
Delft University of Technology
Master’s Thesis in Embedded Systems

Location-aware Energy Disaggregation in
Smart Homes

Antonio Reyes Lúa

Location-aware Energy Disaggregation in Smart

Homes

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Antonio Reyes Lúa
a.reyeslua@student.tudelft.nl

31st August 2015

Author
Antonio Reyes Lúa (a.reyeslua@student.tudelft.nl)

Title
Location-aware Energy Disaggregation in Smart Homes

MSc presentation
31st August 2015

Graduation Committee
Prof. Dr. K. G. Langendoen (Chair) TU Delft
Dr. Venkatesha Prasad R (Supervisor) TU Delft
A.U.N. Srirangam Narashiman (Daily Supervisor) TU Delft
Dr. ir. Alexandru Iosup (External Member) TU Delft

Abstract

Providing detailed appliance level energy consumption may lead consumers
to understand their usage behavior and encourage them to optimize the
energy usage. Non-intrusive load monitoring (NILM) or energy disaggreg-
ation aims to estimate appliance level energy consumption from aggregate
consumption data of households. Hitherto, proposed NILM algorithms are
either centralized or require high performance systems to derive appliance
level data, owing to the computational complexity associated. This approach
raises several issues related to scalability and privacy of consumer’s data.

In this thesis, we present the NILM-Loc Framework that utilizes occu-
pancy of users to derive accurate appliance level usage information. NILM-
Loc framework limits the appliances considered for disaggregation based
on the current location of the occupants. Thus, it can provide real-time
feedback on appliance level energy consumption and run on an embedded
system locally at the household. We propose several accuracy metrics to
study the performance of NILM-Loc. To test its robustness, we empirically
evaluated it across multiple publicly available datasets. NILM-Loc has signi-
ficantly higher energy disaggregation accuracy while exponentially reducing
the computational complexity. NILM-Loc presents accuracy improvements
up to 30% better than other traditional methods. It reaches an accuracy of
89% for the evaluated datasets.

We also detail a case study for the use of the fine-grained appliance-level
energy information obtained. We present a load scheduler that minimizes
cost and discomfort based on hourly day-ahead pricing. The proposed De-
mand Response (DR) system ensures user discomfort is minimzed by ab-
stracting patterns from past user behavior and incorporating them to the
designed cost-optimal schedule.

iv

“Do not go where the path may lead, go instead where there is no path and
leave a trail.” – Ralph Waldo Emerson

Preface

This thesis presents the work I have done in the Embedded Software group
towards obtaining my master degree in Embedded Systems. Since an early
age I have always been interested in measuring things and being able to
quantify them to, hopefully, being able to do something with that informa-
tion. However, it was not always clear what exactly certain data might be
useful for. For example, as a child I knew how many steps where required
to go from one classroom to the next one, or how many minutes in average
it took to go from my house to school depending on the route we took and
the exact minute we left home. It was then that I realized the importance of
sensors and embedded systems, even though back then I did not named them
in that way. I figured out that, in order to do that properly, I needed to have
small and convenient “gadgets” that helped me in such tasks. Moreover, I
also have always been drawn into the concept of smart homes and the idea
of how they can potentially improve our day-to-day life. Therefore, choosing
a research project that involved measuring energy consumption with “smart
gadgets” in a residential context to obtain relevant insights that can help us
improve certain aspects of our lives seemed like a perfect fit.

I would like to thank a number of people for their help. First of all, I
wish to express my most sincere gratitude and appreciation to Akshay, my
supervisor during this last year, from whom I was able to learn every day and
who always provided me invaluable guidance and support. I would also like
to thank everyone in the Embedded Software group who directly or indirectly
supported me during the duration of this project. Furthermore, I want to
let my friends and colleagues know how much I cherish their company and
input. Life is a journey and this one would not have been the same without
them. Finally, my family. Their everlasting love and never-ending support
have made me the person who I am today and continue shaping me into the
one I will become tomorrow.

Antonio Reyes Lúa

Delft, The Netherlands
31st August 2015

vii

Contents

Preface vii

1 Introduction 1

2 Problem statement 5

2.1 Related work . 6

2.2 Our solution . 7

3 Data modelling 9

3.1 Occupancy modeling . 9

3.2 Energy modeling . 11

3.2.1 Hart’s algorithm . 12

3.2.2 Combinatorial Optimization (CO) 13

3.2.3 Factorial Hidden Markov Models (FHMM) 14

4 NILM-Loc 17

4.1 Data preprocessing . 18

4.2 Priority combination . 19

4.3 Occupancy-based appliance selection 21

4.4 NILM algorithm . 21

4.5 Validation . 22

5 Evaluation and results 23

5.1 Evaluation . 23

5.1.1 Datasets . 23

5.1.2 Metrics . 28

5.2 Results . 30

5.2.1 House level results . 31

5.2.2 Appliance level results 34

5.2.3 Complexity index . 35

6 Scheduler 37

6.1 Scheduler framework . 37

6.1.1 Schedule creation . 38

ix

6.1.2 Pattern abstraction . 39
6.1.3 Schedule filtering . 40
6.1.4 Schedule selection . 41
6.1.5 Schedule enhancement 42

6.2 Results . 43

7 Conclusions and Future Work 45
7.1 Conclusions . 45
7.2 Future Work . 46

8 Appendix 51
8.1 Algorithms pseudocodes . 51

8.1.1 NILM-Loc . 51
8.1.2 Scheduler . 53

Chapter 1

Introduction

Worldwide total energy consumption in residential and commercial build-
ings is estimated to be 30-40% of generation [2] and is expected to rise due
to increased use of appliances and electronic devices. A significant part of
this could be reduced with better real-time information on appliance level
consumption statistics. With this information, users can be encouraged to
change their behavior to save 5-15% of electricity usage [3, 5]. Recently,
smart homes have brought the promise of simplifying this process by provid-
ing integral solutions that allow households to automatically coordinate with
the smart grid to optimize energy consumption. However, the cost of build-
ing a smart home is still much higher than the cost of building a traditional
one1. Moreover, this do not consider the majority of existing households
which do not possess any built-in smart capabilities. As a result and with
the surge of Internet of Things devices, affordable modular solutions that
can be incorporated to existing residential buildings are becoming more pop-
ular. These systems bring closer the benefits of smart homes to all those
people without such kind of homes.

Several systems are now available for providing feedback on energy usage.
However, such systems still lack the ability to provide appliance level con-
sumption feedback and personalized recommendations in real-time to the oc-
cupants. One of the most important benefits of appliance level usage inform-
ation is providing automated personalized recommendations by identifying
which appliances could most effectively reduce energy usage in a household.
Furthermore, fine-grained information can also be used to identify faulty
or malfunctioning appliances that consume more energy than they should.
Consequently, occupants know where the energy is being wasted. Several
utility companies, or utilities, are now interested in providing appliance level
consumption feedback as a service to their customers.

1How much does a smart home system cost?: http://www.smarthome.eu/a/

how-much-does-a-smart-home-system-cost.html

1

The most common way of obtaining appliance level information is by
deploying sensors on individual appliances in the household. Such a de-
ployment is intrusive, cumbersome to maintain and has high installation
cost. Alternatively, recent home energy monitoring techniques have utilized
non-intrusive load monitoring (NILM) algorithms that aim to break down
a household’s aggregate energy consumption into individual appliances [7].
NILM techniques are gaining popularity due to low cost sensors for measur-
ing energy usage, large-scale smart meter deployments to obtain household’s
aggregate energy consumption and inference algorithms proposed for energy
disaggregation [6, 7, 9].

However, there still exist several challenges preventing NILM techniques
to be widely adopted in households: (i) Most of the proposed mechanisms
consider only a subset of appliances – a few high energy consuming appli-
ances – for disaggregation. This is due to the exponential computational
complexity associated with the number of appliances, hence tractable only
for a small number of appliances [10]. (ii) Several appliances with similar
energy consumption profiles may exist and, moreover, each appliance may
have multiple states. Thus modeling and inferring the states of an appliance
accurately is not trivial. (iii) NILM is often performed in a centralized man-
ner with third-party services or utilities having privacy-sensitive information
of consumers. Commercially available NILM systems are required to send
smart meter data to a cloud service for energy disaggregation. This approach
raises several issues related to scalability and privacy. (iv) Lastly, only a few
NILM systems manage to provide near real-time energy disaggregation. The
ones that do provide, require detailed household and occupants information,
and utilize cloud services.

Hitherto, several NILM techniques have been proposed to address some
of the above mentioned challenges. For example, Kolter et. al [7], propose
variants of factorial hidden markov models (FHMMs) to derive appliance
level information for all the appliances in the household. The complexity of
the proposed algorithms increases with the number of appliances and exact
inference of the appliance state is generally intractable. Hart [6] proposes
a combinatorial optimization (CO) approach to find the optimal combina-
tion of appliances in different states. However, this approach cannot distin-
guish between appliances with similar states and has exponential complexity.
Other energy disaggregation techniques use additional sensors like acoustic,
magnetic and light placed near to the appliances for accurate disaggrega-
tion [11]. These mechanisms are intrusive, incur high deployment cost and
cumbersome to maintain.

Finally, regardless of the method how the fine-grained appliance level in-
formation is obtained, one important issue to resolve is how this information
is presented back to the users in a useful way. Ultimately, the idea of provid-

ing feedback to the user about their consumption statistics is to promote
better energy behavior from their side. However, simply stating which ap-
pliances are the most energy consuming might not be enough to reach that
goal. Users need help to understand the data and make sense of what it
implies. Analizing this information and organizing it into actionable sug-
gestions that actively promote improvements in energy behavior might be
as important as obtaining the fine-grained information. Therefore, in this
thesis we present a case study for the use of the fine-grained information
obtained after energy disaggregation. The proposed recommendation sys-
tem is able to inform the occupants on potential savings by deferring usage
of an appliance to the time of a day when the electricity price is lesser. To
minimize the resulting discomfort associated to the change in their daily
routines, the system takes into account the behavioral patterns of the users
to suggest cost-saving recommendations that do not abruptly disrupt those
patterns. Thus, the proposed recommendations have a higher probability to
be followed by the users and, consequently, the ultimate goal of improving
energy behavior can be achieved.

Thesis Outline

The thesis is organized as follows. We first introduce the problem and discuss
existing related work in Chapter 2. Next, in Chapter 3 we outline some
theoretical and practical foundation for understanding the characteristics
of the data streams required for energy disaggregation. Then, in Chapter
4 we explain our proposed NILM-Loc framework. This is followed by the
description of the evaluation process and the discussion of the experimental
results in Chapter 5. A case study for the use of the fine-grained appliance
level energy data obtained by NILM-Loc is showcased in Chapter 6. Finally,
we conclude and state proposals for future work in Chapter 7. Additional
information containing the pseudocodes of the implemented algorithms can
be found in the Appendix.

Chapter 2

Problem statement

Energy consumption by lighting, electronics and other consumer appliances
has surpassed every other category in the residential sector [45, 46]. This
proportion is forecasted to continue growing in the foreseeable future. To be
able to meet the required energy needs, energy consumption patterns must
be studied so the necessary response actions can be taken. However, this
presents a real challenge given that personal energy behavior itself is poorly
understood, unmonitored and uncontrolled. Users have no clear idea where
their energy is spent; they do not know when, which, and in many cases even
why their devices are currently consuming energy. Providing detailed en-
ergy consumption information enables consumers to understand their usage
behavior and potential ways to optimize their electricity usage [12]. Non-
etheless, users have very limited tools to manage their energy use, cost, and
comfort [45].

Today, appliance monitoring for energy management solutions allow to
obtain fine-grained appliance-specific energy consumption statistics. This
can be achieved by deploying smart power outlets on every device that needs
to be monitored. However, this imply extra hardware costs and installation
complexity which have avoided its widespread adoption by the public [46].

Recently, large scale deployments of smart meters have rekindled the
interest among academia and industries towards developing effective non-
intrusive load monitoring (NILM) solutions. This approach requires a single
sensor that measures the aggregated consumption from the whole household,
from which the individual consumption of each appliance is inferred. Thus,
NILM can significantly reduce the hardware costs and deployment issues of
traditional intrusive monitoring. However, what NILM reduces in hardware
requirements it also increases in software complexity. Only one single sensor
is required but mathematical algorithms must be devised to separate the
load into the different appliances that constitute it. These algorithms can
become complex enough not to be able to run them real-time nor in a local

5

system within the house due to memory and processing constraints [10].
Some commercial products in the market that offer energy disaggregation
offload the algorithmic computations to the cloud to overcome these issues,
e.g. Bidgely, PlotWatt. In turn, this raises other issues that also need to be
addressed. For example, a significant portion of users is wary about possible
disadvantages of smart grid technologies, specially showing a lack of trust
in the level of privacy [47].

Therefore, to summarize, the question we try to answer in this thesis
is if we can design a non-intrusive load monitoring system with reduced
computational complexity that can run on a local embedded system without
sacrificing disaggregation accuracy.

2.1 Related work

Hitherto, several intrusive and non-intrusive methods for monitoring en-
ergy consumption in the households have been proposed. Several NILM
algorithms have been proposed in literature to derive fine-grained appliance
level information. These algorithms rely on various techniques (supervised,
semi-supervised or unsupervised) and additional data [13]. We first provide
details on the existing algorithms and then describe how our approach en-
hances the current state-of-the-art NILM algorithms.

NILM Techniques

Unsupervised NILM techniques use no prior knowledge of the appli-
ances but often require appliances to be manually labeled and work on
low frequency (i.e., 1 Hz) data. These techniques typically rely on accur-
ate detection and modeling of the state change in the aggregate consump-
tion data [7, 15, 16]. Several variants of factorial hidden markov models
(FHMMs) to model the states of the appliances are proposed in [7, 15]. Fur-
thermore, other machine learning approaches such as artificial neural net-
works (ANNs) and genetic algorithms are also used [16]. These approaches
are computationally intensive and exact inference from models with large
number of HMMs are intractable.

Supervised NILM techniques assume that ground truth appliance level
data is available to train and develop appliance models prior to performing
disaggregation. Hart’s algorithm identifies step changes in the aggregate
electricity consumption and matches them with appliance signature data-
base to learn the states of the appliance [6]. Other approaches employ both
real and reactive power measurements for energy disaggregation [18]. These
algorithms require extensive training on appliance level data to model the
states accurately.

Semi-supervised NILM techniques avoid the need to intrusively install
sensors for deriving appliance signatures [9, 20]. Nambi et al. [9] propose
a semi-intrusive approach to determine the most optimal number of appli-
ances to be monitored for accurate energy disaggregation. Parson et al. [20]
utilize prior models of general appliance types, which are tuned to specific
appliance instances using signatures extracted from the aggregate load. In
general, due to the complexity involved in training and inference, these al-
gorithms require a high processing power system for energy disaggregation
and hence are not suitable for low power embedded systems.

Additional data considered in NILM

NILM algorithms also use different additional information (either energy
related or contextual data) to simplify energy disaggregation and enhance
its accuracy. Some algorithms rely only on real power consumption of the
household [7, 6]. However, other algorithms require both real and reactive
power for energy disaggregation [18]. Recent algorithms use information on
how loads are distributed across different phases in a household [18, 22] or use
transient and harmonic information with very high frequency sampling [23].
However, sampling at high frequency requires expensive hardware and de-
termining appliance distribution across different phases is not trivial.

Algorithms described in [24, 11] employ information provided by other
sensors as additional input for energy disaggregation. Rowe et al. [24] pro-
pose an event detector to determine the state change by sensing the elec-
tromagnetic field (EMF) in the surrounding. Kim et al. [11] utilize am-
bient signals from inexpensive sensors placed near appliances to estimate
power consumption. While the aforementioned approaches improve NILM
accuracy, they also require additional deployment and maintenance of these
sensors. Moreover, algorithms developed by using these additional data are
generally constrained to a particular dataset or a household; consequently,
making it nearly impossible to employ the algorithm with other publicly
available datasets.

2.2 Our solution

This work presents NILM-Loc framework that utilizes user occupancy in-
formation along with aggregated energy data to derive appliance level en-
ergy information. We propose a modified combinatorial optimization (CO)
algorithm to accurately infer the states of the appliances. The motivation for
using location information is threefold. First, by utilizing location inform-
ation of occupants, NILM algorithms can reduce the number of potential
appliances considered for energy disaggregation. Second, by reducing the

state explosion, the processing power and storage capacity required for dis-
aggregation are also reduced, making NILM algorithms tractable. Third,
with the large-scale proliferation of smartphones and wearables, it is now
possible to monitor location of the occupants (indoor room-level localiza-
tion) in a non-intrusive and cost-effective manner.

NILM-Loc is able to perform energy disaggregation at the household on a
low-cost embedded system such as Raspberry Pi, due to which consumer’s
privacy-sensitive data is stored and processed locally. This approach fur-
ther is highly scalable and avoids sharing of privacy-sensitive information
to the utilities. Furthermore, the proposed framework can be employed on
any dataset containing room-level location information of the occupants.
For example, SMART* [29] and iAWE [30] datasets collect occupants room-
level location information using PIR sensors. In a similar fashion, our own
collected DRED [35] dataset derives room-level location information. How-
ever, it obtains it from received signal strength (RSS) data from occupants’
smartphones or wearables. We show the efficacy of the proposed NILM-loc
framework by evaluating it across several publicly available datasets and
our own dataset. To the best of our knowledge (apart from NILMTK [10]),
we are one of the firsts to validate and compare NILM algorithms across
multiple datasets.

In summary, the main contributions of this thesis are:

1. We propose a novel real-time location aware energy disaggregation
framework (NILM-Loc) to derive appliance level information with lesser
computational complexity (Chapter 4).

2. We propose several accuracy metrics to determine the efficacy of NILM-
Loc both at house level and at appliance level. NILM-Loc was empir-
ically evaluated across several publicly available datasets (Chapter 5).

3. We provide details of a case study for load scheduling in households to
minimize cost and discomfort based on hourly day-ahead pricing. Our
algorithm employs the disaggregated data to derive appliance usage
behavior and provide cost effective schedule for a household (Chapter 6).

Chapter 3

Data modelling

In this chapter we explain the characteristics of the data streams required for
energy disaggregation. We first discuss how these data streams are obtained
and later describe the process employed to derive the required information
from them.

3.1 Occupancy modeling

In general, occupancy information is used to develop efficient energy man-
agement systems for smart homes [33]. For example, occupancy information
can be used to control the HVAC system efficiently or turn off appliances
(lights) when user has left the room. Occupancy data can be obtained using
either a direct or an indirect sensing approach. Direct sensing refers to the
method where occupancy data is obtained directly from the sensors without
any further postprocessing of such data. For example, low cost sensors such
as passive infrared (PIR), reed switches, RFID tags are used to determine
room-level occupancy information using this approach [33]. Other systems
actively trigger a biometric sensor (e.g., thumbprint/retina scanner) or re-
quire cameras in the house. However, these systems are often cumbersome
to maintain or perceived as invasive to personal privacy [44].

On the other hand, indirect sensing refers to the method where occupancy
data is derived from sensing different parameters other than occupancy.
Hence, a postprocessing step is necessary to obtain the desired occupancy
information. Indirect sensing methods can therefore make use of existing
infrastructure to acquire the data. One of the most common techniques
of indirect sensing for determining user location in indoor environments
is done by scanning radio frequency signals from WiFi and/or Bluetooth
(BT) radios. The intensity of these signals varies depending on the position
of the user within the household. Smartphones and wearables enable the
collection of received signal strength (RSS) from radio enabled devices. Some
advantages of determining indoor location of occupants using these include:

9

Room
Label

Room
Label

WiFi/BT
RSSI data

Data
preprocessing

Feature
extraction

Features

Classifier
modelFeatures

Feature
extraction

New
WiFi/BT

RSSI data

Training

Testing

Machine learning
algorithm

Figure 3.1: Localization.

1. Smartphones, and even more wearables, are personally associated and
carried by a user. This enables the possibility of a user-level energy
allocation system.

2. Change in sensor information such as accelerometer can be used to
detect user movements. This enables the option for activity monitoring
which, in turn, could enhance the accuracy of energy disaggregation.

3. Localization techniques can use WiFi and/or Bluetooth radios to identify
user location.

Classification techniques such as Bayesian, Support Vector Machines, K-
nearest neighbor, decision trees, etc., have been proposed in the literature
to derive room-level occupancy using RSS information. Most commonly,
these techniques have two main phases: training and testing. Fig. 3.1 shows
the process for obtaining user location using a machine learning algorithm.
During the training phase, WiFi scans are performed periodically at each
location. This phase is also called the fingerprinting stage, where data ob-
tained from the scans is used to learn the available APs and their RSS at
different locations. The feature vectors for different time periods at each loc-
ation are used as training set for classification. The classifier model built on
the feature vectors is used for indoor localization. In the evaluation phase,
a new feature vector is evaluated with the classifier model to determine the
room level location information of an occupant.

The data stream from a new scan includes the list of all visible access
points (APs) and their RSS values along with the timestamp information. In
case of a WiFi scan, the list of APs indicate the access points from the neigh-
boring houses, whereas the BT scan indicates the Bluetooth beacons avail-
able in the house. Currently there exist several Bluetooth enabled devices
in a household such as laptops, mobile phones, speakers, etc. Furthermore,

in the near-future most of the household appliances will be Bluetooth en-
abled 1. Bluetooth enabled devices can now determine accurately indoor
location information of the occupants. This data stream is summarized to
obtain a feature vector l, which contains mean, maximum, minimum, and
standard deviation of the signal strength for each visible access point (AP).
It can be represented as,

lt =< rssmax
t (1), rssmin

t (1), rssmean
t (1), rssstdt (1), ...,

rssmax
t (k), rssmin

t (k), rssmean
t (k), rssstdt (k) >

(3.1)

where k is the number of visible APs at time period t.

Occupancy models often use zoning systems to subdivide a single floor into
multiple rooms [44]. In our work, we make room-level divisions in terms of
logical function of the appliances; for example, kitchen, living room, base-
ment and bedroom. For the purpose of improving the accuracy of appliance
disaggregation, the ideal case would be to have a one-to-one relationship
between zones and appliances. In such a scenario, we could have a higher
certainty of which appliances are being used at the moment based on the oc-
cupancy data. However, in practical terms this is not feasible as it requires
determining the user location with an accuracy of under one meter. This is
not easily achievable using indirect sensing, and with direct sensing it would
imply over-instrumenting the household with many more sensors which, in
turn, elevates the installation and maintenance costs. Hence, it is not trivial
for energy disaggregation systems to directly use this information. In this
work, the occupancy model refers to room-level division of the household.

NILM-Loc can work with systems designed with occupancy models us-
ing either direct or indirect sensing approaches. As long as the output of
these systems include timestamped room-level location of the users in the
household, no other occupancy data is required by NILM-Loc to operate.

3.2 Energy modeling

Load monitoring can be done intrusively, which involves placing a sensor
on each different appliance in the household. In this work we focus on the
alternative non-intrusive monitoring, which measures the data from a single
point at the power meter of the household. Nowadays, there already exist
several smart meters in the market which provide almost real time feed-
back to the user of the aggregated energy consumption of the household,
e.g., Plugwise Smile P12. Non-intrusive load monitoring (NILM) provides
a more convenient method for collecting aggregated data as it requires less
number of sensors and, consequently, fewer points of failure and lower cost

1http://www.bluetooth.com/Pages/Smart-Home-Market.aspx
2Plugwise Smile P1: http://www.plugwise.com/smile-p1/

for deployment and maintenance. However, an energy disaggregation al-
gorithm is required to obtain the energy information of each appliance from
this aggregated data. The goal of an energy disaggregation algorithm is to
provide estimates of actual energy consumed by each appliance from the
aggregate energy consumption data.

Some algorithms rely only on real power consumption of the household [7,
6]. However, other algorithms require both real and reactive power for
energy disaggregation [18]. Recent algorithms use information on how loads
are distributed across different phases in a household [18, 22] or use transient
and harmonic information with very high frequency sampling [23]. However,
sampling at high frequency requires expensive hardware and determining
appliance distribution across different phases is not trivial. In this work
we aim to give a solution for energy disaggregation that is not only non-
intrusive, but one that also does not imply expensive deployment costs for
the user. Therefore, we focus on algorithms that can be implemented using
lower frequency data (1 sec to 1 min) coming from off-the-shelf sensors.
In this section we provide a description of the most widely used energy
disaggregation algorithms and explain how each of them uses the data to
infer appliance usage information.

3.2.1 Hart’s algorithm

The beginnings of energy disaggregation go back to G.W. Hart, who pro-
posed a NILM algorithm in 1992 that is based on changes of active and
reactive power of electrical appliances.

The system monitors the total load, checking for certain signatures which
provide information about the activity of the appliances which constitute
the load [6]. For example, if the household contains a refrigerator which
consumes 250 W, then a step increase of that characteristic size indicates
that the refrigerator is turned ON, and a decrease of that size indicates that
it is turned OFF. Other appliances have other characteristic signatures.
Fig. 3.2 shows an example of the appliance detection method using Hart’s
algorithm. Each event detected, i.e., each step in the signal, is matched to
the appliance with the most resembling signature.

As it can be deduced, this technique requires an appliance model that
describe the signature of each appliance found in the household. To ob-
tain these models, a training phase is carried out in the beginning. During
this period, signatures are observed and named as appliances are manually
turned ON and OFF.

Hart’s algorithm has some drawbacks that hinder its efficacy. First, it
relies on accurate event detection to accurately disaggregate the energy.
However, aggregate power is usually noisy and distinguishing a step is there-

Time

P
o
w
e
r

Refrigerator

Oven

Stove

Refrigerator

Oven

Figure 3.2: Step changes detection in Hart’s algorithm [6].

fore troublesome. This results in overlooking transitions coming from low
powered appliances whose signature’s value is comparable to the magnitude
of the noise. Moreover, Hart’s algorithm does not consider the scenario
where multiple appliances change states during the same time period. Given
the low frequency of the data, this situation may arise quite frequently.

3.2.2 Combinatorial Optimization (CO)

We provide a brief description of the CO algorithm for energy disaggrega-

tion [6]. Let ŷ
(n)
t be the estimated energy consumed by each appliance, yt be

the aggregate energy reading and the predicted state of the appliance such

as ON, OFF, Idle is represented by x̂
(n)
t . CO finds the optimal combina-

tion of appliance states, which minimizes the difference between the sum of
predicted appliance power and the observed aggregate power. It is given by,

x̂
(n)
t = argmin

x̂
(n)
t

�����yt −
N�

n=1

ŷ
(n)
t

����� (3.2)

where N is the set of all appliances in the household and t is the current
time period. Similar to Hart’s algorithm, this approach also requires an
appliance model, which includes power consumption details for each state
of the appliance. This is used during inference to predict the current state
of the appliance. The appliance models are defined during a training phase
where data from each monitored appliance is obtained. This data is then
analyzed to determine the different power states in which each appliance can
operate. This is usually obtained by applying clustering techniques. One
common method that is used for this is K-means clustering.

The computational complexity of disaggregation for T time periods is
O(TS|N |), where S is the number of appliance states and |N | is the car-

dinality of the set of all appliances, i.e. the number of appliances in the
household.

CO has several drawbacks. Firstly, this optimization problem resembles
to subset sum problem and is NP-complete. Furthermore, the computa-
tional complexity in CO increases exponentially with the number of appli-
ances. Secondly, this algorithm does not differentiate between appliances
with similar power consumption and appliances with similar states. Third,
this algorithm assumes all the appliances in the household are being mon-
itored and assigns some portion of energy to appliances even if they are not
currently used, resulting in low disaggregation accuracy.

3.2.3 Factorial Hidden Markov Models (FHMM)

R
t-1

R
t

R
t+1

S
t-1

S
t

S
t+1

Ω
t-1

Ω
t

Ω
t+1

Observation variables

Hidden states

Figure 3.3: FHMM with two underlying Markov chains.

Factorial Hidden Markov Models (FHMM) are an extension of the basic
hidden Markov model where several HMMs evolve independently in parallel,
and the observed output is some joint function of all the hidden states [7].
Fig. 3.3 shows an example of a FHMM. In a regular HMM, information about
the past is conveyed through a single discrete variable. This discrete variable
is the hidden state. FHMM allows the state to be factored into mutiple
state variable, therefore, FHMMs can be used to represent a combination
of multiple independent signals where the characteristics of each one are
described by a different Markov chain [8].

As energy disaggregation involves jointly decoding the power draw of n
appliances, hence a factorial HMM is well suited for this task [10]. The power
demand of each appliance can be modelled as the observed value of HMM.
The hidden component of these HMMs are the states of the appliances.
A FHMM can be represented by an equivalent HMM in which each state
corresponds to a different combination of states of each appliance. Such a
FHMM model has three parameters: (i) prior probability (Π) containing
SN entries, (ii) transition matrix containing S2N entries, and (iii) emission
matrix containing 2SN entries. The complexity of exact disaggregation for
such a model is O(TS2N).

As a result of its complexity, the FHMM approach scales even worse
than CO. For example, in a scenario with 14 appliances, each one with
only two states, computing the transition matrix requires 8 GB of RAM
[10]. Consequently, this makes the use of FHMMs for energy disaggregation
unsuitable for implementation in resource-constrained embedded systems.
Moreover, besides exact inference being not computationally tractable, ex-
isting implementations are highly susceptible to local optima [7].

Chapter 4

NILM-Loc

In this chapter we describe our proposed solution for improving energy disag-
gregation. We present NILM-Loc, a framework to derive accurate appliance
information using occupancy information. Fig. 4.1 shows the high level block
diagram of location-aware energy disaggregation. As previously detailed in
Chapter 3, aggregate energy consumption is obtained from the smart meters
deployed at the household. Occupancy information of the residents can be
obtained using PIR sensors, RFID tags, smartphone/smartwatch based in-
door localization, etc. In our framework, user occupancy information refers
to the room or rooms where the occupants are currently located within the
household.

Occupancy information

Appliance level energy
consumption

Aggregated energy
consumption

Energy disaggregation algorithms

CO FHMMs

Figure 4.1: Location-aware energy disaggregation.

17

Data preprocessing &
downsampling

Priority Combination Occupancy based
appliance selection

Validation of predicted
state combination

Predicated appliance state
combination

Find appliance state
combinations

Calculate sum of each
state combination

Find the closest state
combination

NILM Algorithm

IF valid

NOT valid

Figure 4.2: An overview of NILM-Loc Framework.

NILM-Loc can be used with any NILM algorithm proposed in the liter-
ature. The framework supports use of several NILM algorithms like Hart,
FHMMs, ANNs, etc. In this work, we show the benefits of NILM-Loc frame-
work with a simple NILM algorithm like Combinatorial Optimization (CO).
We introduced some changes to the original algorithm to further improve
its accuracy.

We propose a modified CO algorithm to overcome some of the drawbacks
of original CO. Our modified CO algorithm, constrains the number of ap-
pliances considered for disaggregation based on the current location of the
occupants. This results in exponential reduction in state space for disag-
gregation. Furthermore, we employ a crowd-sourced generic appliance model
from the power consumption database. For example, the power consumption
database provides crowd-sourced information on maximum and idle power
for a wide range of loads indexed by type, manufacturer, and model num-
ber1. This information can be obtained a priori based on the appliances
in the household from the manufacturers datasheet or crowd-sourced data,
thus eliminating appliance level energy modeling. However, our modified
CO requires to know the number of appliances and their location in the
household. This metadata information is collected only once and, except
from a few appliances like vacuum cleaner or hair dryer, the location of the
appliances is generally static. Fig. 4.2 shows an overview of our proposed
NILM-Loc framework and is described in detail next.

4.1 Data preprocessing

NILM-Loc framework includes preprocessing techniques that can simplify
the NILM computation and improve energy disaggregation accuracy. Our
framework can handle various data sampling rates and is designed to work
with several datasets. In general, during data collection there might be gaps

1The Power consumption database. [Online] http://www.tpcdb.com/

Time
0

200
400
600
800
1000
1200

Po
w

er
(W

)

Without downsampling
With downsampling

Figure 4.3: Downsampling.

in the data due to sensor malfunction, network connectivity, etc. Hence,
it is important to preprocess these gaps either by removing them or by
using statistical models such as smoothing, interpolation, forward filling, etc.
Furthermore, different datasets include different sampling intervals typically
from 1 second to 15 minutes. NILM-Loc applies a downsampling mechanism,
to filter transients that occur due to high starting current of an appliance.

In this work, we use filters such as mean and median to downsample the
aggregated energy data to 1 minute frequency. Fig. 4.3 shows the comparison
of refrigerator energy consumption with and without downsampling. As it
can be observed, the downsampled signal significantly reduces the transients
at the beginning of the refrigerator’s duty cycle. This step allows us to work
with cleaner data since extreme points, far from the typical operation values,
are greatly filtered out.

Sampling of 1 minute frequency was chosen because it allows having re-
duced storage requirements without sacrificing too much granularity resol-
ution, maintining the shape of energy loads really close to the original ones,
albeit eliminating the mentioned transients (see Fig. 4.4). For example,
in the case of REDD, the original space requirement for storing the whole
dataset is reduced over 20 times. Moreover, in terms of occupancy data, a
1 minute resolution gives enough information to the algorithm as, most of
the times, users spent at least that amount of time in a room when using an
appliance. As users do not move from one location to another that fast, a 1
second resolution of occupancy data does not provide more information as
compared to 1 minute, however it brings unnecessary computational burden
to the system.

4.2 Priority combination

In original CO, at each time period the algorithm tries to find the set of
appliances whose combined energy consumption is closest to the current
aggregated energy consumption. This may result in a different set of ap-
pliances being selected for consecutive time periods. The main reasons are

����
�

���

����

����

����

�
�
�
�
�

�������������������

����
�

���

����

����

����

�������������������

����
�

���

����

����

����

��������������������

Figure 4.4: Comparison of aggregated energy shape at different sampling
frequencies.

(i) the fluctuations in the aggregated value and (ii) multiple combinations
of appliances with similar combined energy consumption. Given the sheer
number of possible combinations that exists as the number of appliances
increases, even with the expected small fluctuations in the aggregated en-
ergy consumption, the closest combination to the aggregated value changes
at each time period. For example, at time period ‘t’, CO may determine
appliance TV and microwave are being currently used, at time period ‘t+1’
it may select fan and microwave, and at time period ‘t+2’ it may select TV
and microwave again. This is due to the fact that TV and fan may have
similar energy consumption profiles. In practice, this result would mean TV
is switched ON in one minute and switched OFF the next minute and so
on. Hence, it is necessary to preserve consistency in selection of appliances
during consecutive state estimations.

NILM-Loc introduces the concept of priority combination, which is the set
of appliances that are assumed to be currently running. This information
can be retrieved from the last iteration of NILM-Loc algorithm. At each
time period, NILM-Loc first evaluates the priority combination to check
whether the sum of all appliances in the priority combination matches the
current aggregated value. If the difference between the sum of priority com-
bination and aggregated energy is within a threshold δ, then the current
priority combination is retained as the prediction. NILM-Loc evaluates the
following equation to determine whether the current priority combination of
appliances is still valid or not.

|yt −
K�

n=1

ŷ
(n)
t | ≤ δ (4.1)

In this equation, K is the set of appliances present in the priority combin-

ation and δ is the variation threshold. The variation threshold parameter
ensures small fluctuations in aggregate power (yt) has minimal effect. How-
ever, when the difference between current priority combination and aggreg-
ate consumption is greater than δ, NILM-Loc finds the new set of appliances
that are used. The value of δ can be configured to adapt the algorithm to
these fluctuations in the aggregate power. This value can be either fixed or
dynamic. A dynamic value of δ allows the algorithm to vary the threshold
as the magnitude of the aggregated value changes. This is due to the fact
that the noise in the aggregate power increases as its value grows.

4.3 Occupancy-based appliance selection

If the current priority combination does not match the aggregate energy
consumption, NILM-Loc then estimates the set of appliances that could be
currently in operation. This stage identifies the set of appliances which are
considered valid. In general, the appliances considered for evaluation at a
particular time period include,

1. Appliances present in the current location of the occupants.
For example, if the current location information indicates that there
are occupants in both Kitchen and Living room, only appliances present
in these locations are contemplated during that time period for energy
disaggregation.

2. Appliances that are already “ON”. This is the priority combina-
tion, i.e. the appliances selected in the last iteration of the algorithm.

3. Appliances that are autonomous. These are appliances which can
change operation state at any given time without user intervention, e.g.
refrigerator.

4. Appliances that can be remotely controlled. For example, lights
and other smart appliances.

We refer to these appliances as our constrained set of appliances. NILM-
Loc uses this constrained set for energy disaggregation rather than the com-
plete set of appliances present in the household. If for a time period, there
is no occupancy information available, all appliances present in the house-
hold are considered for evaluation. This may occur due to malfunction of
PIR/RFID sensors, power outages, or communication network issues.

4.4 NILM algorithm

This stage finds the optimal combination of appliance states given the con-
strained set. As mentioned earlier, NILM-Loc can be used with other NILM

algorithms proposed in the literature such as FHMM. In this work, we em-
ploy a modified CO algorithm as the NILM algorithm for disaggregation.

In constrast to the original CO algorithm, we calculate the sum of all
possible state combinations only from the appliances in the constrained set
rather than from the whole set of appliances in the household. After that,
we select the closest combination of appliances that match the aggregated
energy consumption. The computational complexity of disaggregation for
T time periods in NILM-Loc is then O(TS|Nc|), where S is the number of
appliance states, |Nc| is the cardinality of the constrained set of appliances.
It is worth noticing that Nc ⊆ N , meaning that |Nc| ≤ |N |. This ensures
that for any given iteration, in the worst case, the complexity of the modified
CO algorithm using NILM-Loc is at most the same as the one from the
original CO algorithm. This case would occur only when Nc = N , however,
in practice |Nc| � |N |. This reduced computational complexity enables
NILM-Loc to determine the state of appliances in real-time.

4.5 Validation

The final stage of the NILM-Loc framework validates the set of appliances
predicted in the previous stage. Despite having already constrained the set
of valid appliances in the occupancy-based selection stage, an extra valida-
tion step is required. Occupancy-based appliance selection helps NILM-Loc
ensure not to turn “ON” an appliance when user is not present in that loc-
ation. On the other hand, validation stage ensures not to turn “OFF” an
already “ON” appliance when the appliance location is not included in the
current user location. However, this depends on the type of the appliance.
In this work, we broadly classify the set of appliances into:

1. User dependent appliances. Appliances that require user interac-
tion to turn “OFF”, e.g., TV, fan, etc.

2. User independent appliances Appliances that can turn “OFF”
themselves and require no user interaction, e.g., microwave, washing
machine, dishwasher, etc.

If the set of appliances selected in the previous stage implies one or more
user dependent appliances is being turned “OFF”, even though that ap-
pliance’s location is not included in the user locations at that moment,
then validation stage eliminates this combination of appliances. NILM-Loc
then selects the second closest combination from the previous stage and
re-validates.

Chapter 5

Evaluation and results

5.1 Evaluation

In this section, we first discuss the datasets considered to evaluate the pro-
posed NILM-Loc framework. We review the characteristics of each dataset,
examine the differences they present and explain how these differences were
dealt with. Finally, we describe the set of accuracy metrics used to study
the efficacy of NILM-Loc across several datasets.

5.1.1 Datasets

It is important to compare and evaluate energy management algorithms
across datasets from different countries due to change in usage behavior
of appliances. The Reference Energy Disaggregation Dataset (REDD) was
the first publicly available dataset to test NILM algorithms [32]. This was
followed by other datasets such as SMART* [29], iAWE [30], ECO [31],
BLUED [36], AMPds [37], UK-Dale [38] and Pecan Street [39].

To validate our work, we provide performance evaluation results of the
proposed framework across multiple datasets. NILM-Loc imports data from
popular publicly available datasets such as REDD (House no.1), Smart* and
iAWE. In addition to these, we also make use of our own collected DRED
(Dutch Residential Energy Dataset) 1. Hence, we show performance results
for four different datasets collected in different countries. To the best of our
knowledge, apart from NILMTK [10], we are one of the firsts to validate
and compare NILM algorithms across multiple datasets.

Datasets characteristics

Each dataset includes data from different set of appliances and for varying
time duration. In order to evaluate the performance of NILM-Loc across

1DRED Dataset. [Online] http://www.st.ewi.tudelft.nl/∼akshay/dred/

23

Datasets No. No. No. Occupancy
days appliances rooms data

iAWE 61 10 7 yes
SMART 93 25 6 yes
DRED 65 12 5 no
REDD 37 15 N/A no

Table 5.1: Dataset statistics considered.

multiple datasets, it is necessary to understand the characteristics of each
dataset. Table 5.1 shows the different datasets considered and the data used
for our evaluation.

Energy submetered: Fig. 5.1 shows the percentage of total energy
measured at the appliance level for all days in the dataset. Most of the
datasets do not monitor all the appliances in the household, leading to large
amounts of unaccounted energy in the aggregated consumption data. In
most datasets, these amounts account up to more than 50% of the total
energy. Furthermore, the variation of this unaccounted energy data signi-
ficantly reduces the accuracy of disaggregation algorithms. This decrease in
accuracy comes from the fact that all energy from the aggregated value is
allocated only to the known appliances even though, in reality, this energy
consumption might be coming from unmonitored ones.

DRED has around 75% of energy submetered and all other datasets have
around 45% of energy measured at the appliance level. It is clear from the
figure that DRED captures significant proportion of the energy consumed in
the household, whereas, iAWE dataset has the lowest percentage of energy
captured at the appliance level. The importance of this becomes more evid-
ent in Section 5.2 where DRED, the dataset with highest energy submetered,
is the one that presents better results.

DRED iAWE Smart* REDD
0.0

0.2

0.4

0.6

0.8

1.0 Energy submetered

Figure 5.1: Energy submetered in each dataset.

Aggregated available data: Another important statistic to be con-
sidered is the percentage of aggregated data available in the dataset. This
is the ratio of the number of data points recorded over the total number of
data points that can be collected in a day. Fig. 5.2 shows the histogram
of average aggregated data available throughout each dataset. The y-axis
indicates the percentage of days and x-axis indicates the rate of data avail-
ability. In DRED, all of the days have at least 90% of aggregated data
available (Fig. 5.2 (1)). However, this availability rate reduces for the rest
of the datasets due to communication issues or malfunctioning of sensors
deployed. For example, for iAWE, Smart* and REDD it drops to 78%, 59%
and 32% respectively.

0 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rce

nt
ag

eo
fd

ay
si

nd
at

as
et

(1) DRED

0 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0 (2) iAWE

0 25 50 75 100
Percentage of availability

0.0

0.2

0.4

0.6

0.8

1.0 (3) Smart*

0 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0 (4) REDD

Figure 5.2: Percentage of daily aggregated data available in each dataset.

Top-k appliances: In general, only a few appliances constitute the ma-
jority of power consumed in a household. Therefore, it is important to get
more accurate information for these top consuming appliances during energy
disaggregation. Fig. 5.3 shows the proportion of energy consumed by top-5
appliances and the rest of appliances present in the household in each data-
set. It is interesting to see the variation of top-5 appliances across datasets,
indicating the varying preference of appliance usage in different countries.
The top-5 appliances in DRED cover around 60% of total energy consumed
while for the other datasets they represent around the 50%.

0.2

0.4

0.6

0.8

1.0

Others Others Others Others

Fridge

Laptop

Cooker
TV
Microwave

AC1

AC2

Fridge
Laptop
TV

MasterOutlets

Dinning Outlets

Furn_HRV

DUCT_HRV

Dryer

Fridge

Lighting

Washer

KO
Dishwasher

DRED iAWE Smart* REDD

Pr
op

or
tio

n
of

 to
ta

l e
ne

rg
y

Figure 5.3: Proportion of energy consumed by top-k appliances.

(a) User dependent appliance - e.g. TV

(b) User independent appliance - e.g. Microwave

(c) Autonomous appliances - e.g. Refrigerator

Valid location inference
Invalid location inference

Figure 5.4: Location inference from REDD dataset.

Occupancy data: Finally, since NILM-Loc relies on the occupancy in-
formation collected, it is important to find the occupancy data availability
rate. The occupancy availability rate represents the ratio of total number
of occupancy data recorded over the total number of expected occupancy
data. iAWE and Smart* has occupancy rate of 76% and 36% respectively.
We further determine the relevant occupancy information that corresponds
to the amount of occupancy data available whenever there is an actual en-
ergy consumption event. For example, if an appliance currently being used
is in living room and the occupancy data includes living room as one of
the occupant’s location, then, this occupancy data is considered as relevant.
iAWE has 53% of valid occupancy information, whereas, Smart* has only
about 10%.

Location inference: As observed in Table 5.1, REDD does not ori-
ginally include any occupancy data. DRED does include occupancy data,
however, the data was not yet available at the time the experiments were
executed. Therefore, to enable fair comparison across popular datasets, we
infer user location with the help of appliance level data. As defined in Section
4.5, NILM-Loc differentiates between user dependent and user independent
appliances to accurately infer occupancy information. Fig. 5.4 shows the
locations inferred based on the appliance energy consumption information.
For a user dependent appliance, a user is present in that location when this
appliance is being turned ON or OFF (see Fig. 5.4 (a)). Similarly, for a user
independent appliance, a user is present during the ON event but may or
may not be present during the OFF event. Hence, as we cannot determine
with full certainty the user location at that moment, we label this as an
invalid location as shown in Fig. 5.4 (b).

Furthermore, special consideration needs to be given for appliances such
as the refrigerator, where occupancy information is valid only when a user

����
�

���

���

����

����

�
�
�
�
�

��������
���������������

����
�

���

���

����

����

��������
��������

���������������

����
�

���

���

����

����

��������

�������������

Figure 5.5: Location inference on dishwasher usage with and without
smoothing.

either opens or closes the door and not necessarily when it is consuming the
most energy which is when the compressor is working. Consequently, we
eliminate the compressor energy consumption and infer locations only when
the refrigerator door is opened or closed. These events can be observed
in Fig.5.4 (c) as small spikes in the energy load which are related to the
light bulb inside the refrigerator turning ON and OFF. However, we need
to distinguish between these kind of spikes and the initial spikes at the
beginning of every compressor cycle. These energy surges are still present,
albeit smaller, even after downsampling the signal. Therefore, these spikes
due to the compressor are filtered out before determining any user events.
In some cases, it may coincide that a spike due to a user event occurs at the
same moment as the spike due to the compressor’s duty cycle. Given that
the magnitude of the latter is much larger, some user events may be filtered
out in those cases.

Another challenge in inferring user location from appliance level data is
the issue with multi-state appliances. These appliances have more than
two states such as, ON, Idle, intermediate state and OFF state, e.g. dish-
washer. These appliances can vary its consumption significantly as shown
in Fig. 5.5. In a single usage cycle, the energy profile of the appliance may
go several times to intermediate states with 0W power consumption. This
circumstance, if not handled adequately, would incorrectly result in multiple
events being inferred when, in reality, they all correspond to one single event
(see leftmost plot of Fig. 5.5). In order to take care of this, our location infer-
ence module, upon determining the multi-state appliance, tries to smoothen
the energy data of the appliance to remove intermediate states with 0 power
consumption. These smoothing techniques converts the highly varying en-
ergy signal across multiple states to only one ON and one OFF event as

observed in the middle plot of Fig. 5.5. However, these two events from the
smoothed signal are not alligned in time to the corresponding events from
the original signal (they may be shifted several minutes). Hence, an allign-
ment step is required to match the point in time in which these events really
occurred (see rightmost plot of Fig. 5.5). Finally, a distinction between user
dependent and user independent appliances is necessary to distinguish if the
OFF event is considered or not. In the case of the dishwasher, as it is a user
independent appliance, only the ON event is taken into account for inferring
user location.

Please note that location information only when an appliance is being
used will be available with the above mentioned inference procedure.

5.1.2 Metrics

Several accuracy metrics both at house level and at appliance level are con-
sidered for evaluation of NILM-Loc.

House level metrics

House-level metrics characterize the energy disaggregation accuracy of all
the appliances in the household, or a subset of them, as a group. Different
metrics at house level are described below:

Fraction of total energy assigned correctly (FTE): It measures
the fraction of energy correctly assigned to an appliance and is one of the
common accuracy metrics for NILM algorithms [32, 10]. FTE is the overlap
between the actual fraction of energy consumed by each appliance and the
fraction of energy assigned to each appliance.

FTE =
�

n

min

�
n
y
(n)
t

�
n,t

y
(n)
t

,

�
n
ŷ
(n)
t

�
n,t

ŷ
(n)
t

 (5.1)

where n ∈ {1, .., N} and N is the total number of appliances. Also t ∈
{1, .., T} and T is the total time period considered.

Total disaggregation error (Te): Total disaggregation error is the dif-
ference between the total assigned energy for all appliances and the actual
energy consumed by the appliances, normalized by the total energy con-
sumed. It directly measures how well the disaggregation algorithm recovered
the total outputs of all appliances.

Terror =

�
n,t

|y(n)t − ŷ
(n)
t |

�
n,t

y
(n)
t

(5.2)

Number of appliances identified correctly (Ja): Jaccard similar-
ity coefficient is used to measure the similarity between the predicted set
of appliances (Jp

a) and the actual set of appliances (Ja
a) used over a time

period. Ja measures the percentage of appliances correctly identified by the
disaggregation algorithm.

Japps =
|Jp

apps ∩ Ja
apps|

|Jp
apps ∪ Ja

apps|
(5.3)

Number of appliance states identified correctly (Js): It measures
the similarity between the predicted set of appliance states (Jp

s) and the
actual set of appliance states (Ja

s). It indicates the percentage of appliances’
states correctly identified by the disaggregation algorithm.

Jstates =
|Jp

states ∩ Ja
states|

|Jp
states ∪ Ja

states|
(5.4)

Appliance level metrics

Appliance level metrics indicate the disaggregation accuracy per each appli-
ance in the dataset. The appliance level metrics considered are:

Proportion error per appliance (Pe): It measures the difference
between the proportion of the energy assigned to an appliance and the actual
energy consumed by the same appliance.

Perror =

�����
�

t

y
(n)
t −

�

t

ŷ
(n)
t

����� (5.5)

Normalized error per appliance (Ne): It measures the sum of the
differences between the assigned energy and the actual energy consumed by
the appliance, normalized by the total energy consumed by the appliance.
It measures how well the algorithm disaggregated the individual appliance.

Nerror =

�
t
|y(n)t − ŷ

(n)
t |

�
t
y
(n)
t

(5.6)

F1 score per appliance (F1): F1 score is a measure of test’s accuracy
and is obtained by calculating the harmonic mean of precision and recall. F1

score measures the percentage of energy correctly assigned to each appliance
in the dataset. It can be interpreted as the weighted average of the precision
and recall. A higher F1 score value indicates a better result.

F1 =
2 · Precision ·Recall

Precision+Recall
(5.7)

5.2 Results

We compare NILM-Loc disaggregation results across the four datasets de-
scribed in Section 5.1.1. We show the performance of NILM-Loc and the
original CO algorithm. Furthermore, to ensure fair comparison, both NILM-
Loc and CO utilize the same appliance models required for implementing
combinatorial optimization as described in Section 3.2.2, i.e., they both have
the same input.

We considered one week of data (the week with highest data availability
rate) across all the four datasets. In general, FTE, Ja and Js can vary
between 0 and 1, and Te can take any non-negative value. As we will further
explain below, it can be seen that NILM-Loc performs significantly better
across all the datasets for all the metrics. NILM-Loc performs better than
CO mainly due to two reasons,

1. NILM-Loc ensures that the predicted set of appliances does not vary
significantly for consecutive time periods, thanks to priority combin-
ation as discussed in Section 4.2. Original CO is sensitive to small
changes in aggregated power.

2. NILM-Loc constrains the number of appliances considered to disag-
gregate based on occupancy information, ensuring similar appliances
from a different location are not selected.

����
�

��

��

���

���

�
�
�
�
�

������

����
�

��

��

���

���

�
�
�
�
�

�����������

����
�

��

��

���

���

�
�
�
�
�

�����������������

Figure 5.6: Effect of using priority combination during disaggregation.

Fig. 5.6 shows the original load produced by the refrigerator (top) and the
resulting disaggregation output using the original CO (middle) and NILM-
Loc (bottom). It can be clearly observed the positive effect of using priority
combination during energy disaggregation. The resulting output from CO
shows an interrupted load, while the output from NILM-Loc is more con-
sistent to the original load from the appliance.

5.2.1 House level results

Fraction of total energy assigned correctly (FTE)

���� ���� ������ ����

���

���

���

���

���

���
��������������������

��

��������

���� ���� ������ ����
���

���

���

���

���

���
����������������������

��

��������

Figure 5.7: Disaggregation performance of FTE in CO and NILM-Loc across
datasets (1 week).

Fig. 5.7 shows the fraction of total energy correctly assigned across all data-
sets. It displays the performance result for all appliances in the household
(left) and for only the top 5 most consuming appliances (right). Considering
all appliances in the household, NILM-Loc obtains better results than CO.
In DRED it improves from 41% to 78%. Similarly, in iAWE it goes from
46% to 76%. In Smart* it is enhanced from the original 33% in CO to 65%
in NILM-Loc. Finally, in REDD it improves from 30% to 50%. In the case
of the top 5 appliances NILM-Loc also outperforms CO in three out of the
4 datasets. In DRED, iAWE and Smart* this metric goes from 54%, 68%,
65% to 61%, 89%, 78% respectively. In REDD, FTE considering the top 5
appliances performs better in CO than in NILM-Loc, 75% to 61%. This is
likely due to the wrong inference of locations from appliance ground truth
data in a top 5 appliance.

Number of appliances identified correctly (Ja)

Fig. 5.8 shows the result of the Jaccard similarity index between the appli-
ances consuming energy in the ground truth and the predicted output of CO
and NILM-Loc. The higher the similarity index the better the result is as it
means the output predicted by the algorithm has higher resemblance to the
actual load. Considering all appliances in the household (left), NILM-Loc
obtains better results than CO. In DRED it improves from 14% to 49%.
Similarly, in iAWE it goes from 21% to 32%. In Smart* it is enhanced from

the original 16% in CO to 54% in NILM-Loc. Finally, in REDD it improves
from 12% to 25%. In the case of the top 5 appliances NILM-Loc also outper-
forms CO. In DRED, iAWE, Smart* and REDD Ja, goes from 30%, 31%,
20% and 39% to 61%, 39%, 57% and 46% respectively.

���� ���� ������ ����
���

���

���

���

���

���
�����������������������

��

��������

���� ���� ������ ����
���

���

���

���

���

���
�������������������������

��

��������

Figure 5.8: Disaggregation performance of Jaccard Apps in CO and NILM-
Loc across datasets (1 week).

Number of appliance states identified correctly (Js)

���� ���� ������ ����
���

���

���

���

���

���
�������������������������

��

��������

���� ���� ������ ����
���

���

���

���

���

���
���������������������������

��

��������

Figure 5.9: Disaggregation performance of Jaccard States in CO and NILM-
Loc across datasets (1 week).

Similarly to with Ja, Fig. 5.9 shows the result of the Jaccard similarity index
between the predicted states of the appliances and the actual states of the
appliances in the ground truth. Considering all appliances in the household
(left), NILM-Loc obtains better results than CO. In DRED it improves from
27% to 68%. Likewise, in iAWE it goes from 37% to 50%. In Smart* it is

enhanced from the original 29% in CO to 65% in NILM-Loc. Finally, in
REDD it improves from 10% to 41%. In the case of the top 5 appliances
NILM-Loc also outperforms CO. In DRED, iAWE, Smart* and REDD Js,
goes from 31%, 37%, 26% and 10% to 71%, 47%, 64% and 41% respectively.

Total disaggregation error (Te)

���� ���� ������ ����
���

���

���

���

���

���

���
������������������������

��

��������

���� ���� ������ ����
���

���

���

���

���

���

���
��������������������������

��

��������

Figure 5.10: Disaggregation performance of Total Error in CO and NILM-
Loc across datasets (1 week).

Fig. 5.10 shows the total error of the results of CO and NILM-Loc. The
lower Te, the better results it is. Considering all appliances in the household
(left), NILM-Loc’s total error is less than the one from CO. In DRED it
improves from 1.05 to 0.57. Similarly, in iAWE it goes from 0.75 to 0.34.
In Smart* it is enhanced from the original 0.89 in CO to 0.66 in NILM-Loc.
Finally, in REDD it decreases from 1.14 to 0.91. In the case of the top 5
appliances NILM-Loc also outperforms CO. In DRED, iAWE, Smart* and
REDD Te, goes from 0.94, 0.75, 0.88 and 1.1 down to 0.53, 0.34, 0.63 and
0.93 respectively.

House level metrics over all days

Table. 5.2 shows the percentage increase in disaggregation accuracy of NILM-
Loc compared to CO for all the days across the datasets with all appliances
and top 5 appliances. For this table we consider the results from all days
of data available regardless of the availability rate they have. As it can be
seen, NILM-Loc outperforms CO with similar percentages as when only one
week of data (the week with highest data availability rate) is considered.

Dataset
All Appliances Top-k Appliances

FTE Ja Js Te FTE Ja Js Te

DRED 30.5 28.7 36.6 -37.9 22.4 23.3 36.5 -41.2
iAWE 8.5 3.2 2.2 -7.9 14.8 3.3 4.5 -9.6
Smart* 29.3 28.3 28.6 -14.4 1.9 28.1 30.4 -18.6
REDD 11.4 12.7 27.6 -13.6 -22.1 5.3 27.3 -8.8

Table 5.2: Percentage increase in performance of NILM-Loc over CO (all
days).

5.2.2 Appliance level results

Dataset
CO NILM-Loc

Pe Ne Pe Ne

DRED 5.588 0.075 2.288 0.038
iAWE 0.088 0.522 0.067 0.451
Smart* 0.127 16.45 0.108 2.261
REDD 0.070 50.98 0.053 35.24

Table 5.3: Appliance level accuracy metrics (1 week).

Table. 5.3 shows the aggregated appliance level accuracy metrics across all
datasets for one week duration. In general, Pe and Ne can take any non-
negative values. It can be seen that across all the datasets, Pe and Ne

values for NILM-Loc are lower compared to CO; indicating better energy
assignment for all appliances.

Appliance
CO NILM-Loc

F1 Pe Ne F1 Pe Ne

*TV 0.246 1.929 0.152 0.156 1.394 0.051
*Fridge 0.314 0.910 0.351 0.876 0.532 0.177
*Laptop 0.432 1.044 0.048 0.275 0.975 0.071
*Mircowave 0.090 1.006 0.020 0.424 0.615 0.016
*Cooker 0.341 0.895 0.008 0.434 0.495 0.005
Fan 0.092 3.023 0.072 0.153 1.636 0.049
Oven 0.115 0.968 0.004 0.261 0.555 0.003
Mixer 0.001 13.710 0.087 0.101 5.701 0.021
WashingMachine 0.042 33.966 0.016 0.007 10.566 0.008
Toaster 0.000 1.430 0.002 0.042 0.871 0.000
Outlets 0.099 2.583 0.066 0.026 1.831 0.013

Average 0.161 5.588 0.075 0.250 2.288 0.038
*Average Top-k 0.284 1.156 0.1158 0.433 0.802 0.064

Table 5.4: Appliance level accuracy metrics in DRED for all appliances.

Table. 5.4 shows the accuracy metrics for all appliances in DRED. Moreover,
it shows the average of each metric considering all appliances and only the
top-k appliances. It can be seen that for the top-k appliances, the average
F1 score per appliance is much higher than CO. Furthermore, NILM-Loc
has better F1 score for top-k appliances than for all appliances. Errors as-
sociated with disaggregation is also much lower for top-k appliances than
compared to all appliances. This is mainly due to removal of noisy, less
frequent and highly varying appliances present in the household.

5.2.3 Complexity index

Dataset
CO NILM-Loc

Average Maximum Average Maximum
DRED 104976 104976 7.1 972
iAWE 59049 59049 162.3 19683
Smart* 8192 8192 59.6 8192
REDD 165888 165888 72.8 41472

Table 5.5: Combinations / iteration across datasets.

Finally, we also computed the number of state combinations evaluated in
each iteration of the algorithm in both CO and NILM-Loc. We refer to this
number as the complexity index, which is an indicator of the processing and
memory requirements for the execution of the algorithms in an embedded
system. As explained in Section 3.2.2, the computational complexity of dis-
aggregation is directly related to the cardinality of the set of appliances that
are evaluated and, thus, to the number of possible state combinations that
can be generated from them. Original CO has a fixed number of state com-
binations depending upon the number of appliances and its states. However,
for NILM-Loc the number of appliances considered varies and is determined
based on the constrained set of appliances.

In iAWE and Smart* the average state combinations to be evaluated for
disaggregating a value is 59049 and 8192 for CO and it is 162 and 59 for
NILM-Loc. Similarly in DRED, CO evaluated 104976 combinations and
NILM-Loc evaluated only 7 on an average. In REDD 16588 combinations
were evaluated in CO while only 72 were evaluated in NILM-Loc. It can
be seen that across all datasets the average number of state combinations
evaluated by NILM-Loc is drastically reduced, consequently, decreasing the
computational complexity for real-time disaggregation. If we focus on the
maximum number of combinations evaluated in each dataset, Table. 5.5
shows that NILM-Loc always evaluates less combinations than CO. The only
exception for this is in Smart*, where the maximum number of combinations
is the same for both algorithms. This means that, in at least one instance,
all appliances were considered.

Chapter 6

Scheduler

In this work we present a case study for the use of fine-grained appliance level
energy data obtained by NILM-Loc. We propose a Demand Response (DR)
system that creates a house-level energy schedule of the appliances. The aim
of our scheduler is to reduce energy costs while minimizing user discomfort.
Discomfort refers to the inconvenience experienced by the consumers due
to the changes in appliances usage applied by the DR system. We further
explain how the scheduler works in the following section.

6.1 Scheduler framework

The main objective of DR programs is to balance the energy supply and
demand. Smart meters now enable two-way communication between house-
hold and utilities to provide immediate feedback on power usage and pricing
details. Utilities can now communicate the pricing details to consumers and
further induce them to shift their consumption from peak to off-peak hours,
by charging more during peak time periods [40]. In this way, utilities reduce
stress in the power grid and the costs coming from large peak loads. From
the users’ perspective, they also reduce costs, satisfy environmental concerns
and, depending on the program, they receive incentives from the utilities.
However, as DR programs involve actions to change residential electricity
demand, they imply applying changes that impact users’ daily life routines
since they are not able to make use of their appliances as they would without
the progam. In consequence, this means that the proposed changes are either
infeasible or that user comfort should be severely hampered.

Demand planning can be achieved at the consumer level via several tech-
niques including peak clipping, valley filling, strategic conservation, strategic
load growth, flexible load shape and load shifting [43]. All of them try to
reshape the load demand of the consumer. Load shifting, in particular,
involves shifting loads from peak to off-peak hours, without significantly
influencing the average load over time. To perform effective load shifting,

37

Schedule
Creation

Disaggregated data
from NILM-Loc

Pattern
Abstraction

Schedule Filtering

Schedule
Selection

Schedule
Enhancement

House level
schedule

Day-ahead
pricing

Figure 6.1: Overview of schedule generation algorithm.

consumers need to know detailed appliance level energy consumption and
also the day-ahead pricing. For this work, we propose the use of load shifting
as the load management technique. Given that our goal is to reduce costs
with only a minimal effect to user comfort, by using load shifting, appliance
usage duration remains the same albeit shifted in time.

We formulate a cost minimization problem at the consumer end by effect-
ively scheduling loads based on hourly pricing. Appliance usage patterns
of consumers are derived from the disaggregated energy data using NILM-
Loc. The objective of this case study is to show how disaggregated energy
data can be used to schedule loads effectively, to minimize the cost and the
discomfort associated. Hitherto, load scheduling algorithms do not consider
the heterogeneity of appliance usage at a household (i.e., different appli-
ances have different time sensitiveness for shifting) or require detailed user
and appliance level information for scheduling [40]. Our proposed scheduling
algorithm consider patterns in historic appliance usage by determining the
flexibility and sensitivity in shifting for every appliance. Furthermore, rule
mining techniques are used to determine the association rules associated
with the appliances. This ensures user preferences and appliance dependen-
cies are considered in deriving cost effective load schedule.

Fig. 6.1 shows an overview of our schedule generation algorithm. Our
scheduling algorithm has five stages viz., schedule creation, pattern abstrac-
tion, schedule filtering, schedule selection and schedule enhancement.

6.1.1 Schedule creation

The first step in our scheduling algorithm is to find all possible schedules
from the historic data of a household. To do so, given that the final output

of the scheduler is a one day energy schedule, we start by splitting the
historical data into daily blocks. As a result, we obtain a set of schedules
that represent past user energy behavior in a day. Thus, we create schedules
that are feasible and with minimal impact in their comfort since users have
already execute them at some point in the past.

Further to minimze discomfort, we group these schedules at different gran-
ularities (i.e., either weekdays or weekends, day of the week, etc.) and choose
the subset of them that coincides to the type of day that corresponds to the
schedule we are creating. For example, if we are designing a schedule for
a Saturday we might choose only schedules coming from past Saturdays or
from weekends. In such a way, the final proposed schedule retains a greater
resemblance to what the user typically does on that day. Despite this, it
may be possible that some of these schedules do not match user preferences
either due to huge variation in demand profile on that day or due to ar-
rival of guests in the household, etc. Hence it is necessary to determine the
representative schedules that depict user preferences.

6.1.2 Pattern abstraction

To derive the representative schedules, we apply data mining techniques on
the historic appliance usage data. We determine three indicators that show
us different aspects of the usage pattern of each appliance:

1. Flexibility coefficient. Represents the average usage duration of
an appliance in each hour of the day. This indicates the time periods
when an appliance was used previously and how much time it was used.
Fig. 6.2 shows a heat map of the flexibility coefficients of appliances
in REDD.

2. Sensitivity coefficient. Indicates the preferred time delay in usage
of an appliance. Some appliances can tolerate longer delays compared
to others. For example, the coffee machine might allow for shorter
delays than the washing machine as the user always prepares coffee
within a specific (and shorter) time period.

3. Association rules. These associations provide information on appli-
ance usage sequence. In general, the occupants have a daily routine
making it possible to use an appliance in a sequence. For example,
TV is always associated with a home theater.

This information will be used in the next step to determine the represent-
ative schedules.

� � �� �� ��

����

����������

������

���������

������������

�������������

�����

����������������

����������������

� � �� �� ��

Figure 6.2: Usage patterns of appliances in weekdays and weekends respect-
ively in REDD. Heat map depicts the average usage duration of each appli-
ance in each hour of the day normalized to the hour where each appliance
is most used, i.e., the hours with darkest blocks are the hours where the
appliance is used the most.

6.1.3 Schedule filtering

This involves selection of schedules, which most accurately represent the
user preference. From the set of schedules obtained after the creation stage,
we select the subset of schedules that respect the usage patterns abstracted
previously. Thus, we discard odd schedules that happened only a few times
or that are not representative enough of what a typical day is, i.e., schedules
where the usage of appliances do not adhere to their usual patterns or their
average durations. To do so, we select schedules that adhere to the average
flexibility coefficient of the appliances. Furthermore, we discard schedules
which do not include the associations derived earlier. Fig. 6.3 shows the
difference between a representative schedule and a non-representative one.
In the top figure it is evident how a larger number of appliances in the
schedule adhere to their average usage duration, while in the bottom figure
only a few appliances do.

At this stage, we make a difference between schedulable and non-schedulable
loads. The former ones are loads which have a direct relation with user be-
havior and thus are possible to shift, e.g. microwave, oven, dishwasher, etc.
On the other hand, non-schedulable loads are independent of user behavior.
For example, the compressor in the fridge is not directly manageable by the
user and, consequently, does not make sense trying to schedule its usage.
From this stage on, we focus on schedulable loads.

As the filtering is based on appliance level criteria, it may occur that
on a particular schedule not all the appliances comply with their average
flexibility coefficient or that not all association rules are satified. However,

in order to consider a schedule representative, a minimum percentage of
the appliances must be compliant. This setting is adjustable by the user
and determines the harshness of the filter. These filtered schedules are the
representative schedules for that household, since they include the appliance
usage pattern preferred historically by the users.

����

����

����

����

����

����

����

����

����

����

�
��

�
�
�
�
�
�

�����������

�����������������������

���� ���������� ������ ��������� ������������ ������������� ����� ���������������� ����������������

����

����

����

����

����

����

����

����

����

����

�
��

�
�
�
�
�
�

�����������

���������������������������

���� ���������� ������ ��������� ������������ ������������� ����� ���������������� ����������������

Figure 6.3: Appliance time usage duration in REDD during a typical day in
comparison to one representative schedule (top) and in comparison to one
non-representative schedule (bottom).

6.1.4 Schedule selection

From the representative schedules derived, we find the cost-optimal sched-
ule based on the day-ahead hourly pricing provided by the utilities1. The
outcome of this step is the schedule that minimizes the cost from the filtered
schedules.

� � �� �� ��

����

�

���

���

���

���

���

���������������

�����������

� � �� �� ��

����

�

���

���

���

���

���

���

P
o
w
e
r

P
o
w
e
r

Figure 6.4: Cost-optimal schedule (top) and enhanced schedule (bottom)
for a day in REDD.

1Day-ahead prices: http://www.powersmartpricing.org/pricing-table/

6.1.5 Schedule enhancement

Finally, in this last stage we try to enhance the cost-optimal schedule derived
previously. Enhancements are performed by shifitng each appliance load
based on their flexibility and sensitivity coefficients to further reduce the
cost without increasing the discomfort associated. This means finding the
schedule that satisfies the following equation,

min

24�

i=1

Ci s.t. lafc � fc
a � ua

fc and sc
a ∈ (lasc , u

a
sc) (6.1)

where Ci is the cost of energy used during each hour of the day, fc
a and sc

a

are the flexibility and sensitivity coefficients of each appliance, and lafc , u
a
fc
,

lasc , u
a
sc their corresponding lower and upper bounds.

This is an iterative approach where each appliance event is either retained
at the same time period (if the cost is lower) or shifted within the flexibility
and sensitivity range determined previously. As mentioned in 6.1.2, the
former indicates the average usage time period an appliance has in an hour
and the latter indicates the time delay the appliance can tolerate. For the
shifting process of each appliance event, we need to take care of several issues.
For example, we must ensure that we retain the event as a single block and
not subdivide it in smaller blocks to avoid more expensive hours that may
exist in between. Moreover, besides respecting the average duration an
appliance has during a particular hour, the appliance event should not span
more time than it originally did. Avoiding to do so would mean extending
the duration of the actual event while reducing its energy consumption.
Fig. 6.4 shows how the schedulable loads from the cost-optimal schedule
were shifted to obtain the enhanced schedule. Moreover, Fig. 6.5 shows a
side by side comparison of the hourly power utilized in the cost-optimal
schedule and the enhanced schedule. It also displays the hourly price of
the energy. It can be observed how the enhanced schedule has shifted some
power from more expensive hours to others less expensive.

� � �� �� ��

����

�
�
�
�
�

��������

������������
�����

Figure 6.5: Comparison of cost-optimal schedule and enhanced schedule for
a day in REDD.

6.2 Results

We evaluated our scheduling algorithm across several datasets. Fig. 6.6
shows the results from each step of the scheduler in DRED dataset. From all
possible schedules, Fig. 6.6(i) shows the filtered schedules with schedulable
and non-schedulable loads. Fig. 6.6(ii), (iii) shows the usage pattern of ap-
pliances in weekdays and weekends respectively. Fig. 6.6(iv) shows the cost
effective schedule obtained based on the day-ahead pricing. Furthermore,
Fig. 6.6(v) shows the enhanced schedule using flexibility and sensitivity coef-
ficients. Finally, Fig. 6.6(vi) shows the load shifted and the day-ahead price.
On this day, around 70% of schedulable load was shifted to achieve minimal
cost and discomfort.

(i)

(ii) (iii)

(iv) (v) (iv)

Time Time

Figure 6.6: Optimal schedule for a day in our DRED dataset.

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

The core research goal of this thesis was to design a non-intrusive load monit-
oring system with reduced computational complexity that can run in a local
embedded system without sacrificing disaggregation accuracy. We proposed
a novel location-aware energy disaggregation framework (NILM-Loc) to de-
rive accurate appliance level data. NILM-Loc can be used with any NILM
algorithm proposed in the literature. We employed a modified CO algorithm
to infer the state of the appliances. We evaluated NILM-Loc across multiple
publicly available datasets such as DRED, iAWE, Smart* and REDD. Our
evaluation shows that around 80% disaggregation accuracy can be achieved
for all appliances on DRED and iAWE datasets. Furthermore, in a given day,
up to 90% accuracy is achieved when only top-k appliances are considered
for disaggregation in DRED and iAWE. The number of correctly identified
appliances and states are 61% and 68% in DRED using NILM-Loc.

In general, all evaluation metrics registered a substantial performance
boost when using NILM-Loc. This improvement can be observed across
all datasets in both evaluation groups: all appliances and top-k appliances.
NILM-Loc also substantially decreases the computational complexity of the
algorithm by reducing the state explosion, thus, making NILM algorithms
tractable and allowing them to run on low-cost embedded systems with con-
strained resources. This enables disaggregation to be implemented locally
within the user’s household, avoiding the need of third-party systems in the
cloud that may expose sensisble private data.

Even with additional location information there are errors associated with
disaggregation due to several factors. In most of the datasets, due to lack of
knowledge on number of appliances and lack of monitoring of all appliances

45

in the household there exist a significant amount of unaccounted energy in
the aggregate consumption. Only DRED dataset monitors almost all ap-
pliances and has a very low variation in baseline consumption. Also, the
percentage of occupancy information available plays an important role in
improving the accuracy. Therefore, the datasets with lesser unaccounted
energy and datasets from which we have more accurate occupancy inform-
ation have the best results overall. Furthermore, NILM-Loc uses a generic
approximate model to find states of appliances. Accurate modeling of ap-
pliance states will further improve the disaggregation performance.

Finallly, we provide details of a case study for the use of fine-grained
appliance-level energy data. We present a load scheduler that minimizes cost
and discomfort based on hourly day-ahead pricing. Our algorithm employs
the disaggregated data to derive appliance usage behavior and provide cost
effective schedule for a household.

7.2 Future Work

The problem we investigated is complex and can be approached in many
different ways. We have identified numerous points that need improvement
or that can be further enhanced.

1. Implementation of other NILM algorithms in our NILM-Loc frame-
work apart from combinatorial optimization.

2. In the case of using smartphone / wearables for retrieving occupancy
information, data from the motion sensors of the device can be utilized
to implement gesture recognition and infer the current user activity,
e.g. cooking, watching TV, typing, etc. In turn, this information can
be used to further improve accuracy of disaggregation by constraining
even more the set of possible appliances responsible of energy con-
sumption depending on the activity being detected.

3. Development of a personalized user-level scheduler for individual oc-
cupants to manage their load. The current implementation of the
scheduler proposes a house-level energy programme that reduces costs
without penalizing comfort. Nevertheless, the resulting cost-saving
schedules can take a step further to minimize discomfort by taking
into account energy behavioral patterns from each individual in the
house. Given that NILM-Loc framework already requires user occu-
pancy data, user-specific location information can be used to allocate
energy consumption in a user-level basis. In this way, besides infer-
ring what is being used, we could also deduce who is using it. Thus,
allowing for more personalized and efficient schedules.

Bibliography

[1] Barker S., Kalra S., Irwin D., and Shenoy P., “PowerPlay: creating
virtual power meters through online load tracking,” In Proceedings of
the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings (BuildSys ’14), 2014.

[2] Energy outlook 2010. Energy Information Administration. [Online]
http://www.eia.doe.gov/oiaf/ieo/index.html, 2010.

[3] Y Guo, M Jones, B Cowan, and R Beale. Take it personally: personal
accountability and energy consumption in domestic households. In CHI
’13 on Human Factors in Computing Systems, 2013.

[4] S. Darby. The effectiveness of feedback on energy consumption. A re-
view for DEFRA of the literature on metering, billing and direct dis-
plays. 2006.

[5] C. Fischer. Feedback on household electricity consumption: A tool for
saving energy? Energy Efficiency, 1(1):79104, 2008.

[6] G. W. Hart. Nonintrusive appliance load monitoring. Proc. of the IEEE,
80(12):18701891, 1992.

[7] J.Z.Kolter and T.Jaakkola. Approximate inference in additive factorial
HMMs with application to energy disaggregation. In Proc. AIS-TATS,
2012.

[8] Ibe, Oliver. Markov Processes for Stochastic Modeling. Newnes, 2013.

[9] S. N. Akshay Uttama Nambi, T G. Papaioannou, D Chakraborty and
K Aberer. Sustainable energy consumption monitoring in residential
settings. In Proc. IEEE INFOCOM 2013.

[10] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A.
Singh, and M. Srivastava. NILMTK: An open source toolkit for non-
intrusive load monitoring. In Proc. e-Energy. ACM, 2014.

47

[11] Y. Kim, T. Schmid, Z. Charbiwala, and M. Srivastava. ViridiScope:
Design and implementation of a fine grained power monitoring system
for homes. In Proc. UbiComp. ACM, 2009.

[12] M. Hazas, A. Friday, J.Scott. Look Back before Leaping Forward: Four
Decades of Domestic Energy Inquiry. Pervasive Computing, 2011.

[13] M. Zeifman and K. Roth. Nonintrusive appliance load monitor-
ing:Review and outlook. IEEE Trans. on Consumer Electronics,
57(1):7684, 2011.

[14] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar. Non-intrusive
load monitoring approaches for disaggregated energy sensing: A survey.
Sensors, 12(12):1683816866, 2012.

[15] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han. Unsupervised
disaggregation of low frequency power measurements. In Proc. SDM.
SIAM, 2010.

[16] M. Baranski and J. Voss. Genetic algorithm for pattern detection in
NIALM systems. In Proc. SMCS. IEEE, 2004.

[17] M. Berges, E. Goldman, S.H. Matthews, L. Soibelman. Learning sys-
tems for electric consumption of buildings. In Proc. of the ASCE Inter-
national Workshop on Computing in Civil Engineering, 2009.

[18] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake. Leveraging smart
meter data to recognize home appliances. In Proc. PerCom. IEEE,
2012.

[19] A. Marchiori, D. Hakkarinen, Q. Han, and L. Earle. Circuit-level load
monitoring for household energy management. IEEE Pervasive Com-
puting, 10(1):4048, 2011.

[20] O. Parson, S. Ghosh, M. Weal, and A. Rogers. Non-intrusive load mon-
itoring using prior models of general appliance types. In Proc. AAAI,
2012.

[21] L.Farinaccio and R.Zmeureanu. Using a pattern recognition approach
to disaggregate the total electricity consumption in a house into the
major end-uses. Energy and Buildings, 30(3):245259, 1999.

[22] N. Batra, H. Dutta, A. Singh. INDiC: Improved Non-Intrusive Load
Monitoring using load Division and Calibration. In Proc. of ICMLA,
2013.

[23] S. Gupta, M. S. Reynolds, and S. N. Patel. ElectriSense: Single-point
sensing using EMI for electrical event detection and classification in the
home. In Proc. UbiComp. ACM, 2010.

[24] A. Rowe, M. Berges, and R. Rajkumar. Contactless sensing of appliance
state transitions through variations in electromagnetic fields. In Proc.
BuildSys. ACM, 2010.

[25] D. Jung and A. Savvides. Estimating building consumption breakdowns
using ON/OFF state sensing and incremental sub-meter deployment.
In Proc. SenSys. ACM, 2010.

[26] A. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. OHare. Real-time re-
cognition and profiling of appliances through a single electricity sensor.
In Proc. of SECON 2010.

[27]] M. Wytock and J. Zico Kolter. Contextually Supervised Source Sep-
aration with Application to Energy Disaggregation. In Proc. of AAAI,
2014.

[28] A. Kavousian, R. Rajagopal, and M. Fischer. Determinants of residen-
tial electricity consumption: Using smart meter data to examine the
effect of climate, building characteristics, appliance stock, and occu-
pants behavior. Energy, 55(0):184 194, 2013.

[29] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht.
Smart*: An open data set and tools for enabling research in sustainable
homes. In Proc. SustKDD. ACM, 2012.

[30] N. Batra, M. Gulati, A. Singh, and M. B. Srivastava. Its Different:
Insights into home energy consumption in India. In Proc. Buildsys,
2013.

[31] C. Beckel, W. Kleiminger, R. Cicchetti, T. Staake, & S. Santini. The
ECO Data Set and the Performance of Non-Intrusive Load Monitoring
Algorithms. In Proc. Buildsys 2014.

[32] J. Z. Kolter and M. J. Johnson. REDD: A public data set for energy
disaggregation research. In Proc. SustKDD, 2011.

[33] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E.
Field, and K. Whitehouse. The smart thermostat: Using occupancy
sensors to save energy in homes. In Proc. SenSys10. ACM, Nov. 2010.

[34] T. A. Nguyen and M. Aiello. Energy intelligent buildings based on user
activity: A survey. Energy and Buildings, 56:244257, 2013.

[35] Dutch Residential Energy Dataset. [Online]
http://www.st.ewi.tudelft.nl/akshay/dred/

[36] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M.
Berges. BLUED: A fully labeled public dataset for Event-Based Non-
Intrusive load monitoring research. In Proc. SustKDD, 2012.

[37] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajic. AMPds:
A Public Dataset for Load Disaggregation and Eco-Feedback Research.
In Proc. EPEC, 2013.

[38] J. Kelly and W. Knottenbelt. UK-DALE: A dataset recording UK Do-
mestic Appliance-Level Electricity demand and whole-house demand.
ArXiv e-prints, 2014.

[39] C. Holcomb. Pecan Street Inc.: A Test-bed for NILM. In Proc. of
NILM workshop, 2012.

[40] C. Joe-Wong, S. Sen, Sangtae Ha, Mung Chiang. Optimized Day-Ahead
Pricing for Smart Grids with Device-Specific Scheduling Flexibility. In
Journal of JSAC , 2012.

[41] S. Rollins, N. Banerjee. Using rule mining to understand appliance
energy consumption patterns. In Proc. PerCom, 2014.

[42] Zhuang Zhao; Won Cheol Lee; Yoan Shin; Kyung-Bin Song. An Op-
timal Power Scheduling Method for Demand Response in Home Energy
Management System. Smart Grid, IEEE Transactions on, 2013.

[43] Gellings, C.W. The concept of demand-side management for electric
utilities. In Proc. IEEE, 1985.

[44] Sookoor, T.; Whitehouse, K. Roomzoner: Occupancy-based room-
level zoning of a centralized HVAC system. Cyber-Physical Systems
(ICCPS), 2013 ACM/IEEE International Conference on , vol., no.,
pp.209,218, 8-11 April 2013

[45] Christensen, D., L Earle, and B Spam. Nilm Applications for the
Energy-efficient Home. . National Renewable Energy Laboratory Tech-
nical Report, November 2012

[46] Zoha A, Gluhak A, Imran MA, Rajasegarar S. Non-Intrusive Load
Monitoring Approaches for Disaggregated Energy Sensing: A Survey.
Sensors (Basel, Switzerland). 2012;12(12):16838-16866.

[47] Engel, D., Wavelet-based load profile representation for smart meter
privacy. Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES,
vol., no., pp.1,6, 24-27 Feb. 2013

Chapter 8

Appendix

8.1 Algorithms pseudocodes

8.1.1 NILM-Loc

1 results = []

2 appliances_already_ON = None

3 while (True)

4 #==

5 #Get the aggr. energy and occupancy data for the last min

6 occupancy_data = []

7 energy_data = []

8 priority_combo = appliances_already_ON

9

10 timestamp = get_time ()

11 while ((current_timestamp - timestamp) < ONE_MINUTE)

12 current_timestamp = get_time ()

13 energy_data.append(get_current_energy_value ())

14 occupancy_data.append(get_current_user_locations ())

15

16 current_energy_value = downsample_data(energy_data)

17 current_user_locations = aggregate_last_minute_user_locs ()

18

19 #==

20 #Compare current aggregate value to priority combo

21 delta = get_tolerance_treshold(current_energy_value)

22 priority_combo_sum = get_sum_of_appliances_in_combination(

priority_combo)

23

24 if abs(priority_combo_sum - current_energy_value) <= delta:

25 #===

26 #Predicted appliances and their states remain unchanged

27 results.append ((timestamp , priority_combo))

28 else:

29 #===

30 #Get constrained set of appliances

31 constrained_appliances = []

51

32 constrained_appliances.append(get_appliances_in_locations(

current_user_locations))

33 constrained_appliances.append(appliances_already_ON)

34 constrained_appliances.append(metadata.

appliances_autonomous)

35 constrained_appliances.append(metadata.

appliances_remotely_controlled)

36

37 #===

38 #NILM algorithm (CO)

39 state_combinations = find_all_possible_combinations(

constrained_appliances)

40 summed_power_of_each_combination = []

41 for combo in state_combinations:

42 summed_power_of_each_combination.append(

get_sum_of_appliances_in_combination(combo))

43

44 valid_prediction = False

45 while valid_prediction == False:

46 predicted_combo = find_nearest_combination(

current_energy_value ,

summed_power_of_each_combination)

47 #=======================================

48 #Validation

49 appliances_turned_OFF = get_appliances_turned_OFF(

appliances_already_ON , predicted_combo)

50 locations_of_appliances_turned_OFF =

get_locations_of_appliances(appliances_turned_OFF ,

metadata)

51 invalid_location_exists = compare_locations(

current_user_locations ,

locations_of_appliances_turned_OFF)

52

53 if (invalid_location_exists):

54 #Invalidate last prediction

55 summed_power_of_each_combination[predicted_combo] =

None

56 else:

57 valid_prediction = True

58

59 results.append ((timestamp , predicted_combo))

60 appliances_already_ON = predicted_combo

61 priority_combo = predicted_combo

Listing 8.1: NILM-Loc pseudocode

8.1.2 Scheduler

1 #==

2 #Import appliance -level energy data (1 min freq.)

3 app_data = import_disagg_energy_data(start_date , end_date)

4

5 #==

6 #Resample data to hourly frequency

7 app_data_hourly = resample_data(app_data , freq=’1Hr’)

8

9 #Group data according to the type of day requested

10 app_data_grouped = group_data_according_to_type_of_day(

app_data_hourly , type=’weekdays/weekends ’)

11

12 #==

13 #Pattern abstraction

14 flexibility_coefficients =

get_average_usage_duration_in_each_hour_of_day(

app_data_grouped)

15 sensitivity_coefficients = get_range_of_hours_used(

app_data_grouped)

16 association_rules = get_daily_sequence_of_usage(

app_data_grouped)

17

18 #==

19 #Schedule creation

20 all_schedules_possible = get_daily_schedules(app_data_grouped ,

target=’weekends ’)

21

22 #==

23 #Schedule filtering

24 schedulable_loads = get_user_dependant_loads(metadata)

25 filtered_schedules = []

26 for day_schedule in all_schedules_possible:

27 if (min_required_patterns_satisfied(day_schedule) == True)

28 filtered_schedules.append(day_schedule)

29

30 #==

31 #Schedule selection

32 day_ahead_hourly_pricing = get_pricing ()

33 cost_optimal_schedule = None

34 for day_schedule in filtered_schedules:

35 price_day_schedule = get_schedule_cost(day_schedule ,

day_ahead_hourly_pricing)

36 price_cost_optimal = get_schedule_cost(cost_optimal_schedule ,

day_ahead_hourly_pricing)

37 if price_day_schedule < price_cost_optimal:

38 cost_optimal_schedule = day_schedule

39

40 cost_optimal_schedule_minute_resolution =

get_minute_level_cost_optimal_schedule(

cost_optimal_schedule , appliance_data)

41

42 #==

43 #Schedule enhancement

44 enhanced_schedule = None

45 apps_events_in_schedule = get_appliances_events(

cost_optimal_schedule_minute_resolution)

46 for event in apps_events_in_schedule:

47 appliance = event.get_appliance ()

48 app_sensitivity = sensitivity_coefficients[appliance]

49 app_flexibility = flexibility_coefficients[appliance]

50

51 #Add original time position of event

52 possible_positions_of_event_during_day = []

53 possible_positions_of_event_during_day.append(event)

54

55 #Find all possible permitted positions for that event

56 shift_possible = True

57 while shift_possible:

58 #Shift event considering the appliance characteristics

59 shifted_event = shift_event(event , app_flexibility ,

app_sensitivity)

60 possible_positions_of_event_during_day.append(shifted_event

)

61

62 #Check if there is still room for continuing shifting this

event

63 room_for_shifting = determine_if_shifting_is_still_possible

(shifted_event , app_flexibility , app_sensitivity)

64 if (room_for_shifting == False):

65 shift_possible = False

66

67 #Find cost -optimal placement of event

68 optimized_event = None

69 for possible_event in possible_positions_of_event_during_day:

70 price_possible_event = get_event_price(possible_event ,

day_ahead_hourly_pricing)

71 price_optimized_event = get_event_price(optimized_event ,

day_ahead_hourly_pricing)

72 if price_possible_event < price_optimized_event:

73 optimized_event = possible_event

74

75 #Add event to enhanced schedule

76 enhanced_schedule.add_event(optmized_event)

Listing 8.2: Scheduler pseudocode

