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Abstract

With the emergence of many modern automated systems around us that rely heavily on the
private data collected from individuals, the problem of privacy-preserving data analysis is now
gaining a significant attention in the field of systems and control. In this thesis, we investigate
the privacy concerns of these systems arising in the process of state estimation - a well known
and a widely studied concept in systems and control. Our work draws motivation from smart
grids and supply chain economics, and hence, we study two different privacy problems in the
context of state estimation and rely on cryptography to solve these challenges.

In the first problem, we study the privacy challenges of state estimation in smart grids.
Smart grids promise a more reliable, efficient, economically viable, and an environment-
friendly electricity infrastructure for the future. State estimation in smart grids plays a vital
role in system monitoring, reliable operation, automation, and grid stabilization. However, the
power consumption data collected from the users during estimation can be privacy-sensitive.
Furthermore, the topology of the grid can be exploited by malicious entities during state esti-
mation to launch attacks without getting detected. Motivated by the essence of a secure state
estimation process, we propose a weighted-least-squares estimation carried out batch-wise at
repeated intervals where the resource-constrained clients utilize a malicious cloud for compu-
tation services. We exploit a highly efficient and verifiable obfuscation-based cryptographic
solution to perform the computations of the estimation process securely in the presence of a
malicious adversary. Simulation results demonstrate a high level of obscurity both in time
and frequency domain making it difficult for the malicious adversary to interpret information
about the original power consumption data of the consumers and the grid topology from the
obfuscated datasets.

Our second problem deals with the challenge of protecting a dynamical supply chain model
while releasing the state sequences generated by the model for data aggregation to an external
possible adversary. Releasing state samples generated by a dynamical system model with high
accuracy for data aggregation and other statistical purposes can also be used for reverse engi-
neering and estimating sensitive model parameters. Upon identification of the system model,
the adversary may even use it for predicting sensitive data in the future. Hence, preserving a
confidential dynamical process model is crucial for the survival of many industries. Motivated
by the need to protect the system model as a trade secret, we propose a mechanism based on
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differential privacy to render such model identification techniques ineffective while preserving
the utility of the state samples for data aggregation purposes. We deploy differential privacy
by generating noise according to the sensitivity of the query and adding it to the state vectors
at each time instant. We derive analytical expressions to quantify the bound on the sensitiv-
ity function and estimate the minimum noise level required to guarantee differential privacy.
Furthermore, we present numerical analysis and characterize the privacy-utility trade-off that
arises when deploying differential privacy. Simulation results demonstrate that through dif-
ferential privacy, we achieve acceptable privacy level sufficient to mislead the adversary while
still managing to retain high utility level of the state samples for data aggregation.
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Chapter 1

Introduction

1-1 Motivation

In today’s day and age, information is wealth since every information volunteered has a
price tag attached to it. A growing concern in this digital era is the challenge raised by the
emerging distributed automated systems around us, ranging from smart meters, buildings to
intelligent transportation systems. These systems rely heavily on the private data collected
from individuals for effective decision making and control [3]. However, the data collected
from these private individuals can also be misused to breach their privacy. For example,
with the installation of smart meters, fine-grained electricity measurements of households are
recorded, and there are proven instances [4] where such measurements have revealed the nature
of the electrical household activity, thereby compromising the consumer’s privacy. Another
example is the smart transportation service that requires traffic state estimates and forecasts,
which in turn rely on the measurement of individual location traces. Similar concerns of data
privacy arise in a variety of other areas, from supply chain economics to social networks and
health care [3]. These problems are further amplified by the current trend within companies
and government agencies to collect more information about private individuals. The recent
Facebook privacy breach [5] where a personal data of 87m US voters were gathered and sold
to a political consultancy Cambridge Analytica is one of the biggest example highlighting the
problems of the current trend and the privacy concerns of the everyday user.
With systems becoming increasingly complex and larger in size, there is also a growing need

to facilitate the distribution of decision-making process. While the success of the distributed
systems relies on the power of information exchange, its fallibility lies in the power of infor-
mation leakage [6]. Thus, privacy-preserving data analysis, once a topic actively discussed in
the area of statistics and computer science [7], has now gained significant attention in systems
and control. This thesis aims at exploring the privacy concerns of these information-driven
systems arising in the process of state estimation - one of the most popular and widely studied
concepts in systems and control.
State estimation is the process of estimating the internal states of a given real system from

the given set of measurements of input and output. In many practical applications, all the

Master of Science Thesis Lakshminarayanan Nandakumar



2 Introduction

physical states of the system cannot be directly determined, and instead, only the indirect
effect of the internal states can be observed through system outputs. For example, consider a
vehicle moving in a tunnel - the rate and the velocity at which the vehicle enter and leave the
tunnel can be measured directly, but the exact state inside the tunnel can only be estimated.
If a system is observable, it is possible to fully reconstruct the system state from the output
measurements via the state estimation process. On the other hand, in some cases, these state
variables can be measured directly and be used for various statistical purposes [8]. While
state estimation is one of the most common and vital steps to understand the behavior of the
system and stabilizing it using control laws, the data processed during state estimation can
be privacy-sensitive as explained in this thesis.

The main objective of this thesis is to investigate the privacy concerns of the state estimation
process and propose solutions based on cryptography to address these privacy challenges.

1-2 Research Goals and Outline of the Thesis

The contributions of this thesis are two-fold. We address two different privacy challenges in
the context of state estimation with applications to smart grids and supply chain economics.
The outline and the research questions of this thesis are as follows:

• Chapter 2 is based on the following research question:

What are the privacy concerns of smart grids in the state estimation process and how
can cryptography aid in the process of designing correct, secure, verifiable and an

efficient scheme that can run in a smart meter platform?

• Chapter 3 address the following research question:

How can you preserve the privacy of a confidential dynamic supply chain model while
leveraging the data (state sequences) generated by it to an external (possible) adversary

for data aggregation purposes?

• Finally, in Chapter 4, we present the overall conclusions and point out future research
directions for both Chapter 2 and 3.

In each chapter, we first discuss the motivation behind the problem and outline the individ-
ual contributions of that chapter. Followed by that, we discuss the technical preliminaries
and mathematically formulate the problem. We then present the theoretical analysis of the
proposed solution and the simulation results. Finally, we provide concluding remarks at the
end of every chapter.
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Chapter 2

Obfuscation-Based State Estimation in
Smart Grids

In this chapter, we study the problem of protecting the user power consumption patterns and
the grid topology during state estimation in smart grids based on obfuscated transformation.
First, in Section 2-1, we discuss the motivation behind the problem and outline the individual
contributions of this chapter. In Section 2-2, we discuss the necessary prerequisites and the
type of adversarial models. In Section 2-3, we introduce the participating entities in our
problem setup and state the research problem. In Section 2-4, we present the proposed
solution - Obfuscate(.) and explain all the sub-protocols in detail. In Section 2-5, we present
the correctness, security, verification, and complexity analysis to prove that the designed
protocol complies with the privacy goals of Obfuscate(.). In Section 2-6, we present the
simulation results to further validate the use of Obfuscate(.) in practice. Finally, in Section
2-7, we summarize the conclusions of this chapter.

2-1 Introduction

2-1-1 Problem Motivation

Smart grids are widely regarded as a key ingredient to reduce the effects of growing energy
consumption and emission levels [9]. By 2020, the European Union (EU) aims to replace
80% of the existing electricity meters in households with smart meters [9]. Currently, there
are close to about 200 million smart meters accounting for 72% of the total European con-
sumers [9]. This smart metering and smart grid rollout can reduce emissions in the EU by
up to 9% and annual household energy consumption by similar amounts [9]. Despite the
environment-friendly and the cost-cutting nature of the smart grid, deployment of smart me-
ters at households actually raises serious data privacy and security concerns for the users. For
example, with the advent of machine learning and data mining techniques, occupant activity
patterns can be deduced from the power consumption measurement data [10–13]. Addition-
ally, the configuration of the power network/grid topology can be used by attackers to launch
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4 Obfuscation-Based State Estimation in Smart Grids

stealth attacks [14]. Thus, despite the apparent benefits, without convincing privacy and se-
curity guarantees, users are likely to be reluctant to take risks and might prefer conventional
meters to smart meters.

State estimation in smart grids enables the utility providers and Energy Management Sys-
tems (EMS) to perform various control and planning tasks such as optimizing power flow,
establishing network models, and bad measurement detection analysis. State estimation is a
process of estimating the unmeasured quantities of the grid such as the phase angle from the
smart meter measurement data. The operating range of the state variables determines the
current status of the network which enables the operator to perform any necessary action if
required. The state of the system, the network topology, and impedance parameters of the
grid can be used to characterize the entire power system [15]. Traditionally, the centralized
state estimation technique with the weighted-least-squares method yielded a very accurate
result using the data collected from SCADA [16]. However, now due to the increased com-
plexity and the scale of the grid size, state estimation in a wide area grid network requires
multiple smart meters from different localities to share data, some of which could be hosted
by a third-party cloud computing infrastructure [17] due to coupling constraints, superior
computational resources, greater flexibility, and cost-effectiveness.

The problem with the current cloud computation practice is that it operates mostly over
plaintexts [1,18], and hence users reveal data and computation results to the commercial cloud
[18]. This poses a huge problem as the user data might contain sensitive information such as
the power consumption patterns in smart meters. On top of that, there are strong financial
incentives for the cloud service provider to return false results especially if the clients cannot
verify or validate the results [19]. For example, the cloud service provider could simply store
the previously computed result and use it as the output result for future computation problems
to save computational costs. A recent breakthrough in Fully homomorphic encryption (FHE)
by Craig Gentry [20] has shown the general results of secure computation outsourcing to be
viable in theory. However, applying this general mechanism to compute arbitrary operations
and functions is still far from practice due to its high complexity and overhead [19]. However,
as shown in Section 2-4, the nature of the operations required to perform state estimation
in a power grid network allows us to exploit highly efficient and verifiable obfuscation-based
cryptographic solutions, thus enabling computations on the randomized data in the cloud.

Thus, motivated by the essence of regularly estimating the state variables in a power grid
network for grid stabilization and reliability, we propose a privacy-aware state estimation
protocol for a smart grid power network in this chapter.

2-1-2 Existing Work and Our Contributions

Numerous privacy challenges related to smart grids are pointed out in the literature in
different contexts. Amongst them, the most popular and widely studied [10,12,21–25], is the
privacy-preserving billing and data aggregation problem in smart grids. It is important to note
that our main objective is different from these works since we focus on the privacy concerns of
state estimation in smart grids. Existing literature on the smart grid state estimation problem
focuses either on the problem of protecting the grid topology [2, 14, 26], or on preserving the
power consumption data of the users [17, 27, 28] separately. In [14], the authors presented
a new class of attacks called false data injection attacks (FDI) against state estimation in
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smart grids and showed that an attacker can exploit the configuration of a power network
to successfully introduce arbitrary errors into the state variables while bypassing existing
techniques for bad measurement detection. The authors in [2] designed a least-budget defense
strategy to protect the power system from such FDI attacks. The authors in [26] extended
this problem to a non-linear state estimation and examined the possibilities of FDI attacks
in an AC power network. To preserve the privacy of the user’s daily activities, [17] exploits
the kernel of the electric grid configuration matrix. In [27], a data obfuscation approach for
an 802.11s-based mesh network was proposed to securely distribute obfuscated values along
the routes available via 802.11s. Another data obfuscation approach [28] tackled this problem
through advanced encryption standard (AES) scheme for the hiding the power consumption
data and used elliptic-curve cryptography (ECC) for authenticating the obfuscation values
that are distributed within the advanced metering infrastructure (AMI) network.

Contrary to the above work in smart grid state estimation, we focus on protecting both the
power consumption data of the users and the grid topology. An open question pointed out
in [17,29,30] is to provide a light-weight implementation of state estimation that can run in a
smart meter platform. In this chapter, we attempt to solve this light-weight implementation
issue by deploying an efficient randomized scheme where a collection of smart meters installed
in a particular locality obfuscate their measurement data and send it to the lead smart meter
in their respective locality. These lead smart meters, in turn, gather these randomized data
and send it to the cloud service provider for performing the required computations.

The major contributions of this chapter are as follows:

• We propose Obfuscate(.) - the first batch-wise state estimation scheme in smart grids
with the privacy goal of protecting both the power consumption data of the consumers
and the grid topology. Our scheme is based on obfuscated transformation and is proven
to be efficient with no major computational overhead to the users.

• We evaluate the performance of Obfuscate(.) with real-time hourly power consumption
datasets of different smart meters. We use these measurement data sets under the
assumption that these meters are connected to an IEEE-14 bus test grid system and
a fully measured 5 bus power system. Furthermore, we evaluate the illegibility of the
obfuscated datasets with respect to the original datasets.

2-2 Technical Preliminaries

2-2-1 Static State Estimation in Electric Grids

The static state estimation (SSE) in smart grids is a very well established problem with
well-known techniques that rely on a set of measurement data to estimate the states at regular
time intervals [31–33]. The state vector x = [x1, x2, · · ·xn]T ∈ Rn represents the phase angles
at each electric branch or system node and the measurement data z ∈ Rm denotes the power
readings of the smart meters. The state vector x and the measurement data z are related by
a nonlinear mapping function h

z = h(x) + e, (2-1)
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6 Obfuscation-Based State Estimation in Smart Grids

where the sensor measurement noise e is a zero-mean Gaussian noise vector. Typically, for
state estimation a linear approximation of (2-1) is used [14,17,34]:

z = H x+ e, (2-2)

where the full column rank (m >n) measurement jacobian matrixH ∈ Rm×n is determined by
the grid structure and line parameters [35]. The matrix H is known as the grid configuration
or the power network topology matrix [17, 34, 35]. Typically in an electric grid m >> n [36]
and the best unbiased linear estimation of the state [37] is given by:

x̂ = (HTWH)−1HT W z, (2-3)

where W−1 ∈ Rm×m represents the covariance matrix of the measurement noise. The covari-
ance matrix for the measurements is taken to be a diagonal matrix W−1 = σ2I [37]. Hence
(2-3) reduces to

x̂ = (HT H)−1 HT z. (2-4)

The SSE technique reduces the computational complexity for performing state estimation [38]
in smart grids where the estimates are usually updated on a periodic basis. Measurement
devices in current transmission systems are installed specifically catering to the needs of
SSE [39]. Although the recent evolution of phasor measurement units (PMUs) are able to
measure voltage and line current phasors with high accuracy and sampling rates, deployment
of a large number of PMU’s across the system requires significant investments since the average
overall cost per PMU (including procurement, installation, and commissioning) ranges from
$40k to $180k [40]. Hence SSE will remain an important technique to estimate the state
variables at medium and low voltage levels [41]. Practically, state estimation is run only for
every few minutes or only when a significant change occurs in the network [41,42].

2-2-2 Bad Measurement Detection

Bad measurements may be introduced due to meter failures or malicious attacks and can
mislead the grid control algorithms, possibly causing catastrophic consequences such as black-
outs in large geographical areas. For example, a large portion of the Midwest and Northeast
United States and Ontario, Canada, experienced an electric power blackout affecting a pop-
ulation of about 50 million [43]. The power outage cost was about $80bn in the USA and
usually, the utility operators amortize it by increasing the energy tariff, which is unfortunately
transferred to consumer expenses [44]. Thus bad measurement detection or BMD is vital to
ensure smooth and reliable operations in the grid.

The most common technique to detect bad measurements is to calculate the L2-norm
‖z −H x̂‖ where x̂ are the estimated states. If ‖z −H x̂‖ > τ , where τ is the threshold
limit, then the measurement z is considered to be bad. This is because, intuitively, normal
sensor measurements yield estimates closer to their actual values, while abnormal ones de-
viate the estimated values away from their true values. This inconsistency check is used to
differentiate the good and the bad measurements [14]. However, this is not the case always,
as exposing the grid configuration matrix H could make the grid vulnerable to stealth at-
tacks [14]. Liu, Reiter, and Ning in [14] proved that a malicious entity can exploit the row and
column properties of H when exposed, and launch false data injection attacks without getting
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detected. The grid topology matrix H includes the arrangement of of loads or generators,
transmission lines, transformers, and statuses of system devices [34], and is an integral part
of state estimation, security, and power market design [34]. Thus, there is a strong need to
protect not just the power consumption data but also the power network topology during
state estimation in smart grids.

2-2-3 Cryptographic Preambles

To understand the privacy goals of our problem, we state the definitions of the following
terms:

Definition 1. (Obfuscation) [45]: Obfuscation refers to the procedure of transforming the
given data in to a randomized data and performing the necessary operations on this obfuscated
data. The randomized or obfuscated data can be deobfuscated by inverting the randomized
transformation using the respective private keys.

Definition 2. (Semi-honest Adversary) [46]: A semi-honest adversary is the one who cor-
rectly follows the protocol specification with an exception that it keeps track of all the infor-
mation exchanged and might possibly analyze it together with any other public information to
leak sensitive data. They are also known as ’honest-but-curious’ and ’passive’ adversaries.

Definition 3. (Malicious Adversary) [46]: A malicious adversary is the one which can arbi-
trarily deviate from the protocol specification. Here attacks are no longer restricted to eaves-
dropping since the adversary might actually inject or tamper with the data provided. They are
also known as ’active’ adversaries.

2-3 Problem Setup

2-3-1 Notation

Let an area A consist of two localities 1 or neighborhoods denoted by L1 and L2 as shown in
Figure 2-1. The symbol Sij refers to the smart meter installed at the household j situated in
locality Li. We denote by Xi ∈ Rni×T the state sequences of all the smart meters installed in
Li for a given batch of time duration T . The electric grid configuration matrix or the power
network topology of Li is represented as Hi and the coupling matrices between Li and Lj
are denoted as Hij and Hji respectively. The symbol

[
.
]
denotes the obfuscation of a vector

or matrix. For example,
[
Zi
]
represents the obfuscated or randomized value of the matrix

Zi ∈ Rmi×T where mi is the number of smart meters in Li.

2-3-2 Participating Entities

• Utility Provider U : Provides utility services to the area A and has access to the
grid configuration matrix H. U generates all the keys to initiate Obfuscate(.) and

1For brevity, here we assume that the area consists of only two localities. The protocol presented in this
chapter can easily be extended to an area consisting of more than two localities.
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Figure 2-1: Problem setup. First, the utility provider generates a stream of random number keys
for obfuscating the power consumption data and sends it to Sij through a secure and private
channel. All the other meters obfuscate their measurements and send it to their respective lead
meter in their locality. Upon receiving the randomized data from the other meters, the lead meter
obfuscates the power consumption dynamics of its locality and sends this data to the cloud. The
utility provider obfuscates the grid configuration matrix and sends it to the cloud. The cloud
upon receiving both the input matrices performs the necessary computations and sends the result
back to the utility provider. The utility provider accepts the estimates for decision making only if
the computed result passes the verification test. Otherwise, the service is simply aborted.
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distributes a selected portion of these keys to the smart meters at each locality through
a private channel to carry out obfuscation. U is a decision-making entity performing
any necessary action after receiving the state variables at regular intervals.

• Lead Smart Meter Si1: Receives the randomized data from the other meters con-
nected to it and obfuscates the dynamics of the power consumption pattern of all the
meters in its locality and then sends it to the cloud for state estimation. The lead meter
at every locality is assumed to be a trusted node in the local network. A similar entity
was proposed in [17] where the lead meter is connected to all the meters based on the
mesh topology network. The lead meter, for instance, could be the local distributed
system operator (DSO) of a particular locality.

• Other Smart Meters Sij ∀j 6= 1: All the other meters in Li obfuscate their measure-
ment data and send it to the lead meter Si1 to avoid leaking information about their
respective consumptions to any potential eavesdropping.

• Cloud C: Computationally super efficient and hence provides computation services for
A performing state estimation. As pointed out before, since most of the current cloud
computations happen in plaintexts, modeling the cloud as a malicious entity is crucial
in practice.

The smart meters in Li and Lj where j 6= i are considered to be semi-honest to each
other i.e., clients living in different localities are curious about each other consumption data.
This means that people who are situated geographically apart may try to learn information
about people in other localities such as energy usage consumption pattern, pricing, etc. Also,
households living in the same locality are modeled to be honest-but-curious. Albeit, it is
natural for people living in the same locality - next to each other to have at least some prior
knowledge about each other activity pattern, it is not acceptable if the neighbors can deduce
the usage of a particular appliance at a given time-stamp applying techniques such as non-
intrusive load monitoring [13] to the original power consumption data. Thus all the smart
meters in a particular locality randomize their stream of consumption data before sending it
to the lead meter.

Unlike the problem of protecting the user power consumption data from the utility provider
for billing, data aggregation and other statistical purposes [12, 21–25], here we study the
problem of carrying out secure state estimation by outsourcing the data to an untrusted third
party. These state variables with high accuracy are essential to the utility provider for effective
decision-making and providing good quality services such as demand forecasting, optimal
power flow, and contingency analysis. Hence U here is not considered to be an adversarial
entity and is non-colluding in nature. The utility provider’s main objective is to earn the
consumer trust by protecting their privacy and encouraging more user participation to install
smart meters for business and commercial purposes. Investment in smart metering technology
is directly impacted by customer trust in the utility operators [47]. To protect the privacy of
consumers, utility providers make use of secure communication channels and databases with
access control [17]. In addition, with EU’s newly devised General Data Protection Regulation
(GDPR) which is in effect from 25 May 2018, energy companies are liable to pay very large
penalties up to e20m [48], if customer data are misused. One might argue about the need to
apply a similar compliance factor to the cloud service provider, but as mentioned earlier, the
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10 Obfuscation-Based State Estimation in Smart Grids

major problem and challenge specific to using cloud for computation services is that, with the
current technology, most of the computations in the cloud happen in plaintext data [1, 18].
Arbitrary computations on encrypted data using FHE schemes are still under active research
for effective implementation [49]. Providing data in the clear makes the cloud vulnerable
to both active and passive attacks. According to the latest Microsoft security intelligence
report [50], the number of attacks in the cloud environment has increased by 300% which
further justifies considering the cloud as a malicious entity in our problem setup.

2-3-3 Research Problem and Design Goals

Problem Statement: How to protect the privacy of the power consumption data of the
consumers Z and the grid topology matrix H during state estimation, while outsourcing
these pieces of information to an untrusted malicious third party with the following privacy
goals:

1. Input/Output Privacy: Neither the input data sent nor the output data computed
by the cloud should be inferred by the cloud.

2. Correctness: Any cloud server faithfully following the Obfuscate(.) protocol must be
able to compute an output that can be verified successfully.

3. Verification: If the cloud server acts maliciously, then it should not be able to pass
the utility-side verification test with a high probability.

4. Efficiency: The computational overhead of the clients (utility provider and the smart
meters in each locality) should be minimal, as otherwise, outsourcing the computations
is not practically justifiable.

Remark 1. Nevertheless, it is important to note that local smart meters in both the localities
cannot estimate the states on their own due to the coupling constraints (See (2-5)). The effi-
ciency criterion is mainly considered to exploit the nearly unlimited computational resources
of the cloud.

Furthermore, since the smart meters in different neighborhoods are semi-honest to each other,
the designed protocol should also guarantee a very low probability of inferring any sensitive
information through eavesdropping and combining any other publicly available information
of the localities.

2-4 Obfuscate(.)

Consider the problem setup depicted in Figure 2-1. The equation presented in (2-2) can be
rewritten as :

[
Z1
Z2

]
=
[
H1 H12
H21 H2

]
︸ ︷︷ ︸

H

[
X1
X2

]
+
[
e1
e2

]
, (2-5)

Lakshminarayanan Nandakumar Master of Science Thesis



2-4 Obfuscate(.) 11

where H1 ∈ Rm1×n1 and H2 ∈ Rm2×n2 are the grid configuration matrix of L1 and L2. The
matrix H12 ∈ Rm1×n2 and H21 ∈ Rm2×n1 denote the coupling matrices. The measurement
data and the states of locality Li are represented by Zi ∈ Rmi×T and Xi ∈ Rni×T respectively.
The solution to (2-5) is given by (2-4).

In general, the configuration of the power network H is not time-varying during the state
estimation process [31–33,37], and hence the matrixH+ = (HTH)−1HT can be pre-computed
during the offline stage. Typically, this information is computed during the creation of the
power network by the utility provider using a trusted party. Hence, the state estimation can
be recast and reduced into

X̂ = H+ Z, (2-6)

where X̂ ∈ Rn×T , Z ∈ Rm×T and H+ ∈ Rn×m with m = m1 + m2 and n = n1 + n2. Thus,
the secure state estimation problem boils down to solving a matrix multiplication in (2-6)
securely. The matrix H+ can be rewritten block-wise as follows:

H+ =

[H1 H12
H21 H2

]T [
H1 H12
H21 H2

]−1 [
H1 H12
H21 H2

]T
,

=
[
F1 F12
F21 F2

]
,

(2-7)

where F1 ∈ Rn1×m1 , F2 ∈ Rn2×m2 , F12 ∈ Rn1×m2 and F21 ∈ Rn2×m1 . Notice from (2-6) and
(2-7) that it is not possible for the lead meter in each locality to carry out the estimation
process locally since the state estimate of a particular locality requires power consumption
data of the other locality. Thus the lead meter collects all the obfuscated measurement data
from the other meters in its locality and sends it to the cloud. The matrix H+ is obfuscated
by the utility provider and sent to the cloud. However, it is important that the matrix H+

is not randomized as a whole using a single set of keys but is obfuscated block-wise with
different keys for different blocks (see (2-7)). The estimation problem can be further broken
down into:

[
X̂1
X̂2

]
=
[
F1 Z1 + F12 Z2
F21 Z1 + F2 Z2

]
. (2-8)

Let us denote the matrix

Y =
[
F1Z1 F12Z2
F21Z1 F2Z2

]
=
[
Y1 Y12
Y21 Y2

]
. (2-9)

Notice from (2-8) for estimating the states, we solve the matrix multiplication of each blocks
in (2-9) privately and then perform matrix addition.

The matrix multiplication or MM problem is a fundamental problem in cryptography and
several solutions [51–54] had been proposed to solve it securely. However, the problem is
that these algorithms were not initially designed for the cloud environment and hence, these
protocols did not consider the computational asymmetry of the cloud server and the client.
Moreover, these protocols use complex cryptographic protocols to encrypt the data-set (in-
put and output), which makes them unsuitable for the computation on the cloud with large
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Figure 2-2: Depiction of a privacy-preserving matrix multiplication algorithm for a single client
cloud setup. Client sends the input matrices A,B and decrypts the output C.

datasets due to high overhead. Furthermore, these algorithms did not consider result veri-
fication which is an essential requirement when dealing with a malicious cloud setting [55].
A secure multiparty computation (SMC) approach was also considered in [56, 57] where the
computation is divided among multiple workers without allowing any participating entity to
access another individual’s private information. However, this approach is again not feasible
to use in our problem setup since all the parties must have a comparable computing capability.
Instead, we would ideally like the clients to transfer the majority of the computation load to
the massive cloud servers and perform very little work computationally. Another drawback
of the SMC approach is that the result verification is often proven to be troublesome and
expensive since most of the times it requires expensive zero-knowledge proofs as a part of the
verification process [58,59].

Recently, a privacy-preserving, verifiable and efficient outsourcing algorithm for matrix mul-
tiplication to a malicious cloud was proposed in [55] utilizing linear transformation techniques.

Algorithm 1 KeyGen

1: Input λ, m1, n1
2: Generate two sets of uniform non-zero unique random numbers each of bit size λ: N1 →
{α1, α2 · · ·αn1} , M1 → {β11, β12 · · ·β1m1}.

3: for i = 1 to n1 do
4: D1 = αi.I(i,i)
5: end for
6: for i = 1 to m1 do
7: A1 = β1i.I(i,i)
8: end for
9: Output: D1, A1.

10: Repeat 1 to 10 per batch.
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In this chapter, we adopt a similar approach to the one prescribed in [55] to outsource the
multiplication of block matrices in (2-9) securely to the cloud. However, it is important to
point out that the Obfuscate(.) protocol proposed here is not a straightforward application of
the protocol in [55] since the authors in [55] considered only a single client and a cloud setup
as shown in Figure 2-2. The client performs the key generation, problem transformation, re-
transformation and verification on his/her own. However, since we have multiple smart meters
installed in different neighborhoods, the keys cannot be generated locally by the individual
households because the smart meters have access only to their respective consumption data
which forms only a part of the information required for state estimation. Hence, besides the
key generation we also propose a key distribution scheme essential to perform Obfuscate(.)
meaningfully. Obfuscate(.) comprises of 8 sub-algorithms in total from Algorithm 1 - 8.

First we present the KeyGen() given by Algorithm 1:

• KeyGen(1λ,m1, n1): The KeyGen() algorithm takes in the input security parameter λ
and generates a total of n1 + m1 non-zero random numbers each of bit size λ. These
random numbers are in turn used to generate the key matrices of size Rm1 and Rn1 .

Every time the utility provider U invokes the KeyGen() algorithm, different set of non-zero
random numbers of bit size λ are generated. The complete key matrices generated by U for
a given batch of duration T is given by Table 2-1. Once U generates all the key matrices,

Table 2-1: Key generation protocol run by the utility provider per batch

Protocol Output
KeyGen(1λ, n1,m1) D1, A1
KeyGen(1λ, n2,m2) D5, A2
KeyGen(1λ, n2, A1) D3, A1
KeyGen(1λ, n1, A2) D6, A2
KeyGen(1λ, T ) D2
KeyGen(1λ, T ) D4

a selected portion of these keys are distributed by U as shown in Figure 2-3 to the smart
meters. The KeyDist() protocol for Li is given by Algorithm 2.

Algorithm 2 KeyDist

1: Input: Ai, D2i
2: Set aij = 1

βij
3: for j = 2 to mi do
4: Send aij to Sij through private channel {i, j}
5: end for
6: Send ai1 and D2i to Si1 through private channel {i, 1}
7: Repeat 1 to 6 per batch.

After the KeyDist() algorithm, the matrix transformation ψK() is carried out by the respec-
tive entities using their respective keys K.
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Figure 2-3: A triangular key distribution scheme. In every neighborhood Li, the other smart
meters receive a random number key aij of bit size λ per batch for obfuscating their consumption
data zij . The lead meter also receives a key ai1 for randomizing its own measurement data and
a matrix D2i for obfuscating Zi which is then sent to the cloud.

• Matrix Transformation ψK(): For every new input matrix, ψK() invokes and transforms
the input in order to preserve the privacy. This operation dominates the client-side
computation cost, but is still significantly less compared to the computations performed
by the cloud.

The matrix transformation for a given input matrix F1 and Z1 are given by Algorithm 3 and
4 respectively. Table 2-2 summarizes the complete matrix transformation protocol.

Algorithm 3 MatrixTrans ψK(F1)
1: Input D1, A1
2: for i = 1 to n1 do
3: [F1(i, :)] = D1(i, i).F1(i, :)
4: end for
5: for i = 1 to m1 do
6: [F1(:, i)] = F1(:, i).A1(i, i)
7: end for
8: Output [F1]

Algorithm 4 MatrixTrans ψK(Z1)
1: Input D2
2: for j = 2 to m1 do
3: Send z′1j = a1j .z1j to S11.
4: end for
5: S11 constructs Z ′1 = A−1

1 .Z1. . a1j = 1/β1j
6: for i = 1 to T do
7: [Z1(:, i)] = Z ′1(:, i).D2(i, i)
8: end for
9: Output [Z1]

Next, the obfuscated matrix H+ and the measurement data matrix Zi are sent by U and
Si1 respectively to the cloud C to perform the Computeψ() algorithm given in Algorithm 5.
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Table 2-2: Matrix transformation protocol run per batch

Protocol Keys Run by Output
ψK(F1) D1, A1 U [F1]
ψK(F2) D2, A2 U [F2]
ψK(F12) D6, A2 U [F12]
ψK(F21) D3, A1 U [F21]
ψK(Z1) D2, A−1

1 S11 [Z1]
ψK(Z2) D4, A−1

2 , S21 [Z2]

• Computeψ([F1] , [Z1]): This sub-algorithm performs the computation on the cloud server.
It computes MM as ψ([F1] , [Z1]) = (D1F1A1).(A−1

1 Z1D2)

Algorithm 5 Computeψ

1: Input [F1], [Z1]
2: C computes [Y1] = [F1] . [Z1]
3: Output [Y1]

Table 2-3 presents the Computeψ() protocol run by the cloud server for estimating the state
samples. Upon computing the Y matrix, the cloud sends the computed result to the utility

Table 2-3: Computation protocol run by the cloud server C per batch

Protocol Output
Computeψ([F1] , [Z1]) [Y1]
Computeψ([F2] , [Z2]) [Y2]
Computeψ([F21] , [Z1]) [Y21]
Computeψ([F12] , [Z2]) [Y12]

provider U to execute the verification step.

• V erify([Y ] , γ): This sub-algorithm computes

Q = ([F ] .([Z] .γ))− ([Y ] .γ).

where γ is a binary key matrix of size T i.e. γ ∈ {1, 0}T . We introduce the binary
column matrix key γ to minimize the complexity of computation, since the matrix-
vector multiplication only cost quadratic time. The verification protocol for Li is given
by Algorithm 6.

The verification step serves as the BMD test in our setup and is run for all the four block
matrices given by (2-9). Table 2-4 presents the verification protocol. The results are accepted
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Algorithm 6 V erify([Yi] , γi)
1: Input: [Yi], [Fi], [Zi]
2: U generates γi ∈ {0, 1}T and sends it to Si1 through a private channel.
3: Si1 computes Zγi = [Zi] .γi and sends it back to U .
4: U computes Qi = [Yi] .γ − Fi.Zγi
5: if (Qi == {0, 0, · · · , 0}T ) then
6: return (1)
7: else
8: return (0)
9: end if

Table 2-4: Verification protocol run by the utility provider per batch

Protocol Output
V erify([Y1] , γ1) Q1
V erify([Y2] , γ2) Q2
V erify([Y12] , γ2) Q12
V erify([Y21] , γ1) Q21

only if the cloud server passes all the four verification tests. If the verification is positive, then
it means that no false data has been injected into the datasets by the cloud. This suffices
to conclude that no bad measurements are introduced in the network. After the verification
test, U runs the Decrypt() algorithm given in Algorithm 7.

• Decrypt(Y,K): This protocol decrypts the matrix Y using its respective key K.

Table 2-5 summarizes the decryption protocol carried out for all the four block matrices.
Once, all the four blocks of the Y matrix are decrypted, U carries out the protocol given in
Algorithm 8 to finally arrive at the state estimates.

Algorithm 7 Decrypt([Y1] ,K)
1: Input [Y1] and the respective keys D1 and D2
2: Compute D−1

1 and D−1
2 . Since the key matrices are diagonal square invertible matrices,

inversion only cost linear time computation.
3: Compute Y1 = D−1

1 . [Y1] .D−1
2

4: Output Result Y1

Algorithm 8 MatrixAdd(Y )
1: Input Y1, Y2, Y12, Y21
2: Compute X̂1 = Y1 + Y12
3: Compute X̂2 = Y21 + Y2
4: Output Result X̂1, X̂2
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Table 2-5: Decryption protocol run by the utility provider

Protocol Keys (K) Output
Decrypt([Y1] ,K) D1, D2 Y1
Decrypt([Y2] ,K) D5, D4 Y2
Decrypt([Y21] ,K) D3, D2 Y21
Decrypt([Y12] ,K) D6, D4 Y12

2-5 Obfuscate(.) - Theoretical Analysis

In this section, we show that the Obfuscate(.) proposed in Section 2-4 is able to comply
with all the privacy design goals stated in Section 2-3-3: correctness, security, verifiability,
and efficiency.

2-5-1 Correctness Analysis

If the smart meters, utility provider, and the cloud follow Obfuscate(.) as per the instruc-
tion, then Obfuscate(.) produces correct results for all the four matrix multiplications. This
follows from a simple proof:

Proof. The utility provider U first transforms the matrix F1 into [F1] = D1F1A1 and the lead
smart meter in L1 transforms the matrix Z ′1 = A−1Z1 into [Z1] = A−1

1 Z1D2. The cloud server
computes

[Y1] = [F1] . [Z1] = (D1F1A1) . (A−1
1 Z1D2) = D1Y1D2.

Then in the problem re-transformation step given by the decryption algorithm, U computes
Y1 where,

Y1 = D−1
1 [Y1]D−1

2 ,

Y1 = F1.Z1.
(2-10)

The above analysis holds for all the Computeψ(.) presented in Table 2-3, thereby proving the
correctness of Obfuscate(.).

2-5-2 Security Analysis

1. Input Privacy: Since the cloud server has access only to the transformed randomized
input matrices [F ] and [Z], it cannot not retrieve the original input matrices F and
Z. Furthermore, the security keys in Table 2-1 do not leak any information about the
original input matrices. This can be seen from the following proof:

Proof. The key matrix A1 and A2 are diagonal matrices with each element being a
random real number of λ bit long. There are 2miλ possibilities of Ai matrix where
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18 Obfuscation-Based State Estimation in Smart Grids

i ∈ {1, 2}. For diagonal matrices D1 and D2, there are in total 2n1λ+Tλ possibilities.
Thus for a single block F1 in matrix Y , there are a total of 2(m1+n1+T )λ possible choices
of key matrices, which is an exponential bound quantity in terms of (m1, n1, T ). Thus
the cloud does not recover any meaningful information.

2. Output Privacy: Similarly to the input privacy analysis, the output result is also pro-
tected. The resulting obfuscated matrix does not leak any information to the cloud,
even if the cloud records all the computed results. Besides, for every batch, the utility
provider generates new security keys given in Table 2-1. Thus our scheme is similar to
that of one-time-pad encryption system thereby making it resistant to known-plain-text
attack (KPA) or chosen-plain-text-attack (CPA) [55].

2-5-3 Verification Analysis

Since in a malicious threat model, the cloud server may deviate from the actual instructions
of the given protocol, we equip Obfuscate(.) with a result verification algorithm to validate
and verify the correctness of the result. The proof that a wrong or an invalid result never
passes the verification step follows from the total probability theorem as followed in [55,60].

Proof. If the cloud produces the correct result Y1 then

Q1 = ( [F1] . [Z1]− [Y!] ) = [0, 0, · · · 0]T . (2-11)

If the cloud produces the wrong result, then

Q1.γ1 6= [F1] [Z1] .γ − [Y1] .γ,

i.e. there exists atleast a row in Q1 which is not equal to zero.

Q1γ1 = [q1, · · · qm1 ]T .

Let the row qi 6= 0 where

qi =
T∑
j=1

Q1i,j .γj = Q1i,1.γ1 + · · ·Q1i,k.γk +Q1i,T .γT . (2-12)

There exists at least one element in this row which is not equal to zero. Let Q1i,k 6= 0

qi = Q1i,k.γk + Γ ,

where Γ =
∑T
j=1Q1i,j .γj −Q1i,k.γk. Applying the total probability theorem yields,

Pr(qi = 0) = Pr[(qi = 0)|(Γ = 0)] Pr[Γ = 0] + Pr[(qi = 0)|(Γ 6= 0)] Pr[Γ 6= 0], (2-13)

Pr[(qi = 0)|(Γ = 0)] = Pr[γk = 0] = 1/2 ,

Pr[(qi = 0)|(Γ 6= 0)] ≤ Pr[γk = 1] = 1/2 .
(2-14)

Substituting (2-14) in (2-13), we arrive at

Pr[(qi = 0)] ≤ 1/2 Pr[Γ = 0] + 1/2 Pr[Γ 6= 0],
Pr[(qi = 0)] ≤ 1/2(1− Pr[Γ 6= 0]) + 1/2 Pr[Γ 6= 0].

(2-15)
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2-6 Simulation Results 19

Pr[(qi = 0)] ≤ 1/2. (2-16)

If the verification process is run p times, then

Pr[(qi = 0)] ≤ 1/2p. (2-17)

The value p reveals the trade-off between computational efficiency and verifiability. Theo-
retically p ≥ 80 is sufficient [55] to ensure negligible probability for the cloud to pass the
verification test despite producing wrong result. However, here we take p = 20, as in practice
is acceptable [55, 60] with 1/220 ≈ 1 million. The verification process fails to detect a wrong
result one in a million times.

2-5-4 Efficiency Analysis

Table 2-6: Computation complexity analysis of Obfuscate(.)

Client Side Computations
Cloud Computations

Utility Provider U Lead Meter Si1 Other Meters Sij
KeyGen - O(m+ n+ T ) – – Computeψ([F1] , [Z1]) - O(n1m1T )
MatrixTrans ψK(.) - O(n1m1 + n1m2 + n2m1 + n2m2) = O(nm) O(miT ) O(1) Computeψ([F12] , [Z2]) - O(n1m2T )
V erify - O(n1T + n2T ) = O(nT ) O(miT ) – Computeψ([F12] , [Z2]) - O(n2m1T )
Decrypt - O(n1T + n2T ) = O(nT ) – – Computeψ([F2] , [Z2]) - O(n2m2T )
MatrixAdd - O(n1T + n2T ) = O(nT ) – – Computeψ(

[
H+],[Z]) -,O(nmT )

Total Client-Side Computation Cost ≈ O(nm+mT + nT ) Total Cloud Computation Cost = O(nmT )

In this section, we carry out the computation complexity analysis to prove the efficiency
of Obfuscate(.). The computational cost of each step in Obfuscate(.) has been analyzed
and is given in Table 2-6. Besides, the KeyDist() protocol introduces a communication cost
of O(m) since U distributes the key aij to all the smart meters through a private channel
for obfuscating their measurement data. From Table 2-6, it is clear that the computations
performed by the client side are substantially lower than that of the cloud server. Due to the
diagonal structure of the key matrices, the problem transformation step given by Algorithm 3
and 4 only costs O(nm+mT ). The asymptotic complexity [55] of the client side computation
is only O(nm+mT+nT ), and thus, outsourcing the computation yields a performance gain of
O( 1

n + 1
m + 1

T ). Clearly, when the number of state variables n, the number of smart meters m
and the time duration of the batch T increases, the clients will achieve a higher performance
gain. Especially, by the year 2020, with the increase in the number of smart meters m as the
EU is aiming to replace 80% of electricity meters with smart meters [9], Obfuscate(.) will
significantly reduce the computational overhead of its clients in the long run.

2-6 Simulation Results

In this section, we evaluate the degree of the obscurity of Obfuscate(.) using two case study
examples: a fully measured 5-bus system and the IEEE 14-bus system with real-time power
consumption data. We start with a fully measured 5-bus system and the structure of the H
matrix for this system can be found in the Appendix 4-2 Section -1. In this case, the total
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Figure 2-4: Illustration of the efficacy of Obfuscate(.) in a fully measured 5-bus power system.
(a) shows the power consumption data of true and obfuscated measurement in time domain. (b)
shows the power consumption data of true and obfuscated measurement in frequency domain.
(c) shows the power spectral density of the original and obfuscated datasets. (d) shows that
the estimated state from the obfuscated value (bottom) is same as the estimated state from the
original data (top).
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number of meters m = 10 and the state variables n = 4. We consider m1 = 4, m2 = 6
and n1 = n2 = 2 and the duration of every batch to be 13 hours. Note in practice, smart
meters can sample at much higher frequencies [61]. Research on disaggregating electricity load
has been conducted on smart meter readings with a fine granularity of frequency between 1
Hz to 1 MHz [61]. The authors in [17] collected real-time power consumption data of both
residential and office spaces with a sampling rate of 1 Hz and, hence in practice the number of
data points collected per batch T could be in order of tens of thousands. However, due to the
unavailability of such high-frequency measurement data, we restrict the size of T . Since, we
had access to only hourly power consumption data we restrict T = 13. Even though the size
of the matrix Z ∈ Rm×T is small, the state estimation still cannot be performed locally due to
the coupling constraints between the two localities. Upon inspecting the power consumption
values of all the meters, we found these values are mostly 4 to 5 decimal digits long. Hence,
to obfuscate this measurement data, we use a key size of length λ = log2(105) ≈ 16 bits.
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Figure 2-5: Pearson correlation coefficients of all the metering points in a fully measured 5-bus
power system

Figure 2-4 shows the illegibility of the Obfuscate(.) for a fully measured 5-bus power sys-
tem. Illegibility [17] measures the level of difficulty of interpreting and mining data to the
malicious cloud server. From Figure 2-4(a), we can see the original power consumption data
of a household (blue) is always positive, whereas, the obfuscated data (red) show negative
power readings and behave more as random variables. The degree of obscurity becomes more
clear when transforming these datasets into the frequency domain. Figure 2-4(b) shows that
the original data consists mostly of low-frequency components, whereas the obfuscated data
exhibits high-frequency components. This can also be inferred from the power spectral den-
sity plot shown in Figure 2-4(c). Clearly, we can see that the original data (top) consists of
a higher power in low-frequency regions, whereas the obfuscated dataset (bottom) behaves
exactly the opposite consisting of a higher power in high-frequency regions. Nevertheless, as
it can be seen from Figure 2-4(d), the estimated states from these obfuscated datasets are
exactly the same as that of the original measurement data. Thus, Obfuscate(.) does not de-
grade the quality of the estimate of the state variables. Furthermore, to evaluate the resilience
of Obfuscate(.), we estimate the Pearson’s correlation coefficient. The Pearson’s correlation
coefficient gives us the measure of the degree of similarity between two signals. The correla-
tion coefficient between two identical signals in phase is always 1 while two identical signals
out of phase (phase difference = 180◦) is −1. Figure 2-5 depicts the plot showing the Pearson
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Figure 2-6: Pearson correlation coefficients of all the metering points in an IEEE 14 bus system.

correlation coefficient of all the metering points of the 5-bus systems. It can be seen that the
correlation between the original and the obfuscated datasets are mostly smaller than 0.2 for
all the metering points. This implies that it is very hard for any pattern recognition and data
mining algorithm to infer information about the original power consumption pattern of the
smart meters from the obfuscated datasets [17].

Next, we evaluate the degree of obscurity for an IEEE 14 bus system. The H matrix for
the 14 bus system is extracted from MATPOWER, a power system simulation tool [62]. In
this case, the number of metering points m = 31 and the number of state variables n = 13.
We further partition the number of meters and state variables for L1 and L2 as m1 = 15,
m2 = 16 and n1 = 6, n2 = 7. Figure 2-7 depicts the time domain, frequency domain data and
the estimated states from the original and obfuscated measurement data. Comparing Figure
2-7 and 2-4, we arrive at similar conclusions for a 14-bus system to that of a 5-bus system.
Figure 2-6(a) shows the correlation coefficients of all the 31 metering points for T = 13 and it
can be seen that the value is mostly less than 0.3. Note from Figure 2-6(b) that as expected
when the number of measurement data samples is increased i.e., when the value of T was
increased from 13 to 360, the correlation coefficient was found to be less than 0.15 which
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Figure 2-7: Illustration of the efficacy of Obfuscate(.) in an IEEE 14-bus power system. (a)
shows the power consumption data of true and obfuscated measurement in time domain. (b)
shows the power consumption data of true and obfuscated measurement in frequency domain.
(c) shows the power spectral density of the original and obfuscated datasets. (d) shows that the
estimated state from the obfuscated value (bottom) is the same as the estimated state from the
original data (top).
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makes this scheme practically secure for estimation with fine granular high-frequency meter
readings. Also, in this case, since each key size is 16 bits, a semi-honest neighbor (other
smart meters) trying to infer the power consumption of a household in the same locality has
about 216 ≈ 66k possibilities for every batch. Naturally, when the time duration per batch
drops down to every few minutes with high-frequency datasets, the task becomes even more
cumbersome for a semi-honest adversary to deduce the appliance usage patterns of his/her
neighbor living in the same locality.
However, Obfuscate(.) still has a shortcoming since it cannot preserve the privacy of zero

elements. The power grid topology matrix H is, in general, a full column rank and a sparse
matrix. However, the matrix H+ is less sparse than H and is likely to be dense. Upon
inspecting the sparsity pattern of the H+ matrix for both the 5-bus and 14-bus power system,
we found that the H+ matrix for the 14-bus was about 20% sparse, whereas the H+ matrix
for the 5-bus power system was completely dense. Exposing the sparsity pattern of the H+

matrix to the cloud may, in turn, reveal some information about the structure of theH matrix
which is undesirable. Thus to confront such sparse attacks, we introduce the matrix

H+
∆ = H+ + ∆ ,

where the matrix ∆ is 100% dense. The utility provider U sends the matrix H+
∆ instead of

H+ to the cloud which computes

X∆ = (H+ + ∆) Z .

U then computes the product ∆ Z by invoking Obfuscate(.) again. Later, the original state
estimates can be retrieved by U as

X̂ = X∆ − ∆ Z .

Note that this step does not incur any major computational overhead on the utility provider
since it requires another simple invocation of Obfuscate(.).

2-7 Conclusions

In this chapter, we proposed a batch-wise state estimation problem in power networks with
the objective of protecting both the grid configuration and power consumption data of the
smart meters. We formulated a weighted-least-squares problem and reduced the state estima-
tion problem into a matrix multiplication problem of four block matrices. This allowed us to
exploit highly efficient and verifiable obfuscation-based cryptographic protocols. We designed
Obfuscate(.) - a randomization scheme that supports error-free estimation between the orig-
inal and obfuscated datasets without compromising on the accuracy of the state variables
essential to the utility provider, and is proven to be correct, secure, and verifiable. Computa-
tion complexity analysis shows the efficiency and the practical applicability of Obfuscate(.).
We further evaluated the performance of Obfuscate(.) in terms of its illegibility and resilience
with a real-time hourly power consumption data in an IEEE 14 bus and a fully measured
5 bus power system. Our simulations reveal a high degree of obscurity making it hard for
the malicious cloud server to infer any information regarding the behavioral pattern of the
consumers and the network topology from the obfuscated datasets. Furthermore, we also
discussed the problem of revealing the sparsity structure of the pseudo-inverse of the grid
topology matrix and proposed a solution to resist such sparse attacks.
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Chapter 3

Protecting the System Model through
Differential Privacy

In this chapter, we study the problem of protecting the system model while leveraging
the state sequences generated by that model for data aggregation purposes using differential
privacy. In Section 3-1 we discuss the motivation behind the problem and outline the contri-
butions of this chapter. In Section 3-2, we present the necessary prerequisites on differential
privacy. Followed by that, we present the problem formulation along with the required defini-
tions and state the research problem in Section 3-3. In Section 3-4, we propose a noise adding
mechanism based on differential privacy and derive an analytical expression to estimate the
minimum noise level required to ensure DP. We then present the simulation results and study
the effect of the proposed DP-mechanism w.r.t the various privacy design parameters and
utility in Section 3-5. Finally, in Section 3-6, we summarize the conclusions.

3-1 Introduction

3-1-1 Problem Motivation

Innovative business models are the key to success in any industry [63]. Companies make
significant capital investments to develop innovative models for improving the performance
of their existing systems [64]. Many companies restrict the use of their ideas by filing patents
or by hiding certain features of their model and capitalize on it to generate revenues and
profits for their business [65]. Thus, protecting a model as a confidential trade secret play an
important role in the growth and innovation of a company. For example, beverage companies
successfully ensure that the syrup formula cannot be reverse engineered using their beverage
available in the market. However, when dealing with dynamical systems, the problem of pro-
tecting the model becomes challenging since system identification techniques can be employed
for identifying a black-box system model or to extract the parameters of a grey-box system.
Furthermore, with the advent of machine learning, data mining techniques can be applied for
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system identification [66, 67]. Such techniques help competitors unravel the trade secret of
the target company. This advocate for methods that introduce ambiguity and uncertainty in
the mind of an external adversary wanting to use information associated with the model for
statistical purposes.

One of the most important quantities to be computed in surveys and audits is the aggregate
information. Data aggregation enables performing data mining applications for understanding
important phenomena, such as traffic congestion patterns, influenza outbreaks, etc. [68]. For
example, consider a case where an external party wants to periodically know the number of
products produced and sold in a particular time period, and use it to compute the average
for statistical analysis. Companies sometimes voluntarily release this information in the form
of their production report, sales report etc, and in some cases, they are mandated to release
even the amount of raw materials used in the production of their product. For example, in the
case of beverage industries, the main raw material is water, and the amount of water used in
production must be disclosed to a governmental body for keeping a check on the underground
water levels. However, as illustrated in the motivating example below, periodically releasing
this information may also be used to identify sensitive model parameters. Thus, there is a
fundamental need to preserve the system model as well as share the information generated
by the model with a reasonable utility.

Motivating Example from Supply Chain Economics

Consider an example of supply chain economics depicted in Figure 3-1 which involves three
different parties: Supplier (S), Producer (P ) and Retailer (R). S purchases the quantity u(k)
of raw materials at each day k and discards a fraction δ1 of raw materials when shipping a
fraction α1 to P . P transforms these raw materials into finished products and sells a fraction
of α2 to R while discarding a fraction of δ2 due to faults, low quality etc. Finally, R returns
a fraction β3 of defective products every day and sells a fraction of γ3 to customers.

Figure 3-1: A simple supply chain model showing the internal flow of information between the
supplier, producer and retailer.

This supply chain model can be recast into a discrete-time linear state space equation as
follows:
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x1(k + 1)
x2(k + 1)
x3(k + 1)

 =


1− α1 − δ1 0 0

α1 1− α2 − δ2 β3

0 α2 1− β3 − γ3


︸ ︷︷ ︸

A


x1(k)
x2(k)
x3(k)

 +


1
0
0

 u(k). (3-1)

The state x1(k) represents the amount of raw material in S, x2(k) and x3(k) denotes the
products in P and R respectively. The output y(k) represents the products sold to customers.
The system model matrix A contains information about the percentage of products discarded
in each chain, the percentage of defective products returned by the retailer to the producer.
Typically companies would like to keep such internal information private when disclosing the
state vector x(k) to an external organization for survey and auditing purposes. Exposing
the system matrix might damage the reputation of each party in the supply chain and may
even result in the breach of trust among the customers. For example, consider exposing
the information δ1 and β3 to the public. A higher δ3 implies that a large percentage of
raw material supplies have been discarded due to poor quality. Higher β3 implies that the
percentage of defective products produced is high. Information such as the percentage of
products discarded in each chain or percentage of defective products may also give insight into
sensitive information such as the quality and efficiency of the production machine, thinking
pattern behind rejecting products etc. Furthermore, if a competitor gets hold of the supply
chain model i.e. the A matrix of the target company, then it could very likely predict the
future production of the target company with high accuracy and beat them to the market.
Thus, the system matrix A must be protected while releasing the information of the state
vectors for data aggregation purposes.
Let us now discuss the scenario of releasing the state samples after a certain time duration

of T days without perturbing the state samples, i.e., no privacy. These state vectors are
typically required in surveys and audits for measuring the aggregate amount of products
from the supplier, producer and retailer side for a period of time. Consider the input u(k)
to be a Dirac delta function1 of magnitude C i.e. u(k) = Cδ. This means once, for every T
days, the supplier S purchases a raw material of quantity C. Thus for k ∈ (0, T ], the state
space equation in (3-1) reduces to


x1(k + 1)
x2(k + 1)
x3(k + 1)

 =


1− α1 − δ1 0 0

α1 1− α2 − δ2 β3

0 α2 1− β3 − γ3


︸ ︷︷ ︸

A


x1(k)
x2(k)
x3(k)

 . (3-2)

Let the external query at a given time index k be

Qk = xk,

Upon repeating this query for a period T , the adversary arrives at the following relation[
x1 x2 · · ·xT

]
︸ ︷︷ ︸

Xf

= A
[
x0 x1 · · ·xT−1

]
︸ ︷︷ ︸

Xp

. (3-3)

1A Dirac delta function δ(k) = 1 at k = 0 and δ(k) = 0 ∀ k > 0.
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Equation (3-3) can be solved for A by

Ā = Xf XT
p (Xp XT

p )−1. (3-4)

For sufficiently large T , the estimate Ā = A and hence the adversary can easily infer all the
sensitive information about the model resulting in a privacy breach.

3-1-2 Existing Work and Our Contributions

There has been a large body of work done in the statistics and database literature on dis-
closure limitation and privacy-preserving publication of data [69, 70]. The recently proposed
formulation of privacy by Dwork [71] called Differential Privacy (DP) has been adopted as a
standard definition of privacy in many applications offering quantitative privacy guarantees.
Originally, differential privacy was proposed for a static system as a measure of maximizing
the accuracy of queries from statistical databases while minimizing the probability of identi-
fying the individuals. In recent years, differential privacy has gained a significant amount of
attention in the context of dynamical systems and control where researchers have used it for a
diverse set of objectives such as control [72,73], consensus [74–76], and optimization [77–84].

Although differential privacy has made its way to systems and control, very little work has
been done in utilizing differential privacy for protecting the system model. To the best of our
knowledge, only [64, 85, 86] discuss the problem of model-preservation in the DP framework.
In [64], differential privacy was explored for designing output noises for preserving the model.
The authors in [85] present several perturbation techniques to release a model describing
the dynamics of a large group of users responding to a common single input signal and
producing a single output signal. However, their approach assumes a trusted data aggregator
where participants provide their confidential scalar model parameters to, and the aggregator
then uses these parameters to publish a transfer function of the SISO system describing the
relationship between common input and the aggregate output. In [86] differential privacy
was used to protect the consensus network topology from an eavesdropper who may have an
unauthorized access to the central estimator. They present a mechanism where each agent in
the network adds DP-induced noise to its output and transmits it to the central estimator to
estimate the topology matrix and its eigenvalues. However, the authors in [86] do not define
any utility function and characterize the privacy-utility trade-offs. These gaps in the present
state-of-the-art along with a strong fundamental need to protect the model motivates us to
explore this problem in-depth using differential privacy.

The major contributions of this chapter are as follows:

• We propose the first differential privacy mechanism to study the problem of protecting
the model privacy i.e., the system matrix A while releasing the state sequences for
data aggregation without assuming an intermediary trusted aggregator. We also derive
an analytical expression to estimate the minimum noise level required to guarantee
differential privacy.

• Furthermore, we define a utility function in our problem setup and characterize the
resulting privacy-utility trade-off using numerical illustrations. We also analyze the
effect of the DP mechanism w.r.t the various privacy design parameters.
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Figure 3-2: Original framework of differential privacy proposed by Dwork.

3-2 Technical Preliminaries

The basic idea behind differential privacy is to perturb the exact result before releasing it
to the public. In the original DP framework proposed by Dwork [70] shown in Figure 3-2,
there exists a curator who takes in the query of the data analyst and calculates the exact
answer to the query by accessing the database. The curator then perturbs the result so that
the output distribution over answers does not vary much if any given individual changes its
data (or even participates or not) in a database. The amount of perturbation affects both the
usefulness of the result and privacy. The more perturbation used, the less useful the result
and a higher privacy is retained. Following are the some the definitions that are required to
understand the mathematical underpinnings of differential privacy.

Definition 4. (Data Base) [3]. A database D is a storage space containing structured set of
data and user information that needs to be protected. Each element in a database corresponds
to information from an individual user. The universe of all possible databases of interest is
denoted by D .

Definition 5. (Query) [3]. The quantity to be released to the public that we would like to
compute from a database is modeled by q(D) for some mapping q called query that acts on D.

Definition 6. (Adjacent Databases) [3]. Two databases D = {di} and D′ = {d′i} for i =
1, 2, ...n are said to be adjacent if there exists i ∈ {1, ...n} such that dj = d′j for all j 6= i.

Differential privacy is able to guarantee that the result of computation on a database does not
change much when any single user in the database changes his/her information. As directly
making q(D) available to the public may cause users in the database to lose their privacy, a
mechanism M is developed that approximates q. In the DP setting, all mechanisms under
consideration are randomized and range(M) = range(q). Below we present the definition of
the differential privacy.

Definition 7. (ε- Differential Privacy) [70]. Given ε ≥ 0, a mechanism M preserves ε-
differential privacy if for all R ⊆ range(M) and all adjacent databases D and D′ in D, it
holds that:

Pr(M(D) ∈ R) ≤ eε Pr(M(D′) ∈ R). (3-5)

The above definition implies that for a given database, the output of a differentially private
mechanism obeys a certain probability distribution and acts on a database to ensure that two
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adjacent databases are nearly indistinguishable (in a probabilistic sense) from just looking at
the output of the mechanism. The probability measure in (3-5) is taken from the probability
space for defining the randomized mechanismM.

3-3 Problem Setup

3-3-1 Notation

‖.‖p represents the p−norm of a vector or the induced p−norm of a matrix with p ∈ [1,∞).
If x(k) represents the state vector at time instance k, then the state sequence up to time
T is denoted by X[0 : T ]. Lap(0, b)n denotes n-dimensional Laplace distribution with i.i.d.
components, each with a probability density function p(x) = 1

2be
−x
b .

3-3-2 Differential Privacy for System Model Identification

Differential privacy is a method of introducing randomness or noise into a particular system
such that the adversary cannot uniquely identify the data to be protected while at the same
time computing the query from the data with a considerable amount of utility [70]. In this
case, the data to be protected is the model or the system matrix A while the query Qk is

Qk = xk. (3-6)

The noise is calibrated according to the sensitivity of the query and added to the state
vectors xk as given by (3-7). These perturbed samples will be transmitted to an external
entity (potential adversary) who wants to compute the aggregate of all the state vectors up
to time T .

Mk : x̃k = xk + ηk, (3-7)

To design the noise ηk ∈ Rn inMk given by (3-7), we first present the following definitions:

Definition 8. (β Adjacency) : Two state matrices A and A′ are β adjacent (denoted by
Adjβ) if for some β ≥ 0,

Adjβ def=
∥∥A−A′∥∥2 ≤ β ∀β ≥ 0. (3-8)

Remark 1. Adjacency in differential privacy captures the quantity to be hidden. Contrary
to the popular definition of adjacency used in DP for static and dynamic systems [68, 85,
87], where adjacency is defined w.r.t. changes in only component i while keeping the other
components j 6= i unchanged, our definition allows changes that can possibly affect and change
various components of the state matrix A.

We borrowed this definition of adjacency from [86], where the authors used this adjacency
relationship to protect the privacy of topology in consensus networks.
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Figure 3-3: Illustration of the adjacency relationship and sensitivity.

Definition 9. (Sensitivity) : Sensitivity ∆(x) represents the maximum possible difference
between the two state vectors generated by any two β-adjacent state matrices starting from
the same initial condition xk−1. In this chapter, we define sensitivity in terms of the L1 norm

∆(x) =
∥∥xA(k)− xA′(k)

∥∥
1,

=
∥∥Axk−1 −A′xk−1

∥∥
1.

(3-9)

Figure 3-3 illustrates the adjacency relationship and sensitivity.

Definition 10. (Finite Time ε Differential Privacy): Given ε ≥ 0, the mechanism M given
in (3-10)

M : X̃[0 : T ] = X[0 : T ] + η[0 : T ], (3-10)
preserves ε-differential privacy up to time T if for any two β-adjacent state matrices A and
A′, and for any R ⊆ range (M) the following relationship is satisfied:

Pr
[
X̃A[0 : T ] ∈ R

]
≤ eε Pr

[
X̃A′ [0 : T ] ∈ R

]
. (3-11)

Definition 10 says that if the state matrix changes from A to A′ that is β-adjacent, then the
corresponding state trajectory statistics change atmost with a factor of eε, where ε quantifies
the privacy loss.

Definition 11. (Utility) : Utility U is defined as

U = 1−
∥∥Xavg − X̃avg

∥∥
1

‖Xavg‖1
, (3-12)

where Xavg = 1
T

∑T
k=0 xk and X̃avg = 1

T

∑T
k=0 x̃k.

3-3-3 Adversarial Estimate

Upon receiving the perturbed state samples x̃k, the adversary will be able to obtain an
estimate denoted by Â as follows:

Â = arg min
Ã∈Rn×n

∥∥X̃f − ÃX̃p

∥∥, (3-13)
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where X̃f = X̃[1 : T ] and X̃p = X̃[0 : T −1]. The DP-mechanism in (3-7) will ensure that the
state samples generated by A and A′ ∈ Adjβ are almost equally likely i.e., the state samples
generated by Adjβ state matrices are statistically not very different [86]. Hence by observing
these state samples, the adversary will not be able to distinguish between A and A′ with
high confidence level while retaining the necessary information to compute the query with
reasonable utility. Thus, the privacy of the state matrix A is preserved which results in the
estimation error

E = E
[∥∥A− Â∥∥2

]
. (3-14)

The term
∥∥A− Â∥∥2 is defined as the perturbation norm.

3-3-4 Problem Statement

Given the above problem setup: design the noise η(k) in (3-7) satisfying the DP-definition
in (3-11) for a given ε, β, and characterize the resulting trade-off between the level of privacy
and the utility.

3-4 Proposed Solution

In this section, we present a noise adding DP-mechanism to protect the privacy of the system
matrix A. The most common way to implement the DP mechanism is to add noise generated
according to the Laplacian distribution based on the sensitivity ∆ of the system [70]. To
design η(k), we first need to estimate the sensitivity up to time T given as:

∆(T ) = max
A,A′:Adjβ

∥∥XA[0 : T ]−XA′ [0 : T ]
∥∥

1. (3-15)

Once ∆(T ) is obtained, the following theorem provides a sufficient condition for the noise
design.

Theorem 1. [87]: The mechanism M in (3-10) is ε- differentially private up to time T if
η(k) is white Laplacian noise with distribution η(k) ∼ Lap(0, b)n and b ≥ ∆(T )

ε .

Proof. The proof follows from Theorem 2 in [87]. Refer Appendix 4-2 for a detailed proof.

Remark 2. Notice that the noise design parameter b is inversely proportional to ε. Thus
as ε decreases, the noise parameter b increases resulting in a flat tail Laplacian distribution
curve i.e., the probability of picking a random number close to zero is very low and hence a
higher noise level is generated. As a result, when ε decreases, the privacy level increases and
vice-versa. Also, notice the noise parameter b is directly proportional to the sensitivity ∆(T ).
Thus the lower the sensitivity, the lower the noise that needs to be added and vice-versa.

Intuitively, if the sensitivity is low, then for two different β−adjacent state matrices, the
change in the corresponding state trajectories will not be large, and hence the level of noise
required to make the two-state trajectories statistically not very different will also be small
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[86]. Since sensitivity is crucial in designing a DP-induced noise, we may try to calculate
∆(T ). However, it is difficult to obtain an analytical expression for ∆(T ). Hence, we propose
the following theorem instead that characterizes the upper bound on the sensitivity. Through
this upper bound, we obtain the minimum noise level required to ensure DP.

Theorem 2. The sensitivity ∆(T ) is upper bounded by

∆(T ) ≤
√
n β

∥∥x(0)
∥∥

1

T∑
k=0

∥∥Ak∥∥1 (3-16)

Proof. To obtain the upper bound for the sensitivity function ∆(T ) given by (3-15), let us
consider two measurements xA and x′A produced by β adjacent state matrices A and A′

∥∥∥∥xA(k + 1)− xA′(k + 1)
∥∥∥∥

1
=
∥∥Ax(k)−A′x(k)

∥∥
1

≤
∥∥A−A′∥∥1

∥∥x(k)
∥∥

1
≤
√
n
∥∥A−A′∥∥2

∥∥x(k)
∥∥

1

≤
√
n β

∥∥x(0)
∥∥

1
∥∥Ak∥∥1

∥∥∥∥XA[0 : T ]−XA′ [0 : T ]
∥∥∥∥

1
=

T∑
k=0

∥∥∥∥xA(k + 1)− xA′(k + 1)
∥∥∥∥

1

≤
√
n β

∥∥x(0)
∥∥

1

T∑
k=0

∥∥Ak∥∥1

(3-17)

From (3-17), we can see that the sensitivity is bounded for a finite value of T . Also, when A
is a Schur matrix (eigenvalues inside the unit disc), the sensitivity is bounded for all values
of T . The noise η(k) can be generated by setting the noise design parameter b as follows

b = ∆(T )
ε

=
√
n
β

ε

∥∥x(0)
∥∥

1

T∑
k=0

∥∥Ak∥∥ (3-18)

Note that in (3-18), β and ε are the privacy design parameters and the ratio

λ
def= β

ε
(3-19)

represents the privacy level [86] whereas β and ε are known as the privacy design parameters.
If the adjacency parameter β increases for a fixed ε, it indicates that DP is ensured for a
larger set of state matrices. Similarly if ε decreases, it denotes the increase in privacy level.
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Figure 3-4: Illustration of the DP Mechanism simulated for various values of β and ε
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Figure 3-5: State matrix estimation error.

3-5 Simulation Results

We consider the same supply chain example explained in Section 3-1-1. Let the system
matrix A be

A =


0.16 0 0
0.8 0.25 0.01
0 0.7 0.19

 .

We set T = 15 days and x0 =
[
1000 0 0

]T
.
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Figure 3-6: Privacy-Utility trade-off characterization

3-5-1 System Matrix Estimation

The adversary obtains an estimate of the system matrix Â given by (3-13). Figure 3-4 shows
the perturbation norm

∥∥A − Â∥∥2 simulated for various values of β and ε. It is clear that as
ε increases the perturbation norm tends to zero i.e., the adversarial estimate approaches the
true value, and hence there is no privacy. It is also evident that as β increases for a fixed
ε, DP is ensured for a larger set of state matrices. It is seen that when β is increased, the
noise level added is also increased because of the increase in sensitivity level. Hence a larger
difference in the perturbation norm is observed for higher β’s.
Next, we simulated for multiple noise realizations and calculated the sample mean to approx-

imate the expected error E given in (3-14). Figure 3-5 shows the variation of the expected
error w.r.t.the privacy level λ. Naturally, when λ = 0 i.e., no privacy, the expected error
E = 0, and as expected, the estimation accuracy degrades with an increase in the privacy
level.

3-5-2 Privacy vs Utility

We now characterize the privacy-utility trade-off by calculating the perturbation norm and
utility U for various values of the privacy level λ. Figure 3-6 depicts the plot between the
perturbation norm and utility for various values of the privacy level λ. This plot aids in
choosing the privacy and utility level for this system. For example, when λ = 0.5 we have,

Xavg =


73.4361
127.2418
62.0275

 , X̃avg =


89.9353
119.3256
85.5776

 , U = 0.76.

Â =


0.0758 0.0922 0.1149
0.6571 0.3963 0.0599
−0.0650 0.3919 −0.0501

 , ∥∥A− Â∥∥2 = 0.45.
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Notice the difference between the actual Amatrix and the matrix Â obtained by the adversary
from the perturbed state trajectories. As emphasized in Remark 1, our adjacency definition
allowed changes in multiple components of the A matrix. Let us now compare both the
matrices element-wise. From A we see that a12 = 0, which means in the actual supply
chain model, the producer P does not return any percentage of raw materials back to the
supplier S, whereas â12 ∼ 0.1 which misleads the adversary to think that about 10% of raw
materials received from the supplier is returned back to the supplier possibly to defects. The
adversary certainly cannot deduce with high confidence level if the producer actually returned
some fraction of raw materials to the supplier, thereby, preserving the privacy of the model.
Similarly, in the actual model a13 = 0 and a31 = 0 i.e., there is no communication between
supplier and retailer, whereas the components â13 and â31 6= 0.

Analyzing the eigenvalues of A, we have:

γ =
[
0.1311 0.3089 0.1600

]T
,

whereas the adversarial estimated eigenvalues are:

γ̂ =
[
0.6188 −0.0984 + 0.2047i −0.0984− 0.2047i

]T
.

The adversary here is again misled to think that the model exhibits oscillatory behavior due
to complex poles, whereas, no such oscillatory behavior is present in the original system.
Thus, through differential privacy, we are able to mislead the adversary in several directions
while still managing to retain a high level of utility (U ≈ 0.8).

3-6 Conclusions

In this chapter, we proposed a differential privacy mechanism to protect the system matrix.
The proposed mechanism adds synthetic noise generated according to the Laplacian proba-
bility distribution and prevents an external adversary from uniquely identifying the system
matrix when accessing the state samples to compute the aggregate (average) information.
We derived an analytical bound on the sensitivity function and calculated the sufficient noise
level required to ensure DP. Simulation results validate the DP theory and show that the
expected estimation error increases with an increase in the privacy level. Furthermore, we
characterized the resulting trade-off between the privacy level and utility through empirical
evidence. Using this characterization, we inferred how differential privacy aids in the process
of introducing uncertainty and ambiguity in the adversarial mind while still retaining higher
levels of utility. Deploying differential privacy in practice requires no major computational
overhead since the DP-noise generation process is equivalent to generating random numbers
according to a given probability distribution and sensitivity. Hence, a DP mechanism can
be implemented easily provided it is feasible to obtain an analytical expression for the upper
bound of the sensitivity function of a given query.
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Chapter 4

Future Work and Overall Conclusions

In this chapter, we state the future research directions for both Chapter 2 and 3 and present
the overall conclusions of this thesis.

4-1 Future Work

4-1-1 Chapter 2

In Chapter 2, we proposed Obfuscate(.) - an obfuscation scheme to preserve the privacy of
user behavioral patterns and the power network topology from the malicious cloud. Although
the behavioral pattern and the power dynamics of the other smart meters in every locality
are hidden from the malicious cloud, the respective lead meter can still infer this information.
This is because the lead meter has access to the scaled measurements z′ = aij .z (Pearson
coefficient = 1) whose dynamics are exactly the same as z. Hence, it was essential in our
problem to consider a single non-collusive trusted node in every local network termed as the
lead meter to initiate the obfuscation of power measurement dynamics. Future work may
involve developing security protocols without assuming even a single trusted node in the
network.

Another drawback ofObfuscate(.) is that it does not take into account the grid configuration
matrix H although time-invariant during state estimation may still be susceptible to changes
all the time. For example, consider a person living in a particular locality is now motivated
to install a smart meter at his home due to good security reasons or a person living in one
locality is now moving to another locality. Such situations clearly result in the change in
the network topology (an extra row addition or row deletion of the existing H matrix), and
assuming a pre-computation of H+ at every stage is not reasonable. Hence, to deal with such
instances, we require a protocol computing the matrix A = (HTH)−1 for secure outsourcing
of large matrix inversion to the cloud. During the course of this thesis, we designed another
obfuscation-based protocol MatrixInvert(.) given in Algorithm 9 that could possibly carry
out a large matrix inversion in the cloud with O(n2) computational overhead to the client
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Algorithm 9 MatrixInvert(A)
1: Input A ∈ Rn×n
2: Generate a uniform diagonal random matrix R ∈ Rn×n
3: Client (U) computes the matrix M = AR . O(n2) as R is diagonal.
4: Send M to the cloud for matrix inversion.
5: Cloud computes M−1 = (AR)−1 = R−1A−1 . O(n3) for matrix inversion.
6: Cloud returns M−1 = R−1A−1 to the client for verification.
7: Client generates a random vector v ∈ Rn and checks
8: if

(
M−1.(AR).v

)
== R−1A−1((AR).v

)
== v then . positive verification

9: Client computes the matrix A′ = R(R−1A−1) = A−1 . O(n) as R is diagonal
10: else . negative verification.
11: abort.
12: end if
13: Output: A−1

(U) while the cloud performs a computation of O(n3). The proof of verification, security,
and correctness of this protocol follows from a similar approach to the one employed for
Obfuscate(.). However, the problem with this MatrixInvert(.) is that it does not hide the
sparsity pattern of the grid configuration when taking inverses i.e, it does not preserve the
privacy of zero elements in the H matrix, thereby, making the power network vulnerable to
stealth false data injection attacks. This raises a fundamental question in cryptography of
how to protect the privacy of the zero elements of the matrix while outsourcing a large matrix
inversion problem to a malicious cloud server? To the best of our knowledge, the existing
literature does not have a solution to this problem.

Another work may involve developing a statistical measure to quantify the degree of ob-
scurity introduced by these obfuscation schemes to understand how indistinguishable the
obfuscated datasets are compared to the original measurements.

4-1-2 Chapter 3

In Chapter 3, we proposed a DP framework to protect the system matrix of an autonomous
system model. Future work may involve extending this framework to a more generic non-
autonomous systems with the privacy goal of protecting both the system and input matrices.
Another research direction may involve designing an asymptotically decaying noise to re-
tain higher levels of utility and providing mathematical proofs that the resulting mechanism
preserves differential privacy.

It is also important to note that, we tracked and modeled only the movement of goods
without considering the pricing effect in the supply chain model. An interesting project could
be to track down and model the movement of prices at each stage of the supply chain process
in the control theory framework and investigate the privacy concerns arising in such models.
Modeling economic systems as complex dynamic systems in the control theory framework has
now received a significant attention to a better understanding of economic phenomena. The
amount of information economies create has grown exponentially and this line of research is
now popularly known as complexity economics [8].
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(a) Visual depiction of the Lemma
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(b) Numerical illustration of the Lemma

Figure 4-1: Minimum model error achieved through DP as per the derived Lemma

Another interesting line of research and an open problem as pointed out in [85] could focus
on analytically quantifying the approximation error and exploring the lower bounds on the
model error achievable by DP mechanisms. During this project, we attempted to analytically
quantify the lower bounds on the model error by considering adjacency relationship with
respect to the state vectors rather than the system model (see. 3-8) as in Chapter 3. We
arrived at a lower bound for the minimum amount of uncertainty introduced in the model
when perturbing the state trajectories using differential privacy. The reader is referred to
Appendix -3 for more details on this problem. Figure4-1(a) shows the visual representation
of the problem, we are trying to solve and Figure 4-1(b) shows a tight lower bound obtained
from the derived Lemma for a simple second order system (see. Appendix -3). However,
when simulated for systems of higher order, we noticed that the expressions derived for lower
bound were rather conservative and at times, our simulations even violated the minimum
theoretical bound derived. Thus, this requires further investigation to develop a tighter lower
bound for quantifying the minimum model error achievable through DP.

4-2 Overall Conclusions

In this thesis, we investigated the privacy concerns arising in dynamical systems in the
context of state estimation - one of the most widely studied concepts in systems and control
and relied on cryptography to address these privacy challenges. We studied two different
problems with applications to smart grids and supply chain economics. To address the privacy
challenges in smart grids, we deployed Obfuscate(.) - a randomization scheme based on the
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obfuscated transformation that is easier and efficient to implement in a smart meter platform.
Obfuscate(.) was able to guarantee the accurate estimate of the state variables with proper
security, correctness, verification, and efficiency. In the case of supply chain economics, where
protecting the privacy of a system model becomes crucial for a successful business, we deployed
differential privacy - a noise addition technique. The resulting mechanism was able to achieve
higher levels of utility while ensuring acceptable privacy level to mislead the adversary in
several directions. Furthermore, we pointed out that the development of complexity economics
to study economic phenomena in the control theory framework can also increase the privacy
challenges of economics systems since system identification techniques can be used to reverse
engineer the sensitive information of the model.

As the digital transformation is accelerating with many recent technological advancements
such as blockchain, machine learning, etc., there is a growing importance of multi-disciplinary
research both in academia and industry. The main goal of this project was to take a step
towards a joint project proposal to bridge the gap between the systems and control and cyber
security community. We hope that our work will serve as a motivation for future research
collaborations between the two communities.

Lakshminarayanan Nandakumar Master of Science Thesis



Bibliography

[1] R. Deng, “Why we need to improve cloud computing’s security?.” https://phys.org/
news/2017-10-cloud.html, October 2017.

[2] R. Deng, G. Xiao, and R. Lu, “Defending against false data injection attacks on power
system state estimation,” IEEE Transactions on Industrial Informatics, vol. 13, pp. 198–
207, Feb 2017.

[3] J. Cortes, G. E. Dullerud, S. Han, J. L. Ny, S. Mitra, and G. J. Pappas, “Differential
privacy in control and network systems,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 4252–4272, Dec 2016.

[4] U.S District Court, District of Hawaii, Honolulu, HI,USA, Adam Asquith vs Kauai Island
Utility Co-operative, June 2012.

[5] The Irish Times, “Facebook to contact 87 million users affected
by data breach.” https://www.irishtimes.com/business/technology/
facebook-data-breach-affected-up-to-87-million-users-1.3450735, April
2018.

[6] P. Venkitasubramaniam, J. Yao, and P. Pradhan, “Information-theoretic security in
stochastic control systems,” Proceedings of the IEEE, vol. 103, pp. 1914–1931, Oct 2015.

[7] G. T. Duncan and D. Lambert, “Disclosure-limited data dissemination,” Journal of the
American Statistical Association, vol. 81, no. 393, pp. 10–18, 1986.

[8] O. Criner, “Control systems identification in finance and economics,” WIT Transactions
on Information and Communication Technologies, vol. 41, pp. 3–12, 2008.

[9] European Commission, “Energy. Smart grids and meters.” https://ec.europa.eu/
energy/en/topics/markets-and-consumers/smart-grids-and-meters, 2017.

[10] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin, “Private memoirs of a
smart meter,” in Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems

Master of Science Thesis Lakshminarayanan Nandakumar

https://phys.org/news/2017-10-cloud.html
https://phys.org/news/2017-10-cloud.html
https://www.irishtimes.com/business/technology/facebook-data-breach-affected-up-to-87-million-users-1.3450735
https://www.irishtimes.com/business/technology/facebook-data-breach-affected-up-to-87-million-users-1.3450735
https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-grids-and-meters
https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-grids-and-meters


42 Bibliography

for Energy-Efficiency in Building, BuildSys ’10, (New York, USA), pp. 61–66, ACM,
2010.

[11] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker, “Inferring personal information from
demand-response systems,” IEEE Security Privacy, vol. 8, pp. 11–20, Jan 2010.

[12] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggregation for the smart-
grid,” in Privacy Enhancing Technologies (S. Fischer-Hübner and N. Hopper, eds.),
pp. 175–191, Springer Berlin Heidelberg, 2011.

[13] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review and outlook,”
in 2011 IEEE International Conference on Consumer Electronics (ICCE), pp. 239–240,
Jan 2011.

[14] Y. Liu, M. K. Reiter, and P. Ning, “False data injection attacks against state estimation
in electric power grids,” ACM Trans. Inf. Syst. Secur., vol. 14, pp. 13:1–13:33, 2009.

[15] Y. F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State estimation in
electric power grids: Meeting new challenges presented by the requirements of the future
grid,” IEEE Signal Processing Magazine, vol. 29, pp. 33–43, Sept 2012.

[16] M. A. Rahman and G. K. Venayagamoorthy, “Distributed dynamic state estimation for
smart grid transmission system,” IFAC-PapersOnLine, vol. 50, no. 2, pp. 98 – 103, 2017.
Control Conference Africa CCA 2017.

[17] Y. Kim, E. C. H. Ngai, and M. B. Srivastava, “Cooperative state estimation for preserving
privacy of user behaviors in smart grid,” in 2011 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pp. 178–183, Oct 2011.

[18] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public cloud,” IEEE Internet
Computing, vol. 16, pp. 69–73, Jan. 2012.

[19] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing of linear programming
in cloud computing,” in 2011 Proceedings IEEE INFOCOM, pp. 820–828, April 2011.

[20] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[21] Z. Erkin, “Private data aggregation with groups for smart grids in a dynamic setting using
CRT,” in 2015 IEEE International Workshop on Information Forensics and Security
(WIFS), pp. 1–6, Nov 2015.

[22] S. Ge, P. Zeng, R. Lu, and K.-K. R. Choo, “FGDA: Fine-grained data analysis in privacy-
preserving smart grid communications,” Peer-to-Peer Networking and Applications, Nov
2017.

[23] F. Knirsch, D. Engel, and Z. Erkin, “A fault-tolerant and efficient scheme for data
aggregation over groups in the smart grid,” in IEEE Workshop on Information Forensics
and Security (WIFS), pp. 1–6, Dec 2017.

[24] K. Emura, “Privacy-preserving aggregation of time-series data with public verifiability
from simple assumptions,” in Information Security and Privacy (J. Pieprzyk and S. Suri-
adi, eds.), pp. 193–213, Springer International Publishing, 2017.

Lakshminarayanan Nandakumar Master of Science Thesis



43

[25] G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin, “Smart meter aggrega-
tion via secret-sharing,” in Proceedings of the First ACM Workshop on Smart Energy
Grid Security, SEGS ’13, (New York, NY, USA), pp. 75–80, ACM, 2013.

[26] M. A. Rahman and H. Mohsenian-Rad, “False data injection attacks against nonlinear
state estimation in smart power grids,” in 2013 IEEE Power Energy Society General
Meeting, pp. 1–5, July 2013.

[27] A. Beussink, K. Akkaya, I. F. Senturk, and M. M. E. A. Mahmoud, “Preserving consumer
privacy on IEEE 802.11s-based smart grid ami networks using data obfuscation,” in 2014
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pp. 658–663, April 2014.

[28] S. Tonyali, O. Cakmak, K. Akkaya, M. M. E. A. Mahmoud, and I. Guvenc, “Secure
data obfuscation scheme to enable privacy-preserving state estimation in smart grid ami
networks,” IEEE Internet of Things Journal, vol. 3, pp. 709–719, Oct 2016.

[29] C. Efthymiou and G. Kalogridis, “Smart grid privacy via anonymization of smart meter-
ing data,” in 2010 First IEEE International Conference on Smart Grid Communications,
pp. 238–243, Oct 2010.

[30] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart grids using ho-
momorphic encryption,” in 2010 First IEEE International Conference on Smart Grid
Communications, pp. 327–332, Oct 2010.

[31] F. C. Schweppe and J. Wildes, “Power system static-state estimation, part I: Exact
model,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-89, pp. 120–
125, Jan 1970.

[32] F. C. Schweppe and D. B. Rom, “Power system static-state estimation, part II: Ap-
proximate model,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-89,
pp. 125–130, Jan 1970.

[33] F. C. Schweppe, “Power system static-state estimation, part iii: Implementation,” IEEE
Transactions on Power Apparatus and Systems, vol. PAS-89, pp. 130–135, Jan 1970.

[34] I. Gera, Y. Yakoby, and T. Routtenberg, “Blind estimation of states and topology (BEST)
in power systems,” in 2017 IEEE Global Conference on Signal and Information Process-
ing (GlobalSIP), pp. 1080–1084, Nov 2017.

[35] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of false data
injection attacks against modern power systems,” IEEE Transactions on Smart Grid,
vol. 8, pp. 1630–1638, July 2017.

[36] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Matpower’s extensible
optimal power flow architecture,” in 2009 IEEE Power Energy Society General Meeting,
pp. 1–7, July 2009.

[37] A. Wood and B. Wollenberg, Power Generation, Operation, and Control. A Wiley-
Interscience publication, Wiley, 1996.

Master of Science Thesis Lakshminarayanan Nandakumar



44 Bibliography

[38] Y. F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State estimation in
electric power grids: Meeting new challenges presented by the requirements of the future
grid,” IEEE Signal Processing Magazine, vol. 29, pp. 33–43, Sept 2012.

[39] O. Krause and S. Lehnhoff, “Generalized static-state estimation,” in 2012 22nd Aus-
tralasian Universities Power Engineering Conference (AUPEC), pp. 1–6, Sept 2012.

[40] U. S. Department of Energy, “Factors affecting PMU installation costs.” https://www.
smartgrid.gov/files/PMU-cost-study-final-10162014_1.pdf, October 2014.

[41] M. Cosovic and D. Vukobratovic, “Fast real-time DC state estimation in electric
power systems using belief propagation,” Computing Research Repository, CoRR,
vol. abs/1705.01376, 2017.

[42] A. Monticelli, “Electric power system state estimation,” Proceedings of the IEEE, vol. 88,
pp. 262–282, Feb 2000.

[43] “U.S.-Canada power system outage task force..” https://digital.library.unt.edu/
ark:/67531/metadc26005/, August 2003.

[44] S. A. Salinas and P. Li, “Privacy-preserving energy theft detection in microgrids: A
state estimation approach,” IEEE Transactions on Power Systems, vol. 31, pp. 883–894,
March 2016.

[45] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Srivastava, and
P. Tabuada, “Privacy-aware quadratic optimization using partially homomorphic encryp-
tion,” in 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 5053–5058,
Dec 2016.

[46] Y. Lindell and B. Pinkas, “Secure Multi-party Computation for Privacy-Preserving Data
Mining,” Journal of Privacy and Confidentiality, vol. 1, no. 1, pp. 59–98, 2009-10.

[47] European Commission, “Benchmarking smart metering deployment in the EU-27 with
a focus on electricity.” https://ses.jrc.ec.europa.eu/publications/reports/
benchmarking-smart-metering-deployment-eu-27-focus-electricity, March
2017.

[48] G. Hunt, “What does GDPR mean for your energy business?.” https://www.
siliconrepublic.com/enterprise/gdpr-energy-sector, March 2017.

[49] M. Tebaa and S. E. Hajji, “Secure cloud computing through homomorphic encryption,”
Computing Research Repository - CoRR, vol. abs/1409.0829, 2014.

[50] M. Simos, “Microsoft security intelligence report..” https://www.microsoft.com/
en-us/security/Intelligence-report, March 2017.

[51] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra computations,” in
Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’10, (New York, NY, USA), pp. 48–59, ACM, 2010.

[52] M. J. Atallah, K. B. Frikken, and S. Wang, “Private outsourcing of matrix multiplication
over closed semi-rings,” in SECRYPT, 2012.

Lakshminarayanan Nandakumar Master of Science Thesis

https://www.smartgrid.gov/files/PMU-cost-study-final-10162014_1.pdf
https://www.smartgrid.gov/files/PMU-cost-study-final-10162014_1.pdf
https://digital.library.unt.edu/ark:/67531/metadc26005/
https://digital.library.unt.edu/ark:/67531/metadc26005/
https://ses.jrc.ec.europa.eu/publications/reports/benchmarking-smart-metering-deployment-eu-27-focus-electricity
https://ses.jrc.ec.europa.eu/publications/reports/benchmarking-smart-metering-deployment-eu-27-focus-electricity
https://www.siliconrepublic.com/enterprise/gdpr-energy-sector
https://www.siliconrepublic.com/enterprise/gdpr-energy-sector
https://www.microsoft.com/en-us/security/Intelligence-report
https://www.microsoft.com/en-us/security/Intelligence-report


45

[53] D. Fiore and R. Gennaro, “Publicly verifiable delegation of large polynomials and matrix
computations, with applications,” in Proceedings of the Conference on Computer and
Communications Security, CCS ’12, (New York, NY, USA), pp. 501–512, ACM, 2012.

[54] Y. Zhang and M. Blanton, “Efficient secure and verifiable outsourcing of matrix multi-
plications,” in Information Security (S. S. M. Chow, J. Camenisch, L. C. K. Hui, and
S. M. Yiu, eds.), pp. 158–178, Springer International Publishing, 2014.

[55] M. Kumar, J. Meena, and M. Vardhan, “Privacy preserving, verifiable and efficient
outsourcing algorithm for matrix multiplication to a malicious cloud server,” Cogent
Engineering, vol. 4, no. 1, 2017.

[56] J. Dreier and F. Kerschbaum, “Practical privacy-preserving multiparty linear program-
ming based on problem transformation,” in 2011 IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on
Social Computing, pp. 916–924, Oct 2011.

[57] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption,” in Proceedings of the Forty-
fourth Annual ACM Symposium on Theory of Computing, STOC ’12, (New York, NY,
USA), pp. 1219–1234, ACM, 2012.

[58] J. Saia and M. Zamani, “Recent results in scalable multi-party computation,” in SOF-
SEM 2015: Theory and Practice of Computer Science (G. F. Italiano, T. Margaria-
Steffen, J. Pokorný, J.-J. Quisquater, and R. Wattenhofer, eds.), (Berlin, Heidelberg),
pp. 24–44, Springer Berlin Heidelberg, 2015.

[59] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computation: Interactive
proofs for muggles,” J. ACM, vol. 62, pp. 27:1–27:64, Sept. 2015.

[60] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix inversion com-
putation to a public cloud,” IEEE Transactions on Cloud Computing, vol. 1, pp. 1–1,
Jan 2013.

[61] F. Chen, J. Dai, B. Wang, S. Sahu, M. Naphade, and C.-T. Lu, “Activity analysis based
on low sample rate smart meters,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, (New York, NY, USA),
pp. 240–248, ACM, 2011.

[62] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Matpower: Steady-state
operations, planning, and analysis tools for power systems research and education,” IEEE
Transactions on Power Systems, vol. 26, pp. 12–19, Feb 2011.

[63] H. Tohidi and M. M. Jabbari, “Innovation as a success key for organizations,” Procedia
Technology, vol. 1, pp. 560 – 564, 2012. First World Conference on Innovation and
Computer Sciences (INSODE 2011).

[64] G. Bottegal, F. Farokhi, and I. Shames, “Preserving privacy of finite impulse response
systems,” IEEE Control Systems Letters, vol. 1, pp. 128–133, July 2017.

Master of Science Thesis Lakshminarayanan Nandakumar



46 Bibliography

[65] X. He, F. Zhang, and N. Adam, “Towards ranking the importance of patents,” in 2008
IEEE Symposium on Advanced Management of Information for Globalized Enterprises
(AMIGE), pp. 1–5, Sept 2008.

[66] G. Pillonetto, “The interplay between system identification and machine learning,” Com-
puting Research Repository CoRR, vol. abs/1612.09158, 2016.

[67] S. Saitta, B. Raphael, and I. F. C. Smith, “Combining two data mining methods for
system identification,” in Intelligent Computing in Engineering and Architecture (I. F. C.
Smith, ed.), (Berlin, Heidelberg), pp. 606–614, Springer Berlin Heidelberg, 2006.

[68] L. Fan and L. Xiong, “An adaptive approach to real-time aggregate monitoring with
differential privacy,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
pp. 2094–2106, Sept 2014.

[69] G. T. Duncan and D. Lambert, “Disclosure-limited data dissemination,” Journal of the
American Statistical Association, vol. 81, no. 393, pp. 10–18, 1986.

[70] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found.
Trends Theor. Comput. Sci., vol. 9, pp. 211–407, Aug. 2014.

[71] C. Dwork, “Differential privacy,” in Automata, Languages and Programming (M. Bugliesi,
B. Preneel, V. Sassone, and I. Wegener, eds.), (Berlin, Heidelberg), pp. 1–12, Springer
Berlin Heidelberg, 2006.

[72] Z. Huang, Y. Wang, S. Mitra, and G. E. Dullerud, “On the cost of differential privacy
in distributed control systems,” in Proceedings of the 3rd International Conference on
High Confidence Networked Systems, HiCoNS ’14, (New York, NY, USA), pp. 105–114,
ACM, 2014.

[73] Y. Wang, Z. Huang, S. Mitra, and G. E. Dullerud, “Entropy-minimizing mechanism for
differential privacy of discrete-time linear feedback systems,” in 53rd IEEE Conference
on Decision and Control, pp. 2130–2135, Dec 2014.

[74] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative synchronous con-
sensus,” in Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society,
WPES ’12, (New York, NY, USA), pp. 81–90, ACM, 2012.

[75] E. Nozari, P. Tallapragada, and J. Cortes, “Differentially private average consensus:
Obstructions, trade-offs, and optimal algorithm design,” Automatica, vol. 81, pp. 221 –
231, 2017.

[76] Y. Mo and R. M. Murray, “Privacy preserving average consensus,” IEEE Transactions
on Automatic Control, vol. 62, pp. 753–765, Feb 2017.

[77] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed constrained
optimization,” IEEE Transactions on Automatic Control, vol. 62, pp. 50–64, Jan 2017.

[78] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed optimization,” in
Proceedings of the 2015 International Conference on Distributed Computing and Net-
working, ICDCN ’15, (New York, NY, USA), pp. 4:1–4:10, ACM, 2015.

Lakshminarayanan Nandakumar Master of Science Thesis



47

[79] M. T. Hale and M. Egerstedty, “Differentially private cloud-based multi-agent optimiza-
tion with constraints,” in 2015 American Control Conference (ACC), pp. 1235–1240,
July 2015.

[80] E. Nozari, P. Tallapragada, and J. CortÃľs, “Differentially private distributed convex
optimization via objective perturbation,” in 2016 American Control Conference (ACC),
pp. 2061–2066, July 2016.

[81] S. Han, U. Topcu, and G. J. Pappas, “Differentially private convex optimization with
piecewise affine objectives,” in 53rd IEEE Conference on Decision and Control, pp. 2160–
2166, Dec 2014.

[82] J. Hsu, A. Roth, T. Roughgarden, and J. Ullman, “Privately solving linear programs,”
Computing Research Repository CoRR, vol. abs/1402.3631, 2014.

[83] Q. Ling, W. Xu, M. Wang, and Y. Li, Distributed Constrained Optimization Over Cloud-
Based Multi-agent Networks, pp. 91–102. Cham: Springer International Publishing, 2016.

[84] E. Nozari, P. Tallapragada, and J. Cortes, “Differentially private distributed convex
optimization via functional perturbation,” IEEE Transactions on Control of Network
Systems, vol. PP, no. 99, pp. 1–1, 2016.

[85] J. Le Ny and G. J. Pappas, “Privacy-preserving release of aggregate dynamic models,”
in Proceedings of the 2Nd ACM International Conference on High Confidence Networked
Systems, HiCoNS ’13, (New York, NY, USA), pp. 49–56, ACM, 2013.

[86] V. Katewa, A. Chakrabortty, and V. Gupta, “Protecting privacy of topology in consensus
networks,” in 2015 American Control Conference (ACC), pp. 2476–2481, July 2015.

[87] J. L. Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on
Automatic Control, vol. 59, pp. 341–354, Feb 2014.

[88] J. D. McCalley, “The Power Flow Problem,” tech. rep., Iowa State University, June 2018.

Master of Science Thesis Lakshminarayanan Nandakumar



48 Bibliography

Lakshminarayanan Nandakumar Master of Science Thesis



Appendix

-1 A fully measured 5-bus power system

A fully measured 5-bus power system is shown in Figure 2. In this case, the total number of
metersm is 10 and the meter measurements are z = [F12, F23, F24, F35, F45, P1, P2, P3, P4, P5]T
where Fij represents the branch (i, j) active power flow and Pj represents bus j active power
injection. The structure of the measurement matrix H is then given by [2]:

Figure 2: A fully measured 5-bus power system. Taken from [2]

H =



b12 0 0 0
−b23 b23 0 0
−b24 0 b24 0

0 −b35 0 b35

0 0 −b45 b45

b12 0 0 0
−b12 − b23 − b24 b23 b24 0

b23 −b23 − b35 0 b35

b24 0 −b24 − b45 b45

0 −b35 −b45 b35 + b45


where bij denotes the susceptance of the transmission line (i, j). The susceptance is the
imaginary part of admittance and the admittance matrix is obtained from [88]. TheH+ is pre-
computed from H and the F blocks are partitioned according to their respective dimensions.

Master of Science Thesis Lakshminarayanan Nandakumar



50 Appendix

-2 Finite time ε-differential privacy

Theorem 1. [87]: Let q : D → Rk be a query, and ε > 0. Then the Laplace mechanism
Mq : D × ω → Rk defined by Mq(d) = q(D) + η, with η ∼ Lap(b)k and b ≥ ∆(q)

ε is ε-
differentially private.

Note that the mechanism requires each coordinate of to have standard deviation propor-
tional to ∆1q, as well as inversely proportional to the privacy parameter ε. For example, if
q simply consists of k repetitions of the same scalar query, then ∆1q increases linearly with
k, and the quadratically growing variance of the noise added to each coordinate prevents an
adversary from averaging out the noise.

Proof. We have R ⊂ Rk measurable and d, d’ two adjacent datasets in D,

Pr(Mq(d) ∈ R) = ( 1
2b)k

∫
Rk

1R (q(d) + η)e−
‖η|1
b dη

= ( 1
2b)k

∫
Rk

1R (s)e−
‖s−q(d)|1

b dη

≤ e
‖q(d)−q(d′)‖1

b ( 1
2b)k

∫
Rk

1R(s) e−
‖s−q(D)|1

b dη

(1)

Since by triangular inequality, −‖s− q(d)|1 ≤ ‖s− q(d′)|1 + ‖q(d)− q(d′)|1, with b = ∆(q)/ε,
we obtain the definition 10 of differential privacy.

-3 Minimum model error achieved by differential privacy

Definition 12. Two state vectors xk, x′k ∈ Rn are said to be β−adjacent if there exists some
i = {1, 2, . . . n} such that:

Adjβ(x) def=
∣∣xi,k − x′i,k∣∣ = β ∀β ≥ 0

xj,k = x′j,k ∀j 6= i

Adjβ (x) implies that the state signals x and x′ differ exactly by one component signal and
that this deviation is bounded. In other words, differential privacy aims at hiding l2 variations
of size β in the signal xi and makes it hard to detect deviations within that range.

Lemma 1. The 1-norm of the uncertainty matrix ∆A introduced in the model through the
β-adjacent state vectors is norm (lower) bounded by

‖∆A‖1 ≥
∣∣ 1− ‖A‖1 ∣∣

1 + 1
β

∥∥∥X[0:T−1]

∥∥∥
1

Proof. To start with, we define the following relation:
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A′ = A+ ∆A where ∆A is the perturbation matrix
X’[0 : T ] = X[0 : T ] + e[0 : T ]

∥∥e[0:T ]
∥∥

1 ≤ β
(2)

x′k+1 = A′x′k = (A+ ∆A)x′k
xk+1 = Axk

(3)

Looking at (2) and (3) we get:

X′[1:T ] = X[1:T ] + e[1:T ]

A′X′[0:T−1] = AX[0:T−1] + e[1:T ]

e[1:T ] = (A+ ∆A) X′[0:T−1] −AX0:T−1

i.e. at any given k, ek+1 = A ek + ∆A x
′
k

(4)

e[1:T ] = A e[0:T−1] + ∆A X′[0:T−1] (5)

Taking norm on both sides in (5) and applying the triangular inequality yields:

∥∥e[1:T ] −A e[0:T−1]
∥∥ ≤ ∥∥∆A X′[0:T−1]

∥∥ (6)

Now, for some i we have the following:

e[1:T ] =


0 0 β · · · 0
0 β 0 · · · 0
...
0 0 0 · · ·β

 e[0:T−1] =


0 β · · · 0
β 0 · · · 0
...
0 0 · · · β

 (7)

‖e[1:T ]‖1 = ‖e[0:T−1]‖1 = β

A e[0:T−1] =


a11 a12 · · · a1n

a21 a22 · · · a2n
...
an1 an2 · · · ann




0 β · · · 0
β 0 · · · 0
...
0 0 · · · β

 =


βa12 βa11 · · ·βa1n

βa22 βa21 · · ·βa2n
...

βan2 βan1 · · ·βann

 (8)

∥∥A e[0:T−1]
∥∥

1 = max
(
β
(
|a12|+ |a22| · · · |an2|

)
, β
(
|a11|+ |a21| · · · |an1|

)
, · · ·β

(
|a1n|+ |a2n| · · · |ann|

))
= β

∥∥A∥∥1

Hence, the minimum value of
∥∥e[1:T ]−Ae[0:T−1]

∥∥ =
∣∣∣∣β− β.|A‖1∣∣∣∣. Substituting this in (6), we

arrive at
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∣∣∣∣β − β.|A‖1∣∣∣∣ ≤ ‖∆A‖1
(
‖X[0:T−1]‖1 + β

)
‖∆A‖1 ≥

∣∣ 1− ‖A‖1 ∣∣
1 + 1

β

∥∥∥X[0:T−1]

∥∥∥
1

(9)

Notice that as β increases the lower bound of ‖∆A‖1 also increases. This matches with our
intuition as the larger the potential state trajectory deviations get, the more ambiguous the
generating model will become.
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Glossary

Chapter 2

R - Set of real numbers
T - Time duration of a batch
x - State vector
X - State sequences up to time T
X̂ - Estimated state sequences up to time T
[.] - Obfuscated or randomized value
H - Grid topology/configuration or power network topology
H+ - Pseudo-inverse of the grid configuration matrix
Pr - Probability
Li - Locality or neighborhood i
Sij - Smart meter installed in household j in locality i
Si1 - Lead smart meter at locality i

Sij ∀j 6=1 - Other smart meter at locality i
Zi - Power consumption of locality i
mi - Number of smart meters in locality i
ni - Number of state variables in locality i
e - Gaussian measurement noise
λ - Key size in bits
U - Utility provider
C - Cloud service provider
A - Area consisting of a set of localities
∆ - 100% dense matrix

Obfuscate(.) - Proposed protocol/solution/scheme
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54 Glossary

Chapter 3

DP - Differential privacy
w.r.t - With respect to
E - Expectation operator
xk - State vector at time instant k
x̃k - Perturbed state vector at time instant k
X - State sequences
X̃ - Perturbed state sequences
Xavg - Average of the state vectors
X̃avg - Perturbed average of the state vectors
ηk - Noise vector at time instant k
n - Number of state variables
T - Time duration of a batch
‖.‖p - p-norm of a vector
A - System or state matrix
A′ - Adjacent state matrix
Â - Adversarial estimate
Qk - Query at a given instant k

∆(x) - Sensitivity function
∆(T ) - Sensitivity up to time T
U - Utility function
ε - Privacy loss

Adjβ - β adjacent
λ - Privacy level
γ - Eigenvalues
γ̂ - Adversarial estimate of eigenvalues
M - DP Mechanism
R - Range of the DP mechanism
E - Estimation error
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