models (solved

by using finite elements methods) (Lantsoght, 2009).

—_———

(a) (B)
Fig. 3.77: (a) one-way shear, (b) two-way shear.
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Fig. 3.78: Crack formation in column area of slab (ASCE-ACI Committee 426, 1974).

Hawkins and Mitchell (1979) differentiate between wide beam shear failure and
punching shear failure based on the influence of flexure on the failure mode. For wide
beam shear failure the shear strength is independent of the stiffness and therefore of
the flexural strength of the slab. Contrarily, for a punching failure the shear strength
decreases as the stiffness of the connection decreases. Inclined cracking develops at
about the same shear stress for either a wide beam or punching shear failure.
However, for the punching situation those cracks cannot open until there is a marked
decrease in the tangential stiffness of the slab. A two-way reinforcement pattern or in-
plane restraints will maintain stiffness and permit development of an ultimate capacity

considerably greater than the wide beam capacity.
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Fig. 3.79: Bearing behavior and crack pattern at a column supporting a floor slab as
well as for a cantilevering bridge deck slab under concentrated loads (Rombach et al.

2009)
According to Reineck (1992) the crack pattern and kinematic behavior of punching is
very different from beam shear, and additional load-carrying mechanisms may occur.
Rombach et al. (2009) note the difference between flat floor slabs and bridge deck
slabs under concentrated loads: the principal shears and moments are rotational
symmetric around the load in flat floor slabs, while in bridge deck slabs a different
force distribution occurs. Due to the line supports in bridge deck slabs, and the
eccentricity of the loading, the flow of shear stresses is influenced and is not
rotational symmetric anymore.
Cope and Clark (1984) point out that it is not clear whether the same shear strength as
attributed to beams can be applied to slabs in more general circumstances than
building slabs, when the support conditions and/or the loading are non-uniform. An
additional problem occurs when the flexural reinforcement is not perpendicular to the
planes of the principal shear forces, because it is not obvious what area of
reinforcement should be used to calculate the shear capacity. It is not certain whether
this can be ignored in complex slabs, such as bridge slabs, where large principal shear
forces can act at large angles to the flexural reinforcement directions. It should also be
noted that shear forces in slabs subjected to concentrated loads can vary rapidly across
the slab width. A decision then has to be made as to whether to design against the
peak shear force or against a value averaged over a pre-determined width.
Based on measurements on a one-way slabs under a concentrated load (Hegger and

ReilRen 2011), the principal stresses and directions are determined. It is shown that the
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tangential concrete compressive stress is significantly larger than the radial concrete

compressive stress, as typical for punching problems, Fig. 3.80.

Sy

75
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Fig. 3.80: Directions of principal compressive stresses from measurements on b =

150cm (Hegger and Reiflen 2011).

Criswell and Hawkins (1973) point out the differences between one-way shear and

two-way shear:

The inclined crack location: for punching, the inclined crack is confined to a
region immediately adjacent to the perimeter of the loaded area. The crack is
less free to develop at the weakest section than in a slender beam. It is likely
that inclined cracking develops first in regions of high shear stress. The use of
the ultimate rather than the initial cracking load can be safely considered as
the usable strength.

The stress conditions at the apex of the inclined crack: in a slab under a
concentrate load, the concrete at the apex of the inclined crack is subjected to
complex triaxial stress conditions. The biaxial bending moments in the slab
create orthogonal compressive stresses in a horizontal plane and the
concentrated load causes compressive stresses in the vertical plane.

The lack of symmetry, resulting in variations in the loads for cracking and
inelasticity at different locations around the loaded area.

Distribution of moments: the relative magnitudes of the radial and tangential
moments vary with the pattern of cracking and yielding in a slab. Also, the
stiffness of the slab in the @ direction helps to control the opening of the
inclined cracks.

Limitations of static considerations, as shown in Fig. 3.81. Statics cannot
provide a unique value for the compressive force C; acting above the inclined
crack. C; depends on compatibility conditions in the column region, and it
need not equal the tension force 7.

Dowel forces: dowel action carries a larger amount of the total shear force in

slabs than in beams.
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The ability of a slab to resist higher unit shear stresses diminishes as the size of the
loaded area increases relative to the slab thickness. For large rectangular loaded areas,
the slab near the corners of the load is effectively point loaded while at the center of
the load the action is more like a wide beam. The rate of decrease in shear strength is
slow if the maximum principal moment acts about the long side so that there is
essentially one-way slab action. However if that moment acts about the short aside, a
rapid transition from slab to beam behavior begins when the aspect ratio for both sides

exceeds two.
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Fig. 3.81: Horizontal forces on sections near inclined cracks (Criswell and Hawkins,
1973).

3.2.2. Similarities and transition zone
Vaz Rodrigues (2007) argues that one-way shear and two-way shear are confusing

terms, as shear is inherently unidirectional as a mechanical quantity (it can be
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represented as a vector). At any location, shear equilibrium is ensured by two
components (vx and v,). As a result, there is only one direction for principal shear, and
not two directions as for moments, which are a tensorial quantity of a higher level,
and have at each location two principal directions. Shear is thus exclusively carried in
the direction of the principal shear, with no perpendicular shear transfer. In that sense,
two-way shear is a physical impossibility. Based on the flow of shear forces, however,
the concept of one-way and two-way shear can be explained. Zones in which one-way
shear is acting are the areas where the principal shear lines run parallel to one another.
Zones in which two-way shear is acting are those in which the principal shear lines
are not running in parallel, for example around the point of introduction of the
concentrated load. The compressive and tensile force paths for a slab in two-way
shear are shown in Fig. 3.84. Four modes of failing are distinguished in punching
failures. The “yield” failure mode governs for low values of pf,/f.". As the value for
pfvf.’ increases, the “shear and yield”, “shear” and “compression” failure modes will

govern. The force flow in another practical model is shown in Fig. 3.83.

Fig. 3.82: Shear flow in a slab: zones of one-way and two-way shear (Vaz Rodrigues,
2007).
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Fig. 3.83: Contour plot of main shear force v = /v’ + vj (plane model) (Rombach and
Velasco, 2005).
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Fig. 3.84: Structural behavior in the cracked state (Muttoni and Schwartz, 1991).

Close to the support, the sections for one-way shear and two-way shear interact. Fig.

3.85 shows the situation when the load is not close to the support. Moving the load

closer to the support would cause the sections for one-way and two-way shear to

overlap and interact, starting at a, = 2d. The three-dimensional force flow of the

punching mechanism is thus interacting with the force flow from the one-way shear

approximation and the modes cannot be treated independently (Lubell, 2006). For a

footing, this transition in shown in Fig. 3.86.
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Fig. 3.85: Critical sections for shear (Lubell, Bentz and Collins, 2008).
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Fig. 3.86: Example of two-way and one-way shear in footing (Uzel et al., 2011).
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Lubell (2006) calculated for each thickness the member b,,/d ratio that would
represent the transition from one-way to two-way shear failure modes, for a range of
loaded width to member width ratios. A parameter ¥ was introduced to represent the

more severe difference in width:

S
)
K=ming " (3.32)

b,

bW
in which:
cy the width of the loaded area;
b, the member width;
by the support width.

For very large values of «, greater than about 0,8, the punching crack at 45 degrees
would intercept the edge of the member. In this case, a continuous punching perimeter
cannot form around the loaded area and a one-way shear mechanism will govern. The

calculations are based on the Canadian Code (Fig. 3.87).
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Fig. 3.87: Failure mode prediction for k values (Lubell, 2006).

Hawkins and Mitchell (1979) studied one-way shear action in slabs. These results
suggest that the beam shear formula is not appropriate for slabs and that the variation
in shear capacity with reinforcement ratio is small for slabs. All specimens had depths
of 178mm or less. It could be argued, however, that these results lie within the scatter
observed for beams, Fig. 5.7, and that not enough test data are presented to conclude

this.
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Fig. 3.88: Wide beam shear capacity of slabs (in US units), Hawkins and Mitchell
(1979).

Olonisakin and Alexander (1999) measured the force gradient in one-way and two-
way slabs and found that the values are very similar. According to the authors, this
suggests that there ought to be a fundamental link between one- and two-way shear.
Fernandez Ruiz et al. (2009) suggest using a modified punching perimeter for cases in

between one-way and two-way shear, Fig. 3.89.
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Fig. 3.89: Determination of the length of the control perimeter based on a linear
elastic shear field: (a) reference control perimeter; (b) field of shear force and
redistribution of the shear force perpendicularly to the reference perimeter and the
maximum value; (c¢) suggested reduced control perimeter. (Fernandez Ruiz et al.,
2009).

An example of a punching failure with some one-way shear distress is shown in Fig.

3.90.

Fig. 3.90: Slab tested by Kuang and Morley (1992).
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3.2.3. Effective width in wide beams
Typically, the effective width is determined from the stress distribution in the slab

(Goldbeck and Smith, 1916; Goldbeck, 1917). For flexure, the effective width is
defined such that the resisting moment due to the total maximum fiber stress
uniformly distributed over this width equals the resisting moment due to the variable

fiber stresses over the whole slab, Fig. 3.91.

Fig. 3.91: Diagram showing the assumed conditions in slab under load, Goldbeck
(1917).

The moment distribution can be approached in different ways, with elastic conditions
usually on the safe side (Ferguson, Breen and Jirsa, 1988). Elastic solutions for the
moments in the center of a slab due to a wheel load at any location were developed by
Westergaard, 1930 and serve as a basis for the AASHTO effective widths. Amer,
Arockiasamy and Shahawy (1999) developed a simplified formula based on the

flexural capacity to calculate the effective width for slab bridges under a concentrated

wheel load:
E=2,10+O,23L£K (3.33)
NL
in which:
E the equivalent width over which the truck load is assumed to be
uniformly distributed (m);
L the span length (m);
w the physical edge-to-edge width of the bridge
Ny the number of design lanes.

For shear, however, comparable approaches are not available.
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3.2.3.1 Observations and measurements with regard to effective
width

Zokaie (1992) writes: “..., very little has been reported on shear distribution factors or
distribution factors for bridges other than beam-and-slab.” For slab bridges, it only
reads: “According to the AASHTO specifications, slab bridges are adequate for shear
if they are designed for moment.” Ferguson, Breen and Jirsa (1988) wrote: “The
effective width for shear would call for the concentrated load near the support that
would give less slab deflection and a much reduced effective width... Although there
are limited data about reaction distribution, it is difficult to imagine a diagonal tension
failure that would involve less than a width of four to five times the slab thickness.”
The load spreading is three-dimensionally shown in Fig. 3.92 (Lubell, 2006).
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Fig. 3.92: Load spreading from point load (Lubell, 2006).

Leonhardt and Walther (1964) tested a series of 500mm wide slab strips under 4-point
bending. One of the applied loads was a line load across the full member width, while
the other represented a concentrated load through a plate approximately 16% of the
specimen width. Both supports were across the full specimen width. It is noted that 7
of the 9 specimens that were reported to fail in shear did so on the side with the
concentrated load. This suggests that the shear capacity decreased as the loaded width
to specimen width (c¢,/b,,) ratio decreased, but the influence was, according to Lubell,
(2006) not much more than typical laboratory scatter.

Zheng et al. (2010) developed an expression for the effective slab width subjected to
arching forces based on non-linear finite elements calculations. The effective depth
(position of reinforcement), depth of bridge deck, the concrete compressive strength
and the loading styles were found not to influence the effective width. The main
influence was found to be the size of the loaded area: ¢, and ¢, as shown in Fig. 3.93.

The a/dratio used for these calculations was = 9.
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Fig. 3.93: Influence of ¢, and ¢, of the loaded area on the effective width (Zheng et al.,
2010).

Lubell, Bentz and Collins (2008) tested slabs on narrow supports and concluded that

the shear capacity is reduced when the support or load width is narrower than the

width of the specimen. A reduction factor f; was introduced:

B, =0,7+0,3x
K =min (bl”—“d;b“ﬂJ (3.34)
b, b,
in which
bioad the width of the load;
b, the total width;
byup the width of the support.

Fernandez Ruiz et al. (2009) show how the shear flow and thus the effective width
can be influenced by conditions such as the presence of a parapet, Fig. 3.94.
Calculations for this case in Fig. 3.94(e) also showed that the 45° load spreading

method underestimates the shear force at the fixed end (governing value for design).
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Fig. 3.94: Shear force transfer for a road slab under concentrated load: (a) considered
case, (b) principal directions of the shear force in a cantilever without parapet; (c)
with paparapet (0,9m x 0,3m); (d) force transfer assuming a 45° load spreading; ()
comparison of shear forces for cases b, ¢, and d. (Fernandez Ruiz et al., 2009).

Hegger and Reien (2011) calculated the effective width based on the measured
strains in the direction of the width of the slab, which leads to a lower bound for the
effective width. The results for the effective width are given in Table 3.4. The authors
give two possible reasons why the effective width for » = 350cm is larger than the
effective width for » = 250cm: (1) the possible scatter in the concrete strength, and (2)

larger effect of the confining action of the neighboring material in the widest slab.

Table 3.4: Determination of effective width (Hegger and Reiflen 2011).

Versuch Ima:c.nl ma2 | Fass | Mesesiz| bam
b femj Nmm* [kNmim | kN | kNm | m
50 [2.Tv] 4277 | 2181 104 118 053
272 2
50 W 1.TV] 482, 513 | 183 120 05
2TV|] 4759 | 2427 | 215 129 053
- 1.Tv|] 4883 | 2400 | 542 287 155
" l2T1v] 4706 | 2400 | 638 333 1.60
- 1.Tv] 4000 | 2040 | &5 480 230
T laTv] 4778 | 2437 [ 780 468 182
1.Tv|] 4548 | 2318 | 881 828 271
as0
2Tv] 4233 | 2159 | 980 588 272
" bﬂm. L
A A
K B y
My A A

ﬁmﬂw
Fig. 3.95: Calculation of the effective width (Hegger and Reiflen 2011).
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It was observed during testing that the slabs of » = 50cm and 150cm showed straight
cracks on the bottom while the slabs of b = 250cm and 350cm showed cracks
inclining towards the support, indicating two-way action, as shown in Fig. 3.96. For b
= 50cm and 150cm the reported failure modes are beam shear failure. For b =250cm
the shear crack developed at the inside of the slab, and was only visible at the side
faces of the slab after attaining the maximum load and was categorized by the authors
as a secondary failure. It was also remarked that the shear crack crossed the flexural
cracks and could not have developed at the side face as a flexure-shear crack. For b =
350cm no shear crack was visible at the side and the critical shear crack had
developed fully at the inside of the slab. The authors quantify b.;to be smaller than
250cm since for this width inclined cracks at the bottom face were visible. However,
for b = 250 cm a shear crack was still visible at the side face and between b = 250cm
and » = 350cm an increase in ultimate load was still observed. The authors also point
out that the shear capacity of slabs g (in kN/m) is smaller than for beams. The authors,
however, used the entire width of the specimen to calculate g. The transition of beam-
to-slab bearing behaviour is assumed to be between 1,5m and 2,5m, indicated by the
failure behavior, the crack development, the load-deformation behavior and the

principal stresses on the top surface.

40 ¥ 75 10,15,
L |

L

Fig. 3.96: Cracking patterns of » = 150, 2.TV and b =250, 2.TV (Hegger and Reillen
2011).
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To determine the effective width in an experiment, Hegger and Reiflen (2011) defined

beg exp Which is the experimental equivalent width:

by = —VF Ve (3.35)
Vema Ve
With
VEu the experimental maximum shear force
Ve the dead weight of the loading plate
VRm.ct the mean value of the shear resistance according to EN 1992-1-1:2005
divided by the full specimen width
Vg the shear forces over the width due to the dead load of the specimen.

For increasing specimen widths, the results of b, .., are shown in Fig. 3.97, which
indicated the full activation of the width respectively a beam-bearing behavior when b
< 1,5m. In contrary, the equivalent width of the specimens with width b > 2,5m is
smaller than the actual slab width indicating that not the full width of the specimens

has been activated to carry the loads.
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Fig. 3.97: Experimental equivalent widths b, .., dependent on the specimen width.

The equivalent width and thus the shear resistance increase with an increasing slab
width, span and transverse reinforcement ratio in the tension zone due to the higher
potential for load redistribution, and it decreases wih increasing shear span to depth
ratio due to the decreasing influence of the direct compression strut. The equivalent
width was then described as:

b, =bA, A5k, (3.36)
with

Ab a factor to consider the slab width b, according to Table 3.5,
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Apo a factor to consider the transverse reinforcement ratio in the tension

zone according to Table 3.6,

Al a factor to consider the span length according to Table 3.6,
Aasd a factor to consider the shear span to depth ratio:
A :1,8—0,193 for 2,91 < %s 5,41 (3.37)

Table 3.5: Factor 4, due to variation of slab width b

| b |<15[ 25|35 45|55 65|75 [=85
[ % [ 10 [o92 079 065/ 056][043]042]32m

Table 3.6: Factors 4,0 and 4; due to variation of transverse reinforcement ratio in the
tension zone and span.

transverse rein- , :
forcement ratio pg S span/ -~
% - m -

0 0.74 2 0.89

0.115 0.87 3 0.96
0.23 0.95 4 1

047 1.0 5 1.03

0.7 1.04 z6 1.04

In a series of computer models, the effective width was determined over several
sections between the concentrated load and the support,
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Fig. 3.98: Effective widht for a case with b = 350cm, C30/37 as a function of the
considered cross-section and top view.
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3.2.3.2 Design methods for effective width
In Dutch practice, a 45° load spreading is used (Fig. 3.99(a)) and in French practice

the load spreading is taken from the farthest end of the load (Fig. 3.99(b)).

support

\\befﬂ//

N

load

(a)

support

N 7
b eff2

load

(b)

Fig. 3.99: (a) Load spreading under 45° as used in Dutch practice, (b) Load spreading
as used in French practice, Chauvel et al. (2007).

In German practice (DAfStB Heft 240), the theoretical effective width for a slab as:

byy=t,+0,5x<b (3.38)
O<x<!
valid for {7, < 0,8/ with { =b, +2h, +h
t.<I
and for a cantilever:
by, =t,+0,3x<b (3.39)
0,2, <x<I,
valid for 0,2/, <t <0,4], with 7, =b, +2h +h
t.<0,21,
.
. == .
b ', . +
— et —.———— -
],' b,
& PAAAAAT _;_’// / XY, /_f':f‘x 7|
V7727, =\ :
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Fig. 3.100: Definition of width ¢ for load transfer and effective width by for single
span beams (Reiflen and Hegger, 2011).

Fig. 3.101: Definitions of width ¢ for load transfer and effective width b4y for
cantilever (ReilRen and Hegger, 2011).
Taylor, Rankin and Cleland (2003) take the effective width as a measure for the
region in which the arching force is present by = L. + h = a, + h (L. = the effective
span = a,; h = the depth of the slab), while the outside region is assumed to attribute to
the external restraint, Fig. 3.102.
Zheng et al. (2010) determined the effective width to be:

b,=c, +L(1—rcp)tan(d))

® =23,3r, +35,1

(3.40)

in which
Tep the ratio of ¢, and the span of the bridge deck
=0,4 when r,, > 0,4.

K
Effactive width of ~ External

I Toaded siab, by I 7 e

Cx
Cy :

Loaded area

o

(a) (b}

Fig. 3.102: (a) Typical restraint model; (b) Typical crack pattern in experiment
(modified from Taylor, Rankin and Cleland, 2003).

95



Diaz de Cossio (in a discussion on the ACI-ASCE Committee 326, 1962) calculated
the effective width s’ as half the perimeter of a critical section taken at a certain
distance from the load plate (optimal results were obtained for a distance 0,75d), not
exceeding the total slab width, Fig. 3.103. According to Lubell (2006) however, there
is an insufficient range of data to determine whether using the enlarged perimeter or

simply b,.d captures the relevant influence.

0.754%:‘___"
7

by | | |

R % |

075¢  L_ _J

T

a N

Fig. 3.103: Deterimination of effective width by Diaz de Cossio, 1962.

The Swedish Code BBK79 includes specific recommendations for the effective
widths of slab to be used in calculating wide beam shear strengths at concentrated

loads. The greater of the following two values is used as effective width:

Zem :)l ;57(6? +¢,)+10,65d B-41)
efr2 = Y 1 ¢ , 054,

in which:

c dimension of the loaded area parallel to the span of the slab;

Ct dimension of the loaded are perpendicular to the span of the slab;

d; effective depth of longitudinal bars.

Graf (1933) suggests an effective width by = 5d and Regan and Rezai—Jorabi (1988)
suggest an effective width by = 3,5a with a the shear span from the center of the load
to the center of the support.

Rombach and Velasco (2005) developed the following formula for the effective width
of a cantilever deck assuming a 400mm x 400mm wheel load:

by, =0,60+0,951+1,15a (3.42)

This formula is extended for the case of a laod which is not 400mm x 400mm:

= 0,20+h,, +0,95h+1,15a+0,09. L (3.43)

Zyk,1J ck

bejf Y

96



bo,y the width of the loading plate perpendicular to the main span direction
h slab depth in the middle of the load
Myk [, the moment at the front side of the load as a result of all loads except

for the concentrated load,
ZyK L =0,9.dvk L
A comparison between Eq. (3.42), German practice and the 45° load spreading is

shown in Fig. 3.104.

Effektive Plattenbreite fiir Querkraft

4.0 T | 30
0) 0-452)""
3.5 F— Vmax ~ 3 : l // 342
eff,V
3.0 40 ;
/ ﬁ
25 -1 48 ../4
—_ N+ h=60cm -
= N\ h=40cm o™
20 = jp=20cm—{ 60 I
$ ~
el
ﬂ o
1.5 80 i2
-
—— E
1,0 120 =
DAfStb 240 —
oth 2 i N - - o
0.8 ‘ : h=60cm 240
*T"h=20cm
0.0
0.4 0.6 0.8 1,0 1,2 1,4 1,6 1.3 20
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Fig. 3.104: Effective width b,y and greatest shear force v, for a wheel load of O, =
120kN (rombach and Velasco, 2005).
Based on experimental results, Hegger and Reiflen (2011) suggested the following

equation for the effective width of a cantilever deck:

Bspy = 0,2+h, , +0,95h+1,15a+0,09 Zj»”Ck (3.44)
with
bo,y the width of the loading plate perpendicular to the main load-bearing
direction of the cantilever slab [m],
h the height of the slab at the center of the load,
a the distance between the center of the load and the clamped edge of the

cantilever slab [m],
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my; the moment at the front edge of the load plate due to all loads except
the considered single load [kKNm/m],
Zf) the inner leverarm at the front edge of the load plate with z;; = 0,9dy;,

Sek the characteristic compression strength.

3.3. Models for shear
3.3.1. Compression field theory models

3.3.1.1 Development of the compression field theory
Compression field approaches are inspired by the tension field theory from aerospace

engineering developed by Wagner in 1929 to study the post-buckling shear resistance
of thin webbed metal beams. After buckling the metal cannot resist compression and
that shear stresses are carried by a field of diagonal tension. The angle of the diagonal
tensile stresses should equal the principal tensile strain from deformations.

The diagonal compression field theory was originally developed for concrete in pure
torsion (no warping) by Mitchell and Collins (1974). After cracking, the theory of
elasticity is no longer applicable, requiring a model for cracked concrete. In the
original compression field theory the shear stress was used to find the stresses in the
steel and the concrete (inclined at a certain angle 6 or o), which were combined to
stress-strain relationships for cracked concrete. After cracking the concrete was
assumed not to carry tension, resulting in a field of diagonal compression. The angle
of diagonal compression # (or a)was found with an energy criterion: the internal
energy will be a minimum if the external work done, and hence for a given load the
external displacement, is a minimum. The crack pattern is idealized as a series of
parallel cracks all occurring at an angle @ (or a) to the longitudinal direction.

These principles were then applied to reinforced concrete members in shear with
shear reinforcement (Collins, 1978). The strains were analyzed with Mohr’s circle,
Fig. 3.106, and the stresses were analyzed with Mohr’s circle in pure compression,
Fig. 3.105. The method uses a relation between average strains and average stresses.
These average strains are measured over a base length that is several times the crack
spacing. The relations between the strains are based on compatibility requirements.
For the diagonally cracked concrete it was assumed that the direction subjected to the
largest average compressive stress will coincide with the direction subjected to the

largest average compressive strain. When studying stress-strain distributions, it is

98



observed that while the average longitudinal concrete stress must be compressive, the
average longitudinal strain may be tensile. Thus it is not possible to directly relate the
average concrete stress in this direction by means of the usual stress-strain
relationship for uncracked concrete. The procedure initially was carried out in the
following way:

1. Estimate the angle of diagonal compression.
Calculate the shear stress v from the known loads.
Find the transverse compression in the concrete.
Find the tensile strains in the transverse steel.
Use the stress-strain relations for steel.

Find the transverse strain in the steel.

A R o

Similarly, find the longitudinal strain and the principal compressive strain in
the steel.

8. Find the angle of inclination of the principal compressive strain and compare

to the estimate.

The ultimate shear capacity could be found by fixing the maximum possible stress to
the point of yield of the longitudinal steel. Alternatively, the limiting concrete
compressive strength (which does not equal the uniaxial concrete compressive
strength) may be reached. It should be kept in mind that this compressive stress must
be transmitted across cracked and severely deformed concrete (Collins and Mitchell,

1980).
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Fig. 3.105: Equilibrium conditions for average stresses in concrete (Collins, 1978).
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Fig. 3.106: Compatibility conditions for average strains in concrete (Collins, 1978).

When it was found that the tensile stresses between the cracks after cracking
contribute to the shear capacity, the Modified Compression Field Theory (Vecchio
and Collins, 1986) was developed. It is based on the response of rectangular
reinforced concrete elements (“panels”) subjected to in-plane shear and axial stresses.
Vecchio and Collins (1986) reported the results for a number of reinforced concrete
panels tested under direct shear, and combinations of shear and axial stress. The tests
showed that the initial shear cracking was related to the external load ratios and could
be predicted by a Mohr’s circle type of analysis. Additional load increments result in
a rotation of the angle of principal stress to reflect the relative stiffness provided by
the reinforcement in each direction, with new cracks forming parallel to the new angle
of principal compression. When reinforcement in one direction yielded at a crack, the
changing relative stiffness would cause further rotation of the principal stress
directions. The theory is based on the following assumptions:
1. For each strain state there exists only one corresponding stress state; situations
in which the influence of loading history is significant cannot be treated.
2. Stresses and strains can be considered in terms of average values when taken
over areas or distances large enough to include several cracks.
3. The concrete and reinforcement are perfectly bonded together at the
boundaries of the element.
4. The longitudinal and transverse reinforcing bars are uniformly distributed over
the element.
In reality, cracked reinforced concrete transmits load in a relatively complex manner
involving opening or closing of pre-existing cracks, formation of new cracks,
interface shear transfer at rough crack surfaces and significant variation of the stresses
in reinforcing bars due to bond, with the higher steel stresses occurring at crack

locations. The studied strains and stresses are shown in Fig. 3.107 and Fig. 3.108.
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Fig. 3.107: Compatibility conditions for cracked element (Vecchio and Collins, 1986).

vi

e—  — fey ———f

ggc' 1 1

= fox

el

(a) Average Concrete (b) Principal Stresses
Stresses in Concrete ,
(c) Mohr's Circle for Average Concrete Stresses

Fig. 3.108: Stresses in cracked concrete (Vecchio and Collins, 1986).

Bhide and Collins (1989) tested panels with only longitudinal reinforcement and
formulated requirements for the longitudinal reinforcement to carry the increased
stresses due to shear. These insights were applied to combined shear and torsion with

a strut and tie model by Rahal and Collins (1995), Fig. 3.109.
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Fig. 3.109: Combined shear and torsion (Rahal and Collins, 1995).

Consequently, Adebar and Collins (1996) used the MCFT to determine the shear
strength of members without transverse reinforcement by introducing concrete tension
ties perpendicular to concrete compression struts. The modified compression field
theory can be seen as a variable angle truss model that includes a contribution from
the tensile stresses in cracked concrete. The total shear capacity can then be written as
the sum of a stirrup contribution and a concrete contribution. The principal

compressive stress is given by
0
s :vcota:vcotE (3.45)

and, although there can be no tension stress normal to the crack plane, a principal

tensile stress
0
h =vtana=vtan5 (3.46)

does exist in the concrete at an inclination of 6/2 from the normal to the crack plane.

The shear stress on the crack plane (interface) is independent of the diagonal crack
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inclination and is equal to the shear stress on the vertical and horizontal planes. Thus
the concrete contribution can be expressed independently of the crack angle as:
V.=v.bd, (3.47)
where v,; is the shear stress resisted by the crack interface. The modified compression
field theory, which attributes the concrete contribution V. to the shear that can be
transmitted across diagonal cracks by aggregate interlock, captures the influences of
the longitudinal reinforcement.
The average principal tensile strain ¢; in the cracked concrete is used as a “damage
indicator” (Collins et al., 1996). This strain controls the average tensile stress f; in the
cracked concrete, indicating the ability of the diagonally cracked concrete to carry
compressive stresses f> and the shear stress v,; that can be transmitted across a crack.
The principal compressive stress in the concrete f; is related to both the principal

compressive strain &, and the principal tensile strain ¢; in the following manner:

2
2¢& &
2= fomax _;_(_;] (3.48)
E. E.
where
f' ,
=——2¢ < 3.49
S 0,8+170¢, fe ( )
&, = —0,002(1— I—LJ (3.50)
2 max

and ¢, is taken as 0,002. After cracking, the principal tensile stress in the concrete f;

is related to the principal tensile strain ¢; as follows:

/.
e (3.51)
b 1+,/500¢,

where the cracking stress f;, can be taken as 0,33,/ f. . For large values of ¢; the

cracks will become wide and the magnitude of f; will be controlled by the yielding of
the reinforcement at the crack and by the ability to transmit shear stresses v,; across
the cracked interface.

For members without stirrups, the ability of the cracked concrete to transmit shear is
primarily governed by the width of the diagonal cracks. Hence, for a given value of ¢;

the shear strength will be a function of the crack spacing, with more widely spaced
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cracks resulting in lower shear capacities. The stresses carried across a crack (Fig.

3.110) are based on Walraven’s work (1981), resulting in the following relationship:

2
vy =0,18v, . 1, 64fci _0’82L (3.52)
vcimax
with
Vo = -, (3.53)
0.31+24—"
a+16

in which a is the maximum aggregate size in mm and the stresses are in MPa. The
crack width to be used in Eq. (3.53) should be the average crack width over the crack
surface. It can be taken as the product of the principal tensile strain and the crack
spacing sy:

1

w=g¢s, with s, =———
170 0 smH+cos€

(3.54)

N S

mx my
in which s, and s,,, are the indicators of the crack control characteristics of the x-
reinforcement and the y-reinforcement respectively. The crack spacing can be

estimated as (Bhide and Collins, 1989):

s = S(c +ij+o,1i (3.55)
10 Yo,

with s the spacing between bars.

Fig. 3.110: Transmitting shear stresses across crack by aggregate interlock (Vecchio
and Collins, 1986).

As the tensile straining of the concrete increases, the shear that can be resisted by
tensile stresses in the concrete V. decreases. The resulting compression softening and

the tension softening are shown in Fig. 3.111.
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Fig. 3.111: Stress-strain relationships for cracked concrete (Collins et al., 1996).
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Fig. 3.112: Compressive stress — compressive strain relationships for diagonally
cracked concrete: (a) proportional loading €, and &; increased simultaneously; (b)
sequential loading, €, applied first, then &; increased. (ACI-ASCE Committee 426,

1998).
Softened concrete behavior is also described by Hsu et al. (1987). A three-
dimensional panel tester has been developed at the University of Houston and
currently the softening behavior of concrete under triaxial loading is studied (Labib et

al., 2009), to expand the scope of smeared crack models to account for three-

dimensional load effects.

3.3.1.2 Design method: modified compression field theory
The Modified Compression Field Theory (MCFT) is used for one-way shear only. It

is the basis for the provisions of CSA and AASHTO and is described as a design
method, for example, in Collins, Mitchell and Bentz (2008). The MCFT considers
cracked reinforced concrete as a new material, with constitutive properties reflecting
tension stiffening of the average concrete response in the principal tension direction
and compression softening of the peak compressive resistance in the principal
direction due to the parallel tension cracks. The design equations of this method are
based on equilibrium equations, geometric equations and a stress-strain relationship,

Fig. 3.113. The design method based on the MCFT is the Simplified Modified
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Compression Field Theory (Bentz and Collins, 2006; Bentz et al., 2006). Dowel

action is not taken into account. Three main parameters are used in this method:

c

1. the normalized applied shear stress (lj,

2. the longitudinal strain ¢ ; and

3. the effective crack spacing s...
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ﬂ
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Fig. 3.113: Overview of the MCFT equations, Collins et al.(2008).

To calculate the ultimate shear capacity of a beam, the design method uses a different
approach for D-regions and B-regions. In D-regions a strut and tie model is used and
in B-regions the formulas are based on parameters such as the crack spacing.

In B-regions, the unfactored failure shear stress is calculated as:

v, = Bf +p.f, cot0<0,25f with \/f <8MPa (3.56)
in which the first term represents the concrete contribution and the second term the
contribution of the stirrups.

The following factors are used in formula (3.56):

i the aggregate interlock parameter;

£ the concrete compressive strength in MPa;

Values for § and 6 for design are given in Table 3.7.
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Table 3.7: Design values of f and 6 for members without transverse reinforcement
(Rahal and Collins, 1999).

Longimdinal strain, & =~ 1000

5, (mm) <0.0 <0.25 <0.5 <1.0 <15 <20
<125 p 0.406 0.300 0.263 0214 0.183 0.161
8 " 20° 32° 34° 36° 38°
<250 B 0384 0.283 0.235 0.183 0.156 0.138
8 30° ¥ k¥ b 41° 43° 45°
<500 B 0359 0.248 0.201 0.153 0.127 0.108
8 34° 3o 43° 48° 51° 54°
<1000 B 0.335 0.212 0.163 0.118 0.095 0.080
8 37° 45° 51° 56° 60° 63°
<2000 B 0.306 0.171 0.126 0.084 0.064 0.052
B 41° 53° 59° 66° 69° n*

The aggregate interlock parameter f depends on the width of the cracks and the size
of aggregate a,, and consists of a strain term and a crack spacing term (also called the

size effect term).

0,4 1300
P = 15002, 10005, (3:37)
where
€x the longitudinal strain at mid-depth;
Sxe the crack spacing.

Assuming that there is no axial load or prestressing, the longitudinal strain at mid-

depth is
1+ Vﬁfl
& =v, ——= (3.58)
2Espl
with
MV the ratio of bending moment to shear at the section being considered,
Vi the unfactored failure shear stress;
d, the flexural lever arm which can be taken as 0,9d;
E, the modulus of elasticity of the reinforcement steel;
pi the geometric ratio of the area of longitudinal flexural tension
reinforcement to the shear area: p, = ﬁ ;
b, the width of the web.
The effective crack spacing is taken as
35
=% 50,855 (3.59)
15+a,
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with

g the aggregate size in mm;
Sy the spacing of the vertical cracks near mid-depth of the member,
s, =0,9d .

For high strength concrete the cracks will go through the aggregate rather than around
the aggregate particles leading to smoother crack surfaces with less aggregate
interlock capacity. To account for this, a, in Eq. (3.59) is taken as zero if f; exceeds
70 MPa and is linearly reduced to zero as £, goes from 60 MPa to 70 MPa.

In D-regions, for example in regions close to concentrated loads, a strut and tie model

is used. The principal tensile strain g; in the concrete strut is

g =¢&, + (g +0,002) cot’ 0. (3.60)
g the tensile strain in the reinforcing steel tension tie;
0 the angle between the strut and tie.

The crushing strength of the strut £, is then given by:

Je <0,85f (3.61)

S = 5841708,

Wei et al. (2011) developed an improvement for the MCFT based on a linear crack
width expression over the depth of the beam, leading to a size effect factor similar to
Bazant and Kazemi (1991). The MCFT assumes that the aggregate interlock
resistance of the complex crack geometry can be estimated at only one depth in the
beam. This means that the shear strength of the section in the flexural region of a
beam may be modeled by an element loaded in shear combined with axial stress. As a
result, parameters such as shear stress, tension stress, compression stress, aggregate
interlock stress, the angle of inclination of the compression struts and the strains
corresponding to these stresses over the depth of the beam are all uniform. In reality,
the crack width profile is a complex function of material properties and geometrical
parameters such as the effect of the shear stresses transmitted across the crack, the
presence of longitudinal steels crossing the crack and the size effect on the crack
shape.

Wei et al. (2011) assumed that the shear crack width is a linear function of the depth,

with zero opening at the tip and maximum opening at the bottom:

W(y) = Wmax l = Sﬁglmax l = kdv‘c"lmax l = kglmaxy (362)

d d d

v v v
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The average aggregate interlock stress v.; along the crack surface can be derived by
integrating this stress along the depth and taking the average value:

d,
0,18/ 0,18,/1."
va.=ij /. dy = S 114 K (3.63)
d, 1 0,31+0,686w(y) kd, 31

v

with
g, (1 +cot’ 6?) + (4. 10~ cot* 6’)
1+0,0034cot* @

k, = 0,686k (3.64)

To obtain a consistent result with that of the classic MCFT, £ = 2,5 is taken in Eq.
(3.64). For design purposes, a simplified formula was sought. The best fit to the
numerical results was found in the format of:
a
P ibed, (369
with a = 0,4 and b = 6,25. This expression is similar to the size effect expression of
Bazant and Kazemi (1991), leading to a simple expression for the shear capacity of

beams without stirrups:

0,4,//.'bd
V —vbd, =N B (3.66)

Y 116,256 d.

3.3.1.3 Methods based on a compression field
A similar method considering the properties of cracked concrete is the fixed-angle

softened truss model (FA-STM) (Fig. 3.114), which is based on the observation that
concrete struts in membrane elements under shear and normal stress remain parallel to
the initial cracks. Softened equilibrium equations and compatibility equations are used.
The fixed angle a; lies between the 2-axis and l-axis, Fig. 3.115. After initial cracking,
the change in direction of the subsequent cracks are due to changes in the direction of
the principal tensile stresses in the concrete, which, in turn, are dependent on the
relative amount of steel in the longitudinal and transverse directions (Hsu, 1996). A
fixed-angle softened-truss model is the only model capable of predicting the concrete
contribution.

A simpler method is the rotating-angle softened-truss model (RA-STM), which is

very similar to a compression field approach. The rotating angle stands for the fact
that the angle of diagonal tensile stresses becomes smaller as the shear force goes up.

The angle between the d-axis and the /-axis is called the rotating angle a, because this

109



angle continues to rotate away from the fixed angle a,, Fig. 3.115. The actual angle of
each new crack is observed to lie between o and ;. The equilibrium equation is based
on average stresses, and through compatibility average strains are obtained in
combination with a softened stress-strain relationship and the correct stress-strain
relationship for possible yielding at the crack. Both the RA-STM and the FA-STM
adjust the average stress-average strain relationships of the reinforcement to account
for increased demand on the reinforcement at the crack and bond issues between the

reinforcement and the surrounding concrete (Sun and Kuchma, 2007).
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Fig. 3.114: Constitutive laws of concrete and steel for fixed-angle softened truss
model: (a) softened stress-strain curve of concrete in compression; (b) average stress-
strain curve of concrete in tension; (c) average stress-strain curve of steel bars in
concrete; (d) average stress-strain curve of concrete in shear (ASCE-ACI committee
445, 1998).
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Fig. 3.115: Assumed crack direction in fixed-angle model and assumed crack
direction in rotation-angle mode. (Hsu, 1996).
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The cracked membrane model (Kaufmann and Marti, 1998) is another model for
cracked, orthogonally reinforced concrete panels subjected to in-plane stresses. Crack
faces are assumed to be stress free, able to rotate, and perpendicular to the principal
tensile direction of the average strains. Tensions stiffening effects are taken into

account by extending the basic concepts of the tension chord model to cracked panels.
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The cracked membrane model considers maximum stresses at the crack, whereas the
modified compression field approach considers average stresses in the concrete

between the cracks. The experimental evidence also suggests a more drastic softening

2
for high-strength concrete; hence f. is supposed to be proportional to ( f )3 rather

than to f.". Extension of the tension chord model to cracked panels eliminates the need
for constitutive equations relating average stresses and average strains in tension.
Thus, contrary to the modified compression field approach, crack spacing and tensile
stresses in the concrete and in the reinforcing bars between the cracks can be
determined from equilibrium conditions and bond shear stress-slip relationships.
Concrete tensile stresses enhance the stiffness but they do not directly affect the
ultimate strength; thus, the cracked membrane model reintroduces the link to limit
analysis that had been lost with the modified compression field approach. As
compared to the MCFT, the cracked membrane model more accurately takes tension

stiffening into account, but similarly simplified the treatment of cracks.

The sandwich model for transverse shear in reinforced concrete slabs (Marti, 1990
and Jaeger, 2002) consists of a reinforcement cover and a concrete core. The covers
are assumed to carry moments and membrane forces, while the transverse shear forces
are assigned to the core, Fig. 3.116. The twisting moment is divided into a couple of

forces that are added to the shear force. The core is considered uncracked as long as
the nominal shear stress due to the principal shear force does not exceed 0,174/ £, (f.’

in MPa). When this value is exceeded, a diagonal compression field is considered in
the cracked core, Fig. 3.117. Additional membrane forces are consecutively added to
the cover elements, Fig. 3.118. In the vicinity of concentrated loads or reactions, fan-

shaped stress fields should be used.

TOP COVER

Fig. 3.116: Sandwich model consisting of cover parts and core, Marti (1990).
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Fig. 3.117: a) Pure shear in uncracked core, b) Diagonal compression field in cracked
core, Marti (1990).
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Fig. 3.118: Forces acting on cover elements (Marti, 1990).

112



3.3.1.4 Discussion of compression field theory models
The link between compression field models and plasticity models is found in the

redistribution capacity in shear for the mechanisms transfering shear across the crack
(Hsu et al., 1987).
The main deficiencies of the MCFT are (Sun and Kuchma, 2007):

1. The restriction in coincidence of principal directions of average stress and average
strain. The observed tendency is for the principal stress direction to lag behind the
change in the principal strain direction.

2. Reorientation of the crack direction: the MCFT is a fully rotating crack model in
which a gradual reorientation occurs in the direction of cracks. However, crack
patterns in girder tests have shown that crack directions remained fixed in the
direction of first cracking.

3. Exclusion of shear slip: shear slip together with crack opening contributes to the
most component parts of average strain in compatibility.

4. Inaccuracy in the crack spacing estimation: the assumed crack spacing was found
not to correspond with experimental results.

5. Perfect bond without stress variation in the reinforcement: in reality, the
distribution of stress in the reinforcement between cracks is like a parabolic curve
with the highest values at the crack points and the lowest at the middle point.

Hawkins and Kuchma (2009) compared measurements to the strain distributions as
calculated with the MCFT and found some inconsistencies. The principal stress direction
was found to lag behind the principal strain direction.

Sun and Kuchma (2007) developed a model (Crack Displacement Field Theory) in which
bond between reinforcement and concrete is based on the MC90 local bond-slip relation.
Aggregate interlock is based on the rough crack model by Bazant and Gambarova (1980).
Since the model captures the discrete displacement due to crack opening and slip, the
restriction that principal directions of average strain and average stress must coincide is
removed.

Gurley (2011) points out that placing skin reinforcement is not aimed at countering the
size effect, but ensures sufficient ductility for applying a plastic method like the MCFT.

Another two areas of improvement of the MCFT include;
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1. members containing heavy amounts of reinforcement in both directions, members
subjected to high biaxial compression in addition to shear, or members where the
reinforcement and loading conditions are such that there is no rotation of the
principal stress or strain conditions, for example panels where the principal
loading directions are coincident with the reinforcement directions and hence, no
reorientation of the stress-strain fields occurs.

2. Shear strength and stiffness are generally overestimated for uniaxially reinforced
panels or for panels containing very light reinforcement in the transverse
direction.

Reduced accuracy is also observed in shear-critical beams containing very little or no
transverse reinforcement. Hsu (1996) questions the possibility of transmitting forces
across cracks when combining concrete struts with a crack shear stress and criticizes the
combination of an average stress-strain diagram of concrete in tension with a local stress-
strain curve of the steel bars rather than an average stress-strain curved of steel bars
embedded in concrete.

Vecchio (2000) developed the Disturbed Stress Field Model which is a hybrid
formulation between a fully rotating crack model and a fixed crack model. A new
approach to the reorientation of concrete stress and strain fields, removing the restriction
that they be coincident as well as an improved treatment of shear stresses on crack
surfaces were developed. With rotating crack models it is assumed that a gradual
reorientation occurs in the direction of cracks, as dictated by the loading or material
response. Vecchio (2000) points out that it is the assumption of coaxiality of stresses and
strains which, in large part, leads to the inaccuracies of the MCFT. Also, MCFT allows
no actual shear slip along the crack. The Disturbed Stress Field Model takes local
disturbances by cracks into account, Fig. 3.119. The concrete tensile stresses f;; will
approach zero at the crack locations, but will be greater than zero between the cracks due
to tension stiffening and other mechanisms. The concrete compressive stresses f., will be
increased somewhat near cracks due to aggregate interlock mechanisms and equilibrium
requirements. The internal force resisting mechanism is expressed in terms of average
stress fields, but recognizing that these fields are disturbed by the presence of cracks. The

localized deformation must be considered in addition to the average (smeared) strain
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resulting from the constitutive response of the concrete of the average stresses. The

element equilibrium condition becomes then:
[e]=[P]le. ]+ 1P 2]

where

n the number of reinforcement components;

[Dc] , [DS ]i the concrete and reinforcement stiffness matrices, respectively;

[e.]. [e, ]I, the net strains in the concrete and reinforcement components.

(3.67)

Crack interfaces are considered planes of weakness. The componenet of the concrete

principal tensile stresses due to tension stiffening is assumed to be zero at the crack

location. The combination of the smeared and local strains is shown in Fig. 3.120. The

apparent total strains will be the summation of the continuum stress-induced strains, the

shear slip strains, and the elastic and plastic offset strains (both typically taken as equal to

Zero).
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Fig. 3.119: Nature of disturbed stress fields in cracked reinforced concrete (Vecchio,
2000).
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Fig. 3.120: Compatibility Conditions: (a) Deformations due to Average (Smeared)
Constitutive Response; (b) Deformations due to Local Rigid Body Slip along Crack; (c)
Combined Deformations. (Vecchio, 2000).

3.3.2. Critical shear crack theory

3.3.2.1 Development of CSCT
The Critical Shear Crack Theory (CSCT) has been developed since 1985 in order to

estimate the ultimate beam shear capacity and the ultimate punching shear capacity. The
theory is treated in more detail in Muttoni and Ferndndez Ruiz (2008a, b) and Muttoni
(2003). The basic assumption of this theory is that the shear strength of members without
transverse reinforcement is governed by the width and roughness of a shear crack which

develops through the inclined compression strut carrying the shear.

3.3.2.2 Design procedure based on CSCT

The critical zone is estimated at a cross section located at 0,54 from the point of
introduction of the load and at 0,6d from the extreme compression fiber. The width of the
critical shear crack w is proportional to the strain ¢ in a control depth for one-way
members and to the slab rotation y for two-way members (Muttoni, 2008). The width w
is also influenced by the aggregate size and the spacing between the layers of
reinforcement. Based on these assumptions, the following failure criteria have been

developed for members without stirrups:
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1/3

VR —
bod\/z 1+120d ed (3.68)

g0 +dg

for one-way shear (units: MPa, mm)

Ve 3/4
bod\/f 1+15 yd (3.69)
g0 + dg

for two-way shear (units: MPa, mm)

in which

Vr the shear strength;

bo a control perimeter, equal to the width of the member b in beams and set at

d/2 of the border of the loaded area for punching shear;

d the effective depth of the member;
fe the average cylinder compressive strength of the concrete;

€ the strain in a control depth for one-way members;

W the slab rotation for two-way members;

dg the aggregate size;

dgo the reference aggregate size equal to 16mm.

For one-way shear the strain in the control depth is taken as:

o M 0,6d —x
dpEs(d—;j d-x

(3.70)

E, PE,
in which
X the depth of the compression zone;
M the bending moment at the critical cross section;
p the reinforcement ratio for the longitudinal steel;
E Young’s modulus of steel;
E. Young’s modulus of concrete.

For two-way shear the rotation can be assumed as:
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3/2
r f V
=1,5+2x| 3.71
7 E( J (3.71)

d V tex
in which
75 radius of circular isolated slab element,
f yield strength of the reinforcement,
r
Viex the flexural strength V,,. =27zm, ——,
r,-r

. o o, PL,
mg the radial moment per unit width m, = pf.d”| 1- Y
rq the radius of the load introduction at the perimenter,
e the radius of a circular column.

The CSCT can be used in the case of deck slabs of bridges, where the shear field and
developed rotations around the wheel loads differ from residential flat slabs support by
columns. For critical existing bridges, it is advised to calculate the nonlinear load-rotation

relationship by integrating the moment-curvature behavior of the slab, Fig. 3.121.
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Fig. 3.121: Application of the CSCT to estimate the shear strength of the cantilever deck
slab of an existing bridge: shear field trajectories and calculation of punching strength on
the basis of the nonlinear load-rotation curve of the cantilever (Vaz Rodrigues 2007)

3.3.2.3 Non-axis-symmetrical punching based on CSCT

For non-axis-symmetrical punching, as shown in Fig. 3.122, a method based on the
CSCT is developed (Sagaseta et al., 2011). Non-axis-symmetry in slabs can be due to
loading, slab and column geometry and reinforcement layout. The presented method
focuses mainly on cases where p, and p, are significantly different, Fig. 3.123. It was
experimentally observed that the slope of the failure cone was steeper at the sides with
maximum rotations, than in the other, stiffer, direction. This observation suggests that

punching shear in slabs with p, # p, can be treated considering the x and y directions

individually.
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Fig. 3.122: Punching shear in (a) flat slabs with square bays (axis-symmetrical
conditions) and (b) slab bridges (non-axis-symmetrical conditions).

Fig. 3.123: Punching shear tests at EPFL with non-symmetrical reinforcement (p./p, =
0,80/0,35%): failure cone after testing (specimen PT23) (Note only one quadrant of the
cone is shown; steep face corresponds to the weak reinforced direction). (Sagaseta et al.,
2011).
The nominal punching strength vg(s) in non-axis-symmetrical slabs is non-uniform along

the control perimeter since the slab rotation w(s) depends on the direction, Fig. 3.124.
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Some parts of the perimeter will reach their ultimate strength, whereas others will still
have a potential strength capacity. When assuming a constant nominal strength v,y this
additional strength is neglected. In reality, once the nominal shear stresses reach the
nominal strength vgu,ax, a softening of shear will occur at segments with the largest slab
rotations (segment A in Fig. 3.125). The failure criterion from the CSCT is used,
accompanied by an increase of shear at segments of the perimeter with higher nominal
strength (segment B in Fig. 3.125). The redistribution of shear stresses from A to B
results in higher punching shear strengths and slab rotations than the initially estimated
values of Vgpand wgy. This is true provided that the increase in shear at B shown in Fig.

3.125 balances the softening in shear at A.
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Fig. 3.124: Non-uniform distribution along the control perimeter of (a) slab rotations
(NLFEA predictions for PT34 at 800kN) and (b) corresponding nominal strengths
according to the CSCT (Sagaseta et al., 2011).

In general, the punching strength can be determined by integrating the nominal strength

along the control perimeter:

n=¢%@ms (3.72)

r

i

d
1+15]| w(s)———
(w(ﬂd +d%:

(3.73)

ve(s) =

g
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The assumed relationship y(s) should be validated experimentally, although predictions
from FEA or similar approaches can provide useful information. The rotations y/(s) can
be assumed to be constant along the straight segments of the control perimeter in slabs
supported on square columns. The transition between v, and y, is assumed to take place

at the corners primarily, leading to:

Ve = Pva()ds = 260, + V1) + Vi comen (3.74)
P
3
2% NIB
Ve, = (3.75)
1415 ¥4
d .t d 2.0
3
29 J5
Vg, = Vd (3.76)
1415 >~
d .t dg,o
3
VR,corners = 4J. VR (6) g de (3 77)
0

where Vg corers 18 the total strength corresponding to the four corners. The angle 8 varies
between 0 and n/2 (Fig. 3.124) and vg(8) is the nominal strength corresponding to the
rotation y/(6) according to Eq. (3.73).
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Fig. 3.125: Shear stress redistribution from segments of the control perimeter with largest
slab rotations (shear softening) to segments with lowest slab rotations (increase in shear).
(Sagaseta et al., 2011).

To estimate y(s), the control perimeter can be subdivided into segments and with the use
of a NLFEA program, the rotation y; and the nominal strength vg; can be assessed for
each segment. Carrying out such a routine for a test specimen showed that: (a) the
rotations were fairly constant along the straight sides of the perimeter, as assumed, and
(b) the rotations (@) at the corners followed an approximately parabolic relationship,
which is consistent with experimental evidence.
This general approach can be simplified by dividing the control perimeter into four
segments, as shown in Fig. 3.126. The slab rotations y, — y, and nominal strengths vz, —
vy are assumed to be constant along b, — by, leading to:

Ve =veb, vy b, =Z—mbx+@by (3.78)

0 0

This approach assumes that Vz, and V', are completely uncoupled, which seems less

realistic than the method with shear redistribution.

Fig. 3.126: Simplified discretization of control perimeter into x-y segments; distribution
of nominal shear strength and general notation. (Sagaseta et al., 2011).

3.3.2.4 Discussion of CSCT
Muttoni and Fernandez Ruiz (2010) point out that an additional advantage of the CSCT is

that it allows one to calculate not only the punching strength but also to estimate the
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deformation capacity (rotation) at failure, providing valuable information to the designer
on the behavior of the structure (ductility, brittleness).

Windisch (2011, in a discussion to Vaz Rodrigues et al., 2010) questions the possibility
of the shear crack to penetrate the compressive strut. The detrimental development of the
critical shear crack is assumed along the theoretical compression strut that leads to the
failure of the inclined compression strut and that of the member. This compression strut
is “prestressed” by the compressive force in it; and therefore it might be questionable that
the shear crack can penetrate this strut. In this way, the critical shear crack model
contradicts both the variable angle stress field and the MCFT. According to the discussor,

however, this could actually be considered an advantage of the CSCT model.

3.3.3. Strut and tie models and truss models

3.3.3.1 Development of strut and tie models
Strut and tie models are mechanical models representing the force flow in a concrete

member by compressive struts and tension ties. The tensile ties can be reinforcing bars,
prestressing tendons or concrete tensile stress fields (Schlaich et al, 1987). Strut-and-tie
models also incorporate the major elements of detailing. The lower bound theorem of
plasticity is used. For slabs in which the state of stress is not predominantly plane, as for
example in the case of concentrated loads, three-dimensional strut-and-tie models should
be developed. The direction of struts can be taken in accordance with the mean direction
of principal compressive stresses. Since loads follow the path which requires the least
forces and deformations, and reinforced ties are much more deformable than concrete
struts, the model with the least and shortest ties is the best (principle of minimum strain
energy for linear elastic behavior of the struts and ties after cracking). Three types of strut
and ties are used: C, (concrete struts in compression, two or three-dimensional stress
field), 7. (concrete ties in tension without reinforcement, two or three-dimensional stress
field) and 75 (ties in tension with reinforcement, linear, one-dimensional element).
Depending on the combination of struts and ties, 4 types of nodes are possible: CCC,
CCT, CTT and TTT. Since C, and T, are stress fields, these tend to spread in between
two adjacent nodes. Three types of compression fields are used: the fan, the bottle and the

prism, Fig. 3.127. In case of bottle-shaped stress fields, force distribution leading to a
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biaxial or triaxial compression state close to the load and the transverse tensile stresses in
the strut need to be taken into account. The failure criterion for the compression fields or
within the nodes depends on the concrete compressive strengths, which is by large
influenced by the multi-axial state of stress and the disturbances from cracks and
reinforcement. Transverse compression is favorable, while transverse tension and cracks
which are not parallel to the compressive stresses are detrimental.

It must be noted that the structure adapts itself to the assumed internal structural system
(Schlaich et al., 1987). The resulting models are quite often kinematic, which means that
equilibrium in a given model is possible only for the specific load case. Relevant
examples of strut-and-tie models are shown in Fig. 3.128 and Fig. 3.129. A strut and tie

model which takes the size effect into account is discussed by Yang (2010).
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Fig. 3.127: The basic compression fields: (a) the fan, (b) the bottle and (c) the prism
(Schlaich et al., 1987).
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Fig. 3.128: Strut-and-tie model for beam with small a/d ratio. Left: refined model and
right: simplified model (Schlaich et al., 1987).
o

Fig. 3.129: 3-D strut-and-tie model for pier of a pile cap (Schlaich et al., 1987)
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3.3.3.2 Truss with concrete tensile contribution
The traditional truss model as first introduced by Ritter (1899) assumes concrete

compression struts and steel tension ties. More recent approaches (ASCE-ACI committee
445, 1998) take the tensile stresses transverse to the struts and the shear stresses across
the inclined crack by aggregate interlock or shear friction into account. Both mechanisms
are interrelated and result in:
e the angle of the principal compression stress to be smaller than the crack angle
and,
e avertical component of the force along the crack contributing to the shear
strength of the member.
Schlaich et al. (1987) showed that for example slabs use stress fields 7 to transfer
tension in the concrete. Redistribution of stresses avoiding cracking may be possible if at
any part of the stress field a cracked failure zone with an area 44, can be assumed. Stress
peaks can be smoothed out over 5cm < 3d, (d, is the maximum aggregate size). A certain
fraction of the tensile strength is used for carrying loads and another fraction is used by
restraint stresses. If the tensile stress field is crossed by a compression field, the reduced

biaxial strength must be considered.
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Fig. 3.130: Assumption of a failure zone for the check of the tensile strength of a concrete
tension tie 7, (Schlaich et al., 1987).
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Fig. 3.131: Load path of beam in shear using concrete tie (Schlaich et al., 1987).
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Fig. 3.132: Aggregate interlock force R and corresponding compression C, and tension 7,
in the concrete (Schlaich et al., 1987).
A newer development is the use of discontinuous stress fields that more adequately

represent the ultimate limit state behavior of panel elements subject to in-plane loading
(Cho, 2003).

3.3.3.3 3D strut and tie model
A 3D strut and tie model was developed by Alexander and Simmonds (1986, 1987),

initially to model punching of edge columns. The model consisted of two types of
compression struts: in-plane or anchoring struts (parallel to the slab) and out-of plane or
shear struts (at some angle (o) to the plane of the slab). It is based on the principle that
cases of unbalanced load have a combined failure mode. Typical failures are shown in
Fig. 3.133. Alexander and Simmonds (1987) argue that it is unlikely that a punching
failure is the result of shear stress on some vertical plane, since this requires a diagonal
tension field in the concrete. However, diagonal cracking at a relatively early load stage
should preclude this tension field, according to the authors.

Two problems arise when developing a strut-and-tie model. Firstly, estimating the actual
stress within each strut and the critical failure stress to compare with requires effective
strengths. Secondly, the limits for the inclination of the compressive struts need to be

found.
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Fig. 3.133: Typical punching failures (Alexander and Simmonds, 1987).

The anchoring, in-plane struts are presented in Fig. 3.134a. Each is equilibrated by two
mutually perpendicular reinforcing bars: one passing through the loaded zone and the
other at some distance from the loaded zone. This mechanism gives an explanation for
the influence of the flexural reinforcement on the shearing strength: bars at some distance
from the loaded zone are able to exert flexural moment. An out-of-plane or shear strut is
similar to the force diagram used in corbel design (Fig. 3.134b). However, there are two
differences between the shear struts for slabs and the struts in corbel design. First, the
point of load application does not coincide with the junction of the tensile and
compressive force, and as a result the angle of inclination of the shear strut, a, is not
preset. The second difference is that the vertical component of the compression strut is no
longer equilibrated at the junction by the applied load. There exists a force component
out of the plane of the slab which must be balanced by some form of tension field within
the concrete, resulting in a three-dimensional truss (Fig. 3.135 and Fig. 3.136).

— A

\

Fig. 3.134: (a) In-plane or anchoring struts, (b) out-of-plane or shear strut (Alexander and
Simmonds, 1986).
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Fig. 3.135: 3D strut and tie model (Alexander and Simmonds, 1986)
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Fig. 3.136: 3D strut and tie model (Alexander and Simmonds, 1987).

In a slab, the amount of steel participating in the tension ties (called “shear steel”) is not
clearly defined. Alexander and Simmonds (1986) assumed that all steel aligned through
the loaded zone participates in the tension tie, plus some fraction of the steel within a
distance d; (the effective depth) of the face of the loaded zone. This fraction decreases
linearly from 1 at the face of the loaded zone to 0 at a distance d; from the face of the
loaded zone. The shear steel is assumed to yield at failure. Three conditions can lead to
failure in the strut and tie model of Alexander and Simmonds (1986): failure of the
tension tie, failure of the compression strut, and failure when the out-of-plane component
of the compression strut exceeds the confining strength of the slab.

The ultimate capacity of an in-plane bar-strut unit is limited by the yield of the

reinforcing bars. Therefore, the model requires that the steel reaches yield. To define the
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ultimate capacity, the bar force at yield and the angle of the compression strut (o) need to
reach a critical value. The parameters which are likely to affect a are assembled in a non-
dimensional empirical term. From geometric considerations, tan(a) equals the ratio of the
out-of-plane component (defined by the ability of the slab to confine the bar, function of
tributary width of each bar (s), cover (d’) and concrete strength) to the in-plane

component (yield force in steel). These observations led to the expression:

tan o = 'Z;l"re
svty
— Se/f'd"\/z (3 79)
- 0,25 :
Abar.fy.(c/ds) '
where
Praiture the failure load;
A" the top mat shear steel;
5 the yield strength of the steel;
Seff the maximum of s or 3d;
d’ the cover of the reinforcement measured to the near side of the slab;
d, the cover of the reinforcement measured to the far side of the slab;
c the column dimension perpendicular to the bar being considered;
A the concrete strength;
Apar the area of a single reinforcing bar.

Based on these theoretical considerations, a design equation for o was determined from

test results:

tana =1,0—e>**  (SI units) (3.80)

3.3.3.4 Discussion of strut and tie models
Strut and tie models are based on the principle of an inclined compression field in the

concrete. Not only does this mechanism provide a load path for shear forces in the
presence of diagonal cracking, it explains the role that flexural reinforcement plays in
determining shear strength, according to Alexander and Simmonds (1986).

As a result of the multi-axial stress state, simplified strength values of the concrete

compressive design strength need to be used, which could be seen as a disadvantage
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(Schlaich et al, 1987). Reineck (1990) connects the subdivision in B- and D-regions by
Schlaich et al. (1987) to Kani’s valley (1964) by pointing out that in order to have a B-
region develop in a beam, the load should be at a distance greater than 24 from the
support axis, which corresponds with the minimum of Kani’s valley around a/d = 2,5.
Marti (1999) points out that strut and tie models include strain compatibility and an
effective concrete compressive strength 7. just like compression field approaches, and that
they also provide a theoretical framework with experimental evidence.
Gastebled and May (2001) argue that a different approach is needed to capture the shear
failure of slender members without stirrups, for which the failure mechanism differs
significantly from those assumed in the truss models.
In his discussion to the 1987 ACI paper by Alexander and Simmonds, Braestrup
(1988) denotes the strut-and-tie model as an example of the lower bound method of
plastic analysis. He criticizes the assumption that all steel is yielding, since the
typical slab-column tests might not be able to describe adequately the conditions in
prototype structures. The same remark is made by Rangan (1988), regarding the
angle a. Braestrup further argues that it may be desirable to preclude concrete failure,
but this requires an adequate design which can only be based upon a description of
the failure which is to be avoided. Windisch (1988) states that the model does not
meet the equilibrium conditions:
1. At the bar-strut junction there exists a force component out of the plane of
the slab that is not equilibrated directly by the applied load, which must be
balanced by some form of tension field in the concrete. This concrete tension
field, which is not treated further in the paper, is incompatible with the
assumptions of the truss model.
2. The anchoring struts deliver considerable in-plane compressive forces that
are not balanced by any other truss member. The inclination of these
anchoring struts hardly depends on the pure geometrical conditions.
3. A gravity strut should belong to the strut steel of bar A in Fig. 3.136. The
tensile force in the reinforcing bar is not equilibrated in the cross section of

the plate parallel to the front side of the column.
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4. An anchoring strut with all corresponding steel struts should be placed at the
level of the bottom reinforcement as well.

In the closure, Alexander and Simmonds (1988) explain that the figures only show
the orientation of the compression struts and attendant reinforcing bars acting in the
slab. Equilibrium is provided by forces in the slab and column not shown. Bar A is
located further than d, from the face of the column and is not serving as strut steel
nor associated with a gravity strut and interacts with the column only through the
anchoring strut mechanism. The tension in bar A at any cross section in front of the
column is equilibrated by a flexural compression zone in the slab. The reaction to
the anchoring strut is provided by shear and compression in the column. Regarding
the tension field the authors reply: “The truss model describes conditions at ultimate
in a localized area round the column. This area is surrounded by a flexural plate. In
the region where these two areas overlap, equilibrium requires a tension field to
resists the out-of-plane force in the concrete since there is no other mechanism
available.” By basing the punching shear resistance upon the reinforcement
exclusively, the authors do not imply that the punching capacity of the slab vanishes

in the absence of flexural reinforcement; only the strut and tie mechanism vanishes.

3.3.4. Mechanical models

3.3.4.1 Tooth model
A first idea for a tooth model was shown by Morsch (1922) by showing the zone between

two flexural cracks, the force in the concrete compressive zone and the force in the steel,

Fig. 3.137.
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Fig. 3.137: First idea of tooth model by Mdrsch, 1922.
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The tooth model was introduced as an explanation for the riddle of shear failure by Kani
(1964). Kani’s tooth model (Fig. 3.139) consists of free cantilevers fixed in the
compression zone and loaded by horizontal shear forces resulting from the bonded
reinforcement. Kani (1964) correctly linked the beam shear capacity (the capacity of the
concrete teeth) and the capacity of the remaining arch to the experimentally observed
valley of diagonal failure, Fig. 2.18. The bond force between the deformed bars and the
concrete was expressed as a distributed load, Fig. 3.138. The concrete teeth were
calculated as short vertical cantilevers anchored in the compression zone, Fig. 3.139.
Kani (1964) also measured the transformation into a concrete arch by registering the

increase in compressive strain at the neutral axis, Fig. 3.140. Assumptions concerning the

inclination and spacing of the discrete cracks (the factor Ax in Fig. 3.139) were made and
s

remain a source of discussion (Brock et al., 1964). MacGregor and Walters (1967) used a
programming routine to calculate stresses. Several values of crack spacing Ax were
assumed to study the effect of crack spacing on the computed inclined cracking load. The
computed strengths depended on the crack spacing to some extent, but were not nearly as
strongly affected as predicted by Kani. The reason for this appeared that the more flexible,
narrow teeth deflected laterally under load and thus the steel stress on each side of them
tended to approach the same value. In addition, the larger lateral deflections led to large
friction and doweling shear forces between the teeth which tended to reduce the tooth

stresses. Reineck (1997) estimates the crack spacing as s, =0,70(d —x) with x the depth

of the compression zone, which mainly depends on the reinforcement ratio. The shear
strength in Kani’s tooth model is expressed as Vi = r,M,/a where M, is the yielding
moment, 7, the reduction factor as shown in Fig. 2.18 and a the shear span. The problem
of “shear strength” has thus become an investigation, and search for, the type and
quantity of web reinforcement required to increase the reduction factor r, to 1 (Kani,
1966).

The assumed force distribution versus the later measured force distribution is shown in

Fig. 3.141.
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Fig. 3.138: Internal forces of a reinforced concrete beam with bond (Kani, 1964)
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Fig. 3.140: Transformation of a beam into an arch as measured on a specimen (Kani,
1964).
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Fig. 3.141: (a) Possible forces existing in the vicinity of the tooth; (b) Assumed force
distribution at root of tooth (Kani, 1979).
While Kani (1964) assumed that the distribution of the stress in the remaining arch is
almost the same as it is in the original compressive zone, Pruijssjers (1986) assumed that
due to the separation of the teeth the remaining arch is no longer forced to rotate under
the flexural moment. As a result, there is a system of centrically loaded compressive and

tensile zone, Fig. 3.142.
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Fig. 3.142: System of centrically loaded compressive and tensile zone. (Pruijssers, 1986).

Regan (1969) used a similar tooth model to Kani’s model to develop design charts.
Hamadi and Regan (1980) point out that the comb-like structure of the concrete “teeth”
between flexural cracks is naturally better developed in the longer shear spans. Russo et

al. (1991) have expanded Kani’s tooth model into a flexure-shear interaction model.

Reineck (1990, 1997) developed a model in which the dowel action and aggregate

interlock are calculated with strut-and-tie models and the equilibrium of all mechanisms

contributing to the shear transfer is studied on a tooth. These mechanisms (Fig. 3.143) are:
- friction in cracks,

- dowel force,
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- cantilevering action of the tooth from the compression zone, and

- ashear force component in the compression chord.
Reineck’s model is based on strut-and-tie models representing the principal stress fields
in a concrete tooth. The dowel forces are equilibrated by friction stresses along the crack,
so that the bending stresses in the tooth due to the dowel forces superimpose with a
biaxial tension — compression stress field as before. The friction stresses are assumed to
be a superposition of a constant friction part and a parabolic part related to the dowel
action. The dowel action causes a negative slip in the lower part of the tooth and thus
reduces the possible friction transfer over the crack, which results in the parabolic shape
of the friction stresses. Equilibrium and the condition of equal shear stresses for an
element at the neutral axis lead to:

T,=2v,, withvy,, N (3.81)
' ’ © b,(d-c)

This leads to a statically admissible and consistently described stress-field in the tension
zone. The resulting stress fields are visualized through a strut-and-tie model, Fig. 3.145.
Some bending occurs at the lower part of the tooth, but the inclined tension and
compression field prevails. The maximum shear force is then

z

V=bzt,+ 3y (3.82)

d—c
The stress field is completely known. At the crack tip zone, the crack opens without any
slip so that no friction stresses can be activated. It is shown by Reineck (1990) that the
assumed stress field near the neutral axis can be transferred by a combination of friction
and tensile stresses in this fracture zone. The stress field is then represented by a simple
truss model, Fig. 3.146, which shows that the tensile strength of the concrete is utilized in
members without transverse reinforcement such as slabs.

This model requires the constitutive laws to be formulated for all the considered
mechanisms of shear transfer (Reineck, 1997a). Reineck (2010) explains the ultimate
capacity not by the concrete ties attaining the concrete tensile strength, but by the limited

capacity of friction along the cracks and the dowel action.
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Fig. 3.143: Reinforced concrete member with tooth-element and its forces in B-region
(Reineck, 1990).
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Fig. 3.144: Assumed shear stress distribution due to friction along cracks (Reineck,
1990).

Fig. 3.145: Strut-and-tie model representing the principal stress fields in tooth: stress field
due to constant part of friction stresses plus strut-and-tie model due to dowel forces
(Reineck, 1997a).
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Fig. 3.146: Truss model with biaxial tension-compression stress field in concrete of web
(Reineck, 1990).

Reineck (2002) points out that failure mechanism approaches have a common feature
with fracture mechanics approaches, where the localization of the failure zone either in
tension or compression plays the major role. When the friction in the concrete is correctly
modeled, a truss model with crack friction can be developed. In such a method, the shape
and the geometry (inclination) of the crack is modeled and also the spacing. This
approach is in principle different from the smeared approaches such as the shear-
compression field theory (MCFT, Collins 1978) and the rotating-angle softened truss
model (Hsu, 1999). In these methods, the crack angle and the angle of the compression
field are equal, such that no slip occurs and the friction cannot be checked correctly. In
fact, friction forces can not be transferred at cracks which are assumed parallel to the
compression field. Although refined tooth models and the MCFT approach the problem
from different directions, the end result is very similar. Both methods consider that the
ability of diagonal cracks to transfer interface shear stress is most important in
determining the shear strength of members without transverse reinforcement (ASCE-ACI

committee 445, 1998).

The tooth model method was illustrated with test results by Mihaylov et al. (2010). The
shaded area of concrete in the LS3 crack diagram (Fig. 3.147) can be viewed as a
cantilever fixed at the top part of the beam, which Kani et al. (1979) called a “tooth.” The
bond forces between the bottom reinforcement and the concrete tend to bend the
cantilever toward midspan, while the aggregate interlock (AI) and dowel action (DA)
resist this bending. Both of these resisting mechanisms degrade as cracks widen; and by
LS4 (Fig. 3.147), this cantilever had failed as shown by the now nearly uniform stress in
longitudinal reinforcement over the width of the tooth. In deep beams, the loss of the
teeth does not result in an immediate collapse of the beam. It resulted in almost constant
tension in the bottom reinforcement, showing that the load-bearing mechanism has

switched from beam action to almost pure arch action, as suggested by Kani (1964).
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Fig. 3.147: Illustration of Kani’s tooth model with test results (Mihaylov et al., 2010).

3.3.4.2 Bond model

Alexander and Simmonds (1992) developed a bond model in which radial arching action
and the concept of a critical shear stress on a critical section are combined. The bond
strength of the reinforcement is the significant factor. The model gives a simple lower
bound estimate of the ultimate slab shear strength. Tests showed that the radial
compression struts (as assumed in the 3D strut-and-tie model by Alexander and
Simmonds, 19&6) are actually curved and parallel to the reinforcement in plan, which
changes the mechanics of the truss model. The bond model combines features of the truss
model with the concept of a limiting shear stress. The basis of the method is the

following expression of the shear force:

V:d(Tjd):d(T)jd+d(jd)T (3.83)
dx dx dx

in which the first part is carried by beam action (requiring strong bond forces) and the
second part by arching action (requiring only remote anchorage of the reinforcement).
In equation (3.83) the following parameters are used:

T the steel tension force;

jd the effective moment arm.

The geometry of the curved arch (which replaced the compression strut) is not governed
by conditions at the intersection of the arch and the reinforcement tying the arch, but
rather by the interaction between the arch and the adjacent quadrants of the slab. The
radial strips (Fig. 3.148) extend from the loaded zone, up to a “remote end”, which is a

position of zero shear. The shear carried in the radial compression arch varies from a
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maximum near the loaded zone where the slope of the arch is large, to a minimum at the
intersection of the arch and the reinforcing bar, where the slope is small. The shear
carried by a radial strip needs to be dissipated some distance away from the loaded area,
depending on the curvature of the arch. Fig. 3.149 describes the radial strip as a cantilever
beam. The length / is called the loaded area, and w the uniformly distributed load. For

four radial strips extending from the loaded area, a lower bound of the shear capacity is

expressed as:

P=8/M w (3.84)
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Fig. 3.148: Layout of radial strips, Alexander and Simmonds (1992).
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Fig. 3.149: Equilibrium of radial strip, Alexander and Simmonds (1992).
The flexural capacity of the strip M and the loading term w are consequently defined to

meet two conditions:
- the equilibrium of the strip has to be satisfied, and

- both the flexural capacity and shear capacity of the strip may not be exceeded at

any point in the strip.
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The flexural capacity depends upon the amount of reinforcement that effectively acts

within the strip and is composed of the negative and positive moment capacity.
_ 72
Mneg - pnegfy.]d c (385)
— 72
M, =k.p.f,jdc (3.86)
In these equations, the following symbols are used:

sT

Py = bd the negative effective reinforcing ratio;
Ppos = b—;‘; the positive effective reinforcing ratio;
Asr the total cross-sectional area of top steel within the radial strip plus half
the area of the first top bar on either side of the strip;
Agp the total cross-sectional area of bottom steel within the radial strip plus
half the area of the first top bar on either side of the strip;
b the total distance between the first reinforcing bars on either side of the
radial strip;
d the effective depth;
jd the internal moment arm;
c the width of the radial strip;
J the yield stress of the reinforcement;
k; a factor which accounts for the proportion of the bottom steel that can be

developed by the rotational restraint at the remote end of the strip. This
is zero if the remote end is simply supported.
The loading term w represents a lower bound estimate of the maximum shear load that
may be delivered to one side of a radial strip by the adjacent quadrant of the slab.
The maximum value of the loading term w is based on the maximum value of beam

action shear

W =0.166dy £, (3.87)

The bond model also explains how load may be carried in the presence of diagonal
cracking. Test results have shown that diagonal cracking occurs at 50 to 70% of the

ultimate load.
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3.3.5. Plasticity-based models

3.3.5.1 Failure criteria
This section focuses on the failure criteria used in plasticity-based models. The concrete

material strengths are the effective uniaxial tensile f; and compressive f. strengths, as
opposed to the actual measured uniaxial tensile and compressive strengths. Typically,

effectiveness factors need to be applied to the measured concrete material strengths.

3.3.5.1.1 Coulomb’s hypothesis and the modified Coulomb criterion
In 1776, Coulomb advanced the frictional hypothesis, based on the observation that

failure often occurs along certain sliding planes or yield planes. These yield planes are
determined by:
- their resistance: the cohesion, and
- an internal friction, the magnitude of which depends on the normal stress in the
sliding plane.
Mohr (Fig. 3.150) generalized this theory and assumed that failure occurs when the

stresses in a section satisfy the condition f (G,T) = 0 which gives a failure envelope in a

(o, 7) coordinate system.

]
=

Fig. 3.150: Mohr’s circles of principal stresses. (Nielsen, 1984).

Combining Coulomb’s hypothesis with an extra limitation on the greatest principal stress
o; (a tension cutoff), the modified Coulomb criterion is obtained (Nielsen, 1984). By
combining Coulomb’s criterion with a limit on the tensile stress, two failure modes can
be distinguished:
- sliding failure (characterized by cohesion ¢ and internal friction which is a
fraction u of the normal stress), or
- separation failure (characterized by the separation resistance f).

The condition for sliding failure is given as:
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|r| =c—uo (3.88)
The condition for separation failure is:

o=, (3.89)

In a (o, 7) coordinate system this is represented by Fig. 3.151.
Sliding failure T=-c+po
T Separation failure o= 1y
c sy
Sr~e L.
:l ,lpj‘” tan ¢ =
“Sliding failure T=c-po
T

Fig. 3.151: Failure criterion for a modified Coulomb material. (Nielsen, 1984).

Transforming this into relations between the principal stresses o; and a3, this becomes:

%(0'1—0'3):ccos¢—%(0'1+0'3)sin(p (3.90)

With u=tan¢@, Eq. (3.90) becomes:
2
(,u+\/1+,u2) 0'1—0'3:20(,u+\/1+,u2) (3.91)

2
Using k = ( A1+ 1 ) , the condition for sliding failure becomes:

ko, —o, = 2k (3.92)
and the condition for separation failure is still represented by Eq. (3.89).

For a plane stress field, this is graphically represented in Fig. 3.152.
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Fig. 3.152: Failure criteria for concrete as a modified Coulomb material at plane stress
(Nielsen, 1984).

In Fig. 3.152, the relation between the principal stresses is:
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A (3.93)

/;’cnz

According to the theory of Mobhr, the principal stresses can be written as a function of the

actual stresses:

o, = % —l«/crf +47’
2 21 (3.94)
o, = O; +E\/03 +47’

Substituting (3.94) in (3.93) yields:

2 a2 /. £
\ 477 | |4 L 1—2em 12 =0 3.95
o, + rc( +f ]'f‘O'C( fc,m] Joom ( )

ctm

Solving for 7. gives:

T, = \/i Af: +Bf.,, +C (3.96)

with

_ f;'cm B .f;tm

Seem & Jem
(f;cm B f;tm ) ](ccm ](ctm

(Soon + fom )

(fnSom)
(Sion + fom)”

This is represented in Fig. 3.153.

Fig. 3.153: The relation between the normal stress and the shear stress (Pruijssers, 1986).

Strictly speaking, concrete cannot be treated as an isotropic material, but must be treated
as a material with load induced anisotropy. However, according to Nielsen (1984)

applying a simple isotropic failure condition like the modified Coulomb criterion is a
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reasonable approximation. Typically, for concrete = 0,75; the angle of friction ¢ = 37°

and ¢ = 2 /... Comparison of the criterion with test results is shown in Fig. 3.154.
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Fig. 3.154: Test results for concrete in biaxial stresses compared to the failure criterion
for a modified Coulomb material (Nielsen, 1984)

3.3.5.1.2 Parabolic Mohr failure criterion

T~
[ N f
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Fig. 3.155: Parabolic Mohr-failure criterion for concrete (Salim and Sebastian, 2002).

The parabolic Mohr failure criterion (Fig. 3.155) is expressed as:

T (o

where 7 and ¢ are shear and normal stresses on an arbitrary plane and c¢;:

/ /.
L= 1+ -1 3.98
c +f, ( )

The shear and normal stresses in the parabolic Mohr failure envelope can be given as

functions of the parameter a defined in Fig. 3.155:
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2

r=ft%"cota (3.99)

2
szt(l—%kcotz aJ (3.100)
The maximum and minimum principal stresses are:
¢ )
o=/ l—x(csca—l) (3.101)
& )
o, =1, I—X(cscaJrl) (3.102)

The yield loci for the cases of plane stress and plane strain are shown in Fig. 3.156.
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Fig. 3.156: Yield loci in cases of plane stress and plane strain (Salim and Sebastian,
2002).

3.3.5.2 Plasticity models

3.3.5.2.1 Introduction
For shear failure, the modified Coulomb criterion can be applied to the narrow plastic

zone in between two rigid zones (Fig. 3.157 and Fig. 3.158).

| Discontinuity __
‘ -~ --..__H._‘_“_

| - 4
7T Xa] i
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Fig. 3.157: Discontinuities in shear failures (Cope and Clark, 1984).

. .
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Fig. 3.158: Relative displacement of rigid zones (Cope and Clark, 1984).

/. (1-sing)

The cohesion ¢ equals ¢ =
2cos¢

with f; the effective uniaxial compressive

strength. The yield criterion consists again of a sliding criterion and a separation
criterion. If a region Il moves in a given direction relative to a rigid region I, then the
normal and shear displacements in the narrow plastic zone can be determined. The work
per unit area dissipated in the narrow plastic zone can be evaluated. For a displacement o
at an angle « to the discontinuity, as shown in Fig. 3.158, the work equations are:

Plane strain:

W=s L(l—sina)+(sma—__51m¢)fte for p<a</2 (3.103)
2 (1-sing)
At the limits Eq. (3.103) reduces to:
(l—sin ¢) -
W=6f, s for a = ¢ (sliding) (3.104)
W =¢6f, for a=rx/2(separation) (3.105)

Failure in the narrow plastic zone cannot occur for o < ¢ .

Plane stress:

Eq. (3.103) is applicable for g<a <7 /2

(1-sine)

W=5f for —7/2<a<¢ (3.106)

3.3.5.2.2 Shear capacity explained by plasticity models
Walther developed a generalized design theory using Mohr circles, Fig. 3.159, in which

line (1) represents Mohr’s envelope curve, (2) is the stress Mohr circle (o, = 0) and (3) is

the failure criterion of a biaxial stress state with g, = 0 (Balazs, 2010).
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Py
Fig. 3.159: Background of the model by Walther, (8. =f.., B, =f-»»), (Balazs, 2010)

A lower bound plasticity solution requires a statically admissible, safe stress field to be
constructed, which can only exist in certain simple cases.

An example of a lower bound solution for a beam in shear without web reinforcement is
shown in Fig. 3.160. The beam is assumed to act as an arch, with region ABDE in

uniaxial compression and regions AEF and BCD under biaxial hydrostatic pressure.
. . . . 1 .
Geometric considerations give BC = x, = E(x/az +h - a) , which leads to the lower

bound solution:

P=bx 3.107
0J ¢
which can also be written as:
T P X, 1 a ? a
—_— =0 __ 1+(<—j - (3.108)
f. bhf, h 2 h h
e
Bl C t
\ 0 |"_ 2
h é ! ——I---—-T
!L e / 4'
b FIlTy /
b PI \\\ W /,
. 2 P
L ‘h‘.—_‘a‘d—” xj_

Fig. 3.160: Lower bound solution for a beam without shear reinforcement (Nielsen,
1984).
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An upper bound approach based on the critical crack as a yield line leads to the same

e

(.
= |

i.r‘______g___——--i e

Fig. 3.161: Failure mechanism for a beam without shear reinforcement. (Nielsen, 1984).

solution. Eq. (3.108) is thus exact, Fig. 3.161.

Fernandez Ruiz and Muttoni (2007) suggested the use of stress fields to decide which
strut-and-tie model to select. Stress fields are developed as a direct application of the
theory of plasticity. The presented method shows an approach how to develop stress
fields and truss models based on the finite element method. A different stress-strain law
is used for stress fields (Fig. 3.162(b)) as compared to regular strut-and-tie models, Fig.
3.162(a). Vecchio and Collins’ (1986) approach of the MCFT for compression fields
including the effect of transverse strains of concrete is used to account for the effect of
cracking. A Mohr-Coulomb yield surface is used with a tension cut-off and an
associative flow rule, where the effect of the transverse strains #(¢;) can be interpreted as
a contraction in the yield surface with increasing positive transverse strains, Fig. 3.163.
An example of a stress field approach is shown in Fig. 3.164 and Fig. 3.165 while the
classic solution through a strut-and-tie model is shown in Fig. 3.166. Unusual cases can
be systematically investigated with stress fields, considering the actual reinforcement
layout and the nonlinear behavior of the concrete.

(a) (b)

-0
“ < ft'p

Fig. 3.162: Comparison of uniaxial stress-strain laws for concrete: (a) linear elastic (with
tensile strength); and (b) rigid-plastic without tensile strength. (Fernandez Ruiz and
Muttoni, 2007).
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Fig. 3.163: Concrete modeling: (a) strains; (b) Mohr’s circle and principal strains; (c)
directions of principal strain; (d) adopted yield surve for plane stress and associative flow
rule; (e) actual and adopted (elastic-perfectly plastic) stress-strain response; and (f)
assumed directions for principal stresses. (Fernandez Ruiz and Muttoni, 2007).

{a) Fy = 3 MN (670 kips

Fig. 3.164: Nonlinear FE model results for deep beam with opening: plot of concrete
principal compressive stress directions. (Fernandez Ruiz and Muttoni, 2007).
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fc) Fy = 3 MN (870 kips)

2 ¢ 12 mm

2x 3 @ I0 mm

Fig. 3.165: Dimensions of a deep beam accordiné t(; FE results; (a) adopted stress field;
(b) resulting truss model and main values; and (c¢) proposed reinforcement layout.
(Fernandez Ruiz and Muttoni, 2007).

(b

fal

— -
f U

N,

Fig. 3.166: Dimensioning of deep beam according to Schlaich et al. (1987): (a) adopted
truss model and main values; and (b) reinforcement layout. (Fernandez Ruiz and Muttoni,
2007).

Cho (2003) uses a plasticity model to describe the shear behavior of short beams taking
crack sliding into account. A modified Coulomb failure criterion with zero tension cutoff
is used. Reinforcement is assumed to resist forces in the axial direction only with the

yield stress f,. The effective compressive strength of uncracked or cracked concrete is

taken as
fo=vv S, (3.109)
with:
fo’ the cylinder compressive strength,
v, the effectiveness factor for uncracked or microcracked concrete, and
vV, the sliding resistance reduction factor to account for macrocracking.

3.3.5.2.3 Punching shear capacity explained by plasticity models
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A plasticity-based model for punching shear was developed by Kinnunen and Nylander
(1960). The theory was based on the assumption that the slab portion outside the shear
crack, which is bounded by this crack, by radial cracks, and by the circumference of the
slab, can be regarded as a rigid body, which is turned under load action around a centre of
rotation located at the root of the shear crack.
The considered failure modes were:

- failure in shear under the plane of flexural reinforcement,

- failure of the concrete cone between the shear crack and the column,

- failure in compression of the concrete in a tangential direction.
Kuang and Morley (1993) used a two-phase approach in a plasticity model to describe the
punching capacity of slabs taking the compressive membrane action into account. A
parabolic Mohr failure criterion was used.
Salim and Sebastian (2002) used rigid plastic theory to analyze punching shear based on
a parabolic Mohr failure criterion, Fig. 3.155. The upper-bound theorem of plasticity
states that if, for any assumed failure mechanism, the external rate of work is equated to
the rate of dissipation of internal energy, then an upper-bound for the collapse load of the
structure can be found. Salim and Sebastian (2002) used a parabolic and linear failure
generatrix to describe the punching cone. Comparison to experimental results gave high

coefficients of variation.

3.3.5.2.4 Discussion of plasticity models
The main points of criticism of the plasticity models are the following:

1. The location of the crack is based on simplifications. When the crack is
transformed into a yield line, there will be a displacement component parallel to
the crack. The cracking moment is derived from simplifications, a fracture
mechanics approach could lead to an improved quantification of the cracking load
(Nielsen, 1984).

2. Plasticity models require a certain amount of redistribution and ductility which is
not always available in the case of a brittle shear failure (Lubell 2006,

3. The effectiveness factors need to be determined empirically. These factors are not
the same for all load cases and cannot be physically explained in a satisfactory

way (Walraven 1980). Salim and Sebastian (2002), however, see it as an
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advantage that only effectiveness factors relating concrete compressive and
tensile strengths need to be determined through the calibration of theoretical
results against experimental results. Nielsen (1984) explains that finding the
effectiveness factor is straightforward for beams with web reinforcement, but
becomes complicated and dependent on a/h for elements without web
reinforcement.

4. The size effect is not modeled correctly. According to Bazant and Kim (1984),
this is not surprising, since the stress-strain relation of concrete has no yield
plateau and exhibits strain softening, which causes that the limit stress state
cannot exist along some postulated failure surface, as required by plastic limit

analysis, but is reached successively at various points of the failure surface.

3.3.6. Fracture mechanics models

3.3.6.1 Introduction to fracture mechanics models
Fracture mechanics approaches were first applied to the problem of shear in concrete in

the late 1970s. The field of fracture mechanics provides tensile stress-crack opening
relations further to stress-strain relations, making it possible to better describe the
behavior of structures, especially those which exhibit a brittle failure behavior. The
fracture energy, as a function of the concrete compressive strength and the maximum
aggregate size, is used in these expressions (Walraven, 2007).

Fracture mechanics models (ASCE-ACI committee 445, 1998) study the peak tensile
stress near the crack and the reduced tensile stress (the so-called softening) in the cracked
zone. Shear cracks are supposed to have the Mode II (shear) facture energy. However,
Mode II fracture energy can be neglected and replaced by mode I fracture energy if the
crack plane is properly modeled (McCabe and Niwa, 1993). Normal and shear stresses on
a crack plane correspond to modes I and II respectively (Reinhardt, 1986). Shear failure
is related to the critical stress intensity factor of the material. Fracture mechanics
approaches do not treat fracture as a point phenomenon, but recognize that in a brittle
heterogeneous material such as concrete, the fracture propagates with a relatively large
fracture process zone ahead of the crack tip in which progressive microcracking gradually

reduces the tensile stress to zero (Mihashi and Nomura, 1993). Most approaches are
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based on nonlinear fracture mechanics (Bazant and Kim, 1984). The propagation nature
of failure gives rise to size effect unless the failure occurs at the first initiation of fracture

(Bazant and Kazemi, 1991; Ghazavy-Khorasgany and Gopalaratnam, 1993).

3.3.6.2 Modeling material behavior
McCabe (1997) highlights that under the right conditions, concrete can develop

widespread micro-cracking even under nominal loading. The challenge is to determine
how this complex material behaves as these cracks coalesce and grow into structural
cracks. To incorporate fracture mechanics into a finite element solution, two approaches
are possible:

1. The discrete crack model: the actual geometry of the crack is modeled. The finite
element mesh must be modified to include the actual crack as it propagates
through the material.

2. The smeared crack model: the stiffness properties of the element are changed to
capture the effects of cracking.

An example of the smeared crack formulation is the fictitious crack model, which
describes the stress versus deformation properties of materials in tension (Gustafsson and
Hillerborg, 1988). Before peak stress, the deformation of a specimen in uniform tension

is assumed to be uniform along the length of a specimen and may be described as a strain

&, Fig. 3.167a,b.

iho 0 0 g
1
Al deformation™’ /
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e EE——
al 'R Al c) £ "
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+ Concentrated \ ﬁE |
| /fracture surfoce™ F,' Vil fy +—— fi4
Al | 'T* WL !
+ ' 7 ! Or
* 1 al .
Before peak stress; Al = | di *t"E 3 2Ggity w

Bl " After peak stress. Al =\E+w
Fig. 3.167: Fictitious crack model description of tensile fracture: (a) Realistic structural
behavior; (b) model of structural behavior; (c) model for description of properties of
material; and (d) presently assumed simplified properties of material (Gustafsson and
Hillerborg, 1988).
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At peak stress, a localized fracture zone, or a concentrated damage zone, is assumed to
develop. This strain localization is a result of strain instability. As the total elongation of
the specimen increases further, the stress within the specimen decreases gradually.
During this decrease in stress, the strain outside the concentrated facture zone decreases
(unloading) while the additional deformation or elongation w within the fracture zone
increases (softening) The fictitious crack model uses tension softening to go from the
initiation of micro-cracks in concrete under tension to the development of major
macroscopic cracks (Niwa, 1997). Tension softening means that once the tensile stress
reaches the tensile strength of the concrete, the stress decreases as the fictitious crack
increases in width. This behavior is represented by a tension softening curve, Fig. 3.168;
simplified models in Fig. 3.169 and Fig. 3.170. The properties of the material are thus
described by one stress-strain (o - ¢) diagram valid for the material outside the fracture
zone, and by one stress-elongation (¢ — w) diagram, valid for the additional deformation
of the material within the fracture zone, Fig. 3.167c, schematized in Fig. 3.167d. Three
parameters are required for defining the material properties and thus the magnitude of
stress, strain and elongation. These parameters can be chosen as f; (tensile strength), £
and G (fracture energy). The area enclosed by the tension softening curve is the fracture
energy of the concrete, Gr. The fracture energy is defined as the energy required to create
a fully cracked unit surface of concrete across which the tensile stress cannot be
transferred. The main drawback of the fictitious crack model is that the crack plane must
be modeled before analysis (McCabe, 1997). The fictitious crack model also cannot
provide analytical expressions which could be used in a design formula (Reinhardt, 1986).
The local fracture energy grincreases as the crack grows and then turns almost constant if

the ligament lengths are sufficiently long.
G, = jo odw (3.110)

The influence of the fictitious crack on the overall behavior of a structural element is
large when the element is small and the influence diminishes as the element becomes
larger (Reinhardt, 1986). The characteristic, or intrinsic length can be defined as:

_EG,

lch 2
/i (.111)
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This length gives a general measure of the ratio between the steepness of the (¢ - €) curve
and the (¢ — w) curve. In the case of pure bending, / EG,. approaches K. if the depth of

the unreinforced beam is about 20 times /.. Typically, /.; is in the order of 0,25 to 0,40m
which shows that the usual civil structures are too small for linear elastic fracture
mechanics. Values of /., between 80 and 1300mm have been reported (Gustaffson and
Hillerborg, 1988).

Gustaffson and Hillerborg (1988) suggest that the normalized shear strength f./f; of
geometrically similar beams is governed by the dimensionless ratio between absolute
structure size d and the characterstic length of the material /.;,. The ratio d//.;, can be
regarded as a measure of the brittleness of structures sensitive to tensile stress-induced

fracture.

/i * tensile strength of concrete

Wp : crack width over which stress
cannot be transferred

=y

0 Wo

; @ 5 (b)
% 2
o b
i 5
26,/ f,
Crack width Crack width

Fig. 3.169: Simplified softening diagrams (Mihashi and Nomura, 1993)
Gustaffson and Hillerborg (1988) studied the sensitivity of the shear strength £, with

regard to changes in the parameters d, E, Gr and f;. While the effect of the fracture energy

Gr becomes more significant, the contribution of the strength f; decreases.
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Fig. 3.170: Stress versus crack opening relation according to CEB-FIP model code 1990
(Walraven, 1993).

A decrease of the maximum particle diameter leads to an increase of the fracture energy,
Table 3.8, due to a larger dispersion of the microcracks, Fig. 3.171. Within the band of
microcracks, “crack bridging” occurs: this phenomenon is the mechanism behind the

residual stresses transmitted across the crack faces during crack widening.

Table 3.8: Fracture energy Gr from Model Code 1990 (Walraven, 1993).

max. . GY(N/mmz)

aggregate size

dmx (mm) c20 C40 C60 CBO
8 50 70 95 115
16 60 20 115 135
32 80 115 145 175

specimen depth S0mm

-—

{a) 2Zmm mortar 1464007 (c) 16 mm concrete 454034

Fig. 3.171: Influence of maximum particle diameter on crack band width (Walraven,
1993)

In Model Code 2010, the fracture energy is determined as:
G, =T3f" (3.112)

with
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Sem the mean concrete compressive strength.
Voormeeren (2011) varied the crack bandwidth in nonlinear finite element analysis to

model a reinforced concrete slab under a concentrated load close to the support. The

assumption of a band width 4 = 3V seemed to simple, since the crack bandwidth is
greatly depending on the mesh shape and the inclination of the crack in brick elements. In

case of a higher fracture energy the structure shows a stiffer response and a higher peak
load, and more ductile behavior. An increase in the crack bandwidth 4 to 4 = 1,53/?

implies a reduction of the fracture energy G/h, which in turn results in a lower ultimate
strain g, (ductility) of the concrete. Three reasons are given for this reduction of the
fracture energy:

1. The assumption that cracks in rectangular solid element meshes do not always run
along the meshing lines. Especially in the case of the slab subjected to a
concentrated load, the shear crack propagation is expected in an inclined
direction.

2. The adopted linear softening curve: in case of exponential softening, the negative
slope after reaching the tensile strength is steeper than in case of linear tension
softening. Therefore, one normally reduces the adopted amount of tensile facture
energy by a factor (1/3 — %) to simulate the slope of the real exponential softening
curve of concrete.

3. An overestimation of the fracture energy by the guidelines is also a possibility.

3.3.6.3 Fracture mechanics models for shear
Gustaffson and Hillerborg (1988) used a semi-empirical approach to show that the shear

1

EG,f. |}
strength of concrete is proportional to {Tffc] with E the elastic modulus and Gy the

fracture energy of concrete.

Pruijssers (1986) altered Kani’s tooth model (1964) to account for the shear carried by
residual tension at the crack tip, Fig. 3.172. He described that at the onset of shear failure,
the crack propagates into the compression zone, decreasing the effective depth of the
uncracked area. The concrete teeth are shown in detail in Fig. 3.173. The concrete teeth

deform due to the bond between the concrete and the longitudinal reinforcing bars. At the
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root of the teeth the tensile strain is reached and another tension-softening zone develops.
Due to this softening the teeth will slide over each other close to the root, where the crack
width is very small. The micro cracks in zone I (Fig. 3.173) undergo a shear deformation.
Aggregate interlock can be used to describe the shear stiffness of the tension softening

zone.

Fig. 3.173: Concrete teeth (Pruijssers, 1986).

Due to the fact that the tension softening zone transfers shear stress, the depth of the arch
is not the depth /4, of the uncracked compressive zone, but equals the so-called effective

shear depth 4., Fig. 3.174. The shear resistance can then be based on a simple equation:

v.o=Zarbh (3.113)

==

in which:

a a parameter representing the effectiveness of the tension-softening zone in
transferring shear stress.

A final expression is then obtained by using the Mohr-Coulomb failure criterion for the

maximum shear stress.
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Fig. 3.174: Representation of the effective shear depth 4,. (Pruijssers, 1986).

The model by Fischer and Konig (1997), is related to the fracture energy. The maximum

shear force is determined by:

(12G, +523)bd’ + H\/3d + 23/ 4d
V= (3.114)

(xs +\/§d)

Gf:651n(1+&) (3.115)
' 10
H =0,76d b 12f. (3.116)
Z=do =4 [2HTuE (3.117)
05 = 4, d
x =24 jald, (3.118)
4d\2L9
with
Sem the concrete compressive strength,
d the diameter of the reinforcement bars.

Gastebled and May (2001) developed a model based on the assumption that the release of
the main reinforcement by splitting controls the opening and the extension of the
diagonal crack. Once splitting has begun, the steel bar is released from its concrete
encasement. The drastically reduced stiffness in tension allows for the diagonal crack to
open and extend, while a rotation about the tip of the diagonal crack occurs, Fig. 3.175.
The axial and shear force in the steel bar crossing the diagonal crack can be linked to the
angle of rotation @ using the elastic properties of the bar and the geometry of the

deformation mechanism. Assuming the angle of the diagonal crack ¢ to be 45°:
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F, =?Aus = ;'sss ye (3.119)
v, =G;—?SAVS =216E;—:43y0 (3.120)
with
Gy the shear modulus of steel,
2 the reduced cross section of the bar
Oy the unbonded length of the reinforcement.

In Eq (3.120) the principles from beam theory for a circular cross section are used:
. =094,

E, 9

G, = =—E
©2(+v,) 26 °

Moment equilibrium around the free body as shown in Fig. 3.176 and assuming the
diagonal crack extent y and the internal moment arm jd to be proportional to the height of
the beam H ( y=pH and jd=yH) leads to a formula for the rotational stiffness:

9 EA
Va =Bl —B+r | == H?0 3.121
a, ﬂ(%ﬂ 7) 5 ( )

N

Differentiating this expression about the unbonded length J; yields:

50=5|a, A5JSE 5 v - A“CE 5 y s (3.122)
STy Bl — B4y |H? STy Bl = B4y |H?
ﬂ(%ﬂ 7) ﬂ(%ﬁ 7}
with
oe the variation of the unbonded length, that is, the variation of the extent of

the splitting crack.
It is now possible to write the fundamental relation of fracture mechanics as a criterion

for splitting failure:

ow,, =20G (3.123)
aV,o0=2I".ve (3.124)
with
r the fracture energy necessary to extend the splitting crack by unit length.
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Substituting the Eq. (3.122) into Eq. (3.124) gives the expression for the critical shear

T e
\/71 JAET (3.126)

To simplify this formula, the following assumptions can be made:

jd = yH =0,9H (3.127)

(3.125)

= pH =0,8H (3.128)
dage = 20mm
For the assessment of the facture energy, the formula from CEB-FIP Model Code (1990)

was used:
f 0,7
Gf = (0,0469da -0, Sd .t 26{10j in Nm/m> (3.129)

If failure occurs without further increase in load, then only the fracture energy from the
splitting crack is required to estimate the failure load. It is then possible to simplify Eq.

(3.126):
V= 4517 f“%/AE (3.130)

It remains difficult to determine the position of the critical diagonal crack a.. The point of
first shear cracking can be obtained by assuming that the diagonal crack initiates from a
flexural crack when the tensile strength of the concrete is reached due to bond stress
concentration at the steel bar level, near the flexural crack. First, the load required for a

flexural crack to exist is given as:

M p, f.bd’
p, = Mo _p NP (3.131)
a a

with k; an empirical factor. Secondly, the load at which the bond stress reaches the tensile

strength of concrete is given:
/.4,
v, =k, (1= fp, ) [ L% ba (3.132)
aS

161



with &, an empirical factor. When both loads are equal, diagonal cracking occurs and a.

can be found as:

a, =k,a, (3.133)

i=Ve.f

The suggested value for k; is 3,3. Substituting Eq. (3.133) into Eq. (3.130) provides a
predictive analytical formula for the flexural-shear capacity:

1/3
1,109( H 23 116~ 035
Vo= 20 =4 JE.bH 3.134
o ,—H( j ( p) P S ( )

a

N

The first term corresponds to the size effect, the second takes into account the slenderness
of the beam, the third and fourth terms reflect the reinforcement ratio influence and the

fifth term the influence of the concrete strength.

oy
ey M, 56
3 g z
Lr o
14
E..LZ}
4

2001).

Fig. 3.176: Free body diagram and notation definition (Gastebeld and May, 2001).

162



A new approach (Xu and Reinhardt, 2005) focuses on using the mode II fracture
toughness K, and mode II fracture energy Gy of concrete materials. A method to
determine these properties experimentally is described. The authors argue that the bond
fracture as described by Gastebled and May (2001) is a mode II fracture case and not a
mode I fracture. Therefore the mode II fracture properties should be used, replacing Eq.

(3.125) by

a 13 ¢

2
V:= (ﬂj (2 + EJASESG,,Fb (3.135)
Assuming g = 0,8 and » = 0,9 as done by Gastebled and May (2001), the following
expression is obtained:

V. = 1,372£1/bGHFASES (3.136)
a

The same assumptions for a. as in Eq. (3.136) are used and d = 0,9H is introduced, which

leads to the shear capacity of reinforced concrete beams without stirrups to be:

1/3
0,446( H
v = \/ﬁ(a_j P (1=Jp | JE G bH (3.137)

N

Using a basic fundament of linear elastic fracture mechanics there is a relationship of

K,. =+G,-E. Eq. (3.137) could then be expressed as:

E
V. =1372 /ES iq/pHK,,ch (3.138)
c aC‘

In terms of mode II fracture toughness, the expression for V. then becomes:

1/3
, 046 [E, (ﬁ) poli= o) Kbt (3.139)

" JH VE. \aq,

3.3.6.4 Discussion of fracture mechanics models
Reineck (1990) points out that fracture mechanics considerations are needed in the case

of a relatively brittle failure, wherein a discrete crack propagates into the compression
zone. However, before a refined failure criterion can be applied, there must be an
explanation of how the shear force is transferred and how the stresses and forces in the

member are calculated.
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3.3.7. Empirical models
As the mechanics of the shear problem are still not fully understood, many empirical

models have been developed. These models have been developed based on laboratory
tests on beams under point loads (for one-way shear: for example Zsutty, 1971; Tureyen
and Frosch, 2004) or slab-column connections (for two-way shear). The code

formulations which are discussed in section 5 are also based on experimental results. Of
all empirical methods which are available in the literature, Regan’s formula (Regan, 1982)

is of most interest as it is developed for slabs under concentrated loads near to supports.

3.3.7.1 Regan’s formula for concentrated loads close to supports
Based on a series of small-scale tests, Regan (1982) developed a method to calculate the

shear capacity of slabs under concentrated loads close to the support. The basis for this
method is the punching shear formula from the British code CP110. The critical
perimeter is calculated depending on the clear shear span, a,. The critical perimeter is
subdivided and the longitudinal and transverse slab properties are taken according to the
part of the perimeter under consideration as shown in Fig. 3.177.
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Fig. 3.177: Illustration of design method as proposed by Regan: (a) critical perimeter and
slab properties for parts of the perimeter for 2d;>a, >1,5d;; (b) critical perimeter and slab
properties for parts of the perimeter for a, < 1,5d;; (c) slab properties. (Regan, 1982)

The resistance of the part of the perimeter parallel to the support is calculated as:

P, = [%J Eva,d < /e u,d (3.140)
aV m
with
a, the clear distance between the load and support;
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& a depth factor & =2 T (3.141)
Ve the shear stress (resistance) v, = Em ; (3.142)
Vi the partial safety factor for materials;
u; the length of the part of the perimeter under consideration, Fig. 3.177,
feu the cube crushing strength of the concrete.
The resistance of the remainder (2u = u;) of the perimeter is calculated as:

Py =Y Evaud (3.143)
The total shear resistance is then:

P, =P,+P, (3.144)

Each part of the calculation should use the local values of the ratio of flexural
reinforcement p (p, and p;) and the effective depth d (d; and d)) as indicated in Fig. 3.177c.

At a continuous support, the total resistance to punching is multiplied with a factor a:

o= M +M, (3.145)
Ml

in which
M, the larger moment at the end of the shear span;
M, the smaller moment at the end of the shear span.
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4. Experimental data
In this section, an overview of previous experiental research of interest is given. All

results are combined into a database, which can be found in Annex 1.

4.1. Test data by Regan

Regan (1982) carried out tests for different values of the shear span, different sizes of the
loading plate and at a simple and continuous support. The size of the tested slab
specimens was 1,6m x 1,2m x 0,1m. The reinforcement layout is shown in Fig. 4.1a and
the test setup in Fig. 4.1b. The maximum aggregate size was 20mm and the yield strength
of the steel was f, = 500 MPa. The effective depth d equals 83,5mm, resulting in a

reinforcement percentage of 0,602%. The test results are given in Table 4.1, in which

feu the concrete cube compressive strength;
a, the clear shear span;
SS loading at the simple support;
CS loading at the continuous support;
P punching shear failure;
WB wide beam shear failure.
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Fig. 4.1: a) Reinforcement layout; b) test setup, Regan (1982).
Table 4.1: Test data from Regan (1982).
Slab Sfeu Location Dimensions of load a, a/d | P, | Failure
no | (N/mm? of load b x 1 (mm) (mm) (kN) | mode
1 29,3 SS 100 x 100 120 2,93 | 120 P
CS 100 x 100 120 2,63 | 150 P
2 27,1 SS 100 x 100 80 2,93 | 130 P
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CS 100 x 100 80 2,16 | 180 P
3 35,4 SS 100 x 100 40 2,46 | 195 P
CS 100 x 100 40 1,68 | 250 WB
4 41,3 SS 100 x 100 20 1,98 | 230 P
5 35,7 SS 200 x 100 80 1,44 | 190 P
6 32,4 SS 100 x 200 80 2,16 | 160 WB
CS 100 x 200 80 2,75 | 160 WB
7 43,2 SS 200 x 100 40 3,05 | 200 P
CS 200 x 100 80 1,68 | 230 P

Regan and Rezai-Jorabi (1988) reported a series of tests on one-way slabs under

concentrated loads at larger distances from the support and leading to either wide beam

shear failure or punching shear failure. The test setup is shown in Fig. 4.2. The specimens

were reinforced with Swedish steel type Ks60s. The 10mm longitudinal bars had a yield

strength of 670MPa and an ultimate strength of 955MPa. The maximum aggregate size

was 10mm for slabs 1-6 & 24-26 and 20mm for the other slabs. The results of the tests

are given in Table 4.2, in which

Ct
¢
a
pi
£

the dimension of the loaded area transverse to the span of the slab;

the dimension of the loaded area parallel to the span of the slab;

the shear span;

the amount of longitudinal reinforcement;

the concrete cube compressive strength.

The failure modes are denoted WB for wide beam, P for punching, P/WB for a

combination of punching shear and wide beam shear failure and P2 for punching around

both concentrated loads.

i

iliﬂJrl ‘JWU
)/
£

B

01E
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2 THE SIMENSIONS OF THE LOADING BEARINGS INCREASED WITH €}

Fig. 4.2: Test arrangements, Regan and Rezai-Jorabi (1988).
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Table 4.2: Summary of data for slabs loaded with two symmtrical loads and with single

central loads (denoted R), Regan and Rezai-Jorabi (1988).
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Test| f.° pi d; a a/d b ¢ C V., | Mode
No. | (MPa) | (%) | (mm) | (mm) (mm) | (mm) | (mm) | (KN)
37,8 | 1,66 | 83 450 |542 | 400 75 75 | 62,5 | WB
37,8 | 1,58 | 83 450 | 542 | 600 75 75 85 WB
37,8 | 1,54 83 450 | 542 | 800 75 75 1 97,5 | WB
28,1 | 1,66 | 83 450 | 5,42 | 400 | 400 | 100 | 54,5 | WB
28,1 | 1,58 | 83 450 | 542 600 | 600 | 100 | 80,0 | WB
6 28,1 | 1,54 | 83 450 | 5,42 | 800 600 100 | 96,5 | WB
10 | 334 |[1,66| 83 450 | 5,42 | 400 | 150 | 100 | 52,5 | WB
11 334 | 1,66 | 83 450 | 5,42 | 400 300 100 | 55,0 | WB
12 334 |1,58] &3 450 | 5,42 | 600 150 100 | 76,0 | WB
13 334 |1,58] &3 450 | 5,42 | 600 300 100 | 79,5 | WB
14 31,0 | 1,54 ] &3 450 | 5,42 | 800 150 100 | 92,5 | WB
15 30,8 | 1,54 | &3 550 ]6,63 | 800 150 100 | 85,0 | WB
16 | 31,2 | 1,54 | 83 450 | 5,42 | 800 | 800 | 100 | 108,0 | WB
17 31,0 | 1,51 83 450 |5,42 | 1000 | 100 75 90,0 | WB
18 | 31,2 | 1,51 ] 83 450 | 5,42 | 1000 | 300 | 100 | 120,0 | WB
19 | 29,0 | 1,51 ] 83 450 | 5421000 | 150 | 100 |111,0| WB
20 | 30,8 |1,51| 83 450 | 5,42 | 1000 | 1000 | 100 | 122,5| WB
21 | 382 |1,64| 80 450 |5,63 | 1200 | 70 100 [ 117,5| P
22 | 37,0 | 1,64| 80 450 |5,63 | 1200 | 150 | 100 | 121,5 | P/WB
23 | 354 |1,64| 80 450 |5,63 | 1200 | 300 | 100 | 1250 | WB
24 | 38,6 |1,64| 80 450 |5,63 | 1200 | 100 | 300 |150,0| WB
25 30,3 | 1,64 | 80 550 |6,88 | 1200 | 150 100 | 105,8 | P2
26 | 29,7 |1,64| 80 350 14,38 ] 1200 | 150 | 100 |137,5| WB
14R | 31,0 | 1,54 | 83 450 | 5,42 | 800 75 100 | 77,0 P
15R | 30,8 | 1,54 | 83 450 | 5,42 | 800 150 100 | 86,0 P
16R | 31,2 |1,54| 83 450 | 5,42 | 800 600 100 | 116,5| WB
17R | 31,0 | 1,51 83 450 |5,42 | 1000 | 600 100 | 137,5| WB
19R | 29,0 | 1,51 83 450 |5,42| 1000 | 150 100 | 85,0 P
20R | 30,8 |1,51| 83 450 | 5421|1000 | 300 | 100 |1325| P

QB WIN|F-

4.2. Test data by Furuuchi et al.
Furuuchi, Takahashi, Ueda and Kakuta (1998) tested the shear capacity of structural

elements in between beams and slabs, with small shear span to depth ratios, which they
called “deep slabs”. The goal of this series of experiments is to determine which effective
width has to be taken when using the shear capacity equation for deep beams. The
reinforcement is 9¢16mm for b,, = 500mm and 12¢16mm for b,, = 650mm. The effective
depth is 160mm. For the loading and supporting plates the width and depth are 50mm and
10mm respectively. The longitudinal bars have a yield strength of 345MPa and the
stirrups 295MPa. Stirrups of @ 10mm with 50mm spacing are used outside of the
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supporting points, Fig. 4.3. The maximum aggregate size is not given. The target concrete

strengths are 24,5MPa for specimens A and B and 30,0MPa for specimens C and D. The

experiments are carried out at an age of 7 days. The test results are given in Table 4.3.

VaXB0 o Y XKB0 o

£| DI1G(SD345)
I

D10 Stirrups j

1 < ¥ i -2
E—— ar T 4 |§ | HEERRN
H 1 HH P " Oil jack
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Fig. 4.3: Specimen and loading system, Furuuchi et al. (1998).
Table 4.3: Test data from Furuuchi et al. (1998).

Name [a (cm)| b, (cm) | d(cm) | p (%) | v;(cm) [v, (cm)| £’ (MPa)| P, (kN)
A-10-10| 28 50 16 2,23 10 10 26,1 294
A-10-20 28 50 16 2,23 10 20 20,2 294
A-10-30 28 50 16 2,23 10 30 23,8 333
A-20-10| 28 50 16 2,23 20 10 19,6 340
A-30-10( 28 50 16 2,23 30 10 23,8 450
B-10-10| 28 65 16 2,29 10 10 29,4 368
C-10-10f 20 50 16 2,23 10 10 34,6 480
C-20-10f 20 50 16 2,23 20 10 32,1 525
C-30-10f 20 50 16 2,23 30 10 31,5 626
C-50-10f 20 50 16 2,23 50 10 34,9 811
C-10-20] 20 50 16 2,23 10 20 36,4 483
C-10-30f 20 50 16 2,23 10 30 30,7 520
D-10-10| 36 50 16 2,23 10 10 35,2 294

4.3. Test data from University of Toronto

Sherwood, Lubell, Bentz and Collins (2006) reported a series of tests on thick slabs and

wide beams. Details of these experiments can be found in Sherwood (2008). The

properties of specimen AT-1 are given in Fig. 4.4. The results are given in Table 4.4. To

investigate the influence of the member width, a test series AT-2 is carried out, Fig. 4.5.

Steel reinforcement types 15M (f, = 452MPa, £, = 595MPa) and 25M (f, = 465MPa, f, =
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618MPa) are used. The size of the load plates is 152mm x 152mm and the a/d ratio is
2,77. The test results are given in Table 4.5, in which

Pw the amount of longitudinal reinforcement;
Pst the amount of shrinkage and temperature reinforcement;
1’ the cylinder compressive strength of concrete.

From these observations, Sherwood et al. (2006) concluded that the member width does
not affect the shear capacity. Another series (AT-3) was designed to study the effect of
shrinkage and temperature reinforcement. The specimen lay-out and test setup is shown
in Fig. 4.6 and the test results are given in Table 4.6. The specimens are loaded with a
line load. From these results Sherwood et al. (2006) concluded that temperature and
shrinkage reinforcement does not influence the shear capacity of one-way spanning

members. All three series have a maximum aggregate size of 10mm.
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Fig. 4.4: Test specimen AT-1 (Sherwood, 2008).

Table 4.4: Experimental results AT-1 (Sherwood, 2008).
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Specimen h d b, Pw I P,
(mm) | (mm) | (mm) | (mm) | (%) | (MPa) | (kN)
AT-1-East | 1005 916 2016 5400 | 0,76 64 2266
AT-1-West 2441
'?E_.'I'lllﬂoﬁh
25m@izs W 15M@223 EW +Fie (Applied Load)
X.
ELEVATION i \ East Face
d=440 470
Dextiih wdn2ee. . al Nz z
Dbl il - 2 m =
diee Table 4-5 for as-built dimensions Direction | o
\ o |z
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Fig. 4.5: Design of AT-2 series of test specimens (Sherwood, 2008).

Table 4.5: As-built properties and experimental observations AT-2 series (Sherwood,

2008).
Specimen h d b, | Supportsize | p, Ps+t f’ P,
(mm) | (mm) | (mm) | wx L, mm) | (%) | (%) | (MPa) | (kN)
AT-2/250N | 469 | 437 | 250 152x 152 [0915| -- 37,7 | 229
AT-2/250W | 471 | 439 | 252 252x 152 10,904 | -- 38,5 | 224
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AT-2/1000N | 470 | 438 | 1002 | 152x 152 [0911]0,191 | 37,9 | 880
AT-2/1000W | 471 | 439 | 1002 | 1002x 152 ]0,909 | 0,190 | 39,0 | 942
AT-2/3000 | 472 | 440 | 3005 152x 152 0,908 | 0,190 | 40,6 | 2564
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Fig. 4.6: Specimen design and test setup, AT-3 series, (Sherwood, 2008).

Table 4.6: As-built properties and experimental observations AT-3 series, (Sherwood,
2008).
Specimen | A d b, L Pw | Pstt | [ P,
(mm) | (mm) | (mm) | (mm) | (%) | (%) | (MPa) | (kN)
AT-3/N1 | 339 | 307 | 697 | 2080 [093] O 37,5 | 475
AT-3/N2 | 339 | 306 | 706 | 2080 {093 | O 37,1 | 517
AT-3/T1 | 338 | 306 | 700 | 2080 | 0,93 0,19 | 37,8 | 506
AT-3/T2 | 339 | 307 | 706 | 2080 | 0,93 ]0,19| 37,1 | 497

Lubell, Bentz and Collins (2009a) experimentally investigated the influence of the
longitudinal reinforcement on one-way shear in slabs and wide beams. The test
specimens are shown in Fig. 4.7. Specimen AY1 contains 15mm diameter high strength
deformed reinforcement provided by Dywidag and spiral reinforcement (D6 deformed

wire) at the end of each Dywidag bar. The specimen properties and test results are shown
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in Table 4.7. The data from specimen AW8 are taken from Lubell, Bentz and Collins

(2009b). All specimens had a maximum aggregate size of 10mm.
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Fig. 4.7: Typical configuration of test specimens, Lubell (2006) and Lubell et al. (2009a
and 2009b).

Table 4.7: Specimens properties and test results, Lubell et al. (2009).

Specimen | b, d h L ad | p 1 Bearing Vau
(mm) | (mm) | (mm) | (mm) (%) | (MPa) plates (kN)
(mm x mm)

AY1 249 | 434 | 467 | 2600 | 3,00 | 0,328 | 40,7 152 x 249 85

AX7 704 | 287 | 335 | 2080 [3,62 ] 1,04 | 41,0 152 x 704 249

AX6 703 | 288 | 338 | 2080 [3,61 ] 1,73 | 41,0 152 x 703 281

AX8 705 | 289 | 339 | 2080 [3,60 | 1,72 | 41,0 152 x 152 272

AW1 1170 | 538 | 590 | 3700 | 3,44 ] 0,79 | 36,9 305 x 305 585

AW4 1168 | 506 | 590 | 3700 | 3,66 | 1,69 | 39,9 305 x 305 716

AWS 1169 | 507 | 591 | 3700 |3,65| 1,69 | 394 152 x 1170 800

4.4. Test data from EPFL
Vaz Rodrigues, Muttoni and Olivier (2006) tested two ¥ models of a bridge slab

cantilever. Loading was applied according to the traffic loads from EN 1991-2. The
dimensions of the tested cantilever are 2,78m span and 10,0m length. The a/d ratio for the
concentrated load Q (test DR1c and test DR2-c) is a/d = 4,66 based on the value of d =
278 mm at the position of the load. The concrete cover is 30mm. The hot rolled
reinforcement steel has a yield strength of 515 MPa for bars with 16 mm and 22 mm
diameter, and 535 MPa for bars with 12 mm diameter. For DR1, the top reinforcement of
the top layer at the fixed end consists of 16mm diameter bars at 75Smm spacing (p =
0,79%). For DR2, the top reinforcement of the top layer at the fixed end consists of
14mm diameter bars at 75Smm spacing (p = 0,6%). The results are given in Table 4.8, in

which:
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E. the modus of elasticity of the concrete;

ag the maximum aggregate size.

The cracking patterns are shown in Fig. 4.9 and Fig. 4.10. The size of the load plate was
300mm x 300mm x 30mm. The total force in the prestressing bars is 7MN. The observed
failure is reported as between beam shear and punching. The measurements made of the
slab thickness in the zone of shear failure indicate possible redistributions of the internal
shear flow, with the progressive formation of shear cracks until equilibrium is no longer

possible, Fig. 4.11.
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Fig. 4.8: Slab dimensions, reinforcement layout and applied loads for the tests,
dimensions in mm (Vaz Rodrigues, 2007).

Table 4.8: Experimental results, Vaz Rodriguez et al. (2006)

Test fe E. p a, | Failure Load
(MPa) | (MPa) | (%) | (mm) | Qg (kN)
DRla | 39,1 | 36000 | 0,78 | 16 1397
DR1b | 39,9 | 36100 | 0,78 | 16 1025
DR1c | 40,8 | 36200 | 0,79 | 16 910
DR2a | 38,9 | 36300 | 0,60| 16 961
DR2b | 42,0 | 37400 | 0,60 | 16 857
DR2c 40 36000 | 0,6 16 719
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Fig. 4.10: Failure surfaces after cutting of the slab (Vaz Rodrigues et al., 2008).
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Fig. 4.11: Measurement of the variation of slab thickness (test DR2a). (Vaz Rodrigues,
2008)
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Fig. 4.12: linear elastic distribution of shear forces in kN/m, including self-weight along
control perimeters at d/2 of the applied loads: (a) test DR1-a; (b) test DR2-b and (c) test
DR2-c. (Vaz Rodrigues, 2008)

Vaz Rodrigues et al. (2008) suggest the use of a three-sided control perimeter in the case
of combined one-way and two-way shear action, as found in cantilevering cross sections,

Fig. 4.13.
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Fig. 4.13: Three-sided control perimeters used with ACI 318-05 and EC2 2004: (a)

generic perimeter; (b) perimeter for test DR1-a considering the four concentrated loads;
(c) perimeter for test DR1-a around the concentrated loads near the tip of the cantilever
and for test DR2-a; (d) perimeter for tests DR1-b and DR2-b and (e) perimeter for tests

DR1-c and DR2-c. (Vaz Rodrigues et al, 2008.)

Rombach et al. (2009) explain the observed bearing capacity as follows: the shear crack

occurs early during the test, after which stress redistribution can occr, leading to a higher

failure load. They also point out that distance between the edge and the loading plate

(400mm) is very small, and not possible in real bridge deck slabs.

45. Test data from ETH

A test program of 30 shear tests on 15 reinforced concrete slabs with shear span to overall

depth ratios a/h of 3,2 and overall depths 4 ranging from 200 to 800mm is carried out and

described by Jaeger (2002, 2005, 2007). These experiments (Jaeger, 2002) aimed at:
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- quantifying the size effect for the shear strength of thick slabs with and without
transverse reinforcement,
- the influence of angle between the span direction and the reinforcement direction,
and
- the influence of the in-plane reinforcement ratio p, and py on the shear strength of
reinforced concrete slabs.
The specimens without shear reinforcement failed in shear without yielding of the
flexural reinforcement. The results of four slabs are used for a prediction competition
(Jaeger and Marti, 2009; discussion by Pujol et al., 2010). Test 1 slab C (B1V1 in Jaeger
(2005, 2007)) and test 1 slab D (B3V1 in Jaeger (2005, 2007)) do not contain stirrups,
Fig. 4.14 and Fig. 4.18. The load wi applied at the cantilevering end of the slab. The
maximum aggregate size is 16mm. The load is placed over the entire width and has
dimensions 800mm x 100mm. The relevant test results from this test series (Jaeger and

Marti, 2009 and Jaeger, 2005, 2007) are given in Table 4.9.
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Fig. 4.14: Test concept for slabs C (B1) and D (B3), test concept for B-series, dimensions
in mm. (Jaeger and Marti, 2009)
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Fig. 4.16: a) Longitudinal section of reinforcement of A1; b) Plan of reinforcement of
slab A1; c¢) Longitudinal reinforcement of A3; d) Plan of reinforcement of A3, Jaeger
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Fig. 4.17: a) Longitudinal section of reinforcement of A4; b) Plan of reinforcement of
A4; c) Longitudinal reinforcement of AS; d) Plan of reinforcement of A5, Jaeger (2005).
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Fig. 4.18: a) Longitudinal section of reinforcement of slab C/B1; b) Plan of reinforcement
of slab C/B1; c) Longitudinal reinforcement of slab D/B3; d) Plan of reinforcement of
slab D/B3, Jaeger and Marti (2009).
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Table 4.9: Material properties of relevant tests, based on Jaeger and Marti (2009), Jager

(2005, 2007).

S I ab ﬂw ﬂc E c ﬁt f:vy, stat f;'u,stat

(MPa) | (MPa) | (GPa) | (MPa) | (MPa) | (MPa)
AlV1| 58,1 524 | 29,2 | 4,56 | 480,8 | 558,7
A3V1| 633 58,8 | 37,7 | 4,16 | 546,0 | 630,3
A4V1| 58,5 | 46,8 | 36,7 | 3,62 | 546,0 | 630,3
A5V1 | 59,1 56,7 | 36,1 | 4,00 | 546,0 | 630,3
BiVvl| 58,7 | 524 | 31,8 | 429 | 539,0 | 619,0
B3V1 | 59,5 53,7 | 36,0 3,9 | 539,0 | 619,0
B4Vl | 61,3 542 | 354 | 3,75 | 533,6 | 613,7
B5V1| 594 | 51,8 | 33,9 | 4,14 | 533,6 | 613,7
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Table 4.10: Geometric properties of relevant tests, based on Jaeger and Marti (2009),
Jager (2005, 2007).
Slab | A& 0o | dn Px P,
(mm) | (°) | (mm) | (%) | (kN)
AlLV1 | 200 [45| 156 | 1,538 ]169,2
A3V1| 200 | 0 | 162 |1,745]265,6
A4V1| 200 | 45| 168 |0,952 | 140,5
A5V1| 200 | 0 | 174 | 1,056 |222,1
B1Vv1l | 500 [45| 390 | 1,538 | 852
B3V1| 500 | 0 | 405 | 1,745 | 1282
B4V1 | 500 |45 420 0,952 | 804
B5V1 | 500 | 0 | 435 | 1,056 | 1170

In which:

h slab thickness;

®o direction of bending reinforcement;
dn average effective depth;

Dy effective reinforcement ratio in x-direction;
Sew concrete cube strength;

See concrete cylinder strength;

E. modulus of elasticity;

Ser tensile strength;

Sovstat yield strength of 30mm bar;

Soustat ultimate strength of 30mm bar;

P, ultimate load.

4.6. Experiments on wide beams and slabs
Graf (1933) carried out tests on reinforced concrete slabs under concentrated loads near

to supports. The effective width was assumed to be b.; = 5d but experiments were needed
to confirm this. Three slabs (1243, 1244, 1245) are cast, Fig. 4.21, and on every slab, four
tests are reported (a;, az, by, by). The size of slab 1243 is 2500mm x 2000mm; slab 1244
is 2050mm x 2004mm and slab 1245 is 2050mm x 2404mm. The size of the load was
100mm x 150mm. Bent bars are provided close to a; and a,, but the shear reinforcing
action of these bars is questionable as the bars did not cross the shear span. The distance
d;is 115mm for 1243, 104mm for 1244 and 106mm for 1245 and d, is 105mm for 1243,

92mm for 1244 and 94mm for 1245. The maximum aggregate size is 30mm. Conversion
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of kg-m units to N-m units is made assuming g=9,807 m/s’. The results are given in

Table 4.11, in which

p the amount of longitudinal reinforcement;

5 the yield strength of the reinforcement steel;

fu the ultimate strength of the reinforcement steel;

Je begin the mean concrete compressive strength of cylinders tested at beginning of

a series of tests on a specimen;
e end the mean concrete compressive strength of cylinders tested at end of a
series of tests on a specimen.
Photographs of the failed specimens are given in Graf (1933), and from the cracking
pattern it is deteremined whether the failure mode is punching (P) or wide beam shear
failure (WB). Some photographs show a partial punching cone; these failures have been
denoted P/WB. The failure pattern of a, (Fig. 4.22) for example shows a half developed

punching cone at the left side and then shear cracks running towards the free edge at the

right side.
Table 4.11: Results of tests by Graf (1933).
Specimen Test | ad | p; Pi 5 Ju S begin | S ena P, Failure
(%) | (%) | (MPa) | (MPa) | (MPa) | (MPa) | (kN) mode

1243 a 1,13 | 0,65 | 0,27 | 289 400 16,6 21,6 314 WB
ay 2,17 235 P/WB
by 0,65 355 P
b, 1,52 206 WB

1244 ay 1,92 | 1,14 | 0,44 | 435 708 12,7 13,9 275 WB
a 2,40 196 WB
b; 1,68 157 WB
b, 2,16 147 WB

1245 a, 1,89 | 1,52 | 0,43 | 412 616 23,7 23,5 333 P/WB
a 2,36 257 WB
by 1,65 196 P/WB
b, 2,12 206 P/WB
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Fig. 4.21: Test specimens from Graf (1933): a) specimen 1243; b) specimen 1244; c)
specimen 1245.
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Fig. 4.22: Picture from the bottom face of 1243 showing the failure patterns of a; and a,.
(Graf, 1933).

Richart and Kluge (1939) tested two one-way slabs on which they changed the position
of the load, Fig. 4.23. The relevant tests are: Slab No. 1, test 2 and test 3; and Slab No. 2,
test 2. The authors wrote: “In most cases the slab punched through...” and therefore it is
concluded that the tests with loading close to the support might have shown a wide beam
shear failure, but pictures of the slabs after failure are not included in the report for these
particular tests. The effective depth was 139,7mm to the longitudinal reinforcement and
127mm to the transverse reinforcement. The support width was 101,6mm. The
compressive strength of the concrete is measured on 6in by 12in cylinders (15,2cm x
30,5cm). The first slab is graded from 6,35mm to 38,1mm and the second slab from
6,35mm to 25,4mm. The relevant test data have been converted to SI units and are shown

in Table 4.12, in which b4 equals the distance from the load to the free edge.
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Fig. 4.23: Location and points of application of loads producing local failure (Richart and
Kluge, 1939).

Table 4.12: Relevant test data from Richart and Kluge (1939).
Specimen | Test | a/d | beage | i Pt 5 Ju f’ P,
(mm) | (%) | (%) | (MPa) | (MPa) | (MPa) | (kN)
Slab 1 2 2,72 | 2438 10,907 | 0,998 | 313,7 | 501,9 | 25,6 | 3425
3 2,72 | 1219 10,907 | 0,998 | 313,7 | 501,9 | 25,6 |391,4
Slab 2 2 1,64 | 1016 | 0,907 | 0,998 | 313,7 | 501,9 | 29,1 |369,2

Richart (1948) tested a series of rectangular slabs. Six footings of 1,83m x 2,74m (501 —
503) and six footings of 1,52m x 3,05m (504 — 506) are tested. The loading area is a

356mm square concrete stub. The test setup is shown in Fig. 4.24. The maximum
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aggregate size is 25,4mm. Jones and Laughlin hard grade deformed billet steel bars are
used. The bars of footings 503 and 506 are welded into mats. All bars are hooked at the
ends, except in footings 503 and 506. The compressive strength of the concrete is
measured on 6in by 12in cylinders (15,2cm x 30,5cm) and is found to be 24,8 MPa. The
test data of series 5 have been converted to SI units and are given in Table 4.12. The
failure mode is abbreviated as DT (diagonal tension) or T (tensile failure of the
reinforcement). The main flexural reinforcement ratio is denoted p;, and the transverse
flexural reinforcement p;,. The measured strains in the reinforcement bars are shown in
Fig. 4.25 and Fig. 4.26.

Richart (1948) concluded that the average stress in the long bars in the rectangular
footings agree very well with that calculated from the full static bending moment at loads
approaching the ultimate capacity of the footing. Further, he concluded that the maximum
shearing stresses in these footings are definitely greater than those developed in square
footings. The main bars running lengthwise of the footing behaved normally, but the
stress in the short bars was highly concentrated at mid-length of the footing. This
suggests that in these footings a somewhat greater width of shearing section is effective
than that prescribed in the ACI design procedure of that time. It seems logical that as the
ratio of length to width of the footings increases, the failure section must change from a
pyramidal punching surface to the usual inclined diagonal plane across the width of the

member, as in a beam.
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Fig. 4.24: Rectangular footing in test machine (Richart, 1948).
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Table 4.13: Test data from rectangular footings by Richart (1948).
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No. h d ad | pi 5 Py 5 [’ P, | Failure
(mm) | (mm) (%) | (MPa) | (%) | (MPa) | (MPa) | (kN) | mode
501a | 305 | 254 |3,60|1,38| 424,7 10,53 | 530,2 | 254 |1753| DT
501b | 305 | 254 |3,60|1,38 | 424,7 10,53 | 530,2 | 25,7 |1690 | DT
502a | 457 | 406 |225]0,54 | 419,9 | 0,20 | 530,2 | 24,3 |2464 | T/DT
502b | 457 | 406 |2,25]0,54| 419,9 10,20 | 530,2 | 22,6 |2571 | T/DT
503a | 457 | 406 |225]0,54 | 419,9 10,20 | 530,2 | 244 |2607 | T/DT
503b | 457 406 |2,2510,54| 4199 10,20 | 530,2 | 24,0 |2447 | T/DT
504a | 305 | 254 |3,00|1,77 | 510,2 | 0,34 ] 530,2 | 249 |1446| DT
504b | 305 254 13,00 1,77 | 510,2 | 0,34 | 530,2 | 25,8 | 1557 DT
505a | 457 406 | 1,88 0,68 | 424,77 | 0,13 | 530,2 | 254 |2438 | T/DT
505b | 457 406 | 1,88 |0,68 | 424,77 | 0,13 | 530,2 | 25,7 |2335| T/DT
506a | 457 406 | 1,88 0,68 | 424,77 | 0,13 | 530,2 | 23,1 |2224| T/DT
506b | 457 406 | 1,88 10,68 | 424,77 | 0,13 | 530,2 | 26,3 |2224| T/DT

Serna-Ros et al. (2002) tested wide beams (750mm) with an effective depth of 206mm

and a total height of 250mm. Given the dimensions in Fig. 4.27, the a/d ratio of all tests is

4. The longitudinal reinforcement is kept constant along the beam. The compression

reinforcement is 7 16mm bars (p = 0,94%) and the tension reinforcement is 7 20mm bars

(p =2,2%). The size of the loading plate, the yield strength of the reinforcement bars and

the maximum aggregate size are not given. The results of the relevant tests are given in

Table 4.14.
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Fig. 4.27: Test arrangement, dimensions in millimeters (Serna-Ros et al., 2002).

Table 4.14: Relevant test data from Serna-Ros et al. (2002).

Specimen | by, | f’ Vi exp
(mm) | (MPa) | (kN)
RO 750 29,2 244
A0 750 | 24,5 187
Co 750 25,2 182
DO 300 32,6 |218
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Collins, Bentz and Sherwood (2008) have collected a database of 1601 shear tests. The
tests on wide beams (b > 500mm and 4/b >1 ) have been represented in Table 4.15, in
which by, is the longitudinal length of the bearing plate. The value of the failure capacity
V. includes the self weight of the specimen. “R & F” refers to Rajagopalan and Ferguson.
Specimens 11, 16, 2, 12 and 3 of Aster and Koch have bar cutoffs. The original data can
be found in: Leonhardt and Walther (1962); de Cossio (1962); Kani (1979); Rajagopalan
and Ferguson (1968) and discussion by Brock et al. (1969); Aster and Koch (1974);
Reineck, Koch and Schlaich (1978) and Heger and McGrath (1980). The size of the
loading plate is not given in the paper by Collins, Bentz and Sherwood (2008). Diaz de
Cossio (1962) uses different lengths of loading plate: tests A50-25A, A50-25B, 64-8A
and 64-8B use a line load, 64-8C and 64-8D use a load width equal to half the total width
and 64-8E and 64-8F use a load width equal to a quarter of the total width. Rajagopalan
and Ferguson (1968) use a line load for testing specimen S-15. Aster and Koch (1974) do
not specify the size of the loading plate. Leonhardt and Walther (1962) use a
concentrated load at one side and a line load at the other side, Fig. 4.29. All slab strips
except P2 and P4 failed at the side of the concentrated load. Heger and McGrath (1980)

use a loading plate of 25,4mm wide over the full length of the specimen.

Fig. 4.28: Slab test setup, Diaz de Cossio (1962).
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Table 4.15: Wide beam test data from Collins, Bentz and Sherwood (2008).

Author

Beam

b

h

d

a/d

b sup

Pw

‘/;’

V,

a 5 f
Name (mm) | (mm) | (mm) (mm) | (%) | (MPa) (r{;m) ({\/I Pa) | (kN)
Leonhardt | P2 503 162 142 | 3,45 45 095 | 134 30 427 76,2
& Walther | P3 502 162 142 | 3,45 45 1,11 13,4 30 427 81,1
P4 500 165 145 | 338 | 45 1,40 | 14,5 30 427 100,8
P5 503 165 145 | 338 | 45 1,86 | 134 30 427 100,8
P8 502 168 148 | 3,31 45 091 | 249 30 427 88,0
P9 500 166 146 | 3,36 | 45 1,86 | 249 30 427 105,8
P10 503 122 102 | 3,43 45 1,10 12,4 30 427 59,3
P11 498 203 183 [ 344 | 45 1,11 | 137 30 427 101,2
P12 501 162 142 | 246 | 45 0,95 | 12,6 30 427 100,5
de Cossio | 64-8F 639 102 83 4 17 1,88 | 304 12 373 71,3
64-8E 639 102 87 4 17 1,92 | 31,2 12 373 67,7
64-8C 640 102 82 4 16 1,90 | 28,5 12 383 85,2
64-8D 640 102 81 4 16 1,95 | 285 12 383 81,6
48-8B 505 102 82 4 16 1,98 | 27,8 12 399 65,3
64-8A 640 105 82 4 16 1,90 | 28,5 12 397 87,0
64-8B 636 102 81 4 16 1,94 | 29,2 12 440 85,5
A50-25A 501 305 253 | 2,67 51 1,81 | 345 12 399 188,7
A50-25B 502 305 252 | 2,67 50 1,85 | 34,1 12 394 171,2
Kani 271 611 305 269 | 6,07 | 152 [ 2,75 | 27,0 19 377 | 2172
272 611 305 271 | 5,02 | 152 [ 2,73 | 27,0 19 377 | 2278
273 612 305 271 | 4,01 | 152 [ 2,72 | 27,2 19 377 | 206,2
274 612 305 270 3,02 | 152 [ 2,73 | 27,2 19 377 | 250,2
R&F S-15 761 311 269 | 4,16 | 50 [0,63 ] 33,0 13 524 150,8
Aster & 11 1000 | 539 500 | 3,65| 100 | 0,46 | 24,6 30 535 | 2674
Koch 16 1000 | 794 750 | 3,67 | 150 | 042 | 304 30 536 | 406,7
2 1000 | 281 250 | 3,68 50 | 0,64 269 30 554 | 218,0
12 1000 | 540 500 |3,65] 100 | 0,65 | 273 30 535 | 330,2
3 1000 | 289 250 | 3,68 50 1091 | 273 30 535 2225
8 1000 | 544 500 | 5,50 | 100 | 0,63 | 31,1 30 535 | 287,1
9 1000 | 544 500 | 5,50 | 100 | 0,63 | 19,9 30 535 | 260,6
10 1000 | 544 500 | 5,50 | 100 | 0,63 | 20,0 30 535 ]261,6
17 1000 | 794 750 | 3,67 | 150 | 042 | 287 30 535 | 363,5
Reineck N8 500 250 226 | 3,50 10 0,79 | 258 16 501 101,5
Koch N6 500 250 226 | 2,50 10 0,79 | 258 16 501 117,5
Schlaich N7 500 250 225 | 2,50 10 1,39 | 24,6 16 441 139,5
Heger & SW9-0A 914 224 184 [324] 50 |0,62 | 485 19 603 167,6
McGrath SW9-0B 914 227 190 [ 3,14] 50 | 0,60 | 485 19 603 155,5
SW9-6A- 914 225 188 | 2,03 50 | 0,61 | 485 19 603 | 267,7
15
SW9-0B- 914 225 186 | 2,05 50 | 0,62 | 485 19 603 | 270,7
15
SWOM-0A 914 225 197 |3,19 50 | 061 | 485 19 594 1557
SWIM-0B 914 226 185 | 3,23 50 | 0,62 | 485 19 594 174,3
SWIM-0A- | 914 225 190 | 2,01 50 | 0,60 | 48,5 19 594 | 299,8
15
SWIM-0B- | 914 226 174 | 2,19 50 | 0,66 | 48,5 19 594 | 308,1
15
SW14-0A 914 227 191 | 3,13 50 1093 | 49,0 19 673 197,2
SW14-0B 914 226 186 | 3,21 50 096 | 49,0 19 673 195,9
SWI18-0A 914 225 184 | 3,25 50 1,24 | 483 19 633 | 202,6
SW18-0B 914 225 180 | 3,31 50 1,27 | 483 19 633 | 2228
SW18-0A- 914 227 179 | 2,13 50 1,28 | 483 19 633 | 378,9
15
SW18-0B- 914 227 176 | 2,17 50 1,30 | 483 19 633 | 390,2
15
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Cullington, Daly and Hill (1996) tested a slab strip on site and two similar slab strips in

the laboratory. The dimensions of the specimens are 2 = 305mm, / =4,37m and b = 1m.

The concrete cover is assumed to be 35mm, resulting in d = 257mm. The longitudinal
reinforcement is ¢ = 25mm with spacing s = 115mm. This results in p,, = 1,54%. The
support width is b,, = 350mm on site. The support width of the laboratory tests is

unknown. The load is a full width knife-edge load. The maximum aggregate size is

unknown. The test setup in the laboratory is shown in Fig. 4.30. The test results are given

in Table 4.16.

(;

Reaction Frame

Load Cell

4— Hydraulic jack

Spreader

Fig. 4.30: Configuration for laboratory test (Cullington, Daly and Hill, 1996).

Table 4.16: Test results from Cullington, Daly and Hill (1996).

Concrete

S—
Aputment
Plinth

Rocking / Sliding —¥ oad Call

Bearing

Concrete
Plinth

Specimen | a/d | f.’ 5 V. | Failure
(MPa) | (MPa) | (kN) | Mode
on site 3,7 56 254 440 | Flexure
lab 1 60 300 700 | Shear
lab 2 1 60 300 | 1060 | Shear

Coin and Thonier (2007) tested 7 slabs in one-way shear. The concrete cover is lcm,

concrete class B25/30 and steel with £, = 500MPa is used. The maximum aggregate size

is 20mm. The dimensions of the specimens are given in Fig. 4.31. The reinforcement

layout of slabs 1, 2 and 3 is given in Fig. 4.32 and of slabs 5, 6 and 7 is given in Fig. 4.33.

The results are given in Table 4.17. The value of a/d has been determined by taking a as

the distance from the center of the support to the center of the load (37cm) and d = 8,5cm

and equals 4,35 for all tests.
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Fig. 4.31: Specimens 1 to 7 (Coin and Thonier, 2007).

193



»l.m—.mPAuw‘M- Adew , pove B 1T EE U LW 'P:l‘._.J n.u.uguua%um
F A o 3 [ o
Ve e i ! [ ) , 020 m

|~&l-v ’ , ol N yatl
| , IV RS

e 4 o e

. “
_ e € HAdo

zsﬁn.

O wt‘

—— 1Bk
PR L ThAde
AoHR Ao 215
A0k

" . = suéao ‘8
LM ' & -
ARALY . Y 285
}19 {0\ N ‘l'l‘oll
225 ¥ i " o i § O s

T Ted E

o.la-v, )

248

0‘1'0"‘ L J_-. ] 23cm s %

Enpaitvaial dus o

Ve rtdm. QMTEY : Peny,

|
| |

l""t;.t *

{2 HAI®

2 )3

=1 ar

Mg [ it

9 HAt

o
18y

3

denAda
249

| Awgl

o, waip %

' % Yoaw ‘
00 < < ? " i.mt:
z.aou.
0k 31Hne
R
bous Bn Adem |

g

0do

194



m}au mm* g .

%o

miﬁ.um‘} ACvm
(LA
hwAde
3 3

-
87

T
9 uAto
e

L 1

235

kHA4
24§

mlnu.uw»l' 16t
1“0k
hHA 1

22y

i \\ - T ‘l
SHA G wjuamint 100 £ WA wrfacumesad Joum
¥y 248
< St o
200m. 450 k|

Fig. 4.32: Reinforcement of slabs 1,2 and 3. (Correspondence with Mr. Coin).
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Fig. 4.33: Reinforcement of gpecimens 5,6 and 7 (Coin and Thonier, 2007).

Table 4.17: Results from slabs tested by Coin and Thonier, 2007.

Name

St f

(i\/l Pa) (tl\/l Pa)

load
(cm)

P,
(kN)
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1 25,8 2,9 120x100 | 257
2 30,4 3,1 [20x100 | 272
3bis 30,4 3,1 20x40 | 174
5 30,2 34 [20x100 | 306
5Sbis 30,2 34 [20x100 | 312
6 30,2 3.4 20x 70 | 356
6bis 30,2 3.4 20x 70 | 250
7 19,2 2,3 20x40 | 165
7bis 19,2 2,3 20x40 | 151

Olonisakin and Alexander (1999) tested 4 slabs in one-way shear. The dimensions and
reinforcement layout are shown in Fig. 4.34. The slabs are 155mm thick, 750mm wide
and 1,4mm long. The reinforcement consists of grade 400 no. 15M bars spaced at 150mm
each way. The effective depth of the main reinforcement is 128mm.The reinforcement
ratio is 1,04%. CB1 and CB2 use epoxy coated bars to study the influence of bond. The
compressive cylinder strength of the concrete is 32,5MPa. The maximum aggregate size
is not given. The test setup is shown in Fig. 4.35. Test results are given in Table 4.18. The
size of the loading plate in CB1(a) is 380mm x 750mm (38 x 75 HSS) and for the other

tests a 200mm channel with an estimated flange thickness of 9,9mm is used.

Line or . .
symmetry i Longitudinal gauges

- e
- . - ca
750 - » - 150
» L
2 ) d T ) -
!_ 700 :L_ 700 |
wsf [ i . | i
[ 7@ 150 |

Fig. 4.34: Description of test specimens (Olonisakin and Alexander, 1999).
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(a) 1
200 mm channel

—

175 T 525 | 525 Tﬂ'ﬁ |

(b) l 200 mm channel

| 225 T 475 1 4TS 1 225

Fig. 4.35: Test setup, a) CB1(b) and RB1; b) CB2 and RB2 (Olonisakin and Alexander,
1999).

Table 4.18: Result of tests (Olonisakin and Alexander, 1999).
Mark |a/d |f, Vinax
(MPa) | (kN)
CB1(b) | 3,32 | 439 129
CB2 2,93 | 439 130
RBI 3,32 | 425 123
RB2 2,93 | 425 128
Ekeberg et al. (1982) carried out in-situ tests on a four story concrete warehouse building

which was scheduled for demolition (Fig. 4.36). The distance from the loaded area to the
nearest support is varied (Fig. 4.37). In two slabs in the building the two-way effect is
neutralized by sawing through the slab along the two short sides. This is found not to
have essential importance for the collapse load. In one of the two slabs mentioned above,
the slab is also sawed along the long sides on the outer side of the supporting beams. This
is done to test if the reduction in the restraining of the slab has any influence on the load-
carrying capacity. The collapse load for this slab is not significantly different from the
collapse load for slabs without sawed sides.

The building slabs have a height of 170mm plus a mortar layer of 40mm, a length of
2,5m and a width of 5m. The clear span in the length direction is 2,2m and in the width
direction 4,6m. The maximum aggregate size is not known. The measured concrete
cylinder (10cm diameter) compressive strength is 25MPa for the first floor and 17,8 MPa
for the second floor. The yield strength of the reinforcement consisting of smooth bars is
310 MPa. The results with a/d <7 are given in Table 4.19, in which

d, the effective depth to the main reinforcement;
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d, the effective depth to the transverse reinforcement;

Dx the main reinforcement ratio;
Dy the transverse reinforcement ratio;
s the side length of the square loaded area.
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Fig. 4.36: Test rig used for the tests in the building. (Ekeberg et al., 1982).
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Fig. 4.37: Collapse loads as a function of the distance from the center of the loaded area
to the center of the nearest support. (Ekeberg et al., 1982). Note that a minimum occurs at

a/d=173.
Table 4.19: Data from in-situ tests (Ekeberg et al., 1982).
Floor ne | dy d, Px Dy s a ad | P
(mm) | (mm) | (%) | (%) | (mm) | (mm) (kN)

1* floor | 3 | 110 100 | 0,649 | 0,157 | 100 | 610 | 5,55 | 371
41 110 100 | 0,649 | 0,157 | 100 | 610 | 5,45 | 385
2" floor | 3 | 108 98 10,519]0,102 | 100 | 300 |2,78 | 465
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5| 115 105 | 0,488 0,095 | 100 | 300 |2,61 | 435
6 | 115 105 0,488 10,095 | 100 | 800 | 6,96 | 230
7] 113 103 | 0,497 10,097 | 100 | 500 |4,42 | 340
8 | 113 103 | 0,497 10,097 | 100 | 500 | 4,42 | 315

Hegger and Reiflen (2011) tested six slabs and two double T-beams to estimate the
effective width and study the shear strength of slabs under concentrated loads. Each T-
beam had one straight and one haunched cantilever slab. The new German Code requires
stirrups in slabs where previous versions of the code did not require this. The effective
width is studied by testing elements of different width. Parameter studies in non-linear
finite elements are used to study the influence of:

- the concrete compressive strength,

- the yield strength of the steel,

- the reinforcement detailing, and

- the a/d or M/V ratio.
The loading configuration of the first four slabs (9 tests) is shown in Fig. 4.38. The size
of the loading plate is 400mm x 400mm and d = 240mm (cover = 20 mm), leading to a/d
=4,16. The loading configuration of the next two slabs is shown in Fig. 4.39, with a/d
ratios of 5,41 and 2,91. The cantilever slabs of Tb2 are preloaded by a preload of f, =
85kN/m at the cantilever end in order to increase the bending moment and the vertical
component of the compression force. The details of the loading and support conditions

are shown in Fig. 4.41, showing that the size of the support is 100mm x 3500mm.

| 1
2% 10 o 30 29,
A A 14
-
l 1 4
Py A
12 I 20 L 10 2%
1 a a a4

Fig. 4.38: Static system of first five specimens (Hegger and Reif3en, 2011).
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Fig. 4.39: Static system of last two specnnens (Hegger and Reiflen, 2011).

0 F(1.7) F (2.1 )
< —T

1 oW

] 4
* AdD +
Fig. 4.40: Static system of the second test series: Tb1: without preload f,, Tb2: with
preload f;.

bidh = 400/400/120 [mm]

"Stahiplatte 100°20°3500 [mm)]
Auflagerrolle | = 3500 mm l

20y 100 ¥ 100
Fig. 4.41: Layout of loading plate and support conditions (Hegger and Reiflen, 2011).

M=

_ H{%ﬂ

"3

Fig. 4.42: Picture of double T beam in the test setup (Hegger and Reiflen, 2011; Golus,
2011).

Table 4.20: Overview of test program (Hegger and Reiflen, 2011).
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e a/d haunch o
type name b load
m = 18| 2T | kN/m
b=50 _
§ b=50 W 05 | 4.16
K b=150 15 | 4.16
= b=250 25 | 4.16
é b=350 | 35 | 4.16
2 | b=350_a1 a5 | 541
b=350_a2 ‘ 2.91
g Tb1 35 | 416 no yes 5
(1]
E Tb2 3.5 416 no yes 85

Reinforcement St 900/1100 is used with a main reinforcement ratio p = 0,98% (@15/7,5).

A sketch of the reinforcement is shown in Fig. 4.43. The properties as tested are given in

Table 4.21.

Ansicht: Dargitellung des halben Systems
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Stecker @8/7.5 B 24-schnittig Stecker 38/7.5
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Fig. 4.43: Reinforcement of slabs with b = 50cm, b = 150cm, b = 250cm, b = 350cm and
double T beams (Hegger and Reif3en, 2011).
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Table 4.21: Reinforcement properties (Hegger and Reiflen, 2011).

Versuchskorper =z o2 f E
mm | Nimm* | Nimm* | Nimm?
b=50, b=50_W,
b=150, b=250, 12 573 672 200387
b=350, b=350_a1
b=350_a2, Pb1, Pb2 12 556 639 200215
b=50, b=150, bh=250,
b=350 15 885 1082 1994381
b=50_W, b=350_a1,
Pb1. Pb2 15 920 1077 199710
b=350_a2 15 905 1095 198104

Regular concrete f,,, = 34N/mm? is used for all slabs. The concrete properties are
measured on cubes, cylinders, small beams for the E-modulus and cores drilled from the
slabs for axial tension tests. The results of these tests are shown in Table 4.22, in which
Je.cube,Giire 1S the cube compressive strength at 28 days. The results of the first 9 tests (5
slabs) are shown in Table 4.23. The authors noted that the shear cracks further developed
to the side face after exceeding the ultimate load within the descending branch, Fig. 4.44.
Because of the unknown involved width, the dead weight was not considered in the

evaluation.

Table 4.22: Concrete properties (Hegger and Reilen, 2011).
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Versuch Betonalter o Tocuve G Teop fam fasp Een

Teilversuch d N/mm* N/mm?# N/mm* N/mm? N/mm* N/mm*
b=50 2.7V 21 401 420 337 28 30 26200
1.7V 18 437 39,2 30 35 26200

b=50_W 51,3
2.1V 20 46,1 40,5 28 28 28100
1.7V 18 434 KT 28 31 27300

b=150 474
21V 23 450 38,2 30 36 27600
1.1V 25 327 279 25 23 22400

b=250 346
2.1V 30 334 295 26 25 21000
1.7V 15 453 359 28 31 28200
b=350 53,1 -
2TV 21 478 382 30 31 24900
b=350_a1 1.7V 21 47 4 527 39,6 24 31 27200
2TV 26 475 413 2T 32 29900
11V 28 31,0 295 2,59 25 22700

b=350_a2 314
& 27V 30 31,0 29,0 27 24 23300
Pbi 1.1V 16 434 475 370 22 26 25900
2TV 21 449 384 2,2 2.7 26900
Pb2 1.7V 18 422 461 343 27 28 25500
2.7V 21 420 ' 348 26 3.0 26800

Table 4.23: Results of slab tests (Hegger and Reif3en, 2011).

b=150 b=350
Last- 2TV 1.TV 21V 1TV 1V
|sture Stufe Stufe Stufe]
F ist = ist F st F ist F ist
25.00 a0 52 | 24.2 8 | 152 | 236 [ 170 | 256 | 186 [ 24.1 | 208 [21.1 | 276 |27.0
3750 64 4120760 | 37.7| 78 | 63| 210 | 36.7 | 228 | 357 255 | 38.4 | 282 | 362 | 312 | 317 [ 414 [404
50,00 | 112 | 540 22 | 50.3) 104 | 454 | 250 | 51,6 | 30% | 47.6 | 340 | 51.2 | 376 | 48.2 J 416 | 422 | 652 | 53.9
56,25 | 126 | 616 1035 566 | 117 | 544 | 315 | 56.0 | 340 | 536 f3e0 5] 57.6 | 403 | 540 | 466 [475 | 621 |60
62,50 | 140 | 686 115 | 628 | 130 | 605 | 350 | 64.5 | 380 | 50.6 | 425 | 64.0 | 470 | 60.3 | 520 | 526 | 620 |67 4
88,75 | 154 | 755 1265| 60.1] 143 | 065 | 385 | 70.0 | 418 | 655 §a67 5] 70.4 | 517 |08.3 f 572 | 561 | 750 | 74.1
75,00 | 166 | 624 || 138 | 754 | 156 | 726 | 420 | 77.3 | 456 | 71.5 | 510 | 76.6 | 564 | 72.2 | 24 | 634 | 628 | 60.0
81,25 180 | 602 J140.5] 81,7 | 160 | 78.0 | 4% | 63.6 | 404 | 774 feeo5| 832 | 611 | 78.3 | 670 | 686 | oer |67.6
57,50 || 190 | 96,1 | 161 | 88.0 | 162 | 84.7 | 420 | 902 | 532 | 634 | 565 | 60,6 | 056 | 544 | 728 | 730 | 066 | 94,3
23,75 | 210 1019';1715 D23 105 | 00.7 | 525 | 96.7 | 570 | 60.3 f637.5] 26.0 | 705 | 0.4 | 780 | 79.2 [1035 [101.1
100,00 § 224 | 100.0) 154 | 100.0] 208 | 100,0] 560 | 100,0] 608 |100.0 ] 680 | 100.0] 752 |100.0 | 832 [100,0 | 1104 |100,0
[ o il 2] [ [ o0 s L)
g5 102.4 97.0 104.9 a78 1037 1184 @28
Fu Veu Vama Vg Dagep Derren Veama oo
Versuch
ks kN KN KN/m KN/m m m KN
b=50 | 2TV 204 136 255 54 0,55 05 127
1.TV 183 137 269 10,5 0,54 135
b=50_W 05
2TV 215 143 273 54 0,54 136
betso LTV 543 407 266 10,5 1,60 _— 313
2TV 683 425 267 54 163 315
TV
w1 664 498 237 10,5 2,21 - 279
27V 780 520 242 54 220 286
sy |2 ags5 739 261 10,5 2,96 e 308
2TV 1024 683 267 54 2,62 115
be350 a1 I 1166 787 270 95 3,02 1,33 360
= 2 1143 876 275 6.4 3,27 1,03 283
R T a24 624 242 95 2,69 133 P2
e [ 892 684 240 6.4 2,93 1,03 248
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FucL=Vemer | fagt=Vigl Schnitt Vama baexp cite) | bmem o7 | Demsoa | Vanarow
Versuch
: KN KN/m myonA™ | wnm m m m KN
o 1.1V 571 0 0,46 264 224 224 0,98 258
2TV 477 0 0,59 248 1,97 1,67 0,91 226
Pb2 1.7V 539 86,4 0,59 256 334 334 0,98 251
2TV 453 86,4 0,59 239 3,09 2,10 0.91 218
1 F
|
v arca without
. "1; ) I ¢ documentation
. Hj lj I ? ’,“i of crack pattern
wcavibout TTTITTITHT]
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Fig. 4.45: Three-dimensional crack pattern of b= 250 1.TV, b =350 a2, 1.TV and b=
350 a2, 2. TV (Reiflen and Hegger, 2011).
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Fig. 4.46: Crack patterns of double T beams Pb1 and Pb2 (left 1.TV and right 2.TV)
(ReifBen and Hegger, 2011).
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Fig. 4.47: Cracks at bottom face of double T beams Pb1 and Pb2 (left 1.TV and right
2.TV) (ReiBBen and Hegger, 2011).

Fig. 4.48: Three-dimensional crack patterns of double T beams: Pb1 2.TV and Pb2 1.TV
and 2.TV (Reiflen and Hegger, 2011).
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4.7. Experiments on bridge decks
Rombach and Latte (2008, 2009) carried out tests on cantilever slabs (with and without

haunches) to examine whether bridge deck slabs under concentrated wheel loads exhibit
reserves of shear capacity which are not represented by EN 1992-1-1:2005. The test setup
is shown in Fig. 4.49 and the specimens are shown in Fig. 4.50. The reinforcing steel has
a yield strength of 550MPa. The maximum aggregate size is 16mm and the water-cement
ratio is 0,49. The size of the load plate is 400mm x 400mm. The cover in VK1 is 45mm
and in the other slabs 25mm. A line load the represent the edge loading is applied. The
results are given in

Table 4.27, in which:

e the concrete cylinder compressive strength;
Sersp the split tensile strength of the concrete;
e the eccentricity of the line load.

Failure occurred over the full width of the specimen (2,40m wide) while a 45° load
spreading gives an effective width of 2,10m and load spreading based on linear elasticity
results in an effective width of 1,42m. The failure crack pattern is shown in Fig. 4.51.
Due to the restraint of the middle slab, normal forces result and the failure mode is
punching. The following reasons are summed up to explain the much higher shear
capacities than calculated with EN 1992-1-1:2005:

- redistribution of forces in the cracked specimen,

- influence of the moment-shear force ratio,

- direct load transfer between the load and the support,

— influence of the transverse flexural reinforcement.
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Fig. 4.49: Test setup and load arrangement of the cantilever test for the test specimen
VK1 (Rombach and Latte, 2008).

VK1 VK3
IS 5.68 m 4 6,58 m
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Pl a0, 51y g S1 a0, $ L4030 I EI0, 51y o 51440,
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1:15 LJ t x
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30 A )
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Fig. 4.50: Dimensions and reinforcement layout of the test specimens VK1 to VK4,
(Rombach and Latte, 2009).
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Fig. 4.51: Crack pattern of test specimen VK1 after loading (Rombach and Latte, 2009).
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Fig. 4.54: VK4V3 cracking pattern (Rombach et al., 2009).
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Fig. 4.55: Crack pattern at failure of VK4V3 (Rombach et al., 2009).

Table 4.24: Tested specimens (Rombach et al., 2009).

Beton- Léngsbewehrung Langsbewehrung Langsbewehrung Ele[lcghe;:awet'lrung
Ver- | deckung oben Kragarme unten Innenplatte unten I1£|Dagarm
suchs- 2
kérper | o, o py () a o | @ a P | s,—s,
o | omy | ot | By | o) [gomfien | Gt | o {onfion | B | el [temin
VK1 45 16-10 20,1 0,81 12-10 1.3 0,46 16-10 201 0,81 20-30 13,1
VK2 25 16-8 25,1 1,16 12410 1,3 0,52 12-10 1.3 0,52 20-32 123
VK3 25 16-8 25,1 1,16 12-10 1,3 0,52 12-10 13 0,52 20-32 123
VK4 25 16-10 20,1 1,20 12-10 13 0,68 12-10 113 0,68 20-30 13,1

(1) Berechnet mit der statischen Nutzhdhe d am Anschnitt zum Steg

Table 4.25: Concrete properties (Rombach et al., 2009).

Beton-
Ver- alter Mittelwerte Ec
suchs- | Versuch T ;
kdrper ceyldry | 'etsp GPa
(d] [MPa) [MPa] [ I
v 46 35,0 285 2917
VKA1
V3 71 37,9 3,056 -
V1 45 46,0 342 3399
VK2
V3 58 45,2 3,54 33,19
Vi 44 46,5 334 33,34
VK3
V3 80 51,6 3,61 33,67
V1 38 42,5 323 3249
it V3 50 46,0 3,38 32,23

Table 4.26: Steel properties (Rombach et al., 2009).
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%] Mittelwerte By i E
fmm] | f, (MPa] | f[MPa] | [%] L [GPa)
10
BSt500 | 540 598 4,70 1,11 194
WR
12
BSt500 550 607 5,09 1.1 195
WR
16
BSt500 | 554 646 11,61 1,17 195
s

Table 4.27: Relevant test results from Rombach and Latte (2008).

Concrete Line load Wheel load Test results

Test p Seer | Sfesp fq e a, | a/d Shear Failure
(%) | (MPa) | (MPa) | (kN/m) [ (m) | (m) cracking Fy,

Fo. (kN) (kN)

VK1V1| 081 | 35,0 2,85 32,1 1,5 051 | 291 350 690
VK2V1 | 1,16 | 46,0 3,42 22,5 1,5 | 0,51 | 2,35 360 678
VK3V1| 1,16 | 46,5 3,34 22,5 1,5 | 0,51 | 2,35 400 672
VK3V3|0,52| 51,5 3,61 - - |1 051 | 2,35 677
VK4V1| 120 | 425 3,23 - - |1 0,51 | 3,05 260 487
VK4V3 | 0,68 | 46 3,38 - - 10,51 13,05 935

Table 4.28: Test results and reported failure modes (Rombach et al., 2009).

— 1 2 3 4 5 6 7 8
B Vorlast fq Konz. Last Fg Flielten Bruchlast
Vi:;ﬁ:s- bidh) | Versuch | fq 8 a aign | Foumie® F . Fa 4 Versagen
[kN/m] | [m] [m] [kN] Q”I;K,“I [kN]
— Vi 321 | 1,50 B = 690 " Querkraft
VK1 97 V2 3z 1,50 0,71 2,88 671 732 758 Biegung
V3 - - = - - Hochstlast 978 kN
V1 225 1,50 - - 678 Querkraft
VK2 1,1 V2 225 | 160 | 071 | 327 808 851 | er7 Biegung
V3 - - - - Hbchstlast 945 kN
— 7 225 | 150 - | = 677 |  Querkraft
VK3 1.1 V2 225 1.50 0,71 3.27 767 850 a70 Blegung
V3 E d I & - | see | Querkrat |
Vi - - - - 487 Querkraft
VK4 144 V2 0,71 4,25 548 579 590 Biegung
v | - [ - 3 - [ %5 | Cueah |
(1) Mit der statischen Mutzhéhe d am Anschnilt zum Steg
(@) Uberschreiten der FlieBdehnung von 3,3 % in beiden mittleren Staben (Messstellen D3 u. D4)
@ Maximallast beim Ubergang in den horizontalen Verlauf des Last-Weg-Diagramms
4) Bei den Vlersuchen V2 wurde der Veersuch vor dem Bruch der Lingsbewehrung beendet
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" a) FE-Modell des Versuchskarpers VK2

d) Hauptquerkraf- und Blegemomentenveriauf

am Anschnilt der Kragplatte
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Fig. 4.56: Finite element model of bridge deck tests (Rombach et al., 2009).

Table 4.29: Comparison between experimental result and calculated values, also showing
the effective width resulting from linear elastic load spreading (Rombach et al., 2009).

1 2 | 3 ] 4 s [ e [ 7] &/ @ 0 [ 1] 12| 1
' ' I Volle Lastausbreitun
Versuchsergebnisse Elastische Lastausbreitung S >
Versuch  ['sehubriss | Fi Bruch E F F
%lj:ﬁf; F, ﬁ% Fou | Potm Fltr.cal Baiy | Fouca - = F::"' Fﬂ. F&-ﬁn]sl E ]
ki) ofm] KN | (m] [kN) [m] lk"‘ﬂ aeal | [kN] vucol mucal
vi 350 - 690 1,93 637 1,40 280 2,38 518 133 684 1,00
VK1 |- -
V2 - 671 758 - - - - 1,1
V1 360 - 678 207 691 1,62 392 1,73 613 .1 807 0,84
VK2
V2 - 808 877 - - - - 1,09
Vi 400 - 672 193 645 1,40 359 1,87 621 1,08 817 0,82
VK3 =S el
v2 - 767 870 - - - s 1,06
Vi 260 . 487 2,01 469 1,43 308 1,58 516 0,94 558 0,87
VK4
V2 - 548 590 - - - - 1,06
1) Aus den berechneten Vertikaldehnungen abgelesener Lastwert bei ersten Biegeschubrissen an den Massstallon
(siehe Kapitel 4.5.1)
2) Lastwert beim Uberschrelten der FlieRdehnung von 3,3 % in den beiden mitlleren Stiben (siehe Kapitel 4.5.1)

Miller et al. (1994) tested a decommissioned 38-year-old concrete slab bridge up to
failure. The abutments and pier lines of the bridge are skewed 30° to the roadway. The
concrete is heavily deteriorated with the reinforcement in the shoulder area completely
exposed. The dimensions of the bridge are shown in Fig. 4.57 and the reinforcement
layout is shown in Fig. 4.58. The deck is 438mm thick. Only one lane is loaded with a
load simulating the stationary load of an HS20-44 truck, Fig. 4.59, showing that the load
is placed at a/d = 3,51. The bridge failed in shear at 3200kN, which corresponds to 22
HS20-44 trucks. The theoretical flexural failure load is not reached. Yield is reached only
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just before failure. The bridge failed in a brittle flexural shear mode. The final failure is

shown in Fig. 4.60. The average shear stress at failure is 0,95,/ f,', much lower than the

estimated 3,8,/ f.' . The measured concrete compressive strength is 54 MPa. The final

failure surface is not typical punching shear. The damage had a great effect on the final
failure.
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Fig. 4.57: Bridge dimensions: (a) Plan; and (b) Elevation (Miller et al., 1994).
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Fig. 4.58: Reinforcement: (a) top of slab; and (b) bottom of slab (Miller et al., 1994)

A

Magl 192 \E:ist of Bridge
Fig. 4.59: Loading system, Miller et al. (1994).
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(a) Surface of Bridge - : ¥,

Fig. 4.60: Final failure plane: (a) diagram; and (bs- photo (Millef et al.: 1994-).

-

Fang et al. (1990) tested a full scale bridge deck of 6,10m by 15,24m. The plan view and
cross section are shown in Fig. 4.61 and Fig. 4.62. The specimen is a full size composite
bridge with a 191mm thick concrete deck on three 914mm steel W-sections, spaced at
2,13m. Half the deck has two layers of isotropic reinforcement (#4 bars at 222mm). The
compressive strength of the concrete is measured as 29MPa. The yield strength of the
reinforcement is measured as 504 MPa. The maximum aggregate size is not given. The
size of the load is 203,2 mm x 508mm. The cracking patterns are given in Fig. 4.63. The
single load test has an ultimate load of 632kN, and the tandem wheel load 907kN. The
failure mode is reported as punching, but the slab never actually punched through. The
real failure angles could not be measured, but judging the distance between the top and
bottom cracks the failure angle was estimated at about 39 degrees. Further analysis
suggests that the slab showed a combination of beam shear and punching shear failure.
The predictions with ACI and AASHTO codes are very conservative, as the failure load

is about seven times the service wheel load for the single load test.
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5. Code provisions

5.1. NEN 6720

The Dutch code NEN 6720 uses the following criterion for one-way shear:
7,57, (5.1
in which
T =T +Tg S T2
7 = 0,21,k k,;
with
k,= é(1 —Gb—”?d) <1,0in which &, , = Ny the average concrete
354 4,

compressive stress due to the design value of the normal force
including the prestressing and f; the design value of the
compressive strength of the concrete;

K, =2 SOLOH O (45 < <90

1+cot* @
k, =1 for « =90  and if no stirrups are used , with o the angle
between the stirrups and the axis of the member and 0 the angle
between the compression diagonal and the axis of the member;
f»’ = concrete compressive strength.
T the ultimate shear capacity of the concrete without stirrups; its value for

reinforced concrete members in bending is 7, = 0,4 f,,klkhi/;,) >0,4f,
with

f» = concrete tensile strength;
12
2

compression strut can be formed between the load and the support,

A
3(—= >1 for corbels and members at end supports where a

k;

g, =1+ A2 if A >0,6;
g,=2,5-34 if 1, <0,6.

k; = 1 for all other cases;
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M ) )
A =—4mx_ the shear slenderness with My, the maximum

v
d max

absolute value of M, in the member and V., the maximum
absolute value of V; in the member;

A, 1s the smallest value of the area of the load or support, not
exceeding bd,

k, =1,6 —h 21,0 with / in meters;

100(4, +4))
w =————7+-<20and >20,7-0,54,;
bd
Ts the shear capacity of the stirrups;
T4 the shear stress in the section, 7, = Z—;.

The concrete tensile strength f;, is taken as the long-term tensile strength (CUR rapport
94-13):

fim=0,7(1,05+0,05f" ) (5.2)

in which ., " is the measured mean cube concrete compressive strength.

The NEN 6720 uses the following criterion for punching shear for concentrated loads of

which the length is not larger than three times the width:

r, <7, (5.3)
in which
Ty ST+ S T2,
7 the ultimate shear capacity of the concrete without stirrups

7, =0,81,k,3w, =20,8f1,;

for a; > 2ay, t; has to be multiplied with &, = ( —2a—1) >0,5;
a,

4

for a > 2d, 7;has to be multiplied with £, = >0,5;

2+4
d

d = the effective depth around the concentrated load;

k,= the size factor 1,5-0,6d >1,0 with d in meters;
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Wo =,Jw, w <2,0 with w,and w,, the reinforcement ratio of the

ox oy

flexural reinforcement in the x- and y-direction;

. . 2
a = the diameter of a circular loaded area, taken as a = —(q, +a,) for a
7

rectangular loaded area;

Ts the shear capacity of the stirrups;
T =0,15f, <5,0N/mm’;
. ark,
Td the design value of the largest shear stress, 7, = e—d
p
with

F;=the design value of the punching force;

ex_ez )" .

9

e

a. = the eccentricity factor o, =1+«

+Cly
d+a d+a

ex,e, = the eccentricity of punching force with respect to the
centroid of the loaded area in x- resp. y-direction;

e = the eccentricity of the centroid of the periphery with respect to
the centroid of the loaded area;

d = the effective depth;

. : 2
a = the diameter of circular loaded area, a =—(a, +a,) fora
T

rectangular loaded area;
p = the perimeter:

middle column: p =7(d +a);
edge column: p=0,57(d +a)+2a,;
corner column: p =0,257x(d +a)+2a,;

a, = the distance from the centroid of the loaded area to the edge of

the slab:
edge column : a, =0,257(d +a);

corner column: a, =0,3757z(d +a);
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Table 5.1: Values of a for a rectangular column. Table ?O from NEN 6720.

ay, a, = a factor from tables 30 to 34 of the NEN 6720, Table 5.1
to Table 5.5.

| -

a +d ;L o \
y + d i \ =
o ? )‘h?

—

I ! :

12 22 \LL/

14 24 16

16 26 14

1.8 3

20 Dza;z L\%

» Table 31 from NEN 6720.

AN

\
|
a, + d + 2a,
2(a + d) 2a,
d+a
02 04 08 1.2 1.6 20
04 0.6 0.5 04 04 03 03
08 19 1.7 1.3 1.1 1.0 09
12 30 26 2.1 1.8 1.5 1.4
1.6 £ ] 33 26 22 1.8 1.6
ex<e; 04 1.0 09 0.6 05 04 03
038 32 27 20 1.6 1.3 1.2
12 5.1 43 32 25 2.1 1.8
1.6 6,1 53 4.0 32 26 23

edge. Table 32 from NEN 6720.

ar
,_ — a + d 2a,
] a +d + 2a, d+a
]
I |
L) e B
dy _}
y 02 20
02 05 04
04 09 0,7
0,6 1.2 09
08 1.5 1,2
1.0 1.8 1.4

Table 5.2: Values of a, for an edge column with moment vector parallel to the edge.

Table 5.3: Values for a, for an edge column with moment vector perpendicular to the
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Table 5.4: values for a, for a corner column with moment vector perpendicular to
bissectrice. Table 33 from NEN 6720.

02 \[ 04 | o8/ | 18N\ 16 | 20
ex2e, 0 38 N} 1.8 1.6
ex<e; 9.1> \L/ﬁ 15 | 24 | 20
Table 5.5: Values for a, for a corner column with moment vector parallel to bissectrice.

Table 34 from NEN 6720.
N

™~ O%\?
N_/ a\§ 2a,
'\ d+a

0.2 04 08 1,2 1,6 2,0
19 1,6 1,2 1,0 09 08

5.2. EN 1992-1-1:2005

In EN 1992-1-1:2005 §6.2.2., the maximum shear force for a section without stirrups is

calculated as follows:

VRd,c = |:CRd,ck(100plf;k )1/3 + klo-cp i| bwd 2 (Vmin + klacp )bwd (54)
with
. ) A,
pi the reinforcement ratio, p, = 5 ‘d <0,02;
Ay the area of the reinforcement which extends > (7,4 + d) beyond the section
considered, Fig. 5.1;
L VEd'r-f'"—“-| Ve, As!l /
ol o =
d 452 45 P Ta

- section considered

Fig. 5.1: Definition of Ay, Figure 6.3 from EN 1992-1-1:2005
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b, the smallest width of the cross-section in the tensile area;

Jek the characteristic concrete strength in MPa;

d the effective depth in mm;

o, = (G(W +o,. )/2 ;

Ocys Ocz the normal concrete stresses in the critical section in y- and z-directions
N Ed N Ed,z

—= and o, =—;

cy cz

(MPa, positive if compression) o, =

Ntay, Nga- is the axial force in the cross-section due to loading or prestressing (Ng;~0
for compression). The influence of imposed deformations on Nz may be
ignored.

A, the area of concrete according to the definition of Ng,.

The values of Cgg., vimin and k; depend on the National Annex. The recommended values,

also used in the Dutch annex, are:

Crac = 0,18/y¢;

v =0,035k"f%;

ki =0,15.

In the French National Annex (Chauvel et al., 2007) a different approach is used for v;y,:

v =034f"7 for slabs benefiting from a transverse redistribution effect under

the load case considered;

Vo = 0,053k £1*  for beams and for slabs other than those above.

The effective width from the French professional recommendations (Cortade, 2007) is
obtained by spreading the load from the far corners of the load under 45° towards the face
of the support.

The value for Cg, . is based on a reliability analysis of 176 tests by Konig and Fischer
(1995). A coefficient of C = 0,12 was found as a good lower bound for characteristic

values and C = 0,15 can be used for average values. To distinguish between different
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loading combinations for which different safety levels apply, Crq. is taken as 0,18/y.
(Walraven, 2002).
The expression for v, is based on the idea that for low reinforcement ratios the capacity

can never be lower than the flexural capacity (Walraven, 2010):
1/3
V, =0.15k(100p,f,,) " bd (5.5)

At a/d = 2,5 the flexural moment is:

1/3

M, zVuk.2,5d=O,375k(100p,fm) bd* (5.6)
The maximal moment resistance is approximated as:
M, ,=0,9d(pbd) [, (5.7)

Equating (5.6) and (5.7) and taking f,x = 500MPa results in the percentage of

reinforcement p; at which shear capacity and moment capacity are equal:
0, =0,00024k f12 (5.8)

Substituting this into equation (5.5) leads to:

Vid 3/2 £172
—+==0,035k 59
bd Jem (5.9)

Finally, replacing f.,, by fu leads to the recommended value of v,;,:

Vo = 0,035k 12 (5.10)

ck
According to Walraven (2007), it would be scientifically more correct to directly involve
the fracture energy Gr and the concrete tensile strength /., instead of the factor & for the
size effect. These parameters can be introduced by using the characteristic length /.,

defined as:

l,= Z;Gf (5.11)
The mean ultimate nominal shear strength can then be formulated as:
Vu — Cf;t 3 lchpl
d (5.12)

For members with loads applied within a distance 0,5d < a,< 2d from the edge of a

support, the contribution of this load to the shear force may be multiplied by S = ;:l

, Fig.

5.2. This is only valid provided that the longitudinal reinforcement is fully anchored at
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the support. The multiplication factor ;6”1

is the lowest of multiplication factors for

different cases as discussed in Walraven (2002). More background is available in Regan

(1998). In DIN 1045-1, this factor is taken as S = 2);

4

= <1 (Rombach et al., 2009).

_
=

Fig. 5.2: Loads near supports, for example beam with direct support. Figure 6.4 from EN
1992-1-1:2005.

The shear force Vg, calculated without the reduction, should always satisfy the condition

V,, <0,5b dvf, (5.13)

Jer

where v is a strength reduction factor for concrete cracked in shear: v=0,6 {1 _ﬁ}

with fx in MPa. Background for these formulas can also be found in Regan (1987).
A comparison of test data to the Eurocode shear provision is given in Fig. 5.3. Konig and

Fischer (1995) found that a lognormal distribution enables the best description of the

.. . V. .
distribution of —
v

test

ald or 0.25L/d

Fig. 5.3: Accuracy of EC2 in predicting shear strength of members without links. Total
factor of safety listed for case where live load is 50% of dead load (Collins, Mitchell and
Bentz, 2008).
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In EN 1992-1-1:2005, the design punching shear capacity is calculated as follows
(equation 6.47 in the EN 1992-1-1:2005):

Vage = Cra k(1000 £, )7 + ko, > (v, +k,0,) (5.14)
with
Py =+Py-pr <002
Plys Piz relate to the bonded tension steel y- and z-directions respectively. The

values pj,and p;- should be calculated as mean values taking into account a
slab width equal to the column width plus 3d each side.

The shear stress vz, should not exceed vz ..

Veg = B % (5.15)
with
Via the shear force;
U; the perimeter of the critical section;
d the effective depth;

a factor, approximate values are:
internal column: = 1,15;
edge column: f = 1,4;
corner column: f=1,5.
The critical section is taken at 2d from the loaded area (Fig. 5.4). Around rectangular

loaded areas, rounded corners are used (Fig. 5.5).

- r r - . v v v i AB
0 . a
1 | e 2d
- Feord ™ ) %
= | = Dasic control =
&= arctan (1/2) section
= 286 8 - basic control amea Ay
e
| = - iC |- basic control perimeter, o
O] icaded area A
a) Section feem Rurthar control perimeter

Fig. 5.4: Verification model for punching shear at the ultimate limit state, Figure 6.12
from EN 1992-1-1:2005.
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Fig. 5.5: Typical basic control perimeters around loaded areas, Figure 6.13 from EN
1992-1-1: 2004.

5.3. ACl| 318-08

In ACI 318-08, two formulas are given to calculate the shear strength provided by

concrete for members subject to shear and flexure only (US customary units):

V. =22fb,d (5.16)
, V.d ,
V. =| 1,94/ +2500p, ~ |bd < 3,501 b,d (5.17)
in which
f the specified concrete cylinder strength, in psi;

the factor to account for concrete density (1,0 for normal density concrete);

A
b, the web width;

d the distance from the extreme compression fiber to the centroid of tensile
reinforcement;
. . A
DPw the reinforcement ratio, Sd ;
V. the factored shear force at a section;

M, the factored moment at a section.

Equation (5.17) is based on the work of ACI-ASCE committee 326 (1962), originally
developed by I.M. Viest (Bresler and MacGregor, 1967) and has not changed since
(except for the addition of the factor ). In the discussion by Sozen and Hawkins (1962) it
reads: “However, if part of the short-time shear strength of the beam is due to doweling

of the reinforcement, this action is likely to decay with time and cause tensile stresses in

the web comparable to those corresponding to a nominal shear stress of about 24/ /. ina
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short-time test.” Earlier work by Moody and Viest (1955) related the factors % and f.’

to the shear capacity. Morrow and Viest (1957) showed 2\/70' to be the lower bound for

diagonal tension failure of their test data which are related to the modulus of rupture f..

The expression for V. determines the diagonal cracking load, which is lower than or equal

to the ultimate shear force. The formula is based on the test results of 194 beams, Fig. 5.6,

and shows significant scatter.
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~
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0 02 04 08 08 o7 1520 5
1000pVd/MIT,

Fig. 5.6: Derivation of Equation (11-5) from ACI 318-08, here Equation (5.17), from
ACI-ASCE committee 326 (1962).

Determining the exact conditions of cracking is subject to the interpretation of each

researcher and to the variability of testing procedures in each laboratory (Lubell, 2006).

The database contained test results of members usually narrower than about 350mm. The

width-to-height aspect ratio of the specimens is usually well below 1,0 (Lubell, 2006).

These specimens have an average depth of 340mm and an average width of 194mm

(Lubell, 2006). The data set includes members with a wide range of a/d ratios, including

ratios below 2,5 where slender beam analysis equations are not strictly valid. According

to MacGregor and Wight, 2005, the use of (5.17) is not recommended in practice. Since

the shear design formula for beams without stirrups is set at about 55% below the mean

of the test data, a covert understrength factor is present in ACI 318-08 (Yu and Bazant,

2011).
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Fig. 5.7: Derivation of ACI 318-08 formula (11-3), here (5.16). (Bresler and Scordelis,
1963).

The two basic assumptions for the shear force V. are that V. is the shear force at cracking
and V. is the same for members with and without stirrups. Reineck (2009) showed by
reviewing tests that these assumptions are not valid.
While equation (5.16) depends fully on the concrete compressive strength, Angelakos,
Bentz and Collins (2001) concluded from experiments that the concrete cylinder strength
has almost no effect on the load at which shear failure occurred. For small concrete
strengths relatively ductile post-peak behavior is observed, while for high-strength
concrete a large, sudden drop in the capacity is registered.
According to Rangan (1973) the ACI procedure is unsafe for p < 1%. Reineck et al.
(2003) showed by analyzing a database with 690 test results that the ACI 318-08
equations become increasingly unsafe as the members become larger and more lightly
reinforced. The influence of size on the safety of the code formula is also shown in Fig.

5.8. A comparison of the ACI 318-08 code procedure with 1601 tests is shown in Fig. 5.9.
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Fig. 5.8: Ability to accurately predict breakdown of beam action (Collins, Bentz and
Sherwood, 2008).
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Fig. 5.9: Ability to accurately predict 1601 observed shear failure loads (Collins, Bentz
and Sherwood, 2008).

Nowak and Paczkowski (2009) calculated the reliability index based on more than 300
experiments for equations (5.16) and (5.17), Fig. 5.10.
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Fig. 5.10: Reliability index for different values of the resistance factor: (a) ACI 318-08
Eq. (11-3), here (5.16); (b) ACI 318-08 Eq. (11-5), here (5.17), Nowak and Paczkowski,
2009.
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The nominal punching shear strength V. shall be taken as the smallest of (ACI 318-08
§11.11.2.1, in US customary units):

V. = (2 + %j/z\/fbod (5.18)
a.d ,
v, =[ bs +2J/1\/ffbod (5.19)
0
V. =441 b,d (5.20)
in which:
S the ratio of the long side to the short side of the column, concentrated load or
reaction area;
b, the perimeter of the critical section for shear;
O 40 for interior columns, 30 for edge columns, 20 for corner columns.

The other parameters are calculated in the same way as for formulas (5.16) and (5.17).
The critical section is taken at a distance of d/2 away from the periphery of the loaded
area. Formulas (5.18), (5.19) and (5.20) are based on the work done by ACI-ASCE
committee 326 (1962), ASCE-ACI committee 426 (1974) and Moe (1961). Widianto et
al., (2009) showed that this leads to unsafe predictions for lightly reinforced slabs.

5.4. Model Code 2010

The draft of the Model Code 2010 (fib, 2010) proposes a shear resistance attributed to the

concrete as:

Vied.e :kvﬂzbw (5.21)
Ve
in which:
Sek the characteristic cylinder compressive strength of the concrete;
z the effective shear depth, Fig. 5.12;
b, the width of the web, Fig. 5.12 or for slabs under concentrated loads Fig.

5.11.

229



a) b) c)

Fig. 5.11: Location and length of the control section, b,,, for the detemrination of the
shear resistance of slabs with point loads located near a support-line; (b) simple edge
support; (¢) clamped edge support (fib, 2010).

The value of 4/ f,, shall not be taken greater than 8MPa.
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Fig. 5.12: Geometry and definitions. (fib, 2010).

Be

The factor f as used in EN 1992-1-1:2005 is included in the same way. The value of &,
depends on the level of approximation. For level I approximation, £, is taken as:

180

k,=——— (5.22)
1000+1,25z
For level II approximation, , is taken as:
4 1
L= 0, 300 (5.23)
1+1500¢, 1000 +k,, 2
which is based on the Modified Compression Field Theory and consists of:
32
= >0,75 5.24
* 16+d, (5-24)

in which d, is the aggregate diameter; and
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with Mg4, Vg and Ngg as shown in Fig. 5.13 and Fig. 5.14.
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Fig. 5.13: Definition of control section for sectional design. (fib, 2010).
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Fig. 5.14: Definitions. (fib, 2010).

Comparison of the results of 1725 experiments leads to a mean observed to predicted
shear strength ratio of 2,10 with a COV of 22,4% and 5™ percentile of 1,33 for a level 1
approximation. For level III, the comparison is based on 1921 experiments leading to a
mean value of 1,27, a COV of 15,1% and a 5™ percentile of 0,96 (Bentz, 2010). These
results are based on a previous draft of ModelCode 2010, in which slightly different
values for k, where used and level III is now called level II.

For punching, the design shear force is compared to the punching shear strength. The
design shear force is calculated as the sum of design forces acting on a basic control
perimeter b;. The basic control perimeter 5; may normally be taken at a distance d, from
the loaded area and should be determined to minimize its length. The length of the
control perimeter is limited by slab edges, Fig. 5.15. The shear-resisting effective depth
d, is the distance from the centroid of the reinforcement layers to the loaded area. The
shear-resisting control perimeter can also be obtained on the basis of a detailed shear field

analysis as:
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VEd

b, = (5.26)

vperp,d ,max
Where Vperp,dmax 18 the maximum shear force per unit length perpendicular to the basic

control perimeter.
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Fig. 5.15: Basic control perimeters around loaded areas (fib, 2010).
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Fig. 5.16: Shear force per unit length, v, and maximum value perpendicular to the basic
control perimeter.
The contribution of the shear forces due to moment transfer between the slab and the
loaded are can be taken into account by using an eccentricity factor k.. In cases where the
lateral stability does not depend on frame action of slabs and columns and where the
adjecent spans do not differ in length by more than 25%, the following approximated
values can be used for the coefficient £,:

- 0,90 for inner columns

0,70 for edge columns

0,65 for corner columns
- 0,75 for corners of walls.
The design punching shear resistance is based on the critical shear crack theory and can

be taken as:
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(5.27)

with f; in [MPa].

The parameter k, depends on the deformations (rotations) of the slab and follows from

k, :;SOﬁ (5.28)
1,5 +0,9kdg1//d

where d is the mean value in [mm] of the flexural effective depth for the x- and the y-
directions. Provided that the size of the aggregates is not less than 16mm £, can be taken
as 1,0. If the aggregate size is smaller than 16mm, then Eq. (5.24) can be used.

The rotations around the loaded area can be calculated according to different levels of
approximation. Level I is for a regular flat slab designed according to an elastic analysis
without significant redistribution of internal forces:

T, yd
=152 5.29
v i E (5.29)

where r; denotes the position where the radial bending moment is zero with respect to the

support axis. In the cases where significant bending moment redistribution is considered

in the design, the slab rotation can be calculated as:

f 1,5
,//=1,5r_s;’d My (5.30)
d E \ my,
where:
Msq the average moment per unit length for calculation of the flexural
reinforcement in the support strip (for the considered direction);
MR the design average flexural strength per unit length in the support strip (for

the considered direction).
The rotation has to be calculated along the two main directions of the reinforcement. The

width of the support strip for calculint m,, is:

b, =1,5r.r, <L, (5.31)

sx’ sy

The sme value for 7, as in a level I approximation can be used. The commentary also

provides formulas for determining m;, for inner, edge and corner columns.
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For a level III approximation, the factor of 1,5 in Egs. (5.29) and (5.30) can be replaced
by 1,2 if:

- 1y is calculated according to a linear elastic model;

— myq is calculated from a linear elastic model as the average value of the moment

for design of the flexural reinforcement over the width of the support strip b;

The width of the support strip can be calculated as in Level II taking . and 7y, as the
maximum value in the direction investigated.
In a level IV approximation, the rotation  can be calculated on the basis of a nonlinear
analysis of the structure and accounting for cracking, tension-stiffening effects, yielding
of the reinforcement and any other non-linear effects relevant for providing an accurate

assessment of the structure.

An design example for punching of flat slabs can be found in Lips et al. (2010).
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6. Discussion

Most of our knowledge on shear is the result of experiments on small, heavily reinforced
slender beams under two concentrated loads, and most of our knowledge on punching
shear is the result of experiments on slab-column specimens. It might be questionable to
extrapolate this knowledge to the case of a slab bridge under traffic loads. In chapter 2, it
is shown that slab bridges are robust strcutures, typically designed to fail in flexure
instead of shear. However, due to compressive membrane action the actual flexural
capacity is a multiple of the design capacity and shear failure modes become governing.
Another aspect in slabs is that, due to the extra dimension as compared to beams,
transverse moments and shears should be taken into account.

In chapter 3, the different types of shear failure are explained as a function of their shear-
span-to-depth ratio. It is assumed that, as in Kani’s valley, a minimum capacity can be
observed for a/d = 2,5. However, in chapter 4, the results of Ekeberg et al. (1982) show a
minimum for a/d = 7,3. Another point of discussion is the breakdown of shear into the
shear carrying mechanisms. It is difficult to experimentally investigate these mechanisms
separately, and to prove that the total shear capacity is the result of the sum of the
capacities of these mechanisms. The distinction between one-way and two-way shear in
slabs is not clear and there seems to be a transition zone between these two failure
mechanisms. Also, there seems to be no consensus in the literature on how to determine
the failure mode based on pictures and the cracking pattern as observed in experiments. A
limited amount of guidelines exist to give an estimate of the effective width in shear and
the origins of these guidelines and national practices seems to be based on tradition rather
than on experiments or theoretical work. Up to date, the only code which gives guidelines
for the determination of the effective width in shear is ModelCode 2010. Even though the
recommendations for the effective width do not lead to satisfactory results when
compared to test results, it is a positive evolution that a code is providing guidelines for
the determination of the effective width in shear. One of the observations made in the
sideline of this literature review is that there exist different schools which adhere to their
theory on shear in a sometimes rather rigid way. As a result, several theoretical
approaches to the problem of shear in concrete members exist, none of which seems to be

able to fully explain the mechanics at the basis of this problem. For the problem of a one-
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way slab under a concentrated load, the additional dimension of the slab needs to be
taken into account, thus further complicating the mechanics behind the failure mechanis.
For design, therefore, simplified methods need to be used. The only method which is
tailored for the problem of shear in slabs under concentrated loads close to the support, is
the method developed by Regan (1982). The modified compression field theory seems to
be less suitable for loads close to the support, and cannot be applied to the problem of
punching. Therefore, it is questionable if this method can adequately model the
transitional problem of shear in one-way slabs under a concentrated load. The critical
shear crack theory uses the same approach for one-way shear as well as for punching
shear. However, in the case of a concentrated load close to the support, the non-axis-
symmetrical layout need to be taken into account, and finite element packages need to be
used to determine the stress distribution along the punching perimeter. Strut and tie
models can be applied for the problem of a concentrated load on a slab. There is however
an art to chosing the right strut and tie model which might make the approach not suitable
for the design practice. Both plasticity-based an fracture mechanics models need to be
considered with regard to the assumptions that were made when developing the model.
These assumptions are a simplification of reality and may not always be applicable to the
problem under study. For example, the ductility requirement for using plasticity-based
models is not always fulfilled for shear failures. Ideally, the empirical code formulas
should be replaced by calculation methods with a theoretical basis.

A database with relevant test results is gathered in the Annex. In this database, a
distinction is made between punching shear failures and one-way shear failures. This
distinction, however, is not based on guidelines on how to interpret cracking patterns as
different authors seem to use different approaches. Different categories are also
subdivided in the database, as not all design approaches are suitable for all cases.
Databases with test results typically show crowding in the small size and relatively large
reinforcement percentage region. A way to analyze these data is by using a knowledge-
based system, which uses a database of knowledge in combination with a method that
mimics the problem-solving strategy of a human. This method is discussed in Jung and

Kim, 2008.
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When comparing results from a database to a suggested method, the variability of the

material should be taken into account. Reineck (1997a) points out that different control
specimens could yield differences in tensile strength of more than 20% and up to 30%.
Therefore it is futile to demand more from a prediction of the ultimate load capacity in
shear than this scatter. Reineck (1997b) emphasizes the importance of a discrete model

for shear in concrete.
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7. Conclusions

A study a slab bridges shows that for existing bridges the failure mode for which these
bridges are designed (flexure) does not always occur in practice. As a result of
compressive membrane action, shear can become the governing failure mode. Previous
research, however, shows that solid slab bridges can typically carry loads that are a
multiple of their design load.

An overview of the research on beam shear and punching shear from the past decades is
given. Also, the difference between and the transition from beam shear to punching shear
is studied. An overview of past research on the effective width in shear is also given.
These results show that the currently existing models for shear cannot fully cover the
problem, and especially the problem of concentrated loads near to the support on slabs
requires an alteration of existing methods. The forces in the transverse direction have to
be taken into account.

A database of existing test results is compiled. This database shows that a very limited
amout of experimental results on slabs under concentrated loads close to the support is
available. Most of the available results are based on small-scale specimens in which the
size effect might have resulted in higher shear capacities as compared to slabs in practice,
The lack of consensus in the literature on how to deal with shear in concrete members is
also reflected by the code provisions. The studied codes (NEN 6720, EN 1992-1-1, ACI
318 and ModelCode 2010) all recommend very different approaches which also result in
different design shear capacities.

Therefore, experiments on slabs under concentrated loads close to the support are

necessary to gain a better understanding of the problem.
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