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As the consumer electricity prices rise, European policymakers are increasingly focused on de-
carbonizing the power grid, which requires homeowners and local administrators to adopt re-
newable energy sources amidst a complex set of often conflicting objectives and constraints. 

This paper introduces an innovative application of deep reinforcement learning (DRL) for long-
term strategic planning of rooftop photovoltaic systems and battery energy storage within the 
residential sector, aiming to balance environmental and financial objectives considering the ev-
er-evolving system condition and uncertainties inherent in the market.

The problem is modeled as a Markov Decision Process (MDP), facilitating sequential deci-
sion-making across 25 annual steps. The DRL environment incorporates a comprehensive set of 
variables identified through extensive literature review and market analysis. To account for their 
long-term dynamics, scenarios were simulated using appropriate stochastic and propabilistic 
processes for agent's training. A policy-based DRL agent is evaluated, exploring  various residen-
tial and technological scenarios, including three single-family houses, different PV models and 
various optimisation scopes. 

Moreover, a deployment workflow and a user interface are developed to support real-world 
decision-making applications. Furthermore, a separate DRL model is crafted to simulate battery 
management system's charging and discharging protocol. 

The findings suggest that deep reinforcement learning offers a promising solution for addressing 
this complex problem. It offers enhanced flexibility in decision-making and helps mitigate invest-
ment risks.

Abstract
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1.1.1 Reinforcement Learning

Machine learning enhances decision-making by 
analysing vast amounts of data to identify patterns and 
insights that are often imperceptible to humans, thereby 
enabling more informed, efficient, and accurate choices. 
Among machine learning types, reinforcement learning 
(RL) stands out as particularly powerful for tasks where 
decision-making is sequential and the environment is 
uncertain. RL algorithms learn by interacting with their 
environment, receiving feedback in the form of rewards or 
penalties. It  shows excellent decision-making capability 
in the absence of initial environment information (Sierla 
et al., 2022). 

The implementation of RL in decision-making processes 
offers significant advantages. First, its versatility allows 
for its application across various fields through a 
combination of offline training and online execution, 
adeptly handling uncertainties in the process. Second, 
RL determines the best course of action through direct 
interaction with its environment, eliminating the need 
for pre-existing knowledge that can often be challenging 
to obtain. Third, compared to traditional optimization 
techniques, RL is more straightforward to apply in real-
world situations (Xu et al., 2020).

Reinforcement learning has found extensive applications 
across multiple domains, including gaming, robotics, 
autonomous vehicle navigation, and financial trading, 
among others (Sutton & Barto, 2020).

In recent years there has been a upsurge of its applications 
to build environment. It demonstrates considerable 
promise in the field of building energy consumption 
and renewable energy sources adoption, particularly 
when balancing multiple objectives such as minimizing 
energy costs, reducing carbon emissions, and maximizing 
comfort (Fu et al., 2022). 

1.1.2 Optimal Planning for Residential PV Systems

The last few years have seen a significant increase in 
energy prices across Europe, initially due to a rebound 
in energy demand following the relaxation of post-COVID 
lockdown measures, and subsequently after the Russian 
invasion of Ukraine. In the first half of 2023, average 
household electricity prices in the EU continued to rise 
compared to the same period in 2022, going from €25.3 
per 100 kWh to €28.9 per 100 kWh (Eurostat, 2023).

To mitigate the impact of fluctuating energy prices and 

INTRODUCTION
1.1 Context shortages, many homeowners are turning to renewable 

energy sources. Solar photovoltaic panels, often couple 
with a battery energy storage system (BESS) have 
become popular solution for generating electricity, 
reducing reliance on the grid, and even gaining energy 
independence within the grid-connected residential 
sector (GCRS). A PV system, when connected to the 
municipal network, provides power to meet the demand 
and send any surplus electricity back to the main grid 
(Khezri et al., 2022), the BESS on the other hand stores 
excess energy generated during peak sunlight hours 
and discharges it when the demand is high or sunlight 
is insufficient, ensuring a stable and continuous power 
supply.

Photovoltaic energy production is a crucial component of 
future energy solutions due to its non-polluting nature 
and high reliability (Schulte et al., 2022). The growing 
interest in PV installations can be attributed to various 
factors such as reduced costs, wider market accessibility, 
favourable government policies. The installation cost of 
both commercial PV systems and home batteries has 
decreased by 64% over the past ten years (Kurdi et al., 
2022) .

Additionally, the introduction of microinverter technology 
enhances the scalability and adaptability of residential 
PV systems. Homeowners can conveniently enlarge 
their solar panel setups without having to ensure panel 
compatibility or overhaul the whole system (Morey et al., 
2023).

Despite that, long-term planning of PV and BESS 
implementation and maintenance remains challenging. 
The upfront cost of installation can be significant. 
Additionally, the return on investment depends on 
various factors such as energy prices, solar irradiance 
in the location, and government incentives, which can 
vary over time (Jung et al., 2021). Installing PV panels 
without adequate planning may lead to surpassing the 
grid’s capacity to absorb renewable energy (Kucuksari et 
al., 2014). Furthermore, the rates for feed-in-tariff and 
net-metering are declining in countries where rooftop 
PV systems are extensively adopted (Hayat et al., 2019). 
Homeowners who invest in current technology might find 
their systems becoming outdated sooner than expected, 
leading to a dilemma about whether to upgrade for 
better efficiency. 

It has been demonstrated that uncertainty can influence 
decision-making, particularly when the investor has the 
opportunity to defer their investment. In this context, it’s 
important to recognize that for a homeowner already 

01
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receiving power from the existing electrical grid, the 
decision to invest in solar PV systems is not mandatory 
but a choice (Moon & Baran, 2018).

The existing research on optimal PV + BESS planning in 
GCRS predominantly concentrates on single objective 
functions, usually evaluating techno-economic factors 
or system’s reliability (Khezri et al., 2022). Studies often 
rely on fixed parameters and a specific time frame for 
evaluation without incorporating dynamic changes or 
variations that could occur over time. This approach is 
useful for initial assessment but may not fully capture the 
evolving nature of renewable energy systems and market 
conditions.

Linear programming has been used for municipal-scale 
planning of the rooftop PV deployment under budget 
constraints (Ren et al., 2023). Fan & Xia (2017) utilised 
non-linear integer programming for energy retrofitting 
including the implementation of PV panels. Integer 
programming however, relies on static models with fixed 
parameters.

Recent years have brought various machine learning 
based methods for GCRS PV implementation such as 
genetic algorithm (Khoury et al., 2015) or particle swarm 
optimization (Walker et al., 2020). However compared 
to RL those approaches focus more on immediate or 
short-term optimization for sequential decision-making 
problems without the same emphasis on long-term 
consequences.

Finally,  RL has been used for the PV planning. Jung et 
al. (2021) utilised a geographic information system based 
RL to maximize the economic profit of the rooftop PV 
installation in various locations around Seul. This however 
did not take into account the electrical consumption 
of analysed buildings. On the other hand Liu et al. 
(2023) developed a RL algorithm for management of 
distributed energy resources in urban environments with 
diverse supply-demand profiles. Those, compared to 
the previously described methods, excel under volatile 
scenarios.

To author’s knowledge to date no study describes the use 
of reinforcement learning for GCRS PV + BESS planning. 

In the mentioned context, optimal planning for 

residential PV + BESS must navigate a complex landscape 
of often conflicting and mutually exclusive variables 
and objectives. To date, the primary focus in optimizing 
the feasibility of residential PV installations is financial. 
However, those perspectives notably lack integration of 
other variables unrelated to economic profitability, such 
as environmental impact considerations.

Typically, optimization is approached as a singular event. 
However, there has been insufficient emphasis on longer-
term analysis, which enables decision-makers not only to 
assess planning strategies but also to validate dynamic 
performance and implement system modifications or 
expansions throughout its lifespan, thereby achieving 
more practical outcomes.

Currently, existing methods prioritize "now-or-never" 
investment opportunities using discounted cash flow for 
optimization. Valuation is often tied to a specific moment 
in time, disregarding the potential to respond to evolving 
internal or external conditions that could delay the 
decision to install.

Formulating realistic plans can be challenging due to 
difficulties in accurately predicting time-dependent 
variables. Various studies employ deterministic 
optimization methods, thus offering investment choices 
that take into account a single operational scenario. 
However, the long-term accuracy of these assumptions 
or predictions can significantly influence the optimization 
outcome. Specifically, variables like electricity prices 
have demonstrated irregular fluctuations, complicating 
accurate forecasting (Jung et al., 2021). Unlike a 
deterministic model, a stochastic modeling approach 
accounts for the potential that various operational 
scenarios might occur in the future.

Reinforcement learning, with its robustness in handling 
uncertainties and complexities, is increasingly recognized 
for its effectiveness in long-term planning. Its performance 
under varying conditions remains strong (Fu et al., 2022). 
Despite this, the application of reinforcement learning, 
particularly for decision-making in building-integrated 
renewable energy sources, is still limited. In this context, 
the problem lies in effectively utilizing the multi-
objective optimization and sequential decision-making 
capabilities of reinforcement learning to navigate the 
complex, multidimensional spaces involved in long-
term planning for rooftop PV systems in grid connected, 
residential scenario, especially when considering factors 
of divergent and often mutually exclusive natures, along 
with their inherent uncertainties.

1.2 State of the Art

1.3 Problem Statement

INTRODUCTION01
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Figure 02: Research Landscape
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1.4 Objectives

This research project aims to develop and evaluate a 
computational workflow for the optimal real-option 
planning of residential PV + BESS system adoption using 
RL, navigating the uncertainties of future scenarios. 
Ideally, this should result in a creation of a trained RL 
model integrated into a recommender system, which 
provides commercial and private stakeholders and  
decision-makers, with a robust framework to guide 
and assess their investments in solar power and energy 
storage.

Furthermore, the research seeks to identify and prioritize 
specific optimization objectives pertinent to this context. 
It will rigorously examine the variables influencing the 
optimal selection of actions within the defined action 
space, and assess their relative significance. This analysis 
will inform the reinforcement learning algorithm’s reward 
mechanism, guiding its decision-making process within 
its environment. Various approaches to predicting the 
power generation of solar panel systems will be assessed. 
A critical aspect of this study involves generating future 
scenarios of energy prices for residential consumers and 
other relevant variables. 

The research will involve a thorough evaluation and 
selection of specific reinforcement learning algorithms 
that are most suitable for addressing the problem at 
hand and assessment of PV system modeling methods. 

The proposed framework shall be then evaluated on 
selected typologies of a typical Dutch single-family house 
in a residential setting, with an annual budget constraint 
for systems maintenance and installation.

Often, the adoption of PV panels coupled with BESS 
is linked with complementary technologies like as 
turbines (Luo et al., 2019). However, in this research, 
such solutions are not considered. Additionally, the 
distribution gird related issues are not considered at it 
is assumed that derived results are technically feasible. 
Different phase connections between the inverters and 
the house loads are not considered; it is assumed that 
the connections between microinverters and household 
phases are optimal.

In this optimization process, the primary focus is 
exclusively on the capacity and type of the PV system and  
capacity of the BESS. Other elements like the tracking 
system, inverter type or capacity, and the tilt angle of 

the PV panels or different battery technologies are not 
taken into account.

Objectives other than the financial and environmental 
ones, which are frequently mentioned in the literature—
such as aesthetics, production and operational 
capability,  grid independence and coordination with 
and availability of power grids (He et al., 2017) —are 
not included in this analysis. Additionally, the analysis 
period is defined as 25 years as this is most commonly 
defined service life of PV modules in the most life cycle 
assessment (LCA) studies (Gerbinet et al., 2014).
This project does not claim to utilize the best models for 
capturing the uncertainties associated with the relevant 
variables. Instead, it focuses on what is feasible within 
the technical, logistical, and temporal constraints of this 
thesis. It is acknowledged that there may be superior 
methodologies that were not explored due to these 
limitations.

It is crucial to note that the developed approach is 
validated solely on synthetic data and the trained model 
is evaluated only within a controlled simulation setting 
and has not been tested against real-life scenarios or 
external environments, therefore it may not fully reflect 
the model’s practical efficacy in real-world applications.

Realising the aforementioned theoretical background 
and problematic, the main research question and sub-
questions of the thesis are stated as follows:

How can reinforcement learning based recommendation 
workflow be used  for long-term planning and design 
of residential grid-connected PV and BESS under the 
uncertainty of future scenarios? 

To be able to systematically reach the answer of the main 
research question, the following subordinate questions 
have been formulated:

How does the residential grid-tied photovoltaic system 
operate?

How can we evaluate the economic profitability and 
environmental benefits of rooftop PV systems and 
residential BESS?

Which variables to include in the optimisation process?

What constitutes the most appropriate model for 
forecasting the electricity yield of photovoltaic systems?

1.5 Limitations

1.6 Research Questions

INTRODUCTION01
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1.7 Research Methodology

What constitutes the most appropriate model for 
simulating the operation of a home BESS?

How to generate future scenarios of the identified  
optimisation variables for model training? 

Which reinforcement learning algorithm and in what 
configuration is most suitable for this problem? 

What kind of action, observation spaces and reward 
function to consider?

How to deploy the trained model and how could it be 
applied for the end user?

1.7.1 Introduction

The thesis begins with establishing its research 
framework, beginning with the underlying motivation 
that leads to the formulation of the research objectives 
and questions. These, in turn, shape the problem 
statement.

1.7.2 Literature Review

The second section encompasses the literature review 
process. 

A number of key phrases are selected: reinforcement 
learning, building energy management, grid connected 
PV system planning, PV system modelling, BESS 
modelling, recommender system, machine learning 
deployment, electricity tariff forecasting, stochastic 
scenario generation etc.  These keywords are searched 
in databases such as Google Scholar, Scopus, Science 
Direct, and Web of Science. Titles and abstracts are 
reviewed to identify relevant studies.

This phase is divided onto several steps:

A. Examination of residential grid-connected 
photovoltaic and battery systems. This serve to 
familiarise with the problem at hand, explore and discuss 
its key technical properties and components.

B. Identification of the factors influencing decision-
making processes in financial and environmental contexts 
and an elaboration on their significance and impact.

C. Comprehension  of  the objective functions for 

optimisation as outlined in the literature and identifying 
the relevant design constraints.

D. Building on the foundational knowledge from 
sections A and B, this section will detail and discuss 
various methods for modeling photovoltaic panels and 
BESS within the framework of long-term planning.

E. Exploration of reinforcement learning, providing 
an overview of the reinforcement learning landscape and 
detailed descriptions of specific algorithms.

F. Building on the knowledge from step B concerning 
relevant variables and the specifics of reinforcement 
learning from the previous step, this section will explain 
and discuss the literature on creating stochastic scenarios 
using the identified independent variables for training 
the reinforcement learning model.

G. Finally reinforcement learning deployment 
considerations will be analysed. 

1.7.3 Proposed Workflow

The third section will utilize findings from the literature 
review to create a detailed workflow plan, involving four 
crucial steps: 

A. Simplified toy problem - serves as a testing and 
learning platform for the selected approach, facilitating 
the author’s exploration and understanding.

B. Full-scale Development Part 1: This section 
encompasses all variables in their complexity, focusing 
exclusively on the photovoltaic (PV) system as the sole 
optimization variable.

C . Full-Scale Development Part  2 employs a 
methodology that builds on the previous step. Yet, both 
the PV system and the BESS are the focus of optimization.

 D. Finally part D serves as a demostrative 
deployment with the desciprion of how the approach 
might be utilised for real decision-making. 

This will be explained in more detail in Chapter 3 and the 
following chapters. 

INTRODUCTION01
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1.8 Relevance

Figure 03: Literature Review Flowchart

INTRODUCTION01

1.8.1. Scientific Relevance

This thesis contributes to the practical understanding of 
applying RL for the optimization of residential PV and BESS 
systems and related decision-making. Scientifically, the 
research enriches the field of applied energy informatics 
and home energy management systems by providing 
a concrete example of how advanced computational 
techniques can address real-world problems in energy 
management. It ventures into dynamic optimization and 
real-options that accounts for uncertainty in long-term 
planning.

1.8.2. Societal Relevance

On the societal front, the research directly addresses 
the need for more efficient and environmentally 
friendly energy solutions at the household level. The 
development of a robust RL-based framework provides 
homeowners with a clear strategy to optimize their 
energy costs and reduce their carbon footprint. The 
outcomes of this research could potentially lower the 
barriers to the adoption of PV and BESS by demystifying 
the economic and ecological trade-offs involved and by 
establishing a planning schedule.

The trained model can be effectively used for strategic 
investment decisions PV and BESS, acknowledging the 
right but not the obligation to pursue or defer certain 
action based on evolving conditions. This methodology 
not only quantifies the financial benefits of strategic 
flexibility but also enhances the capability to manage risk 
more effectively in the face of uncertainty.

With the rapid technological advancements in the 
fields of AI and machine learning over the past decade, 
particularly in generative AI, moral concerns have arisen 
regarding how AI might affect the roles of architects and 
engineers in the future. This thesis project’s potential 
implementation could conflict with the interests of 
specialists, engineers, and businesses involved in home 
microgrid system design.

On the other hand, by employing reinforcement learning 
and other AI techniques, the project ensures that the 
methodologies and decision-making processes are 
transparent and justifiable. The incorporation of diverse 
scenarios and comprehensive testing under different 
conditions reflects a thorough approach to validate and 
justify the AI's decisions and recommendations, which is 
crucial for maintaining accountability

1.9 Ethics



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski

02. LITERATURE REVIEW
2.1 Grid-Connected Residential System 
2.2 Optimisation Variables and Objectives
2.3 PV System and Batery Modelling
2.4 Reinforcement Learning
2.5 Stochastic Modelling of Variables
2.6 Model Deployment 



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski 15

LITERATURE REVIEW
2.1 Grid-Connected Residential System

2.1.1 Overview

Residential grid-connected PV systems are typically rated 
at less than 20 kW (Morey et al., 2023). Excess electricity 
generated by the system can be delivered back to the 
utility grid for utilization by other consumers. This reverse 
flow of power is monitored via a metering device that 
records the quantity of electricity redistributed. Typically, 
a photovoltaic system connected to the electrical grid 
eliminate the need for batteries because the grid serves as 
a backup energy source. Standard electrical grids supply 
alternating current (AC), whereas photovoltaic modules 
generate direct current (DC). To integrate PV panels with 
the grid, a DC/AC converter, commonly known as an 
inverter, is crucial (Lau et al., 2016). In schematic terms, 
this can be illustrated as in figure 04.

2.1.2 Solar Photovoltaic Modules

The PV system consists of multiple panels linked 
together in series to produce the necessary power, 
in accordance with the specified voltage and current 
ratings (Akın Taşcıkaraoğlu and Ozan Erdinç, 2019, pp. 
49–62). The photovoltaic module is composed of the 
set of photovoltaic cells, these cells, primarily made of 
semiconductor materials, such as silicon are fabricated 
with a built-in electric field established by doping two 
adjacent layers of the semiconductor with different 
materials (Asif Hanif et al., 2021, pp. 226–243). 

Upon absorption of sunlight, the energy of the photons is 
transferred to electrons in the atoms of the semiconductor 
material. Various types of silicon employed in the making 
of solar cells include single-crystal silicon, multi crystalline 
silicon, and amorphous silicon (Abo-Khalil et al., 2023). 
The effectiveness of a solar cell is gauged by its ability 
to transform solar radiation into electrical energy. A 
significant amount of the incoming solar energy is either 
reflected off or absorbed by the solar cell’s surface, with 
only a minor portion being converted into electrical 
power (Asif Hanif et al., 2021, pp.226–243).

2.1.3 Inverter

The PV modules produce DC output, and the role of the 
DC-AC inverter is to transform the DC from the PV modules 
into AC, allowing it to be fed into the public distribution 
grid. Additionally, the inverter guarantees that the AC 
output is synchronized with the grid’s voltage, frequency, 
and phase requirements. (Abo-Khalil et al., 2023). 
Additional components encompass a grid connection 
filter and an interaction monitor, responsible for tasks 
such as data measurement and anti-islanding (Kouro et 
al., 2015). Inverters enhance the performance of solar 
PV systems under variable conditions through Maximum 
Power Point Tracking (MPPT). This technology modifies 
the panel load to correspond with the fluctuating optimal 
power point, which is affected by alterations in sunlight 
intensity and ambient temperature .

Figure 04: Residential Grid - Conected Photovoltaic System with BESS (author, 2024)

+

-
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2.1.4 Building Load

The AC power from the inverter is then fed into the 
home’s electrical panel, also known as the breaker box. 
This panel, equipped with circuit breakers, distributes 
electricity to different circuits within the home (Hartner 
et al., 2017).

Figure 05: String Inverter Configuration (Morey et al., 2023)

Figure 06: Micro-Inverter Configuration (Morey et al., 2023)

Figure 07: DC Module Inverter (Morey et al., 2023)

Inverters in grid-connected residential settings can be 
configured in several ways:

String inverter (fig. 5) - the most common option 
for grid-interfaced solar PV systems (Morey et 
al., 2023). String inverters have one centralized 
inverter connecting a series or ‘‘string” of solar 
panels, usually having power rating of 1 to 10 kW 
(Anzalchi and Sarwat, 2017).

Micro-inverter (fig. 6) - are integrated in each 
module. This allows each panel to function 
independently from its adjacent panels on the 
array, which means that the inefficiencies caused 
by variations in the power-voltage characteristics 
of individual modules are minimized.  Micro-
inverters are typically employed in systems with a 
peak power output up to 350 watts (Morey et al., 
2023). They offer added flexibility by facilitating 
the easy expansion or reduction of modules, 
unlike string inverters which require a redesign of 
the entire system for such adjustments (Asif Hanif 
et al., 2021, pp. 252–254).

DC module inverter (fig. 7) - connects to the DC 
wires and AC output of solar panels. In contrast to 
micro-inverters, which convert DC to AC directly 
at the panel location, this system processes the 
DC electricity and conveys it to a centralized string 
inverter for conversion (Morey et al., 2023).

LITERATURE REVIEW02

A standard daily load profile of a Dutch terraced house 
usually peaks in late afternoon hours, after dinnertime. 
Whereas the PV system energy production is the 
highest midday, when the average solar radiation peaks.  
Additionally, just like in other areas of the northern 
hemisphere, the household’s highest energy use nearly 
doubles in the winter, and the demand for energy in the 
morning also rises substantially. This leads to a notable 
difference between the PV energy production and usage, 
which is apparent in the total energy demand shown 
in, especially during the winter season (Klaassen et. al., 
2015). 

2.1.5 Home Battery Storage System

Home battery storage technologies have evolved 
significantly, with various options available based on 
chemical composition, connection type, and intended 
use. The primary types of home batteries include lead 
acid, lithium ion, nickel-cadmium, nickel-hydrogen, and 
more recently, sodium ion and salt water batteries. Each 
type presents distinct advantages and limitations in terms 
of cost, lifespan, energy density, environmental impact, 
and safety (Simpkins et al., 2016).

Lithium ion batteries dominate the residential and 
microgrid storage markets. They are favoured for their 
higher energy density, longer lifespan, and compactness 
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LITERATURE REVIEW02
compared to lead acid batteries (Siewierski and Malarek, 
2022). Various chemistries, including lithium nickel-
manganese-cobalt (NMC), are used. 

Lead acid batteries, traditionally used for automotive 
starters, have been adapted for home energy storage 
due to their low cost and well-understood recycling 
processes. However, they are bulkier, have a slower 
charge cycle, and are sensitive to high temperatures, 
which can shorten their lifespan (Chatzigeorgiou et al., 
2024).

Emerging technologies like sodium ion batteries promise 
lower raw material costs and enhanced safety profiles 
compared to lithium ion. Salt water batteries, another 
innovative solution, are environmentally friendly due 
to the absence of heavy metals and toxic substances, 
though they suffer from lower energy and power 
capacities which restrict their use in high-demand 
applications (ibid.).

On the European market lithium ion batteries are the 
by far most popular choice for home energy storage 
systems primarily because of their superior energy 
density, which allows for a smaller physical footprint 
while providing greater energy storage capacity, and 
their longer cycle life, which offers greater overall value 
(Siewierski and Malarek, 2022).

The integration of these batteries into home energy 
systems can be either AC-coupled or DC-coupled. AC-
coupled systems involve converting DC from solar 
panels to AC, which is then used directly in the home or 
converted back to DC for battery storage. This method, 
while versatile and compatible with existing solar 
setups, suffers from efficiency losses due to multiple 
conversions and typically has higher costs (Guan et al., 
2015). DC-coupled systems store power directly from 
solar panels into batteries without the intermediate AC 
conversion, thus enhancing overall system efficiency 
and reducing component costs. These systems are 
particularly advantageous for new installations where 
system architecture can be optimized from the outset.

2.15 Conclusion

The integration of grid-connected photovoltaic systems 
into residential settings presents a multifaceted 
approach to sustainable electricity generation. The 
seamless interplay between the solar modules and 
the grid ensures a reliable flow of energy, balancing 
production with home consumption patterns. 

Regarding the feasibility of the problem at hand it is 
best to utilize microinverters integrated within the solar 
panels. This setup provides greater flexibility, allowing 
for regular updates and adjustments to the system to 
maintain optimal performance.

Lithium-ion batteries are selected for optimisation. The 
dynamic optimization process described in this work 
requires the implementation of an AC-coupled system. 
This is because it allows for the potential addition of 
a battery at any point during the 25-year operational 
period without necessitating the replacement of the PV 
panel inverters. 



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski18 TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski

2.2 Optimisation Variables and Objectives

This section analyses the factors that affect the long-term 
economic efficiency and environmental benefit of the 
GSPS found in the literature. This involves examining the 
various elements that influence the cost-effectiveness 
and financial performance of these systems. 

2.2.1 Energy Balance and PV-related Variables

Energy balance is essentially the equation that describes 
the relationship between the energy output of the 
PV system and the residential energy consumption. 
The energy imported from the grid at time t, Eimp(t), 
occurs when the consumption exceeds production, i.e.,       
Econs(t) > Eprod(t). The total energy imported annually can 
be calculated as:

Similarly, the energy exported to the grid at time t, Eexp(t), 
occurs when the production exceeds consumption, i.e., 
Eprod(t) > Econs(t).

Typically however this timestep is discretised to 15 
minutes (Allouhi, 2020) or 1 hour (Hartner et al., 2017).

In the context of photovoltaic optimization, the solar 
radiation and the building load profile of the area under 
study is a critical element to consider from the perspective 
of energy demand (Al Garni et. al., 2018).  Other factors 
including ambient temperature, air pollution or wind 
also influence the efficiency of the solar system. On the 
other hand, the technical data of a PV system such as the 
temperature coefficient, system efficiency, the tilt angle 
of the array, insolation under standard test conditions 
or the system losses are crucial in estimating system’s 
energy output (Shiva Gorjian and Ashish Shukla, 2020, 
pp. 313–346). This will be explored in section 2.3 in more 
detail.

2.2.1.1 PV Efficency Improvement 

Usually unacounted by literature is the fact that the 
photovoltaic cell efficency develops over time, improving 
the energy production capabilities of the PV systems 
(Vartiainen et al., 2020). According to Fraunhofer 
Institute for Solar Energy Systems (2023) the efficiency 
of crystalline silicon PV modules has been growing 
approximately 0.4% per annum over last 10 years. 

Continuing this trend, it's projected that the average

module efficiency could rise from 17.2% in 2018 to 30% 
by 2050. While single-junction silicon cells are bounded 
by a theoretical efficiency cap of around 30%, the use 
of multijunction cells can achieve significantly higher 
efficiencies (Vartiainen et al., 2020).

2.2.2 Finacial Variables

Typically, the overall expense of the PV is represented 
by combining the initial cost, ongoing maintenance 
expenses, and the cost of replacing the PV panels.

2.2.2.1. Capital Expenditure 

Capital Expenditure (CAPEX) refers to the initial financial 
investment required to purchase and install the solar 
panel system. This includes various costs involved in the 
setup of a solar energy project, its key components being: 
the cost of PV panels, inverter, and balance of system 
(BoS) which encompases mounting and installation 
expenses such as wiring etc. (Vartiainen et al., 2019). On 
the European market the residential PV system CAPEX 
has been falling steadily over last two decades (European 
Commission, 2022), with module process hitting record-
low of less than 0.15 €/Wp in September 2023 (Meban, 
2023). 

CAPEX is not just a list of costs but is typically expressed 
in a standardized format, often in €/Wp (Euros per Watt 
peak), as noted by Allouhi (2020), which is then multiplied 
by a coefficient considering the base size of the system 
(Erdinc et al., 2015). 

Literature usually consideres CAPEX to be constant 
(Mondol et. al., 2009), or its original value at the start 
of the the optimisation period is adjusted annually with 
an interest or discount rate (Hartner et al., 2017). For 
example, in order to determine the annuity's worth 
based on the interest rate and the duration of the 
payment Khoury et al., (2015) has multiplied the base 
CAPEX by a capital recovery factor. A government subsidy 
covering a fraction of the CAPEX is also sometimes taken 
into consideration (Zhou et al., 2018).

Sometimes more than one pricing scenarios are 
considered (Liu et al., 2012). Far less often future CAPEX 
is estimated stochastically considering among other 
factors past data (Jung et al., 2021). This approach will be 
further explored in the section 2.5. 

2.2.2.2. Operational Expenditure and Replacement  

Operational expenditure (OPEX) refers to the annual,
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Operational expenditure (OPEX) refers to the annual, 
ongoing costs associated with operating and maintaining 
the PV system over its lifetime. It’s main component is 
operation and maintenance (O&M), which includes 
cleaning the panels, checking and repairing electrical 
connections, and replacing components (Vartiainen et 
al., 2019). Not all studies take OPEX under consideration, 
or assumed that its influence is negligible (Nafeh, 2009). 

OPEX can be expressed as an independent variable 
(Al Garni et. al., 2018), where the initial value of OPEX 
is gathered from the empirical data and then adjusted 
annually considering the interest rate. For example, 
Kornelakis and Marinakis (2010) have considered the PV 
panel maintenance costs and the inverter repair adjusted 
for both interest rate and inflation. Cervantes and 
Choobineh (2018) assumed different scenarios for the 
maintenance and labour costs depending on the location 
of the system under optimisation. Alternatively OPEX is 
calculated as percentage of the capital cost, usually as 1% 
(Khoury et al., 2015) or 2% (Hartner et al., 2017) of the 
CAPEX value of the entire system per year.  

Most analysed studies do not consider replacement 
costs or assume they are equal to the CAPEX per panel 
(Fan and Xia, 2017). Others only weight the costs of the 
replacement of the inverter after a certain time period 
(Javeed et al., 2021). 

2.2.2.3. Energy pricing and Net-metering

The structure of electricity pricing plays a pivotal role in 
the decision-making process for installing PV systems. In 
the Netherlands various types of energy contracts are in 
place (fixed, time-of-use and real time pricing) (van de 
Wetering, 2023). 

With fixed rates, the price for importing power remains 
constant as agreed with the supply company. Under 
time-of-use pricing, electricity costs are typically 
segmented into distinct periods throughout the day, 
higher rates are applied during the day’s peak demand 
hours. Al Garni et al., (2018) considered three distinct 
daily thresholds – peak, shoulder and off peak. In real 
time pricing, the electricity rate is adjusted every hour in 
a dynamic manner (Zhou et al., 2018). Yet, the majority 
of studies regarding the financial optimisation for GCPS 
assume fixed contracts billed monthly or weekly from the 
consumers (Khezri et al., 2022). 

All reviewed papers have taken into account a form of 
compensation for returning surplus energy to the power 
grid. This typically involves a feed-in tariff (FIT) or a net 

metering arrangement. Analogous to the energy tariff, 
the FIT can be structured either as a fixed rate or variably, 
based on the time when the energy is supplied to the grid 
(Javeed et al., 2021). In the Netherlands, net-metering 
(“Salderingsregeling”) has been a legislative framework, 
which mandates companies to offset the quantity of 
electricity fed back into the grid by a household against 
its consumption from the grid. This process effectively 
means that households are monthly billed only for their 
net electricity usage (Butenko, 2016). 

2.2.2.4. Interest Rate

When optimising for long-term economic viability of a PV 
system most authors include the annual interest rate into the 
calculations. It usually is considered in the discount factor 
which  adjusts future money to present value, considering 
that money available at the present time is worth more 
than the same amount in the future due to its potential 
earning capacity. This is in order to account for inflation, 
future investment oportunity, risk, uncertainty and a 
general people’s preference for immediate consumption. 
Especially when long-term projects like PV installations is 
considered, where costs and benefits occur at different
times (Khezri et al., 2022).

2.2.3 Environmental Variables

2.2.3.1 Grid Emission Factor 

When evaluating the PV system in terms of the 
environmental benefit the grid emission factor (EG) is 
the most important variable. Compared to the amount of 
equivalent CO2 offset by a PV array, the emissions from 
PV system production can be deemed negligible (Liu et 
al., 2012). In literature it is expressed as the amount of 
CO2 equivalent emitted per unit of electricity generated in 
kilograms of CO2 per kilowatt-hour (Scarlat et. al., 2022). 
Allouhi, (2020) for the analysed time period used linear 
approximation to estimate the EG between the present 
value and a future predicted value obtained from the 
literature.

2.2.3.2  Embodied Carbon 

Determining the carbon footprint of an on-roof 
photovoltaic installation and home BESS through a life 
cycle assessment is a complex task. This process needs 
to take into account various factors, including the energy 
and materials required for the production of photovoltaic 
panels, their transportation to the installation site, the 
energy consumed during the installation and production 
process, the electricity grid’s factor, the operational 
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phase of the system over its lifespan, its end of life 
treatment and disposal. The complexity of this process 
and its uncertainties could be the reason that none of 
the examined studies take this factor into account for 
optimization.

2.2.4 Constraints

Apart from the design variables, the literature describes 
several design constraints that limit the planning of the 
PV system. Those include spatial constraint or the rooftop 
availability, Kornelakis and Marinakis, (2010) have 
limited the maximum number of rows of PV modules 
and considered their arrangement regarding the inverter 
configuration and shading. Fan and Xia, (2017) tested 
different budget constraints for the total spending on 
the PV implementation. System’s resilience to extreme 
events can also be tested, where random power outages 
are modelled (Khoury et al., 2015). Javeed et al., (2021) 
and Cervantes and Choobineh, (2018) imposed maximum 
daily energy export caps to the utility grid due to local 
policies. 

2.2.5 Decision Variables

The optimisation variable of the majority of the literature 
is the total capacity of the photovoltaic system. This is 
expressed either as the number of the photovoltaic 
modules (Khoury et al., 2015) or their combined power 
output in kW (Liu et al., 2012). Other studies considered 
a fixed, small number of the possible PV array sizes (Zhou 
et al. 2018) and (Lau et al., 2016). Usually only one type 
of PV module is selected to the optimisation. 

The system capacity is usually optimised “statically” 
i.e. one specific configuration is selected for the entire 
lifespan of the project. Only Fan and Xia, (2017) have 
considered a scenario when a number of panels is added 
or discarded from the system each year. 

2.2.6 Optimisation Objectives

In the realm of optimizing GCPS, objective functions is 
the most important parameter in guiding the design 
and operational strategies. Various optimization 
algorithms are utilized to either maximize or minimize 
objective functions. These problems in optimization 
can be formulated with either a single or multiple 
objective functions, depending on the complexity and 
requirements of the task.

Most of the revied literature optimise the GCPS in 

order to maximise the financial profit from the system 
implementation. These include net present value (NPV), 
cost of electricity (COE), payback period (PP), the internal 
rate of return (IRR) or other tailored formulas. The former 
two are by far most common. System NPV signifies its 
total value, adjusted for discounting, accounting for all 
electricity cost savings generated by the solar PV system, 
minus the initial investment costs associated with the 
technology adoption. COE is determined by dividing the 
total NPV by the annuity factor, that converts a series of 
future cash flows into a single present value. NPV is given 
by (Al Garni et. al., 2018):

where:
Rt is the revenue at time t
Ct is the cost at time t 
n is the number of periods
r is the interest rate

Some studies (Allouhi, 2020) also include an environmental 
objective such as the cumulative environmental benefit 
(CEB). This is calculated as the CO2  grid emissions which 
are neutralised by the project electricity production. A 
comprehensive overview of the optimisation objectives, 
constraints and independent variables found in the 
literature has been given in the table 2. 

While the literature reveals a diversity in optimization 
approaches, it focuses predominantly on financial 
objective. Although, these are crucial for evaluating the 
economic viability, it becomes clear that the emphasis 
often overlooks other important aspects such as 
environmental impacts.

2.2.7 Conclusion

Operational and capital expenditures, along with energy 
pricing, net-metering policies, and various incentives, 
are scrutinized for their role in shaping the feasibility 
and profitability of solar investments. Constraints such 
as spatial limitations and system resilience; decision 
variables as system capacity; and optimization objectives 
focused mainly on financial gains are thoroughly 
examined. It becomes evident that while economic 
viability remains the primary focus, the incorporation 
of environmental benefits into the optimization models 
is gaining traction. All of the variables described in this 
subchapter are pivotal to the optimal PV system planning 
and all shall be taken into account in the development of 
the RL model.
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Decision Variables Objective Constraints Electricity 
Tariff Reference

PV capacity and solar 
tracking system Financial - NPV Spatial Time-of-use Al Garni et al., (2018)

PV capacity, inverter 
capacity, PV inclination Financial – COE - Fixed Mondol et al., (2009)

PV capacity Financial - NPV - Fixed Lau et al., (2016)

PV capacity Financial - NPV Power outages Fixed Khoury et al., (2015)

PV capacity and inclination, 
PV distribution among 

inverters
Financial - NPV Spatial Fixed Kornelakis and Marinakis, 

(2010)

PV capacity and inclination Financial – ROI - Fixed Liu et al., (2012)

PV capacity Financial - other - Fixed Khanfara, (2018)

PV capacity Financial - IRR Policy Fixed Hartner et al., (2017)

PV capacity Financial – NPV, PP Spatial and 
Budget Fixed Fan and Xia, (2017)

PV capacity Financial - PP - Fixed Abo-Khalil et al., (2023)

PV capacity Financial - COE - Fixed Nafeh, (2009)

PV capacity Financial – COE, 
Autonomy Policy Time-of-use Ramli et. al., (2018)

PV capacity Financial – COE,
Environmental - CEB Technical Fixed Allouhi, (2020)

PV capacity Financial – sensitivity 
analysis Technical Fixed Erdinc et al., (2015)

PV capacity Financial – other Technical

Fixed, Time-
of- use, 

Real-time 
pricing

Zhou et al. (2018)

PV capacity Financial - other Policy Time-of-use Cervantes and Choobineh, 
(2018)

PV capacity Financial – NPV, COE Policy and spatial Fixed, Time-
of-use Javeed et al., (2021)

Table 02: Overview of Literature Regarding the Optimal Planning of a GCPS for Residential Scenarios
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2.3 PV and BES System Modelling
The underlying physics of a solar cell are quite 
sophisticated. The modelling of a cell's reaction to 
light and heat varies greatly, from simple high-level 
estimates requiring only a few coefficients to detailed 
electrical circuit models that need comprehensive cell 
data, and up to complete physics-based semiconductor 
models (Jo & Lee, 2019). The atmospheric conditions 
for the calculations are usually based on the typical 
meteorological year (TMY) weather data (E3P, 2016).

2.3.1 Solar Radiation

Estimating the intensity of solar radiation reaching the 
Earth's surface encompases the disaggregation of global 
horizontal irradiance into direct and diffuse components 
and the transposition of these irradiances onto a plane of 
fixed inclination to reflect the orientation of photovoltaic 
modules (Kazem & Yousif, 2017). The aggregate solar 
radiation on tilted surfaces is a composite of several 
components: diffuse horizontal radiation, direct beam 
radiation and reflected radiation (Perez et al., 1990). This 
can be computed as:

where:
Gh,b  is the direct beam radiation
Gh,d  is the diffuse horizontal radiation
Gh,p  is the reflected radiation
AOI is the angle of incident sunlight on a tilted plane
θT     is the tilted angle of inclination relative to the ground 
surface

Gh,b is sunlight that travels in a straight line from the 
sun to the Earth's surface. Gh,d  has been scattered by 
molecules and particles in the atmosphere. Reflected 
radiation, is sunlight that has hit the Earth's surface and 
been reflected back into the atmosphere (Perpetuo e 
Oliveira et al., 2019).

AOI between the Sun’s rays and the PV array can be 
determined (Hosseini et al., 2018):

where:
φ is the azimuthal deviation of the PV module
A is the sun azimuth angle
β is the sun altitude angle.

2.3.2 Cell Temperature

Rising temperature of PV cells results in diminished 
efficiency due to increased carrier recombination and 
reduced bandgap energy. Therefore, it's important to 
accurately determine the cell temperature to predict the 
power a PV system can generate. The equation for cell 
temperature TC  taking into account wind speed and the 
mounting configuration is defined as (Faiman, 2008):

where:
Tambient is the local ambient temperature,
Tc,STC is the PV temperature under standard test conditions 
[25°C],
α is the PV cell absorption coefficient,
Uc is the heat loss factor coefficient dependent on the 
module construction,
Uv is the combined heat loss factor influenced by wind,
WS is the wind speed in m/s.

2.3.3 Energy Output

In literature on optimal solar PV planning in GCRS 
different power output models are used. Mondol et 
al. (2009) modelled grid-connected PV system using 
the TRNSYS, graphically based software environment, 
where a “four-parameter” equivalent circuit is employed 
to model a single crystalline PV module. This model is 
characterized by the module's photocurrent under STC, 
its diode reverse saturation current at STC, an empirical 
factor for fitting the PV curve of the diode, and the 
module's series resistance. This is called a single-diode 
model. TRNSYS is also used by Kornelakis & Marinakis 
(2010) for the optimisation of the PV surface inclination 
for the PVGCS energy production. Al Garni et al. (2018) 
and Lau et al. (2016) carried out the simulations using 
HOMER for design of off-grid and on-grid power systems, 
commonly used for renewable energy sources  evaluation 
and sensitivity analysis. 

Other computational tools like Sunny Design (Khanfara et 
al., 2018), RETScreen, PVSyst, Hybrid2  (Connolly et al., 
2010) or self-developed sotwares (Hartner et al., 2017) 
are also among the most frequently reported in the 
literature.

Despite the complexity of solar PV systems other authors 
have utilised simplified formula-based approaches. Liu 
et al. (2012) calculates the actual power output of a PV 
array based on its rated capacity and the solar irradiation 
it receives. Similarly, Jung et al. (2021) and Ogunjuyigbe
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et al. (2016) modelled PV energy output as a product 
of area, efficiency of solar panels and the global solar 
radiation.

More comprehensive approach, than a simple linear 
formula factors in effect of temperature on the efficiency 
of the PV panel, as well as the variance in solar irradiation. 
It can be called a single-point efficiency with temperature 
correction model (Theristis et al., 2018, pp. 671–706) (eq. 
7). This were utilised by Fan & Xia (2017) and Liu et al. 
(2023) taking into account that the electrical properties 
of PV systems vary from the parameters measured under 
STC. Even more detailed analytical approach suitable 
for precise calculations was developed by Khoury et 
al. (2015) incorporating detailed physical and electrical 
characteristics of the PV cells.

where:
PPV is the power generated from the PV panel
YPV is the rated capacity of the PV panel [kW]
GT,STC is the incident radiation in STC [kW/m2]
GT is the solar radiation on the PV [kW/m2]
αP is the temperature coefficient [%/°C]
Tc is the cell temperature [°C]
Tc,STC is the PV temperature under STC [25°C]

Contrary to the previously mentioned methods, Data-
Driven Regression Modelling, as detailed by Allouhi 
(2020), employs statistical methods like Multiple Linear 
Regression, utilizing historical data to establish model 
coefficients. This is particularly suitable for situations 
where historical data is accessible and environmental 
conditions are relatively stable.

Not mentioned in the GCPS literature is the recently 
released Python library pvlib developed at Sandia 
National Laboratories, integrated with other Python-
based data analysis tools (Holmgren et al., 2015) is able 
to calulcate the PV power output using both the single-
diode and single-point models under various PV system 
configurations and environmental conditions. 

In general the appropriateness of a modelling approach 
depends on its intended use – basic estimations can 
often yield precise results, but might not be suitable for 
making financial decisions. Conversely, detailed physics-
based models of semiconductors are typically only useful 
in research environments, not in practical, real-world 
applications (Connolly et al., 2010).

2.3.3.1 Single-diode Modelling

The single diode model for representing the electrical 
behaviour of a photovoltaic cell, which has been proven 
to accurately approximate the PV performance (Theristis 
et al., 2018, pp. 671–706). This model is based on the 
equivalent circuit of a diode (fig. 08), which reflects 
the PV cell's characteristics under various conditions 
of irradiance and temperature. It captures the current-
voltage (I-V) relationship of a PV device and generates the 
I-V curve (fig. 10), which plots the current that a solar cell 
generates against the voltage it produces. The current I 
flowing through the cell is represented as (Wenham et 
al., 2011):

,
where:
IL is the light-generated current, produced by the cell due 
to light exposure,
I0 is the diode saturation current, flowing through the 
diode when the voltage is below the threshold,
RS is the series resistance, representing the resistive 
losses of the cell,
RSh  is the shunt resistance to the current that leaks across 
the p-n junction,
n models the deviation from ideal p-n junction behaviour,
NS  is the number of cells connected in series within each 
module,
Vth is the thermal voltage depending on the temperature 
and the physical properties of the materials in the cell.

The five parameter values for this equation cannot be 
found in manufacturer’s datasheets. Their estimation 
procedure is described in Appendix A. The voltage V 
across a PV cell can be determined using the Lambert W 
function. This is given by :

where:
I is the actual current through the PV cell,
LambertW is the lambert function defined as the function 
that satisfies the equation x=W(x)e(W(x))

Power is simply the product of current I and voltage V at 
any given point on the I-V curve. Hence:

eq. 7

eq. 8

eq. 9

eq. 10
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2.3.4 Soiling Losses

Soiling losses refer to the reduction of panel’s efficiency 
due to the accumulation of dirt, dust, sand, or other 
particles on their surface. Typically, the industry standard 
estimates for annual soiling losses in photovoltaic systems 
range between 1% and 4% (Theristis et al., 2018, pp. 
671–706).  In the Netherlands’ climate these are not as 
significant due to frequent rainfall. Nevertheless various 
empirical models have been developed to calculate 
the soiling loss as a function of environmental factors. 
Kimber Soiling model (Kimber et al., 2006) assumes that 
the accumulation of dirt occurs at a steady pace until it is 
washed away by rainfall.

2.3.5 Inverter Losses

Inverter losses in a PV system refer to the energy that 
is not converted from DC to AC due its inefficiency. The 
inverter's efficiency typically varies with the load, and it's 
often lower at very low or high power outputs. Predicting 
inverter losses in a PV system involves several factors 
including the inverter's efficiency curve and the expected 
load profile. Usually the AC-DC conversion account 
for around 3% power losses (Kazem & Yousif, 2017), 
this figure however is usually lower for microinverters. 
Important to note that very few studies 

regarding the PV planning for GCPS consider any losses 
when calculating the PV energy yield, assuming that the 
array DC output as conclusive.

Inverter efficiency is difficult to estimate and usually is 
evaluated based on empirical tests and observations 
(Perpetuo e Oliveira et al., 2019). The Sandia National 
Laboratories model for the AC power output from the 
inverter is given as (King et al., 2007): 

where the coefficients A, B, and C are defined as:

where:
PAC,0 is the maximum AC power,
PDC,0 is the DC-power level at which the max. AC-power 
rating is achieved,
PS,0   is the power consumption during operation,
VDC   is the PV maximum power voltage,
VDC,0 is the DC-voltage level at which the max. AC-power 
rating is achieved,
C0     is the parameter defining the parabolic relationship 
between AC and DC power at reference conditions.

2.3.6 Cabling Losses

Cabling losses in solar PV systems refer to the power 
losses that occur in the DC cables connecting the solar 
panels to the inverter, and in the AC cables connecting 
the inverter to the load or grid. According to Hashemi et 
al. (2021) these losses are influenced by factors like the 
potential difference over DC wiring. The cabling loss can 
be calculated as a function of resistance within the cables 
and voltage between cable ends (Ekici and Kopru, 2016).

Figure 09: A Single-diode Model (author, 2024)

Table 03: Basic Comparison Between Described PV Modelling Methods

Simplified 
Formula-based Easy Poor

Single-point 
Efficency Easy Mediocre

Single-diode Difficult High

Method Implementation 
Complexity Accuracy

V

IL I0

Rsh

Rs I

Figure 10: The I-V Curve (orange) and PV power production curve (blue)
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2.3.7 PV Efficiency Loss

PV efficiency loss refers to the rate at which solar panels 
lose their efficiency over time. Solar panels, like all 
electronic devices, experience wear and tear, and their 
ability to convert sunlight into electricity diminishes 
gradually (Olczak, 2023). It's typically expressed as a 
percentage loss in efficiency per year. Literature indicates 
that the degradation rates vary between 0.8% and 
4.9% per year, also varying over time since the original 
installation (Rahman et al., 2023).

There are many variables that influence the long-term 
efficiency loss rate starting from the manufacturing 
process, proper maintenance and installation. High 
temperature and temperature amplitude causes 
thermal stresses inside the panels causing delamination 
of the components. Moisture and air humidity leads to 
corrosion and electrical leakages (Jordan & Kurtz, 2011). 

Regarding the studies on GCPS the efficiency loss is 
rarely taken into account, yet it should be considered 
in the long-term planning scenario, since lower energy 
output can affect the return on investment for solar 
installations, extending the payback period.

The literature outlines several methods for modeling 
the efficiency loss of photovoltaic panels. Firstly, 
a degradation rate method employs a percentage 
reduction in efficiency, which may be either a fixed 
value derived from measurements, manufacturer data, 
or cited literature, or it may be modeled stochastically 
using techniques such as gamma distributions (Jung et 
al., 2021), Monte Carlo simulations or sampled from 
a relevant distribution (Lai et al., 2023). Additionally, 
temperature coefficient modeling adjusts the panel’s 
efficiency based on its temperature coefficient (Paudyal 
and Imenes, 2021). More advanced methods, such 
as physical degradation modeling, integrate physical 
degradation factors like microcracks, delamination, and 
corrosion using predictive algorithms (Guerra et al., 
2023). Furthermore, electrical circuit models are used 
to simulate the evolution of key solar cell parameters 
(outlined in section 2.3.3.1), which influence efficiency 
over time (Arar et al., 2019). 

2.3.8 PV Service Life

Apart from the efficiency loss the output from a PV 
array inevitably decreases due to the declining number 
of operational solar panels within the system as time 
progresses (Fan & Xia, 2017). The mean service life of 

Figure 11: Weibull Comulative Density Function (author, 2024).

PV modules given by the manufacturers usually ranges 
between 20 to 25 years. In reality, the lifespan of 
photovoltaic systems is not fixed and can varies. Therefore, 
it's important to accurately model the uncertainty in their 
service life for effective long-term planning of PV systems.

Ma et al., (2022) have built empirical model on the basis 
of 4 types of degradation patterns: hygrothermal, UV 
radiation temperature and humidity. Fan et al., (2018)  
have applied gamma process with an exponential 
transformation to PV modules to obtain the estimated 
lifetime.

A simpler approach has been taken by Laronde et al., 
(2011) survival over time has been represented using 
the Weibull distribution, a widely-accepted approach 
for assessing reliability and lifespan of technology in 
various applications. The effectiveness of this approach 
is confirmed by Kuitche (2010) who compared Weibull 
distribution modelling to gamma and exponential 
distributions.

2.3.9 Batery Modeling

Battery storage systems operate by harnessing chemical 
energy and converting it into electrical energy, which is 
then stored for future use. The fundamental measure 
of a battery’s storage capability is its energy capacity, 
typically quantified in kilowatt-hours (kWh). This capacity 
delineates the total amount of energy a battery can hold, 
with the usable capacity being the portion available for 
discharge, factoring in considerations such as depth of 
discharge (DoD). DoD is critical as it influences battery 
longevity; for instance, lithium-ion batteries maintain 
health when discharged up to 80-90% of their nominal 
capacity.
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The power rating of a battery, expressed in kilowatts 
(kW) determines the maximum rate at which the 
battery can discharge energy. This rate impacts the 
battery’s operational efficiency in various applications. 
The operation of these systems also includes the 
management of the state of charge (SOC), which is 
essential for maintaining battery health and efficiency. 
SOC limits, both upper and lower, are set to avoid 
excessive depletion, which could otherwise accelerate 
the degradation of the battery.

Round-trip efficiency represents the percentage of energy 
that can be retrieved from the battery as compared to 
what was stored, after accounting for losses due to self-
discharge and other inefficiencies. 

Not unlike photovoltaics, there is a plethora of methods 
to simulate and approximate the complex chemical 
processes of battery storage, with numerous simulation 
software options available. These methods range from 
intricate open-circuit voltage models, which consider 
the nonlinear relationship between the open-circuit 
voltage and the battery state of charge (SOC), such as 
the Shepherd model, which describes the voltage-
current relationship with consideration of SOC. While 
these models are detailed and accurate, they require 
comprehensive datasheets of the analysed modules.

On the other hand, there are simplified linear 
approximations that provide a more generalized but 
less accurate representation of battery behaviour. These 
approaches are often preferred in scenarios where 
computational resources are limited or where a high 
degree of precision is not critical. However, the trade-
off is a reduced ability to capture the nuanced dynamics 
of battery performance under varied operational 
conditions.

2.3.10 Batery Operation

The operation management of solar-coupled home 
battery systems is crucial in optimizing the balance 
between energy consumption, cost-efficiency, and grid 
stability. This management is predominantly achieved 
through algorithms that regulate when and how batteries 
are charged from solar panels and discharged to meet 
household energy needs or feed excess power back to 
the grid (von Appen et al., 2015). 

The primary goal of operation management in these 
systems is to increase the efficiency of energy use while 
minimizing costs and mitigating the environmental 
footprint. Operation strategies aim to optimize the 

charging and discharging cycles of the battery based on 
various factors, including energy demand, solar energy 
production, electricity prices, and battery health. This 
involves making real-time decisions about when to store 
energy, when to use it directly, and when to sell it back to 
the grid (Angenendt et al., 2018).

Control strategies within these systems can be categorized 
into rule-based and predictive strategies (ibid.). Rule-
based strategies typically operate under predefined rules 
that respond to changes in PV output, load demands, and 
grid electricity prices. For example, batteries might be 
charged when there is excess solar power and discharged 
when it is needed most, thereby increasing the self-
consumption of generated solar energy. This strategy also 
allows for power to be fed back into the grid when there 
is a surplus, optimizing the financial returns through net 
metering or feed-in tariffs (Khezri, Mahmoudi and Haque, 
2020).

Another sophisticated strategy employed is the dynamic 
price load shifting, where battery operation is optimized 
against electricity price fluctuations. Batteries are charged 
when electricity prices are low and discharged when 
prices are high, leveraging periods of differential pricing 
to reduce energy costs. This strategy requires real-time 
data on electricity prices and can significantly enhance 
system profitability and efficiency (Zhang et al., 2017).

A more advanced and increasingly common method 
involves Model Predictive Control (MPC). MPC uses 
forecasts of solar production and household energy 
demand to optimize battery charging and discharging 
over a future time horizon. This approach aims to align 
battery operation with predicted energy flows, thus 
ensuring that storage is used efficiently to cover energy 
needs with minimal reliance on the grid. MPC can be 
tailored to focus on various objectives, such as minimizing 
energy costs, balancing production and consumption, or 
reducing grid dependency (Angenendt et al., 2018).

Within these frameworks, various machine learning 
techniques enhance the predictive accuracy and 
operational efficiency of the battery systems (Guan et al., 
2015). Reinforcement learning can adaptively tune the 
control strategies based on observed system performance 
and change environmental conditions. It does not rely 
strictly on precise long-term forecasts but can operate 
under uncertainty, making them particularly robust for 
residential energy management where solar production 
and household consumption can be unpredictable (ibid.).

Moreover, deep learning models, such as Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 
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networks (LSTMs), are employed to forecast load and 
solar production more accurately. These forecasts feed 
into the MPC and other predictive strategies, enhancing 
the responsiveness and effectiveness of the operational 
management system (Corte Real et al., 2024).

2.3.11 Batery Degradation

Lithium-ion batteries are subject to degradation 
mechanisms that reduce their performance and lifespan 
over time. This degradation is predominantly caused 
by complex chemical and physical processes such as 
electrode material fatigue, loss of active material or 
electrolyte decomposition. They are influenced by 
various operational conditions including temperature, 
state of charge, charge/discharge rates, and depth of 
discharge. The two main degradation modes are cyclic 
aging pertaining to the wear and tear that batteries 
undergo due to charging and discharging cycles and 
calendar aging refering  to the degradation that occurs 
as a function of time driven by chemical reactions within 
the battery.

Narayan et al., (2018) has distinguashied two categories, 
of battery lifetime estimation: performance-based and 
cycle counting models.

Performance-based models can utilize experimental 
techniques that monitor and quantify battery degradation 
over time, or they may employ semi-empirical methods 
that describe fading mechanisms through equations 
tailored to specific cell types. The limitation of these 
approaches is that they are designed for particular 
cells, within defined environmental conditions, and are 
validated over a constrained time period.

Cycle counting models differ from performance-based 
models by calculating parameters related to their end-
of-life, including ampere-hour throughput, cycle count, 
or age since manufacture. These models are largely 
dependent on data from manufacturers and assume 
consistent ampere-hour throughout the battery’s life, 
influenced by specific stressors such as depth of discharge 
and temperature.

In order to estimate the degradation based on the cycling 
of the battery charge a method to count the charge-
discharge cycles is needed. The main method described 
in the literautre is the rainflow algorythm (Zhang et al., 
2017), a technique primarily used in structural engineering 
for fatigue analysis. The algorithm starts by identifying all 
the local maxima and minima in the SOC full loading and 
unloading sequence. These points represent the turning 
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points in the battery’s charge and discharge process. Then 
the algorythm defines full cycles by matching each peak 
with a corresponding minimum. Additionally it forms 
half-cycles by pairing each point in the sequence with 
subsequent minima and maxima. The extracted cycles 
are then analyzed to count how many complete and 
half cycles occur. Each complete cycle typically consists 
of a charge and a discharge that returns to or below 
the starting SOC level. This has been visualised below.  
 

2.3.11 Conclusion

This subchapter outlines the critical role of solar radiation 
estimates and the influence of cell temperature on 
PV efficiency, showcasing the necessity of considering 
environmental factors such as temperature variations 
and wind speed in system design. It underscores the 
diversity of modelling techniques available, each with its 
advantages and limitations in terms of complexity and 
accuracy. While single-diode and multi-diode models 
provide a more granular perspective on the electrical 
characteristics of PV cells under varying conditions, 
simplified methods offer broader, albeit less precise, 
insights for quick assessments. Various types of losses 
are also highlighted. The objective of this project is to 
establish a methodology for informed financial decision-
making, which necessitates a thorough approach to PV 
system modelling. Hence, the single diode model will be 
employed, incorporating all of the aforementioned loss 
factors.

The models for PV degradation and service life exhibit 
varying levels of implementation complexity and consider 
different factors that influence performance. Given the 
context of this project, which focuses on employing 
reinforcement learning for decision-making regarding 
the installation of PV panels, it is prudent to incorporate 
these models within the simulation environment. This 
approach will expose the decision-making agent to a 
spectrum of scenarios and probabilities reflecting real-

Figure 12: Rainflow Counting of Battery SOC cycles (Luo et al., 2021)
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world variables. Therefore, degradation will be modeled 
stochastically, and panel longevity—or survival rate—
will be quantified using the Weibull distribution. This 
method ensures that the model adequately reflects 
the uncertainties associated with the performance and 
durability of PV systems, enhancing the robustness and 
reliability of the decision-making process.

Furthermore, the battery system modeling and 
operation models are described comprehensively. These 
foundational models set the stage for the detailed 
battery modeling and operational strategies that will 
be elaborated in Chapter 6. Given the time constraints 
of this project, a simpler linear approximation has been 
chosen to model battery functionality. This method 
provides a straightforward yet effective way of estimating 
battery performance over time. Similarly to the approach 
used for modeling the degradation of PV modules, a 
stochastic process will be employed to simulate both 
the degradation and failure mechanisms of the battery. 
This process will utilize cycle counting as a key variable, 
allowing for the probabilistic modeling of battery wear 
and tear based on the number of charge-discharge cycles 
completed.  
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2.4 Reinforcement Learning

Reinforcement Learning is a paradigm of machine 
learning which emphasizes the learning of optimal 
behaviour through interactions with an environment. 
In this framework, an agent learns to make decisions 
by performing actions and observing the outcomes in 
terms of rewards or penalties. Unlike supervised and 
unsupervised learning, which rely on a pre-defined 
dataset, RL requires the agent to discover through 
trial-and-error which actions yield the most reward by 
exploring and exploiting the state space. Reinforcement 
learning is specialized in solving multi-stage decision 
problems (Sutton & Barto, 2020).

2.4.1 Markov Decision Process

The mathematical framework for modelling RL 
environment is usually formulated by Markov Decision 
Processes (MDPs). In this interactive learning process, 
at the discrete time  t(t=0,1,2,3…) the agent observes 
the state st ∈ S, and takes an action at ∈ A, receives a 
numerical reward rt + 1 ∈ R, and the state st ∈ S moves to 
a new state, st + 1 ∈ S (fig. x). 

A Markov Decision Process is typically characterized by 
the five-tuple (S, A, P, R, γ), where P represents the state-
transition probability function P(s'|s,a) (with s',s ∈ S and 
a ∈ A) depicting the state evolution's uncertainty based 
on the agent's actions. The discount factor γ in the range 
[0, 1] weighs the significance of immediate rewards 
against long-term rewards (Fu et al., 2022).

2.4.1 Policy and Value

In RL an agent learns its optimal policy π through 
interactions with the environment. A policy π essentially 
maps states to the probabilities of choosing each available 
action. Specifically, at each time step t, the agent observes 
a state, executes an action, and receives a reward and 
transitions to a new state. These observations and 

rewards are utilized to refine the policy. Until the policy 
converges, the aforementioned procedure is repeated. 
This often involves balancing exploration (trying new 
actions to discover their effects) and exploitation (using 
known information to maximize rewards). In its simplest 
form this can be expressed as:

Focusing only on the immediate reward signal results 
in always choosing the action that offers the highest 
immediate reward. To consider both immediate and 
future rewards (the sum of rewards from the present 
to the goal), a value function is created to represent the 
overall value of these rewards This is described by the 
state-value function for policy π:

where:
Vπ(s) represents the total accumulated reward when 
starting in state s and following policy π 

 is the sum of discounted rewards over time,
s0 = s specifies a condition that the starting state is s.

In other words, the value of a state s, given the policy π 
is the expectation of how much reward will be obtained 
in the future given the current state and policy (Brunton 
& Kutz, 2022).

2.4.2 Classification of RL Algorithms

The landscape of RL algorithms is remarkably diverse, 
reflecting the wide array of approaches and techniques 
developed to address the challenges inherent in learning 
from interaction with an environment. This diversity 
stems from different algorithmic foundations, objectives, 
and application areas. A non-comprehensive classification 
with examples is given by figure 14.

2.4.3 Model-based vs Model-free

In model-based RL, the agent has access to or learns a 
model of the environment. This model predicts how the 
environment will respond to different actions, providing 
information about state transitions and rewards. The 
agent uses the model to "look ahead" and evaluate the 
consequences of actions before they are taken. This can 
be done using algorithms like Dynamic Programming, 
where the value Iteration updates the value function 
using the Bellman equation or Model Predictive Control.

Figure 13: Markov Decision Process (Sutton & Burto, 2020)
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Model-free methods, on the other hand do not need 
to know environment models (i.e., state-transition 
probability function P(s'|s, a) or P(s'r│s, a) since they 
learn policies based on the information directly interacted 
with unknown environments.

2.4.3 Value–based vs Policy-based Algorithms

Value-based methods in model-free RL focus on 
estimating the value of states or state-action pairs rather 
than directly optimizing the policy. These methods are 
crucial in scenarios where it is more efficient or practical 
to learn the value of actions and derive the policy 
from these values. One of the essential value-based 
reinforcement learning approaches are tabular methods, 
where agent's policy is guided by a Q-table, where each 
action possesses a corresponding value. In the table, state 
and action are used as two indicators, and the action in 
each state corresponds to a Q-value. In Q-learning the 
Q-values are updated using the formula:

where:                       
α is the learning rate, 
r represents the immediate reward, 
γ is the discount factor.

Another tabular-based method is SARSA (State Action 
Reward State Action), defined by:

The term Q(s',a') involves the action a' that the current 
policy dictates in the new state. SARSA is an on-policy 
algorithm. It learns the value of the policy being followed, 
including the exploration steps. On the other hand, 
Q-learning is off-policy. It updates its estimates based on 
the assumption that the best action is chosen, regardless 
of the action actually taken.

Unlike value-based methods, which first estimate the 
value of states or actions and then derive a policy, policy-
based methods optimize the policy function directly. 
Policy-based methods update its function approximator 
according to the gradient of expected reward, with 
respect to the policy parameters θ. The following equation 
represents a general update rule in policy-based RL:

where:
α  is the learning rate, determining the size of the update 
step, 
∇θ is the gradient with respect to the policy parameters θ, 
R(Σ,θ) represents the expected reward.

Temporal Difference (TD) Error

Figure 14: Reinforcement Learning Classification (author, 2024)

eq. 16

eq. 17

eq. 18
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Some algorithms as the Actor-Critic methods combine 
both value and policy-based methods. There, the 'actor' 
updates the policy distribution in the direction suggested 
by the 'critic,' which estimates the value function. Thus 
reducing the variance in the policy updates and ensuring 
a continuous policy improvement. 

2.4.4 Deep Reinforcement Learning

Figure 12 illustrates that various RL algorithms can be 
classified as "deep," independent of their specific type. 
Essentially, an RL algorithm is deemed deep if it employs 
artificial neural networks (ANNs) in its policy or value 
functions. In recent years Deep RL (DRL) has gained 
significant attention due to its ability to tackle complex 
problems with high-dimensional input spaces (Brunton 
& Kutz, 2022). 

An ANN is a computational model inspired by functional 
aspects of biological neural networks. It consists of 
interconnected nodes, or "neurons," which are organized 
in layers. These layers include an input layer, one or 
more hidden layers, and an output layer. Each neuron 
within these layers is linked with weighted connections 
that are adjusted during the learning process. ANNs are 
designed to recognize patterns in data through a process 
of learning from examples, making them particularly 
useful in tasks such as classification, regression, and 
pattern recognition. By adjusting weights based on the 
input data, ANNs can improve their performance and 
make predictions or decisions without being explicitly 
programmed for the task (Chen et al., 2023).

In fact, all the aforementioned RL algorithms have their 
"deep" counterparts, such as:

Deep Q-Networks (DQN) using an ANN to 
approximate the Q-value function.

Proximal Policy Optimization (PPO) where a ANN is 
used to directly parameterize the policy, outputting 
the probability distribution of actions. 

Advantage Actor Critic (A2C) employs two neural 
networks - one for the Actor (policy) and another 
for the Critic (value function).

Deep Deterministic Policy Gradient (DDPG) 
combining ideas from DQN and policy gradients, 
using a neural network to represent a deterministic 
policy and another network for the value function.

2.4.5 Single agent vs. Multi-agent RL (MARL)

Not shown in the diagram, and more pertinent to the 
application of the algorithm rather than its mathematical 
framework, is the distinction of whether the RL model is 
pursuing one or multiple reward signals. It is important to 
notice that single agent algorithms can also optimise for 
multiple objectives, however that requires designing a 
synthetic reward function as a weighted sum of different 
objectives.

Multi-agent RL involves multiple agents simultaneously 
interacting within the same environment. These agents 
can be cooperative, competitive, or a mix of both. They 
are inherently more complex than single-agent RL. In 
single-agent RL, since policies must adapt dynamically 
to the strategies of other agents. All aforementioned 
algorithms are single-agent. MARLs include: Multi-Agent 
Deep Deterministic Policy Gradient (MADDPG) or Multi-
Agent Proximal Policy Optimization (MAPPO) (Hayes et 
al., 2022).

2.4.6 RL for Building Energy-use Related Decision-making

In current research, DRL is being utilized to enhance the 
efficiency and decision-making processes in building 
energy systems. These applications range from optimizing 
operational costs and energy consumption in individual 
building energy subsystems to aiding in the adoption of 
renewable energy at various scales, including residential, 
municipal, urban, and regional. Table 4 presents a 
summary of the RL algorithms that have been employed 
in these areas.

RL is applied to a variety of energy-related domains such 
as smart homes, school buildings, commercial buildings, 
and photovoltaic systems. In general, it can provide 
customized solutions for different energy systems, taking 
into account the unique characteristics of each system's 
operation and the specific objectives set by the operators 
or owners. The applications are range from improving 
energy efficiency (Stripp, 2023), reducing consumption 
(Shuvo & Yilmaz, 2022) to optimizing for various objectives 
such as user comfort (Cheng et al., 2016), financial gain 
(Jung et al. 2021) or reducing human effort. 

The single-objective problems typically focus on reducing 
energy consumption in a variety of settings, such as 
residential buildings, school buildings, and commercial 
structures. Some specific applications include improving 
the energy efficiency of smart home appliances (Xu et al. 
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RL Algorythm Category Problem Application Reference

DQN
(Deep Q-Network)

Model-free,
Value-based,

off-policy,
single-agent

Single-
objective,
Discrete 

action space

Reducing energy consumption in 
commercial buildings with human-

in-the-loop.

Wei et al.  
(2020)

Single-
objective,
Discrete 

action space

Reducing the energy consumption 
of a school building with natural 

ventilation.
Stripp (2023)

Single-
objective,
Discrete 

action space

Maximising financial gains of a PV 
system.

Jung et al. 
(2021)

Single-
objective,
Discrete 

action space

Reducing indoor pollution with 
natural ventilation. An et al., (2021)

Multi-DQN
(Multi-Deep-Q-

Network)

Model-free,
Value-based,

off-policy,  
multi-agent

Multi-
objective,
Discrete 

action space

Minimising the necessary time of 
EV charging at a residential charging 

station. 

Zhang et al. 
(2020)

PPO
 (Proximal Policy 

Optimisation)

Model-free,
Policy-based,

on-policy,
single-agent

Single-
objective,
Discrete 

action space

Maximising financial gains of a PV 
system.

Jung et al. 
(2021)

Single-
objective,

Continuous 
action space

Capacity
Scheduling for PV-Battery Storage 

System

Huang & Wang, 
(2021)

A3C
(Asynchronous 

Advantage Actor-
Critic)

Model-free,
policy-based and value-

based,
single-agent

Single-
objective,

Continuous 
action space

Reducing the energy consumption 
of through smart building control 

algorithm.

Zhang et al. 
(2021)

EB-C-MADRL 
(Entropy-Based 

Collective
Multiagent DRL)

Model-free,
Value-based,

off-policy,
multi-agent

Single-
objective,

Continuous 
action space

Reducing the energy consumption 
of a smart home in a microgrid.

Yang et al. 
(2019)

DDQN 
(Double Deep Q 

Learning

Model-free,
Policy-based,

off-policy,
single-agent

Single-
objective,

Continuous 
action space

Reducing the energy consumption 
of hydronic heat pump Zheng (2022)

DDPG
(Deep Deterministic 

Policy Gradient)

Model-free,
Policy-based,

off-policy,
single-agent

Single-
objective,

Continuous 
action space

Reducing the energy consumption 
of hydronic heat pump Zheng (2022)
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RL Algorythm Category Problem Application Reference

DDPG
(Deep Deterministic 

Policy Gradient)

Model-free,
Policy-based,

off-policy,
single-agent

Multi-
objective,

Continuous 
action space

Minimisation of HVAC energy 
consumption and maximising 
thermal comfort in an office 

building.

Gao et al. 
(2020)

SAC
(Soft Actor-Critic)

Model-free, 
Policy-based,

 off-policy, 
single-agent

Multi-
objective,

Continuous 
action space

Reducing the energy consumption 
and maximising user comfort in a in
solar microgrid using battery energy

storage systems

Onile et al. 
(2022)

Multi-Agent 
Q-Learning

Model-free,
Value-based,

off-policy,
multi-agent

Single-
objective,
Discrete 

action space

Reducing the energy consumption 
of smart home appliances including 

real data of electricity
price and PV generation

Xu et al. (2020)

MDP Model-based

Single-
objective,

Continuous 
action space

Maximising visual comfort in an 
office by optimising lighting

Conditions.

Park et al. 
(2019)

Q-learning

Model-free,
Value-based,

off-policy,
multi-agent

Multi-
objective,
Discrete 

action space

Maximum power
point tracking for

photovoltaic power
generation.

Cheng et al. 
(2016)

Model-free,
Value-based,

off-policy,
single-agent

Multi-
objective,
Discrete 

action space

Maximum power
point tracking for

photovoltaic power
generation

Zhang et al. 
(2019)

FQI
(Fitted Q-iteration)

Model-free,
Value-based,

off-policy,
single-agent

Single-
objective,

continuous 
action space

Reducing the
maximum power
injection from PV

systems to the grid from HVAC use. 

Mbuwir et al. 
(2017)

natural ventilation systems (An et al., 2021), photovoltaic 
power generation (Mbuwir et al., 2017), and HVAC 
systems (Gao et al., 2020).

The multi-objective problems involve not only reducing 
energy use but also maximizing factors like user comfort 
or financial gains. For instance, Multi-DQN has been 
used to minimize the necessary time of electric vehicle 
charging at residential stations (Zhang et al., 2020),  while 
algorithms like SAC (despite being a primarily single-
agent algorithm) have been applied to optimize comfort 
in conjunction with energy savings in solar microgrid 
systems (Onile et al., 2022).

The model-free, value-based, and off-policy algorithms 
like DQN, Multi-DQN, DDQN, and Multi-Agent Q-Learning 
are predominantly used for discrete action spaces in single 
or multi-agent settings. These algorithms have been 

effectively applied to optimize energy consumption in 
various building types and systems, including commercial 
and school buildings (Stripp, 2023), and photovoltaic PV 
systems (Jung et al., 2021).

On the other hand, model-free, policy-based, off-policy 
algorithms like PPO, A3C, DDPG, and SAC, as well as 
the model-based HERS and the model-free FQI, have 
been employed for both discrete and continuous action 
spaces. These are particularly useful in complex scenarios 
as maximizing comfort and energy efficiency in smart 
homes (Huang & Wang, 2021) and microgrids (Yang et 
al., 2019).
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2.4.7 Continuous vs. Discrete Action Space

In general, the literature indicates a distinction between 
the suitability of different algorithms to discrete and 
continuous actions spaces. Discrete action spaces consist 
are these consisting of a finite set of actions ex. windows 
closed or opened or a PV panel installed or not. While 
continuous action spaces present an infinite number of 
possible actions ex. optimising the rate at which fresh air 
is introduced into the building. 

The discrete nature facilitates a straightforward selection 
of actions by directly comparing the estimated values 
for each possible action and choosing the one with the 
maximum value (Brunton & Kutz, 2022). Q-learning and 
its variants especially thrive in discrete environments by 
approximating the optimal action-value function. Other 
methods for instance (as PPO) can be used in for both 
discrete and continuous tasks. Figure 15 provides an 
overview of RL algorithms and their suitability. 

Figure 15: Suitability of RL Algorythms for Disrcete and Continous Action Spaces (Zhu et al., 2022)
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Figure 15: Suitability of RL Algorythms for Disrcete and Continous Action Spaces (Zhu et al., 2022)

When building a reinforcement learning model, it is 
vital to simulate a range of future variables scenarios 
for training. Such diverse exposure enhances the 
model's ability to manage real-world uncertainties, 
improves its generalisation ability, helps to prevent from 
overfitting and improves decision-making by identifying 
patterns in the variables and optimal times for PV panel 
implementation and replacement (Sutton & Barto, 2020). 
Electricity prices, CAPEX and the electricity grid emissions 
tend to evolve unpredictably given the inherent volatility 
influenced by market trends, policy changes, and 
environmental factors. Precise long-term energy price or 
PV module price predictions are challenging; this thesis 
aims to realistically simulate long-term price fluctuations 
rather than achieve exact precision.

2.4.1 Conumer Energy Prices

Weron (2014) conducted an extensive review of 
electricity price forecasting methods, distinguishing 
various approaches through a detailed classification. The 
methodologies of these approaches have been briefly 
summarized below:

Fundamental Methods
The dynamics of electricity pricing are modeled by 
simulating the impact of critical physical and economic 
factors. This involves predicting key influencers like 
demand, weather, and system specifics. Applying these 
models is complex due to data limitations and the 
challenges of factoring in the random variations of main 
drivers.

Multi-agent Models
They mimic the dynamics of a system with various 
agents (like power units and firms), simulating price 

2.4 Variables Modelling

formation by aligning market demand and supply. These 
models face difficulties in validating electricity markets' 
assumptions and accurately pinpointing key participants 
and their tactics.

Reduced-Form Methods
These models analyze the time-based statistical traits of 
electricity prices, focusing on evaluating derivatives and 
risk management. Rather than providing exact hourly 
forecasts, they aim to replicate essential attributes of 
daily electricity prices, like future marginal distributions. 
Their main strengths are their simplicity and the ease of 
tracking analysis results.

Statistical Methods
These methods employ statistical techniques or modified 
econometric models to forecast power market trends, 
combining historical prices with current or past external 
data like consumption, production, or weather. Their 
precision hinges on algorithm performance and data 
integrity.

Computational Intelligence
These methods integrate learning, evolutionary, and 
uncertain elements to craft adaptable strategies for 
complex systems. Examples are ANN, support vector 
machines, and genetic algorithms. Their complexity and 
the need for vast, high-quality data make them unsuitable 
for this thesis.

2.4.2. Stochastic Processes Simulation 

From this overview it becomes clear that reduced – form,  
models, which can be calibrated to historical data are the 
most suitable for the problem in question. This approach 
simplifies the complex mechanisms behind energy pricing 
into a more manageable form without losing the essence 
of market dynamics (Weron, 2014).

Figure 16: An Overview of Electricity Tariff Prediction (Weron, 2014)

Figure 17: Geometric Brownian Motion in action (Petters and Dong, 2016)
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Under this framework the increments of the electricity 
tariff, denoted as Xt can be derived from specific instances 
of a broader stochastic differential equation (SDE)(Ibe, 
2013):

where: 
dXt  is the incremental change in the spot electricity price 
at time t, 
μ(Xt,t)dt is a function representing the drift rate of the 
price. It models the predictable, trend following part of 
the price change,
σ(Xt,t)dBt is a function representing the volatility of the 
price with a Brownian motion used to represent random 
motion, 
dq(Xt,t) is a jump process, capturing sudden and 
significant changes in the price.

SDE incorporates both a deterministic component (like 
in ordinary differential equations) and a stochastic 
component to model the randomness. Different variants 
of this equations have been found in literature to 
generate future electricity tariffs based on data obtained 
from the past. 

Geometric Brownian Motion (GBM) is a stochastic 
process commonly used in financial mathematics (Farida 
Agustini et al., 2018) and to simulate future energy pricing 
scenarios (Penizzotto et al., 2019). This is due to its ability 
to incorporate fixed rates of drift and volatility, reflecting 
common tariff patterns. In GBM, these coefficients are 
typically constants or proportional to the current price, 
without any jump component. GBM values exhibit 
positive skewness and follow a log-normal distribution, 
with variance that grows over time (Weron, 2014).

The price change process in GBM is a mix of a 
deterministic drift effect and a stochastic volatility effect. 
Tariff denoted as Xt starts with an initial value X0 > 0 and 
follows a specific SDE: 

Kaminski (1997) employs Merton's jump-diffusion 
model, which merges GBM with a jump process. It 
integrates the continuous path of GBM with sudden, 
discrete changes, representing more abrupt shifts in the 
underlying variable.

where: 
dJt represents the jump component at time t, and is an 

increment of a homogenous Poisson process.

Its primary limitation is its oversight of mean reversion 
or the tendency to return to a 'normal' price level. Due 
to the jump component, in instances of a price spike it 
perceives this new price as standard and continues to 
evolve randomly (Weron, 2014).

More advanced models using the Merton's jump-diffusion 
model have been developed by Albanese et al. (2012) and 
Cartea and Figueroa (2005), where a time-dependent 
volatility σ have been taken into account. While Weron 
(2008) and Bhar et al. (2013) have calculated the jump 
component with a periodic intensity function to account 
for the seasonality of the tariff spikes. 

2.4.3. Scenario Generation for the Electricity Tariff

In order to generate the multiple scenarios for the RL 
model training Jung et al. (2021) creates multiple Monte 
Carlo simulations using GBM relying on the stochasticity 
of the Brownian Motion. Here the volatility was calculated 
using the historical consumer price data and the mean 
drift is derived based on the assessed volatility.

Similarily Penizzotto et al., (2019) have used GBM to 
simulate paths of the electricity tariff over the period of 
35 years, arguing that setting the drift and volatility rates 
for standard tariff behaviors is a straightforward process.

In general GBM can be approximated for a discrete 
timestep under the analytic solution to its SDE for 
an arbitrary initial value Xt (under Ito Interpretation) 
described as (Ibe, 2013), assuming that the parameters 
are constant:

where: 
X0  is the price of electricity at the start of the process,
μ is a constant drift rate coefficient,
σ is a volatility coefficient of the process,
Bt is a Brownian motion.

Having obtained the past data of consumer energy prices 
the μ and σ can be estimated by calculating log returns 
under the assumption that they are normally distributed 
(Stander, 2020), with mean and variance equal to μ and 
σ2:

eq. 19

eq. 20

eq. 21

eq. 22
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2.4.4 Net-Metering

The net-metering rate is directly tide to the electricity 
tariff. However in the Netherlands starting from 2025, 
net-metering is going to be phased out under the 
amendment to the Sustainable Energy Production 
Incentive Scheme (“Stimuleringsregeling Duurzame 
Energieproductie”) until 2031 (Ministerie van Algemene 
Zaken, 2023) (fig. 18). 

Nevertheless, energy suppliers will provide reduced 
compensation. Government proposals specify a 
reasonable compensation (“redelijke vergoeding”) as the 
minimum rate, approximately 30% of the base electricity 
price, excluding taxes and surcharges, as assumed in this 
analysis (van den Berg, 2023).

Additionally, it is important to acknowledge that, as of 
January 2024, certain energy suppliers have implemented 
an additional fee ranging from 10 to 30 euros per 
month for customers with solar panels. This surcharge 
is intended to compensate for substantial imbalance 
costs incurred when an unforeseen quantity of energy is 
introduced into the grid (Leone, 2023).

2.4.5 PV CAPEX 

Literature on the stochastic scenario generation of 
photovoltaic panel cost is considerably less abundant 
than that on electricity tariffs. 

The literature review reveals four pertinent methods.

Two of them utilise the concept of learning curves, 
which are commonly used to forecast future prices of 
technologies, by showing how investment costs per 
unit of capacity (Wp in case of PV panels) decrease as 
the total installed capacity grows. A key concept in 
these curves is the learning rate, (LR) which represents 
the rate at which costs fall when cumulative capacity 
doubles (Kim et al., 2019). According to Swanson’s law 
price of solar photovoltaic modules tends to drop by 
20% for every doubling of cumulative shipped volume 
(Swanson, 2006). The long-term LRs of the photovoltaic 
and BESS technologies  for Europe has been described by 
Vartiainen et al., (2019).  

Ornstein-Uhlenbeck Process

Kim et al., (2019) have found that historical price data 
for PV modules appears to exhibit a mean-reversion 
characteristic, which is a propensity for the trend to 
gravitate back towards the average after jumps. The 
simplest model with this property is the Ornstein-
Uhlenbeck (OU) Process given by the following SDE:

where: 
Xt  denotes the EG at time t, 
θ is a long-term mean coefficient,
μ is a mean reversion rate,
σ is the volatility of the process,
dWt is a Brownian motion.

The authors do not explicitly use OU to generate future 
PV prices. However, they modify the OU process to 
incorporate the features of the learning curve for PV 
in order to model propability discribution of the future 
prices, which are then utilised for scenario trees. 

Figure 18: Net-metering rates in the Netherlands in the following decade (van den Berg, 2023)
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GBM

A standard geometric brownian motion was used by 
Moon and Baran (2018). It was assumed that  μ < r for 
convergance, where r represents the discount factor 
adjusted for risk.

GBM with a Learning Rate

Jung et al., (2021) have simulated future PV module prices 
based on the predicted future cumulative production. The 
cost of the PV module when the cumulative installation 
capacity reaches Q is given by:

where: 
CQ  is the price of the PV module when the installation 
capacity of the PV module is reached at Q, 
C0 is the initial cost of the PV module,
Q is the cumulative installation capacit in MW,
β is the learning rate, indicating the percentage decrease 
in price with each doubling of capacity (Elshurafa et al., 
2018).

As Q increases, according to Swanson's Law, the price 
CQ should decrease. The predicted total amount of solar 
installation capacity can be utilized to determine the 
future cost of photovoltaic modules and then to calculate 
the mean drift, volatility is estimated from historical data 
(ibid., 2021).

Jump Diffusion Process (GBM with a Poisson Events 
Model) 

Penizzotto et al., (2019) regards CAPEX as a exogenous 
random process, influenced by technological 
advancements, characterised by a mixed stochastic 
process. This consists of a continuous Geometric 
Brownian Motion to account for regular market price 
variations, alongside a Poisson process to model the 
impact of technological innovations, economic cycles 
etc. It follows the methodology first developed by 
Merton (1976) for stock price precitction. The stochastic 
dynamics of CAPEX at time t are described as:

where:
μ(t,Xt  ) is the drift term,
σ(t,Xt  )  is the diffusion coefficient,
Nt   is a Poisson process with a rate λ,
Yj  represents the size of the j-th jump, independent and 
identically distributed

dJt  is the differential of the jump process, which 
increments by 1 at each time a jump occurs

2.4.6 Grid Emission Factor

No literature regarding stochastic modelling or scenario 
generation of EG has been found. 

2.5.7 New PV Performance Improvement

No literature regarding stochastic modelling or scenario 
generation of the improving efficency of PV modules has 
been found. 

2.5.7 Battery CAPEX

No literature regarding stochastic modelling or scenario 
generation of the BESS CAPEX has been found. 

2.5.8 Conclusion

It needs to be emphasised that despite the variety 
of available models, a singular approach may not be 
sufficient to address the intricacies of PV system cost 
and efficiency modeling. There is a need for a hybrid 
approach that combines the strengths of different 
models to achieve a more comprehensive and realistic 
training environment. 

Despite no literature on stochastic modelling of both EG 
and PV csystaline cell improvement certain characteristic 
of those variables allow to pair them with different 
stochastic or propabilistic processes. This will be 
described in more detail in chapters 5 and 6.

Figure 19: PV Efficency Improvement Over Time (Fraunhofer Institute, 2023)

eq. 26

eq. 27
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Figure 19: PV Efficency Improvement Over Time (Fraunhofer Institute, 2023)

2.5.1 Reinforcement Learning Deployment 

The primary objective of creating a machine learning 
model is to address a specific issue. Such a model can 
effectively achieve this only when it is deployed and 
utilized in a real-world setting. Model deployment refers 
to the act of transferring a machine learning model from 
a non-operational setting into a working production 
environment.

This involves two key tasks - creating the necessary 
infrastructure for operating the model, and developing 
the model in a way that allows for its use and maintenance 
(Afsar et al., 2022). There are to main deployment 
methods: 

Online (real-time) - predictions or inferences occur 
instantly. The model analyses and interprets data as it is 
recieved.

Offline (batch) - predictions or inferences occur at regular 
intervals, on a batch of data accumulated since its last 
execution. Since it produces results with some delay, it 
is effective in scenarios where immediate or real-time 
model outcomes are not essential (Klushin, 2024).

In the realm of RL applied to decision-making, the 
implemented model becomes part of a recommendation 
system (RS). These systems consist of software designed 
to assist users in discovering items of interest or in 
making informed decisions. This is achieved by predicting 
their preferences, ratings of items, or estimating the 

2.5 Model Deployment

LITERATURE REVIEW02

outcomes of their choices (Afsar et al., 2022). The front 
end solution of a RS can be a web interface, mobile app 
or system software.  

2.5.2 Explainability 

The RS gives periodical recomendetion to the user. It 
is important however that the user understands why 
a certain recomendation has been made. Explaining 
recommendations can enhance the user experience, 
increase their confidence in the system, and assist them 
in making more informed choices (Afsar et al., 2022). 
Chen et al., (2023) divides explainable methods in terms 
of application stage:

Ante-hoc - involve designing models that are inherently 
interpretable during their training process. This approach 
is difficult to implement in complex DRL models. 

Post-hoc - are methods applied to complex, "black-box" 
models after they have been trained. Their purpose is 
to explain how certain input features affect the model's 
output.

The other distinction is about the interpretability scope:

Global Interpretation - involves comprehensively 
understanding how a model makes predictions, focusing 
on the overall impact of input features on predictions.

Figure 20: Offline and Online Deployment 
(Klushin, 2024) Figure 21: Autarco Monitoring (Autarco , n.d.)
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Local Interpetation -  offers a clear insight into how 
a model arrives at a prediction for a particular data 
instance.

It emphasizes the role of individual features in that 
specific prediction, rather than a broad overview of 
feature importance.

The Google PAIR team. (2019) have articulated a number 
main considerations in terms of model interpretability:

• explaining the datasources - prevents concerns 
about privacy and assists the user in understanding 
when to use their own judgement,

• linking explanations to user actions and the resulting 
system responses, along with clear explanations, can 
assist users in gradually building an appropriate level 
of trust

• offering thorough explanations and disclosing the 
reasoning for predictions made with different levels 
of confidence confidence.

Authors describe that appriopirate explanations should 
ideally be given in-the-moment, yet if information is 
not sufficient the user should be provided with external 

resources and the explenations could be contextualised.  
Additionally, it is stresed that another way of building 
a strong connection between RC and the end user 
is providing them with the ability of specifing  their 
preferences regarding the model's output.

2.5.3 PV Monitoring Systems

PV monitoring systems, which are installed alongside 
the solar panels, provide detailed information about 
the panels' performance through software applications 
or web portals, by gathering data from the inverters 
of the solar array. They showcase panel's functioning 
to the owner and inform them about pottential faults. 
The equipment in these systems is designed to identify 
changes in weather conditions and sunlight levels 
(Samsukha, 2023). 

Several companies, including SolarEdge, Enphase, and 
Autarco, have implemented monitoring systems for PV 
installations. These systems are designed to provide an 
attractive graphical representation of the PV system and 
offer users detailed information about both current and 

LITERATURE REVIEW02

Figure 21 B) RL-based recommender system models the interactive reccomendation task as a MPD (Afsar, Crump and Far, 
2022).
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WORKFLOW03
3.1 Selection of the DRL Algorythm

The RL algorithms found in the literature were thoroughly 
analysed for the suitability for the problem disclosed in 
this thesis considering the following criteria: 

Convergence Speed i.e. how quickly the algorithm 
learns an effective policy.

Robustness and Stability i.e. its performance 
consistency across different scenarios and its 
resilience to changes in environmental conditions 
or market prices.

Scalability i.e. how well the algorithm handles 
increasing complexity, such as more panels or 
varying environmental conditions.

Multi-Objective Optimization Capability i.e. 
examine the algorithm's ability to handle multi-
objective optimization effectively, ensuring that 
neither financial gain nor environmental impact is 
disproportionately prioritized.

Access to resources i.e availability and quality 
of learning resources, tutorials, and community 
support for the algorithm. This is crucial for 
understanding its nuances and troubleshooting 
issues.

The two selected algorithms are:

3.1.1 Proximal Policy Optimisation (PPO)

PPO (Proximal Policy Optimisation) is a model-free, policy-
based, on-policy deep reinforcement learning algorithm. 
PPO leverages an actor-critic network, offering enhanced 
performance through rapid, data-responsive learning 
(Schulman et al., 2017). This network is particularly 
effective in handling large state dimensions, ensuring 
efficient convergence. This capability makes it well-suited 
for complex optimization problems like the one in this 
study, where a multitude of variables need to be taken 
into account (Jung et al., 2021).

The core of PPO is its objective function, which is 
designed to minimize large policy updates, preventing 
destructive steps that could harm learning progress. 
The clipped surrogate objective function LCLIP(θ) (eq. 29) 
is a crucial part of this. It uses a clipping mechanism to 
limit the amount by which the new policy can diverge 
from the old policy. The probability ratio rt(θ) (eq. 30) 
compares the probability of an action under the current 

policy πθ  to its probability under the previous policy 
πθold. The advantage function At measures how much 
better an action is compared to the average action at 
a given state. Alongside the policy optimization, PPO 
also updates a value function, typically using a squared-
error loss LVF. The final loss function combines these 
elements, represented as (eq. 31). Policy updates in PPO 
are done using stochastic gradient ascent, optimizing the 
parameters of the policy network to maximize the final 
objective function (Brunton & Kutz, 2022).

3.1.2 Deep Q-Network (DQN)

DQN (Deep Q-Network) is likely the most popular DRL 
framework. Unlike a standard Q-learning uses a NN 
to approximate the Q-value instead of the Q-table, 
calculating all the state-action values for a single in a 
single pass through the NN. This is a clear advantage as 
the NN can extrapolate across the range of state-action 
pairs. Such generalization enables an agent employing 
DQN to effectively estimate the values of state-action 
pairs during inference that are either rare or have never 
been encountered before during training (Alexandros 
Iosifidis and Anastasios Tefas, 2022, pp.121–123). 

The agent's experiences at each time step, denoted as 
(s,a,r,s') are stored in a replay buffer. Random batches 
from this buffer are used to train the network. During 
training to balance the exploration and exploitation the 
agent uses an ϵ-greedy policy, which selects a random 
action with probability ϵ and the action with the highest 
Q-value (as predicted by the network) with probability 
1−ϵ. To refine the estimated Q-values, episodes are 
drawn from the replay memory and a loss function based 
on equation eq. 16  is computed as (ibid.):

During training the gradient of the loss function is then 
backpropagated through the DQN, leading to adjustments 
in its parameters. 

eq. 29

eq. 30

eq. 31

eq. 32
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WORKFLOW
3.2 Workflow Methodology

The experimental workflow for this thesis is divided into 
four steps:

 A. Simplified Toy Problem

This phase functions as a preliminary testing environment 
to evaluate the proposed methodology and provides an 
opportunity for the author to become acquainted with 
the selected libraries, debug the system, and identify 
critical areas for improvement.

The toy problem simplifies the scenario by assuming 
constant variables during optimization. The PV panels 
are modeled using the single-diode model, although 
degradation and failure mechanisms are not incorporated 
at this stage. The primary aim is to scrutinize and validate 
the framework for constructing a RL environment, assess 
the effectiveness of the selected algorithms, refine the 
reward function, and evaluate the modeling of the PV 
system. These aspects are comprehensively detailed in 
this section. Successful convergence of the algorithm 
signifies the project’s readiness to progress to the next 
phase.

 B. PV System Optimisation without BESS

In this phase, the methodology integrates the stochastic 
and temporal characteristics of relevant variables. The 
primary focus for optimization is the size of the rooftop 
PV array, while battery energy storage is not considered 
in this scenario.

The methodology from the previous section is tested 
and evaluated iteratively following the implementation 
of each variable along with its associated uncertainties. 
This iterative process may necessitate modifications in 
the approach, particularly concerning key components 
of reinforcement learning such as the state and action 
spaces or the selection of the agent.

The stochastic processes utilized to simulate these 
variables are detailed in Table 05. The rationale behind the 
choice of these processes is more thoroughly described in 
Chapter 5. Should an approach prove unsuitable—due to 
technical issues or a lack of data—an alternative method 
will be explored and potentially implemented. 

Furthermore, the approach will be validated using real 
household load profiles typical for residences in the 
Netherlands and employing various types of commercially 
available PV panels, considering a realistic time-of-use 

electricity tariff rate. This validation aims to ensure that the 
model accurately reflects the performance and feasibility 
of PV installations under realistic operational conditions. 
Two phases of the optimisation will be performed: 
financial only and financial and environmental combined. 
The results will be discussed and analysed. 

 C. PV System and BESS Optimisation

In this segment of the study, the optimization variables 
encompass both the PV array and the capacity of the  BESS. 
The method for defining the observation space, actions, 
and rewards has been adjusted to meet the demands of 
this new optimization framework. Specifically, two new 
stochastic variables have been introduced to the model: 
the CAPEX for battery storage and its degradation process. 

Moreover, a substantial part of this section is dedicated 
to outlining a reinforcement learning-based approach for 
simulating the operation of the battery system. 

 D. Deployment

The final phase of the proposed workflow involves 
developing a front-end recommendation system for 
the model. This will serve as a demonstrative interface, 
which could be potentially integrated into an actual PV 
monitoring system.

WORKFLOW03

Variable Modelling Method

Electricity Tariff Geometric Brownian Motion

Net-Metering/
Feed in Tariff Deterministic

PV CAPEX Geometric Brownian Motion with 
Poisson Jumps 

PV Cell 
Improvement Gamma Process

PV Failure Weibull Distribution

PV Degradation Gaussian Distribution

Grid Factor Ornstein-Uhlenbeck Process

PV Module 
Embodied Carbon Deterministic

Battery CAPEX Geometric Brownian Motion with 
a Learning Curve

Battery 
Degradation

Non-homogenous Gamma 
Process

Table 05: Relevant Variables and their simulation methods
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WORKFLOW03

Figure 22: Workflow - Comprahensive Flowchart
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eq. 33

3.4 Utilities and Libraries

Drawing on insights from the literature review, the 
problem is structured as a MDP for sequential decision-
making. In this framework, the agent algorithm receives 
observation (state) regarding the current condition 
of the PV or PV plus BESS setup, along with current 
rates of relevant variables such as electricity costs and 
module CAPEX. Based on these observations, the agent 
must execute actions aimed at maximizing the reward. 
The reward is calculated as the net balance between 
expenditures and benefits for financial optimization or 
as a combination of this balance with the net carbon 
impact associated with the installation and operation of 
the system.

The optimization process spans 25 years, divided into 
equal annual timesteps. This approach allows for 
a detailed analysis of long-term strategic decisions 
in energy system management, emphasizing both 
economic and environmental sustainability.

As stressed in the section 1.8, it is crucial to highlight that 
in steps A, B, and C, the approach is validated exclusively 
using synthetic data. This data is generated using the 
same methodology as the training data. This approach 
means that the trained model is evaluated solely within 
a controlled simulation setting and has not been tested 
against real-life scenarios or any external environments 
developed elsewhere. Such a method helps in initially 
assessing the model’s performance but may not fully 
capture its efficacy in practical, real-world applications.

The roof area is split into a grid, with each grid cell being 
an available spot for the PV panel installation.  The 
general constraint for the maximum number of solar 
panels that can be fitted on the roof (number of available 
gridcells) is given by the equation:

WORKFLOW03
3.3 General Specification

                                                 ,

Gi is a single grid - cell,
Ai  is the area of a panel.

The PV system under consideration in based on the 
microinverter technology since it offers the most flexibility 
and adaptiability in terms of dynamic changing the 
module configuration. The inverter is going to be chosen 
accordingly to panel's specification. 

The primary Python libraries that will be utilized  for the 
RL model are OpenAI Gymnasium, Stable Baselines 3, 
PyTorch.

A custom training environment is going to be built in 
Gymnasium. It allows for seemless development of the 
environment and enables seamless framework to test 
different algorythms (Brockman et al., 2016). 

Stable Baselines 3 offers a dependable collection of 
reinforcement learning algorithms. Its modular design, 
built on the PyTorch framework, enhances its effectiveness 
(Raffin et al., 2021). If an issue arises, or if there's a need 
to test an algorithm not included in Stable Baselines 3, 
PyTorch will be employed for this purpose.

Additionally, Optuna will be utilized for tuning the 
relevant model’s hyperparameters. The PV system 
model will be implemented using the pvlib library. Other 
essential libraries in mathematics and data science, such 
as NumPy, Pandas, and SciPy, will also be employed to 
support various computational and analytical needs of 
the project. 

Figure 23: Workflow - Simple Flowchart
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04. TOY PROBLEM
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4.6 Training and Results
4.7 Conclusions

Figure 24: Toy Problem- Flowchart
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TOY PROBLEM04

eq. 34

eq. 35

eq. 36

eq. 37

This step acts as a controlled environment where the 
methodology can be evaluated. Here it is assumed 
that all relevant variables remain static throughout the 
optimisation period. The primary goal of this step is 
to test and validate the developed aproach regarding 
constructing the RL model environments, assess both of 
the selected algorythms, test and fine-tune the reward 
function and examine the PV system modeling process. 
Once the algorythm converges well, we will move on to 
the next stage.  

The annual energy output of the photovoltaic module 
is modelled as a single-diode using the pvlib library for 
python. The calculations are done using a 1-hour interval, 
as this is the typical frequency for weather data. 

The DC output of a PV panel estimated on the  I-V curve 
for a given timestep is calculated using the pvlib.
pvsystem.max_power_point. 

The soling conditions for the meteorological 
circumstances are estimated and the soling factor is 
included into the DC output. Then the AC output PAC for 
a given inverter model is callculated taking into account 
the DC and AC cabling losses ηCabLoss.
 
The power output of a single PV panel PPV for one hour is:

The total energy produced by the whole array is 
determined by adding up the power output from each 
individual panel:

where: 
xi is the binary weather a panel in a given grid cell is 
installed at timestep t.

The chosen module for the simulation is the SunPower 
SPR-MAX3-390, a residential photovoltaic panel situated 
in the mid to upper range category. This panel uses 
monocrystalline technology and possesses a nameplate 
capacity of 390 Wp, as detailed in Table 05.

The five parameters for the I-V curve is estimated by the 
pvlib.pvsystem.calcparams_cec given the 
environmental conditions and technical data from the 
manufacturer.

Accompanying it, the Enphase IQ7X has been selected 
as the integrated DC-AC microinverter, its specifications 

4.1 PV Modelling

and details provided in Table 06. Pvlib.inverter.
sandia is used to calculate the AC output. 

Meteorological data utilized in this study is based on the 
TMY data for Rotterdam. The aggregate solar radiation on 
tilted surfaces is accounted by the pvlib.irradiance 
module. The cell temperature is obtained from pvlib.
temperature.pvsyst_cell.
As anticipated, losses due to soiling are marginal. The 
calculated, summarised daily DC and AC outputs for a 
single module are depicted in Figure 25.

This study assumes the DC and AC cabling losses ηCabLoss 
as the mean value calculated by Hashemi et al. (2021) at 
1%. The surface albedo has been assumed 0.25, for an 
urban environment. The total electricity produced over 
one year ammounts to 4040 kWh, not bad.

Thus, for any hour h, if Ptotal(h) < Eload(h) the hourly 
energy supply from the utility grid is formulated as Esup(h) 
= Eload(h) - Ptotal(h); the total annual energy supplied from 
the grid Esup(h) is:

On the other hand, for any hour h, if Ptotal(h) > Eload(h)  
the hourly excess energy exported to the grid is Eexp(h) = 
Ptotal(h) - Eload(h); the total annual energy exported to the 
grid Eexp(h) is:

The electricity consumption load has been modelled 
synthetically on the basis on a single - family terraced 
house (Appendix B) constructed prior to 1945 (Wahi et 
al., 2023). This particular house serves as a representative 
example of its typology in terms of its electrical 
consumption patterns. It features a roof alligned along 
the north-south axis. It is presumed that the roof and 
electrical instalation is suitable for PV installation.

4.3.1 General Specification

The optimal planning for PV panels can be formulated as 
an MPD described by the five-tuple:

M = (S, A, P, R, γ)

In each timestep t, the environment determines the 
impact of the agent’s actions A(t) on it and how the 
current state of the environment S(t) influences the 
agent. The agent will continually refine the policy until 

4.2 Energy Balance

4.3 RL Environment
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it achieves convergence. It gathers state information 
from the environment, such as current variable pricing, 
electricity grid (EG), and rooftop PV configuration. 

4.3.2  Action Space

The action space A(t) represents the set of all possible 
actions for the PV system state. The set of discrete actions 
is chosen to most effectively embody the possible step 
that the owner might take concerning each of the PV 
panels at timestep t. Those are defined as: 

Preserve – the agent makes no change to the grid 
cell Gi

Install – the agents adds a panel to an empty gird 
cell Gi

Discard – the agent removes a panel from the grid 
cell Gi

Replace – the agent replaces a panel from the grid 
cell Gi

4.3.3  Observation (State) Space

The observation space defines the state the agent can 
observe. It is composed of local variables – specific for 
each grid cell Gi (the binary installation state x).

4.3.4  Reward Function

The fundamental premise of DRL is to maximize 
reward, making the reward function a crucial element. 
An effectively crafted reward can improve learning 
efficiency and hasten the convergence process (Sutton & 
Barto, 2020).  The economic gains, losses and the carbon 
emissions offset from the grid incurred in each step are 
determined according to the observed space and the 
chosen action. It is clear that the goal here is to maximise 
the overall profit from the PV system utilisation and to 
minimise the carbon emission thrughout the entire 
training episode. 

The annual financial balance is defined as:

eq. 36

where: 
C(t) is the annual total cost of the PV system (CAPEX(t) + 
inverter(t) + OPEX(t)), 
I(t) represents is electricity tariff at year t, 
J(t) represent the compensation tariff at year t,
ϑ is the discount factor,
Pen(t) is the penalty for exceeding the maximum annual 
budget.

The last part of this equation  ϑ  is a discount rate adjusting 
the time value of money. This means that the annual 
balance at the start of the 25 year long optimisation 
period is “worth” more than the balance at the last 
timestep. This is done to account for inflation and for the 
increasing uncertainty of the future balances. ϑ is equal 
to 4%.

On the other hand Pen(t) is defined as:

where B(t) is the annual budget, r the annual loan 
interest rate, which is fixed at 6%. This rate aligns with the 
standard interest rate for green loans in the Netherlands, 
which are utilized for household renovations and energy 
efficiency enhancements. The penalty accounts for a 
realistic scenario where the household has a limited 
ammount of money to spent each year and going over 
that limit results in taking a loan. A more detailed 
explantion is provided in Appendix H.

Luckily, the environmental balance is much simpler:

where:
Etot(t) is the total energy produced by the PV panels at t, 
EG(t) represents the grid emission factor at t.

Hence the cumulative reward for each training episode 
can be expressed as:

w is the weight parameter to calibrate the value of both 
total balances, it is going to be set and adjusted later.

4.3.5  Environment Building and Action Space

As described in section 3.2.2. the training environment 
has been built in Open AI Gymnasium, as an object of 
the  gym.Env class. The action space is constructed as 

eq. 38

eq. 39

eq. 37

TOY PROBLEM04

eq. 35
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a multidiscrete space with integers ranging from 0 to 2.

The action space is configured as following:

0 – preserve - the agent makes no change to the 
grid cell Gi ,

1 - install – if the observation was 0 in the previous 
timestep or replace - if the observation was 1,

2 - discard – if the observation in the previous step 
= 1 the agent removes a panel from the grid cell Gi, 
else do nothing.

Where ai  represents the action assigned to each panel, 
which is an integer value of either 0, 1, or 2. The reward 
function is set up and both total balances are normalised. 
The weight parameter w, is assigned a value of 3. This 

Figure 26: Annual output of a single module 

Figure 25: Soiling Build-up as % of radiation losses

adjustment ensures that the average financial balance 
accumulated over an episode is given three times more 
importance than the total environmental balance in 
the calculation of the final reward. This reflects the 
supposition that financial considerations are likely to be 
of greater importance  to a residential user than the CO2 
footprint.

Pmax A Ns Isc Voc Imp Vmp αsc βoc aref IL Io Rs Rsh γr

390
Wp

1.77
m2 104 6.55 A 75.3 V 6.05 A 64.5 V 0.0025 -0.199 2.631 6.558 1.37e-11 0.309 268.7 -0.351

Vac Pso Pdco Paco Vdco C0 C1 C2 C3 Pnt Vdc(max) Idc(max)

240
V 1.3 315  60 -0.0...28 -0.0...25 -0.0034 -0.0378 0.021 64 5.3828

Table 06: PV module specification

Table 07: Inverter Specification

TOY PROBLEM04

eq. 40
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As mentioned before all relevant variables are assumed 
to be static.  

The climatic conditions for energy production are 
modeled under the typical meteorological year data for 
Rotterdam.  No degradation of the system is taken into 
account.

The energy tariff is assumed flat throughout the day. and 
along with CAPEX and EG (grid factor) is constant, equal 
to their initial values in 2024 at t=1. PV cell efficency does 
not improve over time. The net-metering rate is assumed 
to be 80% of the electricity tariff. OPEX is assumed to be 
2% of annual CAPEX. 
 
Cost data was sourced from the official websites of 
manufacturers and retailers. The data concerning the 
carbon emissions for  a single panel was estimated based 
on the average carbon dioxide equivalent per square 
meter for a silicon photovoltaic panel on the European 
grid, as reported by Wikoff, Reese, and Reese (2022).

Consistent with the majority of LCA research on photo-
voltaic technology, this study excludes the consideration 
of end-of-life recycling and the carbon footprint of the 
microinverter due to the absence of commercially es-
tablished processes and available data.

All variables needed for the reward calculation, with 
sources are given in the table 08.

The final outcome of both algorythms shall be 
evaluated in order to assess which algorithm, in what 
hyperparameter configuration performs better. Three 
evaluation approaches are defined. The first one is the 
cumulative reward gained by the model on the validation 
dataset. 

The second one, is defined by the internal rate of return 
(IRR) that indicates the cumulative annual return on 
investment. This will also help with the evaluation of the 
reward function. It is the discount rate that makes the 
net present value (NPV) of all cash flows from a particular 
project equal to zero. In other words, the IRR is the 
annualized effective compounded return rate that can be 
earned on the invested capital (Khezri et al.):

where:
S(t) is the net cash flow at t,  
Ctot is the total value of the investment.

4.4 Variables Variable Value Source

Max. no 
of panels 

(gridcells Gi)
8 -

Electricity 
Price

0.475 €/kWh,
Fixed, 

Eurostat, 
2024

Net-metering 0.475 €/kWh, equal to 
the electricity tariff

SolarPower 
Europe, 

2023

Panel Cost 346 €
Europe-

Solarstore, 
2024

Microinverter 
Cost 170 € Enphase, 

2024

BoS and 
instalation 

costs

85% of the panel costs, 
if more than one panel 
is installed it decreases 
by a factor of by 0.1 for 
each installed module.

IRENA, 2022

Total CAPEX 673.2 € if one panel 
installed -

OPEX
2% of the combined 
module and inverter 

costs
-

Electricity 
Load

111 kWh mean hourly 
use Wahi, 2023

Panel Carbon 
Footprint 424.8 kgCO2

Wikoff, 
Reese and 

Reese, 2022

Surface 
Albedo

0.20 as a mean for an 
urban area

Zhang et al., 
2022

Table 08: Variable Values

4.5 Evaluation Metrics

On the other hand to evaluate the environmental benefit 
of the PV system life cycle assessment can be conducted. 
Here, the cradle-to-cradle CO2 emissions are determined 
for the PV module. The value of emission is expressed 
as kg CO2 eq/module. The CO2 emissions are divided by 
the produced electrical energy to compute the system’s 
Carbon Intensity (CI):

where:
CO2, tot is the total equivalent CO2 emission of the system.

eq. 41

eq. 42

eq. 43

TOY PROBLEM04
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Two versions of the toy environment were developed. 
Version 1. without any budget constraints or penalties 
and version 2. with a complexity of a budget constraint 
as described in section 3.3.6.

It has been discovered that DQN is incapable of managing  
multi-discrete action spaces, as utilised in this study. 
Consequently, in addition to PPO, another DRL algorithm, 
Advantage Actor-Critic (A2C), is being considered for 
comparison and evaluation.

The hyperparameters were iteratively tuned through a 
trial and error process. The final configurations of the 
hyperparameters are detailed in the following section.

4.6.1 PPO

The hyperparameters set for the training of the PPO 
agent are outlined below. Learning rate is set to 0.001 at 
the start and decreases lineary to 0.00001. PPO’s policy 
is a simple neural network. The discount factor, gamma, 
was set to 1 due to the nature of the task, which has a 
definitive end point within a finite number of steps. The 
lambda parameter in Generalized Advantage Estimation 
(GAE) serves to balance the bias-variance trade-off in 
value function estimation by controlling the weighting 
of multi-step returns. It was set at 1, since the reward 
is given only at the end of an episode. The numbers of 
epochs, batches, and interations were set at 10, 64, and 
300 000 respectively. Both the actor and critic networks 
feature two layers, each with 64 neurons, and use the 
Tanh activation function.

At the end the cumulative reward is divided by a factor 
of 350, as it has been observed that the agent achieves 
faster convergence when the reward magnitude is nearer 
to 0.

4.6.1.1 No constraints scenario - Results

The outcomes of the training align with expectations, 
indicating that implementing action 1 at the initial 
timestep for all grid cells is the optimal strategy, as 
there is no degradation or compromise involved in early 
panel installation. Subsequently, the model consistently 
selects action 0 for the remaining timesteps until the 
episode concludes. The total financial balance is -17 959 
€ compared to -49 535 € when no panels are installed. 
The achieved IRR is 71% - very high. The system manages 
to save over 32 100 kg CO2 eq. over its lifespan. The 
carbon intensity is 0.593 kg CO2/kWh.

4.6 Training and Results

Figure 27: PPO no budget training

Figure 28: PPO no budget evaluation

Figure 29: A2C no budget training

Figure 30: A2C no budget evaluation

TOY PROBLEM04
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TOY PROBLEM04
4.6.1.2  Budget constraint scenario - Results

Incorporating a budget constraint into the environment 
introduces additional complexity, leading to a degradation 
in outcomes. Convergence occurs slower. Depending 
on hyperparameters, the agent’s ability to consistently 
identify the optimal policy is slightly compromised, 
resulting in sporadic, suboptimal decisions, such as the 
addition of extra panels to the already filled grid. 

Compared to the constraint-less scenario the optimal 
convergence has been achieved using a fixed learning 
rate of 0.0003 and 32 neurons in each NN layer.

After 1000 evaluation episodes, the average financial 
balance stands at -€18,831, an improvement over 
the -€49,535 observed without panel installation. 
The Internal Rate of Return (IRR) achieved is 43%. The 
system contributes to a CO2 equivalent saving of more 
than 32,071 kg throughout its operational life, with a c of 
0.598 kg CO2/kWh.

4.6.2 A2C
 
Training the A2C agent proved to be significantly more 
challenging than training with the PPO algorithm. Initial 
attempts often led to issues such as exploding gradients, 
indicating instability in the training process. Overall, in 
comparison to PPO, the A2C training exhibited lower 
stability and slower convergence rates.

Learning rate is set to 0.0007. Gamma and lambda 
factors are set to 1.  The value function coefficient and 
maximum gradient norm are both 0.5. Both the actor 
and critic networks feature three neural network layers, 
with 64 neurons each and ReLU activation functions.

4.6.2.1 No constraints scenario - Results

The model fails to select the action 1 for all gridcells at 
timestep 1. It covers 4 out of 8 cells, selecting the action 
0 for the rest of steps within the episode. 

The total financial balance is -32694 € compared to -49 
535 € when no panels are installed. Similarly to PPO, the 
achieved IRR is 71%. The system manages to save over 12 
037 kg CO2 eq. over its lifespan.

4.6.2.2 Budget constraint scenario - Results

Here, the mean total financial balance for 1000 evaluation 
episodes accounts to -€22,121.  The system manages to 
save over 20 000 kg CO2 eq. over its lifespan. IRR is 44% 
and gwp 0.593 kg CO2/kWh.

Figure 31: PPO budget training

Figure 32: PPO budget evaluation

Figure 33: A2C budget training

Figure 34: A2C budget evaluation
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In this phase, a training environment was established, 
and various models were systematically trained within 
it. The initial evaluation of the TOY problem indicates 
a successful outcome, as the models demonstrated 
effective convergence, yielding anticipated results. 
This achievement authorizes the progression to the 
subsequent phase of the project. Two algorithms, 
Proximal Policy Optimization (PPO) and Advantage 
Actor-Critic (A2C), were tested and assessed across two 
distinct scenarios and a spectrum of hyperparameters. 

It was observed that the agents generally encountered 
increased difficulty when operating under budget 
constraints. Comparative analysis reveals that the PPO 
algorithm outperforms A2C in terms of convergence 
speed and reliability of results. 

It is important to note that the use of subprocesses, 
specifically leveraging multiple CPU cores to train 
the environment in parallel, was not incorporated in 
this section. Implementing parallel processing could 
potentially enhance the convergence speed of the 
algorithms by distributing computational tasks across 
several cores, thereby reducing the time required for the 
model to reach optimal solutions. 

4.7 Conclusions

TOY PROBLEM04
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Figure 35: PV system Ooptimisation - flowchart
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Figure 36: PV System Size Optimisation
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PV OPTIMISATION05
After completing and assessing the toy problem, the 
experimental process progresses to the Full-Scale 
Development stage. Here, the complexity of the 
variables increases gradually. Each variable is introduced 
individually, followed by an evaluation of the algorithm's 
performance and output. The methodology from the 
previous chapter for building the environment, rewards, 
states and actions is considered a baseline approach 
here.

To validate the developed approach, it is tested on a 
wide range of possible scenarios. Three base panels 
have been chosen for analysis. These were selected to 
represent various economic tiers as well as the range 
of technologies currently accessible in the consumer 
market. Furthermore, two distinct annual budget ranges 
have been identified, subject to adjustment based on the 
annual interest rate in subsequent steps. Additionally, 
three house loads are selected, with varying roof 
inclinations and sizes. 

Each combination of these conditions will be incorporated 
into separate RL environments. An algorithm will be 
trained on each of theese configurations, to validate the 
sensibility of the proposed methodology. 

First the optimisation is focused on the financial aspect 
only. Then the environmental aspect is going to be 
introduced.

5.1 PV Modelling

Base Model and Inverter Maxeon SPR-MAX6-435
+  Enphase IQ8HC

JA Solar JAM54S30-415/
MR

+ Enphase IQ8+

TrinaSolar Module TSM-
265 PC05A

+ Enphase M250 

Tier Upper - Range Budget Second-Hand

Technology Monocristaline,
N-type, IBC

Monocristaline,
PERC Polycristaline

Module Efficency 23.3% 21.3% 16.2%

φ Weibull parameter 50 30 15

CAPEX (inverter included) 1,583 €/Wp 0,69 €/Wp 0,36 €/Wp

Total DC Output at t =1
for House 1 495618 Wh 463464 Wh 292251 Wh

Total AC Output at t =1
for House 1 468343 Wh 438051 Wh 284870 Wh

Mean Degredation Rate 
(μ gaussian parameter) 0.67 % 0.82 % 1.19 %

The methodology for modeling the panel’s output aligns 
with a toy problem approach, additioanlly incorporating 
both the annual degradation rate and the survival rate to 
simulate the panel’s failure.

In addressing a financial and environmental optimization 
within the context of PV system design, three distinct solar 
panel and inverter configurations were selected. This was 
informed by a desire to encompass a comprehensive 
range of price levels, technological attributes, and 
environmental impacts. The inclusion of configurations 
that represent high-end, budget, and used categories 
allows for the evaluation of cost-effectiveness.

Technologically, the chosen configurations embody 
a spectrum of solar panel technologies—namely, 
monocrystalline N-type, PERC (Passivated Emitter and 
Rear Cell), and polycrystalline. This variety facilitates 
a comparative analysis of performance efficiencies, 
maintenance requirements, and longevity, offering 
insights into how technological differences impact both 
upfront costs and long-term returns.

In terms of environmental considerations the inclusion 
of a used panel configuration which carries a nominal 
carbon footprint provides a perspective on the reuse 
and lifecycle implications of photovoltaic technologies. 

Table 09: Overview of the Selected Models
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Specifications are presented in table 9. More detailed 
parameters are in Appendix G.

5.1.1 Degradation Rate

At the time of writing pvlib does not account for the 
long-term efficiency losses. Following Lai et al., 2023  
gaussian probability distribution with constant variance 
was applied to the annual degradation rate of the PV 
modules. 

The degradation of photovoltaic modules is affected by 
irradiance and, particularly, by the temperature of the 
PV cells. Research by Nehme et al. (2020) suggests that 
a decrease of 1 degree Celsius in cell temperature can 
result in up to a 2.5% reduction in the rate of efficiency 
loss over time periods where mean temperatures exceed 
40 degrees Celsius. Conversely, Rahman et al. (2023) 
contend that factors such as humidity and soiling play a 
more significant role in the efficiency degradation of PV 
systems than temperature variations. 

In this study, despite uniform meteorological conditions 
across all cases, variations in cell temperature may still 
arise due to different roof inclinations and orientations. 
Investigations into cell temperature under these specific 
conditions have revealed that mean PV cell temperature 
variations are minimal, ranging from 15 to 17.4 degrees 
Celsius. Given these findings, it is reasonable to assume 
that the degradation conditions for all cases analysed are 
equivalent.

Degradation may exhibit a slight temporal dependency, 
potentially increasing marginally over the lifespan of the 
system. However, given the limited availability of long-
term data—particularly over durations as extended as 
25 years —it is assumed that the mean degradation rate 
remains constant.

In this study the degradation values for mono- and poli-
crystalline modules located in temperature zones 2 and 
3 were extracted from a publicly accessible dataset 
provided by the National Renewable Energy Laboratory 
(see Appendix E) and fitted into gaussian distributions for 
each base model according to its technology.

To make the data more closely align with a normal 
distribution, extreme values were excluded from the 
analysis and square root transforms were applied.  To 
check the goodness of fit Kolmogorov-Smirnov (KS) test 
was perfomed with the resulting p-values ranging from 
0.756. to 0.011. 

In the environment, the degradation rate for a single 
panel is randomly sampled from the normal distribution 
and then substracted from the panel’s efficency. 

Figure 33 displays an exemplary distribution of the 
data, with a fitted normal distribution curve overlaid to 
illustrate the underlying statistical properties.

5.1.2 Survival Rate

The survival rate of PV panels is represented using 
the Weibull distribution, chosen for its simplicity and 
established use in reliability engineering. The survival 
function for individualised each panel i which is the 
complement of the cumulative density function can be 
expressed as:

where: 
RPV,i(t) represents survival rate of an ith panel in the year 
t,
ti is the time from the installation of a given panel to the 
current timestep t when the survival rate being evaluated 
(ti = t - tinstall,i),
φ is the scale parameter,
β is the shape parameter of the Weibull law.

This study assumes β = 3 (Fan & Xia, 2017) which indicates 
a wear out failure. The φ parameter are set based on 
available literature on each model (Appendix F). 

To indicate whether the specific panel is operational at 
the year t, a parameter θi is randomly sampled for each 

PV OPTIMISATION05

Figure 37: Normal distribution of the annual degradation rate (green), fitted 
to the data (pink) for the budget panel.

eq. 44

eq. 45



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski58 TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski

eq. 46

eq. 47

eq. 48

Figure 38: Weibull distibution for the Budget panel.

Figure 39: Plot of the daily summarised electricity consumptionof house 1 
(green) and Maxeon panel (pink)

PV OPTIMISATION05

panel from the Weibull probability density function. This 
can be represented by a binary variable WPV,i(t)  for each 
panel i at each timestep t:

Hence the power output of a single PV panel PPV is for one 
hour given by:

The total energy produced by the whole array is 
determined by adding up the power output from each 
individual panel:

Three different house loads were selected for the 
simulations

House 1 is a typical terraced house in Delft with three 

5.2 Building Loads

facades, built in 2004/2005. Electricity usage includes 
lighting, standard household appliances, electric cooking, 
MVHR, and an electric hot water boiler. The boiler is pre-
heated by block heating (varying in temperature between 
25°C and 50°C depending on the outdoor temperature).

Hourly data spanning three consecutive years (2018-
2020) was collected and subsequently averaged.

The total annual electricity consumption ammounts to 
3,045.2 kWh a year which is slightly less than the Dutch 
average for a single-family house for 2022 (3,090 kWh). 

Due to the lack of more loads from the Netherlands 
immediately available, house loads 2 and 3 have been 
sourced from an open dataset described in Schlemminger 
et al., 2022 from north-west Germany. Both were built in  
late 90s and early 2000s and are equipped with water-
water-heat pumps connected to a cold local heating 
network and solar thermal systems for domestic hot 
water.

Parameters for each house are detailed in Table 10. Note 
that the data pertaining to roof size, orientation, and 
inclination are hypothetical.

For simulating the scenarios for the consumer electricity 
tariff GBM will be used. The benefits of using brownian 
motion driven stochastic processes for producing monte 
carlo simulations of electricity tariff was described in 
section 2.4.2. GBM was selected due to its straightforward 
implementation and well-established presence in the 
literature.  Having obtained the past data, log returns are 
computed using the formula: 

The volatility parameter σ can be estimated as the 

5.3 Electricity Tariff

eq. 50

Variable Sigma Mu Theta

Annual Electricity Tariff 0.068 0.031 -

Grid Factor 0.016 0.036 0.067

CAPEX 0.031 -0.024 -

Lambda - Theta

Cristaline Cell Eff. 
Advancement 3.725 0.706

Table 11: Parameters of the stochastic processes
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House 1 2 3

No of 
Inhabitants 2 2 3

Type Terraced Detached Detached

Built 2004/2005 early 2000s early 2000s

Square 
Footage unknown 135 203

Roof Type Single-pitched Single-pitched Double-pitched 

Surface 
Albedo 0.20 (Zhang et al., 2022) 0.20 (Zhang et al., 2022) 0.20 (Zhang et al., 2022)

Roof azimuth 
and tilt 180 ° and 40 ° 180 ° and 30 ° 90 °/ 270 and 30 °

Max no of 
modules 12 24 36 (18 each side)

Annual Load 3045 kWh 3836 kWh 4678 kWh

Table 10: Overview of the analysed houses

PV OPTIMISATION05

Figure 40: House 1 Daily Load Box Plot

Figure 41: House 2 Daily Load Box Plot

Figure 42: House 3 Daily Load Box Plot

standard deviation of log returns:

where: 
n is the total number of log return observations.

Then, the drift parameter μ normalized over a time 
interval that corresponds to one year, can be estimated 
as the mean of the log returns adjusted for the drift:

Historical data on residential electricity tariff was 
obtained with annual timestep (Appendix C). First both 
parameters were estimated. 10000 paths were simulated 
in total (fig. 43). The tariff at t = 0 is assumed to be the the 
average condumer price in the Netherlands in January 
2024 (Rijksdienst voor Ondernemend Nederland, 2024). 
The bold red line indicates annual means. 

eq. 51

eq. 52
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5.4 Grid Factor
As expressed in part 2, no describtion of stochastic 
modelling of EG can be found in literature. Yet, it can be 
determined that GBM, which assumes a constant relative 
and unbounded growth rate might not be the suitable 
solution. Grid emission factors are often influenced 
by regulatory policies, technological advancements, 
and market mechanisms, all of which work towards 
maintaining a balance or target level (Tsiropoulos et al., 
2020). In the Netherlands for instance (Scheepers et al., 
2022), the long term goal is set for the 95% emission 
reduction by 2050 compared to 1995. 
 
Mean-reverting processes, such as the Ornstein- 
Uhlenbeck (OU) process, are advantageous for modeling 
quantities that tend to return to a long-term mean, 
thus avoiding extreme long-term forecasts. This process 

PV OPTIMISATION05

is considered suitable for the grid factor, based on the 
assumption that once the target grid emissions level is 
achieved, the emissions will fluctuate around a specific 
mean with only minor deviations. This implies that 
emissions will neither increase significantly nor fall below 
zero.

Similarly to GBM OU can be expressed explicitly as 
(Asango, 2018):

Xt  denotes the EG at time t, 
μ is a long-term mean coefficient,
λ is a mean reversion rate,
σ is the volatility of the process,
X0  is the EG at the start of the process.

When Xt exceeds the asymptotic mean μ, the drift 
becomes negative, drawing the process towards the 
mean. Conversely, when Xt is below μ, the drift acts in 
the opposite manner.

To estimate the parameters of the OU process historical 
data was used to calculate the process' volatility, while its 
long-term mean and reversion rate were estimated from 
projected CO2 equivalent emissions in the Dutch grid 
system, extending up to the year 2050. The parameters 
are calculated with maximum likelihood estimation (MLE) 
using a dedicated ouparams library.  

Under the circumsances described in 2.4.4 the 
compensation tariff J(t) in 2024 (when t = 0) is equal to:

eq. 53

5.5 Net-Metering

Figure 43: Simulated Scenarios for the Annual Electricity Tariff and the distribution of the random steps

Figure 44: Simulation of 3-D Brownian Motions 25 Steps Each eq. 54
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and in year 2029 is equal to:

etc.,
where:
I(t) is the electricity tariff at year t.

The feed-in-tariff replacing the net-metering scheme is 
given as 1/3 of the electricity tariff (Norouzi et al., 2023).

The primary determinant of technological advancement 
in photovoltaic technology is the efficiency of 
photovoltaic cells. It is a metric that quantifies the 
proportion of incident solar radiation that a PV cell 
can convert into electrical energy. It is expressed as a 
percentage, reflecting the effectiveness of the cell in 
harnessing solar energy under standard test conditions. 

where:
P(m) is equal to 1000 W/m2

From equation 56 it is evident that there is a linear 
relationship between cell efficency and the maximum 
power output that the panel can produce under standart 
test conditions (Pmax). Therefore, this study assumes 
linear proportionality between the efficiency progression 
of crystalline cells over time and the power output of 
new photovoltaic panels available on the market.

The historical data on conversion efficiencies for best 
research cells was obtained from National Renewable 
Energy Laboratory (2024) (Appendix I). 

The data indicates a pattern of a gradual improvement 
over time, marked by intervals of consistency followed by 
jumps in efficiency. The monte carlo scenario generation 

is conducted using a discretely sampled Gamma process.

The Gamma process is a continuous-time stochastic 
process, leveraging the characteristics of the 
Gamma distribution to model positive, variable, and 
asymmetrically distributed increments. In contract to 
ex. the Poisson process it can detail the magnitude of 
efficiency improvements, rather than just counting 
occurrences. Furthermore the gamma distribution allows 
for modelling both the average rate of improvement and 
the variability around this average ensures that both 
periods of rapid advancements and plateaus can be 
appropriately represented (Steutel and Thiemann, 1989). 

The Gamma distribution for an increment G(t)−G(s) is 
given by the probability density function:

The parameters for the process were calculated using 
method of moments by equating the sample moments  
(mean and variance) to the theoretical moments of the 
Gamma distribution. The goodness-of-fit of this appoach 
was tested applying the KS test on the increments using 
a 5% significance level. The results did not provide any 
statistical basis to reject the null hypothesis asserting that 
the observed data follows a Gamma distribution. 10000 
scenarios were simulated using a dedicated stochastic 
library. 

Hence the maximum rated power output for a new 
module each timestep Pmax(t) is calculated as:

where:
Eff(t) is the new cell efficency at timestep t

Figure 45: Simulated Scenarios for the Grid Factor (long term mean - mu marked 
in red)

eq. 58

Figure 46: Sample Gamma Process for the PV Cell Improvement

eq. 56

eq. 57eq. 55

5.6 Cristaline Cell Development
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eq. 59

5.7 PV CAPEX
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Figure 47: Hourly PV production AC and DC

Figure 48: The generated scenarios of the CAPEX for JA module + Inverter price

BoS costs 
(BoS(t))

50% of the panel costs if 
new installation, 25% if 

replacement
IRENA, 2022

Instalation 
costs (Inst(t))

150 € for the first panel, 
if more than one panel 
is installed it decreases 
by a factor of by 0.1 for 
each installed module 

per timestep.

-

OPEX 
(OPEX(t)) (40 €/kW) x iR

t Norouzi et 
al., 2023

Re-sale value 
(Resalexi(t))

decreases 10% each year 
since installation Price, 2024

TOU (peak) 140% of the base rate -

TOU (off-
peak) 85% of the base rate -

Feed-in Tariff 1/3 of the electricity 
tariff

Norouzi et 
al., 2023

Table 12: Cost Variables

Table 13: Electricity tariff rates

Consequently, under the assumptions that the proportion 
of losses attributed to inverters remains constant, the 
power output of a new PV panel each timestep PPV,new (t) 
is equal to:

CAPEX for the photovoltaic module was going to be 
modelled as GBM with a Poisson process (section 
3.2.). Historical data regarding the cost eur/Wp of the 
photovoltaic tehnology was collected for the european 
market (Appendix J). The analytic solution for this 
process is given as:

where:
Panel0 is the panel price at the start of the process,
μ is a constant drift rate coefficient,
σ is a volatility coefficient of the process,
λPT is a mean number of arrivals per unit time,
Nt is a Poisson process with a λPT frequency rate,
θ = E[Yi-1] where [Yi-1] is the random variable percentage 
change in the cost if the Poisson event occurs.
Yi corresponds to independent jumps.

An effort was made to calibrate parameters of the 
jump-diffusion process using maximum likelihood 
estimation, where the maximum log-likelihood was 
calculated numerically through Mean-Variance Mapping 
Optimization. However, this method proved to be 
problematic, and due to time constraints of the project, 
an alternative approach was subsequently pursued.

Hence the methodology described in 2.4.5 regarding a 
GBM with a Learning Rate was used (eq. 25). The learning 
rate parameter β is assumed as 0.322 (Jung et al., 2021). 

eq. 60
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Weekday

Weekend

Peakoff -Peakmid -Peakoff -Peak off -Peak

off -Peak off -Peakmid -Peak

12 PM 4 PM 9 PM 12 PM

9 PM 12 PM4 PM12 PM 6 AM 10 AM

Variable Value

Inflation rate (iR) 0.025

Loan Interest rate (iL) 0.06

Discount factor (ϑ) 0.04

The future price of PV modules in the Netherlands was 
estimated using projected cumulative solar installation 
capacity data from, Vartiainen et al., 2019 (base scenario) 
which then facilitated the calculation of the mean drift. 
The volatility was on the other hand calibrated from the 
past data (Appendix J).

10000 scenarios were generated for each base panel (fig. 
48). Subsequently the price of the module is adjusted to 
the PV cell efficency increase over time and hence the 
increase of the maximum rated power output Pmax(t) in 
Wp:

where:
CAPEX is the capital costs eur/Wp at timestep t
Price(t) is price for panel + inverter in eur at timestep t

The Time-of-Use pricing scheme is assumed for the 
ectricity tariff, described in the section 2.2.2.3. The cost 
of electricity is based on the time of day, reflecting the 
fluctuating demand and supply conditions in the power 
market. Under this tariff structure, electricity prices are 
divided into different rates for specific periods: peak, off-
peak, and mid-peak hours. Those rates are visualised on 
figure 49  and given in table 13.

The electricity balance within the system must adhere to 

the following constraints:

where h is an hourly timestep.

The electricity balance within the system must achieve 
equilibrium. The electricity demand must be met by 
combining the electricity imported from the grid and 
the yield from photovoltaic modules. Concurrently, the 
electricity generated by the PV panels is either consumed 
locally or exported back to the grid, provided it does 
not exceed the maximum export wattage (Eexp,max = 
4kW). Electricity cannot be simultaneously sold to and 
purchased from the grid. 

To determine the values for the kg of CO2 equivalent 
embodied in the PV installation, including the module, 
balance of system (BoS), transport, and inverter, an 
extensive literature review was conducted. This review 
highlighted that data on the carbon footprint from life 
cycle assessments (LCA) of PV modules for on-roof 
use in Europe is sparse and highly variable (section 
2.3.2.2). Consequently, it is not feasible to simulate this 
stochastically due to the lack of reliable historical data.

The total GHG emissions for timestep 1 were calculated 
based on the findings of Krebs, Frischknecht, and Stolz 
(2020). Their study determined the carbon intensity 
of a monocrystalline PV array, including the inverter 
and mounting equipment. From their research, it was 
calculated that the carbon footprint (CO2) for 1 kWp is 
1620 kg CO2eq/kWp. This value was applied to both the 
base and budget models, while the second-hand models 

Figure 49: Time-of-Use Electricity Rates

Table 14: Financial Rates

5.9 Electricity Balance

eq. 62

eq. 63

eq. 64

eq. 65

5.8 Time-of-Use

eq. 61 5.10 PV Module Carbon Intensity
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were assumed to have no impact.

For the timestep at t=25, the findings of Frischknecht, 
Itten, and Wyss (2015) were used. Following the same 
methodology as described above, the carbon emissions 
(CO2) under the REAL scenario, which assumes realistic 
improvements until 2050, were estimated to be 833 kg 
CO2eq/kWp.

Both studies specifically refer to on-roof residential PV 
installations under Central European conditions. The 
values from these studies were linearly interpolated to 
account for all values between the start and the end of 
the optimization period. It was decided not to include 
the carbon footprint in the observation space due to 
its high uncertainty and the very possible lack of recent 

relevant data when implemented in practice.

The carbon emissions per each installed panel are given 
as:

where:
CO(2,PANEL) is the installed panel’s total embodied carbon,
Pmax(t) is the installed panel’s power capacity in kWp,
CO2(t) are the mean carbon emissions per 1kWp.

The exploration of the action space has been conducted 
with increasing complexity of the environment in mind.  
Initially, the plan was to utilize for this phase an action 
space mirroring the one used in the toy problem. 
However, during the testing phase, it was observed that 
this approach caused the agent to struggle in achieving 
optimal convergence and also resulted in slower 
performance, hindering the efficiency of the agent in 
reaching its objectives. Hence, an alternative  simplified 
discrete action space was developed facilitating faster 
and much more stable convergence in comparison. 

Under the simplified action space in the single-panel 
scenario, it is represented by a single integer that ranges 
from 0 to the maximum number of grid cells, indicating 
the number of panels exchanged in the current timestep.  
The option to discart a panel is removed. Panels are 

Figure 50: Observation update in the RL enviornmnent, under the complex action space

Figure 51: Comparison of complex and simplifies action space

5.11 Action Space

eq. 66
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Budget (at t = 1) Value

Low 0 - 750 eur

High 750 - 2000 eur

Table 15: Budget ranges at t=1

chosen for exchange based on their efficiency, starting 
with the least efficient.

In the multi-panel scenario, the simplified action space 
is multidiscrete and comprises two integers: the number 
of panels installed and the type of panel (table 9). It is 
assumed that only one module type can be selected for 
exchange each year. This can be expressed as:

where:
x is the number of panels exchanged,
y is the type of module chosen, 
N is the maximum number of panels,
M represents the maximum number of panel types.

Alternatively if there are multiple roof surfaces (as 
in house 3) with varying irradiance and shading, x is 
expressed in more integers, each one for each surface ex. 
x1, x2 for house 3 (double-pitched roof).

On the contrary the complex fully multi-discrete action 
space while training cosidereably slower, theoretically, 
its complexity should allow for more refined decision-
making, potentially leading to superior outcomes, 
particularly under conditions not examined in this study, 
such as varying shading or mounting configurations of 
panels within a single system.  Similarly to the simplified 
action space  for the multi-panel scenario only one panel 
type can be chosen each timestep. It is expressed as:

where n is the number of panels.

Consequently, it was determined that both action spaces 
should be evaluated to assess their relative effectiveness. 
Upon receiving the action A from the agent, the 
environment checks whether the current time step t is 
not the final one, t≠H. If this condition holds, it proceeds 
with the following updates (figure 50). Both action spaces 
are visualised on figure 51. Here both actions result in 
the same outcome of replacing panels 3 and 4. 

The observation space is multi-continuous, comprising 
a tuple of integers for each relevant observation. These 
observations include integers for the installation of the 
panels, their current efficiency ranging from 0 to 1, the 
current average electricity tariff, the feed-in tariff (export 
price), the current market efficiency of PV modules, the 
CAPEX of the new module, the carbon emissions from the 
grid (for the variant with an environmental aspect), the 
current budget, previous budget, previous expenditure 
and finally a panel id for every installed panel, for the 
multi-panel scenario.

Similarly to the toy problem the financial balance is 
defined as:

where: 
I(t) represents is electricity tariff at year t, 
J(t) represent the compensation tariff at year t,
ϑ is the discount factor, set to 1
C(t) the installation costs is calculated as:

Pen(t) is the penalty for exceeding the maximum annual 
budget.
Resaletot(t) is the value of operational panels sold each 
step.

The approximations and assumptions for the Balance 
of System, Installation, and Operational Expenses are 
indicated in table 12. Capital expenditures, BoS, and 
Installation costs are multiplied by the number of panels 
added in the given timestep. Operational expenses are 
calculated based on the total kW of currently installed 
panels.

Pen(t) is the annual repaynent of the loan interest for 
exceeding the budget B(t) (table 15). Annual budget is 
adjusted for inflation. The loan terms for a given budget 
breach are elaborated on in Appendix  H. Penalty for each 
timestep is shown in equation 72 where: 

eq. 72

eq. 71

eq. 70

eq. 69

5.12 Observation Space and Reward

eq. 68

eq. 67
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eq. 73

eq. 76

5.13 Evaluation Metrics

eq. 77

eq. 74

eq. 79
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LoanTerm as the duration of the loan,
LoanAmount(t) as the amount of loan taken at time t,
LoanAmount(t) = max(C(t)−B(t), 0),
Repayment(t) as the amount repaid at time t,
The Reward for the scenarios with exclusively focusing 
on financial optimisation is:

On the other hand the environmental balance is:

where:
∑CO2,PANEL(t) is the cumulative installed module’s 
embodied carbon,
EG(t)  is the grid factor,

Hence the reward for the optimisation variant with both 
the financial and the environmental factors considered 
is:

The distribution of both balances is normalised to 
identical means and standard deviations. 

In contrast to the toy problem where the internal rate of 
return (IRR) was employed for financial evaluation, this 
chapter opts for net present value (NPV) as the preferred 
metric. The rationale for this selection stems from the 
limitations of IRR, which is applicable primarily when 
expenditures (negative cash flows) occur exclusively 
in the initial year. However, in the current model, the 
agent’s actions may lead to negative cash flows in 
subsequent steps, thereby necessitating a metric that 
can accommodate such financial dynamics throughout 
the entire period under consideration. Thus, NPV is 
chosen for its suitability in scenarios where cash flows 
vary over time. The balance considered for calculating 
the NPV is almost identical to the one used for the reward 
function, with the exception that instead of accounting 
for the costs of electricity imported from the grid, it 
considers the electricity produced by the panels that is 
directly consumed by the household load. This approach 
focuses on the electricity savings resulting from the self 
consumption.

eq. 75

eq. 78

where:

So the NPV is:

The environmental benefit on the other hand is evaluated 
as Net Carbon Savings (NCS). This metric takes into 
account the emissions associated with the lifecycle of 
the PV array itself and subtracts the carbon emissions 
avoided by using PV-generated electricity instead of grid 
electricity:

Model results are compared with the base policy, where 
panels are replaced once they fail or reach 80% of their 
original efficency, which is based on the common practice 
in the GCRS.

For the select panel scenario the type of the panel is 
determined by calculating the expected NPV for each 
type considering the current electricity tariff, mean 
degradation rate and expected lifespan (φ, table 8).Due 
to time constraints, it was decided to focus training 
and evaluation of the complex action space exclusively 
on scenarios involving multiple panels, as these were 
deemed more practically significant.

Before training all datasets were split in proportion 7:3 
for training and evaluation respectively. A seperate 
evaluation environment was built that included  the 
evaluation metrics described in the previous section. 

A reward normalisation was attepted by scaling reward 
values using an incremental algorithm for maintaining 
a running average and variance, to ensure that the 
scale of rewards does not affect the learning updates 
disproportionately. However it did not have a significant 
effect on the training.

5.13.1 Agent Selection

A study was conducted to select the optimal agent 

eq. 80

5.14 Model Selection and Parameters 
Tuning
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architecture. In this study, similarly to the toy problem, 
the performances of the A2C and PPO algorithms were 
evaluated under identical training parameters (table 16). 
Different subprocessing strategies were tested.

PPO generally exhibits more stable performance 
compared to A2C, particularly in environments with  the 
complex action space. The number of environments 
seems to affect the algorithms differently. PPO’s 
performance improves slightly with more environments, 
while A2C shows significant volatility and generally lower 
performance as the number of environments decreases. 
The complexity of the action space has a profound impact 
on A2C’s performance, leading to greater instability 
and lower rewards. Overall, PPO appears more robust 
across different numbers of environments and varying 
complexities in the action space, making it more suitable 
choice for the task.

5.14.3 Hyperparameter Tuinng with Optuna

After the selection of the algorythm and the policy an 

Neural Network 64, 64

Activation Function Tanh

Learning Rate 0.0003

No of Environments 16

Gamma 0.99

Lambda 0.95

Batch Size 64

Clip Ratio 0.2

Entropy coefficient 0.0

No of Epochs 8

Table 16: Deafult Parameters

automatic hyperparameter tuning was conducted using 
the python Optuna library. Optuna uses a tree-structured 
parzen estimator as the sampler for the hyperparameters 
selection by modeling the probability distribution 

Figure 52: Reward Distribution under random actions - not normalised and 
normalised

Figure 53: A) Evaluation Reward - PPOs: 16 envs - black, 8 envs - pink, 4 envs 
- purple; A2Cs: 16 envs - light blue, 8 envs - yellow, 4 envs - green (simple 
action space)

Figure 43: B) Evaluation Reward - PPOs: 16 envs - black, 8 envs - pink, 4 envs - 
purple; A2Cs: 16 envs - light blue, 4 envs - green (complex action space)

No of Neurons 64, 128, 256

No of Layers 2, 3

Activation Function Tanh, ReLU

Learning Rate 0.01 - 0.00001

No of Steps 1024 x 1, 2, 4, 8

Gamma 0.95 - 0.99

Lambda 0.90 - 0.95

Batch Size 64, 128, 256

Clip Ratio 0.15 - 0.25

Entropy coefficient 0.0 - 0.02

No of Epochs 8 - 32

Table 17: Ranges of the parameters for optuna optimisation
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of hyperparameters given the scores of past trials. 

Additionally, a median pruner is used that stop the 
evaluation of a trial if it is judged unlikely to result in a 
competitive outcome, in order to save computational 
power and time. 

The hyperparameters targeted for optimization were 
specified in various formats: as discrete uniform 
distributions, simple categorical lists, or as ranges 
of floating-point numbers. Details regarding these 
hyperparameters, their potential ranges, and possible 
values are provided in Table 17.

A study conducted involved a total of 150 trials, 
each running for one million timesteps. A pruning 

mechanism was implemented, terminating any trial 
that underperformed after 200,000 timesteps. Figure 46 
displays partial results, illustrating the performance of 
each hyperparameter against the achieved scores.

Overall the NN architecture that yeilded the highest 
score Overall, the neural network architecture that 
yielded the highest score consisted of 2 layers, each with 
256 neurons. Altering the activation function did not 
significantly impact the results. The optimal learning rate 
was approximately 0.0003, which aligns with the default 
value used in stable baselines. The best results were 

achieved by setting the batch size and discount factor (γ) 
to their upper limits, while reducing the number of steps 
and the entropy coefficient to their lower bounds.

The parameters from the trial that yielded the best results 
have been selected for further evaluation as the Baseline 
Model (table 18).

5.14.4 Manual Tuning

After establishing the Baseline Model, two 
hyperparameters—minibatch size and number of 
neurons—were identified as crucial for achieving optimal 
scores based on the results. Both parameters were set 
to their maximum values in the Optuna optimisation, 
suggesting that further increases might lead to improved 

No of Neurons 256

No of Layers 2

Activation Function Tanh

Learning Rate 0.00026

No of Steps 2048

Gamma 0.99

Lambda 0.93

Batch Size 256

Clip Ratio 0.17

Entropy coefficient 0.0

No of Epochs 24

Table 18: Baseline Model Parameters

No of Neurons 256, 512, 1024, 2048

Batch Size 256, 512, 1024, 2048

Learning Rate 
Schedule Flat, Linear, Exponential

Target Learning Rate 0.0001 - 0.00001

Table 19: Ranges of the hyperparameters for the manual optmisation

Figure 60: Comprahensive Plot of the NPV results for each
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Figure 54: Evaluation Reward for different network sizes for 512 batch size: 
256 - blue, 512 - pink, 1024 - blue, 2048 - black (Simple Action Space)

Figure 55: Total loss for different network sizes for 512 batch size: 256 - 
blue, 512 - pink, 1024 - yellow, 2048 - black (Simple Action Space)

outcomes. Additional experiments were conducted by 
adjusting the learning rate through the implementation 
of a learning rate scheduler, which decreases the rate 
as training progresses (the learning rate at the start is 
always 0.0003). 

Regarding the slow speed of the optuna study it was 
decided to perform this part manually. 

The hyperparameters considered in this phase are 
outlined in table 19.

In total 25 different models containing different 
combinations of those hyperparameters were trained. 
Each one was then evaluated against the Baseline Model 
both on two distinct environments: budget panel, low 
budget, house 2 and select panel, high budget, house 1 
with the complex action space for scalability. Those were 
evaluated on the basis of their evaluation reward and 
training metrics such as approximate Kullback-Leibler 
divergence, explained variance, training loss and policy 
and value losses. The results of this phase are shown in 
Apppendix L.

The parameters of the final model are shown in the table 
20.  All models are trained on HP Z-Book Studio G7 using 
an Intel Core i9-10885H CPU @ 2.40GHz. It was attempted 
to train using its NVidia Quatro T2000, however the model 
fitting was slower. 

Figure 56: Evaluation Reward for different mini batch sizes (1024, 1024 NN): 
256 - black, 512 - pink, 1024 - yellow, 2048 - blue (Complex Action Space)

Figure 57: Clip Ratio (fraction of time the policy’s probability ratio is clipped)  
for different mini batch sizes (1024, 1024 NN): 256 - black, 512 - pink, 1024 - 
yellow, 2048 - blue (Complex Action Space)

Figure 58: Policy Gradient Loss for different mini batch sizes (1024, 1024 NN): 
256 - black, 512 - pink, 1024 - yellow, 2048 - blue (Complex Action Space)
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No of Neurons 1024

No of Layers 2

Activation Function Tanh

Learning Rate Linear decay from 0.0003 to 
0.00001 

No of Steps 2048

Gamma 0.99

Lambda 0.93

Batch Size 1024

Clip Ratio 0.17

Entropy coefficient 0.0

No of Epochs 24

Table 20: Final Model Parameters

1024 Neurons 1024 Neurons

Figure 59: Final NN for both the actor and critic 

Tanh Tanh

PV OPTIMISATION05
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5.15 Results
The outcomes of the model evaluation, specifically the 
Net Present Values and Net Carbon Savings are detailed 
in Tables 21 , 22 and 23 for houses 1, 2 and 3, where they 
are compared against the base policy. The plot of NPVs 
for each analysed scenario under financial reward is 
shown on figure 61. Due to time constraints the training 
and evaluation of the reward function including both the 
financial and environmental balances was conducted 
for the house 3 only. Evaluation results for House 3 are 
depicted on figures 62 and 63. 

The NPV distributions for the scenario involving a budget 
panel with a high budget for house 2 are depicted in 
Figure 65. Additionally, a detailed plot for a selected 
episode within this scenario is illustrated in Figure 66. 
The  results for each scenario are discussed below. 

5.15.1 House One

The scenario involving the second-hand panel consistently 
shows the trained model underperforming compared 
to the base policy. This underperformance is primarily 
attributed to the low capital expenditure (CAPEX) of the 
modules, which consequently does not lead to budget 
overruns, particularly in the high-budget variant. In this 
variant, the average interest for an episode under the 
base policy amounts to 62 EUR, representing 0.027% 
of the total expenditure for that episode. In contrast, 
the average interest for the model evaluation is zero, 
indicating that the agent strictly avoids exceeding the 
budget. As a result, this leads to a more conservative 
strategy regarding the replacement of degraded panels, 
with the model replacing panels at a mean rate of 76% 
compared to the base policy’s 80%.

In the case of the budget panel, the model yielded 
suboptimal results compared to the base policy in both 
budget scenarios. The agent chose to install all possible 
panels in the first timestep in only 11% of the episodes. 
While this strategy helped avoid accruing significant 
interest—averaging €32 in interest after the first step 
in the agent evaluation, compared to €57 in the base 
policy—it similarly led to overly conservative behavior. 
In the low budget scenarios, the total power typically 
did not exceed 4,500 Wp by timestep 3, particularly 
when themodule’s CAPEX remained steady or increased 
marginally.

In the high-end panel scenario, the model outperformed 
the base policy. However, it is important to note that 
despite yielding the highest energy among all panel 

types, the Net Present Values for the high-end panels 
are consistently lower than those for the budget panel. 
This outcome is attributed primarily to the higher 
CAPEX associated with the high-end panels and the 
relatively short optimization period, which is significantly 
shorter than the average failure rate of these panels. 
Consequently, there is limited benefit in choosing these 
more expensive panels over the cheaper alternatives. 
Nonetheless, the agent’s conservative strategy in panel 
adoption proved successful. Under the base policy, the 
mean interest accrued after the first step was €187, 
compared to €76 in the agent evaluation. Overall, the 
additional interest costs amounted to 20% of the base 
policy expenses, versus 9% for the model evaluation.

In the select panel scenario, as anticipated, the simplified 
model outperformed the complex action space and 
narrowly exceeded the base policy. Overall, the agent 
using the simplified action space more frequently 
chose the second-hand panel in the early stages of the 
optimization process, consistently selecting the budget 
panel thereafter. In contrast, the complex action space 
failed to make these selections, instead sporadically 
opting for the high-end panel, which is financially 
impractical at this level. The base policy consistently 
selected the budget panel.

Furthermore, both trained agents exhibited more 
conservative behaviour than the base policy, typically 
replacing panels with an average 78% efficiency. The 
complex action space model, in a vast majority of 
cases, chose the least efficient panel for replacement. 
Additionally, in 4% of all evaluation episodes, it failed 
to replace a panel that had malfunctioned in the 
previous step, suggesting that the algorithm might be 
overstretched.

5.15.2 House Two

Not unlike the house 1, the scenario involing the 2nd-
hand module is when the model performs the worst then 
benchmarked against the base policy. Here however, 
the increased complexity of the environment, the 
higher maximum number of panels, and consequently 
the greater potential to exceed the budget or make 
poorly timed decisions contribute to the model’s 
improved performance compared to the base policy. 
This improvement is consistent across all scenarios for 
the simplified action space, as illustrated in Figure 51. 
The agent effectively maintains a stable output from 
the PV array throughout the optimization period and 
strategically replaces panels when CAPEX decreases and 
the budget permits. This management approach results 
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Low Budget High Budget

Base Policy Model Base Policy Model

Action Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

NPV 5 633 - 5 453 (-2.1%) 6 622 - 6 350 (-3.6%)

Budget 
Panel NPV 9 584 - 9 498 (-0.9%) 11 571 - 11 363 (-1.2%)

Hi-End 
Panel NPV 7 705 - 7 890 (+2.4%) 8 880 - 9 022 (+1.6)

Select 
Panel NPV 7 894 7 728 (-5.1%) 8 068 (+2.2%) 8 190 7 927 (-7.2%) 8 272 (+1.0%)

PV OPTIMISATION05

Table 21: A) Evaluation Results for House 1 - NPVs

Low Budget High Budget

Base Policy Action Space Base Policy Action Space

Action Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

NPV 10 821 - 11 164 (+1.6%) 10 857 - 10 792 (-0.8%)

Budget 
Panel NPV 18 677 - 20 060 (+7.4%) 19 192 - 19 598 (+2.1%)

Hi-End 
Panel NPV 16 023 - 17 193 (+7.3%) 17 098 - 18 054 (+5.6)

Select 
Panel NPV 16 595 15 936 (-18%) 17 508 (+5.5%) 17 413 16 497 (-15%) 17 988 (+3.3%)

Table 22: Evaluation Results for House 2 - NPVs

in a smoother distribution of interest costs over the 
optimization period, in contrast to the base policy which 
exhibits significant jumps.

Moreover, in scenarios with a high-end budget, the agent 
prudently refrains from installing all available panels until 
the CAPEX drops to around 70% of its initial value. 

The distributions of NPVs for the base policy and the 
model with simplified action space were analyzed, 
revealing distinct differences in performance and 
variability. Figure 65 (A shows the bar distribution for 
the model’s evaluation, which predominantly clusters 
around 30K with a narrower spread and fewer outliers, 
indicating a more consistent performance. Conversely, 
Figure 65 (B illustrates the base policy’s NPV distribution, 
which is wider, suggesting greater variability in outcomes 

with a significant tail extending into higher NPVs. The box 
plots in Figures 65 (C and 65 (D further highlight these 
contrasts; the model’s median NPV is higher and displays 
a tighter interquartile range, whereas the base policy, 
although exhibiting a lower median, also shows greater 
spread and variability.

House Two further demonstrates that the complex action-
space-based model is overextended, resulting in the 
agent’s failure to achieve optimal convergence due to its 
excessive scale (8,388,608 possible action configurations 
per step, compared to 72 for the simplified action space). 
The percentage of episodes in which a failed panel is 
not replaced in the subsequent step increased to 32%. 
Moreover, the selection of the panel type for installation 
appears to occur randomly.
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Low Budget High Budget

Base Policy Base Policy

Action Space - -

Second-
Hand 
Panel

NPV 12 813 13 987

NCS 44 404

Budget 
Panel

NPV 22 132 29 110

NCS 39 295

Hi-End 
Panel

NPV 22 229 24 020

NCS 45 442

Select 
Panel

NPV 21 075 24 545

NCS 38 679

Low Budget High Budget

Action Space Action Space

Action Space Complex Simplified Complex Simplified

Second-
Hand 
Panel

NPV - 11 488 (-11.5%) - 11 780 (-8.7%)

NCS - 48 003 (+7.5%) - 48 766 (+9.8%)

Budget 
Panel

NPV - 21 743 (+1.7%) - 28 832 (-0.9%)

NCS - 41 540 (+5.5%) - 43 735 (+11.3%)

Hi-End 
Panel

NPV - 22 252 (+0.2%) - 24 653 (+2.6%)

NCS - 48 946 (+7.2%) - 46 427 (+2.7%)

Select 
Panel

NPV 11 984 (-56.7%) 22 361 (+5.8%) 14 485 (-59.0%) 25 251 (+2.9%)

NCS 33 330 (-16.0%) 45 798 (+18.4%) 35 020 (-10.4%) 46 798 (+21.0%)

Low Budget High Budget

Action Space Action Space

Action Space Complex Simplified Complex Simplified

Second-
Hand 
Panel

NPV - 13 188 (+2.9%) - 14 205 (+1.6%)

NCS - 46 737 (+5.0%) - 47 517 (+7.0%)

Budget 
Panel

NPV - 22 241 (+0.1%) - 29 351 (+0.8%)

NCS - 40 028 (+1.9%) - 36 326 (-8.4%)

Hi-End 
Panel

NPV - 23 785 (+6.6%) - 25 959 (+7.5%)

NCS - 48 051 (+5.5%) - 43 501 (-4.4%)

Select 
Panel

NPV 13 543 (-55.6%) 22 461 (+6.2%) 15 616 (-57.2%) 27 065 (+9.3%)

NCS 31 660 (-22.2%) 41 833 (+7.4%) 31 660 (-22.2%) 37 486 (-3.1%)

Table 23: A) Evaluation Results for House 1 - Base Policy

Table 23: B) Evaluation Results for House 3 - Financial Balance Only based Reward

Table 23: C) Evaluation Results for House 3 - Financial + Environmental Balance based Reward
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Low Budget High Budget

House 3

House 2

House 1

Figure 61: Comprahensive Plot of the NPV results for each analysed scenario under financial balance reward only
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Figure 61: Comprahensive Plot of the NPV results for each analysed scenario under financial balance reward only

Figure 62: Plot of NPVs for each analysed scenario for House 3

Figure 63: Plot of NCSs for each analysed scenario for House 3

Low Budget High Budget

Low Budget High Budget
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5.15.3 House Three

For house three both financial and environmental 
evaluation was performed, with two reward functions 
tested. 

Financial Reward

When evaluating NPV, the model shows similar patterns 
to houses 1 and 2, performing significantly better in 
scenarios with tighter budgets by avoiding extra interest 
costs. The generally more conservative behavior of the 
agent, as described in previous sections, benefits the 
system's carbon savings in lower-budget scenarios. 
In these cases, the agent adopts a more conservative 
installation policy, avoiding additional carbon emissions 
by not installing new modules unnecessarily, except when 
using second-hand panels with no embodied carbon. 
Conversely, in higher-budget scenarios, a more proactive 
installation policy results in higher carbon emissions over 
the system's lifetime, with the exception of the second-
hand panel scenario. In this case, frequent updates 
increase the system's energy yield and consequently its 
carbon savings.

Mixed Reward

The inclusion of environmental balance in the agent's 
reward function clearly benefits the models, resulting 
in higher Net Carbon Savings (NCS) across all scenarios 
compared to the base policy (mean increase of 8.9%) and 

the financial reward models (mean increase of 4.3% for 
low budget scenarios and 9.2% for high budget scenarios). 
However, this comes at a significant cost to Net Present 
Values (NPV). Given that financial payback periods 
are shorter than environmental payback periods (3-4 
years versus 4-6 years), the inclusion of environmental 
objectives forces the agent to adopt a more conservative 
installation policy. This is especially evident when 
comparing the NPVs of these models against those based 
solely on financial rewards, resulting in a mean NPV 
decrease of 5.1%.

Most importantly, the viability of the multi-panel 
concept, where the agent chooses between new panels 
and second-hand modules (with no embodied carbon), is 
demonstrated. This approach yields the highest growth 
in carbon savings compared to both the base policy and 
financial balance-only models, while avoiding significant 
compromises in financial gains over the system's lifetime.

5.15.3 Model Performance

For a comparative analysis both models with complex and 
simplified action spaces for the low budget select panel 
scenario for house 2 were selected. 

The model operating under a simple action space 

Figure 64: Training and evaluation metrics of complex (black) and simple 
(blue) action space based models. evaluation reward, policy gradient loss, 
clip fraction and approximate Kullback-Leibler divergence (measure of the 
difference between the new policy distribution and the old policy distribution)
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Figure 65: A) Bar Distribution of the NPVs for the model evaluation Figure 65: B) Bar distribution of the NPVs for the base-policy evaluation

Figure 65: C) Box Plot of the NPVs for the model evalua- Figure 65: D) Box Plot of the NPVs for the base-policy evaluation

demonstrates accelerated and stable convergence 
across multiple parameters, including approximate 
KL divergence, clip fraction, policy gradient loss, and 
mean reward metrics. This rapid stabilization suggests 
that simpler action spaces facilitate quicker policy 
optimization and reduced variance in updates, likely due 
to a more constrained set of choices that allow faster 
generalization.

Conversely, the model with a complex action space shows 
a slower reduction in KL divergence and clip fraction, and 
a generally higher plateau in policy gradient loss. This 
indicates ongoing adjustments in policy updates and a 
longer trajectory towards optimization. The increased 
fluctuations observed in these metrics reflect the 

inherent challenges of navigating a larger decision space, 
where the optimization process must account for a wider 
variety of actions and potential outcomes.

In this chapter, a comprehensive optimization of the 
photovoltaic array was conducted. A workflow integrating 
all relevant variables identified during the literature 
review was developed and simulated using various 
stochastic and probabilistic methods. These variables 
were simulated using the tools described in Chapter 4, 
except for the PV module capital expenditure per Wp, 
where a Geometric Brownian Motion with a learning rate 
was employed.

5.16 Conclusion
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- Achieved 
NPV

Model 
Evaluation 22 486

Base Policy 20 364
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Figure 66: Comprahensive plot of a selected episode 
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Following the introduction of each variable into the 
simulation environment, the algorithm’s performance 
and output were evaluated. It was determined that 
modifying the action space compared to the simplified 
version used in the toy problem could provide benefits, 
and this revised action space was tested as an alternative.

The model’s hyperparameters were then fine-tuned using 
manual adjustments and the Optuna library. The revised 
approach was tested across various scenarios involving 
different types of PV modules and household energy 
demands. The results were predominantly positive, with 
the trained model consistently outperforming the base 
policy. From the optimization, three primary conclusions 
were drawn:

1. The simplified action space yields better performance 
than the complex action space.

2. As roof size increases, allowing for more panel 
configurations, and as the budget decreases, the trained 
model increasingly outperforms the base policy.

3. The reinforcement learning (RL) framework effectively 
incorporates multiple objectives into the optimization 
process and accommodates more than one module type.

PV OPTIMISATION05
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06. PV + BES System 
Optimisation
6.1 Battery CAPEX
6.2  Battery Modelling
6.3 Battery Details
6.4 Battery Degradation 
6.5 System Balance and Constraints
6.6 System Operation (RL within RL)
6.7 Action Space
6.8 Observation Space
6.9 Results
6.10 Conclusion

Figure 67: PV and BESS Optimisation - Flowchart
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Figure 68: PV and BESS Optimisation
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Variable Sigma Mu Theta

Battery CAPEX 0.122 -0.038 -

This chapter focuses on the optimization of the 
battery energy storage system integrated with rooftop 
photovoltaic panels. The methodology is identical to 
that of the previous chapter concerning stochastic 
scenario generation, electricity tariffs, financial and 
environmental variables, household loads, and the 
reward function

Similar to the methodology outlined in section 5.7 for 
photovoltaic price scenario generation, the approach 
for lithium-ion batteries involves employing geometric 
Brownian motion coupled with mean drift estimation. 
This method utilizes a learning rate derived from 
predicted cumulative installation capacity. As noted by 
Ziegler and Trancik (2021), simulating annual real prices 
scaled by energy capacity yields a high coefficient of 
determination. Nagelhout et al. have determined a 
learning rate of 17%, as assumed in this study, indicating 
that lithium-ion battery cell prices decrease by an 
average of 17% with a doubling of installed capacity, 
following Wright’s Law. 

Historical global prices of lithium-ion battery modules 
are utilized to compute the volatility of the geometric 
Brownian motion. On the other hand, Vartiainen et al., 
2019 have simulated various scenarios for the market 
volume of BESS in Europe until 2050. Their findings are 
leveraged to estimate future lithium-ion battery storage 
prices. Following the approach outlined in section 5.7, 
the base scenario for the cumulative capacity value is 
selected.

6.1 Battery CAPEX

PV + BESS OPTIMISATION06

Figure 69: BESS CAPEX Scenarios

Similarly to the PV system, it would be best to use a 
precise physics based cyclic model as the one described 
in Deng et al., 2022. However due to the time constraints 
it was decided to utilise a battery model presented 
in (Qi , Rashedi and Ardakanian, 2019), that provides 
a practical and accurate linear approximation of the 
physical properties of a lithium-ion battery. According to 
this model, the energy content of a lithium-ion battery 
changes over time in the following way:

where:
h is an hourly timestep,
ηinv, B is the efficency of the AC to DC battery inverter
E(h) is Energy content of the battery at times t in watt-
hours (Wh),
ηp,leak is the leakage rate per time unit as a fraction of the 
SOC,
ηc,leak   Constant leakage rate of energy, measured in Wh 
per unit time,
Tu Duration of each time slot (one hour),
ηc is the charging efficency,
ηd is the discharging efficency,
Qcharge (h) charge power (W),
Qdischarge(h) discharge power (W).            

6.2 Battery Modelling

eq. 81

eq. 82

Table 24: Parameters of the Battery CAPEX GBM
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Lithium iron phosphate (LiFePO4) batteries currently 
dominate the residential home energy storage market, 
with no viable alternatives available. Furthermore, 
market research in the Netherlands indicates that 
purchasing used batteries is not a feasible option at 
present. Mainstream batteries in the market do not 
exhibit significant differences across various price ranges 
in terms of cycle durability, self-discharge rate, or depth 
of discharge. A mainstream mid-range Huawei Luna 
2000, available in three different capacities ranging 
from 5 to 15 kWh, was selected for analysis. It allows 
for expanding the existing storage by 5kWh, with each 
module operating independently.

The analysed system is always AC-coupled, necessitating 
an additional inverter to mediate between the battery 
and the rest of the system. The inverter is assumed to 
have a conversion efficiency of 98%. System’s architecture 
is presented on figure 71. 

The parameters of the battery storage are set according 
to its specifications. Hence Qcharge,max and Qdischarge,max are 
set 1.5 kW, 3 kW and 4.5 kW for 5kWh, 10 kWh and 
15 kWh modules respectively. The roundtrip efficiency 
is around 90% therefore charging and discharging 
efficiencies are set to 0.95. The recommended depth 
of discharge is 95% therefore SOCmin (minimal state of 
charge) is 0.05 x Bcap (battery capacity). On the other 
hand the recommendation for the maximal SOC is 100% 
for LiFePO4  batteries hence SOCmax = Bcap.  The other 
parameters of the battery are set as follows: ηp,leak= 0, 
ηc,leak= Bcap × 10-4, Tu= 1. 

Battery degradation and aging is crucial to consider in the 
system’s optimisation. For consumer home BESS cycling 
aging is the dominant aging mode. The current condition 
of a battery is quantified by the State of Health (SoH), 
which measures the degree of capacity fade. A battery 
is considered to have reached its end-of-life when the 
SoH declines to 80% (Zhang et al., 2017). Operating the 
battery beyond this point introduces potential hazards 
due to increased risks of failure and safety concerns.

Typical LiFePO4 BESS can last from 10 to 14 years, under 
normal operating conditions, which accounts to about 
4000 - 5000 cycles (Beltran, Ayuso and Pérez, 2020). 

where:

6.3 Battery Details

PV + BESS OPTIMISATION06

6.4 Battery Degradation

Bcap,act is the current battery capacity
Bcap,nom is the nominal capacity

The degradation curve of lithium-ion battery storage 
typically exhibits a non-linear pattern, where the capacity 
of the battery declines over time due to chemical and 
physical changes within the cells. This study uses a non-
homogenous gamma process (NHGP) to simulate the 
degradation paths exhibiting monotonic, nonlinear, 
and non-reversible behaviors. This approach has been 
developed by Galatro et al., (2021) to account for cell-to-
cell variations. NHGPs PDF is:

where Γ(aφ(t)) is the Gamma function for the shape 
parameter; φ(t) = c where c is a nonlinear constant and b 
is the scale parameter.

Ideally this process should be fitted to real data using  its 
likelihood function. However due to times constraints 
the parameters were estimated empricially from several 
studies on LiFePO4 battery degradation (Johnen et al., 
2021), (Sun et al., 2018), (Thomas et al., 2008). 

According to Carpinelli et al. (2014) under time-of-use 
electricity tariff with three price levels, as considered in 
this study, a home BESS is typically subjected to 1 cycle 
a day. To model battery degradation more accurately, a 
rainflow algorithm has been incorporated into the analysis 
framework to compute the annual number of charging and 
discharging cycles of the battery. The rainflow algorythm 
processes a time series state of charge data of the battery 
and identifies stress-reversal points within the series. It 
quantifies the number of cycles, categorizing each based 
on the amplitude and mean of the cycle (Angenendt et 
al., 2018). A specialised rainflow library was used. 

Figure 70: A plot of 100 NHGP for the battery degradation paths

eq. 83

eq. 85

eq. 84
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Figure 71: System under consideration

6.5 System Balance and Constraints

The system is required to conform to a series of constraints 
that ensure all components maintain equilibrium:

The load is matched by total power sourced from the 
grid, generated by the solar system, and drawn from the 
battery.

The electricity produced by the PV system is accounted 
for, either being used locally, stored for future use, or 
exported to the grid.

Ensures that the hourly energy exported to the grid is no 
higher than the maximum of Eexp,max = 4kW.

The battery is either charging or discharging, but not 
doing both simultaneously. 

Ensure that the battery’s charging and discharging 
adhere to the maximum rates allowable for the battery.

ensures that at any given time t, the battery’s state of 
charge does not fall below the recommended depth of 
discharge nor exceed the maximum state of charge.

enforces that there is no simultaneous import and export 
of power to the grid.

In order to realistically assess the advantages of 
adopting BESS, various operational strategies outlined 
in section 2.3.10 of this thesis were analysed. It is well-
documented that predictive control algorithms surpass 
rule-based methods by adeptly adapting to variations in 
PV and battery sizes, energy loads, and electricity tariffs. 
However, no metaheuristic algorithms were immediately 
available or applicable. Given the author’s expertise 
in reinforcement learning, it was decided to develop a 
bespoke algorithm from scratch. Machine learning-based 
techniques have been demonstrated to achieve superior 
results compared to traditional methods (Corte Real et 
al., 2024). The methodology employed mirrors that of the 
planning model, with the environment constructed in the 
OpenAI Gym and an agent trained using Stable Baselines.
As noted in the literature on model predictive control, it is 
typical to precede this with the development and training 
of a regression model responsible for predicting building 
load and weather conditions a few timesteps into the 
future. However, in our scenario, this step is unnecessary 
since the future values of all necessary parameters are 
known within the simulation. Hence, the methodology 
would need to be expanded for application to real-life 
scenarios.

In configuring a Battery Energy Storage System (BESS) 
operation algorithm, it’s common practice to prioritize 
system longevity. While some authors incorporate 
battery aging models to minimize cycle count and extend 
lifespan, this project doesn’t explicitly adopt such models. 
Instead, it focuses on constraints such as maximum charge 

6.6 System Operation (RL within RL)

eq. 86
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eq. 93

eq. 94
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depth and state of charge to prevent excessive use and 
degradation. This approach, though simpler, has been 
shown to be equally effective in studies like Angenendt 
et al., 2018, particularly in evaluating the total levelized 
cost of electricity for the system.

The problem is formulated as an MDP optimal control 
problem over a finite time horizon. Initially, an episode 
length of 8760 time steps, corresponding to the entire 
year, was tested. However, optimal convergence couldn’t 
be achieved due to the extended episode duration. 
Consequently, the episode length was reduced to 168 
hourly time steps, covering a single week. During each 
timestep, the agent receives input regarding weekly 
tariffs, photovoltaic production, and building loads, 
which are randomly provided.

6.5.1 Battery System Environment

The observation space encompasses the state of charge 
at t and t-1, PV and house load balance at h, h+1 and 
h+2, the electricity tariff at h, Feed in tariff at h, hour of 
day (1 to 24), the week of year (1 to 52), Bcap and Pmax of 
the PV panels:

where: 
  
 
is the net hourly load.

All values in the observation space are normalised from 
0 to 1.  Bcap and Pmax  which are subject to variation, are 
individually adjusted for each case house. For house 1 
Bcap ranges from 4 kWh to 5 kWh, Pmax  ranges from 2 490 
Wp to 4 980 Wp.

PV + BESS OPTIMISATION06

Actions correspond to the power level of charging or 
discharging the battery, which is a interval that ranges 
from maximum discharging power (Qdischarge,max) to the 
maximum charging power of the battery (Qcharge,max) 
multiplied by the charging efficency. 

This is normalised to from -1 to 1 in the actual environment, 
with discharging taking the negative values. 

Upon receiving the action A from the agent, the 
environment checks whether the current time step t is 
not the final one, t≠H. If this condition holds, it proceeds 
with the following updates (figure 72).

Model’s reward is the hourly financial balance of the 
expense for the imported energy and revenue for the 
exported energy.

6.5.2 Training and Hyperprarameters

Similarly to the main problem here PPO is also used based 
on the very recent findings of Corte Real et al., 2024. 
An alternative policy using an LSTM (Long Short-Term 
Memory) network, rather than a simple neural network, 
was explored. LSTMs are a type of recurrent neural 
network (RNN) well-suited for processing sequences 
and time-series data, making them advantageous for 
dynamic environments where past information is crucial 
for current decisions. In our case the use of an LSTM could 
be beneficial as it enables the model to retain information 
over extended periods, enhancing the agent’s ability to 
predict and optimize energy usage based on historical 
usage patterns and variable load demands. However, 
initial tests not only did not indicate that LSTM-
based policy improves the model’s convergence, but 
furthermore the training was slowed down significantly. 
Therefore, a standard NN was used. 

To tune the hyperparameters of this model a similar 
methodology to the one emlpyed to the main model, 
in the last chapter was applied. However, in order 
not to bore the reader the description of this step is 
ommited. The agent is trained using multiprocessing on 
16 parallel environments.  Learning is set to 0.0003. The 
discount factor, gamma, was set to 0.99. The lambda 
parameter in was set at 0.95. The numbers of epochs, 

eq. 95

eq. 96

eq. 97

eq. 98

eq. 99
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batches, and timesteps were set at 16, 2048 (128 per 
single environment), and 15 000 000 respectively. PPO’s 
network use NN architecture consisting of five fully-
connected layers with 2048, 1024, 1024, 512, and 256 
neurons, respectively, using the tanh activation function. 
This is presented on figure 73.

6.5.3 Evaluation

The results of the model are compared against a simple 

PV + BESS OPTIMISATION06

rule-based operation method from Ngoc An et al., 2015. 
This operation strategy involves the battery charging 
if the net hourly load N(h) < 0, meaning that there is 
a shortage within the system and discharging if N(h) 
> 0, which indicates an energy shortages. All relevant 
operation costraints from section 6.4 apply.

6.5.4 Results

The model was succesfully trained for house 1. Overall 

Figure 72: Transitions of the BESS operational environment

Figure 74: SoC of the Battery plotted for April 22nd to April 26th (Bcap = 5 kWh, PPV, max = 4 980 Wp), red line is the RL operated BESS, purple is the rule-based 
policy operation, dashed line indicades the electricity tariff rates, red and green fields indicate electricity shortage or surplus from PV and building load .
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similar models discussed in the previous chapter. This 
significant decrease in training speed was deemed 
unsuitable given the time constraints of this study. 
While it was considered that a regression model could 
be developed to approximate the outputs from the 
battery operation model and then integrated into the 
optimization environment, this approach was not pursued 
due to similar time constraints. Moreover, since the 
benefits of using the trained model over the rule-based 
method were not very significant, the rule-based method 
was implemented in the optimization environment. This 
resulted in a 6x slowdown in training relative to the 
environments evaluated in previous chapter.

The action space remains largely the same as in the 
previous chapter. Similarly to that, two distinct action 
spaces are being utilized. The simplified action space is 
as follows:

where:
x is the number of panels exchanged,
y is the type of panel chosen, 
z is the size of BESS added,
N is the maximum number of panels,
M represents the maximum number of panel types. 
L is the maximum no of BESS units. 

If z is one a 5kWh module is added, if 2 - 10kWh if 3  - 
15kWh. Note that if the maximal size of the BESS is 
installed (Bcap,max), then action z has no influence on the 
environment etc.

In the preliminary calculations, Bcap,max for each house 
was determined. For instance, it was found that for 
House 1, the benefit of installing a BESS larger than 5 
kWh is marginal; thus, larger options were excluded from 
the optimization. The Bcap,max for each house is displayed 
in Table 25.

Similarly, a single integer has been added to the complex 
action space.

The observation space has also been minimally adjusted 
to include measures for the current price of battery, and 
itscapacity multiplied by its state of health (SoH).

6.7 Action Space

eq. 100

eq. 101

eq. 102

its performance surpases the performance of the rule-
based method. Figure 67 presents the mean reward 
from 10,000 evaluation episodes, alongside results 
from a rule-based policy and a scenario without battery 
storage. The trained agent slightly outperforms the rule-
based policy, achieving -108.9 EUR compared to -121.4 
EUR. However, both strategies significantly surpass the 
performance in the absence of battery storage, which 
results in -949.7 EUR. The operation of the battery 
under these two methods is further elucidated in Figure 
74, which illustrates the battery’s SOC. It is evident that 
the battery managed by the model discharges more 
slowly, particularly during periods of low tariffs, thereby 
preventing the battery from reaching minimal SOC and 
allowing for a more evenly distributed discharge over 
extended periods. The training and evaluation metrics 
for this models are depicted in Appendix L.

6.5.5 Implementation

The implementation of the trained model for battery 
operation into the main environment resulted in a 
substantial slowdown in training, likely due to the size 
of the neural networks within the model. This led to a 
training slowdown of more than 25 times compared to 

2048 1024 1024 512 256

Figure 73: Network Architecture for the BESS operation PPO’s policy

Figure 75: Comparison of the trained agent operation to the rule-base 
policy and scenario with no BESS.
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6.8 Observation Space

CBAT  - 5kWh 3000 eur -

CBAT  - 10kWh 5000 eur -

CBAT  - 15kWh 7000 eur -

InstBAT 1000 eur -

BOSBAT 50% of CBAT
Only for initial 

installation

where:

Values for Cmodule and InstBAT  at t=1 are given in table 25.

InstBAT  is adjusted for inflation. Cmodule is multiplied by the 
current CAPEXBAT. Disposal costs have not been included 
in the analysis, as it is uncertain whether such costs will 
be incurred. Additionally, with anticipated advancements 
in recycling technologies, disposal activities could 
potentially yield benefits rather than impose costs.

Contrary to other equations and components of the 
environment, the reward structure remains identical, as 

PV + BESS OPTIMISATION06

House 1 House 2 House 3

Max Battery 
Size 5kwh 5kwh 10 kwh

eq. 104

eq. 103

Table 25: Maximal BESS sizes for each House

Table 26: Battery Installation Costs at t=1

explained in section 5.12. Due to unavailabilty of data on 
environmental impact of residential BESS in the european 
region, in this chapter we only focus on the financial 
reward.  

The training parameters, and agent’s hyperparameters 
are the same compared to the last chapter. 

Figure 76: Observation update in the RL enviornmnent, under the simplified action space
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Figure 77: Comprahensive Plot of the NPV results for each analysed scenario under financial balance reward only

Low Budget High Budget

House 3

House 2

House 1



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski90 TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski

PV + BESS OPTIMISATION06

Low Budget High Budget

Base Policy Action Space Base Policy Action Space

Action Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

NPV 6 192 - 6 538 (+5.6%) 6 865 - 7 325 (+6.7%)

Budget 
Panel NPV 9 980 - 10 508 (+5.3%) 11 787 - 12 824 (+8.8%)

Hi-End 
Panel NPV 6 946 - 8 300 (+19.5%) 8 645 - 9 518 (+10.1)

Select 
Panel NPV 8 762 9 024 (+2.0%) 10 032 (+14.5) 9 139 9 294 (+0.7%) 9 861 (7.9%) 

Table 27: A) Evaluation Results for House 1 -  NPVs

Low Budget High Budget

Base Policy Action Space Base Policy Action Space

Action Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

NPV 14 430 - 16 363 (+11.3%) 15 712 - 18 838 (+19.9%)

Budget 
Panel NPV 20 944 - 22 849 (+9.1%) 21 998 - 24 791 (+12.7%)

Hi-End 
Panel NPV 17 150 - 21 643 (+26.2%) 18 727 - 22 491 (+20.1%)

Select 
Panel NPV 19 033 17 034 (-11.5%) 22 116 (+16.2%) 19 919 17 409 (-14.6%) 22 707 (+14.0%)

Table 28: A) Evaluation Results for House 2 -  NPVs

Low Budget High Budget

Base Policy Action Space Base Policy Action Space

Action Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

NPV 24 517 - 27 013 (+10.2%) 25 022 - 29 132 (+ 16.4%)

Budget 
Panel NPV 29 154 - 34 052 (+16.8%) 31 797 - 39 926 (+25.5%)

Hi-End 
Panel NPV 24 087 - 27 135 (+12.6%) 26 202 - 31 047 (+18.5%)

Select 
Panel NPV 25 308 19 077 (-32.6%) 32 955 (+30.2%) 26 811 20 880  (-28.4%) 35 486 (+24.5%)

Table 29: A) Evaluation Results for House 3 -  NPVs
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The outcomes of the model evaluation, specifically the 
Net Present Values, are detailed in Tables 27, 28 and 
29, where they are compared against the base policy. 
The plot of NPVs for each analysed scenario is shown 
on figure 77. The NPV distributions for the scenario 
involving a budget panel with a high budget for house 
2 are depicted in Figure 78. Additionally, a detailed plot 
for a selected episode within this scenario is illustrated 
in Figure 79. The results for each scenario are discussed 
below. 

6.7.1 House 1

For the 2nd hand module scenario, in contrast to its 
equivalent with only photovoltaic systems discussed in 
Chapter 5, the trained model in this study outperforms 
the base policy, which dictates the installation of the 
BESS only and always when it is not installed. This leads 
to significantly higher interest costs at the beginning of 
the episode across all scenarios. Specifically, the mean 
interest cost for the low budget scenario exceeds 280 
EUR for the second-hand panel, 370 EUR for the budget 
panel, and 600 EUR for the high-end panel, compared 
to zero interest costs for the second-hand panel during 
model evaluation (Appendix M). In all scenarios, 
the installation of the battery is postponed and not 
performed in the early steps. Under a low budget, the 
median timestep for BESS installation is 8 for the used 
panel, 12 for the budget panel, and 16 for the high-end 
panel. Additionally, in 26% of evaluated episodes for the 
high-end panel, the agent does not install the BESS at all. 
This percentage decreases to 12% for the budget panel 
and less than 1% for the second-hand panel. The model 
also tends to act more conservatively than the base 
policy by replacing the budget panel, under low budget, 
mainly at 77% efficiency. It is noteworthy that in fewer 
than 0.1% of the analyzed episodes across all scenarios, 
the battery was replaced while still functional.

When comparing complex to simplified action space-
based models in the multi-panel scenario, the results are 
consistent with those from the previous chapter, with 
the simplified action space yielding superior results. This 
is the only case where the complex action-space-based 
model outperforms the base policy. However, this should 
be attributed to the inadequacy of the base policy rather 
than the commendable performance of the model.

6.7.2 House 2

As observed in Chapter 5, the performance difference 
between the base policy and the trained model increases. 

6.9 Results Similar to House 1, the highest benchmarking against the 
base policy is achieved in the high-end panel, low budget 
scenario. In this scenario, the model avoids the installation 
of all possible modules in 24% of evaluated scenarios 
and installs the battery in 68% of them. Typically, this 
installation occurs after the 18th timestep.

Figure 62 displays a selected episode for the budget panel 
in a high budget scenario. It is evident how the model 
manages to reduce additional interest costs compared to 
the base policy. In this case, the battery is only installed 
at timestep 15, when its capital expenditure reaches 
approximately 65% of its initial value.

The distributions of NPVs for the base policy and the model 
with simplified action space for the budget panel were 
analyzed using histograms and box plots. The histograms 
in Figures 61: A and B display a bell-shaped distribution 
for both the model evaluation and the base-policy NPVs, 
suggesting normal distributions. Figure 6.1: A shows a 
model evaluation range from about 20 000 to 28 000, with 
most NPVs clustered around 24 000, whereas Figure 6.1: 
B for the base-policy reveals a tighter distribution ranging 
from 12 000 to 25 000. The box plots in Figures 6.2: C 
and D further outline the spread and central tendency of 
NPVs. The presence of outliers in Figure 6.2: D suggests 
some variability under the base-policy evaluation.

The distributions of NPVs for the base policy and the 
model with simplified action space for the budget 
panel were analyzed reaveling differences in the central 
tendency and variability of NPVs between the two 
policies. Specifically, the model evaluation shows a higher 
median NPV and a tighter interquartile range as depicted 
by its box plot (Figure 6.1: C), indicating a more consistent 
and more favorable financial outcome compared to the 
base policy. Conversely, the base policy exhibits a wider 
range of NPVs with a lower median, as illustrated by the 
broader spread in both its histogram (Figure 6.1: B1) and 
box plot (Figure 6.1: D). 

6.7.3 House 3

This presents the most complex observation and action 
spaces across all environments examined so far. The 
evaluation patterns further prove that the trained models 
outperform the base policy across all scenarios with the 
exception of the complex action space based models.

The cummulative mean total episode interests and the 
mean total electricity productions in kWh are included in 
Appendix M.

PV + BESS OPTIMISATION06
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Figure 78: A) Bar Distribution of the NPVs for the model evaluation Figure 78: B) Bar Distribution of the NPVs for the base-policy

Figure 78: C) Box Plot of the NPVs for the model evaluation Figure 78: D) Box Plot of the NPVs for the base-policy evaluation

This chapter concentrates on optimizing a battery energy 
storage system integrated with rooftop photovoltaic 
panels. The methodology parallels that of the previous 
chapter, encompassing stochastic scenario generation, 
electricity tariffs, financial and environmental variables, 
household loads, and the reward function. It has been 
expanded to include critical variables related to the 
operation and installation of a BESS, featuring the 
development of a novel BESS operation algorithm based 
on Reinforcement Learning.

Similar to the findings in the previous chapter, the results 
here are predominantly positive, with the trained model 
consistently surpassing the base policy. This chapter 

reinforces two primary conclusions drawn in Chapter 5:

1.  A simplified action space results in superior 
performance compared to a complex action space.

2.     As roof size increases, allowing for a broader range 
of panel configurations, and as the budget is reduced, the 
trained model increasingly surpasses the performance of 
the base policy.

Furthermore, a third conclusion is articulated:

3.     Integrating the BESS as a second optimization variable 
alongside the PV array enhances the model’s performance 
relative to the base policy.

6.10 Conclusion
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- Achieved 
NPV

Model 
Evaluation 30 331

Base Policy 26 342

PV + BESS OPTIMISATION06

Figure 79: Comprahensive plot of a selected 
episode 
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07. Deployment
7.1 Deployment Posibilities
7.2  Reccomender System
7.3  User Interface

Figure 80: Deployment - Chapter Flowchart
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Figure 81 presents an overview of potential deployment 
options for the RL models developed in this study. In 
general, the model's utility can be categorized into two 
main applications: it can either recommend the optimal 
action at any given time or provide foundation for 
scenario analysis. 

Recommendations

This former option forms the basis for the recommender 
system development described in the subsequent 
section. The guidance provided by the RS can be either 
provided on an ad-hoc basis, requested periodically, or 
offered cyclically. It could also consist of a series of future 
recommendations based on both current and potential 
future states supplying the customers with flexible and 
responsive strategies. This can be effectively utilized by 
individual homeowners seeking to install or upgrade 
their home energy systems, small communities planning 
to deploy shared Distributed Energy Resources (DERs) 
like BESS, or companies leasing out their systems to 
individual users.

Moreover, when considering other factors such as 
electricity grid constraints (e.g., overvoltage, thermal 
limits) and spatial GIS data, the developed framework 
could be applied by municipalities and/or grid operators 

to assess the installation of larger-scale DERs in 
neighborhood or district-level low-voltage networks.

Scenario Analysis

An alternative implementation of the trained model 
could be to use it for a quantitative analysis to assess 
the value of different strategies under uncertainty. The 
model could aid in exploring and evaluating the evolution 
scenarios of influencing factors over time. This capability 
would be beneficial for residential customers, enabling 
them to manage their resources more effectively by 
leveraging their knowledge and best judgment on the 
future states of variables.
 
More realistically, this approach could significantly 
enhance its utility for local authorities and policy-makers 
in simulating various regulatory scenarios and market 
conditions to assess their influence on PV and BESS 
adoption rates and overall grid stability. Integrating RL 
models into Agent-Based Modeling (ABM) (Lee and Hong, 
2019) frameworks, where each agent adheres to specific 
rules and interacts with others and the environment, 
allows for modeling adoption and usage patterns of 
these technologies among residential users. RL models 
empower agents to learn and adjust their strategies 
based on experience, environmental factors, and financial 
incentives. This also could be helpful for grid operators, 
allowing them to predict future energy demand patterns, 

DEPLOYMENT07

7.1 Deployment Posibilities

Figure 81: Deployment Options Diagram
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peak load times, and the potential need for grid upgrades 
or expansions. 

The model can also be used to evaluate the general 
trends in the relevant factor's evolution and their impact 
on the optimal planning. More generalised scenarios for 
the electricity price or module CAPEX can be developed 
(ex. baseline, low, high) and then used for comparative 
analysis to identify trends, opportunities, and risks.

Furthermore, the framework can be useful for Real 
Option Valuation (ROV), which is a financial methodology 
that evaluates investment opportunities considering 
the flexibility to make future decisions based on how 
uncertainties unfold (Penizotto et. al, 2019).

It proves especially valuable for investments 
characterized by substantial uncertainty, such as DERs. 
These investments often involve partial or complete 
irreversibility, allowing for flexibility in project execution 
decisions and the potential to gather new information on 
critical variable developments over time. Wtihin ROV one 
can decide whether to install additional capacity, delay 
the decision, or alter the scale of installation (Andreolli, 
D’Alpaos and Moretto, 2021). This would further require 
to identify different options as well as valuating them 
against a base scenario. RL model can then calculate the 
payoffs of exercising different real options.

The final phase of the proposed workflow involves 
developing a front-end recommendation system for the 
model. This system serves as a demonstrative interface, 
which could be integrated into an actual PV monitoring 
system. The main goal of the interface is to inform the 
end-user about the most - optimal range of actions to 
their PV system at a given time. The RS could be employed 
on both 

Figure 82 gives an overview of reccomender system 
operation.

The software’s API would automatically collect all 
necessary information for determining actions, including 
current energy prices, PV modules, and battery energy 
storage systems. The API would scan current offers 
for system components from retailers, installers, and 
manufacturers. Additionally, it would gather data 
regarding the current state, size, and installation locations 
of the existing devices from the monitoring systems or 
IoT devices for the PV array and battery storage to make 
real-time decisions .

DEPLOYMENT07

Regarding the described fundamental disctinction 
between deployment methods given in 2.5.1. This RS 
can be both implemented offline - meaning that the 
recomendations would be given periodically to the user 
ex. as a “newsletter” sent them via email or displayed  
within the monitoring system

The RS gives post-hoc local interpretations to the 
suggestions given by the model. The interface should 
not only elaborate on the rationales behind the 
recommendations but also provide a thourough feedback 
to the user regarding their decision to accept or reject 
these recommendations. 
The explanations provided for each aspect should be 
comprehensive and supported by external sources, 
particularly since the model influences significant 
financial decisions for households. Additionally, the UI 
should include a detailed overview of the model's training 
methodology, ensuring transparency and understanding. 

Under this deployment strategy the model would be first 
trained once the reccomender system is first initiated by 
the user and then periodically retrained with new data 
to refine its predictions and adapt to changing market 
conditions.

The demonstrative video of the UI can be seen 
under the following link: https://www.youtube.com/
watch?v=CbG2Y-1GYr0.

The developed interface is divided into 6 stages:

0. Introduction Page (fig. 83) Provides the user with 
an overview of the tool, detailing its scope of use, 
advantages, and limitations. It also explains the underlying 
technology and the factors considered in generating its 
recommendations. 

1. System Info (Appendix N). The interface necessitates 
information regarding the current setup, including 
consumption details, roof geometry, and the type of 
electricity tariff. This information can be entered manually 
by the user, imported from other home energy system 
design tools, or retrieved from the monitoring software 
of an existing system.

2. Recommendation Scope (fig. 84) - The user can define 
the scope of the optimization, the goal—whether to 
maximize both financial and environmental returns 
or to focus exclusively on one of these aspects—the 

7.3 User Interface (UI)

7.2 Reccomender System
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Figure 82: Model Deployment Flowchart
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maximum budget, and the recommended system 
type. Consequently, distinct models, each trained on 
different reward functions, are required to support this 
functionality within the UI.

3. Performance Overview (fig. 86, 87, Appendix N) – 
To enhance user comprehension of the forthcoming 
advice, the user interface presents an overview of the 
system's effectiveness, incorporating relevant data on its 
financial and environmental performance, as well as the 
contributions of each component. 

4. Recommendation (fig. ,  Appendix N) – The 
recommendations are presented as the most confident 
option, alongside other viable alternatives (n-best 
alternative actions). In contrast to the deployment 
methods described in section 2.3.1, this is an online 
recommendation provided upon user request. Each 
advice includes relevant data on benefits and costs, as 
well as charts to effectively communicate the potential 
impact. Users can also see how varying budgets affect the 
model’s output. Additionally, users can determine their 
eligibility for a loan to cover installation costs and browse 
best sale and loan offers for each recommendation.  

Figure 83: Reinforce Ray's UI Starting Page
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Figure 84: Reccomendation Scope Selection Page

DEPLOYMENT07

Figure 85: Performance overview page, other tabs of this page are shown in Appendix N
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5. Planning Schedule (fig. 88 , Appendix N) To enable users 
to distribute costs over time and plan their expenses 
more precisely, they can enroll in a customizable upgrade 

DEPLOYMENT07
plan. This process is executed in several sequential steps, 
with the system notifying users when to complete each 
one within the responsive strategy.

Figure 86: One-off recoemmendation for a budget-constraint, non loan eligible and PV only scope, secondary recommendations from the bottom of the figure, 
included in Appendix N
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Figure 87: One-off recoemmendation for a budget-constraint, loan eligible and PV + BESS scope
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Figure 88: Planning Schedule page - sequential reccommendation presented to the user, continuation in Appendix N

DEPLOYMENT07
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08. Conclusion
8.1 Conclusion
8.2  Discussion
8.3 Further Reaserch Recomendations
8.4 Reflection
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8.1 Conclusion

CONCLUSION08

This graduation project focused on developing a 
computational workflow using reinforcement learning for 
the optimal planning of residential PV and BESS systems. 
It aimed to navigate future uncertainties effectively by 
integrating and evaluating a trained RL model within 
a recommendation system. This system is designed 
to support stakeholders in making informed decisions 
regarding investments in solar power and energy storage. 

The aim of this thesis was to answer the following 
research question:

How can reinforcement learning based recommendation 
workflow be used for long-term planning and design 
of residential grid-connected PV and BESS under the 
uncertainty of future scenarios? 

In order to address the primary research question, several 
secondary questions were formulated, the answers to 
which are shortly refered to below.

How does the residential grid-tied photovoltaic system 
with BESS operate?

A residential grid-tied PV system with a BESS operates by 
generating electricity through solar panels during periods 
of sunlight. The solar panels, composed of photovoltaic 
cells typically made from various types of silicon, convert 
sunlight into DC electricity. This DC output is then 
converted into AC by an inverter, synchronizing it with 
the grid’s voltage, frequency, and phase requirements. 
Excess electricity produced that is not immediately used 
by the household can be fed back into the utility grid. This 
process is facilitated by metering devices that record the 
amount of electricity redistributed to the grid. 

Here, energy storage is often incorporated, predominantly 
using lithium-ion batteries due to their high energy 
density and longer lifespan. These systems can either 
be AC-coupled, involving multiple conversions between 
AC and DC which may lead to efficiency losses, or DC-
coupled, which connects the solar panels directly to the 
batteries.

The setup sellected for the optimisation involves several 
different households, PV modules in different crystaline 
technologies and market ranges, microinverters and DC 
coupled BESS.

Which variables to include in the optimisation process?

The variables to include in this process should comprise 
both financial and environmental factors to evaluate their 
long-term economic efficiency and sustainability. Critical 
variables include:

• Energy Balance (building load profiles)
• Environmental Factors (solar radiation, shading, 

soiling, wind speed, ambient temperature, tilt angle 
and orientation)

• PV Related Factors (4 parameters, cabling and 
inverter losses)

• Financial Variables (PV module and BESS CAPEX 
(in eur/Wp), electricity tariff and its structure, ne-
metering or feed-in-tariff, operational expenditures, 
replacement and installation costs, inverter and 
balance of system costs, resale revenue, inflation and 
loan interest rates)

• Environmental Variables (the grid emission factor 
and carbon enbodied in the materials, transport 
and manufacturing of the main systems and their 
secondary components)

• Improvement of the PV crystaline cell technology
• BESS and PV degradatrion and failure over time.

How can we evaluate the economic profitability and 
environmental benefits of rooftop PV systems and 
residential BESS?

The economic profitability and environmental benefits of 
rooftop PV systems and residential BESS can be evaluated 
using various optimization algorithms that focus on 
objective functions such as Net Present Value and 
Internal Rate of Return. NPV calculates the total value 
of the system, incorporating all electricity cost savings 
and subtracting the initial investment costs. This was 
used for the evaluation of the results and testing of the 
trained reinfircement learning models. This evaluation 
necessitates the inclusion of the relevant variables 
described in the previous section. in their complexity. 
To evaluate the environmental benefit the Net Carbon 
Savings was used. 

What constitutes the most appropriate model for 
forecasting the electricity yield of photovoltaic systems?

The most appropriate model for forecasting the electricity 
yield of photovoltaic systems, as identified through 
comprehensive literature analysis, is the single-diode model. 
This model, characterized by its use of a four-parameter 
equivalent circuit, provides an accurate approximation of 
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PV performance under various conditions of irradiance 
and temperature. By modeling the electrical behavior of 
a photovoltaic cell through its current-voltage relationship 
and capturing key parameters such as light-generated 
current, diode saturation current, and series and shunt 
resistances, the single-diode model effectively reflects 
the intricate dynamics of a PV cell. This robust modeling 
approach is especially valuable for applications requiring 
precise electrical output predictions, thereby supporting 
informed decision-making in solar PV system installations. 

What constitutes the most appropriate model for 
simulating the operation of a home BESS?

The most appropriate model for simulating the 
operation of a home BESS integrates various aspects 
including battery chemistry, operational management, 
and system degradation. Considering the complexities 
of battery operation, which involve factors such as 
depth of discharge, state of charge, power rating, and 
round-trip efficiency, a realistic simulation requires a 
nuanced approach. This selected model uses a linear 
approximation to predict the changes in the energy 
content of a lithium-ion battery, factoring in efficiency 
losses due to inverter operation, leakage, and charging 
and discharging processes. Additionally, a novel RL based 
approach was developed to realistically simulate the 
operation of the battery. This method was benchmarked 
against a simpler rule-based strategy to evaluate its 
effectiveness.

How to generate future scenarios of the identified  
optimisation variables for model training? 

A plethora of probabilistic and stochastic processes was 
utilized to simulate all relevant variables. These approaches 
were selected based on their applicability to the use case, 
as well as extensive literature review, feasibility within the 
frame of this thesis project, data availability, testing, and 
experiments. The methodologies employed are grounded 
in probability theorems and stochastic differential calculus.

Which reinforcement learning algorithm and in what 
configuration is most suitable for this problem? 

The field of RL was extensively explored, including various 
types and variants of RL algorithms and their applications. 
Based on criteria such as robustness and stability, 
scalability, multi-objective optimization capability, and 
learning from limited resources, two algorithms, DQN)and 
PPO, were initially selected for evaluation. However, initial 
testing revealed that DQN was incompatible with the multi-
discrete action space used in the environment, leading 

CONCLUSION08
to its replacement with Advantage Actor-Critic (A2C). 
Subsequent evaluations determined that PPO achieved 
better convergence than A2C. The hyperparameters and 
policy networks of PPO were finely tuned using both a 
specialised library and manual adjustments, and their 
performance was systematically evaluated.

What kind of action, observation spaces and reward 
function to consider?

RL training and evaluation environments were constructed 
using the OpenAI Gym framework. The observation (state) 
space was defined as a box space, consisting of a number 
of floating-point numbers that varied depending on the 
scenario. These included data pertaining to the state of 
each PV panel and the battery, identifying integers for PV 
panels, as well as current pricing information for system 
components, electricity, budget, interest rates, and 
expenditures.

The reward function for financial optimization incorporated 
relevant expenditures and profits derived from the system 
installation, including a penalty for exceeding the budget. 
Conversely, the reward function for environmental 
optimization factored in net carbon savings achieved by the 
system.

Two multi-discrete action spaces were assessed: one 
in which the agent made decisions separately for each 
panel and another where decisions were made for the 
entire system collectively. The latter option demonstrated 
superior performance.

How to deploy the trained model and how could it be 
used by the end user?

The proposed workflow  involves creating a recommendation 
system, with a UI designed to provide real-time, optimal 
actions for PV system users. This system will collect data via 
an API on current energy prices and system components, 
and can operate both offline (providing periodic advice) and 
online (offering immediate recommendations). The system 
explains the reasoning behind its suggestions through the 
UI, assess their financial and environmental impacts, and 
allow users to customize their optimization preferences. To 
ensure relevance and accuracy, the model can be initially 
trained and periodically retrained with updated data, 
facilitating informed decisions in a dynamically changing 
market.
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To answer the main research question an experimental 
workflow was formulated involving 4 phases:

1. Simplified toy problem, a testing and learning ground 
for the selected approach,

2. PV system optimisation encompassing all variables in 
their complexity,

3. PV and BESS  optimization employing a methodology 
that builds on the previous step,

4. Demostrative deployment and UX formulation.

The computational workflow encompassed the integration 
of probabilistic and stochastic processes for simulating the 
uncertainties inherent in relevant variables, formulation 
of the problem as a MDP for sequential decision-making 
across 25 equal timesteps, and construction of a RL 
environment. This was followed by testing, evaluation, and 
refinement of the selected RL algorithm. The workflow was 
tested across a multitude of scenarios and variants, which 
included different environmental conditions, building 
loads, and types of technology involved. It was then 
evaluated against the base policy and various action space 
configurations. The plan for the trained and evaluated 
model integration was formulated into a user interactive 
test deployment.

Overall, it can be concluded that reinforcement learning is 
a viable option for the planning and design of residential 
grid-connected PV and BES systems. Furthermore, 
following the results from Chapters 4 and 5, it can be 
concluded that as the complexity of the environment 
increases—characterized by a greater number of 
optimization variables such as the number of panels, 
the presence of a BESS, and budgetary constraints—the 
performance of the model improves relative to the base 
policy. This finding presents a promising avenue for further 
research, which is discussed in the subsequent section.

CONCLUSION08
8.2 Discussion
8.2.1 Alternative Computational Approaches

This thesis project proves that RL is a suitable approach for 
the problem at hand. Yet RL comes with several barriers 
and shortcomings: it requires extensive training and large 
amounts of data, which can be resource-intensive and 
time-consuming. Additionally, the complexity of designing 
appropriate reward functions and ensuring convergence 
to optimal policies can pose significant challenges. 
Furthermore, real-world deployment of RL models may 
face practical limitations, such as integration with existing 
systems and the need for ongoing maintenance and 
updates to adapt to changing conditions.

Traditional optimization techniques, such as Linear 
Programming and Mixed-Integer Linear Programming, 
are often used for municipal-scale planning of rooftop PV 
deployment. These methods rely on static models with 
fixed parameters, making them suitable for deterministic 
optimization. However, they may not adequately handle the 
uncertainties and dynamic changes inherent in long-term 
planning for renewable energy systems. Implementing LP 
or MILP for this problem would involve setting up a static 
model with predetermined parameters and constraints, 
which may not adapt well to long-term variations and 
uncertainties in the system.

Heuristic methods like Genetic Algorithms and Particle 
Swarm Optimization have also been applied to optimize PV 
and BESS systems. These methods explore a large solution 
space and can be effective for specific optimization 
problems. However, they might not balance exploration 
and exploitation as effectively as RL algorithms. They often 
require manual tuning and may not perform well in highly 
dynamic scenarios. Implementing GA or PSO would involve 
defining a fitness function to evaluate solutions, running 
multiple iterations to evolve the population of solutions, 
and selecting the best-performing ones

Model-based approaches, such as Dynamic Programming 
and Model Predictive Control, require accurate models 
of the environment to predict future states and optimize 
actions accordingly. This dependency on precise models 
can be a limitation when the environmental model is 
complex or not well-defined. Moreover, model-based 
methods can become computationally expensive as the 
state and action spaces grow. Implementing DP or MPC 
would necessitate developing precise models of the PV 
and BESS systems, forecasting future states, and solving 
optimization problems at each time step, which could be 
computationally intensive and less adaptable to changes.
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8.2.2 Assumptions and Limitations

The observation (state) space within the einvironemnt 
are  always fully observable. This means that at any time 
step, the agent can observe all the relevant variables 
and parameters that define the state. In contrast, in a 
partially observable state space, the agent merely receives 
observations that provide incomplete or noisy information 
about the true state, requiring it to infer the underlying 
state from these observations to make informed decisions.
In practice, for example the current values of the BESS 
and PV degradation might not be explicitly available and 
supplied to the agent in its current forms. 

The optimisation does not consider varying shading 
conditions or climate change impact on the solar 
radiation or cell temperature. The electricity production 
or degradation resulting from shading could be further 
implemented into the partially observable action space. 

Analysed houses' consumption profiles are assumed to 
remain static over the optimisation period. However a 
more comprahensive optimisation could consider evolving 
consumption patterns or future retrofitting posibilites.

Furthermore, only the time-of-use electricity tariff type is 
taken into account. Ideally dynamic pricing should also be 
examined. 

The utility grid carbon emissions are asumed to evolve 
according to the long-term decarbonisation plans set out 
by the relevant authorities in the Netherlands. Moreover, 
the simulations and stochastic scenario generations in this 
project have been conducted under the presupposition 
that climate change will not lead to extensive disruptions 
of the electricity grid and renewable energy supply chains. 

Furthermore, it is assumed that the single-phase 
microinverters considered are optimally connected to 
each phase within a house at all times. Potential impact of 
the optimisation outcomes on the electricity grid are not 
taken into account. 

The following section describes the possible paths for 
further research. 

 1. Benchmark Against Other Computational  
      Approaches

This work is limited by its lack of comparative analysis 

CONSLUSION08
essential to benchmark it against traditional optimization 
techniques like LP (Fan & Xia, 2017), MILP (Ren et al., 
2023), GA, PSO, DP, MPC or a more sophisticated rule-
based method under similar conditions.

 2.  Evaluate the Approach on Different Typologies

This thesis project is limited to single-family houses. It 
would be beneficial to evaluate the approach across various 
building typologies, such as public buildings or multi-family 
residences. Additionally, this approach could be further 
explored in a solar microgrid scenario, which consists of 
multiple prosumers with varying demands and production 
capacities (Khanal et al., 2023). This system based on 
energy sharing, could operate either independently or in 
conjunction with the main power grid.

 3.  Incorporate Other Objectives

Additionally, other objectives could be incorporated into 
the optimization framework, such as grid independence 
or coordination with the grid to avoid overloading it. 
Nuaturally, the environmental evaluation of the PV+BESS 
setup should be also conducted. 

 4.  Incorporate Inverters into Optimisation

Inverters are not considered as an optimization variable in 
this study; however, they are a crucial component of the 
entire system. Different inverter configurations—such as 
string, micro, or DC-module inverters—along with their 
respective sizes, costs, and efficiencies, should be evaluated 
for their impact on the overall system performance.

 5.  Broaden the Optimisation Scope

Other devices integral to a home energy and heating 
system can be incorporated into the optimization, such as 
heat pumps, HVAC components, or high-energy-consuming 
household devices like refrigerators and other kitchen 
equipment. Additionally more PV specified equpiment can 
be considered such as presence of tracker systems.

More importantly, however, the optimisation should include 
other inverter options than the considered microinverters. 
Today still string inverters are most common technology on 
the residential market. Ideally, the model should be able 
to benchmark different array and inverter configuations 
against each other. 

 6.  Make the Reccomendation Interactive

In its current state, the recommendation workflow does 

8.3 Further Research Recomendations
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 1.  How is your graduation topic positioned   
 within the Building Technology studio?

The MSc AUBS program, among other areas, emphasizes 
innovation in architectural engineering. It adopts a 
multidisciplinary approach, encouraging students to delve 
into topics that bridge various fields. This project is closely 
aligned with the Building Technology Master track as it 
concentrates on integrating renewable energy sources into 
buildings and employs advanced computational tools for 
multi-objective decision-making.

Photovoltaic technology combined with Battery Energy 
Storage Systems BESS represents the future of building-
integrated energy systems, transforming homeowners into 
active participants within the electricity grid. This area of 
study falls under the Building Energy Epidemiology chair at 
the Architectural Engineering and Technology department, 
which focuses on developing methods for diagnosing, 
optimizing, and predicting the operational performance of 
energy systems.

Additionally, this thesis centers on developing an innovative 
computational tool that aids end-user decision-making. 
This development is rooted in cutting-edge computational 
technology, specifically reinforcement learning, a branch 
of artificial intelligence. Therefore, this project aligns well 
with the Design Informatics chair.

 2. How did the research approach influence      
 your design/recommendations?

The research initially established a robust theoretical 
foundation in areas such as machine learning, stochastic 
and probabilistic processes, photovoltaic and battery 
system modeling, and reinforcement learning-based 
recommender systems. The literature review effectively 
demonstrated how one research field naturally progressed 
to another. For instance, the modeling of photovoltaic 
panels and Battery Energy Storage Systems was significantly 
influenced by an initial analysis of residential grid-
connected photovoltaic and battery systems, as well as the 
identification of factors influencing decision-making. These 
topics also contributed to the fosus of the examination of 
the literature about creating stochastic scenarios along 
with the study of reinforcement learning.

Following the literature review, an initial experimental 
approach was developed, tested, and evaluated through 
a stepwise iterative process. This method of research 
through experimentation provided valuable insights, 
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8.4 Reflectionnot incorporate user feedback into the recommendations 
provided. The model could be enhanced to include a 
mechanism that learns and adapts the policy based on user 
responses to the recommendations. This adaptation could 
potentially improve the relevance and effectiveness of the 
system by aligning more closely with user preferences and 
requirements over time

 7. Evaluate on a Real Scenario

As emphasized throughout this thesis, the developed 
approach was exclusively validated on synthetic data using 
the same methodology employed for training. It would be 
highly beneficial to validate it in a separate computational 
environment or through real-world implementation.

 8. Test Different Algorythms 

In this thesis projects three RL algorithms were tested 
and evaluated: A2C, DQN and PPO. Based on the available 
literature, however other algorithms might yeild better 
results and should be tested, ex Asynchronous Proximal 
Policy Optimization (APPO) or Soft Actor Critic (SAC).

Additionally multi-agent RL should be tested and 
evaluated, especially within the microgrid scenario with 
multiple prosumers at stake within the system. 

 9. Reevaluate Propabilities 

All stochastic and probabilistic processes used for the 
simulation of scenarios across multiple variables should be 
reevaluated for their suitability. If necessary, they should 
be reconsidered and replaced with alternative methods.

 10. Generalise across Different Environments  

Currently, each use-case necessitates distinct training, 
as the models are specific to the environment, which 
encompasses factors such as the building’s electricity 
load, roof shape, tilt, and orientation. Ideally the model 
included in the final tool should be exposed to extensive 
datasets, enabling it to generalize across different use-
cases without requiring training for each individual case. 
The model could be trained on a dataset of household 
consumption patterns, or if one is not available  a 
synthetic dataset generated using techniques such as 
bootstrapping and adding noise or generative adversarial 
networks (GANs). Alternatively the consumption profiles 
can be also clustered for different typology types using 
Markov Chains (MCs) combined with fuzzy c-means and 
Self-Organizing Maps (SOMs) (Morales et al., 2024).
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home energy systems. Despite the complexity and 
interdisciplinary nature of this work, the results have 
surpassed the initial expectations. The primary objective 
of developing a computational workflow centered 
around a trained and evaluated reinforcement learning 
model was successfully achieved.

 5. What moral or ethical issues did you   
 encounter during the process? 

With the rapid technological advancements in the 
fields of AI and machine learning over the past decade, 
particularly in generative AI, moral concerns have arisen 
regarding how AI might affect the roles of architects and 
engineers in the future. This thesis project’s potential 
implementation could conflict with the interests of 
specialists, engineers, and businesses involved in home 
microgrid system design.

Furthermore, the anonymity of the building electricity 
loads dataset presented challenges by limiting the 
available information for the study. Notably, the dataset 
excluded details such as roof shape, orientation, or tilt 
to protect residents’ privacy. To address this issue, these 
parameters were simulated based on the study of typical 
configurations and to test the developed approach across 
a variety of environments.

 6. What is the impact of your project on  
 sustainable development?

Sustainability was the primary motivator for initiating 
this project. As government institutions across Europe, 
both national and transnational, strive to decarbonize 
electricity grids by setting short-term and long-term 
carbon emission targets, this thesis could become a 
component of the broader strategy in planning and 
assessing the feasibility of renewable energy sources, 
such as PV and BESS, on local scales. This includes 
integration into home energy systems and microgrids, 
assisting stakeholders in transitioning from grid 
consumers to active prosumers who manage their own 
energy sources.

 7. What is the socio-cultural and ethical impact?

One of the main goals of this thesis was to empower 
various stakeholders to make more informed decision 
about their building integrated energy systems. On the 
societal front, the research directly addresses the need 
for more efficient and environmentally friendly energy 
solutions at the household level. The development of a 
robust RL-based framework provides homeowners with 
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particularly concerning the main focus of the study: how 
reinforcement learning can be applied to the long-term 
planning and design of residential grid-connected PV and 
BESS in the face of uncertain future scenarios.

The detailed analysis of data, particularly the evaluation 
of model results and the capacity to identify opportunities 
within the data while systematically eliminating noise, are 
key strengths of the research methodology used in this 
study. This meticulous approach to data analysis ensured 
that the research findings were robust and of significant 
value.

 3. How do you assess the chosen approach and  
 methodology? 

Each domain explored in this research presented 
unique challenges and complexities, yet all were crucial 
to the overarching goal of developing an informed 
computational decision-making tool for the adoption and 
development of sustainable home energy systems. To the 
best of the authors’ knowledge, no similar study has been 
conducted to date, making it difficult to identify areas for 
potential improvement in the developed methodology. 
Despite covering advanced topics, that exceeded author’s 
expertise in mathematics, computational science, 
and electrical engineering, access to numerous online 
tutorials and specialized Python libraries significantly 
facilitated the research; resources that were not available 
just a few years ago.

The research methodology, initially developed with 
an awareness of various obstacles and constraints—
technical, logistical, temporal, and those related to the 
author’s skills and experience—was initially deemed too 
conservative. It was later expanded to include BESS into 
optimisation.

While each explored area provided valuable insights, 
they also highlighted numerous opportunities for 
further research. This study would stronlgy benefit 
from benchmarking the reinforcement learning-based 
approach against other computational methodologies, 
such as linear or dynamic programming. Moreover, the 
feasibility of the optimized solutions should be evaluated 
in a separate, preferably real-life based environment.

 4. How did the research approach work out   
 and did it lead to the results you aimed for?

The findings of this research are promising, indicating that 
AI can effectively assist in decision-making for optimizing 
the type, sizing, and to a certain degree operation of 
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a clear strategy to optimize their energy costs and reduce 
their carbon footprint. The outcomes of this research 
could potentially lower the barriers to the adoption of PV 
and BESS by demystifying the economic and ecological 
trade-offs involved and by establishing a planning 
schedule. Furthermore, this project contributes to overall 
risk mitigation by enhancing the reliability and resilience 
of energy systems in residential settings.

 8. How do you assess the academic value of 
 your graduation?

From a scientific perspective, this project contributes 
to the field of applied energy informatics, home energy 
management systems, building energy epidemiology 
and design informatics by demonstrating how advanced 
computational techniques can solve real-world 
energy management challenges. It explores dynamic 
optimization and real-options approaches, which consider 
uncertainties in long-term energy planning. 

 9. How does this approach relate to the larger  
 context of innovation within the broader  
 industry? 

Recent developments in natural language-based machine 
learning models, such as ChatGPT, offer potential 
synergies for decision-making tools. Traditionally, these 
tools provide static, text-based information. A more 
collaborative, interactive approach could allow decision-
makers to query solutions and engage actively with the 
tool, enhancing their learning process. This shift might 
also redefine the role of experts as facilitators in decision-
making. Moreover, integrating these tools with a broader 
network of data-driven insights in the built environment, 
such as the extensive geospatial data available in the 
Netherlands, could streamline the use of precise and 
detailed building data in sustainability decisions.

Moreover, as computational tools increasingly integrate 
into the built environment, particularly in decision-making 
and design assistance, tools like Grasshopper are utilized 
for climate and structural design optimizations. Adopting 
AI-based approaches could represent an advancement 
over current parametric methods.

Finally, the trained model can be effectively used in 
industry for strategic investment decisions PV and 
BESS. The integration of real options planning with 
this computational approach allows for the valuation 
of flexibility in investment decisions, acknowledging 
the right but not the obligation to pursue or defer 
certain investments based on evolving conditions. This 

methodology not only quantifies the financial benefits 
of strategic flexibility but also enhances the capability to 
manage risk more effectively in the face of uncertainty.

 10. How do you assess the value of the   
  transferability of your project results?

The concept of transferability and scalability is crucial for 
this thesis topic. This research aimed to create a scalable 
decision-making tool that assists homeowners and other 
relevant stakeholders in transitioning to sustainable 
electricity production and storage. The tool, developed 
on top of a computational workflow, utilizes the existing 
system monitoring setup integrated into the PV + BESS 
system. It is designed to suggest the most optimal actions 
to users sequentially, providing the necessary financial 
and environmental context for a given recommendation 
along with the best market offers that correspond with 
it.

 11. What are the potential challenges limiting  
 the use of the applied methodology in practice?

Currently, each use-case necessitates distinct training, 
as the models are specific to the environment, which 
encompasses factors such as the building’s electricity 
load, roof shape, tilt, and orientation. Ideally, a pre-
trained RL model would be incorporated into the final 
tool. This model would be trained on extensive datasets, 
enabling it to generalize across different use-cases 
without requiring training for each individual case.

Additionally, in its current state, the recommendation 
workflow does not incorporate user feedback into the 
recommendations provided. The model could be enhanced 
to include a mechanism that learns and adapts the policy 
based on user responses to the recommendations. This 
adaptation could potentially improve the relevance and 
effectiveness of the system by aligning more closely with 
user preferences and requirements over time.

Another notable limitation is that the system mandates 
the use of a specific microinverter technology, which is 
less prevalent in the market compared to conventional 
string inverters. Another limitation is that the optimisation 
is configured under the time-of-use electricity tariff only. 

CONCLUSION08
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APPENDIX A
IL is approximated by the short-circuit current (IL,STC) 
provided by the manufacturer under STC obtained from 
the following equation (Shongwe and Hanif, 2015): 

where: 
G is the ratio of the irradiance with respect to STC value 
equal to 1 kW/m2,
Ki is the temperature coefficient for current,
ΔT is the temperature difference Tambient− Tc,STC,

I0 requires knowledge of the cell temperature and the 
material properties of the PV cell. It can be calculated as 
(Theristis et al., 2018, pp. 671–706):

where: 
Cs is the material specific constant that includes the 
properties of a semiconductor
TC is absolute temperature of the PV cell in Kelvin,
EG is the bandgap energy of the semiconductor material 
used in the PV cell.

Rs can be estimated based on based on the module's 
open-circuit voltage (Vmp) and short-circuit current (IL). 
Rsh is calculated from the I-V curve at very low currents. 
The equations for calculating Rs and Rsh can be found in 
Shongwe and Hanif p. 940 (2015).

n must be determined through testing, common 
assumption is between 1 and 2. 

APPENDIX B

Vth is given by the formula:

k is the Boltzmann constant  (1.380649×10-23  J/K),
T is the absolute temperature of the p-n junction in Kelvin 
(K),
q is the elementary charge (1.602176634×10-19 C)

For the toy problem, the average hourly electricity yield of 
the house, as documented by Wahi (2023), was utilized. 
This data was then manually adjusted to align with the 
daily average normalized fluctuations of household 
electricity demand for the typical Dutch household, 
according to the study by Klaassen, Frunt, and Slootweg 
(2015). It is shown in figure 31.

The historical prices per kilowatt-hour (eur/kWh) have 
been compiled from a dataset representing a single-family 
household in Tilburg, covering the period from 1985 to 
2018 (Verhoeven, 2022). For the years 2019 to 2023, the 
data has been supplemented with the average annual 
consumer energy tariffs as published by the National 
Service for Entrepreneurship, Netherlands (Rijksdienst 
voor Ondernemend Nederland, 2024)(fig. xx).

APPENDIX C

Figure 89: Daily Concumption profile used for the toy problem
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The historical emissions (kg CO2 eq.) per kWh from 2015 
to 2023 (Statistics Netherlands, 2023) are compiled with 
predicted emissions based on  the Dutch Environmental 
decarbonisation goals until 2050 (Enerdata, 2024) (fig. 
34).

The dataset is based from PV power plants based in the 
US. Figure xx depicts the mentioned temperature zones. 

Literature claims that monocrystalline solar panels 
are expected to last 30 to 35 years (Kumar and Sarkar, 
2013), hence 30 is assumed for the budget panel. On 
the other hand, SunPower claims that 70% their panels 
stay operational in the 40th year since installation. 
Hence the parameter phi is conservatively assumed as 
50.  Furthermore for the used polycristaline panel, the 

APPENDIX D

Figure 92: kg CO2 eq. per Wh of Electricity in the Netherlands

APPENDIX E

Figure 93: US PV temperature zones fir each sustem in the database (National 
Renewable Energy Laboratory, 2022)

APPENDIX F

longevity of which rarely exceeds 25 years (Gyamfi et 
al., 2023), asuming that it has been exploited in normal 
conditions for several years, the remaining lifetime is set 
to 15. The reliability of the microinverters is not taken 
into account, literature claims that their survival usually 
far exceeds the 25 year period considered in this study 
(Afridi et al., 2023).

Figure 90: Historial Annual Electricity Tariffs
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APPENDIX G

where: 
C(t) is the annual expenditure
B(t) is the annual budget
LoanTerm is the repayment period in years.

The interest rate is assumed remain constant throughout 
the repayment period.

Pmax A Ns Isc Voc Imp Vmp αsc βoc aref IL Io Rs Rsh γr

436
Wp

1.87
m2 66 11.57 

A 48.2 V 10.82 
A 40.3 V 0.0048 -0.113 1.642 11.59 2.03e-11 0.245 138.4 -0.276

Vac Pso Pdco Paco Vdco C0 C1 C2 C3 Pnt Vdc(max) Idc(max)

240
V 1.3 349 322.9 60 -0.0...27 -0.0...25 -0.0029 -0.0377 0.021 43  5.3828

Pmax A Ns Isc Voc Imp Vmp αsc βoc aref IL Io Rs Rsh γr

265
Wp

1.6
m2 60 9.07 A 38.3 V 8.39A 31.6 V 0.0045 -0.126 1.593 9.085 3.22e-10 0.229 130.1 -0.43

Pmax A Ns Isc Voc Imp Vmp αsc βoc aref IL Io Rs Rsh γr

415
Wp

1.87
m2 54 14.02 

A 37.5 V 13.13 
A 31.6 V 0.0054 -0.097 1.375 14.03 1.97e-11 0.119 104.3 -0.333

APPENDIX H

eq. xx

APPENDIX I

Figure 94: Crystalline silicon best research-cell efficiency chart
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APPENDIX J

Figure 95: CAPEX (eur/kW) of a photovoltaic module on the German market  (IRENA, 2022) (Jäger-Waldau , 2016)

Figure 96: CAPEX evolution of lithium-ion energy storages
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No of Neurons - Budget panel, 
- low budget, 
- house 2, 
- simple action

- Select panel, 
- high budget, 
- house 1, 
- complex action

Batch Size

Lr Schedule

Target Lr

Base Policy 20 695 8 190
256

17 652 4 831256
Flat

-
256

17 882 4 874256
Linear

0.00001
256

18 083 5 009512
Linear

0.00001
256

18 219 5 0031024
Linear

0.00001
512

20 109 6 641256
Linear

0.00001
512

20 816 6 967
512
Flat

-
512

21 006 7 0181024
Flat

-
512

21 041 6 9531024
Linear

0.00005
512

20 726 6 5812048
Flat

-

512

22 102 7 5421024
Exponential

0.00001
512

22 057 7 305512
Exponential

0.00001
512

22 048 7 296512
Linear

0.00001
1024

21 947 6 684256
Linear

0.00001
1024

22 212 7 461512
Linear

0.00001
1024

22 228 7 5591024
Linear

0.00001
1024

21 971 7 3922048
Linear

0.00001
1024

22 213 7 481512
Exponential

0.00001
1024

22 231 7 5161024
Exponential

0.0001
1024

21 982 7 3702048
Exponential

0.00001
1024

21 909 7 492
1024
Flat

-

APPENDIX K
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2048

22 010 7 586
1024

Linear

0.00001

2048

21 910 7 399
2048

Linear

0.00001

2048

22 109 7 562
1024

Flat

-

2048

22 091 7 421
2048

Flat

-

2048

20 812 6 888
512

Flat

-

APPENDIX L
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APPENDIX M

Table 21: B) Evaluation Results for House 1 - mean total Interests in Euro per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action Space - Complex Simplified - Complex Simplified

Second-
Hand Panel 80 - 17 62 - 0

Budget 
Panel 186 - 104 115 - 49

Hi-End Panel 588 - 247 401 - 210

Select Panel 202 511 157 172 322 98

Table 21: C) Evaluation Results for House 1 - mean total energy produced in kWh per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action Space - Complex Simplified - Complex Simplified

Second-Hand 
Panel 80 703 - 76 425 80 703 - 80 411

Budget Panel 125 431 - 119 277 125 431 - 124 800

Hi-End Panel 133 492 - 124 145 133 492 - 127 552

Select Panel 124 836 125 585 120 049 124 836 126 084 122 090

Table 22: B) Evaluation Results for House 2 - mean total Interests in Euro per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action 
Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

213 - 44 114 - 41

Budget 
Panel 434 - 218 203 - 114

Hi-End 
Panel 993 - 404 621 - 422

Select 
Panel 471 876 352 315 489 208

Table 22: C) Evaluation Results for House 2 - mean total energy produced in kWh per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action 
Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

152 336 - 149 004 152 336 - 151 593

Budget 
Panel 236 617 - 224 419 236 617 - 230 335

Hi-End 
Panel 248 724 - 225 902 248 724 - 232 069

Select 
Panel 233 281 204 954 221 284 233 281 212 285 227 116



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski 119

Table 26: B) Evaluation Results for PV+BESS House 1 - mean total Interests in Euro per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action 
Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

520 - 113 503 - 84

Budget 
Panel 578 - 261 410 - 165

Hi-End 
Panel 1 427 - 646 1 156 - 277

Select 
Panel 694 496 411 437 322 264

Table 26: C) Evaluation Results for PV+BESS House 1 - mean total energy produced in kWh per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action 
Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

80 703 - 75 896 80 703 - 78 616

Budget 
Panel 125 431 - 119 758 125 431 - 123 562

Hi-End 
Panel 133 492 - 127 040 133 492 - 128 755

Select 
Panel 124 836 124 117 118 868 124 836 124 176 120 789

Table 27: B) Evaluation Results for PV+BESS House 2 - mean total Interests in Euro per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action 
Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

639 - 265 490 - 151

Budget 
Panel 689 - 392 633 - 261

Hi-End 
Panel 1 858 - 856 1 486 - 512

Select 
Panel 965 1 411 554 781 794 331

Table 27: C) Evaluation Results for PV+BESS  House 2 - mean total energy produced in kWh per episode

Low Budget High Budget

Base Policy Model Base Policy Model

Action 
Space - Complex Simplified - Complex Simplified

Second-
Hand 
Panel

152 336 - 147 298 152 336 - 151 388

Budget 
Panel 236 617 - 219 301 236 617 - 225 300

Hi-End 
Panel 248 724 - 223 902 248 724 - 227 326

Select 
Panel 233 281 235 380 216 623 233 281 214 620 226 864



TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski120 TU Delft | BT GRADUATION STUDIO| Kuba Wyszomirski

APPENDIX N

Figure 97: System Info page of the UI

Figure 98: Manual System info input pop-up screen
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Figure 99: Performance overview - single array

Figure 100: Performance overview - single component Figure 101: Performance overview - potential of a roof plane
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Figure 102: One-off secondary recommendation for a budget-constraint, non loan eligible and PV only scope - 1

Figure 103: One-off secondary recommendation for a budget-constraint, non loan eligible and PV only scope - 2 
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Figure 104: One-off recommendation for a budget-constraint, loan eligible and PV only scope
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Figure 105: E-mail notification for the planning schedule step execution
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