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Abstract
Stochastic contextual linear bandits are widely used
for sequential decision-making across many do-
mains. However, in high-dimensional sparse set-
tings, most candidate features are irrelevant to
predicting outcomes, and collecting such data is
costly. This study examines various SCLB al-
gorithms combined with feature-selection meth-
ods using a fixed reduced dimensionality. With
a synthetic dataset exhibiting 90% feature spar-
sity, we simulated these algorithms and compared
their performance to both their base counterparts
and to one another. Our experiments demonstrate
that integrating feature selection into posterior- and
confidence-based bandits can achieve nearly iden-
tical regret while requiring only a fraction of the
data-collection cost.

1 Introduction
The bandit problem describes a sequential decision-

making model in which a learner interacts with an envi-
ronment over multiple rounds. In each round, the learner
chooses an action from an action set, and the environment
reveals a corresponding reward. The learner’s aim is to
maximize its cumulative reward by selecting the best pos-
sible action per round without any prior knowledge of the
actions’ reward distributions. In the stochastic contextual
linear bandit (SCLB) setting, the learner also observes
additional information and computes a feature vector per
action. The reward for each action is a linear function
of its feature vector and an unknown parameter vector.
When sequentially selecting actions and observing their
rewards, the learner balances exploration, selecting an action
to learn more about the parameter vector, and exploita-
tion, selecting the best possible action at that moment.
Some real-life applications include healthcare [7], recom-
mender systems [16], and dialogue systems [12]. Bouneffouf
and Rish [5] survey other practical uses of contextual bandits.

Stochastic linear bandits with high-dimensional sparse
features are a practical model for a variety of domains, such
as personalized medicine and online advertising [4]. In many
of these applications, there is a wide range of candidate
features, but only a few are relevant for predicting outcomes
[8]. In addition, a large number of samples is required to
make accurate predictions, and acquiring them can be expen-
sive. This challenge motivates the study of SCLBs within
the high-dimensional sparse regime. Prior work to exploit
sparsity in contextual bandits includes agnostic lasso bandits
[9], doubly robust estimators [10], and high-dimensional
online methods [4]. However, to the best of our knowledge,
there is no explicit effort in considering feature selection
techniques during the bandit process. To address this gap,
we propose to employ sparse regression to construct a sparse
reward estimate and embed feature selection methods within
SCLBs to exploit the feature sparsity, with the intent of
reducing data costs and speeding up learning.

In this study, we consider different SCLBs and feature se-
lection methods, whose combinations produce the algorithms
we want to empirically analyze. Specifically, we aim to an-
swer the question: How do the base bandits and combina-
tions of SCLBs and feature selection methods compare in
a high-dimensional sparse setting when constrained to a
fixed number of features? To answer this, we consider the
following sub-questions:

1. How does the average cumulative regret change as the
number of selected features and the timing of feature se-
lection vary?

2. How do the algorithms perform relative to the base
SCLBs?

3. How do the algorithms perform relative to each other?

4. How do the best average cumulative regrets of the algo-
rithms vary as the feature sparsity changes?

2 Background and Methodology
This section formally states the problem at hand, introduces
the relevant algorithms, and describes the methodology.

2.1 Problem Formalization
A stochastic contextual linear bandit (SCLB) is a sequen-

tial decision-making model that runs for T ∈ Z+ rounds,
where T is called the horizon. In each round t ∈ {1, ..., T},
the learner observes a set At of N actions, as well as ad-
ditional information Ct, called the context, from the environ-
ment. For each action ai,t ∈ At, the learner applies some fea-
ture map ϕ(At, Ct) to produce a d-dimensional feature vector
xi,t ∈ Rd, where d is the ambient dimension. The environ-
ment yields the true reward rt = x⊤

t θ
∗ + ηt, where xt is

the feature vector of the chosen action, θ∗ is an unknown pa-
rameter vector and ηt is a zero-mean σ-sub-gaussian noise
term. When sequentially choosing actions, the learner main-
tains an estimate of the parameter vector θ̂, and computes an
estimated reward r̂i,t = ⟨xi,t, θ̂t⟩ + ηt for each action. It
balances exploration — selecting actions via some policy to
improve its estimate of the parameter vector, and exploita-
tion — using the current estimate of the parameter vector to
choose the best possible action. Various bandit learners differ
in the policy they use to explore and exploit. After observing
the true reward rt, the learner updates θ̂ and proceeds to the
next round. The learner’s objective is to minimize expected
cumulative regret after T rounds.

E[RT ] =

T∑
t=1

E
[

max
x∈ϕ(At,Ct)

x⊤θ∗ − x⊤
t θ

∗
]

Under the sparse setting, θ∗ is a sparse vector with s% of the
features being non-zero.

2.2 Related works
ε-greedy [3]: this learner does exploration by choosing

an action uniformly at random with probability ε, and does
exploitation by selecting the best possible action using its



parameter vector estimate with probability 1− ε.

Explore-Then-Commit (ETC) [11][8]: this learner does
exploration by selecting each action a fixed number of times
in the initial rounds and collecting data. Then, it computes
a parameter vector estimate θ̂. Finally, it does exploitation
by committing to θ̂ when choosing actions in the subsequent
rounds.

LinUCB [6][1]: this learner is based on the principle of
optimism in the face of uncertainty. It maintains a regularized
design matrix Vτ = I +

∑τ
t=1 xtx

⊤
t , a reward-feature vector

bτ =
∑τ

t=1 xtrt and a ridge-regression estimate θ̂t = V −1
t bt.

In each round, the learner computes an upper confidence
bound (UCB) for each action, then chooses the one with
the highest value. UCBi,t = x⊤

i,tθ̂t−1 + α
√
x⊤
i,tV

−1
t−1xi,t,

where α is an exploration bonus. The first term is the
estimated reward which drives exploitation, and the second
term is an uncertainty bonus, which drives exploration. By
selecting the action with the largest UCB value, the learner
balances exploration and exploitation. A closely related
variant, OFUL replaces the fixed bonus α with a coefficient
βt =

√
λS +R

√
d ln(1/δ) + d ln(tL2/dλ) .

Thompson Sampling (TS) [2]: this learner main-
tains a Gaussian posterior N (µ̂, ν2V −1), where
V = I +

∑T
t=1 xtx

⊤
t is a regularized Gram matrix,

µ̂ = V −1
∑T

t=1 rtxt is the current least-squares estimate of
the unknown parameter vector, and ν2 is the noise variance.
In each round, it samples µ̃t from the posterior and selects
the action at with the maximum score, the score being
x⊤
t µ̃t. By doing so, it gradually transitions from exploration

via initial randomized sampling to exploitation due to the
concentration of µ̃ around the true parameter vector θ∗.

ANOVA F-value [15]: this feature selection method
uses univariate statistical tests to select the top k features.
It computes an F-score and a corresponding p-value for
each feature. Then, it ranks the features by their F-scores
in descending order and returns the indices of the top k
highest-scoring features.

Recursive Feature Elimination (RFE) [14]: this feature
selection method does recursive feature elimination with
a lasso estimator. It fits the regression model on the full
feature set. It ranks the features by the magnitude of their
learned coefficients and removes the lowest ranking feature.
This process is repeated for multiple iterations, until only k
feature remain. Then, it returns the corresponding indices.

2.3 Methodology
General setup: We run several simulations for the algo-

rithms, each performing multiple trials. At the start of every
trial, we sample a new hidden parameter vector θ∗ with s%
sparsity. In each round t ≤ T , the environment supplies a
new set of N feature vectors. The learner selects an action at

and uses its corresponding feature vector xt to observe the
corresponding reward rt from the environment. The learner
also maintains a history H of (xt, rt) pairs. After the first p
rounds, it uses Ht{(x1, r1), ...((xp, rp)} to run a one-time
feature selection routine and select the k best features most
predictive of the reward. We define p as a warm-up period
for the feature selection. For the remaining rounds t > p, the
learner projects the feature vectors down to those k selected
features. At the end of each trial, we compute a cumulative
regret graph. Over the course of multiple trials, the graphs
are averaged.

ε-greedy-FS: this algorithm uses a contextual version of
the ε-greedy learner described by Auer et al. [3]. It maintains
a least-squares estimate of the parameter vector θ̂ using an
online lasso regressor. In each round, the learner chooses an
action uniformly at random with probability ε. Otherwise,
for each action ai,t, it estimates the reward r̂i,t = x⊤

i,tθ̂t + ηt
and selects the action with the largest value. On choosing an
action, the learner observes the true reward rt and updates
its lasso regressor with the (xt, rt) pair. At the end of round
p, the algorithm runs a one-time feature selection routine to
pick the best k features. Then, it retrains its lasso regressor
to only operate on these k dimensions. In subsequent rounds,
the learner reduces the feature vectors to these k selected
features.

ETC-FS: this algorithm uses a simplified version of the
contextual ETC learner described by Hao & Lattimore [8].
The learner explores by selecting each of the N actions ex-
actly m times for the first mN rounds and recording (xt, rt)
pairs. At the end of round mN , it computes a parameter
vector estimate θ̂ using a lasso regressor. In subsequent
rounds t > mN , the learner sequentially selects actions with
the highest reward estimates r̂i,t = x⊤

i,tθ̂ + ηt and commits
to θ̂. At the end of round p, the algorithm runs a one-time
feature selection routine to pick the best k features. Like
ε-greedy-FS, it retrains its lasso regressor to only operate on
these k dimensions for rounds {p+ 1, ..., T}.

LinUCB-FS: this algorithm uses the LinUCB learner
described by Chu et al. [6], with the time-varying bonus
β(δ) term from OFUL [1]. It maintains a regularized
covariance matrix V , as well as V −1, updated efficiently via
Sherman-Morrison rank-1 formula, as well as response vec-
tor b and regression estimate θ̂ = V −1b. At each round t, it
computes βt =

√
λ+

√
2 ln(1/δ) + d ln(1 + (t− 1)/λd)

and UCBi,t = x⊤
i,tθ̂t−1 + βt

√
x⊤
i,tV

−1
t−1xi,t, then selects

the action with the highest UCB. After the first p rounds,
the algorithm runs a one-time feature selection routine to
pick the best k features. It projects V , V −1, b and θ̂ to the
k-dimensional subspace. All subsequent updates and action
selection steps take place in this reduced space.

TS-FS: this algorithm uses the TS learner described by
Agarwal & Goyal [2]. It maintains a regularized covari-
ance matrix V , as well as V −1, updated efficiently via



Sherman-Morrison rank-1 formula, as well as a response
vector b and the posterior mean µ = V −1b. In each round,
it draws a sample θ̃ from N (µ, ν2V −1). For each action,
a score x⊤

t θ̃t is computed and the one with the highest
score is chosen. After the first p rounds, the algorithm runs
a one-time feature selection routine to select the best k
features. Like LinUCB-FS, it projects V , V −1, b and µ to
the k-dimensional subspace. In the subsequent rounds, all
posterior updates and action selection steps operate in this
reduced feature space.

3 Experimental Setup
This section describes the setup used to simulate the algo-
rithms.

Our framework uses a synthetically generated dataset. In
this study, we executed multiple simulations, each consisting
of 30 independent trials. We set the feature map ϕ(At, Ct)
to the identity function, thus using the context itself as the
feature vector set. At the start of each trial, we sampled
θ∗ ∈ R100 from a standard normal distribution and imposed
90% sparsity by setting a random subset of its entries to 0.
The trials were conducted for 500 rounds. In each round,
the environment produced a set of 10 feature vectors, each
∈ R100 and drawn i.i.d. from a multivariate Gaussian
distribution with mean 0 and covariance I100. Rewards
were generated using a 0.05-sub-gaussian noise term. At the
end of each trial, we computed its cumulative regret curve.
Finally, for each simulation, we averaged the per-round
cumulative regret across the 30 trials to attain a smooth
graph.

Prior to our main simulations, we fine-tuned the hyperpa-
rameters of the base SCLBs to their best-performing config-
uration in the target environment by running multiple simu-
lations of each SCLB across a range of hyperparameter con-
figurations and selecting the one that minimizes the average
cumulative regret curve. Table 1 shows the hyperparameters
considered in these simulations.

Algorithm Grid Search Space Selected

ε-greedy α ∈ {0.01, 0.05, 0.1, 0.5},
ε ∈ {0.001, 0.005, 0.01, 0.05,
0.1}

α1 = 0.1, ε = 0.01

ETC α ∈ {0.01, 0.05, 0.1, 0.5},
m ∈ {1, 5, ..., 10, 20, 30, 40, 45}

α = 0.1

LinUCB δ ∈ {0.001, 0.01, 0.1, 0.5, 0.9},
λ ∈ {0.1, 1, 10, 15, 20, 25}

δ = 0.9, λ = 15

TS λ ∈ {0.1, 0.5, 1, 5, 10, 20} λ = 1

Table 1: Hyperparameter grid and selected values for each bandit
algorithm.

For the RFE feature selection method, we chose α = 0.1,
with a step size of 1.

Following the hyperparameter tuning, we ran our main al-
gorithm simulations. ε-greedy-FS and ETC-FS both build a
new lasso regressor on the reduced feature space. Here, we
used regularization α = 0.1. For each algorithm, we con-
ducted a grid search over p and k, visualizing its performance
as a heatmap of average cumulative regret. For benchmark-
ing, we compared each algorithm with its corresponding base
SCLB. We also compared the algorithms with each other us-
ing their best (p, k) configuration.

4 Results and Discussion
The performance of an algorithm is measured by its aver-

age cumulative regret curve. The main goal of a learner is to
select the best possible action per round. The fewer rounds it
takes to do this, the smaller the average cumulative regret at
the end of 500 rounds.

4.1 Base SCLB vs. SCLB-FS
ε-greedy and ε-greedy-FS:

Figure 1: ε-Greedy-FS (ANOVA-F) heatmap

Figure 1, Figure 2 and Figure 3 demonstrate that integrat-
ing feature selection into the ε-Greedy bandit yields modest
reductions in cumulative regret, while also decreasing
the volume of data collected. In (Figure 1), early feature
selection (small p) improves regret when a relatively large
number of features are selected, most likely due to ANOVA-
F’s univariate scoring omitting some relevant features.
By contrast, Figure 2 achieves its lowest regret at low p
and k values. Finally, Figure 3 shows both ε-Greedy-FS
algorithms to improve on the baseline ε-Greedy perfor-
mance, highlighting that learning can occur just as effectively
while collecting substantially less contextual data each round.

Explore-Then-Commit and ETC-FS:
Figure 6 shows that ETC-FS algorithms offer at best,

marginal improvement over the base ETC contextual bandit.



Figure 2: ε-Greedy-FS (RFE) heatmap

Figure 3: ε-Greedy vs ε-Greedy-FS

In Figure 4, reducing p and k increases the cumulative
regret, while in Figure 5, performance essentially remains
unchanged. The important thing to highlight is that the
exploration phase is indifferent to feature selection, since the
action selection policy does not rely on the selected features.
Column p = 100 in Figure 4 and Figure 5 represents any
column p < mN . Because this approach relies on collecting
data and training a regression estimate of θ̂, feature selection
during exploitation also yields no benefits. Nevertheless,
the experiment demonstrates that a reduced feature space
can perform equally well, although this space is not discov-
ered until after the algorithm is run. A modified learner that
re-enters exploration at a later stage could exploit this insight.

LinUCB and LinUCB-FS:
Figure 9 shows that the LinUCB bandit benefits from fea-

ture selection by delivering equal or improved performance

Figure 4: ETC-FS (ANOVA-F) heatmap

Figure 5: ETC-FS (RFE) heatmap

while using fewer features per update, thereby reducing both
computational and data-collection burdens. Figure 7 exhibits
roughly consistent performance at moderate to large p and k
values. Figure 8 yields substantial regret reduction even at
minimal p and k values, demonstrating that early removal of
extraneous features accelerates convergence to the optimal
arm and highlighting that it is important to not omit the
features that determine the reward.

Thompson Sampling and TS-FS:
Figure 10, Figure 11, and Figure 12 mirror the LinUCB

findings under a Bayesian sampling regime. In Figure 10,
higher values of p and k are required to match the perfor-



Figure 6: ETC vs ETC-FS

Figure 7: LinUCB-FS (ANOVA-F) heatmap

mance of the base TS contextual bandit, but less feature data
is required. Figure 11 achieves pronounced regret reduction
at low p and k values, likely due to the posterior’s early con-
centration around θ∗ when sampling on the feature subset.
Finally, in Figure 12, TS-FS with RFE delivers the greatest
regret improvement among all while using only a fraction of
the original feature space, saving on data-collection costs.

4.2 Best of SCLB-FS
Figure 13 presents the best-performing version of each al-

gorithm. Here, ETC-FS suffers a significantly higher average
cumulative regret after 500 rounds, although its slope appears
flat. This elevated regret is likely influenced by the choice of
m. Additionally, feature selection plays a relatively insignif-
icant role in this algorithm. ε-greedy-FS’s regret eventually
exceeds that of LinUCB-FS, due to additional exploration er-
ror. Meanwhile, LinUCB-FS and TS-FS perform similarly to
their base counterparts. All these algorithms use RFE for fea-

Figure 8: LinUCB-FS (RFE) heatmap

Figure 9: LinUCB vs LinUCB-FS

ture selection, highlighting the importance of identifying the
reward-predicting features to these algorithms. The benefit,
however, is a reduced feature count and, consequently, lower
data-collection costs.

5 Responsible Research
This section outlines our practices for data privacy, repro-

ducibility, research integrity, and ethical considerations guid-
ing the research.

Data and Privacy
All experiments use synthetically generated data; no per-

sonal data or sensitive information was collected, stored, or
shared. Consequently, traditional privacy risks, ethical review
requirements, and data sharing policies such as F.A.I.R. do
not apply.



Figure 10: TS-FS (ANOVA-F) heatmap

Figure 11: TS-FS (RFE) heatmap

Reproducibility
To mitigate the effects of randomness in our simulations,

we perform multiple independent trials and report averaged
metrics. Complete experiment configurations and analysis
code are publicly available in the GitHub repository, ensur-
ing full transparency and enabling easy replication of the re-
sults. One point to note is that the stochastic nature of the
algorithms can result in slight variations in values. However,
the overall trends remain consistent.

Research Integrity
This research is conducted with commitment to research

integrity. Every consulted source is listed in the bibliogra-
phy, and all directly used materials are properly cited. We
do not rely on external datasets or licensed components. All
our methods, analyses, and findings are reported accurately

Figure 12: TS vs TS-FS

Figure 13: SCLB-FS comparisons

to ensure clarity and accountability. LLMs, specifically Chat-
GPT [13], have been utilized responsibly in this research for
summarizing concepts, debugging code, and rephrasing this
paper in a more formal style.

Ethical Implications
Our work is limited to synthetic-data scenarios and is not

yet intended for real-world use. While integrating feature se-
lection into bandit algorithms shows promise, real-world ap-
plications, especially in sensitive domains, will require care-
ful tuning, fairness evaluation, and extensive testing to guard
against bias or harm. We emphasize methodological trans-
parency and advise against premature use without rigorous
validation.

6 Conclusion and Future Work
6.1 Conclusion

In this work, we empirically evaluated the ε-Greedy-FS,
ETC-FS, LinUCB-FS, and TS-FS algorithms, each paired



with ANOVA-F and RFE feature-selection routines. The aim
of this paper was to empirically analyze the different algo-
rithms by evaluating their performances relative to their base
counterparts and with each other. Across all algorithms, RFE
consistently outperformed ANOVA-F, demonstrating the im-
portance of selecting the reward-predicting features for these
algorithms. Embedding feature selection into posterior or
confidence-based bandits can yield nearly identical regret
performance at a fraction of the data-collection cost.

6.2 Future Work
This study can be extended in several directions.

1. Real-world datasets: Evaluate the integration of feature
selection into SCLBs on real-world data. Our experi-
ments were limited to a synthetic dataset; future work
can test diverse, real-world datasets and more realistic
conditions.

2. Additional feature-selection methods: Due to time
constraints, we only considered ANOVA-F and RFE.
Future research could explore other feature-selection al-
gorithms and hybrid approaches.

3. Varied sparsity levels: We evaluated only 90% sparsity;
subsequent studies should analyze performance across a
spectrum of sparsity levels.
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