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Abstract
The stringent and conflicting requirements imposed on optomechanical instruments and the ever-increasing need for
higher resolution and quality imagery demands a tightly integrated system design approach. Our aim is to drive the
thermomechanical design of multiple components through the optical performance of the complete system. To this end,
we propose a new method combining structural-thermal-optical performance analysis and topology optimization while
taking into account both component and system level constraints. A 2D two-mirror example demonstrates that the proposed
approach is able to improve the system’s spot size error by 95% compared to uncoupled system optimization while satisfying
equivalent constraints.

Keywords Topology optimization · Multidisciplinary design optimization · System optimization · Optical
instrumentation · Optomechanics · Thermoelasticity · Structural-thermal-optical-performance analysis

1 Introduction

1.1 Optomechanical instruments

Optomechanical instruments control light by means of
optics and generally have to meet very stringent opti-
cal, mechanical and thermal requirements (e.g. Chin 1964;
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Yoder and Vukobratovich 2015). They are found in high-
tech applications in disciplines such as (nano)metrology,
astronomy, life sciences, aerospace, lithography and com-
munications. A cutting-edge example is the Sentinel 5 UV1
space-based spectrometer, shown in Fig. 1. The challenge of
optomechanics lies in maintaining the position and shape of
optical elements such that the image quality is guaranteed
under all working environments (e.g. Giesen and Folgering
2003; Meijer et al. 2008; Pijnenburg et al. 2012). Therefore,
optomechanical design is a tightly integrated process involv-
ing many disciplines such as thermal control, structural
mechanics, motion control and optics.

The optical performance generally encompasses the
systems’ image quality, optical resolution, and image
position accuracy. Both image quality and optical resolution
are typically quantified by the spot size or image blur
diameter (e.g. Welsh 1991; Doyle et al. 2012). The
spot size of an aberration-free system is limited by the
wavelength of light. This diffraction limit determines the
minimum blur diameter that is achievable by an optical
system and hence provides a reference for image quality.
The spot size mainly depends on the wavefront quality
due to geometric aberrations, whereas the beam position
accuracy depends on how accurate the optical components
are positioned/oriented. These performance metrics can be
determined using geometric ray tracing, which traces the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-018-1932-4&domain=pdf
http://orcid.org/0000-0003-2106-2246
mailto:s.koppen@tudelft.nl
mailto:m.vanderkolk@tudelft.nl
mailto:floris.vankempen@tno.nl
mailto:jan.devreugd@tno.nl
mailto:m.langelaar@tudelft.nl


S. Koppen et al.

(a) Structural design of the Sentinel 5 UV1 spectrometer. The mirrors
are bolted to the housing, and the housing is semi-kinematically con-
nected to the satellite frame via flexures in order to limit deformations
due to imposed rigid body displacements of the frame.

(b) Optical design of the Sentinel 5 UV1 illustrating the mirror mounts
and optical rays. Note the different mirror back layouts and consistent
connections to the frame. The spot position and size depends on the
misalignments and surface deformations of each mirror and grating.

Fig. 1 The European Space Agency’s (ESA) Sentinel 5 shortwave UV1 band (270-300 nm) spectrometer system to be carried on the MetOp-SG
satellite

propagation of light rays through an optical system (e.g.
Spencer andMurty 1962). For flat or spherical single-mirror
systems the wavefront error scales linearly with the Surface
Form Error (SFE) of the deformed surface and the pointing
error is directly related to the tilt of the surface (e.g. Genberg
1984, 1999). The optical performance metric of interest thus
depends on application and system composition.

Many factors may contribute to the inability of an optical
system to produce a perfect image, including chromatic
and geometrical aberrations, fabrication and alignment
errors, (lack of) self-weight and environmental effects such
as temperature fluctuations. This work focuses on the
reduction of optical performance errors of reflective optical
systems induced by (quasi)-static thermal loads. Therefore,
structural deformations and temperature differences of
the frame should neither excessively distort the mount
nor the optical surface. This implies that a mechanically
disconnected frame and optical surface combination would
be optimal. However, the presence of thermal loads requires
material to abduct the heat from the optical surfaces to the
frame. In addition, the optical components also require a
stiff design, as the structure must constrain the components
such that they are not damaged or irreversibly moved
after exposure to external conditions such as vibrations,
thermal shocks and gravity. To limit excitation from external
vibrations, the fundamental elastic eigenfrequency must be
higher than a critical lower limit. Adding more practical
constraints such as maximum mass and material usage,
often linked to costs, the optomechanical mirror support
design clearly involves multiple conflicting structural
requirements. To make well-founded and justified design

trade-offs, careful consideration of the thermomechanical
and dynamic performance of optical mounts is required.
Optimization techniques can aid in this process.

1.2 Problem definition

The current typical design approach of optomechanical
instruments is characterized by the optical discipline cre-
ating a performance error budget that defines deformation
limits for each optical component to the structural disci-
pline. In an iterative design process, the thermal discipline
provides the temperature fields and gradients, after which
the structural discipline aims to realize a design which
meets the deformation limits during thermal and other envi-
ronmental load cases. From this point of view, an optical
system functions as long as the components remain within
allowed tolerances of their nominal locations, orientations
and deformations. Thus, in the existing thermomechani-
cal design process, the optical performance is not con-
sidered directly. Instead, each component is designed and
optimized separately to meet a priori defined deformation
limits.

To expand the design space and enable further improve-
ments of the optical performance we introduce:

1. system-level optical performance metrics that drive the
thermomechanical design and optimization process,

2. simultaneous optimization of all components for the
combined metrics, and

3. system-level constraints that, where possible and
applicable, replace component-level constraints.
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1.3 Approach: simultaneousmulticomponent
multidisciplinary topology optimization

Model-based structural optimization techniques can aid in
further improving the performance of optical instruments.
Topology optimization is a systematic, bottom-up structural
optimization approach that provides maximum design
freedom without any prior knowledge of the design. The
procedure optimizes the material layout within given design
domains in order to maximize a performance measure,
while subjected to a given set of loads, boundary conditions,
and constraints (e.g. Bendsøe and Sigmund 2003). The
method, in combination with mathematical programming,
has shown to be able to solve complex multidisciplinary
problems with multiple active nonlinear response functions
and is capable of producing innovative solutions.

The mentioned design requirements have previously
been investigated in topology optimization. This includes
thermal loads and prescribed temperature differences on
stiffness problems (e.g. Rodrigues and Fernandes 1995;
Li et al. 2001a; Gao and Zhang 2010; Deaton and Grandhi
2013) and the application to the design of thermomechanical
compliant mechanisms (e.g. Sigmund 2001; Ansola et al.
2012). Recently, Zhu et al. (2016) presented a shape preser-
ving design method for topology optimization. By sup-
pressing the elastic strain energy in the local domain, the
shape of the concerned domain can be effectively main-
tained to satisfy the requirements. This is extended by
Li et al. (2017) to achieve desired deformation behavior
within local structural domains by distinguishing and sup-
pressing specific deformation in a certain direction. The
fundamental eigenfrequency as a response function has been
thoroughly investigated (e.g. Ma et al. 1995; Pedersen 2000;
Du and Olhoff 2007; Tsai and Cheng 2013).

Previously, topology optimization has shown its bene-
fits in the design of mirror mounts for optical performance.
For example the minimization of deformations of optical
surfaces under static (Park et al. 2005; Sahu et al. 2017)
and thermal loads (Kim et al. 2005) and mass minimiza-
tion while constraining deformations as well as the fun-
damental eigenfrequency (Hu et al. 2017a). Furthermore,
semi-kinematic flexible mirror mounts are topologically
optimized by, Hu et al. (2017b) who minimize surface form
errors subjected to both static and thermal loads constrained
by a minimum natural eigenfrequency, and Van der Kolk
et al. (2017), who achieve optimal damping characteristics
at source frequencies. System optical performance met-
rics have not been included in the topology optimization
framework yet.

An integrated Multidisciplinary Design Optimization
(MDO) approach is often applied to couple all involved
physics and profit from the interactions between diffe-
rent disciplines, resulting in superior designs. We apply an

integrated Structural-Thermal-Optical Performance (STOP)
analysis and optimization procedure for this purpose to
utilize simultaneous optimization of the optical, structural
and thermal design aspects (e.g. Johnston et al. 2004;
Doyle et al. 2012; Kuisl et al. 2016). Prior work using
STOP optimization couples various analysis tools to obtain
the optical performance. This shows great improvement,
although the optimization often includes only a limited
number of variables such as facesheet thickness and strut
diameters (e.g. Williams et al. 1999; Michels et al. 2005;
Bonin and McMaster 2007). The results indicate that device
performance can profit from integration of optical knowl-
edge, and that further improvement is accessible when all
design parameters are considered. The STOP optimization
procedure includes optical knowledge at the thermome-
chanical design level, but the design freedom is not yet
fully exploited.

Coupled multicomponent topology optimization can aid
in exploiting the component interactions. Simultaneous
topology optimization of multiple components has mainly
focused on layout design and combined topology and joint
location optimization (e.g. Chickermane and Gea 1997; Li
et al. 2001b; Zhu et al. 2009, 2015). Topology optimization
involving component interactions to improve a system
performance has previously been investigated by Jin et al.
(2016, 2017), with the focus on simultaneous optimization
of multiple coupled actuator mechanisms to minimize the
coupling interaction. However, this study was restricted to a
single physical discipline.

In this work, we combine the foregoing and additionally
apply multidisciplinary optimization to a component assem-
bly and optimize for a system-level optical performance
metric. This approach will be referred to as integrated Sys-
tem Design Optimization (SDO). To determine the system
optical performance, this study uses a simplified version
of geometric ray tracing, the ray transfer matrix analy-
sis. The method uses the paraxial approximation to cons-
truct a linear operator that describes the behavior of an opti-
cal system (e.g. Nazarathy et al. 1986; Smith 2007; Fischer
et al. 2008).

The innovation point of the SDO method compared
to existing methods is threefold: it combines topology
optimization and a full STOP analysis, uses system-level
optical performance metrics to drive the thermomechanical
design of multiple components simultaneously, and uses
system-level constraints to replace multiple equivalent
component-level constraints.

We hypothesize that an integrated structural-thermal-
optical thermomechanical design optimization procedure
taking into account all system components improves the
system optical performance compared to individual com-
ponent optimization, while subjected to equivalent design
constraints.
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The formulation of the coupled thermomechanical
discretized equilibrium equations and modal analysis,
topology optimization formulation and sensitivity analysis
of a generalized response function are described in
Section 2. The extension to a full STOP topology
optimization approach is given in Section 3, which focuses
on the optical performance prediction from finite element
analysis results. The method is first validated on a single-
component system, after which the hypothesis is tested
by numerical optimization of a two-mirror example as
discussed in Section 5. The results are followed by a
discussion, recommendations and conclusions presented in
Sections 6 and 7.

2 Formulation of coupled thermomechanical
analysis framework for topology
optimization

A schematic of a typical two-mirror opto-thermo-
mechanical system is shown in Fig. 2, introducing the
necessary nomenclature for the mathematical model. Both
domains consist of a linear-elastic homogeneous isotropic
material with conductivity ki , Young’s modulus Ei , Pois-
son’s ratio νi , density ρi and Coefficient of Thermal
Expansion (CTE) αi . A coordinate system is asserted for
every optical component to express the displacements of
the optical surfaces. Additionally, each optical element
(including space propagation in a medium with constant
refractive index) has a coordinate system to track the posi-
tion and angle of rays with respect to the optical axis.
The optical design includes the optical path lengths d,
incident angles φ and initial ray position and angles. The
response of a system to a given load case depends on
the optical design and properties, as well as the compo-
nent’s domain geometries, boundary conditions, structural
layouts and material properties. Any system response
function depends on the response of multiple compo-
nents to a given load case, where the response of each
domain directly depends on the layout of material, denoted
by the design variables s, or indirectly through other
responses.

The design variables following from density based
topology optimization, one belonging to every finite
element in the domain, are bounded by a lower and upper
bound, i.e. 0 < s ≤ si ≤ 1 with i = 1, 2, ..., n̂, where
n̂ is the number of variables. The underbound s has a very
small value (to avoid numerical issues) denoting the absence
of material and, s̄ = 1 providing the element with the
assigned initial material properties. Each design variable
can have any intermediate value within the given bounds.
The material properties are interpolated using a penalization
function as discussed in Section 2.1. Sections 2.2 to 2.4

Fig. 2 Overview and nomenclature of a typical optical system.
The incoming converging wavefront is deflected by the mirrors
and focused onto a sensor. The design domain of each component
�i(Ei, ki , νi , ρi , αi) is shown in grey, with nondesign domain
illustrated in black. Prescribed displacements Ub and temperatures Td,
respectively, represent the housing rigid body effects and temperatures.
The beam imposes thermal loads Qc onto the mirror surfaces. The
position and deformations of mirror i are locally described using
coordinate systems Om,i . An incoming wavefront is described by
multiple rays, of which each rays’ position and the angle is expressed
in local coordinate system Or,i with respect to the principal ray
incoming on component i. Each mirror makes an angle φi with relation
to the incoming principal ray. The initial optical path lengths of
principal ray i is given by di

discuss the thermomechanical and modal analysis, followed
by the respective sensitivity analyses.

2.1 Penalization scheme

Intermediate density values are implicitly penalized to grad-
ually force the design variables to approach their bounds
and facilitate interpretation and improve manufacturability.
Most material properties are a function of the design vari-
ables, which varies depending on the applied penalization
scheme. Common interpolation functions for the Young’s
modulus RE(s) and conductivity Rk(s), are the SIMP and
RAMP functions (Bendsøe and Sigmund 1999).

Low-frequency eigenmodes localized in the void regions
of the structure should be avoided. Therefore, this study
applies a continuously differentiable penalization scheme
for RE(s) and Rk(s), as proposed by Zhu et al. (2009). The
function extends the SIMP interpolation with a linear term
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to avoid large ratios of Rρ

RE
for design variables with near

zero densities, that is

RE = Rk(s) = qsp + (1 − q) s, (1)

where p is a penalization parameter and q is a weight factor
controlling the relative influence. This study consistently
uses a power p = 3 and weight q = 0.8. The densities
are scaled linearly, thus the volume and mass of an element
depends linearly on the accompanying design variable. The
method can effectively penalize intermediate densities and
avoid spurious eigenmodes for low-density elements while
keeping the penalization factor relatively low.

The stress is given by

σ(s) = E(s) (εm + α	T ) , (2)

where εm is the strain from applied forces, 	T the
applied temperature difference and E(s)α	T the resulting
thermal stress. The thermal stress is a nonlinear function
of the design variables via the penalization of the Young’s
modulus, but the CTE itself is not directly penalized.

2.2 Thermomechanical equilibrium equations

The one-way coupled thermomechanical equilibrium equa-
tions, neglecting heat transfer by radiation and convection
and discretized using finite elements, are given by
[

K(s) −A(s)
0 H(s)

] [
U
T

]
=

[
F(s)
Q(s)

]
, (3)

where K(s) is the global stiffness matrix, H(s) the global
conductivity matrix and A(s) the global thermal expansion
matrix converting the temperatures to equivalent thermal
loads (e.g. Cook 1981). These global matrices are a function
of the material layout. Depending on the considered loading
conditions, the forces F(s) and applied heat flux Q(s)
can become design dependent. The material properties
are assumed to be independent of strain and temperature,
thus both linear geometric and linear material models
are applied. Furthermore, the loads are assumed to be
independent of time, thus only steady state heat transfer and
(quasi)-static forces apply.

Prescribed and unconstrained Degrees of Freedom
(DOFs) sets are generally different for the mechanical and
thermal problem. To express this in a convenient notation,
one can separate the DOFs in terms of unconstrained
and prescribed displacement DOFs a and b, as well as
unconstrained and prescribed temperature DOFs c and d.
Each domain can be a function of externally applied forces
Fa(s) and heat loads Qc(s), prescribed displacements Ub(s)
and temperatures Td(s), unconstrained displacements Ua(s)
and temperatures Tc(s) as well as the reaction forces Fb(s)
and reaction heat loads Qd(s). For the sake of clarity we

abbreviate the multiplications and leave out the design
variable dependency, such that for instance,

KaU � KaaUa + KabUb. (4)

For a single domain one can now write the partitioned
discretized heat transfer and elasticity equilibrium equations
as[

Kaa Kab

KT
ab Kbb

] [
Ua

Ub

]
=

[
Fa

Fb

]
+

[
Aac Aad

Abc Abd

] [
Tc

Td

]
[

Hcc Hcd

HT
cd Hdd

] [
Tc

Td

]
=

[
Qc

Qd

]
.

(5)

The equilibrium equations, (5), are solved to obtain both
temperature and displacement fields.

2.3 Modal analysis andmean eigenvalue

The natural dynamic properties (neglecting damping) of a
structure are found by solving the eigenvalue problem

(K − λiM)φi = 0 for i = 1, 2, .., n (6)

for each unknown eigenvalue λi and corresponding mode
shape φi . Here i is the mode of interest and n the number
of DOFs. In this eigensystem the characteristic value equals
the squared radial eigenfrequency, i.e. λi = ω2

i . All modes
are mass normalized satisfying

φT
i Mφj = δij for i, j = 1, 2, ..., n. (7)

The mean eigenvalue (Ma et al. 1995) is used as a
response function to maximize or constrain the minimum
fundamental frequency. The function combines the m̃ lowest
eigenfrequencies of the structure, calculated as

fω(s) =
m̃∑

i=1

1

λi(s)
. (8)

This form ensures that the lowest resonant frequency is the
main contributor and the influence of modes with a higher
eigenfrequency quickly decreases. This implants a simple
and effective natural eigenfrequency constraint and ensures
the absence of mode switching.

2.4 Sensitivity analysis

For any response f (s), the gradient with respect to s
must be determined to enable gradient-based optimization.
The focus is first on the responses that depend on the
thermomechanical analysis. Adjoint sensitivity analysis is
efficient due to the large number of design variables, and
therefore we augment the response function as

f = f (s, Ua, Ub, Fa, Fb, Tc, Td, Qc, Qd)

−λT
a (KaU − (Fa + AaT))

−λT
c (HcT − Qc) ,

(9)
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where λa and λc are the adjoint vectors related to the
mechanical and thermal equilibrium equations.

The total derivative with respect to the design variables,
using the adjoint method to solve the gradient of the
objective function in relation to the variables, is given by

df
ds = ∂f

∂s + ∂f
∂Fa

∂Fa
∂s + ∂f

∂Ub

∂Ub
∂s + ∂f

∂Qc

∂Qc
∂s + ∂f

∂Td

∂Td
∂s

−λT
a

(
∂Ka
∂s U + Kab

∂Ub
∂s − ∂Fa

∂s − ∂Aa
∂s T − Aad

∂Td
∂s

)
−λT

c

(
∂Hc
∂s T + Hcd

∂Td
∂s − ∂Qc

∂s

)
(10)

which holds if the Lagrange multipliers satisfy:

[
Hcc −AT

ac
0 Kaa

] [
λc

λa

]
= −

⎡
⎢⎣

(
∂f
∂Tc

)T + Hcd

(
∂f

∂Qd

)T

(
∂f
∂Ua

)T + Kab

(
∂f
∂Fb

)T

⎤
⎥⎦ .

(11)

Here, loads and boundary conditions are assumed to
be design independent and the responses are assumed to
solely depend on the displacement field. Then, (10) can be
simplified to

df

ds
= −λT

a

(
∂Ka

∂s
U − ∂Aa

∂s
T

)
− λT

c
∂Hc

∂s
T, (12)

with the Lagrange multipliers determined by
[

Hcc −AT
ac

0 Kaa

] [
λc

λa

]
=

[
0

−
(

∂f
∂Ua

)T

]
. (13)

The sensitivities of the mean eigenvalue, as described in (8),
with respect to the design variables are

dfω

ds
=

m̃∑
i=1

− 1

λ2i

φT
i

(
∂K
∂s

− λi

∂M
∂s

)
φi . (14)

The sensitivities of the global matrices can be derived
element wise using direct differentiation. With this, the
sensitivities have been determined up until the term ∂f

∂Ua
,

which will be discussed in Section 3, after introducing the
considered optimization problem and response functions.

3 Optical performancemetrics
and sensitivities

This section describes various optical performance metrics
relevant for the analysis of reflective optical systems.
First, the SFE response will be discussed, after which
the analysis of average positional accuracy and spot size
are explained. Most commonly the SFE is expressed by
the Root Mean Square Error (RMSE) of the deformed
configuration compared to the undeformed or another
predefined configuration (Genberg 1984). For 3D unit disk
surfaces the surface errors are often expressed in Zernike

polynomials, which are directly related to typical optical
aberrations. For diffraction limited flat or spherical single-
mirror systems there exists a simple relation between the
RMSE and the Strehl ratio. This is the peak aberrated image
intensity compared to the maximum attainable intensity
using an unaberrated system. The wavefront is proportional
to surface front error. Though, for complex mirrors or multi-
mirror systems the WFE is not directly related to the SFEs
and the image quality can only be determined by ray tracing
techniques.

To analyze a multi-component system without using
numerical ray tracing, the deformed surfaces can be
approximated by a fit to directly obtain contributions to the
optical surface misalignments, i.e. rigid body movements
and SFEs. Next, the ray transfer matrix analysis can be used
to track the position and angle of a paraxial ray though
a multi-component system, leading to a measure for the
averaged positional accuracy. In order to track the rays, all
system properties, i.e. optical paths lengths, incident angles
and specific properties of the optical components, as well
as component transfer functions and misalignments should
be known. Finally, the spot size is quantified by the mean
average deviation of all rays with respect to the averaged
spot position.

3.1 Surface form error

The RMSE is the standard deviation of the distance between
the deformed surface and the ideal surface and is a global
measure for the SFE, see Fig. 3. The deformed surface is
constructed from the out of plane displacements, stored in a

Fig. 3 Schematic representation of a generalized surface in unde-
formed (blue) and deformed (green) configuration of mirror i. Out
of plane node displacements are indicated by Uz,j for the deformed
and by Ûz,j for the fitted displacements, where j is the surface node
number. A least-squares polynomial fit through the deformed surface
(purple) is used to extract the surface misalignments: the tangential
and out of plane misalignments, δx and δz as well as the rotational
misalignment θy and curvature κ . The component specific properties
and misalignments δ cause the input ray ri , with incident angle φi , to
change into ri+1
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vector Uz, which is fitted to a smooth surface represented by
the fitted out of plane displacements Ûz using a linear least
squares regression scheme (Lay 2006), such that

Ûz = GUz, (15)

where G is the fit matrix. The fit matrix is constructed as

G = VY = V
(

VT V
)−1

VT , (16)

where V is the Vandermonde matrix and Y relates the out
of plane displacements Uz directly to the coefficients of
the least-squares solution, i.e. b = YUz. Vector b contains
the coefficients of the least-squares fit (size depends on the
order of the fitted polynomial) which will be used in Section
3.2. The Vandermonde matrix consists of the terms of a
geometric progression and evaluates a polynomial at a set
of points, the surface nodal x-coordinates in this case. The
tangential displacements are assumed negligible compared
to the out of plane displacement, i.e. ||Ux|| � ||Uz||, which
ensures V is constant during the optimization and the least
squares fit is linear.

The fitted displacements are related to the coefficients
via Ûz = Vb. The nodal residuals of the linear least squares
fit, denoted by R, are calculated as

R = Uz − Ûz = (I − G) Uz, (17)

where I is the identity matrix.
The surface RMSE equals the absolute residual between

the deformed surface and the ideal surface. It is preferred to
use the Mean Square Error (MSE) when using the response
in gradients based optimization to avoid division by zero
when taking derivatives. The MSE is defined as

fMSE = MSE (Ua) = 1

ñ

ñ∑
i=1

(
Uz,i − Ûz,i

)2 = 1

ñ
RT R,

(18)

where ñ is the total number of nodes on the mirror face, Uz,i

is the observed and Ûz,i the fitted out of plane displacement
at nodal point i.

The sensitivities of the MSE in relation to the free
displacements Ua, as required in (13), equal

∂fMSE

∂Ua
= ∂fMSE

∂R
JR(Ua) = 2

ñ
RT (I − G) Lz, (19)

where JR(Ua) is the Jacobian matrix of R with respect
to Ua and Lz selects the appropriate DOFs of the surface
of interest from the vector of free displacements, i.e.
Uz = LzUa.

3.2 Positional accuracy

Depending on the application, it is often essential that
the image is kept within certain bounds (e.g. within the
boundaries of a sensor). To determine the location of a

light ray on the image plane we use paraxial ray tracing
of multiple rays. Considering a situation where all optical
components are symmetric around the optical axis, the
positional error of ray j (i.e. the distance of ray j with
respect to the optical axis on the image plane), here denoted
by εj , depends on the radial distance and angle of the ray
with respect to the optical axis when entering the system,
which will be denoted by vector r0. Furthermore, it depends
on all misalignments δ1, ..., δN of all reflective optics (N
is the number of components) and system specific constant
parameters p (initial optical path lengths d and angles of
incidence φ), thus εj

(
r0,j , p, δ1, ..., δN

)
.

The lower order misalignments of a surface i in 2D,
are the change in curvature κi , the axial displacement δz,i
(despace), the rotational misalignment θy,i (tip/tilt), and
the radial displacement δx,i (decenter). The decenter is
directly calculated from the tangential displacement of the
surface vertex. Other misalignments can be derived from the
coefficients of the surface fit bi , which is calculated by the
linear least square regression in (16) and shown in Fig. 3.

The radius of curvature Ri = 1
κi

is assumed to be
constant (parabolic) over the surface for small angular

misalignments, that is
(
dz
dx

)
i
� 1, and defined as the

reciprocal of the curvature κi , which equals κi ≈
(
d2z
dx2

)
i
.

The misalignments are stored as δi = [Ri θy,i δz,i δx,i]T .
Determination of the despace, tip/tilt and radius of
curvature from the surface fit do not take into account
the radial displacement distribution nor the average radial
displacement (decenter) of the mirror surface.

3.2.1 Ray transfer matrix analysis

Ray transfer matrix analysis is used to determine the light
path through a system based on paraxial approximations
by transforming the vector representing the ray, with the
appropriate component transfer matrices, which depend on
the properties and misalignments of the component. A
general misaligned paraxial transformation for component
i, such as the mirror in Fig. 3, is denoted as[

ri+1

1

]
=

[
Mi Ei

0 1

] [
ri

1

]
, (20)

where ri = [xi
dx
dz i

]T , with xi and dx
dz i

the distance and
angle with respect to the optical axis i in the undeformed
configuration. The ray vector after component i, ri+1, is
a linear transformation to the incoming ray ri via the
component specific transfer matrix Mi , and the influence of
the misalignments as contained in the misalignment matrix
Ei .

Using first-order optical canonical operator theory (e.g.
Nazarathy et al. 1986) one can determine the influence
of the misalignments of an optical component δi on the
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Table 1 General misaligned ray transfer matrices for generalized misaligned space propagation and mirror surfaces (Yuan et al. 2011). Here Ri

is the radius of curvature, δz,i and δx,i are despace and decenter misalignments, θy,i the tip/tilt contribution and di the optical path lengths of a
principal ray i with angle of incidence φi on component i

position and angle of an incoming ray ri (Yuan et al. 2011).
The generalized transfer matrices for the elements used
in this study (space propagation and reflective optics) are
shown in Table 1. The space propagation transformation
matrix does not contain aberrations and changes of
refraction index between optical components. The mirror
transformation matrix models reflective optics as perfectly
reflecting surfaces without scattering, transmission or
absorption.

The positional error εj after Ñ sequential elements with
accompanying misalignments Ei ,1 considering an initial ray
vector r0,j , equals the distance from the optical axis after
the last component, that is εj = x

Ñ
. The output ray vector

equals

r
Ñ,j

= MSr0,j + ES, (21)

where the system transformation matrix and misalignment
vector are

MS =
Ñ−1∏
i=0

M
Ñ−i

and ES =
Ñ−1∑
i=1

Ei

⎛
⎝Ñ−i−1∏

j=0

M
Ñ−j

⎞
⎠+E

Ñ
.

(22)

Thus, the positional error of each ray is a function
of all system and component optical properties and
misalignments.

3.2.2 Averaged positional error and sensitivities

The squared positional error of a single reflective optic,
for the purpose of an uncoupled optimization, is solely a
function of the misalignments of that specific component,
that is

fε̂,i = ε̂2i
(
Ua,i

) =
⎛
⎝ 1

m

m∑
j=1

εj

(
r0,j , δi

)⎞⎠
2

, (23)

where ε̂i is the average positional error due to misalign-
ments of component i and the number of rays in the system

1The number of optical elements in a system is generally larger than
the number of optical components, since space propagation is also
an optical element, i.e. Ñ ≥ N . In most optomechanical applications
Ñ = 2N + 1.

m. For the same reason as in (18), the root is omitted.
Statistically, it is unlikely that all positional error contribu-
tions have the same direction and hence superposition of the
errors will lead to overdesign of the individual components,
i.e. the errors are uncorrelated. Therefore, the positional
errors of independent sources are combined via the Root
Sum Square (RSS).

The squared positional error taking into account all
components is defined as

fε̂ = ε̂2
(
Ua,1, ..., Ua,N

) =
⎛
⎝ 1

m

m∑
j=1

εj

(
r0,j , δ1, ..., δN

)⎞⎠
2

(24)

The sensitivities of the positional error contribution of
component i in relation to the unconstrained displacements
are

∂fε̂,i

∂Ua,i
= 2

m

m∑
j=1

εj

(
r0,j , δi

) ∂εj

∂Ua,i
(25)

and the sensitivities of the positional error using an
integrated approach equals

∂fε̂

∂Ua,i
= 2

m

m∑
j=1

εj

(
r0,j , δ1, ..., δN

) ∂εj

∂Ua,i
. (26)

In both (24) and (26) the sensitivities of a single ray εj with
respect to Ua are

∂εj

∂Ua,i
= ∂εj

∂δi

∂δi

∂Ua,i
. (27)

Note that ∂fε̂

∂Ua,i

(
Ua,1, ..., Ua,N

)
, thus the sensitivities of the

positional error with respect to the displacements depends
also on the displacements of other components in the
system. In contrary, the positional error due to component
i only depends on that components’ displacements, that is
∂fε̂,i

∂Ua,i

(
Ua,i

)
.

The sensitivities of the misalignments δi are defined as

∂δi

∂Ua,i
=

[
∂δ∗

i

∂bi

∂bi

∂Ua,i
∂δx,i
∂Ua,i

]
, (28)
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where δ∗
i = [Ri θy,i δz,i]T . Corresponding sensitivity

matrix ∂δ∗
i

∂bi
is a transformation scaling the fit coefficients to

the misalignments, this is defined as

∂δ∗
i

∂bi

=

⎡
⎢⎢⎣

∂Ri

∂bi,1

∂Ri

∂bi,2
· · · ∂Ri

∂b
i,k̃

∂θy,i
∂bi,1

∂θy,i
∂bi,2

· · · ∂θy,i
∂b

i,k̃
∂δz,i
∂bi,1

∂δz,i
∂bi,2

· · · ∂δz,i
∂b

i,k̃

⎤
⎥⎥⎦ , (29)

where k̃ is the order of the fitted polynomial. For a third
order polynomial (parabola) k̃ = 3 and

∂δ∗
i

∂bi

=
⎡
⎣ 0 0 1

κi

0 1 0
1 0 0

⎤
⎦ , (30)

where κi is considered constant over the surface. The
order of the fit determines what type of aberrations can
be accounted for. The term ∂bi

∂Ua,i
= YiLz,i can be derived

from (16) and ∂δx,i
∂Ua,i

= Lx,i , where Lx,i picks the appropriate
DOFs, i.e. δx,i = Lx,iUa,i .

3.3 Spot size and sensitivities

In order to measure the spot size, ray tracing is performed
for multiple rays with different initial distance and angle
from the optical axis, see Fig. 2. The average resulting
deviation from the averaged positional error is a measure for
the spot size. The squared spot size due to the misalignments
of component i is defined as

fε̃,i = ε̃2i
(
Ua,i

) = 1

m

m∑
j=1

(
εj − ε̂i

)2
, (31)

where εj and ε̂i are calculated according to (21) and (23).
For an integrated system optimization the spot size response
is calculated by

fε̃ = ε̃2
(
Ua,i , ..., Ua,N

) = 1

m

m∑
j=1

(
εj − ε̂

)2
, (32)

where ε̂ is calculated with (24).
The sensitivities of the MSE spot size due to the

misalignments of component i, with respect to the
unconstrained displacements, as required to solve for the
Lagrange multipliers in (11), are

∂fε̃,i

Ua,i
= 1

m

m∑
j=1

(
εj − ε̂i

) (
∂εj

∂Ua,i
− ∂ε̂i

∂Ua,i

)
, (33)

where ∂ε̂i

∂Ua,i
is defined in (25) and

∂εj

∂Ua,i
is calculated using

(27). Similarly, the sensitivities of the MSE spot size taking
into account all components’ misalignments are

∂fε̃

Ua,i
= 1

m

m∑
j=1

(
εj − ε̂

) (
∂εj

∂Ua,i
− ∂ε̂

∂Ua,i

)
, (34)

where ∂ε̂
∂Ua,i

is defined in (26).

4 Numerical implementation

This section describes practical considerations of the imple-
mentation. The initial conditions are set such that designs
are initialized with a uniform density field that exactly sat-
isfies the volume constraint. The optimization problem is
solved using the Method of Moving Asymptotes (MMA)
(Svanberg 1987). The optical performance measures are rel-
atively sensitive to design changes. Therefore, the algorithm
is set more conservative (the move limit move is set to 0.1)
in order to avoid large jumps in the design space.

The optimization is subjected to termination criteria
to avoid endless optimization and is considered to be
terminated when the design variables and objective function
change less than a threshold and all constraints are met, that
is⎡
⎢⎢⎣

1
n̂

√(
s(k) − s(k−1)

)2
1
n̂

√(
f (s)(k) − f (s)(k−1)

)2
gi(s)

⎤
⎥⎥⎦ ≤

⎡
⎣ ε	s

ε	f(s)
εg(s)

⎤
⎦ , (35)

where n̂ is the number of design variables, k is the
iteration number and i = 1, 2, ..., m̂ with m̂ the number of
constraints.

In order to limit the design complexity and to avoid
mesh dependency and checkerboard patterns, a general
mesh and element-type independent linear spatial filter is
implemented (Bruns and Tortorelli 2001). The simplest
spatial filter, as used in the presented study, is the linear
filter with weights according to

wij =
{

r − rij if rij ≤ r

0 if rij > r
, (36)

where r is the radius of the filter, taken equal to the size
of a single element. The radius rij is the distance between
the centroids of elements i and j and n̂ is the number of
active elements (equal to the number of design variables).
The filtered variables are calculated as

ˆ̃si =
∑n̂

j=1 wij s̃j∑n̂
j=1 wij

, (37)

where s̃ are the design variables updated by the optimization
algorithm. The filter does not take account of the element
volumes as only structured meshes are used.

To further stimulate fully black-and-white designs, the
filtered design variables are projected in the direction of
their lower and upper bounds by a smooth Heaviside
projection function (e.g. Guest et al. 2004; Sigmund 2007;
Xu et al. 2010). The projected design variables are penalized
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using a projection parameter β around a threshold η, given
by

si =
tanh (βη) + tanh

(
β

( ˆ̃si − η
))

tanh (βη) + tanh (β (1 − η))
. (38)

All given values are constant during the optimization and no
continuation strategy is used.

5 Results

This section discusses two case studies applying the
foregoing theory and demonstrating the validity of the
proposed method. First, the focus is on the optimization
of a single mirror mount to minimize SFEs. Next, the
proposed method including the STOP analysis is tested on a
two-mirror case.

5.1 Single-component surface form error
minimization

The focus of this study is on the optimization of a flat
mirror mount design subjected to a uniform temperature
increase. The goal is to minimize the resulting spotsize
due do both boundary and loading conditions. For a single-
mirror system the spotsize is directly related to the SFE of
the mirror surface, hence minimizing the SFE will suffice.
The aim is to show that the proposed method works well for
single component problems under various conditions. Both
the boundary conditions and eigenfrequency constraint play
a dominant role in the possibility to improve the optical
performance. The study verifies the single-component
topology optimization procedure and investigates the
influence of the eigenfrequency constraint on the resulting
topology and performance.

5.1.1 Problem definition

The design domain �, as shown in Fig. 4, is subjected to
an overall temperature increase 	T, causing the domain
to expand and deform. As the temperature field is known,
there is no need to solve the heat equation. It is assumed
the housing experiences the same temperature increase as
the considered design domain and that the design domain is
mounted to a housing with different material properties. The
resulting change in expansion is introduced in the design
domain by application of known prescribed displacements
on both fixtures.

The objective is to minimize the MSE of the optical
surface � due to the specified thermal environment, while
constrained by a minimum mean eigenfrequency and a
maximum volume. Therefore, the mean eigenvalue (8) is

Fig. 4 Optical mount design domain � of width w, height h and
thickness t with CTE α subjected to a uniform temperature increase
	T. All non design space is indicated in black. Two regions with
prescribed displacements are modelled as the interface with a rigid
housing structure, which has CTE α

2 , and thus known prescribed
displacements Ub, which will induce SFE on surface � due to the
boundary conditions and hence degrade the image quality of the
incoming wavefront

adopted as a constraint such that the mean eigenvalue must
be higher or equal than the minimum elastic mean eigen-
frequency ω2

n. A parameter sweep is performed over a range
of minimum eigenfrequency constraints to investigate the
influence of the eigenfrequency constraint. The range spans
from minimum eigenfrequency constraints where the con-
straint is inactive up to values where the structure is unable
to satisfy the constraint. Additionally, a constant volume
constraint is added, in order to ensure a fair comparison.

The problem is formally defined as

min
s

fMSE = MSE� (Ua) =
(
1
ñ

RT R
)

�

s.t. KU = AT(
K − ω2

i M
)
φi = 0 for i = 1, 2, ..., n∑m̃

i=1
ω2
n

ω2
i (s)

− 1 ≤ 0
V�(s)

V
− 1 ≤ 0

0 < s ≤ s ≤ s

(39)

In this study m̃ = 6 for all cases, to prevent the occurrence
of mode switching.

5.1.2 Optimization results

Figure 5 shows the resulting topologies and accompanying
performances obtained after optimization of (39) for a range
of eleven different values for f

n
(note that ω2

n = 4π2f 2
n
).

The required minimum eigenfrequency determines to what
degree the optimizer is able to minimize the MSE. Cases
with a higher eigenfrequency constraint generally result in
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Fig. 5 Optimization results for (39) showing topologies (thermal deformations scaled by a factor 100) and RMS surface form error, in μmK−1,
for a range of minimum eigenfrequency constraints f

n

higher SFE, as a compromise must be made. Note that above
a critical frequency the resulting designs do not satisfy the
eigenfrequency constraint. The resulting RMS SFEs are gi-
ven in μm K−1 because the RMS SFE scales linearly with
respect to both 	T and the CTE α, thus the imposed tempe-
rature difference or CTE is irrelevant for the final topology.

The topology of the optimal design subjected to a mean
eigenfrequency constraint of 500 Hz is shown in more detail
in Fig. 6. Designs with a relatively low eigenfrequency cons-
traint tend to possess compliant mechanism-like structures
in order to counteract surface deformations. In general,
structures with a lower required dynamic stiffness have clear
rotation points (shown in red) and thicker beams to support
the mirror. The large amount of material underneath the
mirror both stiffens the structure and forces the flexure-like
structures, which are fixed to the frame (green), to bend
outwards effectively flattening the surface (blue).

5.2 Two-mirror system spotsize minimization

This example studies the topology optimization of a two-
mirror system subjected to thermal loads from a light source,
as used in for example high-power laser or EUV applica-
tions. The study compares the following design approaches:

1. Uncoupled System (US) optimization, and
2. Coupled System (CS) optimization, where the inte-

grated SDO approach is applied.

Both optimization procedures make use of a full STOP
analysis, though only the integrated approach considers the

component interactions and applies both system and compo-
nent level constraints. Note that the uncoupled optimization
problem is not a typical design approach used in practice,
since it does consider system optical performances. The sep-
arate components are however artificially decoupled with

Fig. 6 Detailed view of the resulting topology of optimization problem
(39) with an eigenfrequency constraint of 500 Hz both in undeformed
and deformed (scaled by a factor 4). The figure illustrates the deformed
compliant mechanism-like structure with rotation points indicated in
red, mirror surface in blue and frame interface in green. Bottom figure
shows the first modeshape of the structure. This is the bending mode,
as expected
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relation to the optical performance, in order to investigate
the difference with respect to the coupled SDO approach.

The optimization aims to minimize the spot size error
due to prescribed boundary conditions of the frame and
thermal loads from the propagating beam, while bounded
by a the position accuracy, mass, and eigenfrequency
constraints. For multi-component systems both position
accuracy and spotsize depend on the rigid body motions
and SFEs of all components involved. The main target is
to investigate whether, and how, the components make use
of the capability to interact and compensate for each others
optical aberrations and how this may benefit the optical
performance.

5.2.1 Problem definition

Consider the schematic structural-thermal-optical system
consisting of two flat reflecting surfaces supported by
optical mounts with design domains as shown in Fig. 2.
An incoming converging beam with a perfect wavefront is
reflected by two mirrors before it is focused onto a sensor
with a theoretical spot size of zero (if it were unconstrained
by the diffraction limit).

The fundamental maximum resolution or minimum spot
size of any optical system is limited by the diffraction limit.
The diffraction limit for the system as shown in Fig. 2,
equals

D = 0.61λl
NA

= 0.61λl
nr sin θi

(40)

where D is the first minimum in the Airy disk, NA the
Numerical Aperture of the system, λl the wavelength of the
light, nr the index of refraction of the medium and θi the
half-angle of the incoming light. Assuming perfect vacuum
conditions, i.e. nr = 1, sunlight of λl = 550 nm (center of
sunlight wavelength spectrum) the half-angle of the system
of 3.8◦ and a NA of 0.0665, the diffraction limit of this
system equals 8.3μm.

The mesh is structured and consists of 10000 Quad
4 isoparametric elements (4 Gauss points and bilinear
shape functions) per domain. Each domain consists of Alu-
minium, with Young’s modulus E = 70 GPa, Poisson ratio
0.35, density ρ = 2700 kg/m3, coefficient of thermal con-
ductivity k = 250 W m−1 K and CTE α = 25μm/mK−1.

Both mirrors are subjected to known rigid body
movements from the housing, which is modelled as a
rigid interface. The interfaces of the first mirror mount
are considered constant at 1 K difference with respect to
ambient conditions, whereas the interfaces of the second
mirror are constant at 0 K difference. The first mirror is
subjected to a decenter rigid body effect of δx,1 = 200μm
and a the same amount of despace misalignment. The left
side of the second mirror is moved out by 200μm and down

the same magnitude. The right side of the second mirror
interface is also moved out by 200μm. This causes the
second mirror to initially have a despace and tip/tilt error.

The heat load is modelled as a Gaussian profile over the
surface, i.e.

Qc,i (x) = Q0,i

σ
√
2π

e
− 1

2

(
x−μ

σ

)2
, (41)

where Q0,i is the maximum amplitude in domain i in Watts,
x is the location on the surface, with x = 0 m in the middle
of the mirror surface, μ = 0 m and σ taken equal to 0.1
m. The input heat loads are normalized in relation to the
maximum value at x = μ. The first mirror is subjected to a
Gaussian heat profile with a maximum input of Q0,1 = 0.1
W m−1. Assuming the first mirror absorbs 10% of the heat
load, the second mirror is subjected to a heat load with a
90% maximum amplitude in relation to the first mirror.

Each design domain is constrained by an individual
eigenfrequency constraint, as well as a maximum allowable
RMS SFE compared to a perfectly parabolic mirror.
Therefore, the MSE SFE response (18), is adopted as a
constraint, taking into account proper scaling, i.e.

gMSE,i (Ua,i ) = log10

(
1

ñ
RT R

)
�i

≤ − log10
(
MSE�i

)

(42)

Additionally, the system is required to keep the position
of the image within a certain limit with respect to the
optical axis, therefore the positional error, (23) or (24),
depending on the optimization problem, has to be adopted
as a constraint, such that

gε̂,i(Ua,i ) = log10
(
ε̂2i

)
≤ − log10

(
ε̂
2
i

)
(43)

for an uncoupled optimization, and

gε̂(Ua,i , ..., Ua,N ) = log10
(
ε̂2

)
≤ − log10

(
ε̂
2)

(44)

for the coupled case. For an uncoupled optimization, the
system positional error budget must be split up into the
individual components, in this case such that the RSS
value equals the total allowed system positional error, with
equal weights per mirror, i.e. the positional error ε̂ of the
coupled case equals the RSS of the positional tolerances ε̂1
and ε̂2.

In the uncoupled optimization each mirror is subjected
to an individual maximum volume constraint as is typical
in industrial projects, however, when performing integrated
SDO the full system is subjected to a maximum volume
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Table 2 Performance of the obtained optomechanical systems, and properties of their individual mirror mounts: RMS spot size, RMS positional
error, volume, RMS SFE, mean eigenfrequency rigid body movements and mirror curvature. The values between parentheses indicate the value
at the first iteration

constraint equal to the sum of the volumes of the individual
components. In the example 50% volume is allowed. This
allows the optimizer to move material between domains
for the benefit of the system performance. The constraint
tolerance values, redefined into more relevant measures
(e.g. f

n
instead of ω2

n), are given in Table 2.
The uncoupled optimization problem of the individual

components minimizes the spot size as a function of the
misalignments of the component of interest while satisfying
the volume, positional error contribution and RMS SFE
constraints. The US optimization is a combination of the
optimization of mirror one (U-M1), not taking into account
the misalignments of the second mirror (U-M2) and vice
versa. The problem is stated as

min
s

fε̃,i = ε̃2i

(
Ua,i

) = 1
m

∑m
j=1

(
εj − ε̂i

)2
s.t.

[
K −A
0 H

]
i

[
U
T

]
i

=
[

0
Q

]
i(

K − ω2
i M

)
φi = 0 for i = 1, 2, ..., n

gε̂,i (Ua,i ) = log10
(
ε̂2i

) + log10
(
ε̂
2
i

)
≤ 0

gMSE,i (Ua,i )= log10
(
1
ñ

RT R
)

�i

+log10
(
MSE�i

)≤0

gω,i(Ua,i ) = ∑m̃
j=1

ω2
n(

ω2
j

)
i

− 1 ≤ 0

gV,i(Ua,i ) = V�i

V
− 1 ≤ 0

0 < s ≤ s ≤ s

(45)

for i = 1, ...N , where N = 2 for this system.
In the coupled case, the integrated SDO approach simul-

taneously optimizes all domains, thus objective function,

system positional error and volume constraint are a function
of the layout of all domains in the system, that is

min
s

fε̃ = ε̃2
(
Ua,1, Ua,2

) = 1
m

∑m
j=1

(
εj − ε̂

)2
s.t.

[
K −A
0 H

]
i

[
U
T

]
i

=
[

0
Q

]
i(

K − ω2
i M

)
φi = 0 for i = 1, 2, ..., n

gε̂(Ua,1, Ua,2) = log10
(
ε̂2

) + log10
(
ε̂
2) ≤ 0

gMSE,i (Ua,i )= log10
(
1
ñ

RT R
)

�i

+log10
(
MSE�i

)≤0

gω,i(Ua,i ) = ∑m̃
j=1

ω2
n(

ω2
j

)
i

− 1 ≤ 0

gV (Ua,1, Ua,2) = V�1+V�2
V

− 1 ≤ 0
0 < s ≤ s ≤ s

(46)

for i = 1, 2.
The lower bound on the design variables is s = 10−3. The

density filter radius equals the length of two finite elements
and the Heaviside projection parameters are set to β = 1.5
and η = 0.45. The termination criteria are ε	s = 0.0015,
ε	f(s) = 0.002, and εg(s) = 0.02.

5.2.2 Optimization results

Figure 8 shows the resulting RMS spot size diameter as a
function of iteration history for both optimization problems.
The RMS spot size diameter versus the number of iterations
for the coupled case using the SDO approach is illustrated
in red. Whereas this approach requires only a single
objective function, the uncoupled optimization consists of
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two separated optimization problems (one for each optical
component), of which the RMS spot size diameter versus
iteration number are shown in green and purple. In order
to compare the system performances the RMS spot size
diameter as a function of iteration history of the uncoupled
system is calculated afterwards as shown in blue. Note that
the optimizer is unaware of the US performance during
the optimization process. The resulting topologies for both
problems are displayed in Fig. 7, accompanied by the
final performances as well as the system and component
properties and constraint tolerances shown in Table 2.

The two approaches result in some significant differ-
ences, see Table 2 and Fig. 7. Whereas the curvature of the
first mirror in both approaches is brought as close as pos-
sible to zero, the second mirror in the coupled approach is
made even more concave than its original shape. Note that
the spot size of US is not simply the average of both mirrors.
The positional error constraint of U-M2 is active, although
the combined positional error of US is far below the allow-
able error. Both systems have satisfied the allowable mass,
however, the integrated SDO has transferred mass from
C-M2 to C-M1.

The optimization process has lowered the RMS spot size
diameter from 0.4mm in the first iteration to 106.5μm
and 4.7μm for the uncoupled and coupled optimiza-
tion approaches, respectively. Thus, the integrated SDO
approach used for the coupled case proves a ratio of increase
in performance of 22.6 times compared to the uncoupled
method, equivalent to an improvement of 95.6%. Note that

the integrated SDO approach is able to lower the RMS spot
size to below the diffraction limit of the system, that means
it is not possible to further improve the optical performance
measure with a geometry-based performance metric.

6 Discussion and recommendations

Existing approaches for topology optimization of optome-
chanical systems focus on the optimization of individual
mirror mounts to minimize their surface deformations. Our
research extends this by

1. topology optimization of mirror mounts for the
systems’ optical performance expressed in terms of
spot size and position accuracy using a full structural-
thermal-optical performance analysis procedure, and

2. simultaneous topology optimization of multiple mirror
mounts to exploit the interaction of aberrations between
different components due to thermal loads and frame
movements and minimize a system optical performance
while constrained by dynamic stiffness, weight and
optical performance measures, both on a component
and system level.

The results of the first case study, shown in Fig. 5,
indicate there is a certain bandwidth of minimum eigen-
frequency constraint values that influence the ability of the
optimizer to minimize the surface deformations. Thus, con-
flicting requirement tolerance values should be thoroughly

(a) Final design after the uncoupled optimization, resulting in an
improved but not diffraction-limited system.

(b) Final design after the integrated SDO, resulting in a diffraction-
limited system.

Fig. 7 Final design after the optimization of the system in Fig. 2. The
system, topologies and deformations are not to scale (deformations
scaled by a factor 100). The uncoupled optimization attempts to obtain

two flat mirror surfaces, whereas the SDO is able to design both mir-
rors with respect to each other and utilize the curvature of C-M2 to
correct for the defocus error introduced by C-M1
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investigated, as their limits can highly influence the topo-
logical layout and performance.

The results of the second study indicates that the
uncoupled optimization aims to design two perfectly flat
mirrors, whereas the layout of the second mirror in the
coupled optimization is such that its misalignments (mainly
curvature) effectively compensate for the misalignments of
the first mirror, resulting in a spotsize improvement of over
95%, without reduction of any other performance aspect
considered in the optimization.

The activity of the positional error constraint in the
optimal solution of the uncoupled optimization (while the
system easily remains within the accuracy limits) indicates
the system is unnecessarily overconstrained, see Table 2.
The SDO approach makes use of the enlarged feasible
domain, which is apparent from the mass transfer between
the mirrors in the optimal solution and the significant
differences in topologies. Thus, the typical design approach
unnecessarily overconstrains problems, whereas the SDO
approach enlarges the feasible domain and gives the
optimizer more freedom to minimize the objective while
still satisfying all constraints.

During optimization the SFE constraints are not
always satisfied, which means that optical analysis
is based on optical properties that do not accu-
rately describe the deformed surface leading to inaccu-
rate results. However, the converged optimal solutions
do satisfy the SFE constraints and hence accurately
describe the system’s optical performance metrics. A more
enhanced surface error determination method may result
in faster convergence, and additionally a different optimal
solution.

One would expect the SDO problem to be more difficult
to solve than the uncoupled problem, due to a larger design
space and potentially more complicated cost function.
However, the results indicate the opposite as the required
number of iterations to solve the problem reduces. The
iteration history, Fig. 8, shows that the SDO approach is able
to drastically decrease the objective in the first number of
iterations, where the uncoupled optimization requires more
iterations.

The RMS spot size diameter of the uncoupled system
reaches the diffraction limit twice, halfway the iteration
history, but the optimization continuous because component
responses do not satisfy all constraints and termination
criteria. On top of that, when the optimizer is able to
decrease the objective function of the second mirror,
the system spot size increases again. This indicates
that the mirrors exactly counteract each others error
during optimization, although the optimizer is unaware of
this information. Thus, component interaction should be
included to obtain a more optimal solution in terms of
system performance.

Fig. 8 RMS spot size diameter versus iteration history for the
uncoupled system (US) as result of the individual contribution of
mirror mount one (U-M1) and mirror mount two (U-M2), as well as
the coupled system (CS). Note that the RMS spot size diameter of the
US is constructed afterwards

Thus, the case study demonstrates that an integrated
structural-thermal-optical design optimization procedure
taking into account all system components improves
the system optical performance compared to individual
component optimization, while subjected to the same (or
equivalent) design constraints.

The system designed using the SDO method keeps
a considerable margin above the competitor and hence
the loads may increase considerably before the system’s
spot size diameter reaches that of the uncoupled variant.
Note that the individual components designed using the
SDO method are only applicable to this specific system
configuration with these specific loads and boundary
conditions. In general, the SDO method will result in
designs that are more tailored to a specific case and
generally are less robust with respect to other loading
conditions not considered in the optimization.

This study opens up further research directions, includ-
ing:

– application towards various different load cases to
verify and validate the general applicability of the
method,

– simultaneous optimization of the housing and optical
components and simultaneous optimization when their
domains are merged into a single mesh, in order to
give the optimizer the freedom to relocate the boundary
locations,

– extension to multiple, and different types of compo-
nents, e.g lenses, gratings, prisms and initially curved
mirrors,
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– extension to 3D structures and consideration of
manufacturability,

– including the uncertainty in both thermal and mechani-
cal loading, i.e. robust design,

– extension to multi-material topology optimization
to achieve higher performances as there are more
possibilities to counter effect thermal expansion, create
conductive isolation, as well as damp out external
vibrations (Van der Kolk et al. 2017), and

– enhancing thermal modeling and control by e.g.
considering design-dependent heat loads affected by
the misalignments, including radiation influences, and
simultaneously optimizing locations and input of active
thermal components (heaters/coolers).

It is expected that the more components the system
consist of and the stronger their interaction is, the greater the
benefit of the SDO method will be. Allowing the optimizer
to distribute unavoidable errors over multiple components in
the system, instead of letting the designer impose the error
budgets on each component, enlarges the feasible domain
and the potential for superior system designs.

7 Conclusions

The key to satisfy next generation optomechanical system
requirements is to not distribute error budgets over compo-
nents a priori, but to consider and optimize the system as
a whole. This allows for focus where it matters, without
overconstraining the system unnecessarily. A structural-
thermal-optical performance analysis is able to expose the
performance metrics that matter for optomechanical sys-
tems without relying on intermediate derived performance
indicators. For a single component system or multicompo-
nent uncoupled optimized system, only minimizing defor-
mations (and nothing else) leads to better optical systems.
However, there is additional room for improvement when
multicomponent systems are optimized in a coupled fashion
as this allows for error compensation between components.
Since the feasible design space of the system level optimiza-
tion completely encapsulates that of the individual compo-
nent optimization, the globally optimal performance of the
coupled system is always better or equal to the uncoupled
optimization approach. This is also shown by the results of
the numerical example; coupled optimization based on the
full structural-thermal-optical performance analysis is able
to reduce the spot size of a two-mirror system with 95%
compared to uncoupled component optimization to below
the system’s diffraction limit. The coupled analysis allowed
the two mirrors to compensate for each others errors, which
is a mechanism that would be otherwise invisible to the
optimizer. Despite the fact that real systems are more

complex than the simplified example considered in this
study, it shows that optomechanical designers should aim
for considering and integrating multiple components and
physics simultaneously in the design loop, and thus apply
the SDO approach, when requirements seem irreconcilable.
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