

Delft University of Technology

Fast C-shape grasping for unknown objects

Lei, Qujiang; Meijer, Jonathan; Wisse, Martijn

DOI
10.1109/AIM.2017.8014068
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings 2017 IEEE International Conference on Advanced Intelligent Mechatronics

Citation (APA)
Lei, Q., Meijer, J., & Wisse, M. (2017). Fast C-shape grasping for unknown objects. In M. Buss, & O.
Sawodny (Eds.), Proceedings 2017 IEEE International Conference on Advanced Intelligent Mechatronics :
AIM 2017 (pp. 509-516). IEEE. https://doi.org/10.1109/AIM.2017.8014068

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/AIM.2017.8014068
https://doi.org/10.1109/AIM.2017.8014068

(a)

(b)

(c)

(d)

Fig.1. The goal of this paper.

Table I. The five fastest grasping algorithms from literature study
Grasping

algorithms Baumgartl [1] Eppner [2] Lin [3] Ten Pas [4] Suzuki [5]

Year 2012 2013 2014 2015 2016

Hardware four cores with
2.66GHz

single core
with 2.2GHz unknown four cores

with 3.5GHz
four cores

with 2.5GHz
Time 34ms 3s 2.352s 2.7s 4.2s

Input RGB images A Partial
point cloud

A Partial
point cloud

A Partial
point cloud

A Partial
point cloud

Robot
hand

A parallel
gripper

A Barrett
Hand

A parallel
gripper

A parallel
gripper

A parallel
gripper

Abstract—Grasping of unknown objects with neither
appearance data nor object models given in advance is very
important for robots that work in an unfamiliar environment.
In this paper, we propose an original fast grasping algorithm for
unknown objects. The geometry of the under-actuated gripper
is approximated as a C-shape, which is used to fit the point
cloud of the target object to find a suitable grasp. In order to
make the robot arm quickly execute the grasp found by the
grasping algorithm, we made a comparison of the popular
online motion planners. The motion planner with the highest
solved runs, lowest computing time and the shortest path length
is chosen to execute the grasp action. Simulations and
experiments on a UR5 robot arm and an under-actuated gripper
are used to examine the performance of the grasping algorithm,
and successful results are obtained.

I. INTRODUCTION

A. What is the goal of this paper?

The goal of this paper is to design a fast and general
grasping algorithm for unknown objects. The outline of this
paper is shown as Fig.1. Specifically, this grasping algorithm
is specially designed for under-actuated grippers shown as (a),
explanation about why we choose such kind of under-actuated
grippers will be given latter. After a suitable grasp is found as
(b) shows, a comparison of motion planners (shown as (c)) is
conducted in order to quickly execute the grasp. According to
the current trend of motion planning, we compared all the
motion planners available in MoveIt!. The motion planner
with the highest solved runs, lowest computing time and the
shortest path length is chosen to execute the grasp found by the
grasping algorithm. An example of grasp execution is shown
as (d).

B. Existing fastest grasping algorithms for unknown objects

Table I shows the five fastest grasping algorithms of
unknown objects from literature study. These fast grasping
algorithms in table I from left to right are in chronologic order.
We can find some interesting things: Except [2], the other four
fast grasping algorithms are designed for parallel grippers.
Only [1] uses RGB images as input of the grasping algorithm,
the rest four grasping algorithms employ a partial point cloud
as input. The above two findings inspired us to create a more

All authors are with the TU Delft Robotics Institute, Delft University of
Technology, 2628 CD, Delft, The Netherlands. Email addresses of Qujiang
Lei and Martijn Wisse are {q.lei, m.wisse}@tudelft.nl. Email address of
Jonathan Meijer is J.G.J.Meijer@student.tudelft.nl.

general and faster grasping algorithm for simple grippers by
using a partial point cloud as input.

[1] is a pretty fast grasping algorithm, which uses Hough
transformation to find the edges of objects in a 2D image. A
check has been done to see if the edges are long enough to be
grabbed by the gripper and another check is followed to see if
the parallel edges suit the gripper’s width. [3] uses the contact
area of the grasping rectangle to find suitable grasps. If the
contact area is too small, the grasp is likely to fail, and then a
better grasp need to be picked. [5] uses principal axis and
centroid of the object to synthesize a grasp. The above three
fast grasping algorithms have a common character, that is,
they all use the normal of the table plane as the grasp
approaching direction, which can accelerate grasp searching.
However, this kind of simplification cannot be widely used,
because grasping from top is not applicable for most objects,
for example, objects in fridges or shelves.

In the work of Eppner [2], the point cloud is transformed
into shape primitives (cylinder, disk, sphere and box). A
pre-grasp (configuration of the hand) is chosen according to
those shape primitives. This kind of shape primitives can
greatly reduce the scope of grasp searching to achieve a fast
grasping algorithm. However, this may result in lots of grasp
uncertainty, which may lead to grasp failure.

Ten Pas [4] tries to fit the shape of the parallel gripper on
the point cloud of the objects. They use a detailed
segmentation to be able to pick objects from dense clutters.
This algorithm is very efficient. However, the parallel gripper
is not good at flexibility comparing with dexterous hands and
under-actuated grippers.

To sum up, in this paper, we aim to design a more general
and faster grasping algorithm than the above five fast grasping
algorithms, Meanwhile, in order to make our grasping
algorithm more flexible, we will adopt under-actuated
grippers.
C. Why we choose under-actuated gripper?

As we said before, among the five fast grasping
algorithms, four of them choose to use parallel grippers
because parallel grippers have simpler geometry shape and
they are easier to control. One more thing is that parallel
grippers are cheap so that their grasping algorithms can be
widely used. But all of them ignore a kind of excellent robot
hands, that is, under-actuated grippers.

Fast C-shape grasping for unknown objects
Qujiang Lei, Jonathan Meijer, Martijn Wisse

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig.3. The outline of fast C-shape grasping for unknown objects. (a) shows an
example of an unknown object. (b) shows a robot arm equipped with a 3D
camera and an under-actuated gripper. (c) and (d) show the inspiration of this
paper, the under-actuated gripper is simplified as a C-shape. (e) shows an
example grasp found by our algorithm. In order to choose a suitable online
motion planner for grasp execution, we made a comparison of existing online
motion planners in (f). A good example of motion path found by the motion
planner is shown in (g). (h) demonstrates the grasp found in (e) is executed.

Table II shows three popular robot hands, that is, a

dexterous hand, an under-actuated gripper and a parallel
gripper. Even though dexterous hands are very good at
flexibility, but the high complexity and high price stop them to
become popular in the research field of fast grasping of
unknown objects. However, between the dexterous hands and
the parallel grippers, there is a kind of grippers with high
flexibility, low complexity and low price, which are
under-actuated grippers. Under-actuated grippers are a very
good tradeoff between dexterous hands and parallel grippers.
Fig.2 shows three popular cheap commercial under-actuated
grippers.

 D. Our fast grasping algorithm
In this paper, we propose an original fast grasping

algorithm for unknown objects. The outline of our fast
grasping algorithm is shown as Fig.3. The under-actuated
gripper is simplified as a C-shape cylinder (shown as Fig.3 (c)
and Fig.3 (d)) with radius 1r and 2r respectively. The
algorithm will perform C-shape searching on the partial point
cloud of the target object to quickly synthesize an executable
grasp. Specifically, Fig.3 (b) shows a setup consisting of a
robot arm equipped with a 3D camera and an under-actuated
gripper. A spray bottle in Fig.3 (a) works as an example of an
unknown object. The gripper in Fig.3 (b) is described as a
C-shape with radius 1r and 2r . The C-shape is used to match
with the partial point cloud of the target object to work out an
executable grasp. Fig.3 (e) shows an example of executable
grasps found by our grasping algorithm. The red points on the
object stand for the corresponding grasp area. Fig.3 (h) shows
the grasp execution for the spray bottle. Details about our
grasping algorithm will be explained in section III.
E. Comparison of motion planners for grasping execution

Typically not a lot of grasping algorithms give details
about the actual motion planning of the robotic arm towards
the object. Grasping algorithms seem to only focus on finding
grasps on the object itself. Researchers and users that want to
implement grasping algorithms have to fill the gap of motion
planning. They have to study on many different available
motion planning methods before implementing it, which is
time consuming. In order to help future researchers and users
quickly choose a suitable motion planner to execute grasp

action, we will make a comparison of different online motion
planners in this paper.

F. Organization of this paper

The rest of this paper is arranged as follows: Section II
shows the comparison of different motion planners. Section III
contains a detailed explanation of our fast grasp grasping
algorithm. Section IV demonstrates the simulation results.
Section V is the experiment results and Section VI gives a
discussion about our fast grasping algorithm and the other five
popular fast grasping algorithms mentioned above. Section
VII is the conclusion of this paper.

II. COMPARISON OF DIFFERENT MOTION PLANNERS FOR
GRASP EXECUTION

Motion planning is a very important part for grasp
execution. However, typically not a lot of grasping algorithms
give details about the actual motion planning of the robotic
arm. MoveIt! [6], a motion planning interface in ROS, is easy
to use and therefore widely used for robot manipulation. In
this part, we will discuss the choice of motion planner by
looking at the available motion planning methods in MoveIt!
and by evaluating benchmark data.
A. Motion planning using MoveIt!

Performance of motion planning depends on the chosen
motion planning algorithm. MoveIt! itself does not provide
motion planning, but instead is designed to work with planners
or planning libraries. Currently four main planners/planning
libraries can be configured for use.

OMPL (Open Motion Planning Library) [7] is a popular
choice to solve a motion problem. It is an open-source motion
planning library that houses many state-of-the-art sampling
based motion planners. OMPL is configured as the default set
of planners for MoveIt!. Currently 23 sampling-based motion
planners can be selected for use.

STOMP (Stochastic Trajectory Optimization for Motion
Planning) [8] is an optimization-based motion planner. It is

Table II. Three popular robot hands and a short comparison of them.

Three
popular

robot hands

Flexibility +++ + --

Complexity +++ - --
price +++ - --

(a)

(b)

(c)

Fig.2. Three popular cheap commercial under-actuated grippers.

 Fig.5. Comparison results of 23 motion planners in MoveIt!.

designed to plan smooth trajectories for robotic arms. The
planner is currently partially supported in MoveIt!

CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) [9] mainly operates by using two terms. The
dynamical quantity term describes the smoothness of the
trajectory. The obstacle term is similar to potential fields. The
planner is not yet configured in the latest version of MoveIt!.

Search-Based Planning Library (SBPL) [10] consists of a
set of planners using search-based planning that discretize the
space. The library is not yet configured in the latest version of
MoveIt!.

Out of these four, OMPL has been chosen to use for
performing motion planning in MoveIt!. OMPL gives us a
wide variety of choice to solve a motion problem since it
contains 23 planners. In the next part we attempt to choose one
of these planners by conducting a benchmark.
B. Comparison of OMPL planners available in MoveIt!

In order to compare the performance of the 23 motion
planners available in MoveIt!, we created two benchmarks
shown in Fig.4. The first benchmark resembles a grasp
between obstacles, meaning that the planner has to solve a
path through a narrow passage. The second benchmark
resembles a long motion grasp.

The planners are analyzed by looking at the solved runs,
computing time and path length. Solved runs is expressed as a
percentage of the amount of runs resulting in a valid path,
presented in Fig.5 (a) as a bar plot (high is better). Computing
time, the time it takes for the planner to produce a valid path, is
presented as a boxplot in Fig.5 (b) (lower is better). Path
length, the length of the created path in the configuration
space, is presented as a boxplot in Fig.5 (c) (lower is better).

For each planner, 30 runs are executed with a maximum
computing time of 3s. In the two defined benchmarks, we find
that BiTRRT [11] yields the best performance considering
solved runs, computing time and path length. Therefore
BiTRRT is chosen to produce paths for the UR5 robot in order
to execute the final grasp in this paper.

III. DETAILS OF FAST C-SHAPE GRASPING

This section contains a detailed explanation of the fast
C-shape grasping algorithm.

A. Math description of the C-shape

As mentioned before, in this paper, we specially designed
a fast and general grasping algorithm for under-actuated
grippers. The under-actuated gripper is simplified as a

C-shape. Then, the algorithm will do C-shape searching on the
single point cloud of the target object to quickly synthesize an
executable grasp.

Fig.6 (a) shows the C-shape of the under-actuated gripper
in Fig.3 (c), w is the width of the griper. From Fig.6 (b), we
can find the space of the C-shape (cC) equals the outer
cylinder space (outC) minus the inner cylinder space (inC) and
the red space (redC), shown as equation (1). redC can be
approximated as }{)0()()5.05.0(211 ≤≤−∧≤≤−∧≤≤−= zrryrwxwCred .

redinoutc CCCC −−= (1)

In order to get the outer cylinder space (outC) and the inner

cylinder space (inC), we need to know how to obtain the
parametric equation of an arbitrary circle on an arbitrary plane
in 3D space. If P (0x , 0y , 0z) is the center of an arbitrary
circle, the radius is r and its unit normal vector is N =(xn ,

yn , zn) shown as the red arrow in Fig.6 (c). If the normal
vector is projected to the XOY plane, XOZ plane and YOZ
plane, we can get three project lines (shown as the three green
lines). γ , β and a are used to respectively stand for the angles
between the projected lines and the coordinate axes. Then the
arbitrary plane can be obtained by transforming the XOY
plane through the following transformation: rotating around
the X axis by a ; rotating around the Y axis by β , then moving
along the vector N to P (0x , 0y , 0z). The whole
transformation can be summarized as equation (2).

(a)

(b)

Fig.4. Simulation setting for comparison of different motion planners in
MoveIt!. (a) is used to compare the performance under the circumstance of
dense obstacles. (b) is used to compare the performance where the robot arm
needs long motion path.

(a)

(b)

(c)

Fig.6. How to obtain the math description of the C-shape.



















−

−

=























































−
=

1
0coscossinsincos
0cossincossinsin
0sin0cos

1
0100
0010
0001

1000
0cos0sin
0010
0sin0cos

1000
0cossin0
0sincos0
0001

000

000

zyx
aaa
aaa

zyx
aa
aa

T

ββ
ββ

ββ

ββ

ββ

 (2)

If ()(tx ,)(ty ,)(tz) are used to stand for an arbitrary points
on the arbitrary circle, the parametric equation of the circle can
be obtained by the equation (3).







−+=
+=

++=
=

















=
















ββ

ββ

sincoscossinsin)(
cossin)(

sinsinsincoscos)(
*

1
0

sin
cos

1
)(
)(
)(

0
0
0

tratrztz
atryty

atrtrxtx
Ttr

tr

tz
ty
tx T

 (3)

Where t should satisfy π20 ≤≤ t . If { }),(),,(),,(tsztsytsx is
an arbitrary point on the cylinder, and the axis vector of the
cylinder is)cos,cos,(cos γβ ′′′= aN , then parametric equations
for an arbitrary cylinder in 3D space can be obtained using
equation (4).







′+−+=
′++=

′+++=

γββ
β

ββ

cossincoscossinsin),(
coscossin),(

cossinsinsincoscos),(

0
0
0

stratrztsz
satrytsy

asatrtrxtsx
 (4)

 ws ≤≤0 , w is the width of the griper. Using equation (4),
we can get equations for outC and inC , then we can obtain the
math description of the C-shape using equation (1).
B. Obtaining the point cloud of the target object

The raw point cloud from the 3D sensor contains the
environment (for example the table plane). In order to quickly
isolate the point cloud of the target object, down-sampling and
distance filtering are firstly applied on the raw point cloud
from the 3D camera to reduce the computing time and remove
the points out of the reach of the robot arm. Then Random
Sample Consensus (RANSAC) method is applied to remove
the table plane, resulting in the isolated point cloud of the
target object (shown as the green points in Fig.7 (b)).

C. Configuration of the C-shape

In this subsection, we will explain how to configure the
C-shape to find a suitable grasp and how to handle the unseen
part of object because we cannot see the back side of the object
when we only use a single-view point cloud.

C.1 How to configure the C-shape efficiently

If we want to locate a C-shape in 3D space, it means many
possibilities. How to reduce the possibilities in order to save
computing time? Normals of the target object are used to work
as the approaching direction of the C-shape. Then the
configuration of the C-shape can be simplified from SE(3) to
SE(2). Fig.7 shows how to configure the C-shape. (a) shows
an example of a C-shape. (b) shows a normal (the blue line).
(c) is an enlarged image of (b). if a normal is chosen as the
approaching direction of the C-shape, it means that the Z axis
of the C-shape will align with the blue line in (b) and (c). Then
the C-shape can only rotate around the normal, so we rotate
the C-shape around the normal with an incremental angle δ
(shown as Fig.7 (c)). Every red line in (b) and (c) means a
possible axis for the C-shape. The X axis of the C-shape will

match with every red line to construct a potential grasp
candidate. Fig.7 (d) shows an example of a potential grasp
candidate corresponding to the black axis in (c). The red points
in (d) mean the points of the object covered by the C-shape.

C.2 How to deal with the unseen part

If the C-shape is configured as Fig.8 (a), then the gripper
will collide with the target object. Because we only use a
single-view partial point cloud of the object in this paper, the
unseen part of the target object will result in grasp uncertainty.
Here, we propose to employ the boundary of the object to
eliminate the uncertainty. Specifically, the point cloud in the
camera coordinate system is used to work out the boundary
points bΩ (shown as Fig.8 (b)). Fig.8 (c) shows our idea to deal
with the unseen part. In detail, the two red points are on bΩ , the
two orange lines are obtained by connecting the origin point of
camera coordinate system and the two red points. The two
orange dashed lines are obtained by extending the two orange
lines. This method will go through all the points on the
boundary, and then we can obtain a point cloud shown as Fig.8
(d). Then the configuration space (C space) of the target
object (objC) is divided into two parts. '

objC (the green points

in (d)) and unseenC (the orange points in (d)) are used to
describe the configuration space after the unseen part is
generated. It is shown as equation (5).

unseenobjobj CCC += ' (5)

D. Generation and down-sampling of normals

Surface normals are important properties of a geometric
surface, and are heavily used in many areas such as computer
graphics applications. In this paper, normals are used to guide
the continuation of the C-shape to accelerate grasp searching.

D.1 Generation of normals

The problem of determining the normal to a point on the
surface is approximated by the problem of estimating the
normal of a plane tangent to the surface, which in turn
becomes a least-square plane fitting estimation problem. The
solution for estimating the surface normal is therefore reduced
to an analysis of the eigenvectors and eigenvalues of a
covariance matrix created from the nearest neighbors of the

(a)

(b)

(c)

(d)

Fig.7. How to configure the C-shape efficiently.

(a)

(b)

(c)

(d)

Fig.8. How to deal with the unseen part of the target object to eliminate the
grasp uncertainty.

(a)

(b)

(c)

(d)

(e)
Fig.11. How to determine the center point of the C-shape.

query point. Specifically, for each point iP , we assemble the
covariance matrix C as follows:

T
i

k

i
i PPPP

k
C)()(1

1

−⋅−= ∑
=

jjj VVC
CC

⋅=⋅ λ }2,1,0{∈j

Where K is the number of points in the neighborhood of
iP , P represents the 3D centroid of the nearest neighbors,

jλ is the j-th eigenvalue of the covariance matrix, and
jV
C is the

j-th eigenvector. The first eigenvector corresponding to least
eigenvalue will be the normal at each neighborhood.

But one normal has two possible directions (the red and
green arrow lines) shown as Fig.9 (a), how to determine the
right direction of the normal? Since the point cloud datasets
are acquired from a single viewpoint, the camera view point

cp is used to solve the problem of the sign of the normal. The
vector from the point ip to the camera view point cp is

ici ppV −= , To orient all normals in
C consistently towards the

viewpoint, they need to satisfy the equation: 0>⋅ ii Vn
C

. Using
this equation can constrain all the normals towards the camera
viewpoint to obtain all normals (shown as all the red lines in
Fig.9 (a)) of the object.

D.2 Down-sampling of normals

Normals in Fig.9 (a) are pretty dense. In order to accelerate
the speed of grasp searching, the normals need to be
down-sampled. K-d tree is used to down-sample the normals.

The green points in Fig.9 (b) stand for the original point
cloud (Ω) that is used to compute the normal, Ω is first
down-sampled to obtain the down-sampled point cloud dΩ

(shown as the red points in Fig.9 (b)). At each red point (diP)
of dΩ , we use KNN search to find the nearest neighbor point (

iP) in Ω (shown as Fig.9 (c)). Then the corresponding normal
(in) of iP can be looked up in the dense normals obtained in
section of D.1. All the corresponding noramls are put together
to get the down-sampled normals shown as Fig.9 (d).

E. Determination of the first axis of the C-shape
As mentioned in section of C.1, the C-shape axis is

allocated around the normal with an incremental angle δ .
Then a question comes out, that is, how to decide the first axis
of the C-shape to increase the chance to find a suitable grasp?

If δ is a big angle, for example o60 in Fig.10 (a) and (b),
then we may get two totally different allocations of C-shape
axis. In Fig.10 (a), the three cylinder axis will lead to no grasp
found, because all the three C-shapes will collide with the
object. However, the C-shape axis 1 in Fig.10 (b) corresponds
to a very good grasp candidate (shown as Fig.10 (c)). The

difference is generated because of the position of the first axis.
In this paper, we propose to use the principal axis of the local
point cloud to work as the first C-shape axis.

F. Determination of the center point of the C-shape

As we mentioned in section of C.1, the under-actuated
gripper will approach the object along the normal direction.
Then a question comes out, that is, where to stop?

Fig.11 is used to explain how to determine the center point
of the C-shape. Fig.11 (a) shows a possible grasp candidate,
the green points stand for the points covered by the C-shape.
Fig.11 (b) is the abstracted point cloud, and the red arrow
stands for the approaching direction of the C-shape. The two
red points in Fig.11 (b) are two example center points of the
C-shape. The two blue circles stand for the corresponding
C-shape. It is obvious to find that the two example center
points of the C-shape are not the best ones. The center point
can go down further. (c), (d) and (e) are used to explain how to
determine the center point of the C-shape. Specifically, the
abstracted point cloud in (b) is first projected to the YOZ plane
to get the projected point cloud (orange points shown as (c)).
And then the convex hull of the projected point cloud is
extracted shown as the green points in (c). The green point in
Fig.11 (d) means one point of the convex hull obtained in (c).
If we draw a circle with 1r as radius (shown as the green
circle), we can obtain two intersects with Z axis (shown as the
two purple points 1P and 2P).),min(21 ZZZ = will work as
the C-shape center. Using the method goes through all the
green points in (c), we can get all the center points

),,,(21 cnccc ZZZZ ⋅⋅⋅= (shown as (e)). The maximal cZ is
used as the final C-shape center (shown as the equation (6)).
The maximal cZ means the earliest contact point with the
object when the C-shape tries to approach the object.

),,,(max 21max_ cnccc ZZZZ ⋅⋅⋅= (6)

G. Collision judgement of the C-shape
Fig.12 (a) shows an example of C-shape configuration.

After the configuration of the C-shape is obtained, we need to
judge whether this configuration will collide with object or
not? If the C-shape will not collide with object, then it means

(a)

(b)

(c)

(d)

Fig.9. Generation and down-sampling of normals of the target object.

(a)

(b)

(c)

Fig.10. How to determine the first axis of the C-shape.

(a)

(b)

(c)

(d)

(e) (f)

(g)

Fig.13. Choose the best grasp using force balance optimization.

this configuration is possible to be an executable grasp
candidate, otherwise this configuration should be ignored.

In order to judge whether one figuration will collide with
the object or not, points with X axis value between w5.0− and

w5.0 are abstracted to form a point cloud]5.0,5.0[ww −−Ω (shown
as the red points in Fig.12 (a), w is the width of the gripper). If
any points ip of]5.0,5.0[ww −−Ω falls inside of the C-shape space
(the math description of the C-shape is obtained in section A),
that means the C-shape will collide with the object, then the
grasp candidate ig should be removed, otherwise ig is
reserved for following analysis. Using this method goes
through all the C-shape configurations, we can get a vector

)...,(21 ngggG = which is used to store all grasp candidates
without collision with the object.

H. Local geometry analysis

After finishing all above steps, the grasps left can ensure
that the C-shape will not collide with the object, it means that
the C-shape can envelope the object at this configuration. In
this subsection, we will consider the local geometry of the
points enveloped by the C-shape. Specifically, a grasp
candidate is shown as Fig.12 (b), the local geometry shape will
lead to uncertainty. Two grasp sides are abstracted shown as
the red points in (c), then, the distance between one red point
and the blue line is defined as id , 0 i n< ≤ , n is the total
number of the red points. All the distances are added together

to get the variance v of the grasp,
1

i n

i
i

v d
=

=

= ∑ . If the variance is

smaller than the threshold set by the system, the grasp is saved,
otherwise, it is removed.

I. Force balance optimization

All grasp candidates passed step G and step H form a new
vector)...,(21 jnjjj gggG = , all the grasps in this vector can be
executed without collision with the object. If the lines
1,2,3,4,5, 6 and 7 in Fig.13 (a) stand for the C-shape axis of
the grasps in vector jG , we can find that all the grasps from

1jg to 7jg can be executed. How to choose the best grasp as
the final grasp?

We propose to use force balance optimization to select out
the best grasp. Usually, the existing papers will employ the
physic property to do force balance computation, for example,
the friction coefficient. But in our case, we cannot know the
physic property, because the objects for this paper are
unknown. We propose to use the local geometry shape to do
force balance computation. The blue points in Fig.13 (b) stand
for the grasp candidate 1 (1jg). It is projected to the XOY

plane to get the projected point cloud shown as (c). The two
grasp sides are abstracted to shown as the red points in (d).
Two orange lines (bkxy +=) can be fit out for the tow grasp
sides. The angles between the two fit lines and X axis are
defined as ξ and θ . (e) shows three cases of allocation of ξ
and θ .The sum (σ) of ξ and θ is used to evaluate the force
balance quality of this grasp. σ can be obtained using

))(arctan())(arctan(ξθσ kfabskfabs += . The bigger σ is, the
higher possibility that the grasp forces are vertical to the grasp
sides, correspondingly more stable the grasp is. The vector

)...,(721 ψψψψ = is used to stand for all the force balance
coefficients for the grasp vector)...,(721 jjjj gggG = . Fig.13
(f) is a line graph of the vectorψ , the grasp with the largest ψ
is chosen as the final grasp. Fig.13 (g) shows the best grasp
returned, which corresponds to the 4th grasp in (a) and (f).

The above steps from subsection of C to I illustrate how
the grasping algorithm work to find a suitable grasp at one
normal of the target object. If the grasping algorithm cannot
find a suitable grasp at one normal, another random normal
will be used to repeat above steps until a suitable grasp is
found.

IV. SIMULATION

In order to verify our grasping algorithm, simulations are
performed using a personal computer (2 cores, 2.9GHz).
Several objects with different geometry shapes are used in the
simulation. All the tested objects can be seen in the second
row of table III. The third row shows an example grasp found
by the grasping algorithm. The fourth row shows the robot
arm arrived at the grasp point by using BiTRRT as motion
planner. The fifth row shows the number of points of the input
partial point cloud. The last row shows the average computing
time (10 trials for each object). From the simulation, we can
find that the algorithm can quickly work out a suitable grasp
within 2 seconds for each object.

V. EXPERIMENTS

The experiments are conducted using a robot arm UR5 and
an under-actuated Lacquey Fetch gripper. An Xtion pro live
sensor is used to acquire the partial point cloud of the target
object. The whole experiment setup and the objects chosen to
do experiments are shown as Fig.14. The results of
experiments are shown as table IV. The second row shows the
experiment setup for every object. The third row shows the
example grasp found by the grasping algorithm. The fourth

(a)

(b)

(c)

Fig.12. How to judge one grasp formed by a C-shape.

Table III: Simulation results
Object
name

Cleaner spray
bottle Pistol Electric drill Table tennis

racket Water bottle Telephone horn Milk carton Kinet Shampoo
bottle

In
tia

l s
et

up

Ex
am

pl
e

gr
as

p
fo

ud

G
ra

sp
 e

xe
cu

tio
n

Points 8154 4394 7678 6384 7270 12458 4710 4965 5274

Time (s) 1.95 0.89 1.83 1.31 0.87 1.86 0.73 0.92 0.58
 row shows the robot arm arrives ate the grasp position by
using BiTRRT as motion planner. The fifth row shows the
grasp being executed. The sixth row shows the number of
points of the input partial point cloud. The last row shows the
computing time (10 trials for each object). The experiments
proved the validation of our grasping algorithm. The main
difference between the simulations and the experiments is that
the point cloud in experiments may lose some points. For
example, the coffee jar in the sixth column of table IV lost
some points because the Xtion pro live sensor cannot detect
transparent part. The neck of the coffee jar is transparent, so
we cannot find the points for neck of the coffee jar. That is
why we paint the wineglass in ninth column into white color.
From Table IV, we can see that even though the partial point
cloud of the object has large number of points, our algorithm
can quickly work out a suitable grasp within 2 seconds.
Comparing with the five fast grasping algorithms in table I,
our algorithm shows much improvement at the speed of grasp
searching.

Fig. 14. Experiments setup and objects used for experiments.

VI. DISCUSSION

In this section, we will discuss the characteristics of our
grasping algorithm compared with the grasping algorithms in
table I.

Grasp adaptiveness: Our grasping algorithm is specially
designed for under-actuated grippers. Under-actuated grippers
add compliance and dexterity without the need of adding
additional actuators and sensors. Through the careful design
of the end effector’s mechanical makeup, under-actuated
grippers have great advantages over parallel grippers.
Therefore, our grasping algorithm is more adaptive than
[1,3,4,5]. Meanwhile, the price of the under-actuated gripper
is much cheaper than [2] which uses a barrett hand.

Object complexity: The presented grasping approach is
able to find grasp for complex objects like, teddy bear,
elephant, electric drill and the cleaner spray bottle. This makes
it better than [1,3,5], which only considers simple objects. [2]
transforms the objects into simple shapes (cylinder, disk,
sphere and box), which may result in loss of details of objects.

Computing time: Our algorithm finds a suitable grasp
for complex object within 2 seconds. This is similar to
[2,3,4,5]. [1] is able to find a grasp faster since it only uses a
RGB image at the cost of losing depth information of the
object.

Grasping direction: [1,3,5] only consider grasping from
top, which can result in unreliable grasp, for example, picking
up the wineglass. And in some cases, it is not allowed to grasp
the target object from top, for example, objects in fridges or
shelves. Our grasping algorithm considers the local geometry
property of the object. We use the normal of the object to work
as the approaching direction, which resembles a human-like
grasp.

Grasp execution: From the five fast grasp algorithms,
only [4] considers grasp execution. However, no information
was given about motion planning. We showed by performing
a comparison that using BiTRRT for grasp execution would
result in high solved runs, low computing time and short path
length.

Table IV: Experiment results
Object
name

Cleaner spray
bottle Electric drill Spray can Elephant Coffee jar Teddy bear Milk carton Wineglass Shampoo

bottle
In

ita
il

se
tu

p

Ex
am

pl
e

gr
as

p
fo

ud

G
ra

sp
 e

xe
cu

tio
n

O
bj

ec
ts

gr
as

pe
d

Points 10596 9929 7127 8044 4345 4857 5589 3503 5267

Time (s) 1.74 1.56 0.91 1.96 0.68 1.82 0.64 0.53 0.67

VII. CONCLUSION

In this paper, a novel algorithm of unknown object
grasping is presented for under-actuated grippers. For the
grasping algorithm, the gripper is simplified as a C-shape. In
order to find suitable grasp, C-shape searching is performed
on the partial point cloud of the target object. To accelerate
the computing speed, this algorithm only uses a single view
point cloud as input. Grasp candidates can be greatly reduced
by using the normal line of the target object to guide the
configuration of the C-shape. Moreover, we propose an
original method to deal with the unseen part of the object to
enhance the grasp security. For the robot arm to quickly
execute the grasp found by the grasping algorithm, a suitable
motion planner has to be selected. We made comparison of
the motion planners available in MoveIt!. The motion planner,
BiTRRT, is chosen for motion planning due to its high solved
runs, low computing time and short path length. In order to
verify the effectiveness of our algorithm, several objects
commonly used by other grasping algorithms with different
geometric shapes were used to do simulations and
experiments. And successful results are obtained.

ACKNOWLEDGMENT
The work leading to these results has received funding

from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n°
609206.

REFERENCES
[1] Johannes Baumgartl and DominikHenrich, “Fast Vision-based Grasp

and Delivery Planning for unknown Objects,” in proceeding of 7th
German Conference on Robotics (ROBOTIK 2012), pages 1–5, 2012.

[2] Clemens Eppner and Oliver Brock, “Grasping unknown objects by
exploiting shape adaptability and environmental constraints,” in
proceeding of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4000–4006, 2013.

[3] Yu-chi Lin, Shao-ting Wei, and Li-chen Fu, “Grasping Unknown
Objects Using Depth Gradient Feature With Eye - in - hand RGB - D
Sensor,” in proceeding of IEEE Conference on Automation Science
and Engineering (CASE), pages 1258–1263, 2014.

[4] Andreas ten Pas and Robert Platt. Using Geometry to Detect Grasps in
3D Point Clouds,” in proceeding of International Syposium on
Robotics Research (ISRR), pages 1–16, 2015.

[5] Toshitaka Suzuki, Tetsushi Oka, “Grasping of unknown objects on a
planar surface using a single depth image. In AIM, pages 572–577,
2016.

[6] A. Sucan and S. Chitta, “MoveIt!” , 2013.
[7] I. Sucan, M. Moll, and L. Kavraki, “Open Motion Planning

Library: A Primer,” 2014.
[8] M. Kalakrishnan, S. Chitta, E. Theodorou, Peter Pastor, and Stefan

Schaal, “STOMP:Stochastic trajectory optimization for motion
planning,” in proceeding of IEEE International Conference on
Robotics and Automation (ICRA), pages 4569–4574, 2011.

[9] M Zucker, N Ratliff, A.Dragan, M. Pivtoraiko, M. Klingensmith, C.
Dellin, J. A. Bagnell, and S. Srinivasa, “CHOMP: Covariant
Hamiltonian Optimization for Motion Planning,” International Journal
of Robotics Research, May, 2013.

[10] M. Likhachev, http://www.ros.org/wiki/sbpl, 2010.
[11] D. Devaurs, T. Sim´eon, and J. Cort´es, “Enhancing the transitionbased

rrt to deal with complex cost spaces,” in proceeding of IEEE
International Conference on Robotics and Automation (ICRA), pages
4105–4110, 2013.

