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Original research article

How useful are seasonal forecasts for farmers facing drought? A user-based 
modelling approach

Clara Linés a,b,* , Micha Werner a

a IHE Delft Institute for Water Education. Westvest 7, 2611 AX Delft, Netherlands (the)
b TU Delft, Faculty of Civil Engineering and Geosciences, Stevinweg 1, 2628 CN Delft, the Netherlands
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A B S T R A C T

Seasonal forecasts of water availability have clear potential benefit for decisions in irrigated agriculture. This 
potential depends in part on how accurate the information provided is. The actual benefit, however, depends on 
how the information is used in the decisions, by whom, and the outcome of those decisions. In this paper we 
assess how useful seasonal forecasts are in supporting drought management decisions by farmers at the irrigation 
district level. We model the decisions irrigated farmers make on what and when to plant in the Ebro basin 
(Spain), and the interconnected decisions reservoir operators make on whether to apply curtailments to the water 
allocated to farmers. The modelled farmers are supplied from a reservoir with capacity for a single irrigation 
season and therefore their decisions are conditioned by the expected water availability through to the end of the 
season. Different farmer behaviours are considered as a function of their risk averseness and their technical 
capacity. The value of seasonal streamflow forecasts to inform these decisions is compared against that of current 
practice using extrapolated historical records, as well as against a reference forecast based on climatology. Re
sults show that seasonal forecasts of water availability have skill, albeit limited. How salient information is to the 
decisions that farmers make, however, differs for each type of farmer as they take key decisions at different 
points in the season. As a consequence, seasonal forecast information is found to not serve the various farmer 
types considered equally. Our results illustrate how assessing the usefulness of information to servicing a decision 
can be approached from a combined technical and user-centric perspective.

Practical implications

Seasonal forecasts of water availability provide information that is 
useful to farmers choosing what crops to plant over the season. 
However, as we show in this research, how useful seasonal fore
casts are depends not only on the reliability of the information 
itself, but also on the context within which the decisions are taken, 
and the various needs and preferences of the different decision 
makers. Though the importance of incorporating diverse user 
needs in the assessment of the usefulness of climate services such 
as those providing seasonal forecast information is widely recog
nised, considering these various needs in the assessment of the 
value of climate services to support operational water manage
ment decisions is still limited.

Here, we use a case study where we consider the cropping 

decisions of irrigated farmers in the Ebro basin, a drought prone 
Mediterranean basin. We apply a user-based model, that considers 
the decisions made by farmers. We identify four types of farmers, 
each with different attitudes to risk and technical abilities. We 
assess the usefulness of seasonal forecast information for these 
users in a comprehensive way, considering the key crop decisions 
they make through the season. This allows us to examine the as
pects that influence the usefulness of information in supporting 
these decisions.

We find that the skill of the forecast, the salience of the informa
tion, and individual needs and preferences determine how useful 
the seasonal forecast information is for each type of farmer. Our 
results do show that the forecast information is useful to the 
decision-makers assessed, but that it is not equally useful to all. 
The usefulness depends on how uncertain water availability dur
ing the season is in a given year. For years that are clearly wet from 
the start of the season, the forecast provides little added value. 
Surprisingly for the more extreme drought years the forecast also 
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has little added value as most farmers then choose to not grow 
higher value irrigated crops but opt for the safer rain-fed options. 
Forecast information has most value in years that transition from 
wet to dry, or vice versa. The usefulness of the forecast informa
tion also depends on the options that each of the groups of farmers 
have or are willing to choose. It is also important to consider the 
time of year when decisions have to be made on the available 
options, as the skill of the forecast that they will be able to use at 
the time of making the decision varies through the year. Skill is 
lower at the beginning of the season and improves over time. This 
means that the uncertainty of water availability through to the end 
of the season reduces, as water accumulates in the reservoir over 
the season and as more farmers select their crops. The latter is 
important, as this reduces the uncertainty of water demand, which 
is an important contribution to the uncertainty on whether there is 
sufficient water to meet demand to the end of the season. The 
balance between availability and demand is a key input into the 
decisions that the reservoir operators make, as they may apply 
curtailments if there is insufficient water, which in turn influences 
the choices farmers make.

We find that farmers that have higher technical capacity have 
more flexibility to design their crop pattern in a way that key 
decisions are taken later in the season when there is less uncer
tainty on seasonal water availability and information from the 
forecast. As a result, the information obtained from the seasonal 
forecast is less critical to them, but when they do use the infor
mation they benefit from the higher forecast accuracy. Farmers 
with lower technical capacity that do not have such flexibility, and 
who may be more risk averse, do get a higher added value from the 
forecast but, as they have to make their decisions early in the 
season, they need to do it using forecast information that is less 
accurate.

Our findings underline the influence user-related factors have on 
the usefulness of seasonal forecast information for operational 
water management decisions, and the value these forecasts have 
in supporting the various decisions users make. Assessment of the 
various needs of intended users, such as in this study, provides 
important insights to the tailoring of climate services such that 
these consider the available options and differing risk attitudes, 
contributing to the usefulness of these services and importantly to 
their use.

Introduction

Early information of water availability during the hydrological year 
is critical for supporting water management decisions, but difficult to 
predict due to the variability of the climate, as well as the uncertainty of 
demand through the season and from year to year. Information on ex
pected water availability is often derived from climatology using his
torical observed flow data (Lopez and Haines, 2017; McMillan et al., 
2017). Though this is a practical approach, it risks not capturing the full 
variability due to the limited length of records, or due to changes in 
climate and in the catchment (Hall et al., 2012).

An alternative source of information to partially overcome these is
sues, is to establish seasonal water availability through seasonal 
streamflow forecasting, though the skill with which seasonal water 
availability can be forecast varies (Arnal et al., 2018; Pechlivanidis et al., 
2020).

Several studies have addressed the potential contribution of seasonal 
forecasts to inform water management decisions in a broad range of 
sectors including hydropower planning (Alexander et al., 2021; Beckers 
et al., 2016; Graham et al., 2022), food security early warning (Shukla 
et al., 2020), rain-fed agriculture (Winsemius et al., 2014), and irriga
tion planning and crop selection (Kaune et al., 2020; Steinemann, 2006). 
However, despite the apparent advantage of skilful seasonal forecasts 
demonstrated in research, the uptake by water managers and farmers 
faces multiple barriers (Antwi-Agyei et al., 2021; Bruno Soares and 

Dessai, 2016; Hansen, 2002; Lemos et al., 2012). Barriers include 
perceived lack of reliability, lack of relevance or awareness (Bruno 
Soares and Dessai, 2016), difficulty to interpret probabilistic seasonal 
forecasts (Crochemore et al., 2016), as well as risk perception (Kirchhoff 
et al., 2013). Lemos et al. (2012) classify these barriers in three cate
gories: the user’s perception of the information (e.g. accuracy, reli
ability, timeliness), the interplay of the information and the user’s 
context (e.g. existing practices, technical capacity, risk aversion), and 
the interaction between the information producers and users.

Studies on the value of seasonal forecasts for water management tend 
to focus on the skill of predictions of climate variables required by de
cision makers, such as precipitation and streamflow. However, as a 
result of the barriers to the uptake and usage of seasonal forecast, it is 
increasingly recognised that better skill alone does not necessarily lead 
to added value and there is a need to consider the context in which the 
information is used (Findlater et al., 2021; Ritchie et al., 2004; Turner 
et al., 2017). Crochemore et al. (2016, 2021) set up participatory games 
to explore how seasonal forecasts are used to support reservoir operation 
decisions and assess the perceived value of this information, observing 
that improved seasonal forecasts led to better decisions. Golembesky 
et al. (2009) assess the utility of a 3-month lead-time streamflow forecast 
product in combination with a reservoir operation model to improve 
management decisions, and Kaune et al. (2020) evaluate integrating a 
seasonal forecast product into the complex water allocation policy in an 
irrigation district in Australia, finding that this allows decisions on water 
allocation to annual crops to be established 1–2 months earlier than 
when based on climatological information, which is useful to farmers.

Findlater et al. (2021) call for considering social aspects when 
assessing climate services, such as seasonal forecasts. Examples of such 
integration in climate services assessment can be found for disaster 
adaptation decisions, in which socio-hydrologic approaches such as 
agent-based models are increasingly being used to account for the 
behaviour of individuals or groups in decision processes (Aerts et al., 
2018; Schrieks et al., 2021; Wens, 2022), and for farmer’s crop decisions 
(Alexander and Block, 2022; Yuan et al., 2021).

Considering the behaviour of users in response to the provision of 
seasonal forecast information is limited among studies that assess the 
value of climate services that support operational water management 
decisions. Li et al. (2017) apply a process-based agricultural model 
coupled with a farmers’ decision model over a period of 5 years to assess 
the value of different seasonal forecast products, showing that farmers 
attitudes to risk have an impact on the operational value of the products. 
Giuliani et al. (2020) explore the impact of forecast system setup and 
operator risk averseness on the value of seasonal forecasts for the 
operation of a lake with irrigation and flood control objectives, though 
their focus is on the behaviour of the operator in allocating water, rather 
than the farmers and the decisions they make, which influence demand. 
They suggest further research in different locations and decision con
texts is required to develop general conclusions on the value of seasonal 
forecasts and their potential to improve decisions. These two studies do 
show that the attitudes users, such as farmers and reservoir operators, 
have to risk can have an impact on the operational value of the seasonal 
forecast products.

In this paper, we extend this work on assessing the potential value of 
climate services as a function of the behavioural response of users to 
seasonal forecast. We apply a user-based model of the decisions on what 
and when to plant in an irrigation district in a drought-prone area to 
assess how useful seasonal streamflow forecasts are in supporting 
farmers in making these decisions. The model also considers the inter
linked reservoir operator decision on whether to apply curtailments to 
water allocations so as to preserve water and ensure supply through to 
the end of the season. In addition to three levels of risk averseness, our 
decision model considers two types of farmers, each with different levels 
of technical capacity. This determines whether they can plant a single or 
a double crop and influences the multiple paths they can follow to adapt 
their decision to the available information on water availability as the 
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season evolves. This allows us to look at the role of the timing of the 
decision and available options, as well as how the usefulness and value 
of the seasonal forecasts changes during the season and from year to 
year.

Methods

Study area

We select an irrigation district located in the northeast of the Ebro 
basin. The Ebro basin is a large (85,600 km2) and highly regulated (over 
7,900 hm3 of total storage capacity) Mediterranean basin in the north
east of Spain. The basin has a long tradition of hydraulic infrastructure 
to store and distribute water resources for agriculture (Pinilla, 2006), 
with a good and accessible data record. This tradition originates from 
the mismatch between crop water requirements (which are high in the 
summer) and the seasonality of rainfall (which peaks in spring and 
autumn and has lows during the summer, typical of a Mediterranean 
climate). The issue is exacerbated by high interannual variability of 
rainfall, which ranges between 430 and 830 mm (CHE, 2022).

The selected irrigation district is supplied by the Aragón and Cata
luña Canal (Canal de Aragón y Cataluña, CAyC, Fig. 1) and is mainly 
supplied from Barasona reservoir (92 hm3), fed by the Ésera and Isábena 
rivers. These have a combined catchment of 1511 km2. Supplying the 
irrigation district is the main use of Barasona reservoir. Groundwater use 
in the irrigation district is limited (CHE, 2022).

The period 1984–2016 was selected for the analysis due to data 
availability. This includes several drought episodes of different length 
(Linés et al., 2017), as well as wet years. The study area was the most 
affected in the basin by the drought episode in 2004–2005 (CHE, 2018).

Observed data

Streamflow. The water available for irrigation is determined by the 
accumulated inflow into Barasona reservoir from 1st of October (after 
the end of the previous irrigation season). The total inflow into the 
reservoir is established by summing the flow of the two tributaries. We 
use streamflow data from two gauging stations, Graus (Ésera River) and 
Capella (Isábena River), from the national gauging stations network 
(ROEA). The data record starts in 1931 but there are several gaps before 

1984.

Precipitation. Daily precipitation data (liquid and solid) was obtained 
from the SAFRAN dataset over Spain (Quintana Seguí, 2015; Quintana 
Seguí et al., 2016; Quintana-Seguí et al., 2017), which is based on 
interpolated station data from the Spanish State Meteorological Agency 
(AEMET), combined with ERA-Interim and available for the 1979–2016 
period at a resolution 5x5km.

The daily data was aggregated to monthly (sum per pixel), and 
spatially weighted (mean for the catchment). This dataset was also used 
to derive the three-month Standardised Precipitation Index (SPI-3) using 
the SPEI package in R (Beguería and Vicente-Serrano, 2013).

Seasonal forecasting of precipitation and streamflow

Seasonal precipitation forecasts for the 1984–2016 period are ob
tained from the ECWMF SEAS5 ensemble seasonal forecast model 
(Johnson et al., 2019), with an ensemble size of 25 and horizontal res
olution of approximately 36 km (Johnson et al., 2019). Forecasts, with a 
7-month lead time are initiated on the first day of each calendar month. 
We use these to develop an ensemble streamflow forecast for the inflow 
to the Barasona reservoir. Monthly forecast precipitation is spatially 
weighted over the catchment upstream of the reservoir, and bias cor
rected against the catchment averaged SAFRAN data through a para
metric quantile-mapping approach (Yuan et al., 2015), using the gamma 
distribution for both observed and forecast precipitation (Table S1, Piani 
et al., 2010; Zhao et al., 2017). We assess the skill of the bias-corrected 
precipitation forecasts through the correlation of the ensemble mean to 
observed monthly precipitation and the continuous ranked probability 
skill score (CRPSS), using leave-one-year-out cross validation (Schepen 
et al., 2018). CRPSS is a statistical metric to measure the skill of the 
ensemble forecasts over a reference forecast and is calculated as 
CRPSS = 1 − CRPSforecast/CRPSreference. CRPS is the Continuous Ranked 
Probability Score, a metric of the distance between the forecast distri
bution against observations (Hersbach, 2000), averaged over all fore
casts. A climatological reference forecast is obtained through randomly 
sampling the gamma distribution fitted to the observed precipitation for 
each month.

Streamflow in the basin is bi-modal, with high flows in October- 
December due to excess precipitation, and in spring (April-May) due 

Fig. 1. Study area: Canal de Aragón y Cataluña (CAyC) irrigation district in the Ebro basin.
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to precipitation and snowmelt (Supplementary material, Fig. S2). To 
forecast monthly inflows to the Barasona reservoir, we develop a simple 
stochastic model forced by the bias-corrected seasonal precipitation 
forecast ensemble. As baseflow has a longer memory (good autocorre
lation, see Fig. S3), we separate this from the observed flow using a Lyne 
& Hollick baseflow separation procedure (Ladson et al., 2013; parameter 
alpha = 0.8). This is then transformed into the standardised form using a 
gamma distribution to account for seasonality (Stagge et al., 2015), and 
an auto-regressive time series ARIMAX model (Wilks, 2011; Mishra 
et al., 2007; Valipour et al., 2013) is applied to model the transformed 
baseflow. The three-monthly Standardised Precipitation Index (SPI-3) is 
used as exogenous variable. SPI-3 is calculated using observed precipi
tation prior to the forecast initiation date, and then forecast precipita
tion for each ensemble member out to the seven-month lead time. We 
apply the ARMAX model for each of the 25 members of the bias- 
corrected precipitation forecast to establish an ensemble baseflow 
forecast to the 7-month lead time. The shorter memory (low autocor
relation, Fig. S3) quickflow, is modelled using a simple linear regression 
model against precipitation. A separate regression model is established 
for each calendar month to account for seasonality (Supplementary 
material, Table S2). This regression model is then used to calculate an 
ensemble forecast of the quickflow, which is added to the forecast 
baseflow to establish a 25-member ensemble streamflow forecast. Inputs 
to the decision model are then derived by accumulating monthly 
streamflow forecasts from the forecast initiation date to the end of 
season for each ensemble member. Where the accumulation window is 
longer than seven months, flows are extrapolated for each ensemble 
member using the currently used forecast procedure (decision model 
and extrapolation approach described in next section). The skill of 
monthly and accumulated end-of-season forecasts is assessed using the 
same approach as for the precipitation forecast, again using a leave-one- 
year-out cross validation strategy.

Modelling the cropping decisions of the farmers

The decisions farmers in the CAyC make on which annual crop to 
plant in each season are modelled with a simplified version of the de
cision model that is described in full in Linés et al. (2018), which is based 
on interviews with stakeholders in the area. Decisions are made to 

maximise economic benefits, depending on the expected availability of 
water, but are also influenced by the risk each farmer is willing to take, 
where more risk averse farmers prioritize minimizing losses. Planting 
later in the season helps reduce the uncertainty of expected water 
availability to the end of season and therefore reduces the risk of losing 
the crop due to water shortage. However, the available options to the 
farmer reduce as the season progresses, increasing the risk of having to 
leave the land fallow if conditions turn out to be unfavourable, rather 
than planting a “safe” rain-fed crop.

Fig. 2 shows the different decision paths farmers can follow when 
deciding on what crop to grow on each plot of land. In reality farmers in 
the Ebro Basin may well have multiple plots at their disposal and may 
take different decisions on what crop to grow on each, including a mix of 
annual and perennial crops. However, for the sake of simplicity we 
consider here a farmer to be the farmer of a single plot on which only one 
crop can be grown at any one time. We consider two types of farmers 
with different technical capabilities: farmers who can only plant a single 
crop each season (T1) and farmers who have the technical capacity to 
plant a second crop after the first one is harvested (T2). This double-crop 
is invariably short-cycle rainfed barley (SCB) during the winter, fol
lowed by a short-cycle irrigated maize (SCM) crop planted in May if 
water availability is considered sufficient. If availability is considered 
insufficient in May, the land is left fallow. Short-cycle maize is less 
productive than long-cycle maize and therefore requires more efficient 
techniques to make it worth the investment, particularly in relation to 
irrigation methods such as drip irrigation. The option of planting two 
crops is therefore considered only by farmers who avail of these tech
nical capabilities.

For the single crop farmers there are different options, depending on 
the level of risk the farmer is willing to take. Three levels of risk toler
ance are considered: low (RL), medium (RM) and high (RH). The single 
crop can be either long-cycle rainfed barley (LCB) planted in November, 
short-cycle rainfed barley (SCB) planted in February, or long-cycle 
irrigated maize (LCM) planted in April. Maize is more productive than 
barley and therefore preferred, but it is more expensive to plant and can 
result in higher losses if the crop is lost due to drought conditions and 
subsequent shortage of water. LCB is more productive than SCB but 
needs to be planted earlier in the season. This poses a lock-in as the 
decision to plant barley prevents the farmer to plant the more productive 

Fig. 2. Crop options for the different types of farmers: single-crop farmers (T1) and double-crop farmers (T2). For single-crop farmers three levels of risk tolerance 
are considered: low (RL), medium (RM) and high (RH). The arrows mark the decision path each type of farmer follows, which depends on the expected water balance 
at the end of the season. Blue (red) circles indicate the path that is followed if a positive (negative) balance at the end of the season is expected. White circles indicate 
that the path is followed irrespective of water availability. Decision months are highlighted in dark blue, with the decision assumed to take place at the beginning of 
the month.
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maize crop if conditions improve. Risk averse farmers prefer to secure a 
crop, even if it is less profitable, rather than waiting to see if conditions 
improve and risking having to leave the land fallow if the expected water 
availability is not enough to irrigate the maize crop. More risk averse 
farmers (RL) therefore go for the safe option and plant LCB in November 
if the expected availability is not good at that time. Medium risk averse 
farmers (RM) in contrast wait until February to decide and then plant 
SCB if expected water availability is insufficient to support the preferred 
LCM crop. The least risk averse farmers (RH) wait until April and then 
choose either to plant LCM or leave the land fallow. If during the irri
gating season water is considered insufficient to support the demand of 
the irrigated crops planted following decisions made, allocated water is 
curtailed by the operator, with all irrigated annual crops receiving the 
same reduction.

Table 1 presents the proportions for each type of farmer in the area, 
with 35 % of the farmers planting one crop per season (T1), and 65 % 
two crops (T2) (based on Lloveras Vilamanyà et al., 2014). Three levels 
of risk aversion are considered for T1 farmers. Annual crops cover a third 
of the total area, while the other two thirds are predominantly covered 
in equal parts by two permanent irrigated crops, alfalfa and peaches. 
These permanent crops have priority to be irrigated over maize when 
water is scarce (Linés et al., 2018).

Farmers base their decision on their perception of sufficient water 
availability during the season to grow irrigated maize, which is calcu
lated as the balance between the expected availability of water and the 
expected demand of irrigated crops through to the end of the season if 
the options for good water availability are selected. The information on 
expected water availability is provided by the reservoir operators who 
also use the balance between supply and demand to decide whether to 
apply curtailments to water allocations, in this case we use perfect in
formation of demand when establishing the balance for the reservoir 
operator to focus on the decision of farmers and the availability of in
formation. Farmer decisions that occur before the start of the irrigation 
season (November, February and April, see Fig. 2) consider the total 
demand if LCM and SCM are planted by T1 and T2 farmers respectively 
(D1 demand, i.e. demand resulting from all farmers planting the good 
water availability options in all the decisions that remain), while de
cisions made in May, consider the total demand since the start of the 
irrigation season plus the additional demand if SCM is then planted by 
T2 farmers (D2 demand). Both D1 and D2 include the demand of the 
permanent crops (alfalfa and peach). A positive balance indicates the 
expected availability is enough to plant the maize crop. We consider four 
scenarios to inform expected availability to the end of the season: 

− Historic extrapolation (HE): Water availability to the end of season is 
based on percentiles of the historic record. The climatological 
percentile of the observed inflow accumulated up to the decision 
moment is determined, and this is then used to extrapolate the total 
inflow to the end of the season by taking the value of total accu
mulated inflow at the end of the season corresponding to that 
climatological percentile. This is the current approach used by the 
reservoir operator.

− Seasonal streamflow forecast (F#): Water availability to the end of 
season is based on the accumulated ensemble streamflow forecast. 
The numeral indicates the non-exceedance decile of the ensemble 
(F10-F90), or the ensemble mean (FM).

− Perfect streamflow forecast (Fp): Water availability to the end of 
season is based on streamflow model driven by observed precipita
tion from SAFRAN. This scenario serves to check the relative 
contribution to the error by the hydrological model used for the 
streamflow forecast.

− Perfect information (P): Water availability to the end of season is 
based on the observed streamflow, thus assuming that reservoir 
operators and farmers have perfect knowledge of how much water is 
available.

As the available conservation storage in the reservoir is expected to 
be depleted during each irrigation season, the annual availability of 
water is determined by the variable inflow to the reservoir during the 
hydrological year.

Perfect information of crop water requirements over the season is 
used in all scenarios, so the differences come from the estimation of the 
future availability alone. Yield estimations and monthly water re
quirements of the crops planted are obtained through simulation with 
the AquaCrop-OS (Foster et al., 2017) and Cropwat 8.0 (FAO, 2000) 
models. Default parameters for each of the crops are used, adapted to the 
Ebro basin calendar and the two different types of maize considered 
(Foster et al., 2017). The monthly water requirement values obtained 
are assigned to the first day of each month in the decision model.

In the decision model, the yield obtained from the crop models is 
multiplied by the number of hectares planted. Curtailments are applied 
in the decision model when the expected water availability until the end 
of the season is estimated to not be sufficient to fulfil the demand of all 
irrigated crops. Curtailments are then applied as a reduction of the 
irrigated areas of the variable (irrigated) crops. Crops in areas no longer 
irrigated are considered to be lost. The reduction in the irrigated crop 
area is determined proportional to the availability such that the con
servation storage of the reservoir is depleted after considering the water 
requirements of all crops.

Evaluating the benefit of decisions

Selected forecast verification scores are calculated to evaluate the 
outcomes of the decision model informed by each of the scenarios (HE, 
Fp, F#). The scores considered are summarised in Table 3 and are 
calculated through a confusion matrix, comparing the outcome (i.e. the 
crop selected) of the crop model in each of the scenarios against the 
outcome of the decisions made using the perfect information scenario. 
The decisions made under perfect information are either planting maize 
(LCM for T1 farmers or SCM for T2 farmers), if there is sufficient water to 
irrigate during the season, or selecting the preferred non-irrigated op
tion in the case of insufficient water. The preferred non-irrigated option 
corresponds to LCB for RL, SCB for RM farmers, and leaving the land 
fallow for RH and T2 farmers. As summarised in Table 2, if the outcome 
in the tested scenario matches the outcome in the perfect information 
scenario, then we classify the result as a true-positive if the farmers opt 
to plant maize, as this is the preferred option, or a true-negative if they 
opt for the preferred non-irrigated option. Otherwise, if the outcome in 

Table 1 
Model parameters.

Parameter Value

Proportion farmer types 0.35 (T1), 0.65 (T2)
Proportion risk aversion 

levels
1/3 (RL), 1/3 (RM), 1/3 (RH)

Proportion crops 1/3 (alfalfa), 1/3 (fruit), 1/3 (variable: barley and 
maize)

Table 2 
Possible outcomes of the comparison between the crop selected using the perfect 
information (PI) scenario and the crop selected for each of the tested information 
scenarios. Note that the option to leave the land fallow is also considered as a 
(non-irrigated) crop option in scoring.

Option selected in PI 
scenario

Option selected in test 
scenario

Result

Preferred irrigated crop Same option True-positive (tp)
Preferred non-irrigated crop Same option True-negative 

(tn)
Preferred irrigated crop Alternative option False-negative 

(fn)
Preferred non-irrigated crop Alternative option False-positive (fp)
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the perfect information scenario is maize and in the selected scenario it 
is not, then we classify the result as a false-negative, while if the outcome 
in the perfect information scenario is the preferred non-irrigated option 
and in the other scenario it is something else, then the result is classified 
as a false-positive.

The scores above do not consider the application of curtailments, but 
only evaluate the decision made as a function of the information sce
nario used. If curtailments are applied, then these may reduce the yield 
and consequent profits due to the crop options selected. We determine 
the relative economic value (Zhu et al., 2002) of the decisions made as 
the total benefit obtained from the crops with decision based on each of 
the scenarios (F#) for forecasting water availability to the end of season, 
compared to the benefit obtained using the current (HE) forecast 
applying a skill score function (Stanksi et al., 1989): 

RV =
BenefitF − benefitHE

BenefitP − benefitHE
(1) 

The relative economic value (RV) ranges between − ∞ and 1. RV = 1 
corresponds to perfect information. RV = 0 means that the information 
does not contribute to improving the decisions made over the reference 
(HE), while a negative RV implies that it is of more value to base de
cisions on the reference (HE).

We establish the economic benefit of decisions made using a selling 
price of 200 euro/1000 kg for barley and 225 euro/1000 kg for maize 
(Fig. S9). The costs of planting are 400 euro/ha for barley and 1400 
euro/ha for maize. Both of these parameters are kept constant for 
simplicity but, their impact is assessed through a sensitivity test. Note 
that while the selling price for barley and maize are comparable, the 
yield per hectare is higher for maize, thus explaining the preference for 
that crop. Crop yields vary with the actual weather conditions, and the 
ranges obtained in the crop model for each of the crops are 16,77–18,64 
kg/ha for LCM, 14,21–15,97 kg/ha for SCM, 2.47–5.68 kg/ha for LCB 
and 1.45–2.49 kg/ha for SCB (Table S3). This ranges are considered 
representative for the region (Gobierno de Aragon, 2021, 2024).

Results

Seasonal forecast of water availability to end of season

The model was run for each information scenario for the period 01/ 
10/1984 to 30/09/2016 with the farmer proportions indicated in 
Table 1. Fig. 3 illustrates the water balance to the end of season at each 
decision month (Fig. 2). Light blue bars indicate the expected accumu
lated inflow to the end of the season as derived from historic data (HE), 

while black dots and whiskers show the ensemble median (FM) and the 
10 and 90 percentiles (F10 and F90) of expected water availability based 
on the streamflow forecast. Dashed lines indicate the expected demand 
(D1 for the November, February and April decisions, and D2 for the May 
decisions). If the expected accumulated inflow at the end of the season 
(30th September, labelled O in Fig. 3) is greater than the expected de
mand, water availability is considered sufficient for an irrigated maize 
crop (i.e. the option marked in blue in Fig. 2 is selected). If the accu
mulated inflow to the end of season is less than expected demand, 
availability is considered poor as curtailments may then be necessary, 
and the options commensurate with poor availability are selected 
(marked in red in Fig. 2).

The observed accumulated inflow at each step is shown by the dark 
blue bars for comparison. This shows that the skill of the predicted 
availability is low in November, with accumulated inflow to the end of 
season derived from the seasonal streamflow forecast (SF, black dot and 
whiskers in Fig. 3) showing little improvement to predictions based on 
historic extrapolation (HE, light blue column in Fig. 3) when compared 
to observed availability (OBS, dark blue column in October in Fig. 3). 
Selected years do, however, show the added value of including the 
indication of uncertainty (e.g. 1988, 2004), though in the more extreme 
drought years (e.g. 2005) the final availability is well below this range. 
Predicted water availability for both methods improves markedly by 
February, with both SF and HE providing a better estimate for the 
observed accumulated inflow at the end of the season.

Comparison of decisions made under the different information scenarios

Fig. 4 shows the expected water balance to the end of season at each 
decision point, depending on the information used. Red squares indicate 
a negative water balance (availability < demand) and blue squares a 
positive water balance. These balances are used to determine the deci
sion path followed (corresponding to red and blue circles in Fig. 2) and 
consequently the crops planted by each farmer type. The figure also 
shows whether water curtailments are applied by the operator because 
of available water being deemed insufficient to meet demand. This is 
indicated by a cross or a circle for curtailments applied to LCM or SCM 
respectively. The size of the symbol represents the proportion of the 
planted crop that cannot be irrigated. For decisions made using the 
ensemble streamflow forecast, the ensemble mean (FM) is explored as 
well as five non-exceedance deciles (10 %, 30 %, 50 %, 70 %, 90 %, 
labelled F10 to F90). A non-exceedance of 10 % (90 %) represents a 
conservative (confident) expectation of water availability.

As expected, the streamflow forecast based on perfect rainfall in
formation (Fp) produces a decision pattern that resembles that of the 
perfect streamflow information (P) most, as the uncertainty derives only 
from errors of the streamflow model.

Curtailments are applied mostly when the higher deciles of the 
forecast are used (F70, F90), which is also expected as these are over
confident in predicting the availability of water, particularly for dry 
years (1989, 1991, 1995, 2002, 2011). Crop choices commensurate to 
good water availability are then too often made, leading to expected 
shortfalls. Interestingly, for the more extreme drought years (1990, 
2005, 2006, 2015, 2016) few curtailments are applied for all scenarios 
(except for the most overconfident F90 forecast). This is due to the ex
pected availability being low from the start in these years, with farmers 
then taking the non-irrigated options related to poor water availability, 
resulting in low demand. 2011 is the year in which curtailments are 
applied most as all scenarios except perfect information fail to predict 
the exceptionally dry summer, with the start to the hydrological year 
looking normal (Fig. 3). Curtailments for the HE scenario tend to happen 
when there is a wet start to the hydrological year that ends to be average 
(1994) or very dry (1995, 2011).

The final economic benefit obtained for the harvested crops each 
year depending on the information used and the type of year (wet, 
normal or dry) is shown in Fig. 5. For most years, the decision made 

Table 3 
Definition and formula for the scores selected to evaluate the outcomes of the 
decision model.

Score Formula*

Accuracy: fraction of the years in which the crop planted using 
imperfect information corresponded to the crop planted using 
perfect information.

tp + tn
n

Precision: fraction of the years in which the preferred crop was 
planted when using imperfect information that corresponded to the 
preferred crop being planted using perfect information. Same as 1- 
false alarm rate.

tp
tp + fp

Recall: fraction of the years in which the preferred crop was planted 
when using perfect information that corresponded to the preferred 
crop being planted using imperfect information. Also referred to as 
the hit rate.

tp
tp + fn

F1-score: harmonic mean of precision and recall, indicating balance 
between these two. F-score is zero when either precision or recall 
are zero, and one when both underlying scores are one (perfect 
prediction).

2tp
2tp + fn + fp

* tp: true positive; tn: true negative; fp: false positive; fn: true negative; n: 
number of years.
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using the forecast mean (FM) tends to provide a similar benefit than 
when using the current (HE) scenario. When they differ, the benefits of 
using the forecast mean are generally higher in years with a positive 
balance (1986, 1992), but so are the losses in the years with a negative 
balance (1989, 2011). Informing the decisions using the higher deciles 
(F70, F90) sometimes results in significant curtailments (1989, 1991, 
1995, 2002, 2011, 2015, 2016). Losses in 2011 are particularly high as 
curtailments affect both types of crops (LCM and SCM). Curtailments of 
smaller proportion only result in a small loss of value (1986, 1987, 
1994).

For wet years, the information used does not make a difference to the 
benefits achieved. These are years in which there is plenty of water (e.g. 
1988, 2003, 2004, 2013). Similarly, differences are small when water is 
abundant after a relatively dry start of the season (low accumulated 

inflow values in November, e.g. 1996, 1997, 1998, 2001, 2010), and for 
clearly dry years (marked in yellow in Fig. 5), although some of the 
scenarios can result in significative losses (e.g. 1991, 1995).

Influence of farmer type on forecast value

Fig. 6 shows the verification scores based on the outcomes of the 
decision model for all farmer types and information scenarios consid
ered. For all scores, the outcomes of the decision model established with 
perfect knowledge is used as the reference. For the risk averse farmers 
(RL), recall is low for the conservative scenarios (F10 to F30). This is due 
to them readily making the choice for the safer LCB crop, despite water 
availability in many years being sufficient for the more desirable LCM 
crop. Precision is high, however, as when the LCM crop is selected, it is 

Fig. 3. Accumulated inflow to the end of season estimated at each of the decision points in November (N), February (F), April (A), May (M) and observed at the end 
of the season on 30th September (O). Light blue bars indicate the expected accumulated inflow to the end of the season as derived from historic data (HE), while dark 
blue bars show the observed accumulated inflow at each step (OBS). The black dots and whiskers show the ensemble median and the 10 and 90 percentiles (F10 and 
F90) of expected water availability based on the streamflow forecast (SF). The dashed green horizontal line corresponds to D1 demand; the dashed red horizontal line 
corresponds to D2 demand. Years are marked as wet (purple), normal (green) or dry (yellow) based on the terciles of accumulated observed inflow to the end 
of season.
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indeed a good choice. For the more confident scenarios, recall increases 
while precision drops, as the more desirable crop is selected more often 
though it is not always the correct choice. As a consequence, the F1- 
score, the geometric mean of precision and recall, is low for all sce
narios for the RL farmers (with the exception of the forecast based on 
perfect precipitation as this is close to perfect information given the 
relatively small contribution of the error in the hydrological model). The 
overall accuracy, which considers the correspondence of all outcomes 
for the selected information scenario to those found using perfect in
formation, is also low. For the less risk averse RM and RH farmers, a 
broadly similar pattern is found, though all scores are marginally better, 
with improved F1-score and accuracy. This is likely due to these farmers 
taking decisions later in the season, when forecast skill improves. The 
scores for T2 farmers, who take the decision on the second crop only in 
May, are almost perfect, with only the most conservative or most 
confident scenarios showing lower performance. Though the scores of 
the different farmer types may be modulated due to the different number 
of possible outcomes, the results suggest that the T2 farmers can rely 

most on the information provided being accurate for the decision they 
make, while this is least so for the RL farmers. Moreover, the latter are 
more sensitive to forecast uncertainty, as selection of the crop to be 
planted based on a different non-exceedance probability (F#) influences 
the outcomes more than it does for the T2 farmers.

Fig. 7 shows the total benefit each type of farmer obtains over the 
period analysed (1985–2016). To calculate the benefit, we consider that 
all single crop farmers (T1, Fig. 2) have the same benefit when making 
decisions based on scenarios P irrespective of their level of risk aversion, 
as they would all select the same crops if they knew from the start of the 
season how water availability would evolve. They would then either 
plant LCM later in the season, if there is sufficient water, or LCB early in 
the season if there is not. For all other scenarios, benefits are calculated 
for each farmer type depending on the crops chosen.

Risk averse farmers (R1) have the highest overall benefit as they 
rarely end up leaving the land fallow (this only happens in 1992 for F10 
and F30, 1993 for F30, 2007 for F50 and Fp and 2008 for F70 and Fp). 
Together with R2 farmers, they then get the least curtailments, and 

Fig. 4. Decisions taken at each decision month based on the expected water balance to end of season. Blue (red) squares indicate positive (negative) water balance at 
the end of season if the preferred option is selected for each decision point (vertical axis) and information source (horizontal axis; information scenarios defined in 
Section 2.3). Circles in the lower row indicate the need for curtailments for SCM (black circle) and LCM (crosses). The size represents the proportion of the crop that 
cannot be irrigated. Years are marked as wet (purple), normal (green) or dry (yellow) based on the terciles of accumulated observed inflow to the end of season.
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especially because they have the more productive alternative option 
(LCB) for years with limited water availability. Despite the potential 
higher gain obtained from planting a double crop, T2 farmers have a 
lower overall benefit per hectare than R1 farmers. This is due to the 

losses of leaving the land fallow in some years not being compensated by 
the higher gain from SCM in the good years in the long run. Single-crop 
farmers obtain a higher benefit from overconfident scenarios (F70, F90), 
as they then more often tend to choose the more productive LCM, though 

Fig. 5. Benefit obtained each year from the variable crops depending on the information used to decide what to plant. Years are marked as wet (purple), normal 
(green) or dry (yellow) based on the terciles of accumulated observed inflow to the end of season.

Fig. 6. Scores for the outcomes of the decision model as a function of information scenario used, separated per farmer type.
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selection of a such an overconfident scenario may contradict risk 
tolerance levels, particularly of RL farmers. Conversely, for the T2 
farmers benefits for the ensemble mean (FM) and F50 scenarios are the 
highest, balancing between the more conservative F10 scenario where 
the land is left fallow in more years than necessary, and the F70 and F90 
scenarios where SCM is planted in dry years (e.g. 1991, 2002, 2011, 
2015, 2016), thus increasing demand and requiring curtailments to be 
applied, leading to losses.

In Fig. 8, we explore the relative value of each information scenario 
for the different types of farmers. We also assess the sensitivity of the 
value of information to the ratio of the profits obtained from each of the 
two crops (Maize and Barley). The relative value of information for each 
type of farmer (upper row in Fig. 8) is calculated by scaling the values 
between the benefit obtained when using perfect information (P) and 
the benefits obtained for the reference hydrological extrapolation (HE) 
scenarios, which is current practice. This shows if there is value in 
adopting the seasonal forecast to inform crop decisions over current 
practice. The results using baseline profits for each of the crops show 
that the forecast based on perfect rainfall information (Fp), which has 
the closest decision pattern to that of the scenario using perfect infor
mation in Fig. 4, performs relatively well for all types of farmers. For 
other information scenarios, there is a difference between single-crop 
farmers, who favour more confident estimate of water availability 
(high relative value obtained with F70-F90 scenarios). The relative 
value of these more confident scenarios is greater for the RL farmers, as 
these would allow them to more often choose for the maize crop, though 
RL farmers may be less inclined to follow these scenarios, given their 

lower risk tolerance. The risk of curtailments is higher for T2 farmers as 
they represent a larger total area in the irrigation district and therefore 
require more water, given that in the model they all follow the same 
behaviour. This results in a higher risk of losses, which makes being 
overconfident a less profitable option than for the single-crop farmers.

However, the benefits obtained by each type of farmer and therefore 
the relative values of the different information scenarios in our results 
depend on the ratio of profits obtained from each of the two crops 
considered, though the pattern of performance of the different infor
mation scenarios for each type of farmer remains relatively unchanged. 
When the ratio is altered by for example doubling the profits obtained 
for maize (M2, middle row in Fig. 8) or doubling the profits of barley 
(B2, lower row) the picture changes for some scenarios. With a higher 
benefit for maize, more confident scenarios improve in relative value for 
all types of farmers, as this leads to the planting of maize more 
frequently, and the increased profit of maize weighs up against the lower 
profits of barley, despite more frequent losses due to curtailments when 
maize is planted in years with poor water availability. The sensitivity 
analysis does show that as the ratio of profits is skewed more towards the 
maize crop (M2), the simplified decision model is stretched beyond its 
initial assumptions. The decision model does consider maize as the 
preferred option, but does allow for the choice of barley when water 
availability is poor. As the profits for maize increase, always planting 
maize would lead to higher benefits despite curtailments during years 
with poor water availability. This results to relative values greater than 1 
or less than − 1 (M2, middle row Fig. 8), which are not realistic. The 
limits of the model would similarly be stretched if profits for barley 

Fig. 7. Benefit per hectare over the whole period by farmer types, with RL the most risk averse single crop farmers, RH the least risk averse single crop farmers and 
T2 the double crop farmers.

Fig. 8. Relative value (RV) of information over the period of study for each farmer type and information scenario. Upper row shows RV using baseline (bsl) profits for 
each crop. Middle row shows RV when profits for Maize are doubled (M2), while lower row shows RV when profits for Barley are doubled (B2).
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would be greater than those of maize.
Changes in the profit ratio of the two crops have less impact on the 

relative value of information for T2 farmers as they always plant SCB, 
and the only decision modelled is whether they plant SCM afterwards. 
With a higher value for maize, overconfident scenarios again do improve 
in relative value as the opportunity cost of leaving the land fallow is 
compensated by the higher gain obtained from maize in good years, 
compared to the lower losses incurred due to curtailments imposed in 
the not so good years.

Discussion

Is the forecast information good enough to be useful?

Quality, or skill, of a forecast in predicting the variables of interest to 
decision makers is an important aspect to credibility (Bojovic et al., 
2022; Peñuela et al., 2020), and pre-requisite to usefulness (see e.g. 
Bennett et al., 2016; Shukla et al., 2020; Winsemius et al., 2014; 
Anghileri et al., 2016). Our assessment of the skill of the bias corrected 
precipitation seasonal forecasts over the Barasona catchment, shows 
that though correlation of the ensemble mean is positive for all forecast 
lead times (see Supplementary material, Fig. S5), skill reduces sub
stantially beyond the one-month lead-time. CRPSS also shows positive 
skill compared to the climatological reference for one-month lead time 
but decreases to zero or marginally negative skill at longer lead times. 
This reflects the poor seasonal predictability of precipitation in this re
gion of Europe (Crespi et al., 2021). Although a more elaborate bias 
correction method may result in a slightly increased skill, this is ex
pected to be minor given the positive correlation of the ensemble mean 
to the observed precipitation at all lead times (Zhao et al., 2017). For 
streamflow, forecast skill is better than for precipitation (Fig. S6), with a 
correlation of > 0.6 of the ensemble-mean to observed flows. This is 
attributed primarily to the skill in predicting the longer memory base
flow component, with the skill of the fast response (quickflow) compo
nent poor. We also assess skill of the accumulated streamflow forecasts 
to end of season (Fig. S7), as this is the variable that is used in the de
cision. This indicates good correlation for most months, except in 
November and in the spring snowmelt season, where the simple 
regression-based quickflow model performs worst due to the absence of 
snow accumulation and melt. The low CRPSS values, with the forecast 
being reliable for most months (except November), tested using the 
Probability Integral Transform (Zhao et al., 2017) (Fig. S8) suggests that 
the ensemble spread is too wide (underconfident). The strong correla
tion of the streamflow forecast model forced with perfect precipitation 
indicates that loss of skill with lead time can primarily be attributed to 
the uncertainty in the forecast precipitation, as well as the poor per
formance of the quickflow model. The skill of the streamflow forecasts 
we find compare to those found by Pechlivanidis et al. (2020) in the 
Northeastern part of the Iberian Peninsula using a conceptual hydro
logical model, which includes snow accumulation and melt. Though a 
more complex model could improve skill here, the good skill of the 
baseflow forecast, which accounts for 73 % of the annual flow suggests 
this may only provide marginal improvement to the skill of the forecast 
of the volumetric decision variable.

In what context is the forecast information useful?

Although there is (limited) skill in the streamflow forecasts, whether 
the information provided is useful depends on the context in which the 
forecast is used as well as on the users themselves (White et al., 2022). 
To be of value, information not only needs to be credible through being 
scientifically sound, but also salient to the decision in which it is 
intended to be used (Bremer et al., 2022; Cash et al., 2003) so that users 
can act on it (Hansen, 2002; Macauley, 2006). The decision model we 
develop here for the different types of farmers of annual crops in the 
selected irrigation district in the Ebro basin, maps out the decision points 

they make. This is, however, clearly a simplification of the true diversity 
of farmers in the region and their behavioural choices. Indeed, the model 
used here is simplified compared to the more elaborate model used to 
evaluate farmer decisions in the same irrigation district in Linés et al. 
(2018). The model could be further expanded to include the permanent 
crop farmers, to represent whether the curtailments to the annual crops 
are indeed achieving their aim of avoiding the losses in those permanent 
crops. Despite its simplicity, the decision points identified through the 
cropping season are the points when farmers may act on seasonal fore
casts of water availability through their crop choice. Similar approaches 
to mapping out decision points of corn farmers in the US (Haigh et al., 
2015) and Argentina (Bert et al., 2006), or livelihood calendars for 
maize farmers in Malawi (Calvel et al., 2020) have been used to support 
a qualitative assessment of the usefulness of climate information. Here 
we extend these through a quantitative modelling of the interconnected 
decisions of irrigated farmers and reservoir operators. This shows that 
information is more relevant at the beginning of the season when water 
availability is more uncertain, though this is primarily so for the T1 type 
farmers who need to take a decision early in the cropping season, in 
particular the more risk averse farmers (RL). However, higher uncer
tainty early in the season results in a lower overall accuracy of the 
forecasts to the RL farmers, as well as lower precision and recall when 
compared to decision made using perfect forecast information. For 
farmers that have the option of two crops (T2), the uncertain early 
season information is less relevant than the forecast information in May, 
when most of the seasonal accumulated inflows are already in the 
reservoir, though the streamflow forecast in May is also uncertain due to 
the poor snowmelt prediction of the model used. The forecast then 
supports T2 farmers’ choice between cropping an irrigated crop or 
leaving the land fallow in dry years, which is the action taken when 
considering the more conservative inflow scenario.

Whether information provided is salient to the decisions farmers 
make also depends on water availability. In wet years, when there is 
plenty of water, the seasonal climate information does not make a dif
ference, as all information scenarios indicate sufficient water to support 
the crops. Similar results by Kaune et al. (2020), show that seasonal 
forecast information is most relevant when it provides resolution to the 
decision being made. This is also found by (Golembesky et al., 2009), 
who conclude that when the reservoir capacity is much larger than the 
maximum potential seasonal demand, then information on water 
availability is of lesser value. Interestingly our results also show that 
information is less useful in the more extreme dry years. This insight is 
gained through the modelling of the interlinked decisions of the farmers 
in their choice of crop, and of the reservoir operators in applying cur
tailments when demand due to the farmer decisions exceeds available 
water. Our results suggest that in years with more extreme droughts (e.g. 
2005, 2006, 2015, 2016), water scarcity to irrigated agriculture may be 
less an issue if most farmers choose to leave the land fallow or choose the 
rain-fed crop to avoid the losses as assumed in the model, thus reducing 
demand for irrigated water.

To whom is the information useful?

The decision analysed shows that information provided by the sea
sonal forecast is not equally useful to all types of farmers at each of the 
decision points. The four types of farmers we consider here, have 
different options available to them. The options available, and as 
described in the previous section, the timing associated with each of 
those options, play a key role both in the benefit they obtain, and the 
usefulness of the information provided by the forecast. Farmers who 
have the option to make their crop choices later in the season can rely 
more on information being more accurate. This is the case for the T2 
farmers who only use the forecast in May to select whether to plant a 
second crop. The decisions made at this stage in the season are also less 
sensitive to the uncertainty in the forecast, though this also means that 
the seasonal forecast is less salient than to farmers who are taking the 
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highest risk, such as RM and RH as for them selecting the wrong option 
has a higher cost. The results therefore imply that the farmers with a 
higher technical capacity (T2), whose available options are less affected 
by the uncertainty of the forecast, benefit from the forecast being more 
accurate when they need it. This raises questions on the equity of climate 
services provision (Greene and Ferguson, 2023), as the more advantaged 
farmers stand to benefit most. The more risk averse RL farmers are also 
more sensitive to uncertainty in the forecast and so may be less inclined 
to using the information provided to their benefit.

The different types of farmers favour different information scenarios 
depending on their options and their attitude to risk. When the benefits 
are considered over a multiyear period, T1 farmers benefit from over
confident scenarios, as the higher benefit obtained in years with good 
water availability compensates the losses incurred by curtailments in 
other years. T2 farmers, instead, benefit from more balanced scenarios. 
Being a larger group, T2 farmers have a higher risk of curtailments when 
they all plant an irrigated crop and therefore, they do not benefit as 
much from the overconfident scenarios. These preferences depend, 
however, on the cost-benefit ratio between the different options and 
changes when these ratios change. The decision model applied here uses 
the assumptions that maize has better value than barley and that the 
value for both crops over the whole period is constant. In reality, prices 
change every year, even varying from week to week, and may also be 
subject to (European) subsidies (Gil et al., 2013; Linés et al., 2018). This 
adds uncertainty and complexity to the actual decision of farmers. The 
simple decision used here also includes other assumptions, with a 
limited and fixed number of options for each type of farmer, the same 
cost of planting for both types of farmers, a constant proportion of 
farmers in each group, and all farmers of a given type or risk aversion 
level making the same decisions. The latter has some impact on the re
sults as when the water availability is not enough for all of them to plant 
an irrigated crop, they will all choose the alternative option, despite 
water availability being sufficient for some to plant the irrigated crop. 
Allowing for more heterogenous decisions per farmer type may then 
result in a higher value for the group. We also assume that all farmers 
have the same access to information and capacity to understand it, 
which are also factors that influence the use of information and may 
introduce inequalities (Lemos et al., 2010). Additionally, we assume that 
attitude to risk is constant, which in reality may change in time and 
experience with forecasts.

Developing a full agent based model, with agents formed by groups 
of farmers and their behaviour defined by decision rules (Helbing, 2012; 
Huber et al., 2018) would allow for more individual and heterogenous 
behaviour, and agent-based models have previously been applied to 
understand drought adaptation behaviours (Schrieks et al., 2021; Wens 
et al., 2019), seasonal forecast uptake by farmers (Alexander and Block, 
2022) and farmer’s crop choices (Yuan et al., 2021). Although the model 
we use here has some characteristics of an agent-based model, more 
simple models or game scenarios (see also Giuliani et al. (2020) and 
Crochemore et al. (2021)) are helpful to isolate the impacts on the 
usefulness of the information provided to the four types of user 
considered, and contribute to increase the understanding of different 
decision maker’s needs. This can inform the design of climate services to 
meet those needs, thus improving usability (Lemos, 2015).

Conclusions

This paper aims to bridge the gap between technical evaluations of 
the usefulness of seasonal forecasts, and human-centred approaches that 
evaluate how useful forecasts are to actual decisions users make. We 
assess the usefulness of seasonal forecasting in supporting decisions in 
irrigated agriculture in the Ebro Basin in Spain through a user-based 
model of farmer decisions on what and when to plant, which is condi
tioned by water availability and the interrelated decision of water 
managers on when to apply curtailments should shortages occur during 
droughts. We consider two types of farmers with different available 

options depending on their technical capabilities, as well as differing 
levels of risk aversity. This allows the usefulness of information to be 
illustrated through three key angles: 

− Credibility: We show that seasonal forecasts of water availability to 
the end of the season have positive skill, even using a simple 
streamflow prediction model. Though seasonal precipitation fore
casts have only limited skill, the memory of the baseflow response 
contributes to improved skill of streamflow predictions. Accuracy of 
the information on which decisions are based is important to this 
being considered credible by users.

− Salience: How useful the seasonal forecast information is, depends on 
how relevant it is to the decisions informed. The different types of 
farmers considered take key decisions at different times in the sea
son, depending on their options. Forecasts are most relevant to the 
farmers that are more risk averse and have fewer technical capac
ities, as these need to take decisions early in the season, when water 
availability to the end of season is most uncertain. The relevance of 
the seasonal forecasts also varies between years and is low for years 
that are clearly wet from the outset. Interestingly, we find that 
forecasts are also less relevant in years that are clearly dry from the 
start, as then demand for irrigation is lower due to farmers opting 
choosing a rainfed option. Seasonal forecasts are most relevant in 
years that are changeable, such as those starting wet and then 
following a drier path, or vice versa.

− Equity: The results also show that how useful the forecast is to a user 
depends on their individual behaviour. This means forecast infor
mation does not serve all the farmers equally. Farmers with higher 
technical capacity have more flexibility to design their crop pattern 
in a way that decisions are made later in the season when there is less 
uncertainty on seasonal water availability and information from the 
forecast. Although the added value of the forecast is not high to 
them, it is useful when they do as accuracy is then high. More risk 
averse farmers with less options available stand to obtain a higher 
added value from using the forecast. However, as they need to make 
key decisions earlier in the season due to their limited technical ca
pacities, they also then make use of forecast information that is less 
accurate.

Overall, we show that seasonal streamflow forecasts are useful and 
there is benefit over the currently used approach in using seasonal 
forecast information to support the decisions farmers in the Ebro basin 
make. However, how useful forecast information is, depends very much 
on the context in which decisions are made, by whom, and the options 
they have available to them. This also means that the usefulness of 
forecast information is not equal among different users, highlighting the 
importance of not only considering usefulness of information provided 
through a service such as a seasonal forecast from the perspective of the 
information itself, but also from the perspectives of the various users, 
and the decisions they make.
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Data availability

Seasonal forecast data from ECMWF SEAS5 is available from the 
ECMWF MARS archive (https://www.ecmwf.int/). Seasonal forecast 
data (raw and bias corrected) sampled to the catchment available at 
https://github.com/lnscl/P3/tree/main/input_files/seasonal% 
20forecast.

SAFRAN data is published under DOI 10.14768/MISTRALS- 
HYMEX.1388. See https://www.obsebre.es/en/en-safran for addi
tional information.

Streamflow data from the Spanish national gauging station network 
(ROEA) is openly available at https://sig.mapama.gob.es/redes-seguimi 
ento/index.html?herramienta=Aforos. See https://www.saihduero.es/. 
Metadata: https://www.mapama.gob.es/ide/metadatos/srv/spa/ 
catalog.search#/metadata/d4ec156a-f733-4ab2-8a2c-a84f07247ff1.

AquacropOS input files (used for barley and maize simulation) 
containing the crop model parameters available at https://github. 
com/lnscl/P3/tree/main/input_files/crop_model_files. For Cropwat the 
default parameter files for alfalfa and peach were used.
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